0
3
0
... | ... |
@@ -1102,154 +1102,155 @@ |
1102 | 1102 |
// Initialize node related data |
1103 | 1103 |
bool valid_supply = true; |
1104 | 1104 |
Flow sum_supply = 0; |
1105 | 1105 |
if (!_pstsup && !_psupply) { |
1106 | 1106 |
_pstsup = true; |
1107 | 1107 |
_psource = _ptarget = NodeIt(_graph); |
1108 | 1108 |
_pstflow = 0; |
1109 | 1109 |
} |
1110 | 1110 |
if (_psupply) { |
1111 | 1111 |
int i = 0; |
1112 | 1112 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1113 | 1113 |
_node_id[n] = i; |
1114 | 1114 |
_supply[i] = (*_psupply)[n]; |
1115 | 1115 |
sum_supply += _supply[i]; |
1116 | 1116 |
} |
1117 | 1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
1118 | 1118 |
(_ptype == LEQ && sum_supply >= 0); |
1119 | 1119 |
} else { |
1120 | 1120 |
int i = 0; |
1121 | 1121 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1122 | 1122 |
_node_id[n] = i; |
1123 | 1123 |
_supply[i] = 0; |
1124 | 1124 |
} |
1125 | 1125 |
_supply[_node_id[_psource]] = _pstflow; |
1126 | 1126 |
_supply[_node_id[_ptarget]] = -_pstflow; |
1127 | 1127 |
} |
1128 | 1128 |
if (!valid_supply) return false; |
1129 | 1129 |
|
1130 | 1130 |
// Infinite capacity value |
1131 | 1131 |
Flow inf_cap = |
1132 | 1132 |
std::numeric_limits<Flow>::has_infinity ? |
1133 | 1133 |
std::numeric_limits<Flow>::infinity() : |
1134 | 1134 |
std::numeric_limits<Flow>::max(); |
1135 | 1135 |
|
1136 | 1136 |
// Initialize artifical cost |
1137 | 1137 |
Cost art_cost; |
1138 | 1138 |
if (std::numeric_limits<Cost>::is_exact) { |
1139 | 1139 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
1140 | 1140 |
} else { |
1141 | 1141 |
art_cost = std::numeric_limits<Cost>::min(); |
1142 | 1142 |
for (int i = 0; i != _arc_num; ++i) { |
1143 | 1143 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
1144 | 1144 |
} |
1145 | 1145 |
art_cost = (art_cost + 1) * _node_num; |
1146 | 1146 |
} |
1147 | 1147 |
|
1148 | 1148 |
// Run Circulation to check if a feasible solution exists |
1149 | 1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
1150 | 1151 |
FlowNodeMap *csup = NULL; |
1151 | 1152 |
bool local_csup = false; |
1152 | 1153 |
if (_psupply) { |
1153 | 1154 |
csup = _psupply; |
1154 | 1155 |
} else { |
1155 | 1156 |
csup = new FlowNodeMap(_graph, 0); |
1156 | 1157 |
(*csup)[_psource] = _pstflow; |
1157 | 1158 |
(*csup)[_ptarget] = -_pstflow; |
1158 | 1159 |
local_csup = true; |
1159 | 1160 |
} |
1160 | 1161 |
bool circ_result = false; |
1161 | 1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
1162 | 1163 |
// GEQ problem type |
1163 | 1164 |
if (_plower) { |
1164 | 1165 |
if (_pupper) { |
1165 | 1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
1166 | 1167 |
circ(_graph, *_plower, *_pupper, *csup); |
1167 | 1168 |
circ_result = circ.run(); |
1168 | 1169 |
} else { |
1169 | 1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
1170 |
circ(_graph, *_plower, |
|
1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
1171 | 1172 |
circ_result = circ.run(); |
1172 | 1173 |
} |
1173 | 1174 |
} else { |
1174 | 1175 |
if (_pupper) { |
1175 | 1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
1176 |
circ(_graph, |
|
1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
1177 | 1178 |
circ_result = circ.run(); |
1178 | 1179 |
} else { |
1179 | 1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
1180 |
circ(_graph, |
|
1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
1181 | 1182 |
circ_result = circ.run(); |
1182 | 1183 |
} |
1183 | 1184 |
} |
1184 | 1185 |
} else { |
1185 | 1186 |
// LEQ problem type |
1186 | 1187 |
typedef ReverseDigraph<const GR> RevGraph; |
1187 | 1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
1188 | 1189 |
RevGraph rgraph(_graph); |
1189 | 1190 |
NegNodeMap neg_csup(*csup); |
1190 | 1191 |
if (_plower) { |
1191 | 1192 |
if (_pupper) { |
1192 | 1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
1193 | 1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
1194 | 1195 |
circ_result = circ.run(); |
1195 | 1196 |
} else { |
1196 | 1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
1197 |
circ(rgraph, *_plower, |
|
1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
1198 | 1199 |
circ_result = circ.run(); |
1199 | 1200 |
} |
1200 | 1201 |
} else { |
1201 | 1202 |
if (_pupper) { |
1202 | 1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
1203 |
circ(rgraph, |
|
1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
1204 | 1205 |
circ_result = circ.run(); |
1205 | 1206 |
} else { |
1206 | 1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
1207 |
circ(rgraph, |
|
1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
1208 | 1209 |
circ_result = circ.run(); |
1209 | 1210 |
} |
1210 | 1211 |
} |
1211 | 1212 |
} |
1212 | 1213 |
if (local_csup) delete csup; |
1213 | 1214 |
if (!circ_result) return false; |
1214 | 1215 |
|
1215 | 1216 |
// Set data for the artificial root node |
1216 | 1217 |
_root = _node_num; |
1217 | 1218 |
_parent[_root] = -1; |
1218 | 1219 |
_pred[_root] = -1; |
1219 | 1220 |
_thread[_root] = 0; |
1220 | 1221 |
_rev_thread[0] = _root; |
1221 | 1222 |
_succ_num[_root] = all_node_num; |
1222 | 1223 |
_last_succ[_root] = _root - 1; |
1223 | 1224 |
_supply[_root] = -sum_supply; |
1224 | 1225 |
if (sum_supply < 0) { |
1225 | 1226 |
_pi[_root] = -art_cost; |
1226 | 1227 |
} else { |
1227 | 1228 |
_pi[_root] = art_cost; |
1228 | 1229 |
} |
1229 | 1230 |
|
1230 | 1231 |
// Store the arcs in a mixed order |
1231 | 1232 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
1232 | 1233 |
int i = 0; |
1233 | 1234 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1234 | 1235 |
_arc_ref[i] = e; |
1235 | 1236 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1236 | 1237 |
} |
1237 | 1238 |
|
1238 | 1239 |
// Initialize arc maps |
1239 | 1240 |
if (_pupper && _pcost) { |
1240 | 1241 |
for (int i = 0; i != _arc_num; ++i) { |
1241 | 1242 |
Arc e = _arc_ref[i]; |
1242 | 1243 |
_source[i] = _node_id[_graph.source(e)]; |
1243 | 1244 |
_target[i] = _node_id[_graph.target(e)]; |
1244 | 1245 |
_cap[i] = (*_pupper)[e]; |
1245 | 1246 |
_cost[i] = (*_pcost)[e]; |
1246 | 1247 |
_flow[i] = 0; |
1247 | 1248 |
_state[i] = STATE_LOWER; |
1248 | 1249 |
} |
1249 | 1250 |
} else { |
1250 | 1251 |
for (int i = 0; i != _arc_num; ++i) { |
1251 | 1252 |
Arc e = _arc_ref[i]; |
1252 | 1253 |
_source[i] = _node_id[_graph.source(e)]; |
1253 | 1254 |
_target[i] = _node_id[_graph.target(e)]; |
1254 | 1255 |
_flow[i] = 0; |
1255 | 1256 |
_state[i] = STATE_LOWER; |
... | ... |
@@ -188,102 +188,97 @@ |
188 | 188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
189 | 189 |
typename CM::Value red_cost = |
190 | 190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
191 | 191 |
opt = red_cost == 0 || |
192 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
193 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
197 | 197 |
typename SM::Value sum = 0; |
198 | 198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
199 | 199 |
sum += flow[e]; |
200 | 200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
201 | 201 |
sum -= flow[e]; |
202 | 202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
203 | 203 |
} |
204 | 204 |
|
205 | 205 |
return opt; |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
// Run a minimum cost flow algorithm and check the results |
209 | 209 |
template < typename MCF, typename GR, |
210 | 210 |
typename LM, typename UM, |
211 | 211 |
typename CM, typename SM > |
212 | 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
213 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
214 | 214 |
const CM& cost, const SM& supply, |
215 | 215 |
bool result, typename CM::Value total, |
216 | 216 |
const std::string &test_id = "", |
217 | 217 |
ProblemType type = EQ ) |
218 | 218 |
{ |
219 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
220 | 220 |
if (result) { |
221 | 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
222 | 222 |
"The flow is not feasible " + test_id); |
223 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
224 | 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
225 | 225 |
mcf.potentialMap()), |
226 | 226 |
"Wrong potentials " + test_id); |
227 | 227 |
} |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
int main() |
231 | 231 |
{ |
232 | 232 |
// Check the interfaces |
233 | 233 |
{ |
234 | 234 |
typedef int Flow; |
235 | 235 |
typedef int Cost; |
236 |
// TODO: This typedef should be enabled if the standard maps are |
|
237 |
// reference maps in the graph concepts (See #190). |
|
238 |
/**/ |
|
239 |
//typedef concepts::Digraph GR; |
|
240 |
typedef ListDigraph GR; |
|
241 |
/**/ |
|
236 |
typedef concepts::Digraph GR; |
|
242 | 237 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
243 | 238 |
NetworkSimplex<GR, Flow, Cost> >(); |
244 | 239 |
} |
245 | 240 |
|
246 | 241 |
// Run various MCF tests |
247 | 242 |
typedef ListDigraph Digraph; |
248 | 243 |
DIGRAPH_TYPEDEFS(ListDigraph); |
249 | 244 |
|
250 | 245 |
// Read the test digraph |
251 | 246 |
Digraph gr; |
252 | 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
253 | 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
254 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
255 | 250 |
Node v, w; |
256 | 251 |
|
257 | 252 |
std::istringstream input(test_lgf); |
258 | 253 |
DigraphReader<Digraph>(gr, input) |
259 | 254 |
.arcMap("cost", c) |
260 | 255 |
.arcMap("cap", u) |
261 | 256 |
.arcMap("low1", l1) |
262 | 257 |
.arcMap("low2", l2) |
263 | 258 |
.nodeMap("sup1", s1) |
264 | 259 |
.nodeMap("sup2", s2) |
265 | 260 |
.nodeMap("sup3", s3) |
266 | 261 |
.nodeMap("sup4", s4) |
267 | 262 |
.nodeMap("sup5", s5) |
268 | 263 |
.node("source", v) |
269 | 264 |
.node("target", w) |
270 | 265 |
.run(); |
271 | 266 |
|
272 | 267 |
// A. Test NetworkSimplex with the default pivot rule |
273 | 268 |
{ |
274 | 269 |
NetworkSimplex<Digraph> mcf(gr); |
275 | 270 |
|
276 | 271 |
// Check the equality form |
277 | 272 |
mcf.upperMap(u).costMap(c); |
278 | 273 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
279 | 274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
280 | 275 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
281 | 276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
282 | 277 |
mcf.lowerMap(l2); |
283 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
284 | 279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
285 | 280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
286 | 281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
287 | 282 |
mcf.reset(); |
288 | 283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
289 | 284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
... | ... |
@@ -48,155 +48,173 @@ |
48 | 48 |
using namespace lemon; |
49 | 49 |
typedef SmartDigraph Digraph; |
50 | 50 |
DIGRAPH_TYPEDEFS(Digraph); |
51 | 51 |
typedef SmartGraph Graph; |
52 | 52 |
|
53 | 53 |
template<class Value> |
54 | 54 |
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &, |
55 | 55 |
DimacsDescriptor &desc) |
56 | 56 |
{ |
57 | 57 |
bool report = !ap.given("q"); |
58 | 58 |
Digraph g; |
59 | 59 |
Node s; |
60 | 60 |
Digraph::ArcMap<Value> len(g); |
61 | 61 |
Timer t; |
62 | 62 |
t.restart(); |
63 | 63 |
readDimacsSp(is, g, len, s, desc); |
64 | 64 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
65 | 65 |
t.restart(); |
66 | 66 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
67 | 67 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
68 | 68 |
t.restart(); |
69 | 69 |
dij.run(s); |
70 | 70 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
template<class Value> |
74 | 74 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
75 | 75 |
Value infty, DimacsDescriptor &desc) |
76 | 76 |
{ |
77 | 77 |
bool report = !ap.given("q"); |
78 | 78 |
Digraph g; |
79 | 79 |
Node s,t; |
80 | 80 |
Digraph::ArcMap<Value> cap(g); |
81 | 81 |
Timer ti; |
82 | 82 |
ti.restart(); |
83 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
84 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
85 | 85 |
ti.restart(); |
86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
88 | 88 |
ti.restart(); |
89 | 89 |
pre.run(); |
90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
91 | 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
template<class Value> |
95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
96 |
DimacsDescriptor &desc) |
|
96 |
Value infty, DimacsDescriptor &desc) |
|
97 | 97 |
{ |
98 | 98 |
bool report = !ap.given("q"); |
99 | 99 |
Digraph g; |
100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
101 | 101 |
Digraph::NodeMap<Value> sup(g); |
102 | 102 |
Timer ti; |
103 |
|
|
103 | 104 |
ti.restart(); |
104 |
readDimacsMin(is, g, lower, cap, cost, sup, |
|
105 |
readDimacsMin(is, g, lower, cap, cost, sup, infty, desc); |
|
106 |
ti.stop(); |
|
107 |
Value sum_sup = 0; |
|
108 |
for (Digraph::NodeIt n(g); n != INVALID; ++n) { |
|
109 |
sum_sup += sup[n]; |
|
110 |
} |
|
111 |
if (report) { |
|
112 |
std::cerr << "Sum of supply values: " << sum_sup << "\n"; |
|
113 |
if (sum_sup <= 0) |
|
114 |
std::cerr << "GEQ supply contraints are used for NetworkSimplex\n\n"; |
|
115 |
else |
|
116 |
std::cerr << "LEQ supply contraints are used for NetworkSimplex\n\n"; |
|
117 |
} |
|
105 | 118 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
119 |
|
|
106 | 120 |
ti.restart(); |
107 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
108 | 122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
109 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
110 | 125 |
ti.restart(); |
111 |
ns.run(); |
|
112 |
if (report) std::cerr << "Run NetworkSimplex: " << ti << '\n'; |
|
113 |
|
|
126 |
bool res = ns.run(); |
|
127 |
if (report) { |
|
128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
|
129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
|
130 |
if (res) std::cerr << "Min flow cost: " << ns.totalCost() << '\n'; |
|
131 |
} |
|
114 | 132 |
} |
115 | 133 |
|
116 | 134 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
117 | 135 |
DimacsDescriptor &desc) |
118 | 136 |
{ |
119 | 137 |
bool report = !ap.given("q"); |
120 | 138 |
Graph g; |
121 | 139 |
Timer ti; |
122 | 140 |
ti.restart(); |
123 | 141 |
readDimacsMat(is, g, desc); |
124 | 142 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
125 | 143 |
ti.restart(); |
126 | 144 |
MaxMatching<Graph> mat(g); |
127 | 145 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
128 | 146 |
ti.restart(); |
129 | 147 |
mat.run(); |
130 | 148 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
131 | 149 |
if(report) std::cerr << "\nCardinality of max matching: " |
132 | 150 |
<< mat.matchingSize() << '\n'; |
133 | 151 |
} |
134 | 152 |
|
135 | 153 |
|
136 | 154 |
template<class Value> |
137 | 155 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
138 | 156 |
DimacsDescriptor &desc) |
139 | 157 |
{ |
140 | 158 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
141 | 159 |
Value infty; |
142 | 160 |
iss >> infty; |
143 | 161 |
if(iss.fail()) |
144 | 162 |
{ |
145 | 163 |
std::cerr << "Cannot interpret '" |
146 | 164 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
147 | 165 |
<< std::endl; |
148 | 166 |
exit(1); |
149 | 167 |
} |
150 | 168 |
|
151 | 169 |
switch(desc.type) |
152 | 170 |
{ |
153 | 171 |
case DimacsDescriptor::MIN: |
154 |
solve_min<Value>(ap,is,os,desc); |
|
172 |
solve_min<Value>(ap,is,os,infty,desc); |
|
155 | 173 |
break; |
156 | 174 |
case DimacsDescriptor::MAX: |
157 | 175 |
solve_max<Value>(ap,is,os,infty,desc); |
158 | 176 |
break; |
159 | 177 |
case DimacsDescriptor::SP: |
160 | 178 |
solve_sp<Value>(ap,is,os,desc); |
161 | 179 |
break; |
162 | 180 |
case DimacsDescriptor::MAT: |
163 | 181 |
solve_mat(ap,is,os,desc); |
164 | 182 |
break; |
165 | 183 |
default: |
166 | 184 |
break; |
167 | 185 |
} |
168 | 186 |
} |
169 | 187 |
|
170 | 188 |
int main(int argc, const char *argv[]) { |
171 | 189 |
typedef SmartDigraph Digraph; |
172 | 190 |
|
173 | 191 |
typedef Digraph::Arc Arc; |
174 | 192 |
|
175 | 193 |
std::string inputName; |
176 | 194 |
std::string outputName; |
177 | 195 |
|
178 | 196 |
ArgParser ap(argc, argv); |
179 | 197 |
ap.other("[INFILE [OUTFILE]]", |
180 | 198 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
181 | 199 |
" input/output will be used instead.") |
182 | 200 |
.boolOption("q", "Do not print any report") |
183 | 201 |
.boolOption("int","Use 'int' for capacities, costs etc. (default)") |
184 | 202 |
.optionGroup("datatype","int") |
185 | 203 |
#ifdef HAVE_LONG_LONG |
186 | 204 |
.boolOption("long","Use 'long long' for capacities, costs etc.") |
187 | 205 |
.optionGroup("datatype","long") |
188 | 206 |
#endif |
189 | 207 |
.boolOption("double","Use 'double' for capacities, costs etc.") |
190 | 208 |
.optionGroup("datatype","double") |
191 | 209 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.") |
192 | 210 |
.optionGroup("datatype","ldouble") |
193 | 211 |
.onlyOneGroup("datatype") |
194 | 212 |
.stringOption("infcap","Value used for 'very high' capacities","0") |
195 | 213 |
.run(); |
196 | 214 |
|
197 | 215 |
std::ifstream input; |
198 | 216 |
std::ofstream output; |
199 | 217 |
|
200 | 218 |
switch(ap.files().size()) |
201 | 219 |
{ |
202 | 220 |
case 2: |
0 comments (0 inline)