/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef HYPERCUBE_GRAPH_H
#define HYPERCUBE_GRAPH_H
#include <lemon/bits/base_extender.h>
#include <lemon/bits/graph_extender.h>
///\brief HypercubeDigraph class.
class HypercubeDigraphBase {
typedef HypercubeDigraphBase Digraph;
HypercubeDigraphBase() {}
void construct(int dim) {
int nodeNum() const { return _nodeNum; }
int arcNum() const { return _nodeNum * _dim; }
int maxNodeId() const { return nodeNum() - 1; }
int maxArcId() const { return arcNum() - 1; }
Node source(Arc e) const {
Node target(Arc e) const {
return (e.id / _dim) ^ (1 << (e.id % _dim));
static int id(Node v) { return v.id; }
static int id(Arc e) { return e.id; }
static Node nodeFromId(int id) { return Node(id); }
static Arc arcFromId(int id) { return Arc(id); }
friend class HypercubeDigraphBase;
Node(int _id) { id = _id;}
Node (Invalid) { id = -1; }
bool operator==(const Node node) const { return id == node.id; }
bool operator!=(const Node node) const { return id != node.id; }
bool operator<(const Node node) const { return id < node.id; }
friend class HypercubeDigraphBase;
Arc(int _id) : id(_id) {}
Arc (Invalid) { id = -1; }
bool operator==(const Arc arc) const { return id == arc.id; }
bool operator!=(const Arc arc) const { return id != arc.id; }
bool operator<(const Arc arc) const { return id < arc.id; }
void first(Node& node) const {
static void next(Node& node) {
void first(Arc& arc) const {
static void next(Arc& arc) {
void firstOut(Arc& arc, const Node& node) const {
void nextOut(Arc& arc) const {
if (arc.id % _dim == 0) arc.id = -1;
void firstIn(Arc& arc, const Node& node) const {
arc.id = (node.id ^ 1) * _dim;
void nextIn(Arc& arc) const {
if ((cnt + 1) % _dim == 0) {
arc.id = ((arc.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
bool projection(Node node, int n) const {
return static_cast<bool>(node.id & (1 << n));
int dimension(Arc arc) const {
int index(Node node) const {
Node operator()(int ix) const {
typedef DigraphExtender<HypercubeDigraphBase> ExtendedHypercubeDigraphBase;
/// \brief Hypercube digraph class
/// This class implements a special digraph type. The nodes of the
/// digraph are indiced with integers with at most \c dim binary digits.
/// Two nodes are connected in the digraph if the indices differ only
/// on one position in the binary form.
/// \note The type of the \c ids is chosen to \c int because efficiency
/// reasons. Thus the maximum dimension of this implementation is 26.
/// The digraph type is fully conform to the \ref concepts::Digraph
/// concept but it does not conform to \ref concepts::Graph.
class HypercubeDigraph : public ExtendedHypercubeDigraphBase {
typedef ExtendedHypercubeDigraphBase Parent;
/// \brief Construct a hypercube digraph with \c dim dimension.
/// Construct a hypercube digraph with \c dim dimension.
HypercubeDigraph(int dim) { construct(dim); }
/// \brief Gives back the number of the dimensions.
/// Gives back the number of the dimensions.
return Parent::dimension();
/// \brief Returns true if the n'th bit of the node is one.
/// Returns true if the n'th bit of the node is one.
bool projection(Node node, int n) const {
return Parent::projection(node, n);
/// \brief The dimension id of the arc.
/// It returns the dimension id of the arc. It can
/// be in the \f$ \{0, 1, \dots, dim-1\} \f$ interval.
int dimension(Arc arc) const {
return Parent::dimension(arc);
/// \brief Gives back the index of the node.
/// Gives back the index of the node. The lower bits of the
/// integer describes the node.
int index(Node node) const {
return Parent::index(node);
/// \brief Gives back the node by its index.
/// Gives back the node by its index.
Node operator()(int ix) const {
return Parent::operator()(ix);
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Linear combination map.
/// It makes possible to give back a linear combination
/// for each node. This function works like the \c std::accumulate
/// so it accumulates the \c bf binary function with the \c fv
/// first value. The map accumulates only on that dimensions where
/// the node's index is one. The accumulated values should be
/// given by the \c begin and \c end iterators and the length of this
/// range should be equal to the dimension number of the digraph.
/// HypercubeDigraph digraph(DIM);
/// dim2::Point<double> base[DIM];
/// for (int k = 0; k < DIM; ++k) {
/// HypercubeDigraph::HyperMap<dim2::Point<double> >
/// pos(digraph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
/// \see HypercubeDigraph
template <typename T, typename BF = std::plus<T> >
/// \brief Constructor for HyperMap.
/// Construct a HyperMap for the given digraph. The accumulated values
/// should be given by the \c begin and \c end iterators and the length
/// of this range should be equal to the dimension number of the digraph.
/// This function accumulates the \c bf binary function with
/// the \c fv first value. The map accumulates only on that dimensions
/// where the node's index is one.
HyperMap(const Digraph& digraph, It begin, It end,
T fv = 0.0, const BF& bf = BF())
: _graph(digraph), _values(begin, end), _first_value(fv), _bin_func(bf)
LEMON_ASSERT(_values.size() == digraph.dimension(),
"Wrong size of dimension");
/// \brief Gives back the partial accumulated value.
/// Gives back the partial accumulated value.
Value operator[](Key k) const {
Value val = _first_value;
int id = _graph.index(k);
val = _bin_func(val, _values[n]);