0
3
0
| ... | ... |
@@ -766,820 +766,821 @@ |
| 766 | 766 |
template <typename LOWER, typename UPPER> |
| 767 | 767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
|
| 768 | 768 |
return lowerMap(lower).upperMap(upper); |
| 769 | 769 |
} |
| 770 | 770 |
|
| 771 | 771 |
/// \brief Set the costs of the arcs. |
| 772 | 772 |
/// |
| 773 | 773 |
/// This function sets the costs of the arcs. |
| 774 | 774 |
/// If it is not used before calling \ref run(), the costs |
| 775 | 775 |
/// will be set to \c 1 on all arcs. |
| 776 | 776 |
/// |
| 777 | 777 |
/// \param map An arc map storing the costs. |
| 778 | 778 |
/// Its \c Value type must be convertible to the \c Cost type |
| 779 | 779 |
/// of the algorithm. |
| 780 | 780 |
/// |
| 781 | 781 |
/// \return <tt>(*this)</tt> |
| 782 | 782 |
template<typename COST> |
| 783 | 783 |
NetworkSimplex& costMap(const COST& map) {
|
| 784 | 784 |
delete _pcost; |
| 785 | 785 |
_pcost = new CostArcMap(_graph); |
| 786 | 786 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 787 | 787 |
(*_pcost)[a] = map[a]; |
| 788 | 788 |
} |
| 789 | 789 |
return *this; |
| 790 | 790 |
} |
| 791 | 791 |
|
| 792 | 792 |
/// \brief Set the supply values of the nodes. |
| 793 | 793 |
/// |
| 794 | 794 |
/// This function sets the supply values of the nodes. |
| 795 | 795 |
/// If neither this function nor \ref stSupply() is used before |
| 796 | 796 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 797 | 797 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 798 | 798 |
/// |
| 799 | 799 |
/// \param map A node map storing the supply values. |
| 800 | 800 |
/// Its \c Value type must be convertible to the \c Flow type |
| 801 | 801 |
/// of the algorithm. |
| 802 | 802 |
/// |
| 803 | 803 |
/// \return <tt>(*this)</tt> |
| 804 | 804 |
template<typename SUP> |
| 805 | 805 |
NetworkSimplex& supplyMap(const SUP& map) {
|
| 806 | 806 |
delete _psupply; |
| 807 | 807 |
_pstsup = false; |
| 808 | 808 |
_psupply = new FlowNodeMap(_graph); |
| 809 | 809 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 810 | 810 |
(*_psupply)[n] = map[n]; |
| 811 | 811 |
} |
| 812 | 812 |
return *this; |
| 813 | 813 |
} |
| 814 | 814 |
|
| 815 | 815 |
/// \brief Set single source and target nodes and a supply value. |
| 816 | 816 |
/// |
| 817 | 817 |
/// This function sets a single source node and a single target node |
| 818 | 818 |
/// and the required flow value. |
| 819 | 819 |
/// If neither this function nor \ref supplyMap() is used before |
| 820 | 820 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 821 | 821 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 822 | 822 |
/// |
| 823 | 823 |
/// \param s The source node. |
| 824 | 824 |
/// \param t The target node. |
| 825 | 825 |
/// \param k The required amount of flow from node \c s to node \c t |
| 826 | 826 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 827 | 827 |
/// |
| 828 | 828 |
/// \return <tt>(*this)</tt> |
| 829 | 829 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
|
| 830 | 830 |
delete _psupply; |
| 831 | 831 |
_psupply = NULL; |
| 832 | 832 |
_pstsup = true; |
| 833 | 833 |
_psource = s; |
| 834 | 834 |
_ptarget = t; |
| 835 | 835 |
_pstflow = k; |
| 836 | 836 |
return *this; |
| 837 | 837 |
} |
| 838 | 838 |
|
| 839 | 839 |
/// \brief Set the problem type. |
| 840 | 840 |
/// |
| 841 | 841 |
/// This function sets the problem type for the algorithm. |
| 842 | 842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
| 843 | 843 |
/// type will be used. |
| 844 | 844 |
/// |
| 845 | 845 |
/// For more information see \ref ProblemType. |
| 846 | 846 |
/// |
| 847 | 847 |
/// \return <tt>(*this)</tt> |
| 848 | 848 |
NetworkSimplex& problemType(ProblemType problem_type) {
|
| 849 | 849 |
_ptype = problem_type; |
| 850 | 850 |
return *this; |
| 851 | 851 |
} |
| 852 | 852 |
|
| 853 | 853 |
/// \brief Set the flow map. |
| 854 | 854 |
/// |
| 855 | 855 |
/// This function sets the flow map. |
| 856 | 856 |
/// If it is not used before calling \ref run(), an instance will |
| 857 | 857 |
/// be allocated automatically. The destructor deallocates this |
| 858 | 858 |
/// automatically allocated map, of course. |
| 859 | 859 |
/// |
| 860 | 860 |
/// \return <tt>(*this)</tt> |
| 861 | 861 |
NetworkSimplex& flowMap(FlowMap& map) {
|
| 862 | 862 |
if (_local_flow) {
|
| 863 | 863 |
delete _flow_map; |
| 864 | 864 |
_local_flow = false; |
| 865 | 865 |
} |
| 866 | 866 |
_flow_map = ↦ |
| 867 | 867 |
return *this; |
| 868 | 868 |
} |
| 869 | 869 |
|
| 870 | 870 |
/// \brief Set the potential map. |
| 871 | 871 |
/// |
| 872 | 872 |
/// This function sets the potential map, which is used for storing |
| 873 | 873 |
/// the dual solution. |
| 874 | 874 |
/// If it is not used before calling \ref run(), an instance will |
| 875 | 875 |
/// be allocated automatically. The destructor deallocates this |
| 876 | 876 |
/// automatically allocated map, of course. |
| 877 | 877 |
/// |
| 878 | 878 |
/// \return <tt>(*this)</tt> |
| 879 | 879 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
| 880 | 880 |
if (_local_potential) {
|
| 881 | 881 |
delete _potential_map; |
| 882 | 882 |
_local_potential = false; |
| 883 | 883 |
} |
| 884 | 884 |
_potential_map = ↦ |
| 885 | 885 |
return *this; |
| 886 | 886 |
} |
| 887 | 887 |
|
| 888 | 888 |
/// @} |
| 889 | 889 |
|
| 890 | 890 |
/// \name Execution Control |
| 891 | 891 |
/// The algorithm can be executed using \ref run(). |
| 892 | 892 |
|
| 893 | 893 |
/// @{
|
| 894 | 894 |
|
| 895 | 895 |
/// \brief Run the algorithm. |
| 896 | 896 |
/// |
| 897 | 897 |
/// This function runs the algorithm. |
| 898 | 898 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 899 | 899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
| 900 | 900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
| 901 | 901 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap(). |
| 902 | 902 |
/// For example, |
| 903 | 903 |
/// \code |
| 904 | 904 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 905 | 905 |
/// ns.boundMaps(lower, upper).costMap(cost) |
| 906 | 906 |
/// .supplyMap(sup).run(); |
| 907 | 907 |
/// \endcode |
| 908 | 908 |
/// |
| 909 | 909 |
/// This function can be called more than once. All the parameters |
| 910 | 910 |
/// that have been given are kept for the next call, unless |
| 911 | 911 |
/// \ref reset() is called, thus only the modified parameters |
| 912 | 912 |
/// have to be set again. See \ref reset() for examples. |
| 913 | 913 |
/// |
| 914 | 914 |
/// \param pivot_rule The pivot rule that will be used during the |
| 915 | 915 |
/// algorithm. For more information see \ref PivotRule. |
| 916 | 916 |
/// |
| 917 | 917 |
/// \return \c true if a feasible flow can be found. |
| 918 | 918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 919 | 919 |
return init() && start(pivot_rule); |
| 920 | 920 |
} |
| 921 | 921 |
|
| 922 | 922 |
/// \brief Reset all the parameters that have been given before. |
| 923 | 923 |
/// |
| 924 | 924 |
/// This function resets all the paramaters that have been given |
| 925 | 925 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 926 | 926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
| 927 | 927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
| 928 | 928 |
/// \ref flowMap() and \ref potentialMap(). |
| 929 | 929 |
/// |
| 930 | 930 |
/// It is useful for multiple run() calls. If this function is not |
| 931 | 931 |
/// used, all the parameters given before are kept for the next |
| 932 | 932 |
/// \ref run() call. |
| 933 | 933 |
/// |
| 934 | 934 |
/// For example, |
| 935 | 935 |
/// \code |
| 936 | 936 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 937 | 937 |
/// |
| 938 | 938 |
/// // First run |
| 939 | 939 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
| 940 | 940 |
/// .supplyMap(sup).run(); |
| 941 | 941 |
/// |
| 942 | 942 |
/// // Run again with modified cost map (reset() is not called, |
| 943 | 943 |
/// // so only the cost map have to be set again) |
| 944 | 944 |
/// cost[e] += 100; |
| 945 | 945 |
/// ns.costMap(cost).run(); |
| 946 | 946 |
/// |
| 947 | 947 |
/// // Run again from scratch using reset() |
| 948 | 948 |
/// // (the lower bounds will be set to zero on all arcs) |
| 949 | 949 |
/// ns.reset(); |
| 950 | 950 |
/// ns.capacityMap(cap).costMap(cost) |
| 951 | 951 |
/// .supplyMap(sup).run(); |
| 952 | 952 |
/// \endcode |
| 953 | 953 |
/// |
| 954 | 954 |
/// \return <tt>(*this)</tt> |
| 955 | 955 |
NetworkSimplex& reset() {
|
| 956 | 956 |
delete _plower; |
| 957 | 957 |
delete _pupper; |
| 958 | 958 |
delete _pcost; |
| 959 | 959 |
delete _psupply; |
| 960 | 960 |
_plower = NULL; |
| 961 | 961 |
_pupper = NULL; |
| 962 | 962 |
_pcost = NULL; |
| 963 | 963 |
_psupply = NULL; |
| 964 | 964 |
_pstsup = false; |
| 965 | 965 |
_ptype = GEQ; |
| 966 | 966 |
if (_local_flow) delete _flow_map; |
| 967 | 967 |
if (_local_potential) delete _potential_map; |
| 968 | 968 |
_flow_map = NULL; |
| 969 | 969 |
_potential_map = NULL; |
| 970 | 970 |
_local_flow = false; |
| 971 | 971 |
_local_potential = false; |
| 972 | 972 |
|
| 973 | 973 |
return *this; |
| 974 | 974 |
} |
| 975 | 975 |
|
| 976 | 976 |
/// @} |
| 977 | 977 |
|
| 978 | 978 |
/// \name Query Functions |
| 979 | 979 |
/// The results of the algorithm can be obtained using these |
| 980 | 980 |
/// functions.\n |
| 981 | 981 |
/// The \ref run() function must be called before using them. |
| 982 | 982 |
|
| 983 | 983 |
/// @{
|
| 984 | 984 |
|
| 985 | 985 |
/// \brief Return the total cost of the found flow. |
| 986 | 986 |
/// |
| 987 | 987 |
/// This function returns the total cost of the found flow. |
| 988 | 988 |
/// The complexity of the function is O(e). |
| 989 | 989 |
/// |
| 990 | 990 |
/// \note The return type of the function can be specified as a |
| 991 | 991 |
/// template parameter. For example, |
| 992 | 992 |
/// \code |
| 993 | 993 |
/// ns.totalCost<double>(); |
| 994 | 994 |
/// \endcode |
| 995 | 995 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 996 | 996 |
/// type of the algorithm, which is the default return type of the |
| 997 | 997 |
/// function. |
| 998 | 998 |
/// |
| 999 | 999 |
/// \pre \ref run() must be called before using this function. |
| 1000 | 1000 |
template <typename Num> |
| 1001 | 1001 |
Num totalCost() const {
|
| 1002 | 1002 |
Num c = 0; |
| 1003 | 1003 |
if (_pcost) {
|
| 1004 | 1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 1005 | 1005 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
| 1006 | 1006 |
} else {
|
| 1007 | 1007 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 1008 | 1008 |
c += (*_flow_map)[e]; |
| 1009 | 1009 |
} |
| 1010 | 1010 |
return c; |
| 1011 | 1011 |
} |
| 1012 | 1012 |
|
| 1013 | 1013 |
#ifndef DOXYGEN |
| 1014 | 1014 |
Cost totalCost() const {
|
| 1015 | 1015 |
return totalCost<Cost>(); |
| 1016 | 1016 |
} |
| 1017 | 1017 |
#endif |
| 1018 | 1018 |
|
| 1019 | 1019 |
/// \brief Return the flow on the given arc. |
| 1020 | 1020 |
/// |
| 1021 | 1021 |
/// This function returns the flow on the given arc. |
| 1022 | 1022 |
/// |
| 1023 | 1023 |
/// \pre \ref run() must be called before using this function. |
| 1024 | 1024 |
Flow flow(const Arc& a) const {
|
| 1025 | 1025 |
return (*_flow_map)[a]; |
| 1026 | 1026 |
} |
| 1027 | 1027 |
|
| 1028 | 1028 |
/// \brief Return a const reference to the flow map. |
| 1029 | 1029 |
/// |
| 1030 | 1030 |
/// This function returns a const reference to an arc map storing |
| 1031 | 1031 |
/// the found flow. |
| 1032 | 1032 |
/// |
| 1033 | 1033 |
/// \pre \ref run() must be called before using this function. |
| 1034 | 1034 |
const FlowMap& flowMap() const {
|
| 1035 | 1035 |
return *_flow_map; |
| 1036 | 1036 |
} |
| 1037 | 1037 |
|
| 1038 | 1038 |
/// \brief Return the potential (dual value) of the given node. |
| 1039 | 1039 |
/// |
| 1040 | 1040 |
/// This function returns the potential (dual value) of the |
| 1041 | 1041 |
/// given node. |
| 1042 | 1042 |
/// |
| 1043 | 1043 |
/// \pre \ref run() must be called before using this function. |
| 1044 | 1044 |
Cost potential(const Node& n) const {
|
| 1045 | 1045 |
return (*_potential_map)[n]; |
| 1046 | 1046 |
} |
| 1047 | 1047 |
|
| 1048 | 1048 |
/// \brief Return a const reference to the potential map |
| 1049 | 1049 |
/// (the dual solution). |
| 1050 | 1050 |
/// |
| 1051 | 1051 |
/// This function returns a const reference to a node map storing |
| 1052 | 1052 |
/// the found potentials, which form the dual solution of the |
| 1053 | 1053 |
/// \ref min_cost_flow "minimum cost flow" problem. |
| 1054 | 1054 |
/// |
| 1055 | 1055 |
/// \pre \ref run() must be called before using this function. |
| 1056 | 1056 |
const PotentialMap& potentialMap() const {
|
| 1057 | 1057 |
return *_potential_map; |
| 1058 | 1058 |
} |
| 1059 | 1059 |
|
| 1060 | 1060 |
/// @} |
| 1061 | 1061 |
|
| 1062 | 1062 |
private: |
| 1063 | 1063 |
|
| 1064 | 1064 |
// Initialize internal data structures |
| 1065 | 1065 |
bool init() {
|
| 1066 | 1066 |
// Initialize result maps |
| 1067 | 1067 |
if (!_flow_map) {
|
| 1068 | 1068 |
_flow_map = new FlowMap(_graph); |
| 1069 | 1069 |
_local_flow = true; |
| 1070 | 1070 |
} |
| 1071 | 1071 |
if (!_potential_map) {
|
| 1072 | 1072 |
_potential_map = new PotentialMap(_graph); |
| 1073 | 1073 |
_local_potential = true; |
| 1074 | 1074 |
} |
| 1075 | 1075 |
|
| 1076 | 1076 |
// Initialize vectors |
| 1077 | 1077 |
_node_num = countNodes(_graph); |
| 1078 | 1078 |
_arc_num = countArcs(_graph); |
| 1079 | 1079 |
int all_node_num = _node_num + 1; |
| 1080 | 1080 |
int all_arc_num = _arc_num + _node_num; |
| 1081 | 1081 |
if (_node_num == 0) return false; |
| 1082 | 1082 |
|
| 1083 | 1083 |
_arc_ref.resize(_arc_num); |
| 1084 | 1084 |
_source.resize(all_arc_num); |
| 1085 | 1085 |
_target.resize(all_arc_num); |
| 1086 | 1086 |
|
| 1087 | 1087 |
_cap.resize(all_arc_num); |
| 1088 | 1088 |
_cost.resize(all_arc_num); |
| 1089 | 1089 |
_supply.resize(all_node_num); |
| 1090 | 1090 |
_flow.resize(all_arc_num); |
| 1091 | 1091 |
_pi.resize(all_node_num); |
| 1092 | 1092 |
|
| 1093 | 1093 |
_parent.resize(all_node_num); |
| 1094 | 1094 |
_pred.resize(all_node_num); |
| 1095 | 1095 |
_forward.resize(all_node_num); |
| 1096 | 1096 |
_thread.resize(all_node_num); |
| 1097 | 1097 |
_rev_thread.resize(all_node_num); |
| 1098 | 1098 |
_succ_num.resize(all_node_num); |
| 1099 | 1099 |
_last_succ.resize(all_node_num); |
| 1100 | 1100 |
_state.resize(all_arc_num); |
| 1101 | 1101 |
|
| 1102 | 1102 |
// Initialize node related data |
| 1103 | 1103 |
bool valid_supply = true; |
| 1104 | 1104 |
Flow sum_supply = 0; |
| 1105 | 1105 |
if (!_pstsup && !_psupply) {
|
| 1106 | 1106 |
_pstsup = true; |
| 1107 | 1107 |
_psource = _ptarget = NodeIt(_graph); |
| 1108 | 1108 |
_pstflow = 0; |
| 1109 | 1109 |
} |
| 1110 | 1110 |
if (_psupply) {
|
| 1111 | 1111 |
int i = 0; |
| 1112 | 1112 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1113 | 1113 |
_node_id[n] = i; |
| 1114 | 1114 |
_supply[i] = (*_psupply)[n]; |
| 1115 | 1115 |
sum_supply += _supply[i]; |
| 1116 | 1116 |
} |
| 1117 | 1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
| 1118 | 1118 |
(_ptype == LEQ && sum_supply >= 0); |
| 1119 | 1119 |
} else {
|
| 1120 | 1120 |
int i = 0; |
| 1121 | 1121 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1122 | 1122 |
_node_id[n] = i; |
| 1123 | 1123 |
_supply[i] = 0; |
| 1124 | 1124 |
} |
| 1125 | 1125 |
_supply[_node_id[_psource]] = _pstflow; |
| 1126 | 1126 |
_supply[_node_id[_ptarget]] = -_pstflow; |
| 1127 | 1127 |
} |
| 1128 | 1128 |
if (!valid_supply) return false; |
| 1129 | 1129 |
|
| 1130 | 1130 |
// Infinite capacity value |
| 1131 | 1131 |
Flow inf_cap = |
| 1132 | 1132 |
std::numeric_limits<Flow>::has_infinity ? |
| 1133 | 1133 |
std::numeric_limits<Flow>::infinity() : |
| 1134 | 1134 |
std::numeric_limits<Flow>::max(); |
| 1135 | 1135 |
|
| 1136 | 1136 |
// Initialize artifical cost |
| 1137 | 1137 |
Cost art_cost; |
| 1138 | 1138 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1139 | 1139 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
| 1140 | 1140 |
} else {
|
| 1141 | 1141 |
art_cost = std::numeric_limits<Cost>::min(); |
| 1142 | 1142 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1143 | 1143 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
| 1144 | 1144 |
} |
| 1145 | 1145 |
art_cost = (art_cost + 1) * _node_num; |
| 1146 | 1146 |
} |
| 1147 | 1147 |
|
| 1148 | 1148 |
// Run Circulation to check if a feasible solution exists |
| 1149 | 1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
| 1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
| 1150 | 1151 |
FlowNodeMap *csup = NULL; |
| 1151 | 1152 |
bool local_csup = false; |
| 1152 | 1153 |
if (_psupply) {
|
| 1153 | 1154 |
csup = _psupply; |
| 1154 | 1155 |
} else {
|
| 1155 | 1156 |
csup = new FlowNodeMap(_graph, 0); |
| 1156 | 1157 |
(*csup)[_psource] = _pstflow; |
| 1157 | 1158 |
(*csup)[_ptarget] = -_pstflow; |
| 1158 | 1159 |
local_csup = true; |
| 1159 | 1160 |
} |
| 1160 | 1161 |
bool circ_result = false; |
| 1161 | 1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
|
| 1162 | 1163 |
// GEQ problem type |
| 1163 | 1164 |
if (_plower) {
|
| 1164 | 1165 |
if (_pupper) {
|
| 1165 | 1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
| 1166 | 1167 |
circ(_graph, *_plower, *_pupper, *csup); |
| 1167 | 1168 |
circ_result = circ.run(); |
| 1168 | 1169 |
} else {
|
| 1169 | 1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
| 1170 |
circ(_graph, *_plower, |
|
| 1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
| 1171 | 1172 |
circ_result = circ.run(); |
| 1172 | 1173 |
} |
| 1173 | 1174 |
} else {
|
| 1174 | 1175 |
if (_pupper) {
|
| 1175 | 1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
| 1176 |
circ(_graph, |
|
| 1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
| 1177 | 1178 |
circ_result = circ.run(); |
| 1178 | 1179 |
} else {
|
| 1179 | 1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
| 1180 |
circ(_graph, |
|
| 1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
| 1181 | 1182 |
circ_result = circ.run(); |
| 1182 | 1183 |
} |
| 1183 | 1184 |
} |
| 1184 | 1185 |
} else {
|
| 1185 | 1186 |
// LEQ problem type |
| 1186 | 1187 |
typedef ReverseDigraph<const GR> RevGraph; |
| 1187 | 1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
| 1188 | 1189 |
RevGraph rgraph(_graph); |
| 1189 | 1190 |
NegNodeMap neg_csup(*csup); |
| 1190 | 1191 |
if (_plower) {
|
| 1191 | 1192 |
if (_pupper) {
|
| 1192 | 1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
| 1193 | 1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
| 1194 | 1195 |
circ_result = circ.run(); |
| 1195 | 1196 |
} else {
|
| 1196 | 1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
| 1197 |
circ(rgraph, *_plower, |
|
| 1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
| 1198 | 1199 |
circ_result = circ.run(); |
| 1199 | 1200 |
} |
| 1200 | 1201 |
} else {
|
| 1201 | 1202 |
if (_pupper) {
|
| 1202 | 1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
| 1203 |
circ(rgraph, |
|
| 1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
| 1204 | 1205 |
circ_result = circ.run(); |
| 1205 | 1206 |
} else {
|
| 1206 | 1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
| 1207 |
circ(rgraph, |
|
| 1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
| 1208 | 1209 |
circ_result = circ.run(); |
| 1209 | 1210 |
} |
| 1210 | 1211 |
} |
| 1211 | 1212 |
} |
| 1212 | 1213 |
if (local_csup) delete csup; |
| 1213 | 1214 |
if (!circ_result) return false; |
| 1214 | 1215 |
|
| 1215 | 1216 |
// Set data for the artificial root node |
| 1216 | 1217 |
_root = _node_num; |
| 1217 | 1218 |
_parent[_root] = -1; |
| 1218 | 1219 |
_pred[_root] = -1; |
| 1219 | 1220 |
_thread[_root] = 0; |
| 1220 | 1221 |
_rev_thread[0] = _root; |
| 1221 | 1222 |
_succ_num[_root] = all_node_num; |
| 1222 | 1223 |
_last_succ[_root] = _root - 1; |
| 1223 | 1224 |
_supply[_root] = -sum_supply; |
| 1224 | 1225 |
if (sum_supply < 0) {
|
| 1225 | 1226 |
_pi[_root] = -art_cost; |
| 1226 | 1227 |
} else {
|
| 1227 | 1228 |
_pi[_root] = art_cost; |
| 1228 | 1229 |
} |
| 1229 | 1230 |
|
| 1230 | 1231 |
// Store the arcs in a mixed order |
| 1231 | 1232 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
| 1232 | 1233 |
int i = 0; |
| 1233 | 1234 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 1234 | 1235 |
_arc_ref[i] = e; |
| 1235 | 1236 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
| 1236 | 1237 |
} |
| 1237 | 1238 |
|
| 1238 | 1239 |
// Initialize arc maps |
| 1239 | 1240 |
if (_pupper && _pcost) {
|
| 1240 | 1241 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1241 | 1242 |
Arc e = _arc_ref[i]; |
| 1242 | 1243 |
_source[i] = _node_id[_graph.source(e)]; |
| 1243 | 1244 |
_target[i] = _node_id[_graph.target(e)]; |
| 1244 | 1245 |
_cap[i] = (*_pupper)[e]; |
| 1245 | 1246 |
_cost[i] = (*_pcost)[e]; |
| 1246 | 1247 |
_flow[i] = 0; |
| 1247 | 1248 |
_state[i] = STATE_LOWER; |
| 1248 | 1249 |
} |
| 1249 | 1250 |
} else {
|
| 1250 | 1251 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1251 | 1252 |
Arc e = _arc_ref[i]; |
| 1252 | 1253 |
_source[i] = _node_id[_graph.source(e)]; |
| 1253 | 1254 |
_target[i] = _node_id[_graph.target(e)]; |
| 1254 | 1255 |
_flow[i] = 0; |
| 1255 | 1256 |
_state[i] = STATE_LOWER; |
| 1256 | 1257 |
} |
| 1257 | 1258 |
if (_pupper) {
|
| 1258 | 1259 |
for (int i = 0; i != _arc_num; ++i) |
| 1259 | 1260 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
| 1260 | 1261 |
} else {
|
| 1261 | 1262 |
for (int i = 0; i != _arc_num; ++i) |
| 1262 | 1263 |
_cap[i] = inf_cap; |
| 1263 | 1264 |
} |
| 1264 | 1265 |
if (_pcost) {
|
| 1265 | 1266 |
for (int i = 0; i != _arc_num; ++i) |
| 1266 | 1267 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
| 1267 | 1268 |
} else {
|
| 1268 | 1269 |
for (int i = 0; i != _arc_num; ++i) |
| 1269 | 1270 |
_cost[i] = 1; |
| 1270 | 1271 |
} |
| 1271 | 1272 |
} |
| 1272 | 1273 |
|
| 1273 | 1274 |
// Remove non-zero lower bounds |
| 1274 | 1275 |
if (_plower) {
|
| 1275 | 1276 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1276 | 1277 |
Flow c = (*_plower)[_arc_ref[i]]; |
| 1277 | 1278 |
if (c != 0) {
|
| 1278 | 1279 |
_cap[i] -= c; |
| 1279 | 1280 |
_supply[_source[i]] -= c; |
| 1280 | 1281 |
_supply[_target[i]] += c; |
| 1281 | 1282 |
} |
| 1282 | 1283 |
} |
| 1283 | 1284 |
} |
| 1284 | 1285 |
|
| 1285 | 1286 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1286 | 1287 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1287 | 1288 |
_thread[u] = u + 1; |
| 1288 | 1289 |
_rev_thread[u + 1] = u; |
| 1289 | 1290 |
_succ_num[u] = 1; |
| 1290 | 1291 |
_last_succ[u] = u; |
| 1291 | 1292 |
_parent[u] = _root; |
| 1292 | 1293 |
_pred[u] = e; |
| 1293 | 1294 |
_cost[e] = art_cost; |
| 1294 | 1295 |
_cap[e] = inf_cap; |
| 1295 | 1296 |
_state[e] = STATE_TREE; |
| 1296 | 1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) {
|
| 1297 | 1298 |
_flow[e] = _supply[u]; |
| 1298 | 1299 |
_forward[u] = true; |
| 1299 | 1300 |
_pi[u] = -art_cost + _pi[_root]; |
| 1300 | 1301 |
} else {
|
| 1301 | 1302 |
_flow[e] = -_supply[u]; |
| 1302 | 1303 |
_forward[u] = false; |
| 1303 | 1304 |
_pi[u] = art_cost + _pi[_root]; |
| 1304 | 1305 |
} |
| 1305 | 1306 |
} |
| 1306 | 1307 |
|
| 1307 | 1308 |
return true; |
| 1308 | 1309 |
} |
| 1309 | 1310 |
|
| 1310 | 1311 |
// Find the join node |
| 1311 | 1312 |
void findJoinNode() {
|
| 1312 | 1313 |
int u = _source[in_arc]; |
| 1313 | 1314 |
int v = _target[in_arc]; |
| 1314 | 1315 |
while (u != v) {
|
| 1315 | 1316 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1316 | 1317 |
u = _parent[u]; |
| 1317 | 1318 |
} else {
|
| 1318 | 1319 |
v = _parent[v]; |
| 1319 | 1320 |
} |
| 1320 | 1321 |
} |
| 1321 | 1322 |
join = u; |
| 1322 | 1323 |
} |
| 1323 | 1324 |
|
| 1324 | 1325 |
// Find the leaving arc of the cycle and returns true if the |
| 1325 | 1326 |
// leaving arc is not the same as the entering arc |
| 1326 | 1327 |
bool findLeavingArc() {
|
| 1327 | 1328 |
// Initialize first and second nodes according to the direction |
| 1328 | 1329 |
// of the cycle |
| 1329 | 1330 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1330 | 1331 |
first = _source[in_arc]; |
| 1331 | 1332 |
second = _target[in_arc]; |
| 1332 | 1333 |
} else {
|
| 1333 | 1334 |
first = _target[in_arc]; |
| 1334 | 1335 |
second = _source[in_arc]; |
| 1335 | 1336 |
} |
| 1336 | 1337 |
delta = _cap[in_arc]; |
| 1337 | 1338 |
int result = 0; |
| 1338 | 1339 |
Flow d; |
| 1339 | 1340 |
int e; |
| 1340 | 1341 |
|
| 1341 | 1342 |
// Search the cycle along the path form the first node to the root |
| 1342 | 1343 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1343 | 1344 |
e = _pred[u]; |
| 1344 | 1345 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
| 1345 | 1346 |
if (d < delta) {
|
| 1346 | 1347 |
delta = d; |
| 1347 | 1348 |
u_out = u; |
| 1348 | 1349 |
result = 1; |
| 1349 | 1350 |
} |
| 1350 | 1351 |
} |
| 1351 | 1352 |
// Search the cycle along the path form the second node to the root |
| 1352 | 1353 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1353 | 1354 |
e = _pred[u]; |
| 1354 | 1355 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
| 1355 | 1356 |
if (d <= delta) {
|
| 1356 | 1357 |
delta = d; |
| 1357 | 1358 |
u_out = u; |
| 1358 | 1359 |
result = 2; |
| 1359 | 1360 |
} |
| 1360 | 1361 |
} |
| 1361 | 1362 |
|
| 1362 | 1363 |
if (result == 1) {
|
| 1363 | 1364 |
u_in = first; |
| 1364 | 1365 |
v_in = second; |
| 1365 | 1366 |
} else {
|
| 1366 | 1367 |
u_in = second; |
| 1367 | 1368 |
v_in = first; |
| 1368 | 1369 |
} |
| 1369 | 1370 |
return result != 0; |
| 1370 | 1371 |
} |
| 1371 | 1372 |
|
| 1372 | 1373 |
// Change _flow and _state vectors |
| 1373 | 1374 |
void changeFlow(bool change) {
|
| 1374 | 1375 |
// Augment along the cycle |
| 1375 | 1376 |
if (delta > 0) {
|
| 1376 | 1377 |
Flow val = _state[in_arc] * delta; |
| 1377 | 1378 |
_flow[in_arc] += val; |
| 1378 | 1379 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1379 | 1380 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1380 | 1381 |
} |
| 1381 | 1382 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1382 | 1383 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1383 | 1384 |
} |
| 1384 | 1385 |
} |
| 1385 | 1386 |
// Update the state of the entering and leaving arcs |
| 1386 | 1387 |
if (change) {
|
| 1387 | 1388 |
_state[in_arc] = STATE_TREE; |
| 1388 | 1389 |
_state[_pred[u_out]] = |
| 1389 | 1390 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1390 | 1391 |
} else {
|
| 1391 | 1392 |
_state[in_arc] = -_state[in_arc]; |
| 1392 | 1393 |
} |
| 1393 | 1394 |
} |
| 1394 | 1395 |
|
| 1395 | 1396 |
// Update the tree structure |
| 1396 | 1397 |
void updateTreeStructure() {
|
| 1397 | 1398 |
int u, w; |
| 1398 | 1399 |
int old_rev_thread = _rev_thread[u_out]; |
| 1399 | 1400 |
int old_succ_num = _succ_num[u_out]; |
| 1400 | 1401 |
int old_last_succ = _last_succ[u_out]; |
| 1401 | 1402 |
v_out = _parent[u_out]; |
| 1402 | 1403 |
|
| 1403 | 1404 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1404 | 1405 |
right = _thread[u]; // the node after it |
| 1405 | 1406 |
|
| 1406 | 1407 |
// Handle the case when old_rev_thread equals to v_in |
| 1407 | 1408 |
// (it also means that join and v_out coincide) |
| 1408 | 1409 |
if (old_rev_thread == v_in) {
|
| 1409 | 1410 |
last = _thread[_last_succ[u_out]]; |
| 1410 | 1411 |
} else {
|
| 1411 | 1412 |
last = _thread[v_in]; |
| 1412 | 1413 |
} |
| 1413 | 1414 |
|
| 1414 | 1415 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
| 1415 | 1416 |
// between u_in and u_out, whose parent have to be changed) |
| 1416 | 1417 |
_thread[v_in] = stem = u_in; |
| 1417 | 1418 |
_dirty_revs.clear(); |
| 1418 | 1419 |
_dirty_revs.push_back(v_in); |
| 1419 | 1420 |
par_stem = v_in; |
| 1420 | 1421 |
while (stem != u_out) {
|
| 1421 | 1422 |
// Insert the next stem node into the thread list |
| 1422 | 1423 |
new_stem = _parent[stem]; |
| 1423 | 1424 |
_thread[u] = new_stem; |
| 1424 | 1425 |
_dirty_revs.push_back(u); |
| 1425 | 1426 |
|
| 1426 | 1427 |
// Remove the subtree of stem from the thread list |
| 1427 | 1428 |
w = _rev_thread[stem]; |
| 1428 | 1429 |
_thread[w] = right; |
| 1429 | 1430 |
_rev_thread[right] = w; |
| 1430 | 1431 |
|
| 1431 | 1432 |
// Change the parent node and shift stem nodes |
| 1432 | 1433 |
_parent[stem] = par_stem; |
| 1433 | 1434 |
par_stem = stem; |
| 1434 | 1435 |
stem = new_stem; |
| 1435 | 1436 |
|
| 1436 | 1437 |
// Update u and right |
| 1437 | 1438 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
| 1438 | 1439 |
_rev_thread[par_stem] : _last_succ[stem]; |
| 1439 | 1440 |
right = _thread[u]; |
| 1440 | 1441 |
} |
| 1441 | 1442 |
_parent[u_out] = par_stem; |
| 1442 | 1443 |
_thread[u] = last; |
| 1443 | 1444 |
_rev_thread[last] = u; |
| 1444 | 1445 |
_last_succ[u_out] = u; |
| 1445 | 1446 |
|
| 1446 | 1447 |
// Remove the subtree of u_out from the thread list except for |
| 1447 | 1448 |
// the case when old_rev_thread equals to v_in |
| 1448 | 1449 |
// (it also means that join and v_out coincide) |
| 1449 | 1450 |
if (old_rev_thread != v_in) {
|
| 1450 | 1451 |
_thread[old_rev_thread] = right; |
| 1451 | 1452 |
_rev_thread[right] = old_rev_thread; |
| 1452 | 1453 |
} |
| 1453 | 1454 |
|
| 1454 | 1455 |
// Update _rev_thread using the new _thread values |
| 1455 | 1456 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
|
| 1456 | 1457 |
u = _dirty_revs[i]; |
| 1457 | 1458 |
_rev_thread[_thread[u]] = u; |
| 1458 | 1459 |
} |
| 1459 | 1460 |
|
| 1460 | 1461 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1461 | 1462 |
// stem nodes from u_out to u_in |
| 1462 | 1463 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1463 | 1464 |
u = u_out; |
| 1464 | 1465 |
while (u != u_in) {
|
| 1465 | 1466 |
w = _parent[u]; |
| 1466 | 1467 |
_pred[u] = _pred[w]; |
| 1467 | 1468 |
_forward[u] = !_forward[w]; |
| 1468 | 1469 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1469 | 1470 |
_succ_num[u] = tmp_sc; |
| 1470 | 1471 |
_last_succ[w] = tmp_ls; |
| 1471 | 1472 |
u = w; |
| 1472 | 1473 |
} |
| 1473 | 1474 |
_pred[u_in] = in_arc; |
| 1474 | 1475 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1475 | 1476 |
_succ_num[u_in] = old_succ_num; |
| 1476 | 1477 |
|
| 1477 | 1478 |
// Set limits for updating _last_succ form v_in and v_out |
| 1478 | 1479 |
// towards the root |
| 1479 | 1480 |
int up_limit_in = -1; |
| 1480 | 1481 |
int up_limit_out = -1; |
| 1481 | 1482 |
if (_last_succ[join] == v_in) {
|
| 1482 | 1483 |
up_limit_out = join; |
| 1483 | 1484 |
} else {
|
| 1484 | 1485 |
up_limit_in = join; |
| 1485 | 1486 |
} |
| 1486 | 1487 |
|
| 1487 | 1488 |
// Update _last_succ from v_in towards the root |
| 1488 | 1489 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1489 | 1490 |
u = _parent[u]) {
|
| 1490 | 1491 |
_last_succ[u] = _last_succ[u_out]; |
| 1491 | 1492 |
} |
| 1492 | 1493 |
// Update _last_succ from v_out towards the root |
| 1493 | 1494 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1494 | 1495 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1495 | 1496 |
u = _parent[u]) {
|
| 1496 | 1497 |
_last_succ[u] = old_rev_thread; |
| 1497 | 1498 |
} |
| 1498 | 1499 |
} else {
|
| 1499 | 1500 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1500 | 1501 |
u = _parent[u]) {
|
| 1501 | 1502 |
_last_succ[u] = _last_succ[u_out]; |
| 1502 | 1503 |
} |
| 1503 | 1504 |
} |
| 1504 | 1505 |
|
| 1505 | 1506 |
// Update _succ_num from v_in to join |
| 1506 | 1507 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1507 | 1508 |
_succ_num[u] += old_succ_num; |
| 1508 | 1509 |
} |
| 1509 | 1510 |
// Update _succ_num from v_out to join |
| 1510 | 1511 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1511 | 1512 |
_succ_num[u] -= old_succ_num; |
| 1512 | 1513 |
} |
| 1513 | 1514 |
} |
| 1514 | 1515 |
|
| 1515 | 1516 |
// Update potentials |
| 1516 | 1517 |
void updatePotential() {
|
| 1517 | 1518 |
Cost sigma = _forward[u_in] ? |
| 1518 | 1519 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1519 | 1520 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1520 | 1521 |
// Update potentials in the subtree, which has been moved |
| 1521 | 1522 |
int end = _thread[_last_succ[u_in]]; |
| 1522 | 1523 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1523 | 1524 |
_pi[u] += sigma; |
| 1524 | 1525 |
} |
| 1525 | 1526 |
} |
| 1526 | 1527 |
|
| 1527 | 1528 |
// Execute the algorithm |
| 1528 | 1529 |
bool start(PivotRule pivot_rule) {
|
| 1529 | 1530 |
// Select the pivot rule implementation |
| 1530 | 1531 |
switch (pivot_rule) {
|
| 1531 | 1532 |
case FIRST_ELIGIBLE: |
| 1532 | 1533 |
return start<FirstEligiblePivotRule>(); |
| 1533 | 1534 |
case BEST_ELIGIBLE: |
| 1534 | 1535 |
return start<BestEligiblePivotRule>(); |
| 1535 | 1536 |
case BLOCK_SEARCH: |
| 1536 | 1537 |
return start<BlockSearchPivotRule>(); |
| 1537 | 1538 |
case CANDIDATE_LIST: |
| 1538 | 1539 |
return start<CandidateListPivotRule>(); |
| 1539 | 1540 |
case ALTERING_LIST: |
| 1540 | 1541 |
return start<AlteringListPivotRule>(); |
| 1541 | 1542 |
} |
| 1542 | 1543 |
return false; |
| 1543 | 1544 |
} |
| 1544 | 1545 |
|
| 1545 | 1546 |
template <typename PivotRuleImpl> |
| 1546 | 1547 |
bool start() {
|
| 1547 | 1548 |
PivotRuleImpl pivot(*this); |
| 1548 | 1549 |
|
| 1549 | 1550 |
// Execute the Network Simplex algorithm |
| 1550 | 1551 |
while (pivot.findEnteringArc()) {
|
| 1551 | 1552 |
findJoinNode(); |
| 1552 | 1553 |
bool change = findLeavingArc(); |
| 1553 | 1554 |
changeFlow(change); |
| 1554 | 1555 |
if (change) {
|
| 1555 | 1556 |
updateTreeStructure(); |
| 1556 | 1557 |
updatePotential(); |
| 1557 | 1558 |
} |
| 1558 | 1559 |
} |
| 1559 | 1560 |
|
| 1560 | 1561 |
// Copy flow values to _flow_map |
| 1561 | 1562 |
if (_plower) {
|
| 1562 | 1563 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1563 | 1564 |
Arc e = _arc_ref[i]; |
| 1564 | 1565 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
| 1565 | 1566 |
} |
| 1566 | 1567 |
} else {
|
| 1567 | 1568 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1568 | 1569 |
_flow_map->set(_arc_ref[i], _flow[i]); |
| 1569 | 1570 |
} |
| 1570 | 1571 |
} |
| 1571 | 1572 |
// Copy potential values to _potential_map |
| 1572 | 1573 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1573 | 1574 |
_potential_map->set(n, _pi[_node_id[n]]); |
| 1574 | 1575 |
} |
| 1575 | 1576 |
|
| 1576 | 1577 |
return true; |
| 1577 | 1578 |
} |
| 1578 | 1579 |
|
| 1579 | 1580 |
}; //class NetworkSimplex |
| 1580 | 1581 |
|
| 1581 | 1582 |
///@} |
| 1582 | 1583 |
|
| 1583 | 1584 |
} //namespace lemon |
| 1584 | 1585 |
|
| 1585 | 1586 |
#endif //LEMON_NETWORK_SIMPLEX_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <fstream> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/list_graph.h> |
| 23 | 23 |
#include <lemon/lgf_reader.h> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/network_simplex.h> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/concepts/digraph.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
|
| 30 | 30 |
#include "test_tools.h" |
| 31 | 31 |
|
| 32 | 32 |
using namespace lemon; |
| 33 | 33 |
|
| 34 | 34 |
char test_lgf[] = |
| 35 | 35 |
"@nodes\n" |
| 36 | 36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
| 37 | 37 |
" 1 20 27 0 20 30\n" |
| 38 | 38 |
" 2 -4 0 0 -8 -3\n" |
| 39 | 39 |
" 3 0 0 0 0 0\n" |
| 40 | 40 |
" 4 0 0 0 0 0\n" |
| 41 | 41 |
" 5 9 0 0 6 11\n" |
| 42 | 42 |
" 6 -6 0 0 -5 -6\n" |
| 43 | 43 |
" 7 0 0 0 0 0\n" |
| 44 | 44 |
" 8 0 0 0 0 3\n" |
| 45 | 45 |
" 9 3 0 0 0 0\n" |
| 46 | 46 |
" 10 -2 0 0 -7 -2\n" |
| 47 | 47 |
" 11 0 0 0 -10 0\n" |
| 48 | 48 |
" 12 -20 -27 0 -30 -20\n" |
| 49 | 49 |
"\n" |
| 50 | 50 |
"@arcs\n" |
| 51 | 51 |
" cost cap low1 low2\n" |
| 52 | 52 |
" 1 2 70 11 0 8\n" |
| 53 | 53 |
" 1 3 150 3 0 1\n" |
| 54 | 54 |
" 1 4 80 15 0 2\n" |
| 55 | 55 |
" 2 8 80 12 0 0\n" |
| 56 | 56 |
" 3 5 140 5 0 3\n" |
| 57 | 57 |
" 4 6 60 10 0 1\n" |
| 58 | 58 |
" 4 7 80 2 0 0\n" |
| 59 | 59 |
" 4 8 110 3 0 0\n" |
| 60 | 60 |
" 5 7 60 14 0 0\n" |
| 61 | 61 |
" 5 11 120 12 0 0\n" |
| 62 | 62 |
" 6 3 0 3 0 0\n" |
| 63 | 63 |
" 6 9 140 4 0 0\n" |
| 64 | 64 |
" 6 10 90 8 0 0\n" |
| 65 | 65 |
" 7 1 30 5 0 0\n" |
| 66 | 66 |
" 8 12 60 16 0 4\n" |
| 67 | 67 |
" 9 12 50 6 0 0\n" |
| 68 | 68 |
"10 12 70 13 0 5\n" |
| 69 | 69 |
"10 2 100 7 0 0\n" |
| 70 | 70 |
"10 7 60 10 0 0\n" |
| 71 | 71 |
"11 10 20 14 0 6\n" |
| 72 | 72 |
"12 11 30 10 0 0\n" |
| 73 | 73 |
"\n" |
| 74 | 74 |
"@attributes\n" |
| 75 | 75 |
"source 1\n" |
| 76 | 76 |
"target 12\n"; |
| 77 | 77 |
|
| 78 | 78 |
|
| 79 | 79 |
enum ProblemType {
|
| 80 | 80 |
EQ, |
| 81 | 81 |
GEQ, |
| 82 | 82 |
LEQ |
| 83 | 83 |
}; |
| 84 | 84 |
|
| 85 | 85 |
// Check the interface of an MCF algorithm |
| 86 | 86 |
template <typename GR, typename Flow, typename Cost> |
| 87 | 87 |
class McfClassConcept |
| 88 | 88 |
{
|
| 89 | 89 |
public: |
| 90 | 90 |
|
| 91 | 91 |
template <typename MCF> |
| 92 | 92 |
struct Constraints {
|
| 93 | 93 |
void constraints() {
|
| 94 | 94 |
checkConcept<concepts::Digraph, GR>(); |
| 95 | 95 |
|
| 96 | 96 |
MCF mcf(g); |
| 97 | 97 |
|
| 98 | 98 |
b = mcf.reset() |
| 99 | 99 |
.lowerMap(lower) |
| 100 | 100 |
.upperMap(upper) |
| 101 | 101 |
.capacityMap(upper) |
| 102 | 102 |
.boundMaps(lower, upper) |
| 103 | 103 |
.costMap(cost) |
| 104 | 104 |
.supplyMap(sup) |
| 105 | 105 |
.stSupply(n, n, k) |
| 106 | 106 |
.flowMap(flow) |
| 107 | 107 |
.potentialMap(pot) |
| 108 | 108 |
.run(); |
| 109 | 109 |
|
| 110 | 110 |
const MCF& const_mcf = mcf; |
| 111 | 111 |
|
| 112 | 112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
| 113 | 113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
| 114 | 114 |
|
| 115 | 115 |
v = const_mcf.totalCost(); |
| 116 | 116 |
double x = const_mcf.template totalCost<double>(); |
| 117 | 117 |
v = const_mcf.flow(a); |
| 118 | 118 |
v = const_mcf.potential(n); |
| 119 | 119 |
|
| 120 | 120 |
ignore_unused_variable_warning(fm); |
| 121 | 121 |
ignore_unused_variable_warning(pm); |
| 122 | 122 |
ignore_unused_variable_warning(x); |
| 123 | 123 |
} |
| 124 | 124 |
|
| 125 | 125 |
typedef typename GR::Node Node; |
| 126 | 126 |
typedef typename GR::Arc Arc; |
| 127 | 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
| 128 | 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
| 129 | 129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
| 130 | 130 |
|
| 131 | 131 |
const GR &g; |
| 132 | 132 |
const FAM &lower; |
| 133 | 133 |
const FAM &upper; |
| 134 | 134 |
const CAM &cost; |
| 135 | 135 |
const NM ⊃ |
| 136 | 136 |
const Node &n; |
| 137 | 137 |
const Arc &a; |
| 138 | 138 |
const Flow &k; |
| 139 | 139 |
Flow v; |
| 140 | 140 |
bool b; |
| 141 | 141 |
|
| 142 | 142 |
typename MCF::FlowMap &flow; |
| 143 | 143 |
typename MCF::PotentialMap &pot; |
| 144 | 144 |
}; |
| 145 | 145 |
|
| 146 | 146 |
}; |
| 147 | 147 |
|
| 148 | 148 |
|
| 149 | 149 |
// Check the feasibility of the given flow (primal soluiton) |
| 150 | 150 |
template < typename GR, typename LM, typename UM, |
| 151 | 151 |
typename SM, typename FM > |
| 152 | 152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 153 | 153 |
const SM& supply, const FM& flow, |
| 154 | 154 |
ProblemType type = EQ ) |
| 155 | 155 |
{
|
| 156 | 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 157 | 157 |
|
| 158 | 158 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
| 159 | 159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
| 160 | 160 |
} |
| 161 | 161 |
|
| 162 | 162 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
| 163 | 163 |
typename SM::Value sum = 0; |
| 164 | 164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 165 | 165 |
sum += flow[e]; |
| 166 | 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 167 | 167 |
sum -= flow[e]; |
| 168 | 168 |
bool b = (type == EQ && sum == supply[n]) || |
| 169 | 169 |
(type == GEQ && sum >= supply[n]) || |
| 170 | 170 |
(type == LEQ && sum <= supply[n]); |
| 171 | 171 |
if (!b) return false; |
| 172 | 172 |
} |
| 173 | 173 |
|
| 174 | 174 |
return true; |
| 175 | 175 |
} |
| 176 | 176 |
|
| 177 | 177 |
// Check the feasibility of the given potentials (dual soluiton) |
| 178 | 178 |
// using the "Complementary Slackness" optimality condition |
| 179 | 179 |
template < typename GR, typename LM, typename UM, |
| 180 | 180 |
typename CM, typename SM, typename FM, typename PM > |
| 181 | 181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 182 | 182 |
const CM& cost, const SM& supply, const FM& flow, |
| 183 | 183 |
const PM& pi ) |
| 184 | 184 |
{
|
| 185 | 185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 186 | 186 |
|
| 187 | 187 |
bool opt = true; |
| 188 | 188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
| 189 | 189 |
typename CM::Value red_cost = |
| 190 | 190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
| 191 | 191 |
opt = red_cost == 0 || |
| 192 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
| 193 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
| 194 | 194 |
} |
| 195 | 195 |
|
| 196 | 196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
| 197 | 197 |
typename SM::Value sum = 0; |
| 198 | 198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 199 | 199 |
sum += flow[e]; |
| 200 | 200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 201 | 201 |
sum -= flow[e]; |
| 202 | 202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
| 203 | 203 |
} |
| 204 | 204 |
|
| 205 | 205 |
return opt; |
| 206 | 206 |
} |
| 207 | 207 |
|
| 208 | 208 |
// Run a minimum cost flow algorithm and check the results |
| 209 | 209 |
template < typename MCF, typename GR, |
| 210 | 210 |
typename LM, typename UM, |
| 211 | 211 |
typename CM, typename SM > |
| 212 | 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
| 213 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
| 214 | 214 |
const CM& cost, const SM& supply, |
| 215 | 215 |
bool result, typename CM::Value total, |
| 216 | 216 |
const std::string &test_id = "", |
| 217 | 217 |
ProblemType type = EQ ) |
| 218 | 218 |
{
|
| 219 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
| 220 | 220 |
if (result) {
|
| 221 | 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
| 222 | 222 |
"The flow is not feasible " + test_id); |
| 223 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 224 | 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
| 225 | 225 |
mcf.potentialMap()), |
| 226 | 226 |
"Wrong potentials " + test_id); |
| 227 | 227 |
} |
| 228 | 228 |
} |
| 229 | 229 |
|
| 230 | 230 |
int main() |
| 231 | 231 |
{
|
| 232 | 232 |
// Check the interfaces |
| 233 | 233 |
{
|
| 234 | 234 |
typedef int Flow; |
| 235 | 235 |
typedef int Cost; |
| 236 |
// TODO: This typedef should be enabled if the standard maps are |
|
| 237 |
// reference maps in the graph concepts (See #190). |
|
| 238 |
/**/ |
|
| 239 |
//typedef concepts::Digraph GR; |
|
| 240 |
typedef ListDigraph GR; |
|
| 241 |
/**/ |
|
| 236 |
typedef concepts::Digraph GR; |
|
| 242 | 237 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
| 243 | 238 |
NetworkSimplex<GR, Flow, Cost> >(); |
| 244 | 239 |
} |
| 245 | 240 |
|
| 246 | 241 |
// Run various MCF tests |
| 247 | 242 |
typedef ListDigraph Digraph; |
| 248 | 243 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 249 | 244 |
|
| 250 | 245 |
// Read the test digraph |
| 251 | 246 |
Digraph gr; |
| 252 | 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
| 253 | 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
| 254 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 255 | 250 |
Node v, w; |
| 256 | 251 |
|
| 257 | 252 |
std::istringstream input(test_lgf); |
| 258 | 253 |
DigraphReader<Digraph>(gr, input) |
| 259 | 254 |
.arcMap("cost", c)
|
| 260 | 255 |
.arcMap("cap", u)
|
| 261 | 256 |
.arcMap("low1", l1)
|
| 262 | 257 |
.arcMap("low2", l2)
|
| 263 | 258 |
.nodeMap("sup1", s1)
|
| 264 | 259 |
.nodeMap("sup2", s2)
|
| 265 | 260 |
.nodeMap("sup3", s3)
|
| 266 | 261 |
.nodeMap("sup4", s4)
|
| 267 | 262 |
.nodeMap("sup5", s5)
|
| 268 | 263 |
.node("source", v)
|
| 269 | 264 |
.node("target", w)
|
| 270 | 265 |
.run(); |
| 271 | 266 |
|
| 272 | 267 |
// A. Test NetworkSimplex with the default pivot rule |
| 273 | 268 |
{
|
| 274 | 269 |
NetworkSimplex<Digraph> mcf(gr); |
| 275 | 270 |
|
| 276 | 271 |
// Check the equality form |
| 277 | 272 |
mcf.upperMap(u).costMap(c); |
| 278 | 273 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 279 | 274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
| 280 | 275 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 281 | 276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
| 282 | 277 |
mcf.lowerMap(l2); |
| 283 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 284 | 279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
| 285 | 280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 286 | 281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
| 287 | 282 |
mcf.reset(); |
| 288 | 283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 289 | 284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
| 290 | 285 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
| 291 | 286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
| 292 | 287 |
mcf.reset(); |
| 293 | 288 |
checkMcf(mcf, mcf.run(), |
| 294 | 289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
| 295 | 290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
| 296 | 291 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
| 297 | 292 |
|
| 298 | 293 |
// Check the GEQ form |
| 299 | 294 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
| 300 | 295 |
checkMcf(mcf, mcf.run(), |
| 301 | 296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
| 302 | 297 |
mcf.problemType(mcf.GEQ); |
| 303 | 298 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 304 | 299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
| 305 | 300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
| 306 | 301 |
checkMcf(mcf, mcf.run(), |
| 307 | 302 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
| 308 | 303 |
|
| 309 | 304 |
// Check the LEQ form |
| 310 | 305 |
mcf.reset().problemType(mcf.LEQ); |
| 311 | 306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
| 312 | 307 |
checkMcf(mcf, mcf.run(), |
| 313 | 308 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
| 314 | 309 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 315 | 310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
| 316 | 311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
| 317 | 312 |
checkMcf(mcf, mcf.run(), |
| 318 | 313 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
| 319 | 314 |
} |
| 320 | 315 |
|
| 321 | 316 |
// B. Test NetworkSimplex with each pivot rule |
| 322 | 317 |
{
|
| 323 | 318 |
NetworkSimplex<Digraph> mcf(gr); |
| 324 | 319 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
| 325 | 320 |
|
| 326 | 321 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
| 327 | 322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
| 328 | 323 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
| 329 | 324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
| 330 | 325 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
| 331 | 326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
| 332 | 327 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
| 333 | 328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
| 334 | 329 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
| 335 | 330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
| 336 | 331 |
} |
| 337 | 332 |
|
| 338 | 333 |
return 0; |
| 339 | 334 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup tools |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief DIMACS problem solver. |
| 22 | 22 |
/// |
| 23 | 23 |
/// This program solves various problems given in DIMACS format. |
| 24 | 24 |
/// |
| 25 | 25 |
/// See |
| 26 | 26 |
/// \code |
| 27 | 27 |
/// dimacs-solver --help |
| 28 | 28 |
/// \endcode |
| 29 | 29 |
/// for more info on usage. |
| 30 | 30 |
|
| 31 | 31 |
#include <iostream> |
| 32 | 32 |
#include <fstream> |
| 33 | 33 |
#include <cstring> |
| 34 | 34 |
|
| 35 | 35 |
#include <lemon/smart_graph.h> |
| 36 | 36 |
#include <lemon/dimacs.h> |
| 37 | 37 |
#include <lemon/lgf_writer.h> |
| 38 | 38 |
#include <lemon/time_measure.h> |
| 39 | 39 |
|
| 40 | 40 |
#include <lemon/arg_parser.h> |
| 41 | 41 |
#include <lemon/error.h> |
| 42 | 42 |
|
| 43 | 43 |
#include <lemon/dijkstra.h> |
| 44 | 44 |
#include <lemon/preflow.h> |
| 45 | 45 |
#include <lemon/matching.h> |
| 46 | 46 |
#include <lemon/network_simplex.h> |
| 47 | 47 |
|
| 48 | 48 |
using namespace lemon; |
| 49 | 49 |
typedef SmartDigraph Digraph; |
| 50 | 50 |
DIGRAPH_TYPEDEFS(Digraph); |
| 51 | 51 |
typedef SmartGraph Graph; |
| 52 | 52 |
|
| 53 | 53 |
template<class Value> |
| 54 | 54 |
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &, |
| 55 | 55 |
DimacsDescriptor &desc) |
| 56 | 56 |
{
|
| 57 | 57 |
bool report = !ap.given("q");
|
| 58 | 58 |
Digraph g; |
| 59 | 59 |
Node s; |
| 60 | 60 |
Digraph::ArcMap<Value> len(g); |
| 61 | 61 |
Timer t; |
| 62 | 62 |
t.restart(); |
| 63 | 63 |
readDimacsSp(is, g, len, s, desc); |
| 64 | 64 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
| 65 | 65 |
t.restart(); |
| 66 | 66 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
| 67 | 67 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
| 68 | 68 |
t.restart(); |
| 69 | 69 |
dij.run(s); |
| 70 | 70 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
| 71 | 71 |
} |
| 72 | 72 |
|
| 73 | 73 |
template<class Value> |
| 74 | 74 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
| 75 | 75 |
Value infty, DimacsDescriptor &desc) |
| 76 | 76 |
{
|
| 77 | 77 |
bool report = !ap.given("q");
|
| 78 | 78 |
Digraph g; |
| 79 | 79 |
Node s,t; |
| 80 | 80 |
Digraph::ArcMap<Value> cap(g); |
| 81 | 81 |
Timer ti; |
| 82 | 82 |
ti.restart(); |
| 83 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
| 84 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
| 85 | 85 |
ti.restart(); |
| 86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
| 87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
| 88 | 88 |
ti.restart(); |
| 89 | 89 |
pre.run(); |
| 90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
| 91 | 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 | 94 |
template<class Value> |
| 95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
| 96 |
DimacsDescriptor &desc) |
|
| 96 |
Value infty, DimacsDescriptor &desc) |
|
| 97 | 97 |
{
|
| 98 | 98 |
bool report = !ap.given("q");
|
| 99 | 99 |
Digraph g; |
| 100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
| 101 | 101 |
Digraph::NodeMap<Value> sup(g); |
| 102 | 102 |
Timer ti; |
| 103 |
|
|
| 103 | 104 |
ti.restart(); |
| 104 |
readDimacsMin(is, g, lower, cap, cost, sup, |
|
| 105 |
readDimacsMin(is, g, lower, cap, cost, sup, infty, desc); |
|
| 106 |
ti.stop(); |
|
| 107 |
Value sum_sup = 0; |
|
| 108 |
for (Digraph::NodeIt n(g); n != INVALID; ++n) {
|
|
| 109 |
sum_sup += sup[n]; |
|
| 110 |
} |
|
| 111 |
if (report) {
|
|
| 112 |
std::cerr << "Sum of supply values: " << sum_sup << "\n"; |
|
| 113 |
if (sum_sup <= 0) |
|
| 114 |
std::cerr << "GEQ supply contraints are used for NetworkSimplex\n\n"; |
|
| 115 |
else |
|
| 116 |
std::cerr << "LEQ supply contraints are used for NetworkSimplex\n\n"; |
|
| 117 |
} |
|
| 105 | 118 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
| 119 |
|
|
| 106 | 120 |
ti.restart(); |
| 107 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
| 108 | 122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
| 123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
| 109 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
| 110 | 125 |
ti.restart(); |
| 111 |
ns.run(); |
|
| 112 |
if (report) std::cerr << "Run NetworkSimplex: " << ti << '\n'; |
|
| 113 |
|
|
| 126 |
bool res = ns.run(); |
|
| 127 |
if (report) {
|
|
| 128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
|
| 129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
|
| 130 |
if (res) std::cerr << "Min flow cost: " << ns.totalCost() << '\n'; |
|
| 131 |
} |
|
| 114 | 132 |
} |
| 115 | 133 |
|
| 116 | 134 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
| 117 | 135 |
DimacsDescriptor &desc) |
| 118 | 136 |
{
|
| 119 | 137 |
bool report = !ap.given("q");
|
| 120 | 138 |
Graph g; |
| 121 | 139 |
Timer ti; |
| 122 | 140 |
ti.restart(); |
| 123 | 141 |
readDimacsMat(is, g, desc); |
| 124 | 142 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
| 125 | 143 |
ti.restart(); |
| 126 | 144 |
MaxMatching<Graph> mat(g); |
| 127 | 145 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
| 128 | 146 |
ti.restart(); |
| 129 | 147 |
mat.run(); |
| 130 | 148 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
| 131 | 149 |
if(report) std::cerr << "\nCardinality of max matching: " |
| 132 | 150 |
<< mat.matchingSize() << '\n'; |
| 133 | 151 |
} |
| 134 | 152 |
|
| 135 | 153 |
|
| 136 | 154 |
template<class Value> |
| 137 | 155 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
| 138 | 156 |
DimacsDescriptor &desc) |
| 139 | 157 |
{
|
| 140 | 158 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
| 141 | 159 |
Value infty; |
| 142 | 160 |
iss >> infty; |
| 143 | 161 |
if(iss.fail()) |
| 144 | 162 |
{
|
| 145 | 163 |
std::cerr << "Cannot interpret '" |
| 146 | 164 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
| 147 | 165 |
<< std::endl; |
| 148 | 166 |
exit(1); |
| 149 | 167 |
} |
| 150 | 168 |
|
| 151 | 169 |
switch(desc.type) |
| 152 | 170 |
{
|
| 153 | 171 |
case DimacsDescriptor::MIN: |
| 154 |
solve_min<Value>(ap,is,os,desc); |
|
| 172 |
solve_min<Value>(ap,is,os,infty,desc); |
|
| 155 | 173 |
break; |
| 156 | 174 |
case DimacsDescriptor::MAX: |
| 157 | 175 |
solve_max<Value>(ap,is,os,infty,desc); |
| 158 | 176 |
break; |
| 159 | 177 |
case DimacsDescriptor::SP: |
| 160 | 178 |
solve_sp<Value>(ap,is,os,desc); |
| 161 | 179 |
break; |
| 162 | 180 |
case DimacsDescriptor::MAT: |
| 163 | 181 |
solve_mat(ap,is,os,desc); |
| 164 | 182 |
break; |
| 165 | 183 |
default: |
| 166 | 184 |
break; |
| 167 | 185 |
} |
| 168 | 186 |
} |
| 169 | 187 |
|
| 170 | 188 |
int main(int argc, const char *argv[]) {
|
| 171 | 189 |
typedef SmartDigraph Digraph; |
| 172 | 190 |
|
| 173 | 191 |
typedef Digraph::Arc Arc; |
| 174 | 192 |
|
| 175 | 193 |
std::string inputName; |
| 176 | 194 |
std::string outputName; |
| 177 | 195 |
|
| 178 | 196 |
ArgParser ap(argc, argv); |
| 179 | 197 |
ap.other("[INFILE [OUTFILE]]",
|
| 180 | 198 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
| 181 | 199 |
" input/output will be used instead.") |
| 182 | 200 |
.boolOption("q", "Do not print any report")
|
| 183 | 201 |
.boolOption("int","Use 'int' for capacities, costs etc. (default)")
|
| 184 | 202 |
.optionGroup("datatype","int")
|
| 185 | 203 |
#ifdef HAVE_LONG_LONG |
| 186 | 204 |
.boolOption("long","Use 'long long' for capacities, costs etc.")
|
| 187 | 205 |
.optionGroup("datatype","long")
|
| 188 | 206 |
#endif |
| 189 | 207 |
.boolOption("double","Use 'double' for capacities, costs etc.")
|
| 190 | 208 |
.optionGroup("datatype","double")
|
| 191 | 209 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.")
|
| 192 | 210 |
.optionGroup("datatype","ldouble")
|
| 193 | 211 |
.onlyOneGroup("datatype")
|
| 194 | 212 |
.stringOption("infcap","Value used for 'very high' capacities","0")
|
| 195 | 213 |
.run(); |
| 196 | 214 |
|
| 197 | 215 |
std::ifstream input; |
| 198 | 216 |
std::ofstream output; |
| 199 | 217 |
|
| 200 | 218 |
switch(ap.files().size()) |
| 201 | 219 |
{
|
| 202 | 220 |
case 2: |
| 203 | 221 |
output.open(ap.files()[1].c_str()); |
| 204 | 222 |
if (!output) {
|
| 205 | 223 |
throw IoError("Cannot open the file for writing", ap.files()[1]);
|
| 206 | 224 |
} |
| 207 | 225 |
case 1: |
| 208 | 226 |
input.open(ap.files()[0].c_str()); |
| 209 | 227 |
if (!input) {
|
| 210 | 228 |
throw IoError("File cannot be found", ap.files()[0]);
|
| 211 | 229 |
} |
| 212 | 230 |
case 0: |
| 213 | 231 |
break; |
| 214 | 232 |
default: |
| 215 | 233 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
| 216 | 234 |
return 1; |
| 217 | 235 |
} |
| 218 | 236 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
| 219 | 237 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
| 220 | 238 |
|
| 221 | 239 |
DimacsDescriptor desc = dimacsType(is); |
| 222 | 240 |
|
| 223 | 241 |
if(!ap.given("q"))
|
| 224 | 242 |
{
|
| 225 | 243 |
std::cout << "Problem type: "; |
| 226 | 244 |
switch(desc.type) |
| 227 | 245 |
{
|
| 228 | 246 |
case DimacsDescriptor::MIN: |
| 229 | 247 |
std::cout << "min"; |
| 230 | 248 |
break; |
| 231 | 249 |
case DimacsDescriptor::MAX: |
| 232 | 250 |
std::cout << "max"; |
| 233 | 251 |
break; |
| 234 | 252 |
case DimacsDescriptor::SP: |
| 235 | 253 |
std::cout << "sp"; |
| 236 | 254 |
case DimacsDescriptor::MAT: |
| 237 | 255 |
std::cout << "mat"; |
| 238 | 256 |
break; |
| 239 | 257 |
default: |
| 240 | 258 |
exit(1); |
| 241 | 259 |
break; |
| 242 | 260 |
} |
| 243 | 261 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
| 244 | 262 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
| 245 | 263 |
std::cout << "\n\n"; |
| 246 | 264 |
} |
| 247 | 265 |
|
| 248 | 266 |
if(ap.given("double"))
|
| 249 | 267 |
solve<double>(ap,is,os,desc); |
| 250 | 268 |
else if(ap.given("ldouble"))
|
| 251 | 269 |
solve<long double>(ap,is,os,desc); |
| 252 | 270 |
#ifdef HAVE_LONG_LONG |
| 253 | 271 |
else if(ap.given("long"))
|
| 254 | 272 |
solve<long long>(ap,is,os,desc); |
| 255 | 273 |
#endif |
| 256 | 274 |
else solve<int>(ap,is,os,desc); |
| 257 | 275 |
|
| 258 | 276 |
return 0; |
| 259 | 277 |
} |
0 comments (0 inline)