0
2
1
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef HYPERCUBE_GRAPH_H |
|
20 |
#define HYPERCUBE_GRAPH_H |
|
21 |
|
|
22 |
#include <iostream> |
|
23 |
#include <vector> |
|
24 |
#include <lemon/core.h> |
|
25 |
#include <lemon/error.h> |
|
26 |
|
|
27 |
#include <lemon/bits/base_extender.h> |
|
28 |
#include <lemon/bits/graph_extender.h> |
|
29 |
|
|
30 |
///\ingroup graphs |
|
31 |
///\file |
|
32 |
///\brief HypercubeDigraph class. |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
class HypercubeDigraphBase { |
|
37 |
|
|
38 |
public: |
|
39 |
|
|
40 |
typedef HypercubeDigraphBase Digraph; |
|
41 |
|
|
42 |
class Node; |
|
43 |
class Arc; |
|
44 |
|
|
45 |
public: |
|
46 |
|
|
47 |
HypercubeDigraphBase() {} |
|
48 |
|
|
49 |
protected: |
|
50 |
|
|
51 |
void construct(int dim) { |
|
52 |
_dim = dim; |
|
53 |
_nodeNum = 1 << dim; |
|
54 |
} |
|
55 |
|
|
56 |
public: |
|
57 |
|
|
58 |
typedef True NodeNumTag; |
|
59 |
typedef True ArcNumTag; |
|
60 |
|
|
61 |
int nodeNum() const { return _nodeNum; } |
|
62 |
int arcNum() const { return _nodeNum * _dim; } |
|
63 |
|
|
64 |
int maxNodeId() const { return nodeNum() - 1; } |
|
65 |
int maxArcId() const { return arcNum() - 1; } |
|
66 |
|
|
67 |
Node source(Arc e) const { |
|
68 |
return e.id / _dim; |
|
69 |
} |
|
70 |
|
|
71 |
Node target(Arc e) const { |
|
72 |
return (e.id / _dim) ^ (1 << (e.id % _dim)); |
|
73 |
} |
|
74 |
|
|
75 |
static int id(Node v) { return v.id; } |
|
76 |
static int id(Arc e) { return e.id; } |
|
77 |
|
|
78 |
static Node nodeFromId(int id) { return Node(id); } |
|
79 |
|
|
80 |
static Arc arcFromId(int id) { return Arc(id); } |
|
81 |
|
|
82 |
class Node { |
|
83 |
friend class HypercubeDigraphBase; |
|
84 |
protected: |
|
85 |
int id; |
|
86 |
Node(int _id) { id = _id;} |
|
87 |
public: |
|
88 |
Node() {} |
|
89 |
Node (Invalid) { id = -1; } |
|
90 |
bool operator==(const Node node) const { return id == node.id; } |
|
91 |
bool operator!=(const Node node) const { return id != node.id; } |
|
92 |
bool operator<(const Node node) const { return id < node.id; } |
|
93 |
}; |
|
94 |
|
|
95 |
class Arc { |
|
96 |
friend class HypercubeDigraphBase; |
|
97 |
protected: |
|
98 |
int id; |
|
99 |
Arc(int _id) : id(_id) {} |
|
100 |
public: |
|
101 |
Arc() { } |
|
102 |
Arc (Invalid) { id = -1; } |
|
103 |
bool operator==(const Arc arc) const { return id == arc.id; } |
|
104 |
bool operator!=(const Arc arc) const { return id != arc.id; } |
|
105 |
bool operator<(const Arc arc) const { return id < arc.id; } |
|
106 |
}; |
|
107 |
|
|
108 |
void first(Node& node) const { |
|
109 |
node.id = nodeNum() - 1; |
|
110 |
} |
|
111 |
|
|
112 |
static void next(Node& node) { |
|
113 |
--node.id; |
|
114 |
} |
|
115 |
|
|
116 |
void first(Arc& arc) const { |
|
117 |
arc.id = arcNum() - 1; |
|
118 |
} |
|
119 |
|
|
120 |
static void next(Arc& arc) { |
|
121 |
--arc.id; |
|
122 |
} |
|
123 |
|
|
124 |
void firstOut(Arc& arc, const Node& node) const { |
|
125 |
arc.id = node.id * _dim; |
|
126 |
} |
|
127 |
|
|
128 |
void nextOut(Arc& arc) const { |
|
129 |
++arc.id; |
|
130 |
if (arc.id % _dim == 0) arc.id = -1; |
|
131 |
} |
|
132 |
|
|
133 |
void firstIn(Arc& arc, const Node& node) const { |
|
134 |
arc.id = (node.id ^ 1) * _dim; |
|
135 |
} |
|
136 |
|
|
137 |
void nextIn(Arc& arc) const { |
|
138 |
int cnt = arc.id % _dim; |
|
139 |
if ((cnt + 1) % _dim == 0) { |
|
140 |
arc.id = -1; |
|
141 |
} else { |
|
142 |
arc.id = ((arc.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1; |
|
143 |
} |
|
144 |
} |
|
145 |
|
|
146 |
int dimension() const { |
|
147 |
return _dim; |
|
148 |
} |
|
149 |
|
|
150 |
bool projection(Node node, int n) const { |
|
151 |
return static_cast<bool>(node.id & (1 << n)); |
|
152 |
} |
|
153 |
|
|
154 |
int dimension(Arc arc) const { |
|
155 |
return arc.id % _dim; |
|
156 |
} |
|
157 |
|
|
158 |
int index(Node node) const { |
|
159 |
return node.id; |
|
160 |
} |
|
161 |
|
|
162 |
Node operator()(int ix) const { |
|
163 |
return Node(ix); |
|
164 |
} |
|
165 |
|
|
166 |
private: |
|
167 |
int _dim, _nodeNum; |
|
168 |
}; |
|
169 |
|
|
170 |
|
|
171 |
typedef DigraphExtender<HypercubeDigraphBase> ExtendedHypercubeDigraphBase; |
|
172 |
|
|
173 |
/// \ingroup digraphs |
|
174 |
/// |
|
175 |
/// \brief Hypercube digraph class |
|
176 |
/// |
|
177 |
/// This class implements a special digraph type. The nodes of the |
|
178 |
/// digraph are indiced with integers with at most \c dim binary digits. |
|
179 |
/// Two nodes are connected in the digraph if the indices differ only |
|
180 |
/// on one position in the binary form. |
|
181 |
/// |
|
182 |
/// \note The type of the \c ids is chosen to \c int because efficiency |
|
183 |
/// reasons. Thus the maximum dimension of this implementation is 26. |
|
184 |
/// |
|
185 |
/// The digraph type is fully conform to the \ref concepts::Digraph |
|
186 |
/// concept but it does not conform to \ref concepts::Graph. |
|
187 |
class HypercubeDigraph : public ExtendedHypercubeDigraphBase { |
|
188 |
public: |
|
189 |
|
|
190 |
typedef ExtendedHypercubeDigraphBase Parent; |
|
191 |
|
|
192 |
/// \brief Construct a hypercube digraph with \c dim dimension. |
|
193 |
/// |
|
194 |
/// Construct a hypercube digraph with \c dim dimension. |
|
195 |
HypercubeDigraph(int dim) { construct(dim); } |
|
196 |
|
|
197 |
/// \brief Gives back the number of the dimensions. |
|
198 |
/// |
|
199 |
/// Gives back the number of the dimensions. |
|
200 |
int dimension() const { |
|
201 |
return Parent::dimension(); |
|
202 |
} |
|
203 |
|
|
204 |
/// \brief Returns true if the n'th bit of the node is one. |
|
205 |
/// |
|
206 |
/// Returns true if the n'th bit of the node is one. |
|
207 |
bool projection(Node node, int n) const { |
|
208 |
return Parent::projection(node, n); |
|
209 |
} |
|
210 |
|
|
211 |
/// \brief The dimension id of the arc. |
|
212 |
/// |
|
213 |
/// It returns the dimension id of the arc. It can |
|
214 |
/// be in the \f$ \{0, 1, \dots, dim-1\} \f$ interval. |
|
215 |
int dimension(Arc arc) const { |
|
216 |
return Parent::dimension(arc); |
|
217 |
} |
|
218 |
|
|
219 |
/// \brief Gives back the index of the node. |
|
220 |
/// |
|
221 |
/// Gives back the index of the node. The lower bits of the |
|
222 |
/// integer describes the node. |
|
223 |
int index(Node node) const { |
|
224 |
return Parent::index(node); |
|
225 |
} |
|
226 |
|
|
227 |
/// \brief Gives back the node by its index. |
|
228 |
/// |
|
229 |
/// Gives back the node by its index. |
|
230 |
Node operator()(int ix) const { |
|
231 |
return Parent::operator()(ix); |
|
232 |
} |
|
233 |
|
|
234 |
/// \brief Number of nodes. |
|
235 |
int nodeNum() const { return Parent::nodeNum(); } |
|
236 |
/// \brief Number of arcs. |
|
237 |
int arcNum() const { return Parent::arcNum(); } |
|
238 |
|
|
239 |
/// \brief Linear combination map. |
|
240 |
/// |
|
241 |
/// It makes possible to give back a linear combination |
|
242 |
/// for each node. This function works like the \c std::accumulate |
|
243 |
/// so it accumulates the \c bf binary function with the \c fv |
|
244 |
/// first value. The map accumulates only on that dimensions where |
|
245 |
/// the node's index is one. The accumulated values should be |
|
246 |
/// given by the \c begin and \c end iterators and the length of this |
|
247 |
/// range should be equal to the dimension number of the digraph. |
|
248 |
/// |
|
249 |
///\code |
|
250 |
/// const int DIM = 3; |
|
251 |
/// HypercubeDigraph digraph(DIM); |
|
252 |
/// dim2::Point<double> base[DIM]; |
|
253 |
/// for (int k = 0; k < DIM; ++k) { |
|
254 |
/// base[k].x = rnd(); |
|
255 |
/// base[k].y = rnd(); |
|
256 |
/// } |
|
257 |
/// HypercubeDigraph::HyperMap<dim2::Point<double> > |
|
258 |
/// pos(digraph, base, base + DIM, dim2::Point<double>(0.0, 0.0)); |
|
259 |
///\endcode |
|
260 |
/// |
|
261 |
/// \see HypercubeDigraph |
|
262 |
template <typename T, typename BF = std::plus<T> > |
|
263 |
class HyperMap { |
|
264 |
public: |
|
265 |
|
|
266 |
typedef Node Key; |
|
267 |
typedef T Value; |
|
268 |
|
|
269 |
|
|
270 |
/// \brief Constructor for HyperMap. |
|
271 |
/// |
|
272 |
/// Construct a HyperMap for the given digraph. The accumulated values |
|
273 |
/// should be given by the \c begin and \c end iterators and the length |
|
274 |
/// of this range should be equal to the dimension number of the digraph. |
|
275 |
/// |
|
276 |
/// This function accumulates the \c bf binary function with |
|
277 |
/// the \c fv first value. The map accumulates only on that dimensions |
|
278 |
/// where the node's index is one. |
|
279 |
template <typename It> |
|
280 |
HyperMap(const Digraph& digraph, It begin, It end, |
|
281 |
T fv = 0.0, const BF& bf = BF()) |
|
282 |
: _graph(digraph), _values(begin, end), _first_value(fv), _bin_func(bf) |
|
283 |
{ |
|
284 |
LEMON_ASSERT(_values.size() == digraph.dimension(), |
|
285 |
"Wrong size of dimension"); |
|
286 |
} |
|
287 |
|
|
288 |
/// \brief Gives back the partial accumulated value. |
|
289 |
/// |
|
290 |
/// Gives back the partial accumulated value. |
|
291 |
Value operator[](Key k) const { |
|
292 |
Value val = _first_value; |
|
293 |
int id = _graph.index(k); |
|
294 |
int n = 0; |
|
295 |
while (id != 0) { |
|
296 |
if (id & 1) { |
|
297 |
val = _bin_func(val, _values[n]); |
|
298 |
} |
|
299 |
id >>= 1; |
|
300 |
++n; |
|
301 |
} |
|
302 |
return val; |
|
303 |
} |
|
304 |
|
|
305 |
private: |
|
306 |
const Digraph& _graph; |
|
307 |
std::vector<T> _values; |
|
308 |
T _first_value; |
|
309 |
BF _bin_func; |
|
310 |
}; |
|
311 |
|
|
312 |
}; |
|
313 |
|
|
314 |
} |
|
315 |
|
|
316 |
#endif |
... | ... |
@@ -22,3 +22,3 @@ |
22 | 22 |
#include <lemon/full_graph.h> |
23 |
|
|
23 |
#include <lemon/hypercube_graph.h> |
|
24 | 24 |
|
... | ... |
@@ -114,2 +114,31 @@ |
114 | 114 |
|
115 |
void checkHypercubeDigraph(int dim) { |
|
116 |
DIGRAPH_TYPEDEFS(HypercubeDigraph); |
|
117 |
|
|
118 |
HypercubeDigraph G(dim); |
|
119 |
checkGraphNodeList(G, 1 << dim); |
|
120 |
checkGraphArcList(G, (1 << dim) * dim); |
|
121 |
|
|
122 |
Node n = G.nodeFromId(dim); |
|
123 |
|
|
124 |
checkGraphOutArcList(G, n, dim); |
|
125 |
for (OutArcIt a(G, n); a != INVALID; ++a) |
|
126 |
check(G.source(a) == n && |
|
127 |
G.id(G.target(a)) == G.id(n) ^ (1 << G.dimension(a)), |
|
128 |
"Wrong arc"); |
|
129 |
|
|
130 |
checkGraphInArcList(G, n, dim); |
|
131 |
for (InArcIt a(G, n); a != INVALID; ++a) |
|
132 |
check(G.target(a) == n && |
|
133 |
G.id(G.source(a)) == G.id(n) ^ (1 << G.dimension(a)), |
|
134 |
"Wrong arc"); |
|
135 |
|
|
136 |
checkGraphConArcList(G, (1 << dim) * dim); |
|
137 |
|
|
138 |
checkNodeIds(G); |
|
139 |
checkArcIds(G); |
|
140 |
checkGraphNodeMap(G); |
|
141 |
checkGraphArcMap(G); |
|
142 |
} |
|
143 |
|
|
115 | 144 |
|
... | ... |
@@ -147,5 +176,5 @@ |
147 | 176 |
} |
148 |
// { // Checking HyperCubeDigraph |
|
149 |
// checkConcept<Digraph, HyperCubeDigraph>(); |
|
150 |
// |
|
177 |
{ // Checking HypercubeDigraph |
|
178 |
checkConcept<Digraph, HypercubeDigraph>(); |
|
179 |
} |
|
151 | 180 |
} |
... | ... |
@@ -214,2 +243,8 @@ |
214 | 243 |
} |
244 |
{ // Checking HypercubeDigraph |
|
245 |
checkHypercubeDigraph(1); |
|
246 |
checkHypercubeDigraph(2); |
|
247 |
checkHypercubeDigraph(3); |
|
248 |
checkHypercubeDigraph(4); |
|
249 |
} |
|
215 | 250 |
} |
0 comments (0 inline)