0
11
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 | 33 |
#include <lemon/bits/map_extender.h> |
34 | 34 |
#include <lemon/tolerance.h> |
35 | 35 |
|
36 | 36 |
#include <algorithm> |
37 | 37 |
|
38 | 38 |
namespace lemon { |
39 | 39 |
|
40 | 40 |
#ifdef _MSC_VER |
41 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
42 | 42 |
#else |
43 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
44 | 44 |
#endif |
45 | 45 |
|
46 | 46 |
template<typename DGR> |
47 | 47 |
class DigraphAdaptorBase { |
48 | 48 |
public: |
49 | 49 |
typedef DGR Digraph; |
50 | 50 |
typedef DigraphAdaptorBase Adaptor; |
51 | 51 |
|
52 | 52 |
protected: |
53 | 53 |
DGR* _digraph; |
54 | 54 |
DigraphAdaptorBase() : _digraph(0) { } |
55 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; } |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { } |
59 | 59 |
|
60 | 60 |
typedef typename DGR::Node Node; |
61 | 61 |
typedef typename DGR::Arc Arc; |
62 | 62 |
|
63 | 63 |
void first(Node& i) const { _digraph->first(i); } |
64 | 64 |
void first(Arc& i) const { _digraph->first(i); } |
65 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } |
66 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } |
67 | 67 |
|
68 | 68 |
void next(Node& i) const { _digraph->next(i); } |
69 | 69 |
void next(Arc& i) const { _digraph->next(i); } |
70 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); } |
71 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); } |
72 | 72 |
|
73 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); } |
74 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); } |
75 | 75 |
|
76 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
77 | 77 |
int nodeNum() const { return _digraph->nodeNum(); } |
78 | 78 |
|
79 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
80 | 80 |
int arcNum() const { return _digraph->arcNum(); } |
81 | 81 |
|
82 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
83 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { |
84 | 84 |
return _digraph->findArc(u, v, prev); |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
Node addNode() { return _digraph->addNode(); } |
88 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } |
89 | 89 |
|
90 | 90 |
void erase(const Node& n) { _digraph->erase(n); } |
91 | 91 |
void erase(const Arc& a) { _digraph->erase(a); } |
92 | 92 |
|
93 | 93 |
void clear() { _digraph->clear(); } |
94 | 94 |
|
95 | 95 |
int id(const Node& n) const { return _digraph->id(n); } |
96 | 96 |
int id(const Arc& a) const { return _digraph->id(a); } |
97 | 97 |
|
98 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
99 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } |
100 | 100 |
|
101 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
102 | 102 |
int maxArcId() const { return _digraph->maxArcId(); } |
103 | 103 |
|
104 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
105 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
106 | 106 |
|
107 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
108 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } |
109 | 109 |
|
110 | 110 |
template <typename V> |
111 | 111 |
class NodeMap : public DGR::template NodeMap<V> { |
112 | 112 |
typedef typename DGR::template NodeMap<V> Parent; |
113 | 113 |
|
114 | 114 |
public: |
115 | 115 |
explicit NodeMap(const Adaptor& adaptor) |
116 | 116 |
: Parent(*adaptor._digraph) {} |
117 | 117 |
NodeMap(const Adaptor& adaptor, const V& value) |
118 | 118 |
: Parent(*adaptor._digraph, value) { } |
119 | 119 |
|
120 | 120 |
private: |
121 | 121 |
NodeMap& operator=(const NodeMap& cmap) { |
122 | 122 |
return operator=<NodeMap>(cmap); |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
template <typename CMap> |
126 | 126 |
NodeMap& operator=(const CMap& cmap) { |
127 | 127 |
Parent::operator=(cmap); |
128 | 128 |
return *this; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
}; |
132 | 132 |
|
133 | 133 |
template <typename V> |
134 | 134 |
class ArcMap : public DGR::template ArcMap<V> { |
135 | 135 |
typedef typename DGR::template ArcMap<V> Parent; |
136 | 136 |
|
137 | 137 |
public: |
138 | 138 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
139 | 139 |
: Parent(*adaptor._digraph) {} |
140 | 140 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
141 | 141 |
: Parent(*adaptor._digraph, value) {} |
142 | 142 |
|
143 | 143 |
private: |
144 | 144 |
ArcMap& operator=(const ArcMap& cmap) { |
145 | 145 |
return operator=<ArcMap>(cmap); |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
template <typename CMap> |
149 | 149 |
ArcMap& operator=(const CMap& cmap) { |
150 | 150 |
Parent::operator=(cmap); |
151 | 151 |
return *this; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
}; |
155 | 155 |
|
156 | 156 |
}; |
157 | 157 |
|
158 | 158 |
template<typename GR> |
159 | 159 |
class GraphAdaptorBase { |
160 | 160 |
public: |
161 | 161 |
typedef GR Graph; |
162 | 162 |
|
163 | 163 |
protected: |
164 | 164 |
GR* _graph; |
165 | 165 |
|
166 | 166 |
GraphAdaptorBase() : _graph(0) {} |
167 | 167 |
|
168 | 168 |
void initialize(GR& graph) { _graph = &graph; } |
169 | 169 |
|
170 | 170 |
public: |
171 | 171 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {} |
172 | 172 |
|
173 | 173 |
typedef typename GR::Node Node; |
174 | 174 |
typedef typename GR::Arc Arc; |
175 | 175 |
typedef typename GR::Edge Edge; |
176 | 176 |
|
177 | 177 |
void first(Node& i) const { _graph->first(i); } |
178 | 178 |
void first(Arc& i) const { _graph->first(i); } |
179 | 179 |
void first(Edge& i) const { _graph->first(i); } |
180 | 180 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } |
181 | 181 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } |
182 | 182 |
void firstInc(Edge &i, bool &d, const Node &n) const { |
183 | 183 |
_graph->firstInc(i, d, n); |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
void next(Node& i) const { _graph->next(i); } |
187 | 187 |
void next(Arc& i) const { _graph->next(i); } |
188 | 188 |
void next(Edge& i) const { _graph->next(i); } |
189 | 189 |
void nextIn(Arc& i) const { _graph->nextIn(i); } |
190 | 190 |
void nextOut(Arc& i) const { _graph->nextOut(i); } |
191 | 191 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } |
192 | 192 |
|
193 | 193 |
Node u(const Edge& e) const { return _graph->u(e); } |
194 | 194 |
Node v(const Edge& e) const { return _graph->v(e); } |
195 | 195 |
|
196 | 196 |
Node source(const Arc& a) const { return _graph->source(a); } |
197 | 197 |
Node target(const Arc& a) const { return _graph->target(a); } |
198 | 198 |
|
199 | 199 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
200 | 200 |
int nodeNum() const { return _graph->nodeNum(); } |
201 | 201 |
|
202 | 202 |
typedef ArcNumTagIndicator<Graph> ArcNumTag; |
203 | 203 |
int arcNum() const { return _graph->arcNum(); } |
204 | 204 |
|
205 | 205 |
typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
206 | 206 |
int edgeNum() const { return _graph->edgeNum(); } |
207 | 207 |
|
208 | 208 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
209 | 209 |
Arc findArc(const Node& u, const Node& v, |
210 | 210 |
const Arc& prev = INVALID) const { |
211 | 211 |
return _graph->findArc(u, v, prev); |
212 | 212 |
} |
213 | 213 |
|
214 | 214 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
215 | 215 |
Edge findEdge(const Node& u, const Node& v, |
216 | 216 |
const Edge& prev = INVALID) const { |
217 | 217 |
return _graph->findEdge(u, v, prev); |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
Node addNode() { return _graph->addNode(); } |
221 | 221 |
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } |
222 | 222 |
|
223 | 223 |
void erase(const Node& i) { _graph->erase(i); } |
224 | 224 |
void erase(const Edge& i) { _graph->erase(i); } |
225 | 225 |
|
226 | 226 |
void clear() { _graph->clear(); } |
227 | 227 |
|
228 | 228 |
bool direction(const Arc& a) const { return _graph->direction(a); } |
229 | 229 |
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } |
230 | 230 |
|
231 | 231 |
int id(const Node& v) const { return _graph->id(v); } |
232 | 232 |
int id(const Arc& a) const { return _graph->id(a); } |
233 | 233 |
int id(const Edge& e) const { return _graph->id(e); } |
234 | 234 |
|
235 | 235 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
236 | 236 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } |
237 | 237 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } |
238 | 238 |
|
239 | 239 |
int maxNodeId() const { return _graph->maxNodeId(); } |
240 | 240 |
int maxArcId() const { return _graph->maxArcId(); } |
241 | 241 |
int maxEdgeId() const { return _graph->maxEdgeId(); } |
242 | 242 |
|
243 | 243 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
244 | 244 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
245 | 245 |
|
246 | 246 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
247 | 247 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
248 | 248 |
|
249 | 249 |
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier; |
250 | 250 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } |
251 | 251 |
|
252 | 252 |
template <typename V> |
253 | 253 |
class NodeMap : public GR::template NodeMap<V> { |
254 | 254 |
typedef typename GR::template NodeMap<V> Parent; |
255 | 255 |
|
256 | 256 |
public: |
257 | 257 |
explicit NodeMap(const GraphAdaptorBase<GR>& adapter) |
258 | 258 |
: Parent(*adapter._graph) {} |
259 | 259 |
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
260 | 260 |
: Parent(*adapter._graph, value) {} |
261 | 261 |
|
262 | 262 |
private: |
263 | 263 |
NodeMap& operator=(const NodeMap& cmap) { |
264 | 264 |
return operator=<NodeMap>(cmap); |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
template <typename CMap> |
268 | 268 |
NodeMap& operator=(const CMap& cmap) { |
269 | 269 |
Parent::operator=(cmap); |
270 | 270 |
return *this; |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
}; |
274 | 274 |
|
275 | 275 |
template <typename V> |
276 | 276 |
class ArcMap : public GR::template ArcMap<V> { |
277 | 277 |
typedef typename GR::template ArcMap<V> Parent; |
278 | 278 |
|
279 | 279 |
public: |
280 | 280 |
explicit ArcMap(const GraphAdaptorBase<GR>& adapter) |
281 | 281 |
: Parent(*adapter._graph) {} |
282 | 282 |
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
283 | 283 |
: Parent(*adapter._graph, value) {} |
284 | 284 |
|
285 | 285 |
private: |
286 | 286 |
ArcMap& operator=(const ArcMap& cmap) { |
287 | 287 |
return operator=<ArcMap>(cmap); |
288 | 288 |
} |
289 | 289 |
|
290 | 290 |
template <typename CMap> |
291 | 291 |
ArcMap& operator=(const CMap& cmap) { |
292 | 292 |
Parent::operator=(cmap); |
293 | 293 |
return *this; |
294 | 294 |
} |
295 | 295 |
}; |
296 | 296 |
|
297 | 297 |
template <typename V> |
298 | 298 |
class EdgeMap : public GR::template EdgeMap<V> { |
299 | 299 |
typedef typename GR::template EdgeMap<V> Parent; |
300 | 300 |
|
301 | 301 |
public: |
302 | 302 |
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter) |
303 | 303 |
: Parent(*adapter._graph) {} |
304 | 304 |
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
305 | 305 |
: Parent(*adapter._graph, value) {} |
306 | 306 |
|
307 | 307 |
private: |
308 | 308 |
EdgeMap& operator=(const EdgeMap& cmap) { |
309 | 309 |
return operator=<EdgeMap>(cmap); |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
template <typename CMap> |
313 | 313 |
EdgeMap& operator=(const CMap& cmap) { |
314 | 314 |
Parent::operator=(cmap); |
315 | 315 |
return *this; |
316 | 316 |
} |
317 | 317 |
}; |
318 | 318 |
|
319 | 319 |
}; |
320 | 320 |
|
321 | 321 |
template <typename DGR> |
322 | 322 |
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> { |
323 | 323 |
typedef DigraphAdaptorBase<DGR> Parent; |
324 | 324 |
public: |
325 | 325 |
typedef DGR Digraph; |
326 | 326 |
protected: |
327 | 327 |
ReverseDigraphBase() : Parent() { } |
328 | 328 |
public: |
329 | 329 |
typedef typename Parent::Node Node; |
330 | 330 |
typedef typename Parent::Arc Arc; |
331 | 331 |
|
332 | 332 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } |
333 | 333 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } |
334 | 334 |
|
335 | 335 |
void nextIn(Arc& a) const { Parent::nextOut(a); } |
336 | 336 |
void nextOut(Arc& a) const { Parent::nextIn(a); } |
337 | 337 |
|
338 | 338 |
Node source(const Arc& a) const { return Parent::target(a); } |
339 | 339 |
Node target(const Arc& a) const { return Parent::source(a); } |
340 | 340 |
|
341 | 341 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } |
342 | 342 |
|
343 | 343 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
344 | 344 |
Arc findArc(const Node& u, const Node& v, |
345 | 345 |
const Arc& prev = INVALID) const { |
346 | 346 |
return Parent::findArc(v, u, prev); |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
}; |
350 | 350 |
|
351 | 351 |
/// \ingroup graph_adaptors |
352 | 352 |
/// |
353 | 353 |
/// \brief Adaptor class for reversing the orientation of the arcs in |
354 | 354 |
/// a digraph. |
355 | 355 |
/// |
356 | 356 |
/// ReverseDigraph can be used for reversing the arcs in a digraph. |
357 | 357 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
358 | 358 |
/// |
359 | 359 |
/// The adapted digraph can also be modified through this adaptor |
360 | 360 |
/// by adding or removing nodes or arcs, unless the \c GR template |
361 | 361 |
/// parameter is set to be \c const. |
362 | 362 |
/// |
363 |
/// This class provides item counting in the same time as the adapted |
|
364 |
/// digraph structure. |
|
365 |
/// |
|
363 | 366 |
/// \tparam DGR The type of the adapted digraph. |
364 | 367 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
365 | 368 |
/// It can also be specified to be \c const. |
366 | 369 |
/// |
367 | 370 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
368 | 371 |
/// digraph are convertible to each other. |
369 | 372 |
template<typename DGR> |
370 | 373 |
#ifdef DOXYGEN |
371 | 374 |
class ReverseDigraph { |
372 | 375 |
#else |
373 | 376 |
class ReverseDigraph : |
374 | 377 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > { |
375 | 378 |
#endif |
376 | 379 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
377 | 380 |
public: |
378 | 381 |
/// The type of the adapted digraph. |
379 | 382 |
typedef DGR Digraph; |
380 | 383 |
protected: |
381 | 384 |
ReverseDigraph() { } |
382 | 385 |
public: |
383 | 386 |
|
384 | 387 |
/// \brief Constructor |
385 | 388 |
/// |
386 | 389 |
/// Creates a reverse digraph adaptor for the given digraph. |
387 | 390 |
explicit ReverseDigraph(DGR& digraph) { |
388 | 391 |
Parent::initialize(digraph); |
389 | 392 |
} |
390 | 393 |
}; |
391 | 394 |
|
392 | 395 |
/// \brief Returns a read-only ReverseDigraph adaptor |
393 | 396 |
/// |
394 | 397 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
395 | 398 |
/// \ingroup graph_adaptors |
396 | 399 |
/// \relates ReverseDigraph |
397 | 400 |
template<typename DGR> |
398 | 401 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) { |
399 | 402 |
return ReverseDigraph<const DGR>(digraph); |
400 | 403 |
} |
401 | 404 |
|
402 | 405 |
|
403 | 406 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
404 | 407 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> { |
405 | 408 |
typedef DigraphAdaptorBase<DGR> Parent; |
406 | 409 |
public: |
407 | 410 |
typedef DGR Digraph; |
408 | 411 |
typedef NF NodeFilterMap; |
409 | 412 |
typedef AF ArcFilterMap; |
410 | 413 |
|
411 | 414 |
typedef SubDigraphBase Adaptor; |
412 | 415 |
protected: |
413 | 416 |
NF* _node_filter; |
414 | 417 |
AF* _arc_filter; |
415 | 418 |
SubDigraphBase() |
416 | 419 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
417 | 420 |
|
418 | 421 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
419 | 422 |
Parent::initialize(digraph); |
420 | 423 |
_node_filter = &node_filter; |
421 | 424 |
_arc_filter = &arc_filter; |
422 | 425 |
} |
423 | 426 |
|
424 | 427 |
public: |
425 | 428 |
|
426 | 429 |
typedef typename Parent::Node Node; |
427 | 430 |
typedef typename Parent::Arc Arc; |
428 | 431 |
|
429 | 432 |
void first(Node& i) const { |
430 | 433 |
Parent::first(i); |
431 | 434 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
432 | 435 |
} |
433 | 436 |
|
434 | 437 |
void first(Arc& i) const { |
435 | 438 |
Parent::first(i); |
436 | 439 |
while (i != INVALID && (!(*_arc_filter)[i] |
437 | 440 |
|| !(*_node_filter)[Parent::source(i)] |
438 | 441 |
|| !(*_node_filter)[Parent::target(i)])) |
439 | 442 |
Parent::next(i); |
440 | 443 |
} |
441 | 444 |
|
442 | 445 |
void firstIn(Arc& i, const Node& n) const { |
443 | 446 |
Parent::firstIn(i, n); |
444 | 447 |
while (i != INVALID && (!(*_arc_filter)[i] |
445 | 448 |
|| !(*_node_filter)[Parent::source(i)])) |
446 | 449 |
Parent::nextIn(i); |
447 | 450 |
} |
448 | 451 |
|
449 | 452 |
void firstOut(Arc& i, const Node& n) const { |
450 | 453 |
Parent::firstOut(i, n); |
451 | 454 |
while (i != INVALID && (!(*_arc_filter)[i] |
452 | 455 |
|| !(*_node_filter)[Parent::target(i)])) |
453 | 456 |
Parent::nextOut(i); |
454 | 457 |
} |
455 | 458 |
|
456 | 459 |
void next(Node& i) const { |
457 | 460 |
Parent::next(i); |
458 | 461 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
459 | 462 |
} |
460 | 463 |
|
461 | 464 |
void next(Arc& i) const { |
462 | 465 |
Parent::next(i); |
463 | 466 |
while (i != INVALID && (!(*_arc_filter)[i] |
464 | 467 |
|| !(*_node_filter)[Parent::source(i)] |
465 | 468 |
|| !(*_node_filter)[Parent::target(i)])) |
466 | 469 |
Parent::next(i); |
467 | 470 |
} |
468 | 471 |
|
469 | 472 |
void nextIn(Arc& i) const { |
470 | 473 |
Parent::nextIn(i); |
471 | 474 |
while (i != INVALID && (!(*_arc_filter)[i] |
472 | 475 |
|| !(*_node_filter)[Parent::source(i)])) |
473 | 476 |
Parent::nextIn(i); |
474 | 477 |
} |
475 | 478 |
|
476 | 479 |
void nextOut(Arc& i) const { |
477 | 480 |
Parent::nextOut(i); |
478 | 481 |
while (i != INVALID && (!(*_arc_filter)[i] |
479 | 482 |
|| !(*_node_filter)[Parent::target(i)])) |
480 | 483 |
Parent::nextOut(i); |
481 | 484 |
} |
482 | 485 |
|
483 | 486 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
484 | 487 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
485 | 488 |
|
486 | 489 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
487 | 490 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
488 | 491 |
|
489 | 492 |
typedef False NodeNumTag; |
490 | 493 |
typedef False ArcNumTag; |
491 | 494 |
|
492 | 495 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
493 | 496 |
Arc findArc(const Node& source, const Node& target, |
494 | 497 |
const Arc& prev = INVALID) const { |
495 | 498 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
496 | 499 |
return INVALID; |
497 | 500 |
} |
498 | 501 |
Arc arc = Parent::findArc(source, target, prev); |
499 | 502 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
500 | 503 |
arc = Parent::findArc(source, target, arc); |
501 | 504 |
} |
502 | 505 |
return arc; |
503 | 506 |
} |
504 | 507 |
|
505 | 508 |
public: |
506 | 509 |
|
507 | 510 |
template <typename V> |
508 | 511 |
class NodeMap |
509 | 512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
510 | 513 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
511 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
512 | 515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
513 | 516 |
|
514 | 517 |
public: |
515 | 518 |
typedef V Value; |
516 | 519 |
|
517 | 520 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
518 | 521 |
: Parent(adaptor) {} |
519 | 522 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
520 | 523 |
: Parent(adaptor, value) {} |
521 | 524 |
|
522 | 525 |
private: |
523 | 526 |
NodeMap& operator=(const NodeMap& cmap) { |
524 | 527 |
return operator=<NodeMap>(cmap); |
525 | 528 |
} |
526 | 529 |
|
527 | 530 |
template <typename CMap> |
528 | 531 |
NodeMap& operator=(const CMap& cmap) { |
529 | 532 |
Parent::operator=(cmap); |
530 | 533 |
return *this; |
531 | 534 |
} |
532 | 535 |
}; |
533 | 536 |
|
534 | 537 |
template <typename V> |
535 | 538 |
class ArcMap |
536 | 539 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
537 | 540 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
538 | 541 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
539 | 542 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
540 | 543 |
|
541 | 544 |
public: |
542 | 545 |
typedef V Value; |
543 | 546 |
|
544 | 547 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
545 | 548 |
: Parent(adaptor) {} |
546 | 549 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
547 | 550 |
: Parent(adaptor, value) {} |
548 | 551 |
|
549 | 552 |
private: |
550 | 553 |
ArcMap& operator=(const ArcMap& cmap) { |
551 | 554 |
return operator=<ArcMap>(cmap); |
552 | 555 |
} |
553 | 556 |
|
554 | 557 |
template <typename CMap> |
555 | 558 |
ArcMap& operator=(const CMap& cmap) { |
556 | 559 |
Parent::operator=(cmap); |
557 | 560 |
return *this; |
558 | 561 |
} |
559 | 562 |
}; |
560 | 563 |
|
561 | 564 |
}; |
562 | 565 |
|
563 | 566 |
template <typename DGR, typename NF, typename AF> |
564 | 567 |
class SubDigraphBase<DGR, NF, AF, false> |
565 | 568 |
: public DigraphAdaptorBase<DGR> { |
566 | 569 |
typedef DigraphAdaptorBase<DGR> Parent; |
567 | 570 |
public: |
568 | 571 |
typedef DGR Digraph; |
569 | 572 |
typedef NF NodeFilterMap; |
570 | 573 |
typedef AF ArcFilterMap; |
571 | 574 |
|
572 | 575 |
typedef SubDigraphBase Adaptor; |
573 | 576 |
protected: |
574 | 577 |
NF* _node_filter; |
575 | 578 |
AF* _arc_filter; |
576 | 579 |
SubDigraphBase() |
577 | 580 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
578 | 581 |
|
579 | 582 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
580 | 583 |
Parent::initialize(digraph); |
581 | 584 |
_node_filter = &node_filter; |
582 | 585 |
_arc_filter = &arc_filter; |
583 | 586 |
} |
584 | 587 |
|
585 | 588 |
public: |
586 | 589 |
|
587 | 590 |
typedef typename Parent::Node Node; |
588 | 591 |
typedef typename Parent::Arc Arc; |
589 | 592 |
|
590 | 593 |
void first(Node& i) const { |
591 | 594 |
Parent::first(i); |
592 | 595 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
593 | 596 |
} |
594 | 597 |
|
595 | 598 |
void first(Arc& i) const { |
596 | 599 |
Parent::first(i); |
597 | 600 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
598 | 601 |
} |
599 | 602 |
|
600 | 603 |
void firstIn(Arc& i, const Node& n) const { |
601 | 604 |
Parent::firstIn(i, n); |
602 | 605 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
603 | 606 |
} |
604 | 607 |
|
605 | 608 |
void firstOut(Arc& i, const Node& n) const { |
606 | 609 |
Parent::firstOut(i, n); |
607 | 610 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
608 | 611 |
} |
609 | 612 |
|
610 | 613 |
void next(Node& i) const { |
611 | 614 |
Parent::next(i); |
612 | 615 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
613 | 616 |
} |
614 | 617 |
void next(Arc& i) const { |
615 | 618 |
Parent::next(i); |
616 | 619 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
617 | 620 |
} |
618 | 621 |
void nextIn(Arc& i) const { |
619 | 622 |
Parent::nextIn(i); |
620 | 623 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
621 | 624 |
} |
622 | 625 |
|
623 | 626 |
void nextOut(Arc& i) const { |
624 | 627 |
Parent::nextOut(i); |
625 | 628 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
626 | 629 |
} |
627 | 630 |
|
628 | 631 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
629 | 632 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
630 | 633 |
|
631 | 634 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
632 | 635 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
633 | 636 |
|
634 | 637 |
typedef False NodeNumTag; |
635 | 638 |
typedef False ArcNumTag; |
636 | 639 |
|
637 | 640 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
638 | 641 |
Arc findArc(const Node& source, const Node& target, |
639 | 642 |
const Arc& prev = INVALID) const { |
640 | 643 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
641 | 644 |
return INVALID; |
642 | 645 |
} |
643 | 646 |
Arc arc = Parent::findArc(source, target, prev); |
644 | 647 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
645 | 648 |
arc = Parent::findArc(source, target, arc); |
646 | 649 |
} |
647 | 650 |
return arc; |
648 | 651 |
} |
649 | 652 |
|
650 | 653 |
template <typename V> |
651 | 654 |
class NodeMap |
652 | 655 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
653 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
654 | 657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
655 | 658 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
656 | 659 |
|
657 | 660 |
public: |
658 | 661 |
typedef V Value; |
659 | 662 |
|
660 | 663 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
661 | 664 |
: Parent(adaptor) {} |
662 | 665 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
663 | 666 |
: Parent(adaptor, value) {} |
664 | 667 |
|
665 | 668 |
private: |
666 | 669 |
NodeMap& operator=(const NodeMap& cmap) { |
667 | 670 |
return operator=<NodeMap>(cmap); |
668 | 671 |
} |
669 | 672 |
|
670 | 673 |
template <typename CMap> |
671 | 674 |
NodeMap& operator=(const CMap& cmap) { |
672 | 675 |
Parent::operator=(cmap); |
673 | 676 |
return *this; |
674 | 677 |
} |
675 | 678 |
}; |
676 | 679 |
|
677 | 680 |
template <typename V> |
678 | 681 |
class ArcMap |
679 | 682 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
680 | 683 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
681 | 684 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
682 | 685 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
683 | 686 |
|
684 | 687 |
public: |
685 | 688 |
typedef V Value; |
686 | 689 |
|
687 | 690 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
688 | 691 |
: Parent(adaptor) {} |
689 | 692 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
690 | 693 |
: Parent(adaptor, value) {} |
691 | 694 |
|
692 | 695 |
private: |
693 | 696 |
ArcMap& operator=(const ArcMap& cmap) { |
694 | 697 |
return operator=<ArcMap>(cmap); |
695 | 698 |
} |
696 | 699 |
|
697 | 700 |
template <typename CMap> |
698 | 701 |
ArcMap& operator=(const CMap& cmap) { |
699 | 702 |
Parent::operator=(cmap); |
700 | 703 |
return *this; |
701 | 704 |
} |
702 | 705 |
}; |
703 | 706 |
|
704 | 707 |
}; |
705 | 708 |
|
706 | 709 |
/// \ingroup graph_adaptors |
707 | 710 |
/// |
708 | 711 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
709 | 712 |
/// |
710 | 713 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
711 | 714 |
/// A \c bool node map and a \c bool arc map must be specified, which |
712 | 715 |
/// define the filters for nodes and arcs. |
713 | 716 |
/// Only the nodes and arcs with \c true filter value are |
714 | 717 |
/// shown in the subdigraph. The arcs that are incident to hidden |
715 | 718 |
/// nodes are also filtered out. |
716 | 719 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
717 | 720 |
/// |
718 | 721 |
/// The adapted digraph can also be modified through this adaptor |
719 | 722 |
/// by adding or removing nodes or arcs, unless the \c GR template |
720 | 723 |
/// parameter is set to be \c const. |
721 | 724 |
/// |
725 |
/// This class provides only linear time counting for nodes and arcs. |
|
726 |
/// |
|
722 | 727 |
/// \tparam DGR The type of the adapted digraph. |
723 | 728 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
724 | 729 |
/// It can also be specified to be \c const. |
725 | 730 |
/// \tparam NF The type of the node filter map. |
726 | 731 |
/// It must be a \c bool (or convertible) node map of the |
727 | 732 |
/// adapted digraph. The default type is |
728 | 733 |
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>". |
729 | 734 |
/// \tparam AF The type of the arc filter map. |
730 | 735 |
/// It must be \c bool (or convertible) arc map of the |
731 | 736 |
/// adapted digraph. The default type is |
732 | 737 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
733 | 738 |
/// |
734 | 739 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
735 | 740 |
/// digraph are convertible to each other. |
736 | 741 |
/// |
737 | 742 |
/// \see FilterNodes |
738 | 743 |
/// \see FilterArcs |
739 | 744 |
#ifdef DOXYGEN |
740 | 745 |
template<typename DGR, typename NF, typename AF> |
741 | 746 |
class SubDigraph { |
742 | 747 |
#else |
743 | 748 |
template<typename DGR, |
744 | 749 |
typename NF = typename DGR::template NodeMap<bool>, |
745 | 750 |
typename AF = typename DGR::template ArcMap<bool> > |
746 | 751 |
class SubDigraph : |
747 | 752 |
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > { |
748 | 753 |
#endif |
749 | 754 |
public: |
750 | 755 |
/// The type of the adapted digraph. |
751 | 756 |
typedef DGR Digraph; |
752 | 757 |
/// The type of the node filter map. |
753 | 758 |
typedef NF NodeFilterMap; |
754 | 759 |
/// The type of the arc filter map. |
755 | 760 |
typedef AF ArcFilterMap; |
756 | 761 |
|
757 | 762 |
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > |
758 | 763 |
Parent; |
759 | 764 |
|
760 | 765 |
typedef typename Parent::Node Node; |
761 | 766 |
typedef typename Parent::Arc Arc; |
762 | 767 |
|
763 | 768 |
protected: |
764 | 769 |
SubDigraph() { } |
765 | 770 |
public: |
766 | 771 |
|
767 | 772 |
/// \brief Constructor |
768 | 773 |
/// |
769 | 774 |
/// Creates a subdigraph for the given digraph with the |
770 | 775 |
/// given node and arc filter maps. |
771 | 776 |
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) { |
772 | 777 |
Parent::initialize(digraph, node_filter, arc_filter); |
773 | 778 |
} |
774 | 779 |
|
775 | 780 |
/// \brief Sets the status of the given node |
776 | 781 |
/// |
777 | 782 |
/// This function sets the status of the given node. |
778 | 783 |
/// It is done by simply setting the assigned value of \c n |
779 | 784 |
/// to \c v in the node filter map. |
780 | 785 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
781 | 786 |
|
782 | 787 |
/// \brief Sets the status of the given arc |
783 | 788 |
/// |
784 | 789 |
/// This function sets the status of the given arc. |
785 | 790 |
/// It is done by simply setting the assigned value of \c a |
786 | 791 |
/// to \c v in the arc filter map. |
787 | 792 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
788 | 793 |
|
789 | 794 |
/// \brief Returns the status of the given node |
790 | 795 |
/// |
791 | 796 |
/// This function returns the status of the given node. |
792 | 797 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
793 | 798 |
bool status(const Node& n) const { return Parent::status(n); } |
794 | 799 |
|
795 | 800 |
/// \brief Returns the status of the given arc |
796 | 801 |
/// |
797 | 802 |
/// This function returns the status of the given arc. |
798 | 803 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
799 | 804 |
bool status(const Arc& a) const { return Parent::status(a); } |
800 | 805 |
|
801 | 806 |
/// \brief Disables the given node |
802 | 807 |
/// |
803 | 808 |
/// This function disables the given node in the subdigraph, |
804 | 809 |
/// so the iteration jumps over it. |
805 | 810 |
/// It is the same as \ref status() "status(n, false)". |
806 | 811 |
void disable(const Node& n) const { Parent::status(n, false); } |
807 | 812 |
|
808 | 813 |
/// \brief Disables the given arc |
809 | 814 |
/// |
810 | 815 |
/// This function disables the given arc in the subdigraph, |
811 | 816 |
/// so the iteration jumps over it. |
812 | 817 |
/// It is the same as \ref status() "status(a, false)". |
813 | 818 |
void disable(const Arc& a) const { Parent::status(a, false); } |
814 | 819 |
|
815 | 820 |
/// \brief Enables the given node |
816 | 821 |
/// |
817 | 822 |
/// This function enables the given node in the subdigraph. |
818 | 823 |
/// It is the same as \ref status() "status(n, true)". |
819 | 824 |
void enable(const Node& n) const { Parent::status(n, true); } |
820 | 825 |
|
821 | 826 |
/// \brief Enables the given arc |
822 | 827 |
/// |
823 | 828 |
/// This function enables the given arc in the subdigraph. |
824 | 829 |
/// It is the same as \ref status() "status(a, true)". |
825 | 830 |
void enable(const Arc& a) const { Parent::status(a, true); } |
826 | 831 |
|
827 | 832 |
}; |
828 | 833 |
|
829 | 834 |
/// \brief Returns a read-only SubDigraph adaptor |
830 | 835 |
/// |
831 | 836 |
/// This function just returns a read-only \ref SubDigraph adaptor. |
832 | 837 |
/// \ingroup graph_adaptors |
833 | 838 |
/// \relates SubDigraph |
834 | 839 |
template<typename DGR, typename NF, typename AF> |
835 | 840 |
SubDigraph<const DGR, NF, AF> |
836 | 841 |
subDigraph(const DGR& digraph, |
837 | 842 |
NF& node_filter, AF& arc_filter) { |
838 | 843 |
return SubDigraph<const DGR, NF, AF> |
839 | 844 |
(digraph, node_filter, arc_filter); |
840 | 845 |
} |
841 | 846 |
|
842 | 847 |
template<typename DGR, typename NF, typename AF> |
843 | 848 |
SubDigraph<const DGR, const NF, AF> |
844 | 849 |
subDigraph(const DGR& digraph, |
845 | 850 |
const NF& node_filter, AF& arc_filter) { |
846 | 851 |
return SubDigraph<const DGR, const NF, AF> |
847 | 852 |
(digraph, node_filter, arc_filter); |
848 | 853 |
} |
849 | 854 |
|
850 | 855 |
template<typename DGR, typename NF, typename AF> |
851 | 856 |
SubDigraph<const DGR, NF, const AF> |
852 | 857 |
subDigraph(const DGR& digraph, |
853 | 858 |
NF& node_filter, const AF& arc_filter) { |
854 | 859 |
return SubDigraph<const DGR, NF, const AF> |
855 | 860 |
(digraph, node_filter, arc_filter); |
856 | 861 |
} |
857 | 862 |
|
858 | 863 |
template<typename DGR, typename NF, typename AF> |
859 | 864 |
SubDigraph<const DGR, const NF, const AF> |
860 | 865 |
subDigraph(const DGR& digraph, |
861 | 866 |
const NF& node_filter, const AF& arc_filter) { |
862 | 867 |
return SubDigraph<const DGR, const NF, const AF> |
863 | 868 |
(digraph, node_filter, arc_filter); |
864 | 869 |
} |
865 | 870 |
|
866 | 871 |
|
867 | 872 |
template <typename GR, typename NF, typename EF, bool ch = true> |
868 | 873 |
class SubGraphBase : public GraphAdaptorBase<GR> { |
869 | 874 |
typedef GraphAdaptorBase<GR> Parent; |
870 | 875 |
public: |
871 | 876 |
typedef GR Graph; |
872 | 877 |
typedef NF NodeFilterMap; |
873 | 878 |
typedef EF EdgeFilterMap; |
874 | 879 |
|
875 | 880 |
typedef SubGraphBase Adaptor; |
876 | 881 |
protected: |
877 | 882 |
|
878 | 883 |
NF* _node_filter; |
879 | 884 |
EF* _edge_filter; |
880 | 885 |
|
881 | 886 |
SubGraphBase() |
882 | 887 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
883 | 888 |
|
884 | 889 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
885 | 890 |
Parent::initialize(graph); |
886 | 891 |
_node_filter = &node_filter; |
887 | 892 |
_edge_filter = &edge_filter; |
888 | 893 |
} |
889 | 894 |
|
890 | 895 |
public: |
891 | 896 |
|
892 | 897 |
typedef typename Parent::Node Node; |
893 | 898 |
typedef typename Parent::Arc Arc; |
894 | 899 |
typedef typename Parent::Edge Edge; |
895 | 900 |
|
896 | 901 |
void first(Node& i) const { |
897 | 902 |
Parent::first(i); |
898 | 903 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
899 | 904 |
} |
900 | 905 |
|
901 | 906 |
void first(Arc& i) const { |
902 | 907 |
Parent::first(i); |
903 | 908 |
while (i!=INVALID && (!(*_edge_filter)[i] |
904 | 909 |
|| !(*_node_filter)[Parent::source(i)] |
905 | 910 |
|| !(*_node_filter)[Parent::target(i)])) |
906 | 911 |
Parent::next(i); |
907 | 912 |
} |
908 | 913 |
|
909 | 914 |
void first(Edge& i) const { |
910 | 915 |
Parent::first(i); |
911 | 916 |
while (i!=INVALID && (!(*_edge_filter)[i] |
912 | 917 |
|| !(*_node_filter)[Parent::u(i)] |
913 | 918 |
|| !(*_node_filter)[Parent::v(i)])) |
914 | 919 |
Parent::next(i); |
915 | 920 |
} |
916 | 921 |
|
917 | 922 |
void firstIn(Arc& i, const Node& n) const { |
918 | 923 |
Parent::firstIn(i, n); |
919 | 924 |
while (i!=INVALID && (!(*_edge_filter)[i] |
920 | 925 |
|| !(*_node_filter)[Parent::source(i)])) |
921 | 926 |
Parent::nextIn(i); |
922 | 927 |
} |
923 | 928 |
|
924 | 929 |
void firstOut(Arc& i, const Node& n) const { |
925 | 930 |
Parent::firstOut(i, n); |
926 | 931 |
while (i!=INVALID && (!(*_edge_filter)[i] |
927 | 932 |
|| !(*_node_filter)[Parent::target(i)])) |
928 | 933 |
Parent::nextOut(i); |
929 | 934 |
} |
930 | 935 |
|
931 | 936 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
932 | 937 |
Parent::firstInc(i, d, n); |
933 | 938 |
while (i!=INVALID && (!(*_edge_filter)[i] |
934 | 939 |
|| !(*_node_filter)[Parent::u(i)] |
935 | 940 |
|| !(*_node_filter)[Parent::v(i)])) |
936 | 941 |
Parent::nextInc(i, d); |
937 | 942 |
} |
938 | 943 |
|
939 | 944 |
void next(Node& i) const { |
940 | 945 |
Parent::next(i); |
941 | 946 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
942 | 947 |
} |
943 | 948 |
|
944 | 949 |
void next(Arc& i) const { |
945 | 950 |
Parent::next(i); |
946 | 951 |
while (i!=INVALID && (!(*_edge_filter)[i] |
947 | 952 |
|| !(*_node_filter)[Parent::source(i)] |
948 | 953 |
|| !(*_node_filter)[Parent::target(i)])) |
949 | 954 |
Parent::next(i); |
950 | 955 |
} |
951 | 956 |
|
952 | 957 |
void next(Edge& i) const { |
953 | 958 |
Parent::next(i); |
954 | 959 |
while (i!=INVALID && (!(*_edge_filter)[i] |
955 | 960 |
|| !(*_node_filter)[Parent::u(i)] |
956 | 961 |
|| !(*_node_filter)[Parent::v(i)])) |
957 | 962 |
Parent::next(i); |
958 | 963 |
} |
959 | 964 |
|
960 | 965 |
void nextIn(Arc& i) const { |
961 | 966 |
Parent::nextIn(i); |
962 | 967 |
while (i!=INVALID && (!(*_edge_filter)[i] |
963 | 968 |
|| !(*_node_filter)[Parent::source(i)])) |
964 | 969 |
Parent::nextIn(i); |
965 | 970 |
} |
966 | 971 |
|
967 | 972 |
void nextOut(Arc& i) const { |
968 | 973 |
Parent::nextOut(i); |
969 | 974 |
while (i!=INVALID && (!(*_edge_filter)[i] |
970 | 975 |
|| !(*_node_filter)[Parent::target(i)])) |
971 | 976 |
Parent::nextOut(i); |
972 | 977 |
} |
973 | 978 |
|
974 | 979 |
void nextInc(Edge& i, bool& d) const { |
975 | 980 |
Parent::nextInc(i, d); |
976 | 981 |
while (i!=INVALID && (!(*_edge_filter)[i] |
977 | 982 |
|| !(*_node_filter)[Parent::u(i)] |
978 | 983 |
|| !(*_node_filter)[Parent::v(i)])) |
979 | 984 |
Parent::nextInc(i, d); |
980 | 985 |
} |
981 | 986 |
|
982 | 987 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
983 | 988 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
984 | 989 |
|
985 | 990 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
986 | 991 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
987 | 992 |
|
988 | 993 |
typedef False NodeNumTag; |
989 | 994 |
typedef False ArcNumTag; |
990 | 995 |
typedef False EdgeNumTag; |
991 | 996 |
|
992 | 997 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
993 | 998 |
Arc findArc(const Node& u, const Node& v, |
994 | 999 |
const Arc& prev = INVALID) const { |
995 | 1000 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
996 | 1001 |
return INVALID; |
997 | 1002 |
} |
998 | 1003 |
Arc arc = Parent::findArc(u, v, prev); |
999 | 1004 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1000 | 1005 |
arc = Parent::findArc(u, v, arc); |
1001 | 1006 |
} |
1002 | 1007 |
return arc; |
1003 | 1008 |
} |
1004 | 1009 |
|
1005 | 1010 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1006 | 1011 |
Edge findEdge(const Node& u, const Node& v, |
1007 | 1012 |
const Edge& prev = INVALID) const { |
1008 | 1013 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1009 | 1014 |
return INVALID; |
1010 | 1015 |
} |
1011 | 1016 |
Edge edge = Parent::findEdge(u, v, prev); |
1012 | 1017 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1013 | 1018 |
edge = Parent::findEdge(u, v, edge); |
1014 | 1019 |
} |
1015 | 1020 |
return edge; |
1016 | 1021 |
} |
1017 | 1022 |
|
1018 | 1023 |
template <typename V> |
1019 | 1024 |
class NodeMap |
1020 | 1025 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1021 | 1026 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1022 | 1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1023 | 1028 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1024 | 1029 |
|
1025 | 1030 |
public: |
1026 | 1031 |
typedef V Value; |
1027 | 1032 |
|
1028 | 1033 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1029 | 1034 |
: Parent(adaptor) {} |
1030 | 1035 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1031 | 1036 |
: Parent(adaptor, value) {} |
1032 | 1037 |
|
1033 | 1038 |
private: |
1034 | 1039 |
NodeMap& operator=(const NodeMap& cmap) { |
1035 | 1040 |
return operator=<NodeMap>(cmap); |
1036 | 1041 |
} |
1037 | 1042 |
|
1038 | 1043 |
template <typename CMap> |
1039 | 1044 |
NodeMap& operator=(const CMap& cmap) { |
1040 | 1045 |
Parent::operator=(cmap); |
1041 | 1046 |
return *this; |
1042 | 1047 |
} |
1043 | 1048 |
}; |
1044 | 1049 |
|
1045 | 1050 |
template <typename V> |
1046 | 1051 |
class ArcMap |
1047 | 1052 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1048 | 1053 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1049 | 1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1050 | 1055 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1051 | 1056 |
|
1052 | 1057 |
public: |
1053 | 1058 |
typedef V Value; |
1054 | 1059 |
|
1055 | 1060 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1056 | 1061 |
: Parent(adaptor) {} |
1057 | 1062 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1058 | 1063 |
: Parent(adaptor, value) {} |
1059 | 1064 |
|
1060 | 1065 |
private: |
1061 | 1066 |
ArcMap& operator=(const ArcMap& cmap) { |
1062 | 1067 |
return operator=<ArcMap>(cmap); |
1063 | 1068 |
} |
1064 | 1069 |
|
1065 | 1070 |
template <typename CMap> |
1066 | 1071 |
ArcMap& operator=(const CMap& cmap) { |
1067 | 1072 |
Parent::operator=(cmap); |
1068 | 1073 |
return *this; |
1069 | 1074 |
} |
1070 | 1075 |
}; |
1071 | 1076 |
|
1072 | 1077 |
template <typename V> |
1073 | 1078 |
class EdgeMap |
1074 | 1079 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1075 | 1080 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1076 | 1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1077 | 1082 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
1078 | 1083 |
|
1079 | 1084 |
public: |
1080 | 1085 |
typedef V Value; |
1081 | 1086 |
|
1082 | 1087 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1083 | 1088 |
: Parent(adaptor) {} |
1084 | 1089 |
|
1085 | 1090 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1086 | 1091 |
: Parent(adaptor, value) {} |
1087 | 1092 |
|
1088 | 1093 |
private: |
1089 | 1094 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1090 | 1095 |
return operator=<EdgeMap>(cmap); |
1091 | 1096 |
} |
1092 | 1097 |
|
1093 | 1098 |
template <typename CMap> |
1094 | 1099 |
EdgeMap& operator=(const CMap& cmap) { |
1095 | 1100 |
Parent::operator=(cmap); |
1096 | 1101 |
return *this; |
1097 | 1102 |
} |
1098 | 1103 |
}; |
1099 | 1104 |
|
1100 | 1105 |
}; |
1101 | 1106 |
|
1102 | 1107 |
template <typename GR, typename NF, typename EF> |
1103 | 1108 |
class SubGraphBase<GR, NF, EF, false> |
1104 | 1109 |
: public GraphAdaptorBase<GR> { |
1105 | 1110 |
typedef GraphAdaptorBase<GR> Parent; |
1106 | 1111 |
public: |
1107 | 1112 |
typedef GR Graph; |
1108 | 1113 |
typedef NF NodeFilterMap; |
1109 | 1114 |
typedef EF EdgeFilterMap; |
1110 | 1115 |
|
1111 | 1116 |
typedef SubGraphBase Adaptor; |
1112 | 1117 |
protected: |
1113 | 1118 |
NF* _node_filter; |
1114 | 1119 |
EF* _edge_filter; |
1115 | 1120 |
SubGraphBase() |
1116 | 1121 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
1117 | 1122 |
|
1118 | 1123 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
1119 | 1124 |
Parent::initialize(graph); |
1120 | 1125 |
_node_filter = &node_filter; |
1121 | 1126 |
_edge_filter = &edge_filter; |
1122 | 1127 |
} |
1123 | 1128 |
|
1124 | 1129 |
public: |
1125 | 1130 |
|
1126 | 1131 |
typedef typename Parent::Node Node; |
1127 | 1132 |
typedef typename Parent::Arc Arc; |
1128 | 1133 |
typedef typename Parent::Edge Edge; |
1129 | 1134 |
|
1130 | 1135 |
void first(Node& i) const { |
1131 | 1136 |
Parent::first(i); |
1132 | 1137 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1133 | 1138 |
} |
1134 | 1139 |
|
1135 | 1140 |
void first(Arc& i) const { |
1136 | 1141 |
Parent::first(i); |
1137 | 1142 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1138 | 1143 |
} |
1139 | 1144 |
|
1140 | 1145 |
void first(Edge& i) const { |
1141 | 1146 |
Parent::first(i); |
1142 | 1147 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1143 | 1148 |
} |
1144 | 1149 |
|
1145 | 1150 |
void firstIn(Arc& i, const Node& n) const { |
1146 | 1151 |
Parent::firstIn(i, n); |
1147 | 1152 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1148 | 1153 |
} |
1149 | 1154 |
|
1150 | 1155 |
void firstOut(Arc& i, const Node& n) const { |
1151 | 1156 |
Parent::firstOut(i, n); |
1152 | 1157 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1153 | 1158 |
} |
1154 | 1159 |
|
1155 | 1160 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
1156 | 1161 |
Parent::firstInc(i, d, n); |
1157 | 1162 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1158 | 1163 |
} |
1159 | 1164 |
|
1160 | 1165 |
void next(Node& i) const { |
1161 | 1166 |
Parent::next(i); |
1162 | 1167 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1163 | 1168 |
} |
1164 | 1169 |
void next(Arc& i) const { |
1165 | 1170 |
Parent::next(i); |
1166 | 1171 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1167 | 1172 |
} |
1168 | 1173 |
void next(Edge& i) const { |
1169 | 1174 |
Parent::next(i); |
1170 | 1175 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1171 | 1176 |
} |
1172 | 1177 |
void nextIn(Arc& i) const { |
1173 | 1178 |
Parent::nextIn(i); |
1174 | 1179 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1175 | 1180 |
} |
1176 | 1181 |
|
1177 | 1182 |
void nextOut(Arc& i) const { |
1178 | 1183 |
Parent::nextOut(i); |
1179 | 1184 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1180 | 1185 |
} |
1181 | 1186 |
void nextInc(Edge& i, bool& d) const { |
1182 | 1187 |
Parent::nextInc(i, d); |
1183 | 1188 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1184 | 1189 |
} |
1185 | 1190 |
|
1186 | 1191 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
1187 | 1192 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
1188 | 1193 |
|
1189 | 1194 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
1190 | 1195 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
1191 | 1196 |
|
1192 | 1197 |
typedef False NodeNumTag; |
1193 | 1198 |
typedef False ArcNumTag; |
1194 | 1199 |
typedef False EdgeNumTag; |
1195 | 1200 |
|
1196 | 1201 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
1197 | 1202 |
Arc findArc(const Node& u, const Node& v, |
1198 | 1203 |
const Arc& prev = INVALID) const { |
1199 | 1204 |
Arc arc = Parent::findArc(u, v, prev); |
1200 | 1205 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1201 | 1206 |
arc = Parent::findArc(u, v, arc); |
1202 | 1207 |
} |
1203 | 1208 |
return arc; |
1204 | 1209 |
} |
1205 | 1210 |
|
1206 | 1211 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1207 | 1212 |
Edge findEdge(const Node& u, const Node& v, |
1208 | 1213 |
const Edge& prev = INVALID) const { |
1209 | 1214 |
Edge edge = Parent::findEdge(u, v, prev); |
1210 | 1215 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1211 | 1216 |
edge = Parent::findEdge(u, v, edge); |
1212 | 1217 |
} |
1213 | 1218 |
return edge; |
1214 | 1219 |
} |
1215 | 1220 |
|
1216 | 1221 |
template <typename V> |
1217 | 1222 |
class NodeMap |
1218 | 1223 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1219 | 1224 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1220 | 1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1221 | 1226 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1222 | 1227 |
|
1223 | 1228 |
public: |
1224 | 1229 |
typedef V Value; |
1225 | 1230 |
|
1226 | 1231 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1227 | 1232 |
: Parent(adaptor) {} |
1228 | 1233 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1229 | 1234 |
: Parent(adaptor, value) {} |
1230 | 1235 |
|
1231 | 1236 |
private: |
1232 | 1237 |
NodeMap& operator=(const NodeMap& cmap) { |
1233 | 1238 |
return operator=<NodeMap>(cmap); |
1234 | 1239 |
} |
1235 | 1240 |
|
1236 | 1241 |
template <typename CMap> |
1237 | 1242 |
NodeMap& operator=(const CMap& cmap) { |
1238 | 1243 |
Parent::operator=(cmap); |
1239 | 1244 |
return *this; |
1240 | 1245 |
} |
1241 | 1246 |
}; |
1242 | 1247 |
|
1243 | 1248 |
template <typename V> |
1244 | 1249 |
class ArcMap |
1245 | 1250 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1246 | 1251 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1247 | 1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1248 | 1253 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1249 | 1254 |
|
1250 | 1255 |
public: |
1251 | 1256 |
typedef V Value; |
1252 | 1257 |
|
1253 | 1258 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1254 | 1259 |
: Parent(adaptor) {} |
1255 | 1260 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1256 | 1261 |
: Parent(adaptor, value) {} |
1257 | 1262 |
|
1258 | 1263 |
private: |
1259 | 1264 |
ArcMap& operator=(const ArcMap& cmap) { |
1260 | 1265 |
return operator=<ArcMap>(cmap); |
1261 | 1266 |
} |
1262 | 1267 |
|
1263 | 1268 |
template <typename CMap> |
1264 | 1269 |
ArcMap& operator=(const CMap& cmap) { |
1265 | 1270 |
Parent::operator=(cmap); |
1266 | 1271 |
return *this; |
1267 | 1272 |
} |
1268 | 1273 |
}; |
1269 | 1274 |
|
1270 | 1275 |
template <typename V> |
1271 | 1276 |
class EdgeMap |
1272 | 1277 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1273 | 1278 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1274 | 1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1275 | 1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
1276 | 1281 |
|
1277 | 1282 |
public: |
1278 | 1283 |
typedef V Value; |
1279 | 1284 |
|
1280 | 1285 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1281 | 1286 |
: Parent(adaptor) {} |
1282 | 1287 |
|
1283 | 1288 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1284 | 1289 |
: Parent(adaptor, value) {} |
1285 | 1290 |
|
1286 | 1291 |
private: |
1287 | 1292 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1288 | 1293 |
return operator=<EdgeMap>(cmap); |
1289 | 1294 |
} |
1290 | 1295 |
|
1291 | 1296 |
template <typename CMap> |
1292 | 1297 |
EdgeMap& operator=(const CMap& cmap) { |
1293 | 1298 |
Parent::operator=(cmap); |
1294 | 1299 |
return *this; |
1295 | 1300 |
} |
1296 | 1301 |
}; |
1297 | 1302 |
|
1298 | 1303 |
}; |
1299 | 1304 |
|
1300 | 1305 |
/// \ingroup graph_adaptors |
1301 | 1306 |
/// |
1302 | 1307 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
1303 | 1308 |
/// graph. |
1304 | 1309 |
/// |
1305 | 1310 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
1306 | 1311 |
/// A \c bool node map and a \c bool edge map must be specified, which |
1307 | 1312 |
/// define the filters for nodes and edges. |
1308 | 1313 |
/// Only the nodes and edges with \c true filter value are |
1309 | 1314 |
/// shown in the subgraph. The edges that are incident to hidden |
1310 | 1315 |
/// nodes are also filtered out. |
1311 | 1316 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
1312 | 1317 |
/// |
1313 | 1318 |
/// The adapted graph can also be modified through this adaptor |
1314 | 1319 |
/// by adding or removing nodes or edges, unless the \c GR template |
1315 | 1320 |
/// parameter is set to be \c const. |
1316 | 1321 |
/// |
1322 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
1323 |
/// |
|
1317 | 1324 |
/// \tparam GR The type of the adapted graph. |
1318 | 1325 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1319 | 1326 |
/// It can also be specified to be \c const. |
1320 | 1327 |
/// \tparam NF The type of the node filter map. |
1321 | 1328 |
/// It must be a \c bool (or convertible) node map of the |
1322 | 1329 |
/// adapted graph. The default type is |
1323 | 1330 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1324 | 1331 |
/// \tparam EF The type of the edge filter map. |
1325 | 1332 |
/// It must be a \c bool (or convertible) edge map of the |
1326 | 1333 |
/// adapted graph. The default type is |
1327 | 1334 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1328 | 1335 |
/// |
1329 | 1336 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1330 | 1337 |
/// adapted graph are convertible to each other. |
1331 | 1338 |
/// |
1332 | 1339 |
/// \see FilterNodes |
1333 | 1340 |
/// \see FilterEdges |
1334 | 1341 |
#ifdef DOXYGEN |
1335 | 1342 |
template<typename GR, typename NF, typename EF> |
1336 | 1343 |
class SubGraph { |
1337 | 1344 |
#else |
1338 | 1345 |
template<typename GR, |
1339 | 1346 |
typename NF = typename GR::template NodeMap<bool>, |
1340 | 1347 |
typename EF = typename GR::template EdgeMap<bool> > |
1341 | 1348 |
class SubGraph : |
1342 | 1349 |
public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > { |
1343 | 1350 |
#endif |
1344 | 1351 |
public: |
1345 | 1352 |
/// The type of the adapted graph. |
1346 | 1353 |
typedef GR Graph; |
1347 | 1354 |
/// The type of the node filter map. |
1348 | 1355 |
typedef NF NodeFilterMap; |
1349 | 1356 |
/// The type of the edge filter map. |
1350 | 1357 |
typedef EF EdgeFilterMap; |
1351 | 1358 |
|
1352 | 1359 |
typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > |
1353 | 1360 |
Parent; |
1354 | 1361 |
|
1355 | 1362 |
typedef typename Parent::Node Node; |
1356 | 1363 |
typedef typename Parent::Edge Edge; |
1357 | 1364 |
|
1358 | 1365 |
protected: |
1359 | 1366 |
SubGraph() { } |
1360 | 1367 |
public: |
1361 | 1368 |
|
1362 | 1369 |
/// \brief Constructor |
1363 | 1370 |
/// |
1364 | 1371 |
/// Creates a subgraph for the given graph with the given node |
1365 | 1372 |
/// and edge filter maps. |
1366 | 1373 |
SubGraph(GR& graph, NF& node_filter, EF& edge_filter) { |
1367 | 1374 |
initialize(graph, node_filter, edge_filter); |
1368 | 1375 |
} |
1369 | 1376 |
|
1370 | 1377 |
/// \brief Sets the status of the given node |
1371 | 1378 |
/// |
1372 | 1379 |
/// This function sets the status of the given node. |
1373 | 1380 |
/// It is done by simply setting the assigned value of \c n |
1374 | 1381 |
/// to \c v in the node filter map. |
1375 | 1382 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1376 | 1383 |
|
1377 | 1384 |
/// \brief Sets the status of the given edge |
1378 | 1385 |
/// |
1379 | 1386 |
/// This function sets the status of the given edge. |
1380 | 1387 |
/// It is done by simply setting the assigned value of \c e |
1381 | 1388 |
/// to \c v in the edge filter map. |
1382 | 1389 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1383 | 1390 |
|
1384 | 1391 |
/// \brief Returns the status of the given node |
1385 | 1392 |
/// |
1386 | 1393 |
/// This function returns the status of the given node. |
1387 | 1394 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1388 | 1395 |
bool status(const Node& n) const { return Parent::status(n); } |
1389 | 1396 |
|
1390 | 1397 |
/// \brief Returns the status of the given edge |
1391 | 1398 |
/// |
1392 | 1399 |
/// This function returns the status of the given edge. |
1393 | 1400 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1394 | 1401 |
bool status(const Edge& e) const { return Parent::status(e); } |
1395 | 1402 |
|
1396 | 1403 |
/// \brief Disables the given node |
1397 | 1404 |
/// |
1398 | 1405 |
/// This function disables the given node in the subdigraph, |
1399 | 1406 |
/// so the iteration jumps over it. |
1400 | 1407 |
/// It is the same as \ref status() "status(n, false)". |
1401 | 1408 |
void disable(const Node& n) const { Parent::status(n, false); } |
1402 | 1409 |
|
1403 | 1410 |
/// \brief Disables the given edge |
1404 | 1411 |
/// |
1405 | 1412 |
/// This function disables the given edge in the subgraph, |
1406 | 1413 |
/// so the iteration jumps over it. |
1407 | 1414 |
/// It is the same as \ref status() "status(e, false)". |
1408 | 1415 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1409 | 1416 |
|
1410 | 1417 |
/// \brief Enables the given node |
1411 | 1418 |
/// |
1412 | 1419 |
/// This function enables the given node in the subdigraph. |
1413 | 1420 |
/// It is the same as \ref status() "status(n, true)". |
1414 | 1421 |
void enable(const Node& n) const { Parent::status(n, true); } |
1415 | 1422 |
|
1416 | 1423 |
/// \brief Enables the given edge |
1417 | 1424 |
/// |
1418 | 1425 |
/// This function enables the given edge in the subgraph. |
1419 | 1426 |
/// It is the same as \ref status() "status(e, true)". |
1420 | 1427 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1421 | 1428 |
|
1422 | 1429 |
}; |
1423 | 1430 |
|
1424 | 1431 |
/// \brief Returns a read-only SubGraph adaptor |
1425 | 1432 |
/// |
1426 | 1433 |
/// This function just returns a read-only \ref SubGraph adaptor. |
1427 | 1434 |
/// \ingroup graph_adaptors |
1428 | 1435 |
/// \relates SubGraph |
1429 | 1436 |
template<typename GR, typename NF, typename EF> |
1430 | 1437 |
SubGraph<const GR, NF, EF> |
1431 | 1438 |
subGraph(const GR& graph, NF& node_filter, EF& edge_filter) { |
1432 | 1439 |
return SubGraph<const GR, NF, EF> |
1433 | 1440 |
(graph, node_filter, edge_filter); |
1434 | 1441 |
} |
1435 | 1442 |
|
1436 | 1443 |
template<typename GR, typename NF, typename EF> |
1437 | 1444 |
SubGraph<const GR, const NF, EF> |
1438 | 1445 |
subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) { |
1439 | 1446 |
return SubGraph<const GR, const NF, EF> |
1440 | 1447 |
(graph, node_filter, edge_filter); |
1441 | 1448 |
} |
1442 | 1449 |
|
1443 | 1450 |
template<typename GR, typename NF, typename EF> |
1444 | 1451 |
SubGraph<const GR, NF, const EF> |
1445 | 1452 |
subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) { |
1446 | 1453 |
return SubGraph<const GR, NF, const EF> |
1447 | 1454 |
(graph, node_filter, edge_filter); |
1448 | 1455 |
} |
1449 | 1456 |
|
1450 | 1457 |
template<typename GR, typename NF, typename EF> |
1451 | 1458 |
SubGraph<const GR, const NF, const EF> |
1452 | 1459 |
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) { |
1453 | 1460 |
return SubGraph<const GR, const NF, const EF> |
1454 | 1461 |
(graph, node_filter, edge_filter); |
1455 | 1462 |
} |
1456 | 1463 |
|
1457 | 1464 |
|
1458 | 1465 |
/// \ingroup graph_adaptors |
1459 | 1466 |
/// |
1460 | 1467 |
/// \brief Adaptor class for hiding nodes in a digraph or a graph. |
1461 | 1468 |
/// |
1462 | 1469 |
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a |
1463 | 1470 |
/// graph. A \c bool node map must be specified, which defines the filter |
1464 | 1471 |
/// for the nodes. Only the nodes with \c true filter value and the |
1465 | 1472 |
/// arcs/edges incident to nodes both with \c true filter value are shown |
1466 | 1473 |
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph |
1467 | 1474 |
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept |
1468 | 1475 |
/// depending on the \c GR template parameter. |
1469 | 1476 |
/// |
1470 | 1477 |
/// The adapted (di)graph can also be modified through this adaptor |
1471 | 1478 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
1472 | 1479 |
/// parameter is set to be \c const. |
1473 | 1480 |
/// |
1481 |
/// This class provides only linear time item counting. |
|
1482 |
/// |
|
1474 | 1483 |
/// \tparam GR The type of the adapted digraph or graph. |
1475 | 1484 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
1476 | 1485 |
/// or the \ref concepts::Graph "Graph" concept. |
1477 | 1486 |
/// It can also be specified to be \c const. |
1478 | 1487 |
/// \tparam NF The type of the node filter map. |
1479 | 1488 |
/// It must be a \c bool (or convertible) node map of the |
1480 | 1489 |
/// adapted (di)graph. The default type is |
1481 | 1490 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1482 | 1491 |
/// |
1483 | 1492 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
1484 | 1493 |
/// adapted (di)graph are convertible to each other. |
1485 | 1494 |
#ifdef DOXYGEN |
1486 | 1495 |
template<typename GR, typename NF> |
1487 | 1496 |
class FilterNodes { |
1488 | 1497 |
#else |
1489 | 1498 |
template<typename GR, |
1490 | 1499 |
typename NF = typename GR::template NodeMap<bool>, |
1491 | 1500 |
typename Enable = void> |
1492 | 1501 |
class FilterNodes : |
1493 | 1502 |
public DigraphAdaptorExtender< |
1494 | 1503 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1495 | 1504 |
true> > { |
1496 | 1505 |
#endif |
1497 | 1506 |
typedef DigraphAdaptorExtender< |
1498 | 1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1499 | 1508 |
true> > Parent; |
1500 | 1509 |
|
1501 | 1510 |
public: |
1502 | 1511 |
|
1503 | 1512 |
typedef GR Digraph; |
1504 | 1513 |
typedef NF NodeFilterMap; |
1505 | 1514 |
|
1506 | 1515 |
typedef typename Parent::Node Node; |
1507 | 1516 |
|
1508 | 1517 |
protected: |
1509 | 1518 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
1510 | 1519 |
|
1511 | 1520 |
FilterNodes() : const_true_map() {} |
1512 | 1521 |
|
1513 | 1522 |
public: |
1514 | 1523 |
|
1515 | 1524 |
/// \brief Constructor |
1516 | 1525 |
/// |
1517 | 1526 |
/// Creates a subgraph for the given digraph or graph with the |
1518 | 1527 |
/// given node filter map. |
1519 | 1528 |
FilterNodes(GR& graph, NF& node_filter) |
1520 | 1529 |
: Parent(), const_true_map() |
1521 | 1530 |
{ |
1522 | 1531 |
Parent::initialize(graph, node_filter, const_true_map); |
1523 | 1532 |
} |
1524 | 1533 |
|
1525 | 1534 |
/// \brief Sets the status of the given node |
1526 | 1535 |
/// |
1527 | 1536 |
/// This function sets the status of the given node. |
1528 | 1537 |
/// It is done by simply setting the assigned value of \c n |
1529 | 1538 |
/// to \c v in the node filter map. |
1530 | 1539 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1531 | 1540 |
|
1532 | 1541 |
/// \brief Returns the status of the given node |
1533 | 1542 |
/// |
1534 | 1543 |
/// This function returns the status of the given node. |
1535 | 1544 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1536 | 1545 |
bool status(const Node& n) const { return Parent::status(n); } |
1537 | 1546 |
|
1538 | 1547 |
/// \brief Disables the given node |
1539 | 1548 |
/// |
1540 | 1549 |
/// This function disables the given node, so the iteration |
1541 | 1550 |
/// jumps over it. |
1542 | 1551 |
/// It is the same as \ref status() "status(n, false)". |
1543 | 1552 |
void disable(const Node& n) const { Parent::status(n, false); } |
1544 | 1553 |
|
1545 | 1554 |
/// \brief Enables the given node |
1546 | 1555 |
/// |
1547 | 1556 |
/// This function enables the given node. |
1548 | 1557 |
/// It is the same as \ref status() "status(n, true)". |
1549 | 1558 |
void enable(const Node& n) const { Parent::status(n, true); } |
1550 | 1559 |
|
1551 | 1560 |
}; |
1552 | 1561 |
|
1553 | 1562 |
template<typename GR, typename NF> |
1554 | 1563 |
class FilterNodes<GR, NF, |
1555 | 1564 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
1556 | 1565 |
public GraphAdaptorExtender< |
1557 | 1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
1558 | 1567 |
true> > { |
1559 | 1568 |
|
1560 | 1569 |
typedef GraphAdaptorExtender< |
1561 | 1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
1562 | 1571 |
true> > Parent; |
1563 | 1572 |
|
1564 | 1573 |
public: |
1565 | 1574 |
|
1566 | 1575 |
typedef GR Graph; |
1567 | 1576 |
typedef NF NodeFilterMap; |
1568 | 1577 |
|
1569 | 1578 |
typedef typename Parent::Node Node; |
1570 | 1579 |
|
1571 | 1580 |
protected: |
1572 | 1581 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
1573 | 1582 |
|
1574 | 1583 |
FilterNodes() : const_true_map() {} |
1575 | 1584 |
|
1576 | 1585 |
public: |
1577 | 1586 |
|
1578 | 1587 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
1579 | 1588 |
Parent(), const_true_map() { |
1580 | 1589 |
Parent::initialize(graph, node_filter, const_true_map); |
1581 | 1590 |
} |
1582 | 1591 |
|
1583 | 1592 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1584 | 1593 |
bool status(const Node& n) const { return Parent::status(n); } |
1585 | 1594 |
void disable(const Node& n) const { Parent::status(n, false); } |
1586 | 1595 |
void enable(const Node& n) const { Parent::status(n, true); } |
1587 | 1596 |
|
1588 | 1597 |
}; |
1589 | 1598 |
|
1590 | 1599 |
|
1591 | 1600 |
/// \brief Returns a read-only FilterNodes adaptor |
1592 | 1601 |
/// |
1593 | 1602 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
1594 | 1603 |
/// \ingroup graph_adaptors |
1595 | 1604 |
/// \relates FilterNodes |
1596 | 1605 |
template<typename GR, typename NF> |
1597 | 1606 |
FilterNodes<const GR, NF> |
1598 | 1607 |
filterNodes(const GR& graph, NF& node_filter) { |
1599 | 1608 |
return FilterNodes<const GR, NF>(graph, node_filter); |
1600 | 1609 |
} |
1601 | 1610 |
|
1602 | 1611 |
template<typename GR, typename NF> |
1603 | 1612 |
FilterNodes<const GR, const NF> |
1604 | 1613 |
filterNodes(const GR& graph, const NF& node_filter) { |
1605 | 1614 |
return FilterNodes<const GR, const NF>(graph, node_filter); |
1606 | 1615 |
} |
1607 | 1616 |
|
1608 | 1617 |
/// \ingroup graph_adaptors |
1609 | 1618 |
/// |
1610 | 1619 |
/// \brief Adaptor class for hiding arcs in a digraph. |
1611 | 1620 |
/// |
1612 | 1621 |
/// FilterArcs adaptor can be used for hiding arcs in a digraph. |
1613 | 1622 |
/// A \c bool arc map must be specified, which defines the filter for |
1614 | 1623 |
/// the arcs. Only the arcs with \c true filter value are shown in the |
1615 | 1624 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
1616 | 1625 |
/// "Digraph" concept. |
1617 | 1626 |
/// |
1618 | 1627 |
/// The adapted digraph can also be modified through this adaptor |
1619 | 1628 |
/// by adding or removing nodes or arcs, unless the \c GR template |
1620 | 1629 |
/// parameter is set to be \c const. |
1621 | 1630 |
/// |
1631 |
/// This class provides only linear time counting for nodes and arcs. |
|
1632 |
/// |
|
1622 | 1633 |
/// \tparam DGR The type of the adapted digraph. |
1623 | 1634 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
1624 | 1635 |
/// It can also be specified to be \c const. |
1625 | 1636 |
/// \tparam AF The type of the arc filter map. |
1626 | 1637 |
/// It must be a \c bool (or convertible) arc map of the |
1627 | 1638 |
/// adapted digraph. The default type is |
1628 | 1639 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
1629 | 1640 |
/// |
1630 | 1641 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
1631 | 1642 |
/// digraph are convertible to each other. |
1632 | 1643 |
#ifdef DOXYGEN |
1633 | 1644 |
template<typename DGR, |
1634 | 1645 |
typename AF> |
1635 | 1646 |
class FilterArcs { |
1636 | 1647 |
#else |
1637 | 1648 |
template<typename DGR, |
1638 | 1649 |
typename AF = typename DGR::template ArcMap<bool> > |
1639 | 1650 |
class FilterArcs : |
1640 | 1651 |
public DigraphAdaptorExtender< |
1641 | 1652 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1642 | 1653 |
AF, false> > { |
1643 | 1654 |
#endif |
1644 | 1655 |
typedef DigraphAdaptorExtender< |
1645 | 1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1646 | 1657 |
AF, false> > Parent; |
1647 | 1658 |
|
1648 | 1659 |
public: |
1649 | 1660 |
|
1650 | 1661 |
/// The type of the adapted digraph. |
1651 | 1662 |
typedef DGR Digraph; |
1652 | 1663 |
/// The type of the arc filter map. |
1653 | 1664 |
typedef AF ArcFilterMap; |
1654 | 1665 |
|
1655 | 1666 |
typedef typename Parent::Arc Arc; |
1656 | 1667 |
|
1657 | 1668 |
protected: |
1658 | 1669 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
1659 | 1670 |
|
1660 | 1671 |
FilterArcs() : const_true_map() {} |
1661 | 1672 |
|
1662 | 1673 |
public: |
1663 | 1674 |
|
1664 | 1675 |
/// \brief Constructor |
1665 | 1676 |
/// |
1666 | 1677 |
/// Creates a subdigraph for the given digraph with the given arc |
1667 | 1678 |
/// filter map. |
1668 | 1679 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
1669 | 1680 |
: Parent(), const_true_map() { |
1670 | 1681 |
Parent::initialize(digraph, const_true_map, arc_filter); |
1671 | 1682 |
} |
1672 | 1683 |
|
1673 | 1684 |
/// \brief Sets the status of the given arc |
1674 | 1685 |
/// |
1675 | 1686 |
/// This function sets the status of the given arc. |
1676 | 1687 |
/// It is done by simply setting the assigned value of \c a |
1677 | 1688 |
/// to \c v in the arc filter map. |
1678 | 1689 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
1679 | 1690 |
|
1680 | 1691 |
/// \brief Returns the status of the given arc |
1681 | 1692 |
/// |
1682 | 1693 |
/// This function returns the status of the given arc. |
1683 | 1694 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
1684 | 1695 |
bool status(const Arc& a) const { return Parent::status(a); } |
1685 | 1696 |
|
1686 | 1697 |
/// \brief Disables the given arc |
1687 | 1698 |
/// |
1688 | 1699 |
/// This function disables the given arc in the subdigraph, |
1689 | 1700 |
/// so the iteration jumps over it. |
1690 | 1701 |
/// It is the same as \ref status() "status(a, false)". |
1691 | 1702 |
void disable(const Arc& a) const { Parent::status(a, false); } |
1692 | 1703 |
|
1693 | 1704 |
/// \brief Enables the given arc |
1694 | 1705 |
/// |
1695 | 1706 |
/// This function enables the given arc in the subdigraph. |
1696 | 1707 |
/// It is the same as \ref status() "status(a, true)". |
1697 | 1708 |
void enable(const Arc& a) const { Parent::status(a, true); } |
1698 | 1709 |
|
1699 | 1710 |
}; |
1700 | 1711 |
|
1701 | 1712 |
/// \brief Returns a read-only FilterArcs adaptor |
1702 | 1713 |
/// |
1703 | 1714 |
/// This function just returns a read-only \ref FilterArcs adaptor. |
1704 | 1715 |
/// \ingroup graph_adaptors |
1705 | 1716 |
/// \relates FilterArcs |
1706 | 1717 |
template<typename DGR, typename AF> |
1707 | 1718 |
FilterArcs<const DGR, AF> |
1708 | 1719 |
filterArcs(const DGR& digraph, AF& arc_filter) { |
1709 | 1720 |
return FilterArcs<const DGR, AF>(digraph, arc_filter); |
1710 | 1721 |
} |
1711 | 1722 |
|
1712 | 1723 |
template<typename DGR, typename AF> |
1713 | 1724 |
FilterArcs<const DGR, const AF> |
1714 | 1725 |
filterArcs(const DGR& digraph, const AF& arc_filter) { |
1715 | 1726 |
return FilterArcs<const DGR, const AF>(digraph, arc_filter); |
1716 | 1727 |
} |
1717 | 1728 |
|
1718 | 1729 |
/// \ingroup graph_adaptors |
1719 | 1730 |
/// |
1720 | 1731 |
/// \brief Adaptor class for hiding edges in a graph. |
1721 | 1732 |
/// |
1722 | 1733 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
1723 | 1734 |
/// A \c bool edge map must be specified, which defines the filter for |
1724 | 1735 |
/// the edges. Only the edges with \c true filter value are shown in the |
1725 | 1736 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
1726 | 1737 |
/// "Graph" concept. |
1727 | 1738 |
/// |
1728 | 1739 |
/// The adapted graph can also be modified through this adaptor |
1729 | 1740 |
/// by adding or removing nodes or edges, unless the \c GR template |
1730 | 1741 |
/// parameter is set to be \c const. |
1731 | 1742 |
/// |
1743 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
1744 |
/// |
|
1732 | 1745 |
/// \tparam GR The type of the adapted graph. |
1733 | 1746 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1734 | 1747 |
/// It can also be specified to be \c const. |
1735 | 1748 |
/// \tparam EF The type of the edge filter map. |
1736 | 1749 |
/// It must be a \c bool (or convertible) edge map of the |
1737 | 1750 |
/// adapted graph. The default type is |
1738 | 1751 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1739 | 1752 |
/// |
1740 | 1753 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1741 | 1754 |
/// adapted graph are convertible to each other. |
1742 | 1755 |
#ifdef DOXYGEN |
1743 | 1756 |
template<typename GR, |
1744 | 1757 |
typename EF> |
1745 | 1758 |
class FilterEdges { |
1746 | 1759 |
#else |
1747 | 1760 |
template<typename GR, |
1748 | 1761 |
typename EF = typename GR::template EdgeMap<bool> > |
1749 | 1762 |
class FilterEdges : |
1750 | 1763 |
public GraphAdaptorExtender< |
1751 | 1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
1752 | 1765 |
EF, false> > { |
1753 | 1766 |
#endif |
1754 | 1767 |
typedef GraphAdaptorExtender< |
1755 | 1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
1756 | 1769 |
EF, false> > Parent; |
1757 | 1770 |
|
1758 | 1771 |
public: |
1759 | 1772 |
|
1760 | 1773 |
/// The type of the adapted graph. |
1761 | 1774 |
typedef GR Graph; |
1762 | 1775 |
/// The type of the edge filter map. |
1763 | 1776 |
typedef EF EdgeFilterMap; |
1764 | 1777 |
|
1765 | 1778 |
typedef typename Parent::Edge Edge; |
1766 | 1779 |
|
1767 | 1780 |
protected: |
1768 | 1781 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
1769 | 1782 |
|
1770 | 1783 |
FilterEdges() : const_true_map(true) { |
1771 | 1784 |
Parent::setNodeFilterMap(const_true_map); |
1772 | 1785 |
} |
1773 | 1786 |
|
1774 | 1787 |
public: |
1775 | 1788 |
|
1776 | 1789 |
/// \brief Constructor |
1777 | 1790 |
/// |
1778 | 1791 |
/// Creates a subgraph for the given graph with the given edge |
1779 | 1792 |
/// filter map. |
1780 | 1793 |
FilterEdges(GR& graph, EF& edge_filter) |
1781 | 1794 |
: Parent(), const_true_map() { |
1782 | 1795 |
Parent::initialize(graph, const_true_map, edge_filter); |
1783 | 1796 |
} |
1784 | 1797 |
|
1785 | 1798 |
/// \brief Sets the status of the given edge |
1786 | 1799 |
/// |
1787 | 1800 |
/// This function sets the status of the given edge. |
1788 | 1801 |
/// It is done by simply setting the assigned value of \c e |
1789 | 1802 |
/// to \c v in the edge filter map. |
1790 | 1803 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1791 | 1804 |
|
1792 | 1805 |
/// \brief Returns the status of the given edge |
1793 | 1806 |
/// |
1794 | 1807 |
/// This function returns the status of the given edge. |
1795 | 1808 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1796 | 1809 |
bool status(const Edge& e) const { return Parent::status(e); } |
1797 | 1810 |
|
1798 | 1811 |
/// \brief Disables the given edge |
1799 | 1812 |
/// |
1800 | 1813 |
/// This function disables the given edge in the subgraph, |
1801 | 1814 |
/// so the iteration jumps over it. |
1802 | 1815 |
/// It is the same as \ref status() "status(e, false)". |
1803 | 1816 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1804 | 1817 |
|
1805 | 1818 |
/// \brief Enables the given edge |
1806 | 1819 |
/// |
1807 | 1820 |
/// This function enables the given edge in the subgraph. |
1808 | 1821 |
/// It is the same as \ref status() "status(e, true)". |
1809 | 1822 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1810 | 1823 |
|
1811 | 1824 |
}; |
1812 | 1825 |
|
1813 | 1826 |
/// \brief Returns a read-only FilterEdges adaptor |
1814 | 1827 |
/// |
1815 | 1828 |
/// This function just returns a read-only \ref FilterEdges adaptor. |
1816 | 1829 |
/// \ingroup graph_adaptors |
1817 | 1830 |
/// \relates FilterEdges |
1818 | 1831 |
template<typename GR, typename EF> |
1819 | 1832 |
FilterEdges<const GR, EF> |
1820 | 1833 |
filterEdges(const GR& graph, EF& edge_filter) { |
1821 | 1834 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
1822 | 1835 |
} |
1823 | 1836 |
|
1824 | 1837 |
template<typename GR, typename EF> |
1825 | 1838 |
FilterEdges<const GR, const EF> |
1826 | 1839 |
filterEdges(const GR& graph, const EF& edge_filter) { |
1827 | 1840 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
1828 | 1841 |
} |
1829 | 1842 |
|
1830 | 1843 |
|
1831 | 1844 |
template <typename DGR> |
1832 | 1845 |
class UndirectorBase { |
1833 | 1846 |
public: |
1834 | 1847 |
typedef DGR Digraph; |
1835 | 1848 |
typedef UndirectorBase Adaptor; |
1836 | 1849 |
|
1837 | 1850 |
typedef True UndirectedTag; |
1838 | 1851 |
|
1839 | 1852 |
typedef typename Digraph::Arc Edge; |
1840 | 1853 |
typedef typename Digraph::Node Node; |
1841 | 1854 |
|
1842 | 1855 |
class Arc { |
1843 | 1856 |
friend class UndirectorBase; |
1844 | 1857 |
protected: |
1845 | 1858 |
Edge _edge; |
1846 | 1859 |
bool _forward; |
1847 | 1860 |
|
1848 | 1861 |
Arc(const Edge& edge, bool forward) |
1849 | 1862 |
: _edge(edge), _forward(forward) {} |
1850 | 1863 |
|
1851 | 1864 |
public: |
1852 | 1865 |
Arc() {} |
1853 | 1866 |
|
1854 | 1867 |
Arc(Invalid) : _edge(INVALID), _forward(true) {} |
1855 | 1868 |
|
1856 | 1869 |
operator const Edge&() const { return _edge; } |
1857 | 1870 |
|
1858 | 1871 |
bool operator==(const Arc &other) const { |
1859 | 1872 |
return _forward == other._forward && _edge == other._edge; |
1860 | 1873 |
} |
1861 | 1874 |
bool operator!=(const Arc &other) const { |
1862 | 1875 |
return _forward != other._forward || _edge != other._edge; |
1863 | 1876 |
} |
1864 | 1877 |
bool operator<(const Arc &other) const { |
1865 | 1878 |
return _forward < other._forward || |
1866 | 1879 |
(_forward == other._forward && _edge < other._edge); |
1867 | 1880 |
} |
1868 | 1881 |
}; |
1869 | 1882 |
|
1870 | 1883 |
void first(Node& n) const { |
1871 | 1884 |
_digraph->first(n); |
1872 | 1885 |
} |
1873 | 1886 |
|
1874 | 1887 |
void next(Node& n) const { |
1875 | 1888 |
_digraph->next(n); |
1876 | 1889 |
} |
1877 | 1890 |
|
1878 | 1891 |
void first(Arc& a) const { |
1879 | 1892 |
_digraph->first(a._edge); |
1880 | 1893 |
a._forward = true; |
1881 | 1894 |
} |
1882 | 1895 |
|
1883 | 1896 |
void next(Arc& a) const { |
1884 | 1897 |
if (a._forward) { |
1885 | 1898 |
a._forward = false; |
1886 | 1899 |
} else { |
1887 | 1900 |
_digraph->next(a._edge); |
1888 | 1901 |
a._forward = true; |
1889 | 1902 |
} |
1890 | 1903 |
} |
1891 | 1904 |
|
1892 | 1905 |
void first(Edge& e) const { |
1893 | 1906 |
_digraph->first(e); |
1894 | 1907 |
} |
1895 | 1908 |
|
1896 | 1909 |
void next(Edge& e) const { |
1897 | 1910 |
_digraph->next(e); |
1898 | 1911 |
} |
1899 | 1912 |
|
1900 | 1913 |
void firstOut(Arc& a, const Node& n) const { |
1901 | 1914 |
_digraph->firstIn(a._edge, n); |
1902 | 1915 |
if (a._edge != INVALID ) { |
1903 | 1916 |
a._forward = false; |
1904 | 1917 |
} else { |
1905 | 1918 |
_digraph->firstOut(a._edge, n); |
1906 | 1919 |
a._forward = true; |
1907 | 1920 |
} |
1908 | 1921 |
} |
1909 | 1922 |
void nextOut(Arc &a) const { |
1910 | 1923 |
if (!a._forward) { |
1911 | 1924 |
Node n = _digraph->target(a._edge); |
1912 | 1925 |
_digraph->nextIn(a._edge); |
1913 | 1926 |
if (a._edge == INVALID) { |
1914 | 1927 |
_digraph->firstOut(a._edge, n); |
1915 | 1928 |
a._forward = true; |
1916 | 1929 |
} |
1917 | 1930 |
} |
1918 | 1931 |
else { |
1919 | 1932 |
_digraph->nextOut(a._edge); |
1920 | 1933 |
} |
1921 | 1934 |
} |
1922 | 1935 |
|
1923 | 1936 |
void firstIn(Arc &a, const Node &n) const { |
1924 | 1937 |
_digraph->firstOut(a._edge, n); |
1925 | 1938 |
if (a._edge != INVALID ) { |
1926 | 1939 |
a._forward = false; |
1927 | 1940 |
} else { |
1928 | 1941 |
_digraph->firstIn(a._edge, n); |
1929 | 1942 |
a._forward = true; |
1930 | 1943 |
} |
1931 | 1944 |
} |
1932 | 1945 |
void nextIn(Arc &a) const { |
1933 | 1946 |
if (!a._forward) { |
1934 | 1947 |
Node n = _digraph->source(a._edge); |
1935 | 1948 |
_digraph->nextOut(a._edge); |
1936 | 1949 |
if (a._edge == INVALID ) { |
1937 | 1950 |
_digraph->firstIn(a._edge, n); |
1938 | 1951 |
a._forward = true; |
1939 | 1952 |
} |
1940 | 1953 |
} |
1941 | 1954 |
else { |
1942 | 1955 |
_digraph->nextIn(a._edge); |
1943 | 1956 |
} |
1944 | 1957 |
} |
1945 | 1958 |
|
1946 | 1959 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
1947 | 1960 |
d = true; |
1948 | 1961 |
_digraph->firstOut(e, n); |
1949 | 1962 |
if (e != INVALID) return; |
1950 | 1963 |
d = false; |
1951 | 1964 |
_digraph->firstIn(e, n); |
1952 | 1965 |
} |
1953 | 1966 |
|
1954 | 1967 |
void nextInc(Edge &e, bool &d) const { |
1955 | 1968 |
if (d) { |
1956 | 1969 |
Node s = _digraph->source(e); |
1957 | 1970 |
_digraph->nextOut(e); |
1958 | 1971 |
if (e != INVALID) return; |
1959 | 1972 |
d = false; |
1960 | 1973 |
_digraph->firstIn(e, s); |
1961 | 1974 |
} else { |
1962 | 1975 |
_digraph->nextIn(e); |
1963 | 1976 |
} |
1964 | 1977 |
} |
1965 | 1978 |
|
1966 | 1979 |
Node u(const Edge& e) const { |
1967 | 1980 |
return _digraph->source(e); |
1968 | 1981 |
} |
1969 | 1982 |
|
1970 | 1983 |
Node v(const Edge& e) const { |
1971 | 1984 |
return _digraph->target(e); |
1972 | 1985 |
} |
1973 | 1986 |
|
1974 | 1987 |
Node source(const Arc &a) const { |
1975 | 1988 |
return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge); |
1976 | 1989 |
} |
1977 | 1990 |
|
1978 | 1991 |
Node target(const Arc &a) const { |
1979 | 1992 |
return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge); |
1980 | 1993 |
} |
1981 | 1994 |
|
1982 | 1995 |
static Arc direct(const Edge &e, bool d) { |
1983 | 1996 |
return Arc(e, d); |
1984 | 1997 |
} |
1985 | 1998 |
|
1986 | 1999 |
static bool direction(const Arc &a) { return a._forward; } |
1987 | 2000 |
|
1988 | 2001 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
1989 | 2002 |
Arc arcFromId(int ix) const { |
1990 | 2003 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
1991 | 2004 |
} |
1992 | 2005 |
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } |
1993 | 2006 |
|
1994 | 2007 |
int id(const Node &n) const { return _digraph->id(n); } |
1995 | 2008 |
int id(const Arc &a) const { |
1996 | 2009 |
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); |
1997 | 2010 |
} |
1998 | 2011 |
int id(const Edge &e) const { return _digraph->id(e); } |
1999 | 2012 |
|
2000 | 2013 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
2001 | 2014 |
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } |
2002 | 2015 |
int maxEdgeId() const { return _digraph->maxArcId(); } |
2003 | 2016 |
|
2004 | 2017 |
Node addNode() { return _digraph->addNode(); } |
2005 | 2018 |
Edge addEdge(const Node& u, const Node& v) { |
2006 | 2019 |
return _digraph->addArc(u, v); |
2007 | 2020 |
} |
2008 | 2021 |
|
2009 | 2022 |
void erase(const Node& i) { _digraph->erase(i); } |
2010 | 2023 |
void erase(const Edge& i) { _digraph->erase(i); } |
2011 | 2024 |
|
2012 | 2025 |
void clear() { _digraph->clear(); } |
2013 | 2026 |
|
2014 | 2027 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
2015 | 2028 |
int nodeNum() const { return _digraph->nodeNum(); } |
2016 | 2029 |
|
2017 | 2030 |
typedef ArcNumTagIndicator<Digraph> ArcNumTag; |
2018 | 2031 |
int arcNum() const { return 2 * _digraph->arcNum(); } |
2019 | 2032 |
|
2020 | 2033 |
typedef ArcNumTag EdgeNumTag; |
2021 | 2034 |
int edgeNum() const { return _digraph->arcNum(); } |
2022 | 2035 |
|
2023 | 2036 |
typedef FindArcTagIndicator<Digraph> FindArcTag; |
2024 | 2037 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
2025 | 2038 |
if (p == INVALID) { |
2026 | 2039 |
Edge arc = _digraph->findArc(s, t); |
2027 | 2040 |
if (arc != INVALID) return direct(arc, true); |
2028 | 2041 |
arc = _digraph->findArc(t, s); |
2029 | 2042 |
if (arc != INVALID) return direct(arc, false); |
2030 | 2043 |
} else if (direction(p)) { |
2031 | 2044 |
Edge arc = _digraph->findArc(s, t, p); |
2032 | 2045 |
if (arc != INVALID) return direct(arc, true); |
2033 | 2046 |
arc = _digraph->findArc(t, s); |
2034 | 2047 |
if (arc != INVALID) return direct(arc, false); |
2035 | 2048 |
} else { |
2036 | 2049 |
Edge arc = _digraph->findArc(t, s, p); |
2037 | 2050 |
if (arc != INVALID) return direct(arc, false); |
2038 | 2051 |
} |
2039 | 2052 |
return INVALID; |
2040 | 2053 |
} |
2041 | 2054 |
|
2042 | 2055 |
typedef FindArcTag FindEdgeTag; |
2043 | 2056 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
2044 | 2057 |
if (s != t) { |
2045 | 2058 |
if (p == INVALID) { |
2046 | 2059 |
Edge arc = _digraph->findArc(s, t); |
2047 | 2060 |
if (arc != INVALID) return arc; |
2048 | 2061 |
arc = _digraph->findArc(t, s); |
2049 | 2062 |
if (arc != INVALID) return arc; |
2050 | 2063 |
} else if (_digraph->source(p) == s) { |
2051 | 2064 |
Edge arc = _digraph->findArc(s, t, p); |
2052 | 2065 |
if (arc != INVALID) return arc; |
2053 | 2066 |
arc = _digraph->findArc(t, s); |
2054 | 2067 |
if (arc != INVALID) return arc; |
2055 | 2068 |
} else { |
2056 | 2069 |
Edge arc = _digraph->findArc(t, s, p); |
2057 | 2070 |
if (arc != INVALID) return arc; |
2058 | 2071 |
} |
2059 | 2072 |
} else { |
2060 | 2073 |
return _digraph->findArc(s, t, p); |
2061 | 2074 |
} |
2062 | 2075 |
return INVALID; |
2063 | 2076 |
} |
2064 | 2077 |
|
2065 | 2078 |
private: |
2066 | 2079 |
|
2067 | 2080 |
template <typename V> |
2068 | 2081 |
class ArcMapBase { |
2069 | 2082 |
private: |
2070 | 2083 |
|
2071 | 2084 |
typedef typename DGR::template ArcMap<V> MapImpl; |
2072 | 2085 |
|
2073 | 2086 |
public: |
2074 | 2087 |
|
2075 | 2088 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
2076 | 2089 |
|
2077 | 2090 |
typedef V Value; |
2078 | 2091 |
typedef Arc Key; |
2079 | 2092 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
2080 | 2093 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
2081 | 2094 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
2082 | 2095 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
2083 | 2096 |
|
2084 | 2097 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
2085 | 2098 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {} |
2086 | 2099 |
|
2087 | 2100 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
2088 | 2101 |
: _forward(*adaptor._digraph, value), |
2089 | 2102 |
_backward(*adaptor._digraph, value) {} |
2090 | 2103 |
|
2091 | 2104 |
void set(const Arc& a, const V& value) { |
2092 | 2105 |
if (direction(a)) { |
2093 | 2106 |
_forward.set(a, value); |
2094 | 2107 |
} else { |
2095 | 2108 |
_backward.set(a, value); |
2096 | 2109 |
} |
2097 | 2110 |
} |
2098 | 2111 |
|
2099 | 2112 |
ConstReturnValue operator[](const Arc& a) const { |
2100 | 2113 |
if (direction(a)) { |
2101 | 2114 |
return _forward[a]; |
2102 | 2115 |
} else { |
2103 | 2116 |
return _backward[a]; |
2104 | 2117 |
} |
2105 | 2118 |
} |
2106 | 2119 |
|
2107 | 2120 |
ReturnValue operator[](const Arc& a) { |
2108 | 2121 |
if (direction(a)) { |
2109 | 2122 |
return _forward[a]; |
2110 | 2123 |
} else { |
2111 | 2124 |
return _backward[a]; |
2112 | 2125 |
} |
2113 | 2126 |
} |
2114 | 2127 |
|
2115 | 2128 |
protected: |
2116 | 2129 |
|
2117 | 2130 |
MapImpl _forward, _backward; |
2118 | 2131 |
|
2119 | 2132 |
}; |
2120 | 2133 |
|
2121 | 2134 |
public: |
2122 | 2135 |
|
2123 | 2136 |
template <typename V> |
2124 | 2137 |
class NodeMap : public DGR::template NodeMap<V> { |
2125 | 2138 |
typedef typename DGR::template NodeMap<V> Parent; |
2126 | 2139 |
|
2127 | 2140 |
public: |
2128 | 2141 |
typedef V Value; |
2129 | 2142 |
|
2130 | 2143 |
explicit NodeMap(const UndirectorBase<DGR>& adaptor) |
2131 | 2144 |
: Parent(*adaptor._digraph) {} |
2132 | 2145 |
|
2133 | 2146 |
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2134 | 2147 |
: Parent(*adaptor._digraph, value) { } |
2135 | 2148 |
|
2136 | 2149 |
private: |
2137 | 2150 |
NodeMap& operator=(const NodeMap& cmap) { |
2138 | 2151 |
return operator=<NodeMap>(cmap); |
2139 | 2152 |
} |
2140 | 2153 |
|
2141 | 2154 |
template <typename CMap> |
2142 | 2155 |
NodeMap& operator=(const CMap& cmap) { |
2143 | 2156 |
Parent::operator=(cmap); |
2144 | 2157 |
return *this; |
2145 | 2158 |
} |
2146 | 2159 |
|
2147 | 2160 |
}; |
2148 | 2161 |
|
2149 | 2162 |
template <typename V> |
2150 | 2163 |
class ArcMap |
2151 | 2164 |
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > { |
2152 | 2165 |
typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent; |
2153 | 2166 |
|
2154 | 2167 |
public: |
2155 | 2168 |
typedef V Value; |
2156 | 2169 |
|
2157 | 2170 |
explicit ArcMap(const UndirectorBase<DGR>& adaptor) |
2158 | 2171 |
: Parent(adaptor) {} |
2159 | 2172 |
|
2160 | 2173 |
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2161 | 2174 |
: Parent(adaptor, value) {} |
2162 | 2175 |
|
2163 | 2176 |
private: |
2164 | 2177 |
ArcMap& operator=(const ArcMap& cmap) { |
2165 | 2178 |
return operator=<ArcMap>(cmap); |
2166 | 2179 |
} |
2167 | 2180 |
|
2168 | 2181 |
template <typename CMap> |
2169 | 2182 |
ArcMap& operator=(const CMap& cmap) { |
2170 | 2183 |
Parent::operator=(cmap); |
2171 | 2184 |
return *this; |
2172 | 2185 |
} |
2173 | 2186 |
}; |
2174 | 2187 |
|
2175 | 2188 |
template <typename V> |
2176 | 2189 |
class EdgeMap : public Digraph::template ArcMap<V> { |
2177 | 2190 |
typedef typename Digraph::template ArcMap<V> Parent; |
2178 | 2191 |
|
2179 | 2192 |
public: |
2180 | 2193 |
typedef V Value; |
2181 | 2194 |
|
2182 | 2195 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
2183 | 2196 |
: Parent(*adaptor._digraph) {} |
2184 | 2197 |
|
2185 | 2198 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2186 | 2199 |
: Parent(*adaptor._digraph, value) {} |
2187 | 2200 |
|
2188 | 2201 |
private: |
2189 | 2202 |
EdgeMap& operator=(const EdgeMap& cmap) { |
2190 | 2203 |
return operator=<EdgeMap>(cmap); |
2191 | 2204 |
} |
2192 | 2205 |
|
2193 | 2206 |
template <typename CMap> |
2194 | 2207 |
EdgeMap& operator=(const CMap& cmap) { |
2195 | 2208 |
Parent::operator=(cmap); |
2196 | 2209 |
return *this; |
2197 | 2210 |
} |
2198 | 2211 |
|
2199 | 2212 |
}; |
2200 | 2213 |
|
2201 | 2214 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
2202 | 2215 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
2203 | 2216 |
|
2204 | 2217 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
2205 | 2218 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); } |
2206 | 2219 |
|
2207 | 2220 |
typedef EdgeNotifier ArcNotifier; |
2208 | 2221 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); } |
2209 | 2222 |
|
2210 | 2223 |
protected: |
2211 | 2224 |
|
2212 | 2225 |
UndirectorBase() : _digraph(0) {} |
2213 | 2226 |
|
2214 | 2227 |
DGR* _digraph; |
2215 | 2228 |
|
2216 | 2229 |
void initialize(DGR& digraph) { |
2217 | 2230 |
_digraph = &digraph; |
2218 | 2231 |
} |
2219 | 2232 |
|
2220 | 2233 |
}; |
2221 | 2234 |
|
2222 | 2235 |
/// \ingroup graph_adaptors |
2223 | 2236 |
/// |
2224 | 2237 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
2225 | 2238 |
/// |
2226 | 2239 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
2227 | 2240 |
/// graph. All arcs of the underlying digraph are showed in the |
2228 | 2241 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
2229 | 2242 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
2230 | 2243 |
/// |
2231 | 2244 |
/// The adapted digraph can also be modified through this adaptor |
2232 | 2245 |
/// by adding or removing nodes or edges, unless the \c GR template |
2233 | 2246 |
/// parameter is set to be \c const. |
2234 | 2247 |
/// |
2248 |
/// This class provides item counting in the same time as the adapted |
|
2249 |
/// digraph structure. |
|
2250 |
/// |
|
2235 | 2251 |
/// \tparam DGR The type of the adapted digraph. |
2236 | 2252 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2237 | 2253 |
/// It can also be specified to be \c const. |
2238 | 2254 |
/// |
2239 | 2255 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2240 | 2256 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
2241 | 2257 |
/// and the \c Arc type of the adapted digraph are also convertible to |
2242 | 2258 |
/// each other. |
2243 | 2259 |
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type |
2244 | 2260 |
/// of the adapted digraph.) |
2245 | 2261 |
template<typename DGR> |
2246 | 2262 |
#ifdef DOXYGEN |
2247 | 2263 |
class Undirector { |
2248 | 2264 |
#else |
2249 | 2265 |
class Undirector : |
2250 | 2266 |
public GraphAdaptorExtender<UndirectorBase<DGR> > { |
2251 | 2267 |
#endif |
2252 | 2268 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
2253 | 2269 |
public: |
2254 | 2270 |
/// The type of the adapted digraph. |
2255 | 2271 |
typedef DGR Digraph; |
2256 | 2272 |
protected: |
2257 | 2273 |
Undirector() { } |
2258 | 2274 |
public: |
2259 | 2275 |
|
2260 | 2276 |
/// \brief Constructor |
2261 | 2277 |
/// |
2262 | 2278 |
/// Creates an undirected graph from the given digraph. |
2263 | 2279 |
Undirector(DGR& digraph) { |
2264 | 2280 |
initialize(digraph); |
2265 | 2281 |
} |
2266 | 2282 |
|
2267 | 2283 |
/// \brief Arc map combined from two original arc maps |
2268 | 2284 |
/// |
2269 | 2285 |
/// This map adaptor class adapts two arc maps of the underlying |
2270 | 2286 |
/// digraph to get an arc map of the undirected graph. |
2271 | 2287 |
/// Its value type is inherited from the first arc map type (\c FW). |
2272 | 2288 |
/// \tparam FW The type of the "foward" arc map. |
2273 | 2289 |
/// \tparam BK The type of the "backward" arc map. |
2274 | 2290 |
template <typename FW, typename BK> |
2275 | 2291 |
class CombinedArcMap { |
2276 | 2292 |
public: |
2277 | 2293 |
|
2278 | 2294 |
/// The key type of the map |
2279 | 2295 |
typedef typename Parent::Arc Key; |
2280 | 2296 |
/// The value type of the map |
2281 | 2297 |
typedef typename FW::Value Value; |
2282 | 2298 |
|
2283 | 2299 |
typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag; |
2284 | 2300 |
|
2285 | 2301 |
typedef typename MapTraits<FW>::ReturnValue ReturnValue; |
2286 | 2302 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue; |
2287 | 2303 |
typedef typename MapTraits<FW>::ReturnValue Reference; |
2288 | 2304 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReference; |
2289 | 2305 |
|
2290 | 2306 |
/// Constructor |
2291 | 2307 |
CombinedArcMap(FW& forward, BK& backward) |
2292 | 2308 |
: _forward(&forward), _backward(&backward) {} |
2293 | 2309 |
|
2294 | 2310 |
/// Sets the value associated with the given key. |
2295 | 2311 |
void set(const Key& e, const Value& a) { |
2296 | 2312 |
if (Parent::direction(e)) { |
2297 | 2313 |
_forward->set(e, a); |
2298 | 2314 |
} else { |
2299 | 2315 |
_backward->set(e, a); |
2300 | 2316 |
} |
2301 | 2317 |
} |
2302 | 2318 |
|
2303 | 2319 |
/// Returns the value associated with the given key. |
2304 | 2320 |
ConstReturnValue operator[](const Key& e) const { |
2305 | 2321 |
if (Parent::direction(e)) { |
2306 | 2322 |
return (*_forward)[e]; |
2307 | 2323 |
} else { |
2308 | 2324 |
return (*_backward)[e]; |
2309 | 2325 |
} |
2310 | 2326 |
} |
2311 | 2327 |
|
2312 | 2328 |
/// Returns a reference to the value associated with the given key. |
2313 | 2329 |
ReturnValue operator[](const Key& e) { |
2314 | 2330 |
if (Parent::direction(e)) { |
2315 | 2331 |
return (*_forward)[e]; |
2316 | 2332 |
} else { |
2317 | 2333 |
return (*_backward)[e]; |
2318 | 2334 |
} |
2319 | 2335 |
} |
2320 | 2336 |
|
2321 | 2337 |
protected: |
2322 | 2338 |
|
2323 | 2339 |
FW* _forward; |
2324 | 2340 |
BK* _backward; |
2325 | 2341 |
|
2326 | 2342 |
}; |
2327 | 2343 |
|
2328 | 2344 |
/// \brief Returns a combined arc map |
2329 | 2345 |
/// |
2330 | 2346 |
/// This function just returns a combined arc map. |
2331 | 2347 |
template <typename FW, typename BK> |
2332 | 2348 |
static CombinedArcMap<FW, BK> |
2333 | 2349 |
combinedArcMap(FW& forward, BK& backward) { |
2334 | 2350 |
return CombinedArcMap<FW, BK>(forward, backward); |
2335 | 2351 |
} |
2336 | 2352 |
|
2337 | 2353 |
template <typename FW, typename BK> |
2338 | 2354 |
static CombinedArcMap<const FW, BK> |
2339 | 2355 |
combinedArcMap(const FW& forward, BK& backward) { |
2340 | 2356 |
return CombinedArcMap<const FW, BK>(forward, backward); |
2341 | 2357 |
} |
2342 | 2358 |
|
2343 | 2359 |
template <typename FW, typename BK> |
2344 | 2360 |
static CombinedArcMap<FW, const BK> |
2345 | 2361 |
combinedArcMap(FW& forward, const BK& backward) { |
2346 | 2362 |
return CombinedArcMap<FW, const BK>(forward, backward); |
2347 | 2363 |
} |
2348 | 2364 |
|
2349 | 2365 |
template <typename FW, typename BK> |
2350 | 2366 |
static CombinedArcMap<const FW, const BK> |
2351 | 2367 |
combinedArcMap(const FW& forward, const BK& backward) { |
2352 | 2368 |
return CombinedArcMap<const FW, const BK>(forward, backward); |
2353 | 2369 |
} |
2354 | 2370 |
|
2355 | 2371 |
}; |
2356 | 2372 |
|
2357 | 2373 |
/// \brief Returns a read-only Undirector adaptor |
2358 | 2374 |
/// |
2359 | 2375 |
/// This function just returns a read-only \ref Undirector adaptor. |
2360 | 2376 |
/// \ingroup graph_adaptors |
2361 | 2377 |
/// \relates Undirector |
2362 | 2378 |
template<typename DGR> |
2363 | 2379 |
Undirector<const DGR> undirector(const DGR& digraph) { |
2364 | 2380 |
return Undirector<const DGR>(digraph); |
2365 | 2381 |
} |
2366 | 2382 |
|
2367 | 2383 |
|
2368 | 2384 |
template <typename GR, typename DM> |
2369 | 2385 |
class OrienterBase { |
2370 | 2386 |
public: |
2371 | 2387 |
|
2372 | 2388 |
typedef GR Graph; |
2373 | 2389 |
typedef DM DirectionMap; |
2374 | 2390 |
|
2375 | 2391 |
typedef typename GR::Node Node; |
2376 | 2392 |
typedef typename GR::Edge Arc; |
2377 | 2393 |
|
2378 | 2394 |
void reverseArc(const Arc& arc) { |
2379 | 2395 |
_direction->set(arc, !(*_direction)[arc]); |
2380 | 2396 |
} |
2381 | 2397 |
|
2382 | 2398 |
void first(Node& i) const { _graph->first(i); } |
2383 | 2399 |
void first(Arc& i) const { _graph->first(i); } |
2384 | 2400 |
void firstIn(Arc& i, const Node& n) const { |
2385 | 2401 |
bool d = true; |
2386 | 2402 |
_graph->firstInc(i, d, n); |
2387 | 2403 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
2388 | 2404 |
} |
2389 | 2405 |
void firstOut(Arc& i, const Node& n ) const { |
2390 | 2406 |
bool d = true; |
2391 | 2407 |
_graph->firstInc(i, d, n); |
2392 | 2408 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
2393 | 2409 |
} |
2394 | 2410 |
|
2395 | 2411 |
void next(Node& i) const { _graph->next(i); } |
2396 | 2412 |
void next(Arc& i) const { _graph->next(i); } |
2397 | 2413 |
void nextIn(Arc& i) const { |
2398 | 2414 |
bool d = !(*_direction)[i]; |
2399 | 2415 |
_graph->nextInc(i, d); |
2400 | 2416 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
2401 | 2417 |
} |
2402 | 2418 |
void nextOut(Arc& i) const { |
2403 | 2419 |
bool d = (*_direction)[i]; |
2404 | 2420 |
_graph->nextInc(i, d); |
2405 | 2421 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
2406 | 2422 |
} |
2407 | 2423 |
|
2408 | 2424 |
Node source(const Arc& e) const { |
2409 | 2425 |
return (*_direction)[e] ? _graph->u(e) : _graph->v(e); |
2410 | 2426 |
} |
2411 | 2427 |
Node target(const Arc& e) const { |
2412 | 2428 |
return (*_direction)[e] ? _graph->v(e) : _graph->u(e); |
2413 | 2429 |
} |
2414 | 2430 |
|
2415 | 2431 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
2416 | 2432 |
int nodeNum() const { return _graph->nodeNum(); } |
2417 | 2433 |
|
2418 | 2434 |
typedef EdgeNumTagIndicator<Graph> ArcNumTag; |
2419 | 2435 |
int arcNum() const { return _graph->edgeNum(); } |
2420 | 2436 |
|
2421 | 2437 |
typedef FindEdgeTagIndicator<Graph> FindArcTag; |
2422 | 2438 |
Arc findArc(const Node& u, const Node& v, |
2423 | 2439 |
const Arc& prev = INVALID) const { |
2424 | 2440 |
Arc arc = _graph->findEdge(u, v, prev); |
2425 | 2441 |
while (arc != INVALID && source(arc) != u) { |
2426 | 2442 |
arc = _graph->findEdge(u, v, arc); |
2427 | 2443 |
} |
2428 | 2444 |
return arc; |
2429 | 2445 |
} |
2430 | 2446 |
|
2431 | 2447 |
Node addNode() { |
2432 | 2448 |
return Node(_graph->addNode()); |
2433 | 2449 |
} |
2434 | 2450 |
|
2435 | 2451 |
Arc addArc(const Node& u, const Node& v) { |
2436 | 2452 |
Arc arc = _graph->addEdge(u, v); |
2437 | 2453 |
_direction->set(arc, _graph->u(arc) == u); |
2438 | 2454 |
return arc; |
2439 | 2455 |
} |
2440 | 2456 |
|
2441 | 2457 |
void erase(const Node& i) { _graph->erase(i); } |
2442 | 2458 |
void erase(const Arc& i) { _graph->erase(i); } |
2443 | 2459 |
|
2444 | 2460 |
void clear() { _graph->clear(); } |
2445 | 2461 |
|
2446 | 2462 |
int id(const Node& v) const { return _graph->id(v); } |
2447 | 2463 |
int id(const Arc& e) const { return _graph->id(e); } |
2448 | 2464 |
|
2449 | 2465 |
Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); } |
2450 | 2466 |
Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); } |
2451 | 2467 |
|
2452 | 2468 |
int maxNodeId() const { return _graph->maxNodeId(); } |
2453 | 2469 |
int maxArcId() const { return _graph->maxEdgeId(); } |
2454 | 2470 |
|
2455 | 2471 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
2456 | 2472 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
2457 | 2473 |
|
2458 | 2474 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
2459 | 2475 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
2460 | 2476 |
|
2461 | 2477 |
template <typename V> |
2462 | 2478 |
class NodeMap : public GR::template NodeMap<V> { |
2463 | 2479 |
typedef typename GR::template NodeMap<V> Parent; |
2464 | 2480 |
|
2465 | 2481 |
public: |
2466 | 2482 |
|
2467 | 2483 |
explicit NodeMap(const OrienterBase<GR, DM>& adapter) |
2468 | 2484 |
: Parent(*adapter._graph) {} |
2469 | 2485 |
|
2470 | 2486 |
NodeMap(const OrienterBase<GR, DM>& adapter, const V& value) |
2471 | 2487 |
: Parent(*adapter._graph, value) {} |
2472 | 2488 |
|
2473 | 2489 |
private: |
2474 | 2490 |
NodeMap& operator=(const NodeMap& cmap) { |
2475 | 2491 |
return operator=<NodeMap>(cmap); |
2476 | 2492 |
} |
2477 | 2493 |
|
2478 | 2494 |
template <typename CMap> |
2479 | 2495 |
NodeMap& operator=(const CMap& cmap) { |
2480 | 2496 |
Parent::operator=(cmap); |
2481 | 2497 |
return *this; |
2482 | 2498 |
} |
2483 | 2499 |
|
2484 | 2500 |
}; |
2485 | 2501 |
|
2486 | 2502 |
template <typename V> |
2487 | 2503 |
class ArcMap : public GR::template EdgeMap<V> { |
2488 | 2504 |
typedef typename Graph::template EdgeMap<V> Parent; |
2489 | 2505 |
|
2490 | 2506 |
public: |
2491 | 2507 |
|
2492 | 2508 |
explicit ArcMap(const OrienterBase<GR, DM>& adapter) |
2493 | 2509 |
: Parent(*adapter._graph) { } |
2494 | 2510 |
|
2495 | 2511 |
ArcMap(const OrienterBase<GR, DM>& adapter, const V& value) |
2496 | 2512 |
: Parent(*adapter._graph, value) { } |
2497 | 2513 |
|
2498 | 2514 |
private: |
2499 | 2515 |
ArcMap& operator=(const ArcMap& cmap) { |
2500 | 2516 |
return operator=<ArcMap>(cmap); |
2501 | 2517 |
} |
2502 | 2518 |
|
2503 | 2519 |
template <typename CMap> |
2504 | 2520 |
ArcMap& operator=(const CMap& cmap) { |
2505 | 2521 |
Parent::operator=(cmap); |
2506 | 2522 |
return *this; |
2507 | 2523 |
} |
2508 | 2524 |
}; |
2509 | 2525 |
|
2510 | 2526 |
|
2511 | 2527 |
|
2512 | 2528 |
protected: |
2513 | 2529 |
Graph* _graph; |
2514 | 2530 |
DM* _direction; |
2515 | 2531 |
|
2516 | 2532 |
void initialize(GR& graph, DM& direction) { |
2517 | 2533 |
_graph = &graph; |
2518 | 2534 |
_direction = &direction; |
2519 | 2535 |
} |
2520 | 2536 |
|
2521 | 2537 |
}; |
2522 | 2538 |
|
2523 | 2539 |
/// \ingroup graph_adaptors |
2524 | 2540 |
/// |
2525 | 2541 |
/// \brief Adaptor class for orienting the edges of a graph to get a digraph |
2526 | 2542 |
/// |
2527 | 2543 |
/// Orienter adaptor can be used for orienting the edges of a graph to |
2528 | 2544 |
/// get a digraph. A \c bool edge map of the underlying graph must be |
2529 | 2545 |
/// specified, which define the direction of the arcs in the adaptor. |
2530 | 2546 |
/// The arcs can be easily reversed by the \c reverseArc() member function |
2531 | 2547 |
/// of the adaptor. |
2532 | 2548 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2533 | 2549 |
/// |
2534 | 2550 |
/// The adapted graph can also be modified through this adaptor |
2535 | 2551 |
/// by adding or removing nodes or arcs, unless the \c GR template |
2536 | 2552 |
/// parameter is set to be \c const. |
2537 | 2553 |
/// |
2554 |
/// This class provides item counting in the same time as the adapted |
|
2555 |
/// graph structure. |
|
2556 |
/// |
|
2538 | 2557 |
/// \tparam GR The type of the adapted graph. |
2539 | 2558 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
2540 | 2559 |
/// It can also be specified to be \c const. |
2541 | 2560 |
/// \tparam DM The type of the direction map. |
2542 | 2561 |
/// It must be a \c bool (or convertible) edge map of the |
2543 | 2562 |
/// adapted graph. The default type is |
2544 | 2563 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
2545 | 2564 |
/// |
2546 | 2565 |
/// \note The \c Node type of this adaptor and the adapted graph are |
2547 | 2566 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2548 | 2567 |
/// and the \c Edge type of the adapted graph are also convertible to |
2549 | 2568 |
/// each other. |
2550 | 2569 |
#ifdef DOXYGEN |
2551 | 2570 |
template<typename GR, |
2552 | 2571 |
typename DM> |
2553 | 2572 |
class Orienter { |
2554 | 2573 |
#else |
2555 | 2574 |
template<typename GR, |
2556 | 2575 |
typename DM = typename GR::template EdgeMap<bool> > |
2557 | 2576 |
class Orienter : |
2558 | 2577 |
public DigraphAdaptorExtender<OrienterBase<GR, DM> > { |
2559 | 2578 |
#endif |
2560 | 2579 |
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent; |
2561 | 2580 |
public: |
2562 | 2581 |
|
2563 | 2582 |
/// The type of the adapted graph. |
2564 | 2583 |
typedef GR Graph; |
2565 | 2584 |
/// The type of the direction edge map. |
2566 | 2585 |
typedef DM DirectionMap; |
2567 | 2586 |
|
2568 | 2587 |
typedef typename Parent::Arc Arc; |
2569 | 2588 |
|
2570 | 2589 |
protected: |
2571 | 2590 |
Orienter() { } |
2572 | 2591 |
|
2573 | 2592 |
public: |
2574 | 2593 |
|
2575 | 2594 |
/// \brief Constructor |
2576 | 2595 |
/// |
2577 | 2596 |
/// Constructor of the adaptor. |
2578 | 2597 |
Orienter(GR& graph, DM& direction) { |
2579 | 2598 |
Parent::initialize(graph, direction); |
2580 | 2599 |
} |
2581 | 2600 |
|
2582 | 2601 |
/// \brief Reverses the given arc |
2583 | 2602 |
/// |
2584 | 2603 |
/// This function reverses the given arc. |
2585 | 2604 |
/// It is done by simply negate the assigned value of \c a |
2586 | 2605 |
/// in the direction map. |
2587 | 2606 |
void reverseArc(const Arc& a) { |
2588 | 2607 |
Parent::reverseArc(a); |
2589 | 2608 |
} |
2590 | 2609 |
}; |
2591 | 2610 |
|
2592 | 2611 |
/// \brief Returns a read-only Orienter adaptor |
2593 | 2612 |
/// |
2594 | 2613 |
/// This function just returns a read-only \ref Orienter adaptor. |
2595 | 2614 |
/// \ingroup graph_adaptors |
2596 | 2615 |
/// \relates Orienter |
2597 | 2616 |
template<typename GR, typename DM> |
2598 | 2617 |
Orienter<const GR, DM> |
2599 | 2618 |
orienter(const GR& graph, DM& direction) { |
2600 | 2619 |
return Orienter<const GR, DM>(graph, direction); |
2601 | 2620 |
} |
2602 | 2621 |
|
2603 | 2622 |
template<typename GR, typename DM> |
2604 | 2623 |
Orienter<const GR, const DM> |
2605 | 2624 |
orienter(const GR& graph, const DM& direction) { |
2606 | 2625 |
return Orienter<const GR, const DM>(graph, direction); |
2607 | 2626 |
} |
2608 | 2627 |
|
2609 | 2628 |
namespace _adaptor_bits { |
2610 | 2629 |
|
2611 | 2630 |
template <typename DGR, typename CM, typename FM, typename TL> |
2612 | 2631 |
class ResForwardFilter { |
2613 | 2632 |
public: |
2614 | 2633 |
|
2615 | 2634 |
typedef typename DGR::Arc Key; |
2616 | 2635 |
typedef bool Value; |
2617 | 2636 |
|
2618 | 2637 |
private: |
2619 | 2638 |
|
2620 | 2639 |
const CM* _capacity; |
2621 | 2640 |
const FM* _flow; |
2622 | 2641 |
TL _tolerance; |
2623 | 2642 |
|
2624 | 2643 |
public: |
2625 | 2644 |
|
2626 | 2645 |
ResForwardFilter(const CM& capacity, const FM& flow, |
2627 | 2646 |
const TL& tolerance = TL()) |
2628 | 2647 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2629 | 2648 |
|
2630 | 2649 |
bool operator[](const typename DGR::Arc& a) const { |
2631 | 2650 |
return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); |
2632 | 2651 |
} |
2633 | 2652 |
}; |
2634 | 2653 |
|
2635 | 2654 |
template<typename DGR,typename CM, typename FM, typename TL> |
2636 | 2655 |
class ResBackwardFilter { |
2637 | 2656 |
public: |
2638 | 2657 |
|
2639 | 2658 |
typedef typename DGR::Arc Key; |
2640 | 2659 |
typedef bool Value; |
2641 | 2660 |
|
2642 | 2661 |
private: |
2643 | 2662 |
|
2644 | 2663 |
const CM* _capacity; |
2645 | 2664 |
const FM* _flow; |
2646 | 2665 |
TL _tolerance; |
2647 | 2666 |
|
2648 | 2667 |
public: |
2649 | 2668 |
|
2650 | 2669 |
ResBackwardFilter(const CM& capacity, const FM& flow, |
2651 | 2670 |
const TL& tolerance = TL()) |
2652 | 2671 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2653 | 2672 |
|
2654 | 2673 |
bool operator[](const typename DGR::Arc& a) const { |
2655 | 2674 |
return _tolerance.positive((*_flow)[a]); |
2656 | 2675 |
} |
2657 | 2676 |
}; |
2658 | 2677 |
|
2659 | 2678 |
} |
2660 | 2679 |
|
2661 | 2680 |
/// \ingroup graph_adaptors |
2662 | 2681 |
/// |
2663 | 2682 |
/// \brief Adaptor class for composing the residual digraph for directed |
2664 | 2683 |
/// flow and circulation problems. |
2665 | 2684 |
/// |
2666 | 2685 |
/// ResidualDigraph can be used for composing the \e residual digraph |
2667 | 2686 |
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$ |
2668 | 2687 |
/// be a directed graph and let \f$ F \f$ be a number type. |
2669 | 2688 |
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs. |
2670 | 2689 |
/// This adaptor implements a digraph structure with node set \f$ V \f$ |
2671 | 2690 |
/// and arc set \f$ A_{forward}\cup A_{backward} \f$, |
2672 | 2691 |
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and |
2673 | 2692 |
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so |
2674 | 2693 |
/// called residual digraph. |
2675 | 2694 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken, |
2676 | 2695 |
/// multiplicities are counted, i.e. the adaptor has exactly |
2677 | 2696 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel |
2678 | 2697 |
/// arcs). |
2679 | 2698 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2680 | 2699 |
/// |
2700 |
/// This class provides only linear time counting for nodes and arcs. |
|
2701 |
/// |
|
2681 | 2702 |
/// \tparam DGR The type of the adapted digraph. |
2682 | 2703 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2683 | 2704 |
/// It is implicitly \c const. |
2684 | 2705 |
/// \tparam CM The type of the capacity map. |
2685 | 2706 |
/// It must be an arc map of some numerical type, which defines |
2686 | 2707 |
/// the capacities in the flow problem. It is implicitly \c const. |
2687 | 2708 |
/// The default type is |
2688 | 2709 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
2689 | 2710 |
/// \tparam FM The type of the flow map. |
2690 | 2711 |
/// It must be an arc map of some numerical type, which defines |
2691 | 2712 |
/// the flow values in the flow problem. The default type is \c CM. |
2692 | 2713 |
/// \tparam TL The tolerance type for handling inexact computation. |
2693 | 2714 |
/// The default tolerance type depends on the value type of the |
2694 | 2715 |
/// capacity map. |
2695 | 2716 |
/// |
2696 | 2717 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
2697 | 2718 |
/// adaptors. |
2698 | 2719 |
/// |
2699 | 2720 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2700 | 2721 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2701 | 2722 |
/// is convertible to the \c Arc type of the adapted digraph. |
2702 | 2723 |
#ifdef DOXYGEN |
2703 | 2724 |
template<typename DGR, typename CM, typename FM, typename TL> |
2704 | 2725 |
class ResidualDigraph |
2705 | 2726 |
#else |
2706 | 2727 |
template<typename DGR, |
2707 | 2728 |
typename CM = typename DGR::template ArcMap<int>, |
2708 | 2729 |
typename FM = CM, |
2709 | 2730 |
typename TL = Tolerance<typename CM::Value> > |
2710 | 2731 |
class ResidualDigraph |
2711 | 2732 |
: public SubDigraph< |
2712 | 2733 |
Undirector<const DGR>, |
2713 | 2734 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
2714 | 2735 |
typename Undirector<const DGR>::template CombinedArcMap< |
2715 | 2736 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
2716 | 2737 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
2717 | 2738 |
#endif |
2718 | 2739 |
{ |
2719 | 2740 |
public: |
2720 | 2741 |
|
2721 | 2742 |
/// The type of the underlying digraph. |
2722 | 2743 |
typedef DGR Digraph; |
2723 | 2744 |
/// The type of the capacity map. |
2724 | 2745 |
typedef CM CapacityMap; |
2725 | 2746 |
/// The type of the flow map. |
2726 | 2747 |
typedef FM FlowMap; |
2727 | 2748 |
/// The tolerance type. |
2728 | 2749 |
typedef TL Tolerance; |
2729 | 2750 |
|
2730 | 2751 |
typedef typename CapacityMap::Value Value; |
2731 | 2752 |
typedef ResidualDigraph Adaptor; |
2732 | 2753 |
|
2733 | 2754 |
protected: |
2734 | 2755 |
|
2735 | 2756 |
typedef Undirector<const Digraph> Undirected; |
2736 | 2757 |
|
2737 | 2758 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
2738 | 2759 |
|
2739 | 2760 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
2740 | 2761 |
FM, TL> ForwardFilter; |
2741 | 2762 |
|
2742 | 2763 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
2743 | 2764 |
FM, TL> BackwardFilter; |
2744 | 2765 |
|
2745 | 2766 |
typedef typename Undirected:: |
2746 | 2767 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
2747 | 2768 |
|
2748 | 2769 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
2749 | 2770 |
|
2750 | 2771 |
const CapacityMap* _capacity; |
2751 | 2772 |
FlowMap* _flow; |
2752 | 2773 |
|
2753 | 2774 |
Undirected _graph; |
2754 | 2775 |
NodeFilter _node_filter; |
2755 | 2776 |
ForwardFilter _forward_filter; |
2756 | 2777 |
BackwardFilter _backward_filter; |
2757 | 2778 |
ArcFilter _arc_filter; |
2758 | 2779 |
|
2759 | 2780 |
public: |
2760 | 2781 |
|
2761 | 2782 |
/// \brief Constructor |
2762 | 2783 |
/// |
2763 | 2784 |
/// Constructor of the residual digraph adaptor. The parameters are the |
2764 | 2785 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
2765 | 2786 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
2766 | 2787 |
FM& flow, const TL& tolerance = Tolerance()) |
2767 | 2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
2768 | 2789 |
_graph(digraph), _node_filter(), |
2769 | 2790 |
_forward_filter(capacity, flow, tolerance), |
2770 | 2791 |
_backward_filter(capacity, flow, tolerance), |
2771 | 2792 |
_arc_filter(_forward_filter, _backward_filter) |
2772 | 2793 |
{ |
2773 | 2794 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
2774 | 2795 |
} |
2775 | 2796 |
|
2776 | 2797 |
typedef typename Parent::Arc Arc; |
2777 | 2798 |
|
2778 | 2799 |
/// \brief Returns the residual capacity of the given arc. |
2779 | 2800 |
/// |
2780 | 2801 |
/// Returns the residual capacity of the given arc. |
2781 | 2802 |
Value residualCapacity(const Arc& a) const { |
2782 | 2803 |
if (Undirected::direction(a)) { |
2783 | 2804 |
return (*_capacity)[a] - (*_flow)[a]; |
2784 | 2805 |
} else { |
2785 | 2806 |
return (*_flow)[a]; |
2786 | 2807 |
} |
2787 | 2808 |
} |
2788 | 2809 |
|
2789 | 2810 |
/// \brief Augments on the given arc in the residual digraph. |
2790 | 2811 |
/// |
2791 | 2812 |
/// Augments on the given arc in the residual digraph. It increases |
2792 | 2813 |
/// or decreases the flow value on the original arc according to the |
2793 | 2814 |
/// direction of the residual arc. |
2794 | 2815 |
void augment(const Arc& a, const Value& v) const { |
2795 | 2816 |
if (Undirected::direction(a)) { |
2796 | 2817 |
_flow->set(a, (*_flow)[a] + v); |
2797 | 2818 |
} else { |
2798 | 2819 |
_flow->set(a, (*_flow)[a] - v); |
2799 | 2820 |
} |
2800 | 2821 |
} |
2801 | 2822 |
|
2802 | 2823 |
/// \brief Returns \c true if the given residual arc is a forward arc. |
2803 | 2824 |
/// |
2804 | 2825 |
/// Returns \c true if the given residual arc has the same orientation |
2805 | 2826 |
/// as the original arc, i.e. it is a so called forward arc. |
2806 | 2827 |
static bool forward(const Arc& a) { |
2807 | 2828 |
return Undirected::direction(a); |
2808 | 2829 |
} |
2809 | 2830 |
|
2810 | 2831 |
/// \brief Returns \c true if the given residual arc is a backward arc. |
2811 | 2832 |
/// |
2812 | 2833 |
/// Returns \c true if the given residual arc has the opposite orientation |
2813 | 2834 |
/// than the original arc, i.e. it is a so called backward arc. |
2814 | 2835 |
static bool backward(const Arc& a) { |
2815 | 2836 |
return !Undirected::direction(a); |
2816 | 2837 |
} |
2817 | 2838 |
|
2818 | 2839 |
/// \brief Returns the forward oriented residual arc. |
2819 | 2840 |
/// |
2820 | 2841 |
/// Returns the forward oriented residual arc related to the given |
2821 | 2842 |
/// arc of the underlying digraph. |
2822 | 2843 |
static Arc forward(const typename Digraph::Arc& a) { |
2823 | 2844 |
return Undirected::direct(a, true); |
2824 | 2845 |
} |
2825 | 2846 |
|
2826 | 2847 |
/// \brief Returns the backward oriented residual arc. |
2827 | 2848 |
/// |
2828 | 2849 |
/// Returns the backward oriented residual arc related to the given |
2829 | 2850 |
/// arc of the underlying digraph. |
2830 | 2851 |
static Arc backward(const typename Digraph::Arc& a) { |
2831 | 2852 |
return Undirected::direct(a, false); |
2832 | 2853 |
} |
2833 | 2854 |
|
2834 | 2855 |
/// \brief Residual capacity map. |
2835 | 2856 |
/// |
2836 | 2857 |
/// This map adaptor class can be used for obtaining the residual |
2837 | 2858 |
/// capacities as an arc map of the residual digraph. |
2838 | 2859 |
/// Its value type is inherited from the capacity map. |
2839 | 2860 |
class ResidualCapacity { |
2840 | 2861 |
protected: |
2841 | 2862 |
const Adaptor* _adaptor; |
2842 | 2863 |
public: |
2843 | 2864 |
/// The key type of the map |
2844 | 2865 |
typedef Arc Key; |
2845 | 2866 |
/// The value type of the map |
2846 | 2867 |
typedef typename CapacityMap::Value Value; |
2847 | 2868 |
|
2848 | 2869 |
/// Constructor |
2849 | 2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
2850 | 2871 |
: _adaptor(&adaptor) {} |
2851 | 2872 |
|
2852 | 2873 |
/// Returns the value associated with the given residual arc |
2853 | 2874 |
Value operator[](const Arc& a) const { |
2854 | 2875 |
return _adaptor->residualCapacity(a); |
2855 | 2876 |
} |
2856 | 2877 |
|
2857 | 2878 |
}; |
2858 | 2879 |
|
2859 | 2880 |
/// \brief Returns a residual capacity map |
2860 | 2881 |
/// |
2861 | 2882 |
/// This function just returns a residual capacity map. |
2862 | 2883 |
ResidualCapacity residualCapacity() const { |
2863 | 2884 |
return ResidualCapacity(*this); |
2864 | 2885 |
} |
2865 | 2886 |
|
2866 | 2887 |
}; |
2867 | 2888 |
|
2868 | 2889 |
/// \brief Returns a (read-only) Residual adaptor |
2869 | 2890 |
/// |
2870 | 2891 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
2871 | 2892 |
/// \ingroup graph_adaptors |
2872 | 2893 |
/// \relates ResidualDigraph |
2873 | 2894 |
template<typename DGR, typename CM, typename FM> |
2874 | 2895 |
ResidualDigraph<DGR, CM, FM> |
2875 | 2896 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) { |
2876 | 2897 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
2877 | 2898 |
} |
2878 | 2899 |
|
2879 | 2900 |
|
2880 | 2901 |
template <typename DGR> |
2881 | 2902 |
class SplitNodesBase { |
2882 | 2903 |
typedef DigraphAdaptorBase<const DGR> Parent; |
2883 | 2904 |
|
2884 | 2905 |
public: |
2885 | 2906 |
|
2886 | 2907 |
typedef DGR Digraph; |
2887 | 2908 |
typedef SplitNodesBase Adaptor; |
2888 | 2909 |
|
2889 | 2910 |
typedef typename DGR::Node DigraphNode; |
2890 | 2911 |
typedef typename DGR::Arc DigraphArc; |
2891 | 2912 |
|
2892 | 2913 |
class Node; |
2893 | 2914 |
class Arc; |
2894 | 2915 |
|
2895 | 2916 |
private: |
2896 | 2917 |
|
2897 | 2918 |
template <typename T> class NodeMapBase; |
2898 | 2919 |
template <typename T> class ArcMapBase; |
2899 | 2920 |
|
2900 | 2921 |
public: |
2901 | 2922 |
|
2902 | 2923 |
class Node : public DigraphNode { |
2903 | 2924 |
friend class SplitNodesBase; |
2904 | 2925 |
template <typename T> friend class NodeMapBase; |
2905 | 2926 |
private: |
2906 | 2927 |
|
2907 | 2928 |
bool _in; |
2908 | 2929 |
Node(DigraphNode node, bool in) |
2909 | 2930 |
: DigraphNode(node), _in(in) {} |
2910 | 2931 |
|
2911 | 2932 |
public: |
2912 | 2933 |
|
2913 | 2934 |
Node() {} |
2914 | 2935 |
Node(Invalid) : DigraphNode(INVALID), _in(true) {} |
2915 | 2936 |
|
2916 | 2937 |
bool operator==(const Node& node) const { |
2917 | 2938 |
return DigraphNode::operator==(node) && _in == node._in; |
2918 | 2939 |
} |
2919 | 2940 |
|
2920 | 2941 |
bool operator!=(const Node& node) const { |
2921 | 2942 |
return !(*this == node); |
2922 | 2943 |
} |
2923 | 2944 |
|
2924 | 2945 |
bool operator<(const Node& node) const { |
2925 | 2946 |
return DigraphNode::operator<(node) || |
2926 | 2947 |
(DigraphNode::operator==(node) && _in < node._in); |
2927 | 2948 |
} |
2928 | 2949 |
}; |
2929 | 2950 |
|
2930 | 2951 |
class Arc { |
2931 | 2952 |
friend class SplitNodesBase; |
2932 | 2953 |
template <typename T> friend class ArcMapBase; |
2933 | 2954 |
private: |
2934 | 2955 |
typedef BiVariant<DigraphArc, DigraphNode> ArcImpl; |
2935 | 2956 |
|
2936 | 2957 |
explicit Arc(const DigraphArc& arc) : _item(arc) {} |
2937 | 2958 |
explicit Arc(const DigraphNode& node) : _item(node) {} |
2938 | 2959 |
|
2939 | 2960 |
ArcImpl _item; |
2940 | 2961 |
|
2941 | 2962 |
public: |
2942 | 2963 |
Arc() {} |
2943 | 2964 |
Arc(Invalid) : _item(DigraphArc(INVALID)) {} |
2944 | 2965 |
|
2945 | 2966 |
bool operator==(const Arc& arc) const { |
2946 | 2967 |
if (_item.firstState()) { |
2947 | 2968 |
if (arc._item.firstState()) { |
2948 | 2969 |
return _item.first() == arc._item.first(); |
2949 | 2970 |
} |
2950 | 2971 |
} else { |
2951 | 2972 |
if (arc._item.secondState()) { |
2952 | 2973 |
return _item.second() == arc._item.second(); |
2953 | 2974 |
} |
2954 | 2975 |
} |
2955 | 2976 |
return false; |
2956 | 2977 |
} |
2957 | 2978 |
|
2958 | 2979 |
bool operator!=(const Arc& arc) const { |
2959 | 2980 |
return !(*this == arc); |
2960 | 2981 |
} |
2961 | 2982 |
|
2962 | 2983 |
bool operator<(const Arc& arc) const { |
2963 | 2984 |
if (_item.firstState()) { |
2964 | 2985 |
if (arc._item.firstState()) { |
2965 | 2986 |
return _item.first() < arc._item.first(); |
2966 | 2987 |
} |
2967 | 2988 |
return false; |
2968 | 2989 |
} else { |
2969 | 2990 |
if (arc._item.secondState()) { |
2970 | 2991 |
return _item.second() < arc._item.second(); |
2971 | 2992 |
} |
2972 | 2993 |
return true; |
2973 | 2994 |
} |
2974 | 2995 |
} |
2975 | 2996 |
|
2976 | 2997 |
operator DigraphArc() const { return _item.first(); } |
2977 | 2998 |
operator DigraphNode() const { return _item.second(); } |
2978 | 2999 |
|
2979 | 3000 |
}; |
2980 | 3001 |
|
2981 | 3002 |
void first(Node& n) const { |
2982 | 3003 |
_digraph->first(n); |
2983 | 3004 |
n._in = true; |
2984 | 3005 |
} |
2985 | 3006 |
|
2986 | 3007 |
void next(Node& n) const { |
2987 | 3008 |
if (n._in) { |
2988 | 3009 |
n._in = false; |
2989 | 3010 |
} else { |
2990 | 3011 |
n._in = true; |
2991 | 3012 |
_digraph->next(n); |
2992 | 3013 |
} |
2993 | 3014 |
} |
2994 | 3015 |
|
2995 | 3016 |
void first(Arc& e) const { |
2996 | 3017 |
e._item.setSecond(); |
2997 | 3018 |
_digraph->first(e._item.second()); |
2998 | 3019 |
if (e._item.second() == INVALID) { |
2999 | 3020 |
e._item.setFirst(); |
3000 | 3021 |
_digraph->first(e._item.first()); |
3001 | 3022 |
} |
3002 | 3023 |
} |
3003 | 3024 |
|
3004 | 3025 |
void next(Arc& e) const { |
3005 | 3026 |
if (e._item.secondState()) { |
3006 | 3027 |
_digraph->next(e._item.second()); |
3007 | 3028 |
if (e._item.second() == INVALID) { |
3008 | 3029 |
e._item.setFirst(); |
3009 | 3030 |
_digraph->first(e._item.first()); |
3010 | 3031 |
} |
3011 | 3032 |
} else { |
3012 | 3033 |
_digraph->next(e._item.first()); |
3013 | 3034 |
} |
3014 | 3035 |
} |
3015 | 3036 |
|
3016 | 3037 |
void firstOut(Arc& e, const Node& n) const { |
3017 | 3038 |
if (n._in) { |
3018 | 3039 |
e._item.setSecond(n); |
3019 | 3040 |
} else { |
3020 | 3041 |
e._item.setFirst(); |
3021 | 3042 |
_digraph->firstOut(e._item.first(), n); |
3022 | 3043 |
} |
3023 | 3044 |
} |
3024 | 3045 |
|
3025 | 3046 |
void nextOut(Arc& e) const { |
3026 | 3047 |
if (!e._item.firstState()) { |
3027 | 3048 |
e._item.setFirst(INVALID); |
3028 | 3049 |
} else { |
3029 | 3050 |
_digraph->nextOut(e._item.first()); |
3030 | 3051 |
} |
3031 | 3052 |
} |
3032 | 3053 |
|
3033 | 3054 |
void firstIn(Arc& e, const Node& n) const { |
3034 | 3055 |
if (!n._in) { |
3035 | 3056 |
e._item.setSecond(n); |
3036 | 3057 |
} else { |
3037 | 3058 |
e._item.setFirst(); |
3038 | 3059 |
_digraph->firstIn(e._item.first(), n); |
3039 | 3060 |
} |
3040 | 3061 |
} |
3041 | 3062 |
|
3042 | 3063 |
void nextIn(Arc& e) const { |
3043 | 3064 |
if (!e._item.firstState()) { |
3044 | 3065 |
e._item.setFirst(INVALID); |
3045 | 3066 |
} else { |
3046 | 3067 |
_digraph->nextIn(e._item.first()); |
3047 | 3068 |
} |
3048 | 3069 |
} |
3049 | 3070 |
|
3050 | 3071 |
Node source(const Arc& e) const { |
3051 | 3072 |
if (e._item.firstState()) { |
3052 | 3073 |
return Node(_digraph->source(e._item.first()), false); |
3053 | 3074 |
} else { |
3054 | 3075 |
return Node(e._item.second(), true); |
3055 | 3076 |
} |
3056 | 3077 |
} |
3057 | 3078 |
|
3058 | 3079 |
Node target(const Arc& e) const { |
3059 | 3080 |
if (e._item.firstState()) { |
3060 | 3081 |
return Node(_digraph->target(e._item.first()), true); |
3061 | 3082 |
} else { |
3062 | 3083 |
return Node(e._item.second(), false); |
3063 | 3084 |
} |
3064 | 3085 |
} |
3065 | 3086 |
|
3066 | 3087 |
int id(const Node& n) const { |
3067 | 3088 |
return (_digraph->id(n) << 1) | (n._in ? 0 : 1); |
3068 | 3089 |
} |
3069 | 3090 |
Node nodeFromId(int ix) const { |
3070 | 3091 |
return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); |
3071 | 3092 |
} |
3072 | 3093 |
int maxNodeId() const { |
3073 | 3094 |
return 2 * _digraph->maxNodeId() + 1; |
3074 | 3095 |
} |
3075 | 3096 |
|
3076 | 3097 |
int id(const Arc& e) const { |
3077 | 3098 |
if (e._item.firstState()) { |
3078 | 3099 |
return _digraph->id(e._item.first()) << 1; |
3079 | 3100 |
} else { |
3080 | 3101 |
return (_digraph->id(e._item.second()) << 1) | 1; |
3081 | 3102 |
} |
3082 | 3103 |
} |
3083 | 3104 |
Arc arcFromId(int ix) const { |
3084 | 3105 |
if ((ix & 1) == 0) { |
3085 | 3106 |
return Arc(_digraph->arcFromId(ix >> 1)); |
3086 | 3107 |
} else { |
3087 | 3108 |
return Arc(_digraph->nodeFromId(ix >> 1)); |
3088 | 3109 |
} |
3089 | 3110 |
} |
3090 | 3111 |
int maxArcId() const { |
3091 | 3112 |
return std::max(_digraph->maxNodeId() << 1, |
3092 | 3113 |
(_digraph->maxArcId() << 1) | 1); |
3093 | 3114 |
} |
3094 | 3115 |
|
3095 | 3116 |
static bool inNode(const Node& n) { |
3096 | 3117 |
return n._in; |
3097 | 3118 |
} |
3098 | 3119 |
|
3099 | 3120 |
static bool outNode(const Node& n) { |
3100 | 3121 |
return !n._in; |
3101 | 3122 |
} |
3102 | 3123 |
|
3103 | 3124 |
static bool origArc(const Arc& e) { |
3104 | 3125 |
return e._item.firstState(); |
3105 | 3126 |
} |
3106 | 3127 |
|
3107 | 3128 |
static bool bindArc(const Arc& e) { |
3108 | 3129 |
return e._item.secondState(); |
3109 | 3130 |
} |
3110 | 3131 |
|
3111 | 3132 |
static Node inNode(const DigraphNode& n) { |
3112 | 3133 |
return Node(n, true); |
3113 | 3134 |
} |
3114 | 3135 |
|
3115 | 3136 |
static Node outNode(const DigraphNode& n) { |
3116 | 3137 |
return Node(n, false); |
3117 | 3138 |
} |
3118 | 3139 |
|
3119 | 3140 |
static Arc arc(const DigraphNode& n) { |
3120 | 3141 |
return Arc(n); |
3121 | 3142 |
} |
3122 | 3143 |
|
3123 | 3144 |
static Arc arc(const DigraphArc& e) { |
3124 | 3145 |
return Arc(e); |
3125 | 3146 |
} |
3126 | 3147 |
|
3127 | 3148 |
typedef True NodeNumTag; |
3128 | 3149 |
int nodeNum() const { |
3129 | 3150 |
return 2 * countNodes(*_digraph); |
3130 | 3151 |
} |
3131 | 3152 |
|
3132 | 3153 |
typedef True ArcNumTag; |
3133 | 3154 |
int arcNum() const { |
3134 | 3155 |
return countArcs(*_digraph) + countNodes(*_digraph); |
3135 | 3156 |
} |
3136 | 3157 |
|
3137 | 3158 |
typedef True FindArcTag; |
3138 | 3159 |
Arc findArc(const Node& u, const Node& v, |
3139 | 3160 |
const Arc& prev = INVALID) const { |
3140 | 3161 |
if (inNode(u) && outNode(v)) { |
3141 | 3162 |
if (static_cast<const DigraphNode&>(u) == |
3142 | 3163 |
static_cast<const DigraphNode&>(v) && prev == INVALID) { |
3143 | 3164 |
return Arc(u); |
3144 | 3165 |
} |
3145 | 3166 |
} |
3146 | 3167 |
else if (outNode(u) && inNode(v)) { |
3147 | 3168 |
return Arc(::lemon::findArc(*_digraph, u, v, prev)); |
3148 | 3169 |
} |
3149 | 3170 |
return INVALID; |
3150 | 3171 |
} |
3151 | 3172 |
|
3152 | 3173 |
private: |
3153 | 3174 |
|
3154 | 3175 |
template <typename V> |
3155 | 3176 |
class NodeMapBase |
3156 | 3177 |
: public MapTraits<typename Parent::template NodeMap<V> > { |
3157 | 3178 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
3158 | 3179 |
public: |
3159 | 3180 |
typedef Node Key; |
3160 | 3181 |
typedef V Value; |
3161 | 3182 |
typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag; |
3162 | 3183 |
typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue; |
3163 | 3184 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue; |
3164 | 3185 |
typedef typename MapTraits<NodeImpl>::ReturnValue Reference; |
3165 | 3186 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference; |
3166 | 3187 |
|
3167 | 3188 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor) |
3168 | 3189 |
: _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} |
3169 | 3190 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
3170 | 3191 |
: _in_map(*adaptor._digraph, value), |
3171 | 3192 |
_out_map(*adaptor._digraph, value) {} |
3172 | 3193 |
|
3173 | 3194 |
void set(const Node& key, const V& val) { |
3174 | 3195 |
if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); } |
3175 | 3196 |
else {_out_map.set(key, val); } |
3176 | 3197 |
} |
3177 | 3198 |
|
3178 | 3199 |
ReturnValue operator[](const Node& key) { |
3179 | 3200 |
if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; } |
3180 | 3201 |
else { return _out_map[key]; } |
3181 | 3202 |
} |
3182 | 3203 |
|
3183 | 3204 |
ConstReturnValue operator[](const Node& key) const { |
3184 | 3205 |
if (Adaptor::inNode(key)) { return _in_map[key]; } |
3185 | 3206 |
else { return _out_map[key]; } |
3186 | 3207 |
} |
3187 | 3208 |
|
3188 | 3209 |
private: |
3189 | 3210 |
NodeImpl _in_map, _out_map; |
3190 | 3211 |
}; |
3191 | 3212 |
|
3192 | 3213 |
template <typename V> |
3193 | 3214 |
class ArcMapBase |
3194 | 3215 |
: public MapTraits<typename Parent::template ArcMap<V> > { |
3195 | 3216 |
typedef typename Parent::template ArcMap<V> ArcImpl; |
3196 | 3217 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
3197 | 3218 |
public: |
3198 | 3219 |
typedef Arc Key; |
3199 | 3220 |
typedef V Value; |
3200 | 3221 |
typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag; |
3201 | 3222 |
typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue; |
3202 | 3223 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue; |
3203 | 3224 |
typedef typename MapTraits<ArcImpl>::ReturnValue Reference; |
3204 | 3225 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference; |
3205 | 3226 |
|
3206 | 3227 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor) |
3207 | 3228 |
: _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} |
3208 | 3229 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
3209 | 3230 |
: _arc_map(*adaptor._digraph, value), |
3210 | 3231 |
_node_map(*adaptor._digraph, value) {} |
3211 | 3232 |
|
3212 | 3233 |
void set(const Arc& key, const V& val) { |
3213 | 3234 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3214 | 3235 |
_arc_map.set(static_cast<const DigraphArc&>(key), val); |
3215 | 3236 |
} else { |
3216 | 3237 |
_node_map.set(static_cast<const DigraphNode&>(key), val); |
3217 | 3238 |
} |
3218 | 3239 |
} |
3219 | 3240 |
|
3220 | 3241 |
ReturnValue operator[](const Arc& key) { |
3221 | 3242 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3222 | 3243 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
3223 | 3244 |
} else { |
3224 | 3245 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
3225 | 3246 |
} |
3226 | 3247 |
} |
3227 | 3248 |
|
3228 | 3249 |
ConstReturnValue operator[](const Arc& key) const { |
3229 | 3250 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3230 | 3251 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
3231 | 3252 |
} else { |
3232 | 3253 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
3233 | 3254 |
} |
3234 | 3255 |
} |
3235 | 3256 |
|
3236 | 3257 |
private: |
3237 | 3258 |
ArcImpl _arc_map; |
3238 | 3259 |
NodeImpl _node_map; |
3239 | 3260 |
}; |
3240 | 3261 |
|
3241 | 3262 |
public: |
3242 | 3263 |
|
3243 | 3264 |
template <typename V> |
3244 | 3265 |
class NodeMap |
3245 | 3266 |
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > { |
3246 | 3267 |
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent; |
3247 | 3268 |
|
3248 | 3269 |
public: |
3249 | 3270 |
typedef V Value; |
3250 | 3271 |
|
3251 | 3272 |
NodeMap(const SplitNodesBase<DGR>& adaptor) |
3252 | 3273 |
: Parent(adaptor) {} |
3253 | 3274 |
|
3254 | 3275 |
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3255 | 3276 |
: Parent(adaptor, value) {} |
3256 | 3277 |
|
3257 | 3278 |
private: |
3258 | 3279 |
NodeMap& operator=(const NodeMap& cmap) { |
3259 | 3280 |
return operator=<NodeMap>(cmap); |
3260 | 3281 |
} |
3261 | 3282 |
|
3262 | 3283 |
template <typename CMap> |
3263 | 3284 |
NodeMap& operator=(const CMap& cmap) { |
3264 | 3285 |
Parent::operator=(cmap); |
3265 | 3286 |
return *this; |
3266 | 3287 |
} |
3267 | 3288 |
}; |
3268 | 3289 |
|
3269 | 3290 |
template <typename V> |
3270 | 3291 |
class ArcMap |
3271 | 3292 |
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > { |
3272 | 3293 |
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent; |
3273 | 3294 |
|
3274 | 3295 |
public: |
3275 | 3296 |
typedef V Value; |
3276 | 3297 |
|
3277 | 3298 |
ArcMap(const SplitNodesBase<DGR>& adaptor) |
3278 | 3299 |
: Parent(adaptor) {} |
3279 | 3300 |
|
3280 | 3301 |
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3281 | 3302 |
: Parent(adaptor, value) {} |
3282 | 3303 |
|
3283 | 3304 |
private: |
3284 | 3305 |
ArcMap& operator=(const ArcMap& cmap) { |
3285 | 3306 |
return operator=<ArcMap>(cmap); |
3286 | 3307 |
} |
3287 | 3308 |
|
3288 | 3309 |
template <typename CMap> |
3289 | 3310 |
ArcMap& operator=(const CMap& cmap) { |
3290 | 3311 |
Parent::operator=(cmap); |
3291 | 3312 |
return *this; |
3292 | 3313 |
} |
3293 | 3314 |
}; |
3294 | 3315 |
|
3295 | 3316 |
protected: |
3296 | 3317 |
|
3297 | 3318 |
SplitNodesBase() : _digraph(0) {} |
3298 | 3319 |
|
3299 | 3320 |
DGR* _digraph; |
3300 | 3321 |
|
3301 | 3322 |
void initialize(Digraph& digraph) { |
3302 | 3323 |
_digraph = &digraph; |
3303 | 3324 |
} |
3304 | 3325 |
|
3305 | 3326 |
}; |
3306 | 3327 |
|
3307 | 3328 |
/// \ingroup graph_adaptors |
3308 | 3329 |
/// |
3309 | 3330 |
/// \brief Adaptor class for splitting the nodes of a digraph. |
3310 | 3331 |
/// |
3311 | 3332 |
/// SplitNodes adaptor can be used for splitting each node into an |
3312 | 3333 |
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor |
3313 | 3334 |
/// replaces each node \f$ u \f$ in the digraph with two nodes, |
3314 | 3335 |
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$. |
3315 | 3336 |
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the |
3316 | 3337 |
/// new target of the arc will be \f$ u_{in} \f$ and similarly the |
3317 | 3338 |
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$. |
3318 | 3339 |
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$ |
3319 | 3340 |
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph. |
3320 | 3341 |
/// |
3321 | 3342 |
/// The aim of this class is running an algorithm with respect to node |
3322 | 3343 |
/// costs or capacities if the algorithm considers only arc costs or |
3323 | 3344 |
/// capacities directly. |
3324 | 3345 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
3325 | 3346 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
3326 | 3347 |
/// in the adaptor. |
3327 | 3348 |
/// |
3349 |
/// This class provides item counting in the same time as the adapted |
|
3350 |
/// digraph structure. |
|
3351 |
/// |
|
3328 | 3352 |
/// \tparam DGR The type of the adapted digraph. |
3329 | 3353 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
3330 | 3354 |
/// It is implicitly \c const. |
3331 | 3355 |
/// |
3332 | 3356 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
3333 | 3357 |
/// type of the adapted digraph. |
3334 | 3358 |
template <typename DGR> |
3335 | 3359 |
#ifdef DOXYGEN |
3336 | 3360 |
class SplitNodes { |
3337 | 3361 |
#else |
3338 | 3362 |
class SplitNodes |
3339 | 3363 |
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > { |
3340 | 3364 |
#endif |
3341 | 3365 |
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent; |
3342 | 3366 |
|
3343 | 3367 |
public: |
3344 | 3368 |
typedef DGR Digraph; |
3345 | 3369 |
|
3346 | 3370 |
typedef typename DGR::Node DigraphNode; |
3347 | 3371 |
typedef typename DGR::Arc DigraphArc; |
3348 | 3372 |
|
3349 | 3373 |
typedef typename Parent::Node Node; |
3350 | 3374 |
typedef typename Parent::Arc Arc; |
3351 | 3375 |
|
3352 | 3376 |
/// \brief Constructor |
3353 | 3377 |
/// |
3354 | 3378 |
/// Constructor of the adaptor. |
3355 | 3379 |
SplitNodes(const DGR& g) { |
3356 | 3380 |
Parent::initialize(g); |
3357 | 3381 |
} |
3358 | 3382 |
|
3359 | 3383 |
/// \brief Returns \c true if the given node is an in-node. |
3360 | 3384 |
/// |
3361 | 3385 |
/// Returns \c true if the given node is an in-node. |
3362 | 3386 |
static bool inNode(const Node& n) { |
3363 | 3387 |
return Parent::inNode(n); |
3364 | 3388 |
} |
3365 | 3389 |
|
3366 | 3390 |
/// \brief Returns \c true if the given node is an out-node. |
3367 | 3391 |
/// |
3368 | 3392 |
/// Returns \c true if the given node is an out-node. |
3369 | 3393 |
static bool outNode(const Node& n) { |
3370 | 3394 |
return Parent::outNode(n); |
3371 | 3395 |
} |
3372 | 3396 |
|
3373 | 3397 |
/// \brief Returns \c true if the given arc is an original arc. |
3374 | 3398 |
/// |
3375 | 3399 |
/// Returns \c true if the given arc is one of the arcs in the |
3376 | 3400 |
/// original digraph. |
3377 | 3401 |
static bool origArc(const Arc& a) { |
3378 | 3402 |
return Parent::origArc(a); |
3379 | 3403 |
} |
3380 | 3404 |
|
3381 | 3405 |
/// \brief Returns \c true if the given arc is a bind arc. |
3382 | 3406 |
/// |
3383 | 3407 |
/// Returns \c true if the given arc is a bind arc, i.e. it connects |
3384 | 3408 |
/// an in-node and an out-node. |
3385 | 3409 |
static bool bindArc(const Arc& a) { |
3386 | 3410 |
return Parent::bindArc(a); |
3387 | 3411 |
} |
3388 | 3412 |
|
3389 | 3413 |
/// \brief Returns the in-node created from the given original node. |
3390 | 3414 |
/// |
3391 | 3415 |
/// Returns the in-node created from the given original node. |
3392 | 3416 |
static Node inNode(const DigraphNode& n) { |
3393 | 3417 |
return Parent::inNode(n); |
3394 | 3418 |
} |
3395 | 3419 |
|
3396 | 3420 |
/// \brief Returns the out-node created from the given original node. |
3397 | 3421 |
/// |
3398 | 3422 |
/// Returns the out-node created from the given original node. |
3399 | 3423 |
static Node outNode(const DigraphNode& n) { |
3400 | 3424 |
return Parent::outNode(n); |
3401 | 3425 |
} |
3402 | 3426 |
|
3403 | 3427 |
/// \brief Returns the bind arc that corresponds to the given |
3404 | 3428 |
/// original node. |
3405 | 3429 |
/// |
3406 | 3430 |
/// Returns the bind arc in the adaptor that corresponds to the given |
3407 | 3431 |
/// original node, i.e. the arc connecting the in-node and out-node |
3408 | 3432 |
/// of \c n. |
3409 | 3433 |
static Arc arc(const DigraphNode& n) { |
3410 | 3434 |
return Parent::arc(n); |
3411 | 3435 |
} |
3412 | 3436 |
|
3413 | 3437 |
/// \brief Returns the arc that corresponds to the given original arc. |
3414 | 3438 |
/// |
3415 | 3439 |
/// Returns the arc in the adaptor that corresponds to the given |
3416 | 3440 |
/// original arc. |
3417 | 3441 |
static Arc arc(const DigraphArc& a) { |
3418 | 3442 |
return Parent::arc(a); |
3419 | 3443 |
} |
3420 | 3444 |
|
3421 | 3445 |
/// \brief Node map combined from two original node maps |
3422 | 3446 |
/// |
3423 | 3447 |
/// This map adaptor class adapts two node maps of the original digraph |
3424 | 3448 |
/// to get a node map of the split digraph. |
3425 | 3449 |
/// Its value type is inherited from the first node map type (\c IN). |
3426 | 3450 |
/// \tparam IN The type of the node map for the in-nodes. |
3427 | 3451 |
/// \tparam OUT The type of the node map for the out-nodes. |
3428 | 3452 |
template <typename IN, typename OUT> |
3429 | 3453 |
class CombinedNodeMap { |
3430 | 3454 |
public: |
3431 | 3455 |
|
3432 | 3456 |
/// The key type of the map |
3433 | 3457 |
typedef Node Key; |
3434 | 3458 |
/// The value type of the map |
3435 | 3459 |
typedef typename IN::Value Value; |
3436 | 3460 |
|
3437 | 3461 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
3438 | 3462 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
3439 | 3463 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
3440 | 3464 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
3441 | 3465 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
3442 | 3466 |
|
3443 | 3467 |
/// Constructor |
3444 | 3468 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
3445 | 3469 |
: _in_map(in_map), _out_map(out_map) {} |
3446 | 3470 |
|
3447 | 3471 |
/// Returns the value associated with the given key. |
3448 | 3472 |
Value operator[](const Key& key) const { |
3449 | 3473 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3450 | 3474 |
return _in_map[key]; |
3451 | 3475 |
} else { |
3452 | 3476 |
return _out_map[key]; |
3453 | 3477 |
} |
3454 | 3478 |
} |
3455 | 3479 |
|
3456 | 3480 |
/// Returns a reference to the value associated with the given key. |
3457 | 3481 |
Value& operator[](const Key& key) { |
3458 | 3482 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3459 | 3483 |
return _in_map[key]; |
3460 | 3484 |
} else { |
3461 | 3485 |
return _out_map[key]; |
3462 | 3486 |
} |
3463 | 3487 |
} |
3464 | 3488 |
|
3465 | 3489 |
/// Sets the value associated with the given key. |
3466 | 3490 |
void set(const Key& key, const Value& value) { |
3467 | 3491 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3468 | 3492 |
_in_map.set(key, value); |
3469 | 3493 |
} else { |
3470 | 3494 |
_out_map.set(key, value); |
3471 | 3495 |
} |
3472 | 3496 |
} |
3473 | 3497 |
|
3474 | 3498 |
private: |
3475 | 3499 |
|
3476 | 3500 |
IN& _in_map; |
3477 | 3501 |
OUT& _out_map; |
3478 | 3502 |
|
3479 | 3503 |
}; |
3480 | 3504 |
|
3481 | 3505 |
|
3482 | 3506 |
/// \brief Returns a combined node map |
3483 | 3507 |
/// |
3484 | 3508 |
/// This function just returns a combined node map. |
3485 | 3509 |
template <typename IN, typename OUT> |
3486 | 3510 |
static CombinedNodeMap<IN, OUT> |
3487 | 3511 |
combinedNodeMap(IN& in_map, OUT& out_map) { |
3488 | 3512 |
return CombinedNodeMap<IN, OUT>(in_map, out_map); |
3489 | 3513 |
} |
3490 | 3514 |
|
3491 | 3515 |
template <typename IN, typename OUT> |
3492 | 3516 |
static CombinedNodeMap<const IN, OUT> |
3493 | 3517 |
combinedNodeMap(const IN& in_map, OUT& out_map) { |
3494 | 3518 |
return CombinedNodeMap<const IN, OUT>(in_map, out_map); |
3495 | 3519 |
} |
3496 | 3520 |
|
3497 | 3521 |
template <typename IN, typename OUT> |
3498 | 3522 |
static CombinedNodeMap<IN, const OUT> |
3499 | 3523 |
combinedNodeMap(IN& in_map, const OUT& out_map) { |
3500 | 3524 |
return CombinedNodeMap<IN, const OUT>(in_map, out_map); |
3501 | 3525 |
} |
3502 | 3526 |
|
3503 | 3527 |
template <typename IN, typename OUT> |
3504 | 3528 |
static CombinedNodeMap<const IN, const OUT> |
3505 | 3529 |
combinedNodeMap(const IN& in_map, const OUT& out_map) { |
3506 | 3530 |
return CombinedNodeMap<const IN, const OUT>(in_map, out_map); |
3507 | 3531 |
} |
3508 | 3532 |
|
3509 | 3533 |
/// \brief Arc map combined from an arc map and a node map of the |
3510 | 3534 |
/// original digraph. |
3511 | 3535 |
/// |
3512 | 3536 |
/// This map adaptor class adapts an arc map and a node map of the |
3513 | 3537 |
/// original digraph to get an arc map of the split digraph. |
3514 | 3538 |
/// Its value type is inherited from the original arc map type (\c AM). |
3515 | 3539 |
/// \tparam AM The type of the arc map. |
3516 | 3540 |
/// \tparam NM the type of the node map. |
3517 | 3541 |
template <typename AM, typename NM> |
3518 | 3542 |
class CombinedArcMap { |
3519 | 3543 |
public: |
3520 | 3544 |
|
3521 | 3545 |
/// The key type of the map |
3522 | 3546 |
typedef Arc Key; |
3523 | 3547 |
/// The value type of the map |
3524 | 3548 |
typedef typename AM::Value Value; |
3525 | 3549 |
|
3526 | 3550 |
typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag; |
3527 | 3551 |
typedef typename MapTraits<AM>::ReturnValue ReturnValue; |
3528 | 3552 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue; |
3529 | 3553 |
typedef typename MapTraits<AM>::ReturnValue Reference; |
3530 | 3554 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReference; |
3531 | 3555 |
|
3532 | 3556 |
/// Constructor |
3533 | 3557 |
CombinedArcMap(AM& arc_map, NM& node_map) |
3534 | 3558 |
: _arc_map(arc_map), _node_map(node_map) {} |
3535 | 3559 |
|
3536 | 3560 |
/// Returns the value associated with the given key. |
3537 | 3561 |
Value operator[](const Key& arc) const { |
3538 | 3562 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3539 | 3563 |
return _arc_map[arc]; |
3540 | 3564 |
} else { |
3541 | 3565 |
return _node_map[arc]; |
3542 | 3566 |
} |
3543 | 3567 |
} |
3544 | 3568 |
|
3545 | 3569 |
/// Returns a reference to the value associated with the given key. |
3546 | 3570 |
Value& operator[](const Key& arc) { |
3547 | 3571 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3548 | 3572 |
return _arc_map[arc]; |
3549 | 3573 |
} else { |
3550 | 3574 |
return _node_map[arc]; |
3551 | 3575 |
} |
3552 | 3576 |
} |
3553 | 3577 |
|
3554 | 3578 |
/// Sets the value associated with the given key. |
3555 | 3579 |
void set(const Arc& arc, const Value& val) { |
3556 | 3580 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3557 | 3581 |
_arc_map.set(arc, val); |
3558 | 3582 |
} else { |
3559 | 3583 |
_node_map.set(arc, val); |
3560 | 3584 |
} |
3561 | 3585 |
} |
3562 | 3586 |
|
3563 | 3587 |
private: |
3564 | 3588 |
|
3565 | 3589 |
AM& _arc_map; |
3566 | 3590 |
NM& _node_map; |
3567 | 3591 |
|
3568 | 3592 |
}; |
3569 | 3593 |
|
3570 | 3594 |
/// \brief Returns a combined arc map |
3571 | 3595 |
/// |
3572 | 3596 |
/// This function just returns a combined arc map. |
3573 | 3597 |
template <typename ArcMap, typename NodeMap> |
3574 | 3598 |
static CombinedArcMap<ArcMap, NodeMap> |
3575 | 3599 |
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) { |
3576 | 3600 |
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map); |
3577 | 3601 |
} |
3578 | 3602 |
|
3579 | 3603 |
template <typename ArcMap, typename NodeMap> |
3580 | 3604 |
static CombinedArcMap<const ArcMap, NodeMap> |
3581 | 3605 |
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) { |
3582 | 3606 |
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map); |
3583 | 3607 |
} |
3584 | 3608 |
|
3585 | 3609 |
template <typename ArcMap, typename NodeMap> |
3586 | 3610 |
static CombinedArcMap<ArcMap, const NodeMap> |
3587 | 3611 |
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) { |
3588 | 3612 |
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map); |
3589 | 3613 |
} |
3590 | 3614 |
|
3591 | 3615 |
template <typename ArcMap, typename NodeMap> |
3592 | 3616 |
static CombinedArcMap<const ArcMap, const NodeMap> |
3593 | 3617 |
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) { |
3594 | 3618 |
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map); |
3595 | 3619 |
} |
3596 | 3620 |
|
3597 | 3621 |
}; |
3598 | 3622 |
|
3599 | 3623 |
/// \brief Returns a (read-only) SplitNodes adaptor |
3600 | 3624 |
/// |
3601 | 3625 |
/// This function just returns a (read-only) \ref SplitNodes adaptor. |
3602 | 3626 |
/// \ingroup graph_adaptors |
3603 | 3627 |
/// \relates SplitNodes |
3604 | 3628 |
template<typename DGR> |
3605 | 3629 |
SplitNodes<DGR> |
3606 | 3630 |
splitNodes(const DGR& digraph) { |
3607 | 3631 |
return SplitNodes<DGR>(digraph); |
3608 | 3632 |
} |
3609 | 3633 |
|
3610 | 3634 |
#undef LEMON_SCOPE_FIX |
3611 | 3635 |
|
3612 | 3636 |
} //namespace lemon |
3613 | 3637 |
|
3614 | 3638 |
#endif //LEMON_ADAPTORS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
///By default it is a NullMap. |
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a \c ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a \ref ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
91 | 91 |
///we would like to define the \ref ReachedMap. |
92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 93 |
{ |
94 | 94 |
return new ReachedMap(g); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
///The type of the map that stores the distances of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the distances of the nodes. |
100 | 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 102 |
///Instantiates a \c DistMap. |
103 | 103 |
|
104 | 104 |
///This function instantiates a \ref DistMap. |
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 | 106 |
///\ref DistMap. |
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%BFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default type is \ref ListDigraph. |
124 | 124 |
#ifdef DOXYGEN |
125 | 125 |
template <typename GR, |
126 | 126 |
typename TR> |
127 | 127 |
#else |
128 | 128 |
template <typename GR=ListDigraph, |
129 | 129 |
typename TR=BfsDefaultTraits<GR> > |
130 | 130 |
#endif |
131 | 131 |
class Bfs { |
132 | 132 |
public: |
133 | 133 |
|
134 | 134 |
///The type of the digraph the algorithm runs on. |
135 | 135 |
typedef typename TR::Digraph Digraph; |
136 | 136 |
|
137 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
138 | 138 |
///shortest paths. |
139 | 139 |
typedef typename TR::PredMap PredMap; |
140 | 140 |
///The type of the map that stores the distances of the nodes. |
141 | 141 |
typedef typename TR::DistMap DistMap; |
142 | 142 |
///The type of the map that indicates which nodes are reached. |
143 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
144 | 144 |
///The type of the map that indicates which nodes are processed. |
145 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
146 | 146 |
///The type of the paths. |
147 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
148 | 148 |
|
149 | 149 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
150 | 150 |
typedef TR Traits; |
151 | 151 |
|
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
typedef typename Digraph::Node Node; |
155 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
156 | 156 |
typedef typename Digraph::Arc Arc; |
157 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
158 | 158 |
|
159 | 159 |
//Pointer to the underlying digraph. |
160 | 160 |
const Digraph *G; |
161 | 161 |
//Pointer to the map of predecessor arcs. |
162 | 162 |
PredMap *_pred; |
163 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
164 | 164 |
bool local_pred; |
165 | 165 |
//Pointer to the map of distances. |
166 | 166 |
DistMap *_dist; |
167 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
168 | 168 |
bool local_dist; |
169 | 169 |
//Pointer to the map of reached status of the nodes. |
170 | 170 |
ReachedMap *_reached; |
171 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
172 | 172 |
bool local_reached; |
173 | 173 |
//Pointer to the map of processed status of the nodes. |
174 | 174 |
ProcessedMap *_processed; |
175 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
176 | 176 |
bool local_processed; |
177 | 177 |
|
178 | 178 |
std::vector<typename Digraph::Node> _queue; |
179 | 179 |
int _queue_head,_queue_tail,_queue_next_dist; |
180 | 180 |
int _curr_dist; |
181 | 181 |
|
182 | 182 |
//Creates the maps if necessary. |
183 | 183 |
void create_maps() |
184 | 184 |
{ |
185 | 185 |
if(!_pred) { |
186 | 186 |
local_pred = true; |
187 | 187 |
_pred = Traits::createPredMap(*G); |
188 | 188 |
} |
189 | 189 |
if(!_dist) { |
190 | 190 |
local_dist = true; |
191 | 191 |
_dist = Traits::createDistMap(*G); |
192 | 192 |
} |
193 | 193 |
if(!_reached) { |
194 | 194 |
local_reached = true; |
195 | 195 |
_reached = Traits::createReachedMap(*G); |
196 | 196 |
} |
197 | 197 |
if(!_processed) { |
198 | 198 |
local_processed = true; |
199 | 199 |
_processed = Traits::createProcessedMap(*G); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
protected: |
204 | 204 |
|
205 | 205 |
Bfs() {} |
206 | 206 |
|
207 | 207 |
public: |
208 | 208 |
|
209 | 209 |
typedef Bfs Create; |
210 | 210 |
|
211 | 211 |
///\name Named Template Parameters |
212 | 212 |
|
213 | 213 |
///@{ |
214 | 214 |
|
215 | 215 |
template <class T> |
216 | 216 |
struct SetPredMapTraits : public Traits { |
217 | 217 |
typedef T PredMap; |
218 | 218 |
static PredMap *createPredMap(const Digraph &) |
219 | 219 |
{ |
220 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
221 | 221 |
return 0; // ignore warnings |
222 | 222 |
} |
223 | 223 |
}; |
224 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
225 | 225 |
///\c PredMap type. |
226 | 226 |
/// |
227 | 227 |
///\ref named-templ-param "Named parameter" for setting |
228 | 228 |
///\c PredMap type. |
229 | 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
230 | 230 |
template <class T> |
231 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
232 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
233 | 233 |
}; |
234 | 234 |
|
235 | 235 |
template <class T> |
236 | 236 |
struct SetDistMapTraits : public Traits { |
237 | 237 |
typedef T DistMap; |
238 | 238 |
static DistMap *createDistMap(const Digraph &) |
239 | 239 |
{ |
240 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
241 | 241 |
return 0; // ignore warnings |
242 | 242 |
} |
243 | 243 |
}; |
244 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
245 | 245 |
///\c DistMap type. |
246 | 246 |
/// |
247 | 247 |
///\ref named-templ-param "Named parameter" for setting |
248 | 248 |
///\c DistMap type. |
249 | 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
250 | 250 |
template <class T> |
251 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
252 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
253 | 253 |
}; |
254 | 254 |
|
255 | 255 |
template <class T> |
256 | 256 |
struct SetReachedMapTraits : public Traits { |
257 | 257 |
typedef T ReachedMap; |
258 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
259 | 259 |
{ |
260 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
261 | 261 |
return 0; // ignore warnings |
262 | 262 |
} |
263 | 263 |
}; |
264 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
265 | 265 |
///\c ReachedMap type. |
266 | 266 |
/// |
267 | 267 |
///\ref named-templ-param "Named parameter" for setting |
268 | 268 |
///\c ReachedMap type. |
269 | 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
270 | 270 |
template <class T> |
271 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
272 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
273 | 273 |
}; |
274 | 274 |
|
275 | 275 |
template <class T> |
276 | 276 |
struct SetProcessedMapTraits : public Traits { |
277 | 277 |
typedef T ProcessedMap; |
278 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
279 | 279 |
{ |
280 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
281 | 281 |
return 0; // ignore warnings |
282 | 282 |
} |
283 | 283 |
}; |
284 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
285 | 285 |
///\c ProcessedMap type. |
286 | 286 |
/// |
287 | 287 |
///\ref named-templ-param "Named parameter" for setting |
288 | 288 |
///\c ProcessedMap type. |
289 | 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
290 | 290 |
template <class T> |
291 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
292 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
293 | 293 |
}; |
294 | 294 |
|
295 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
296 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
297 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
298 | 298 |
{ |
299 | 299 |
return new ProcessedMap(g); |
300 | 300 |
return 0; // ignore warnings |
301 | 301 |
} |
302 | 302 |
}; |
303 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
304 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
305 | 305 |
/// |
306 | 306 |
///\ref named-templ-param "Named parameter" for setting |
307 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
308 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
309 | 309 |
struct SetStandardProcessedMap : |
310 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
311 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
///@} |
315 | 315 |
|
316 | 316 |
public: |
317 | 317 |
|
318 | 318 |
///Constructor. |
319 | 319 |
|
320 | 320 |
///Constructor. |
321 | 321 |
///\param g The digraph the algorithm runs on. |
322 | 322 |
Bfs(const Digraph &g) : |
323 | 323 |
G(&g), |
324 | 324 |
_pred(NULL), local_pred(false), |
325 | 325 |
_dist(NULL), local_dist(false), |
326 | 326 |
_reached(NULL), local_reached(false), |
327 | 327 |
_processed(NULL), local_processed(false) |
328 | 328 |
{ } |
329 | 329 |
|
330 | 330 |
///Destructor. |
331 | 331 |
~Bfs() |
332 | 332 |
{ |
333 | 333 |
if(local_pred) delete _pred; |
334 | 334 |
if(local_dist) delete _dist; |
335 | 335 |
if(local_reached) delete _reached; |
336 | 336 |
if(local_processed) delete _processed; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
///Sets the map that stores the predecessor arcs. |
340 | 340 |
|
341 | 341 |
///Sets the map that stores the predecessor arcs. |
342 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
343 | 343 |
///or \ref init(), an instance will be allocated automatically. |
344 | 344 |
///The destructor deallocates this automatically allocated map, |
345 | 345 |
///of course. |
346 | 346 |
///\return <tt> (*this) </tt> |
347 | 347 |
Bfs &predMap(PredMap &m) |
348 | 348 |
{ |
349 | 349 |
if(local_pred) { |
350 | 350 |
delete _pred; |
351 | 351 |
local_pred=false; |
352 | 352 |
} |
353 | 353 |
_pred = &m; |
354 | 354 |
return *this; |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
///Sets the map that indicates which nodes are reached. |
358 | 358 |
|
359 | 359 |
///Sets the map that indicates which nodes are reached. |
360 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
361 | 361 |
///or \ref init(), an instance will be allocated automatically. |
362 | 362 |
///The destructor deallocates this automatically allocated map, |
363 | 363 |
///of course. |
364 | 364 |
///\return <tt> (*this) </tt> |
365 | 365 |
Bfs &reachedMap(ReachedMap &m) |
366 | 366 |
{ |
367 | 367 |
if(local_reached) { |
368 | 368 |
delete _reached; |
369 | 369 |
local_reached=false; |
370 | 370 |
} |
371 | 371 |
_reached = &m; |
372 | 372 |
return *this; |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
|
377 | 377 |
///Sets the map that indicates which nodes are processed. |
378 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
379 | 379 |
///or \ref init(), an instance will be allocated automatically. |
380 | 380 |
///The destructor deallocates this automatically allocated map, |
381 | 381 |
///of course. |
382 | 382 |
///\return <tt> (*this) </tt> |
383 | 383 |
Bfs &processedMap(ProcessedMap &m) |
384 | 384 |
{ |
385 | 385 |
if(local_processed) { |
386 | 386 |
delete _processed; |
387 | 387 |
local_processed=false; |
388 | 388 |
} |
389 | 389 |
_processed = &m; |
390 | 390 |
return *this; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
///Sets the map that stores the distances of the nodes. |
394 | 394 |
|
395 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
396 | 396 |
///the algorithm. |
397 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
398 | 398 |
///or \ref init(), an instance will be allocated automatically. |
399 | 399 |
///The destructor deallocates this automatically allocated map, |
400 | 400 |
///of course. |
401 | 401 |
///\return <tt> (*this) </tt> |
402 | 402 |
Bfs &distMap(DistMap &m) |
403 | 403 |
{ |
404 | 404 |
if(local_dist) { |
405 | 405 |
delete _dist; |
406 | 406 |
local_dist=false; |
407 | 407 |
} |
408 | 408 |
_dist = &m; |
409 | 409 |
return *this; |
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
public: |
413 | 413 |
|
414 | 414 |
///\name Execution Control |
415 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
416 | 416 |
///member functions called \ref run(Node) "run()".\n |
417 | 417 |
///If you need better control on the execution, you have to call |
418 | 418 |
///\ref init() first, then you can add several source nodes with |
419 | 419 |
///\ref addSource(). Finally the actual path computation can be |
420 | 420 |
///performed with one of the \ref start() functions. |
421 | 421 |
|
422 | 422 |
///@{ |
423 | 423 |
|
424 | 424 |
///\brief Initializes the internal data structures. |
425 | 425 |
/// |
426 | 426 |
///Initializes the internal data structures. |
427 | 427 |
void init() |
428 | 428 |
{ |
429 | 429 |
create_maps(); |
430 | 430 |
_queue.resize(countNodes(*G)); |
431 | 431 |
_queue_head=_queue_tail=0; |
432 | 432 |
_curr_dist=1; |
433 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
434 | 434 |
_pred->set(u,INVALID); |
435 | 435 |
_reached->set(u,false); |
436 | 436 |
_processed->set(u,false); |
437 | 437 |
} |
438 | 438 |
} |
439 | 439 |
|
440 | 440 |
///Adds a new source node. |
441 | 441 |
|
442 | 442 |
///Adds a new source node to the set of nodes to be processed. |
443 | 443 |
/// |
444 | 444 |
void addSource(Node s) |
445 | 445 |
{ |
446 | 446 |
if(!(*_reached)[s]) |
447 | 447 |
{ |
448 | 448 |
_reached->set(s,true); |
449 | 449 |
_pred->set(s,INVALID); |
450 | 450 |
_dist->set(s,0); |
451 | 451 |
_queue[_queue_head++]=s; |
452 | 452 |
_queue_next_dist=_queue_head; |
453 | 453 |
} |
454 | 454 |
} |
455 | 455 |
|
456 | 456 |
///Processes the next node. |
457 | 457 |
|
458 | 458 |
///Processes the next node. |
459 | 459 |
/// |
460 | 460 |
///\return The processed node. |
461 | 461 |
/// |
462 | 462 |
///\pre The queue must not be empty. |
463 | 463 |
Node processNextNode() |
464 | 464 |
{ |
465 | 465 |
if(_queue_tail==_queue_next_dist) { |
466 | 466 |
_curr_dist++; |
467 | 467 |
_queue_next_dist=_queue_head; |
468 | 468 |
} |
469 | 469 |
Node n=_queue[_queue_tail++]; |
470 | 470 |
_processed->set(n,true); |
471 | 471 |
Node m; |
472 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
473 | 473 |
if(!(*_reached)[m=G->target(e)]) { |
474 | 474 |
_queue[_queue_head++]=m; |
475 | 475 |
_reached->set(m,true); |
476 | 476 |
_pred->set(m,e); |
477 | 477 |
_dist->set(m,_curr_dist); |
478 | 478 |
} |
479 | 479 |
return n; |
480 | 480 |
} |
481 | 481 |
|
482 | 482 |
///Processes the next node. |
483 | 483 |
|
484 | 484 |
///Processes the next node and checks if the given target node |
485 | 485 |
///is reached. If the target node is reachable from the processed |
486 | 486 |
///node, then the \c reach parameter will be set to \c true. |
487 | 487 |
/// |
488 | 488 |
///\param target The target node. |
489 | 489 |
///\retval reach Indicates if the target node is reached. |
490 | 490 |
///It should be initially \c false. |
491 | 491 |
/// |
492 | 492 |
///\return The processed node. |
493 | 493 |
/// |
494 | 494 |
///\pre The queue must not be empty. |
495 | 495 |
Node processNextNode(Node target, bool& reach) |
496 | 496 |
{ |
497 | 497 |
if(_queue_tail==_queue_next_dist) { |
498 | 498 |
_curr_dist++; |
499 | 499 |
_queue_next_dist=_queue_head; |
500 | 500 |
} |
501 | 501 |
Node n=_queue[_queue_tail++]; |
502 | 502 |
_processed->set(n,true); |
503 | 503 |
Node m; |
504 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
505 | 505 |
if(!(*_reached)[m=G->target(e)]) { |
506 | 506 |
_queue[_queue_head++]=m; |
507 | 507 |
_reached->set(m,true); |
508 | 508 |
_pred->set(m,e); |
509 | 509 |
_dist->set(m,_curr_dist); |
510 | 510 |
reach = reach || (target == m); |
511 | 511 |
} |
512 | 512 |
return n; |
513 | 513 |
} |
514 | 514 |
|
515 | 515 |
///Processes the next node. |
516 | 516 |
|
517 | 517 |
///Processes the next node and checks if at least one of reached |
518 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
519 | 519 |
///with \c true value is reachable from the processed node, then the |
520 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
521 | 521 |
/// |
522 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
523 | 523 |
///possible targets. |
524 | 524 |
///\retval rnode The reached target node. |
525 | 525 |
///It should be initially \c INVALID. |
526 | 526 |
/// |
527 | 527 |
///\return The processed node. |
528 | 528 |
/// |
529 | 529 |
///\pre The queue must not be empty. |
530 | 530 |
template<class NM> |
531 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
532 | 532 |
{ |
533 | 533 |
if(_queue_tail==_queue_next_dist) { |
534 | 534 |
_curr_dist++; |
535 | 535 |
_queue_next_dist=_queue_head; |
536 | 536 |
} |
537 | 537 |
Node n=_queue[_queue_tail++]; |
538 | 538 |
_processed->set(n,true); |
539 | 539 |
Node m; |
540 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
541 | 541 |
if(!(*_reached)[m=G->target(e)]) { |
542 | 542 |
_queue[_queue_head++]=m; |
543 | 543 |
_reached->set(m,true); |
544 | 544 |
_pred->set(m,e); |
545 | 545 |
_dist->set(m,_curr_dist); |
546 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
547 | 547 |
} |
548 | 548 |
return n; |
549 | 549 |
} |
550 | 550 |
|
551 | 551 |
///The next node to be processed. |
552 | 552 |
|
553 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
554 | 554 |
///is empty. |
555 | 555 |
Node nextNode() const |
556 | 556 |
{ |
557 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
558 | 558 |
} |
559 | 559 |
|
560 | 560 |
///Returns \c false if there are nodes to be processed. |
561 | 561 |
|
562 | 562 |
///Returns \c false if there are nodes to be processed |
563 | 563 |
///in the queue. |
564 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; } |
565 | 565 |
|
566 | 566 |
///Returns the number of the nodes to be processed. |
567 | 567 |
|
568 | 568 |
///Returns the number of the nodes to be processed |
569 | 569 |
///in the queue. |
570 | 570 |
int queueSize() const { return _queue_head-_queue_tail; } |
571 | 571 |
|
572 | 572 |
///Executes the algorithm. |
573 | 573 |
|
574 | 574 |
///Executes the algorithm. |
575 | 575 |
/// |
576 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
577 | 577 |
///in order to compute the shortest path to each node. |
578 | 578 |
/// |
579 | 579 |
///The algorithm computes |
580 | 580 |
///- the shortest path tree (forest), |
581 | 581 |
///- the distance of each node from the root(s). |
582 | 582 |
/// |
583 | 583 |
///\pre init() must be called and at least one root node should be |
584 | 584 |
///added with addSource() before using this function. |
585 | 585 |
/// |
586 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
587 | 587 |
///\code |
588 | 588 |
/// while ( !b.emptyQueue() ) { |
589 | 589 |
/// b.processNextNode(); |
590 | 590 |
/// } |
591 | 591 |
///\endcode |
592 | 592 |
void start() |
593 | 593 |
{ |
594 | 594 |
while ( !emptyQueue() ) processNextNode(); |
595 | 595 |
} |
596 | 596 |
|
597 | 597 |
///Executes the algorithm until the given target node is reached. |
598 | 598 |
|
599 | 599 |
///Executes the algorithm until the given target node is reached. |
600 | 600 |
/// |
601 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
602 | 602 |
///in order to compute the shortest path to \c t. |
603 | 603 |
/// |
604 | 604 |
///The algorithm computes |
605 | 605 |
///- the shortest path to \c t, |
606 | 606 |
///- the distance of \c t from the root(s). |
607 | 607 |
/// |
608 | 608 |
///\pre init() must be called and at least one root node should be |
609 | 609 |
///added with addSource() before using this function. |
610 | 610 |
/// |
611 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
612 | 612 |
///\code |
613 | 613 |
/// bool reach = false; |
614 | 614 |
/// while ( !b.emptyQueue() && !reach ) { |
615 | 615 |
/// b.processNextNode(t, reach); |
616 | 616 |
/// } |
617 | 617 |
///\endcode |
618 | 618 |
void start(Node t) |
619 | 619 |
{ |
620 | 620 |
bool reach = false; |
621 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
622 | 622 |
} |
623 | 623 |
|
624 | 624 |
///Executes the algorithm until a condition is met. |
625 | 625 |
|
626 | 626 |
///Executes the algorithm until a condition is met. |
627 | 627 |
/// |
628 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
629 | 629 |
///order to compute the shortest path to a node \c v with |
630 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
631 | 631 |
/// |
632 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
633 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
634 | 634 |
/// |
635 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
636 | 636 |
///\c INVALID if no such node was found. |
637 | 637 |
/// |
638 | 638 |
///\pre init() must be called and at least one root node should be |
639 | 639 |
///added with addSource() before using this function. |
640 | 640 |
/// |
641 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
642 | 642 |
///\code |
643 | 643 |
/// Node rnode = INVALID; |
644 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
645 | 645 |
/// b.processNextNode(nm, rnode); |
646 | 646 |
/// } |
647 | 647 |
/// return rnode; |
648 | 648 |
///\endcode |
649 | 649 |
template<class NodeBoolMap> |
650 | 650 |
Node start(const NodeBoolMap &nm) |
651 | 651 |
{ |
652 | 652 |
Node rnode = INVALID; |
653 | 653 |
while ( !emptyQueue() && rnode == INVALID ) { |
654 | 654 |
processNextNode(nm, rnode); |
655 | 655 |
} |
656 | 656 |
return rnode; |
657 | 657 |
} |
658 | 658 |
|
659 | 659 |
///Runs the algorithm from the given source node. |
660 | 660 |
|
661 | 661 |
///This method runs the %BFS algorithm from node \c s |
662 | 662 |
///in order to compute the shortest path to each node. |
663 | 663 |
/// |
664 | 664 |
///The algorithm computes |
665 | 665 |
///- the shortest path tree, |
666 | 666 |
///- the distance of each node from the root. |
667 | 667 |
/// |
668 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
669 | 669 |
///\code |
670 | 670 |
/// b.init(); |
671 | 671 |
/// b.addSource(s); |
672 | 672 |
/// b.start(); |
673 | 673 |
///\endcode |
674 | 674 |
void run(Node s) { |
675 | 675 |
init(); |
676 | 676 |
addSource(s); |
677 | 677 |
start(); |
678 | 678 |
} |
679 | 679 |
|
680 | 680 |
///Finds the shortest path between \c s and \c t. |
681 | 681 |
|
682 | 682 |
///This method runs the %BFS algorithm from node \c s |
683 | 683 |
///in order to compute the shortest path to node \c t |
684 | 684 |
///(it stops searching when \c t is processed). |
685 | 685 |
/// |
686 | 686 |
///\return \c true if \c t is reachable form \c s. |
687 | 687 |
/// |
688 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
689 | 689 |
///shortcut of the following code. |
690 | 690 |
///\code |
691 | 691 |
/// b.init(); |
692 | 692 |
/// b.addSource(s); |
693 | 693 |
/// b.start(t); |
694 | 694 |
///\endcode |
695 | 695 |
bool run(Node s,Node t) { |
696 | 696 |
init(); |
697 | 697 |
addSource(s); |
698 | 698 |
start(t); |
699 | 699 |
return reached(t); |
700 | 700 |
} |
701 | 701 |
|
702 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
703 | 703 |
|
704 |
///This method runs the %BFS algorithm in order to |
|
705 |
///compute the shortest path to each node. |
|
706 |
/// |
|
707 |
///The algorithm computes |
|
708 |
///- the shortest path tree (forest), |
|
709 |
///- the distance of each node from the root(s). |
|
704 |
///This method runs the %BFS algorithm in order to visit all nodes |
|
705 |
///in the digraph. |
|
710 | 706 |
/// |
711 | 707 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
712 | 708 |
///\code |
713 | 709 |
/// b.init(); |
714 | 710 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
715 | 711 |
/// if (!b.reached(n)) { |
716 | 712 |
/// b.addSource(n); |
717 | 713 |
/// b.start(); |
718 | 714 |
/// } |
719 | 715 |
/// } |
720 | 716 |
///\endcode |
721 | 717 |
void run() { |
722 | 718 |
init(); |
723 | 719 |
for (NodeIt n(*G); n != INVALID; ++n) { |
724 | 720 |
if (!reached(n)) { |
725 | 721 |
addSource(n); |
726 | 722 |
start(); |
727 | 723 |
} |
728 | 724 |
} |
729 | 725 |
} |
730 | 726 |
|
731 | 727 |
///@} |
732 | 728 |
|
733 | 729 |
///\name Query Functions |
734 | 730 |
///The results of the BFS algorithm can be obtained using these |
735 | 731 |
///functions.\n |
736 | 732 |
///Either \ref run(Node) "run()" or \ref start() should be called |
737 | 733 |
///before using them. |
738 | 734 |
|
739 | 735 |
///@{ |
740 | 736 |
|
741 | 737 |
///The shortest path to the given node. |
742 | 738 |
|
743 | 739 |
///Returns the shortest path to the given node from the root(s). |
744 | 740 |
/// |
745 | 741 |
///\warning \c t should be reached from the root(s). |
746 | 742 |
/// |
747 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
748 | 744 |
///must be called before using this function. |
749 | 745 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
750 | 746 |
|
751 | 747 |
///The distance of the given node from the root(s). |
752 | 748 |
|
753 | 749 |
///Returns the distance of the given node from the root(s). |
754 | 750 |
/// |
755 | 751 |
///\warning If node \c v is not reached from the root(s), then |
756 | 752 |
///the return value of this function is undefined. |
757 | 753 |
/// |
758 | 754 |
///\pre Either \ref run(Node) "run()" or \ref init() |
759 | 755 |
///must be called before using this function. |
760 | 756 |
int dist(Node v) const { return (*_dist)[v]; } |
761 | 757 |
|
762 | 758 |
///\brief Returns the 'previous arc' of the shortest path tree for |
763 | 759 |
///the given node. |
764 | 760 |
/// |
765 | 761 |
///This function returns the 'previous arc' of the shortest path |
766 | 762 |
///tree for the node \c v, i.e. it returns the last arc of a |
767 | 763 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
768 | 764 |
///is not reached from the root(s) or if \c v is a root. |
769 | 765 |
/// |
770 | 766 |
///The shortest path tree used here is equal to the shortest path |
771 | 767 |
///tree used in \ref predNode() and \ref predMap(). |
772 | 768 |
/// |
773 | 769 |
///\pre Either \ref run(Node) "run()" or \ref init() |
774 | 770 |
///must be called before using this function. |
775 | 771 |
Arc predArc(Node v) const { return (*_pred)[v];} |
776 | 772 |
|
777 | 773 |
///\brief Returns the 'previous node' of the shortest path tree for |
778 | 774 |
///the given node. |
779 | 775 |
/// |
780 | 776 |
///This function returns the 'previous node' of the shortest path |
781 | 777 |
///tree for the node \c v, i.e. it returns the last but one node |
782 | 778 |
///of a shortest path from a root to \c v. It is \c INVALID |
783 | 779 |
///if \c v is not reached from the root(s) or if \c v is a root. |
784 | 780 |
/// |
785 | 781 |
///The shortest path tree used here is equal to the shortest path |
786 | 782 |
///tree used in \ref predArc() and \ref predMap(). |
787 | 783 |
/// |
788 | 784 |
///\pre Either \ref run(Node) "run()" or \ref init() |
789 | 785 |
///must be called before using this function. |
790 | 786 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
791 | 787 |
G->source((*_pred)[v]); } |
792 | 788 |
|
793 | 789 |
///\brief Returns a const reference to the node map that stores the |
794 | 790 |
/// distances of the nodes. |
795 | 791 |
/// |
796 | 792 |
///Returns a const reference to the node map that stores the distances |
797 | 793 |
///of the nodes calculated by the algorithm. |
798 | 794 |
/// |
799 | 795 |
///\pre Either \ref run(Node) "run()" or \ref init() |
800 | 796 |
///must be called before using this function. |
801 | 797 |
const DistMap &distMap() const { return *_dist;} |
802 | 798 |
|
803 | 799 |
///\brief Returns a const reference to the node map that stores the |
804 | 800 |
///predecessor arcs. |
805 | 801 |
/// |
806 | 802 |
///Returns a const reference to the node map that stores the predecessor |
807 | 803 |
///arcs, which form the shortest path tree (forest). |
808 | 804 |
/// |
809 | 805 |
///\pre Either \ref run(Node) "run()" or \ref init() |
810 | 806 |
///must be called before using this function. |
811 | 807 |
const PredMap &predMap() const { return *_pred;} |
812 | 808 |
|
813 | 809 |
///Checks if the given node is reached from the root(s). |
814 | 810 |
|
815 | 811 |
///Returns \c true if \c v is reached from the root(s). |
816 | 812 |
/// |
817 | 813 |
///\pre Either \ref run(Node) "run()" or \ref init() |
818 | 814 |
///must be called before using this function. |
819 | 815 |
bool reached(Node v) const { return (*_reached)[v]; } |
820 | 816 |
|
821 | 817 |
///@} |
822 | 818 |
}; |
823 | 819 |
|
824 | 820 |
///Default traits class of bfs() function. |
825 | 821 |
|
826 | 822 |
///Default traits class of bfs() function. |
827 | 823 |
///\tparam GR Digraph type. |
828 | 824 |
template<class GR> |
829 | 825 |
struct BfsWizardDefaultTraits |
830 | 826 |
{ |
831 | 827 |
///The type of the digraph the algorithm runs on. |
832 | 828 |
typedef GR Digraph; |
833 | 829 |
|
834 | 830 |
///\brief The type of the map that stores the predecessor |
835 | 831 |
///arcs of the shortest paths. |
836 | 832 |
/// |
837 | 833 |
///The type of the map that stores the predecessor |
838 | 834 |
///arcs of the shortest paths. |
839 | 835 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
840 | 836 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
841 | 837 |
///Instantiates a PredMap. |
842 | 838 |
|
843 | 839 |
///This function instantiates a PredMap. |
844 | 840 |
///\param g is the digraph, to which we would like to define the |
845 | 841 |
///PredMap. |
846 | 842 |
static PredMap *createPredMap(const Digraph &g) |
847 | 843 |
{ |
848 | 844 |
return new PredMap(g); |
849 | 845 |
} |
850 | 846 |
|
851 | 847 |
///The type of the map that indicates which nodes are processed. |
852 | 848 |
|
853 | 849 |
///The type of the map that indicates which nodes are processed. |
854 | 850 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
855 | 851 |
///By default it is a NullMap. |
856 | 852 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
857 | 853 |
///Instantiates a ProcessedMap. |
858 | 854 |
|
859 | 855 |
///This function instantiates a ProcessedMap. |
860 | 856 |
///\param g is the digraph, to which |
861 | 857 |
///we would like to define the ProcessedMap. |
862 | 858 |
#ifdef DOXYGEN |
863 | 859 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
864 | 860 |
#else |
865 | 861 |
static ProcessedMap *createProcessedMap(const Digraph &) |
866 | 862 |
#endif |
867 | 863 |
{ |
868 | 864 |
return new ProcessedMap(); |
869 | 865 |
} |
870 | 866 |
|
871 | 867 |
///The type of the map that indicates which nodes are reached. |
872 | 868 |
|
873 | 869 |
///The type of the map that indicates which nodes are reached. |
874 | 870 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
875 | 871 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
876 | 872 |
///Instantiates a ReachedMap. |
877 | 873 |
|
878 | 874 |
///This function instantiates a ReachedMap. |
879 | 875 |
///\param g is the digraph, to which |
880 | 876 |
///we would like to define the ReachedMap. |
881 | 877 |
static ReachedMap *createReachedMap(const Digraph &g) |
882 | 878 |
{ |
883 | 879 |
return new ReachedMap(g); |
884 | 880 |
} |
885 | 881 |
|
886 | 882 |
///The type of the map that stores the distances of the nodes. |
887 | 883 |
|
888 | 884 |
///The type of the map that stores the distances of the nodes. |
889 | 885 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
890 | 886 |
typedef typename Digraph::template NodeMap<int> DistMap; |
891 | 887 |
///Instantiates a DistMap. |
892 | 888 |
|
893 | 889 |
///This function instantiates a DistMap. |
894 | 890 |
///\param g is the digraph, to which we would like to define |
895 | 891 |
///the DistMap |
896 | 892 |
static DistMap *createDistMap(const Digraph &g) |
897 | 893 |
{ |
898 | 894 |
return new DistMap(g); |
899 | 895 |
} |
900 | 896 |
|
901 | 897 |
///The type of the shortest paths. |
902 | 898 |
|
903 | 899 |
///The type of the shortest paths. |
904 | 900 |
///It must conform to the \ref concepts::Path "Path" concept. |
905 | 901 |
typedef lemon::Path<Digraph> Path; |
906 | 902 |
}; |
907 | 903 |
|
908 | 904 |
/// Default traits class used by BfsWizard |
909 | 905 |
|
910 | 906 |
/// Default traits class used by BfsWizard. |
911 | 907 |
/// \tparam GR The type of the digraph. |
912 | 908 |
template<class GR> |
913 | 909 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
914 | 910 |
{ |
915 | 911 |
|
916 | 912 |
typedef BfsWizardDefaultTraits<GR> Base; |
917 | 913 |
protected: |
918 | 914 |
//The type of the nodes in the digraph. |
919 | 915 |
typedef typename Base::Digraph::Node Node; |
920 | 916 |
|
921 | 917 |
//Pointer to the digraph the algorithm runs on. |
922 | 918 |
void *_g; |
923 | 919 |
//Pointer to the map of reached nodes. |
924 | 920 |
void *_reached; |
925 | 921 |
//Pointer to the map of processed nodes. |
926 | 922 |
void *_processed; |
927 | 923 |
//Pointer to the map of predecessors arcs. |
928 | 924 |
void *_pred; |
929 | 925 |
//Pointer to the map of distances. |
930 | 926 |
void *_dist; |
931 | 927 |
//Pointer to the shortest path to the target node. |
932 | 928 |
void *_path; |
933 | 929 |
//Pointer to the distance of the target node. |
934 | 930 |
int *_di; |
935 | 931 |
|
936 | 932 |
public: |
937 | 933 |
/// Constructor. |
938 | 934 |
|
939 | 935 |
/// This constructor does not require parameters, it initiates |
940 | 936 |
/// all of the attributes to \c 0. |
941 | 937 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
942 | 938 |
_dist(0), _path(0), _di(0) {} |
943 | 939 |
|
944 | 940 |
/// Constructor. |
945 | 941 |
|
946 | 942 |
/// This constructor requires one parameter, |
947 | 943 |
/// others are initiated to \c 0. |
948 | 944 |
/// \param g The digraph the algorithm runs on. |
949 | 945 |
BfsWizardBase(const GR &g) : |
950 | 946 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
951 | 947 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
952 | 948 |
|
953 | 949 |
}; |
954 | 950 |
|
955 | 951 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
956 | 952 |
|
957 | 953 |
/// This auxiliary class is created to implement the |
958 | 954 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
959 | 955 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
960 | 956 |
/// functions and features of the plain \ref Bfs. |
961 | 957 |
/// |
962 | 958 |
/// This class should only be used through the \ref bfs() function, |
963 | 959 |
/// which makes it easier to use the algorithm. |
964 | 960 |
template<class TR> |
965 | 961 |
class BfsWizard : public TR |
966 | 962 |
{ |
967 | 963 |
typedef TR Base; |
968 | 964 |
|
969 | 965 |
typedef typename TR::Digraph Digraph; |
970 | 966 |
|
971 | 967 |
typedef typename Digraph::Node Node; |
972 | 968 |
typedef typename Digraph::NodeIt NodeIt; |
973 | 969 |
typedef typename Digraph::Arc Arc; |
974 | 970 |
typedef typename Digraph::OutArcIt OutArcIt; |
975 | 971 |
|
976 | 972 |
typedef typename TR::PredMap PredMap; |
977 | 973 |
typedef typename TR::DistMap DistMap; |
978 | 974 |
typedef typename TR::ReachedMap ReachedMap; |
979 | 975 |
typedef typename TR::ProcessedMap ProcessedMap; |
980 | 976 |
typedef typename TR::Path Path; |
981 | 977 |
|
982 | 978 |
public: |
983 | 979 |
|
984 | 980 |
/// Constructor. |
985 | 981 |
BfsWizard() : TR() {} |
986 | 982 |
|
987 | 983 |
/// Constructor that requires parameters. |
988 | 984 |
|
989 | 985 |
/// Constructor that requires parameters. |
990 | 986 |
/// These parameters will be the default values for the traits class. |
991 | 987 |
/// \param g The digraph the algorithm runs on. |
992 | 988 |
BfsWizard(const Digraph &g) : |
993 | 989 |
TR(g) {} |
994 | 990 |
|
995 | 991 |
///Copy constructor |
996 | 992 |
BfsWizard(const TR &b) : TR(b) {} |
997 | 993 |
|
998 | 994 |
~BfsWizard() {} |
999 | 995 |
|
1000 | 996 |
///Runs BFS algorithm from the given source node. |
1001 | 997 |
|
1002 | 998 |
///This method runs BFS algorithm from node \c s |
1003 | 999 |
///in order to compute the shortest path to each node. |
1004 | 1000 |
void run(Node s) |
1005 | 1001 |
{ |
1006 | 1002 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1007 | 1003 |
if (Base::_pred) |
1008 | 1004 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1009 | 1005 |
if (Base::_dist) |
1010 | 1006 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1011 | 1007 |
if (Base::_reached) |
1012 | 1008 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1013 | 1009 |
if (Base::_processed) |
1014 | 1010 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1015 | 1011 |
if (s!=INVALID) |
1016 | 1012 |
alg.run(s); |
1017 | 1013 |
else |
1018 | 1014 |
alg.run(); |
1019 | 1015 |
} |
1020 | 1016 |
|
1021 | 1017 |
///Finds the shortest path between \c s and \c t. |
1022 | 1018 |
|
1023 | 1019 |
///This method runs BFS algorithm from node \c s |
1024 | 1020 |
///in order to compute the shortest path to node \c t |
1025 | 1021 |
///(it stops searching when \c t is processed). |
1026 | 1022 |
/// |
1027 | 1023 |
///\return \c true if \c t is reachable form \c s. |
1028 | 1024 |
bool run(Node s, Node t) |
1029 | 1025 |
{ |
1030 | 1026 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1031 | 1027 |
if (Base::_pred) |
1032 | 1028 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1033 | 1029 |
if (Base::_dist) |
1034 | 1030 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1035 | 1031 |
if (Base::_reached) |
1036 | 1032 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1037 | 1033 |
if (Base::_processed) |
1038 | 1034 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1039 | 1035 |
alg.run(s,t); |
1040 | 1036 |
if (Base::_path) |
1041 | 1037 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1042 | 1038 |
if (Base::_di) |
1043 | 1039 |
*Base::_di = alg.dist(t); |
1044 | 1040 |
return alg.reached(t); |
1045 | 1041 |
} |
1046 | 1042 |
|
1047 | 1043 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1048 | 1044 |
|
1049 |
///This method runs BFS algorithm in order to compute |
|
1050 |
///the shortest path to each node. |
|
1045 |
///This method runs BFS algorithm in order to visit all nodes |
|
1046 |
///in the digraph. |
|
1051 | 1047 |
void run() |
1052 | 1048 |
{ |
1053 | 1049 |
run(INVALID); |
1054 | 1050 |
} |
1055 | 1051 |
|
1056 | 1052 |
template<class T> |
1057 | 1053 |
struct SetPredMapBase : public Base { |
1058 | 1054 |
typedef T PredMap; |
1059 | 1055 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1060 | 1056 |
SetPredMapBase(const TR &b) : TR(b) {} |
1061 | 1057 |
}; |
1062 | 1058 |
|
1063 | 1059 |
///\brief \ref named-templ-param "Named parameter" for setting |
1064 | 1060 |
///the predecessor map. |
1065 | 1061 |
/// |
1066 | 1062 |
///\ref named-templ-param "Named parameter" function for setting |
1067 | 1063 |
///the map that stores the predecessor arcs of the nodes. |
1068 | 1064 |
template<class T> |
1069 | 1065 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1070 | 1066 |
{ |
1071 | 1067 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1072 | 1068 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1073 | 1069 |
} |
1074 | 1070 |
|
1075 | 1071 |
template<class T> |
1076 | 1072 |
struct SetReachedMapBase : public Base { |
1077 | 1073 |
typedef T ReachedMap; |
1078 | 1074 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1079 | 1075 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1080 | 1076 |
}; |
1081 | 1077 |
|
1082 | 1078 |
///\brief \ref named-templ-param "Named parameter" for setting |
1083 | 1079 |
///the reached map. |
1084 | 1080 |
/// |
1085 | 1081 |
///\ref named-templ-param "Named parameter" function for setting |
1086 | 1082 |
///the map that indicates which nodes are reached. |
1087 | 1083 |
template<class T> |
1088 | 1084 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1089 | 1085 |
{ |
1090 | 1086 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1091 | 1087 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1092 | 1088 |
} |
1093 | 1089 |
|
1094 | 1090 |
template<class T> |
1095 | 1091 |
struct SetDistMapBase : public Base { |
1096 | 1092 |
typedef T DistMap; |
1097 | 1093 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1098 | 1094 |
SetDistMapBase(const TR &b) : TR(b) {} |
1099 | 1095 |
}; |
1100 | 1096 |
|
1101 | 1097 |
///\brief \ref named-templ-param "Named parameter" for setting |
1102 | 1098 |
///the distance map. |
1103 | 1099 |
/// |
1104 | 1100 |
///\ref named-templ-param "Named parameter" function for setting |
1105 | 1101 |
///the map that stores the distances of the nodes calculated |
1106 | 1102 |
///by the algorithm. |
1107 | 1103 |
template<class T> |
1108 | 1104 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1109 | 1105 |
{ |
1110 | 1106 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1111 | 1107 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1112 | 1108 |
} |
1113 | 1109 |
|
1114 | 1110 |
template<class T> |
1115 | 1111 |
struct SetProcessedMapBase : public Base { |
1116 | 1112 |
typedef T ProcessedMap; |
1117 | 1113 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1118 | 1114 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1119 | 1115 |
}; |
1120 | 1116 |
|
1121 | 1117 |
///\brief \ref named-func-param "Named parameter" for setting |
1122 | 1118 |
///the processed map. |
1123 | 1119 |
/// |
1124 | 1120 |
///\ref named-templ-param "Named parameter" function for setting |
1125 | 1121 |
///the map that indicates which nodes are processed. |
1126 | 1122 |
template<class T> |
1127 | 1123 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1128 | 1124 |
{ |
1129 | 1125 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1130 | 1126 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1131 | 1127 |
} |
1132 | 1128 |
|
1133 | 1129 |
template<class T> |
1134 | 1130 |
struct SetPathBase : public Base { |
1135 | 1131 |
typedef T Path; |
1136 | 1132 |
SetPathBase(const TR &b) : TR(b) {} |
1137 | 1133 |
}; |
1138 | 1134 |
///\brief \ref named-func-param "Named parameter" |
1139 | 1135 |
///for getting the shortest path to the target node. |
1140 | 1136 |
/// |
1141 | 1137 |
///\ref named-func-param "Named parameter" |
1142 | 1138 |
///for getting the shortest path to the target node. |
1143 | 1139 |
template<class T> |
1144 | 1140 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1145 | 1141 |
{ |
1146 | 1142 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1147 | 1143 |
return BfsWizard<SetPathBase<T> >(*this); |
1148 | 1144 |
} |
1149 | 1145 |
|
1150 | 1146 |
///\brief \ref named-func-param "Named parameter" |
1151 | 1147 |
///for getting the distance of the target node. |
1152 | 1148 |
/// |
1153 | 1149 |
///\ref named-func-param "Named parameter" |
1154 | 1150 |
///for getting the distance of the target node. |
1155 | 1151 |
BfsWizard dist(const int &d) |
1156 | 1152 |
{ |
1157 | 1153 |
Base::_di=const_cast<int*>(&d); |
1158 | 1154 |
return *this; |
1159 | 1155 |
} |
1160 | 1156 |
|
1161 | 1157 |
}; |
1162 | 1158 |
|
1163 | 1159 |
///Function-type interface for BFS algorithm. |
1164 | 1160 |
|
1165 | 1161 |
/// \ingroup search |
1166 | 1162 |
///Function-type interface for BFS algorithm. |
1167 | 1163 |
/// |
1168 | 1164 |
///This function also has several \ref named-func-param "named parameters", |
1169 | 1165 |
///they are declared as the members of class \ref BfsWizard. |
1170 | 1166 |
///The following examples show how to use these parameters. |
1171 | 1167 |
///\code |
1172 | 1168 |
/// // Compute shortest path from node s to each node |
1173 | 1169 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1174 | 1170 |
/// |
1175 | 1171 |
/// // Compute shortest path from s to t |
1176 | 1172 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1177 | 1173 |
///\endcode |
1178 | 1174 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1179 | 1175 |
///to the end of the parameter list. |
1180 | 1176 |
///\sa BfsWizard |
1181 | 1177 |
///\sa Bfs |
1182 | 1178 |
template<class GR> |
1183 | 1179 |
BfsWizard<BfsWizardBase<GR> > |
1184 | 1180 |
bfs(const GR &digraph) |
1185 | 1181 |
{ |
1186 | 1182 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1187 | 1183 |
} |
1188 | 1184 |
|
1189 | 1185 |
#ifdef DOXYGEN |
1190 | 1186 |
/// \brief Visitor class for BFS. |
1191 | 1187 |
/// |
1192 | 1188 |
/// This class defines the interface of the BfsVisit events, and |
1193 | 1189 |
/// it could be the base of a real visitor class. |
1194 | 1190 |
template <typename GR> |
1195 | 1191 |
struct BfsVisitor { |
1196 | 1192 |
typedef GR Digraph; |
1197 | 1193 |
typedef typename Digraph::Arc Arc; |
1198 | 1194 |
typedef typename Digraph::Node Node; |
1199 | 1195 |
/// \brief Called for the source node(s) of the BFS. |
1200 | 1196 |
/// |
1201 | 1197 |
/// This function is called for the source node(s) of the BFS. |
1202 | 1198 |
void start(const Node& node) {} |
1203 | 1199 |
/// \brief Called when a node is reached first time. |
1204 | 1200 |
/// |
1205 | 1201 |
/// This function is called when a node is reached first time. |
1206 | 1202 |
void reach(const Node& node) {} |
1207 | 1203 |
/// \brief Called when a node is processed. |
1208 | 1204 |
/// |
1209 | 1205 |
/// This function is called when a node is processed. |
1210 | 1206 |
void process(const Node& node) {} |
1211 | 1207 |
/// \brief Called when an arc reaches a new node. |
1212 | 1208 |
/// |
1213 | 1209 |
/// This function is called when the BFS finds an arc whose target node |
1214 | 1210 |
/// is not reached yet. |
1215 | 1211 |
void discover(const Arc& arc) {} |
1216 | 1212 |
/// \brief Called when an arc is examined but its target node is |
1217 | 1213 |
/// already discovered. |
1218 | 1214 |
/// |
1219 | 1215 |
/// This function is called when an arc is examined but its target node is |
1220 | 1216 |
/// already discovered. |
1221 | 1217 |
void examine(const Arc& arc) {} |
1222 | 1218 |
}; |
1223 | 1219 |
#else |
1224 | 1220 |
template <typename GR> |
1225 | 1221 |
struct BfsVisitor { |
1226 | 1222 |
typedef GR Digraph; |
1227 | 1223 |
typedef typename Digraph::Arc Arc; |
1228 | 1224 |
typedef typename Digraph::Node Node; |
1229 | 1225 |
void start(const Node&) {} |
1230 | 1226 |
void reach(const Node&) {} |
1231 | 1227 |
void process(const Node&) {} |
1232 | 1228 |
void discover(const Arc&) {} |
1233 | 1229 |
void examine(const Arc&) {} |
1234 | 1230 |
|
1235 | 1231 |
template <typename _Visitor> |
1236 | 1232 |
struct Constraints { |
1237 | 1233 |
void constraints() { |
1238 | 1234 |
Arc arc; |
1239 | 1235 |
Node node; |
1240 | 1236 |
visitor.start(node); |
1241 | 1237 |
visitor.reach(node); |
1242 | 1238 |
visitor.process(node); |
1243 | 1239 |
visitor.discover(arc); |
1244 | 1240 |
visitor.examine(arc); |
1245 | 1241 |
} |
1246 | 1242 |
_Visitor& visitor; |
1247 | 1243 |
}; |
1248 | 1244 |
}; |
1249 | 1245 |
#endif |
1250 | 1246 |
|
1251 | 1247 |
/// \brief Default traits class of BfsVisit class. |
1252 | 1248 |
/// |
1253 | 1249 |
/// Default traits class of BfsVisit class. |
1254 | 1250 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1255 | 1251 |
template<class GR> |
1256 | 1252 |
struct BfsVisitDefaultTraits { |
1257 | 1253 |
|
1258 | 1254 |
/// \brief The type of the digraph the algorithm runs on. |
1259 | 1255 |
typedef GR Digraph; |
1260 | 1256 |
|
1261 | 1257 |
/// \brief The type of the map that indicates which nodes are reached. |
1262 | 1258 |
/// |
1263 | 1259 |
/// The type of the map that indicates which nodes are reached. |
1264 | 1260 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1265 | 1261 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1266 | 1262 |
|
1267 | 1263 |
/// \brief Instantiates a ReachedMap. |
1268 | 1264 |
/// |
1269 | 1265 |
/// This function instantiates a ReachedMap. |
1270 | 1266 |
/// \param digraph is the digraph, to which |
1271 | 1267 |
/// we would like to define the ReachedMap. |
1272 | 1268 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1273 | 1269 |
return new ReachedMap(digraph); |
1274 | 1270 |
} |
1275 | 1271 |
|
1276 | 1272 |
}; |
1277 | 1273 |
|
1278 | 1274 |
/// \ingroup search |
1279 | 1275 |
/// |
1280 | 1276 |
/// \brief BFS algorithm class with visitor interface. |
1281 | 1277 |
/// |
1282 | 1278 |
/// This class provides an efficient implementation of the BFS algorithm |
1283 | 1279 |
/// with visitor interface. |
1284 | 1280 |
/// |
1285 | 1281 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1286 | 1282 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1287 | 1283 |
/// the member functions of the \c Visitor class on every BFS event. |
1288 | 1284 |
/// |
1289 | 1285 |
/// This interface of the BFS algorithm should be used in special cases |
1290 | 1286 |
/// when extra actions have to be performed in connection with certain |
1291 | 1287 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1292 | 1288 |
/// instead. |
1293 | 1289 |
/// |
1294 | 1290 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1295 | 1291 |
/// The default type is \ref ListDigraph. |
1296 | 1292 |
/// The value of GR is not used directly by \ref BfsVisit, |
1297 | 1293 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
1298 | 1294 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1299 | 1295 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
1300 | 1296 |
/// does not observe the BFS events. If you want to observe the BFS |
1301 | 1297 |
/// events, you should implement your own visitor class. |
1302 | 1298 |
/// \tparam TR Traits class to set various data types used by the |
1303 | 1299 |
/// algorithm. The default traits class is |
1304 | 1300 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
1305 | 1301 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1306 | 1302 |
/// a BFS visit traits class. |
1307 | 1303 |
#ifdef DOXYGEN |
1308 | 1304 |
template <typename GR, typename VS, typename TR> |
1309 | 1305 |
#else |
1310 | 1306 |
template <typename GR = ListDigraph, |
1311 | 1307 |
typename VS = BfsVisitor<GR>, |
1312 | 1308 |
typename TR = BfsVisitDefaultTraits<GR> > |
1313 | 1309 |
#endif |
1314 | 1310 |
class BfsVisit { |
1315 | 1311 |
public: |
1316 | 1312 |
|
1317 | 1313 |
///The traits class. |
1318 | 1314 |
typedef TR Traits; |
1319 | 1315 |
|
1320 | 1316 |
///The type of the digraph the algorithm runs on. |
1321 | 1317 |
typedef typename Traits::Digraph Digraph; |
1322 | 1318 |
|
1323 | 1319 |
///The visitor type used by the algorithm. |
1324 | 1320 |
typedef VS Visitor; |
1325 | 1321 |
|
1326 | 1322 |
///The type of the map that indicates which nodes are reached. |
1327 | 1323 |
typedef typename Traits::ReachedMap ReachedMap; |
1328 | 1324 |
|
1329 | 1325 |
private: |
1330 | 1326 |
|
1331 | 1327 |
typedef typename Digraph::Node Node; |
1332 | 1328 |
typedef typename Digraph::NodeIt NodeIt; |
1333 | 1329 |
typedef typename Digraph::Arc Arc; |
1334 | 1330 |
typedef typename Digraph::OutArcIt OutArcIt; |
1335 | 1331 |
|
1336 | 1332 |
//Pointer to the underlying digraph. |
1337 | 1333 |
const Digraph *_digraph; |
1338 | 1334 |
//Pointer to the visitor object. |
1339 | 1335 |
Visitor *_visitor; |
1340 | 1336 |
//Pointer to the map of reached status of the nodes. |
1341 | 1337 |
ReachedMap *_reached; |
1342 | 1338 |
//Indicates if _reached is locally allocated (true) or not. |
1343 | 1339 |
bool local_reached; |
1344 | 1340 |
|
1345 | 1341 |
std::vector<typename Digraph::Node> _list; |
1346 | 1342 |
int _list_front, _list_back; |
1347 | 1343 |
|
1348 | 1344 |
//Creates the maps if necessary. |
1349 | 1345 |
void create_maps() { |
1350 | 1346 |
if(!_reached) { |
1351 | 1347 |
local_reached = true; |
1352 | 1348 |
_reached = Traits::createReachedMap(*_digraph); |
1353 | 1349 |
} |
1354 | 1350 |
} |
1355 | 1351 |
|
1356 | 1352 |
protected: |
1357 | 1353 |
|
1358 | 1354 |
BfsVisit() {} |
1359 | 1355 |
|
1360 | 1356 |
public: |
1361 | 1357 |
|
1362 | 1358 |
typedef BfsVisit Create; |
1363 | 1359 |
|
1364 | 1360 |
/// \name Named Template Parameters |
1365 | 1361 |
|
1366 | 1362 |
///@{ |
1367 | 1363 |
template <class T> |
1368 | 1364 |
struct SetReachedMapTraits : public Traits { |
1369 | 1365 |
typedef T ReachedMap; |
1370 | 1366 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1371 | 1367 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1372 | 1368 |
return 0; // ignore warnings |
1373 | 1369 |
} |
1374 | 1370 |
}; |
1375 | 1371 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1376 | 1372 |
/// ReachedMap type. |
1377 | 1373 |
/// |
1378 | 1374 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1379 | 1375 |
template <class T> |
1380 | 1376 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1381 | 1377 |
SetReachedMapTraits<T> > { |
1382 | 1378 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1383 | 1379 |
}; |
1384 | 1380 |
///@} |
1385 | 1381 |
|
1386 | 1382 |
public: |
1387 | 1383 |
|
1388 | 1384 |
/// \brief Constructor. |
1389 | 1385 |
/// |
1390 | 1386 |
/// Constructor. |
1391 | 1387 |
/// |
1392 | 1388 |
/// \param digraph The digraph the algorithm runs on. |
1393 | 1389 |
/// \param visitor The visitor object of the algorithm. |
1394 | 1390 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1395 | 1391 |
: _digraph(&digraph), _visitor(&visitor), |
1396 | 1392 |
_reached(0), local_reached(false) {} |
1397 | 1393 |
|
1398 | 1394 |
/// \brief Destructor. |
1399 | 1395 |
~BfsVisit() { |
1400 | 1396 |
if(local_reached) delete _reached; |
1401 | 1397 |
} |
1402 | 1398 |
|
1403 | 1399 |
/// \brief Sets the map that indicates which nodes are reached. |
1404 | 1400 |
/// |
1405 | 1401 |
/// Sets the map that indicates which nodes are reached. |
1406 | 1402 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1407 | 1403 |
/// or \ref init(), an instance will be allocated automatically. |
1408 | 1404 |
/// The destructor deallocates this automatically allocated map, |
1409 | 1405 |
/// of course. |
1410 | 1406 |
/// \return <tt> (*this) </tt> |
1411 | 1407 |
BfsVisit &reachedMap(ReachedMap &m) { |
1412 | 1408 |
if(local_reached) { |
1413 | 1409 |
delete _reached; |
1414 | 1410 |
local_reached = false; |
1415 | 1411 |
} |
1416 | 1412 |
_reached = &m; |
1417 | 1413 |
return *this; |
1418 | 1414 |
} |
1419 | 1415 |
|
1420 | 1416 |
public: |
1421 | 1417 |
|
1422 | 1418 |
/// \name Execution Control |
1423 | 1419 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1424 | 1420 |
/// member functions called \ref run(Node) "run()".\n |
1425 | 1421 |
/// If you need better control on the execution, you have to call |
1426 | 1422 |
/// \ref init() first, then you can add several source nodes with |
1427 | 1423 |
/// \ref addSource(). Finally the actual path computation can be |
1428 | 1424 |
/// performed with one of the \ref start() functions. |
1429 | 1425 |
|
1430 | 1426 |
/// @{ |
1431 | 1427 |
|
1432 | 1428 |
/// \brief Initializes the internal data structures. |
1433 | 1429 |
/// |
1434 | 1430 |
/// Initializes the internal data structures. |
1435 | 1431 |
void init() { |
1436 | 1432 |
create_maps(); |
1437 | 1433 |
_list.resize(countNodes(*_digraph)); |
1438 | 1434 |
_list_front = _list_back = -1; |
1439 | 1435 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1440 | 1436 |
_reached->set(u, false); |
1441 | 1437 |
} |
1442 | 1438 |
} |
1443 | 1439 |
|
1444 | 1440 |
/// \brief Adds a new source node. |
1445 | 1441 |
/// |
1446 | 1442 |
/// Adds a new source node to the set of nodes to be processed. |
1447 | 1443 |
void addSource(Node s) { |
1448 | 1444 |
if(!(*_reached)[s]) { |
1449 | 1445 |
_reached->set(s,true); |
1450 | 1446 |
_visitor->start(s); |
1451 | 1447 |
_visitor->reach(s); |
1452 | 1448 |
_list[++_list_back] = s; |
1453 | 1449 |
} |
1454 | 1450 |
} |
1455 | 1451 |
|
1456 | 1452 |
/// \brief Processes the next node. |
1457 | 1453 |
/// |
1458 | 1454 |
/// Processes the next node. |
1459 | 1455 |
/// |
1460 | 1456 |
/// \return The processed node. |
1461 | 1457 |
/// |
1462 | 1458 |
/// \pre The queue must not be empty. |
1463 | 1459 |
Node processNextNode() { |
1464 | 1460 |
Node n = _list[++_list_front]; |
1465 | 1461 |
_visitor->process(n); |
1466 | 1462 |
Arc e; |
1467 | 1463 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1468 | 1464 |
Node m = _digraph->target(e); |
1469 | 1465 |
if (!(*_reached)[m]) { |
1470 | 1466 |
_visitor->discover(e); |
1471 | 1467 |
_visitor->reach(m); |
1472 | 1468 |
_reached->set(m, true); |
1473 | 1469 |
_list[++_list_back] = m; |
1474 | 1470 |
} else { |
1475 | 1471 |
_visitor->examine(e); |
1476 | 1472 |
} |
1477 | 1473 |
} |
1478 | 1474 |
return n; |
1479 | 1475 |
} |
1480 | 1476 |
|
1481 | 1477 |
/// \brief Processes the next node. |
1482 | 1478 |
/// |
1483 | 1479 |
/// Processes the next node and checks if the given target node |
1484 | 1480 |
/// is reached. If the target node is reachable from the processed |
1485 | 1481 |
/// node, then the \c reach parameter will be set to \c true. |
1486 | 1482 |
/// |
1487 | 1483 |
/// \param target The target node. |
1488 | 1484 |
/// \retval reach Indicates if the target node is reached. |
1489 | 1485 |
/// It should be initially \c false. |
1490 | 1486 |
/// |
1491 | 1487 |
/// \return The processed node. |
1492 | 1488 |
/// |
1493 | 1489 |
/// \pre The queue must not be empty. |
1494 | 1490 |
Node processNextNode(Node target, bool& reach) { |
1495 | 1491 |
Node n = _list[++_list_front]; |
1496 | 1492 |
_visitor->process(n); |
1497 | 1493 |
Arc e; |
1498 | 1494 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1499 | 1495 |
Node m = _digraph->target(e); |
1500 | 1496 |
if (!(*_reached)[m]) { |
1501 | 1497 |
_visitor->discover(e); |
1502 | 1498 |
_visitor->reach(m); |
1503 | 1499 |
_reached->set(m, true); |
1504 | 1500 |
_list[++_list_back] = m; |
1505 | 1501 |
reach = reach || (target == m); |
1506 | 1502 |
} else { |
1507 | 1503 |
_visitor->examine(e); |
1508 | 1504 |
} |
1509 | 1505 |
} |
1510 | 1506 |
return n; |
1511 | 1507 |
} |
1512 | 1508 |
|
1513 | 1509 |
/// \brief Processes the next node. |
1514 | 1510 |
/// |
1515 | 1511 |
/// Processes the next node and checks if at least one of reached |
1516 | 1512 |
/// nodes has \c true value in the \c nm node map. If one node |
1517 | 1513 |
/// with \c true value is reachable from the processed node, then the |
1518 | 1514 |
/// \c rnode parameter will be set to the first of such nodes. |
1519 | 1515 |
/// |
1520 | 1516 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1521 | 1517 |
/// possible targets. |
1522 | 1518 |
/// \retval rnode The reached target node. |
1523 | 1519 |
/// It should be initially \c INVALID. |
1524 | 1520 |
/// |
1525 | 1521 |
/// \return The processed node. |
1526 | 1522 |
/// |
1527 | 1523 |
/// \pre The queue must not be empty. |
1528 | 1524 |
template <typename NM> |
1529 | 1525 |
Node processNextNode(const NM& nm, Node& rnode) { |
1530 | 1526 |
Node n = _list[++_list_front]; |
1531 | 1527 |
_visitor->process(n); |
1532 | 1528 |
Arc e; |
1533 | 1529 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1534 | 1530 |
Node m = _digraph->target(e); |
1535 | 1531 |
if (!(*_reached)[m]) { |
1536 | 1532 |
_visitor->discover(e); |
1537 | 1533 |
_visitor->reach(m); |
1538 | 1534 |
_reached->set(m, true); |
1539 | 1535 |
_list[++_list_back] = m; |
1540 | 1536 |
if (nm[m] && rnode == INVALID) rnode = m; |
1541 | 1537 |
} else { |
1542 | 1538 |
_visitor->examine(e); |
1543 | 1539 |
} |
1544 | 1540 |
} |
1545 | 1541 |
return n; |
1546 | 1542 |
} |
1547 | 1543 |
|
1548 | 1544 |
/// \brief The next node to be processed. |
1549 | 1545 |
/// |
1550 | 1546 |
/// Returns the next node to be processed or \c INVALID if the queue |
1551 | 1547 |
/// is empty. |
1552 | 1548 |
Node nextNode() const { |
1553 | 1549 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1554 | 1550 |
} |
1555 | 1551 |
|
1556 | 1552 |
/// \brief Returns \c false if there are nodes |
1557 | 1553 |
/// to be processed. |
1558 | 1554 |
/// |
1559 | 1555 |
/// Returns \c false if there are nodes |
1560 | 1556 |
/// to be processed in the queue. |
1561 | 1557 |
bool emptyQueue() const { return _list_front == _list_back; } |
1562 | 1558 |
|
1563 | 1559 |
/// \brief Returns the number of the nodes to be processed. |
1564 | 1560 |
/// |
1565 | 1561 |
/// Returns the number of the nodes to be processed in the queue. |
1566 | 1562 |
int queueSize() const { return _list_back - _list_front; } |
1567 | 1563 |
|
1568 | 1564 |
/// \brief Executes the algorithm. |
1569 | 1565 |
/// |
1570 | 1566 |
/// Executes the algorithm. |
1571 | 1567 |
/// |
1572 | 1568 |
/// This method runs the %BFS algorithm from the root node(s) |
1573 | 1569 |
/// in order to compute the shortest path to each node. |
1574 | 1570 |
/// |
1575 | 1571 |
/// The algorithm computes |
1576 | 1572 |
/// - the shortest path tree (forest), |
1577 | 1573 |
/// - the distance of each node from the root(s). |
1578 | 1574 |
/// |
1579 | 1575 |
/// \pre init() must be called and at least one root node should be added |
1580 | 1576 |
/// with addSource() before using this function. |
1581 | 1577 |
/// |
1582 | 1578 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1583 | 1579 |
/// \code |
1584 | 1580 |
/// while ( !b.emptyQueue() ) { |
1585 | 1581 |
/// b.processNextNode(); |
1586 | 1582 |
/// } |
1587 | 1583 |
/// \endcode |
1588 | 1584 |
void start() { |
1589 | 1585 |
while ( !emptyQueue() ) processNextNode(); |
1590 | 1586 |
} |
1591 | 1587 |
|
1592 | 1588 |
/// \brief Executes the algorithm until the given target node is reached. |
1593 | 1589 |
/// |
1594 | 1590 |
/// Executes the algorithm until the given target node is reached. |
1595 | 1591 |
/// |
1596 | 1592 |
/// This method runs the %BFS algorithm from the root node(s) |
1597 | 1593 |
/// in order to compute the shortest path to \c t. |
1598 | 1594 |
/// |
1599 | 1595 |
/// The algorithm computes |
1600 | 1596 |
/// - the shortest path to \c t, |
1601 | 1597 |
/// - the distance of \c t from the root(s). |
1602 | 1598 |
/// |
1603 | 1599 |
/// \pre init() must be called and at least one root node should be |
1604 | 1600 |
/// added with addSource() before using this function. |
1605 | 1601 |
/// |
1606 | 1602 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1607 | 1603 |
/// \code |
1608 | 1604 |
/// bool reach = false; |
1609 | 1605 |
/// while ( !b.emptyQueue() && !reach ) { |
1610 | 1606 |
/// b.processNextNode(t, reach); |
1611 | 1607 |
/// } |
1612 | 1608 |
/// \endcode |
1613 | 1609 |
void start(Node t) { |
1614 | 1610 |
bool reach = false; |
1615 | 1611 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
1616 | 1612 |
} |
1617 | 1613 |
|
1618 | 1614 |
/// \brief Executes the algorithm until a condition is met. |
1619 | 1615 |
/// |
1620 | 1616 |
/// Executes the algorithm until a condition is met. |
1621 | 1617 |
/// |
1622 | 1618 |
/// This method runs the %BFS algorithm from the root node(s) in |
1623 | 1619 |
/// order to compute the shortest path to a node \c v with |
1624 | 1620 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
1625 | 1621 |
/// |
1626 | 1622 |
/// \param nm must be a bool (or convertible) node map. The |
1627 | 1623 |
/// algorithm will stop when it reaches a node \c v with |
1628 | 1624 |
/// <tt>nm[v]</tt> true. |
1629 | 1625 |
/// |
1630 | 1626 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
1631 | 1627 |
/// \c INVALID if no such node was found. |
1632 | 1628 |
/// |
1633 | 1629 |
/// \pre init() must be called and at least one root node should be |
1634 | 1630 |
/// added with addSource() before using this function. |
1635 | 1631 |
/// |
1636 | 1632 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
1637 | 1633 |
/// \code |
1638 | 1634 |
/// Node rnode = INVALID; |
1639 | 1635 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
1640 | 1636 |
/// b.processNextNode(nm, rnode); |
1641 | 1637 |
/// } |
1642 | 1638 |
/// return rnode; |
1643 | 1639 |
/// \endcode |
1644 | 1640 |
template <typename NM> |
1645 | 1641 |
Node start(const NM &nm) { |
1646 | 1642 |
Node rnode = INVALID; |
1647 | 1643 |
while ( !emptyQueue() && rnode == INVALID ) { |
1648 | 1644 |
processNextNode(nm, rnode); |
1649 | 1645 |
} |
1650 | 1646 |
return rnode; |
1651 | 1647 |
} |
1652 | 1648 |
|
1653 | 1649 |
/// \brief Runs the algorithm from the given source node. |
1654 | 1650 |
/// |
1655 | 1651 |
/// This method runs the %BFS algorithm from node \c s |
1656 | 1652 |
/// in order to compute the shortest path to each node. |
1657 | 1653 |
/// |
1658 | 1654 |
/// The algorithm computes |
1659 | 1655 |
/// - the shortest path tree, |
1660 | 1656 |
/// - the distance of each node from the root. |
1661 | 1657 |
/// |
1662 | 1658 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1663 | 1659 |
///\code |
1664 | 1660 |
/// b.init(); |
1665 | 1661 |
/// b.addSource(s); |
1666 | 1662 |
/// b.start(); |
1667 | 1663 |
///\endcode |
1668 | 1664 |
void run(Node s) { |
1669 | 1665 |
init(); |
1670 | 1666 |
addSource(s); |
1671 | 1667 |
start(); |
1672 | 1668 |
} |
1673 | 1669 |
|
1674 | 1670 |
/// \brief Finds the shortest path between \c s and \c t. |
1675 | 1671 |
/// |
1676 | 1672 |
/// This method runs the %BFS algorithm from node \c s |
1677 | 1673 |
/// in order to compute the shortest path to node \c t |
1678 | 1674 |
/// (it stops searching when \c t is processed). |
1679 | 1675 |
/// |
1680 | 1676 |
/// \return \c true if \c t is reachable form \c s. |
1681 | 1677 |
/// |
1682 | 1678 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
1683 | 1679 |
/// shortcut of the following code. |
1684 | 1680 |
///\code |
1685 | 1681 |
/// b.init(); |
1686 | 1682 |
/// b.addSource(s); |
1687 | 1683 |
/// b.start(t); |
1688 | 1684 |
///\endcode |
1689 | 1685 |
bool run(Node s,Node t) { |
1690 | 1686 |
init(); |
1691 | 1687 |
addSource(s); |
1692 | 1688 |
start(t); |
1693 | 1689 |
return reached(t); |
1694 | 1690 |
} |
1695 | 1691 |
|
1696 | 1692 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1697 | 1693 |
/// |
1698 |
/// This method runs the %BFS algorithm in order to |
|
1699 |
/// compute the shortest path to each node. |
|
1700 |
/// |
|
1701 |
/// The algorithm computes |
|
1702 |
/// - the shortest path tree (forest), |
|
1703 |
/// - the distance of each node from the root(s). |
|
1694 |
/// This method runs the %BFS algorithm in order to visit all nodes |
|
1695 |
/// in the digraph. |
|
1704 | 1696 |
/// |
1705 | 1697 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1706 | 1698 |
///\code |
1707 | 1699 |
/// b.init(); |
1708 | 1700 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1709 | 1701 |
/// if (!b.reached(n)) { |
1710 | 1702 |
/// b.addSource(n); |
1711 | 1703 |
/// b.start(); |
1712 | 1704 |
/// } |
1713 | 1705 |
/// } |
1714 | 1706 |
///\endcode |
1715 | 1707 |
void run() { |
1716 | 1708 |
init(); |
1717 | 1709 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1718 | 1710 |
if (!reached(it)) { |
1719 | 1711 |
addSource(it); |
1720 | 1712 |
start(); |
1721 | 1713 |
} |
1722 | 1714 |
} |
1723 | 1715 |
} |
1724 | 1716 |
|
1725 | 1717 |
///@} |
1726 | 1718 |
|
1727 | 1719 |
/// \name Query Functions |
1728 | 1720 |
/// The results of the BFS algorithm can be obtained using these |
1729 | 1721 |
/// functions.\n |
1730 | 1722 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1731 | 1723 |
/// before using them. |
1732 | 1724 |
|
1733 | 1725 |
///@{ |
1734 | 1726 |
|
1735 | 1727 |
/// \brief Checks if the given node is reached from the root(s). |
1736 | 1728 |
/// |
1737 | 1729 |
/// Returns \c true if \c v is reached from the root(s). |
1738 | 1730 |
/// |
1739 | 1731 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1740 | 1732 |
/// must be called before using this function. |
1741 | 1733 |
bool reached(Node v) const { return (*_reached)[v]; } |
1742 | 1734 |
|
1743 | 1735 |
///@} |
1744 | 1736 |
|
1745 | 1737 |
}; |
1746 | 1738 |
|
1747 | 1739 |
} //END OF NAMESPACE LEMON |
1748 | 1740 |
|
1749 | 1741 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct DfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
///By default it is a NullMap. |
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap. |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a \c ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a \ref ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
91 | 91 |
///we would like to define the \ref ReachedMap. |
92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 93 |
{ |
94 | 94 |
return new ReachedMap(g); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
///The type of the map that stores the distances of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the distances of the nodes. |
100 | 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 102 |
///Instantiates a \c DistMap. |
103 | 103 |
|
104 | 104 |
///This function instantiates a \ref DistMap. |
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 | 106 |
///\ref DistMap. |
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%DFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default type is \ref ListDigraph. |
124 | 124 |
#ifdef DOXYGEN |
125 | 125 |
template <typename GR, |
126 | 126 |
typename TR> |
127 | 127 |
#else |
128 | 128 |
template <typename GR=ListDigraph, |
129 | 129 |
typename TR=DfsDefaultTraits<GR> > |
130 | 130 |
#endif |
131 | 131 |
class Dfs { |
132 | 132 |
public: |
133 | 133 |
|
134 | 134 |
///The type of the digraph the algorithm runs on. |
135 | 135 |
typedef typename TR::Digraph Digraph; |
136 | 136 |
|
137 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
138 | 138 |
///DFS paths. |
139 | 139 |
typedef typename TR::PredMap PredMap; |
140 | 140 |
///The type of the map that stores the distances of the nodes. |
141 | 141 |
typedef typename TR::DistMap DistMap; |
142 | 142 |
///The type of the map that indicates which nodes are reached. |
143 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
144 | 144 |
///The type of the map that indicates which nodes are processed. |
145 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
146 | 146 |
///The type of the paths. |
147 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
148 | 148 |
|
149 | 149 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
150 | 150 |
typedef TR Traits; |
151 | 151 |
|
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
typedef typename Digraph::Node Node; |
155 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
156 | 156 |
typedef typename Digraph::Arc Arc; |
157 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
158 | 158 |
|
159 | 159 |
//Pointer to the underlying digraph. |
160 | 160 |
const Digraph *G; |
161 | 161 |
//Pointer to the map of predecessor arcs. |
162 | 162 |
PredMap *_pred; |
163 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
164 | 164 |
bool local_pred; |
165 | 165 |
//Pointer to the map of distances. |
166 | 166 |
DistMap *_dist; |
167 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
168 | 168 |
bool local_dist; |
169 | 169 |
//Pointer to the map of reached status of the nodes. |
170 | 170 |
ReachedMap *_reached; |
171 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
172 | 172 |
bool local_reached; |
173 | 173 |
//Pointer to the map of processed status of the nodes. |
174 | 174 |
ProcessedMap *_processed; |
175 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
176 | 176 |
bool local_processed; |
177 | 177 |
|
178 | 178 |
std::vector<typename Digraph::OutArcIt> _stack; |
179 | 179 |
int _stack_head; |
180 | 180 |
|
181 | 181 |
//Creates the maps if necessary. |
182 | 182 |
void create_maps() |
183 | 183 |
{ |
184 | 184 |
if(!_pred) { |
185 | 185 |
local_pred = true; |
186 | 186 |
_pred = Traits::createPredMap(*G); |
187 | 187 |
} |
188 | 188 |
if(!_dist) { |
189 | 189 |
local_dist = true; |
190 | 190 |
_dist = Traits::createDistMap(*G); |
191 | 191 |
} |
192 | 192 |
if(!_reached) { |
193 | 193 |
local_reached = true; |
194 | 194 |
_reached = Traits::createReachedMap(*G); |
195 | 195 |
} |
196 | 196 |
if(!_processed) { |
197 | 197 |
local_processed = true; |
198 | 198 |
_processed = Traits::createProcessedMap(*G); |
199 | 199 |
} |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
protected: |
203 | 203 |
|
204 | 204 |
Dfs() {} |
205 | 205 |
|
206 | 206 |
public: |
207 | 207 |
|
208 | 208 |
typedef Dfs Create; |
209 | 209 |
|
210 | 210 |
///\name Named Template Parameters |
211 | 211 |
|
212 | 212 |
///@{ |
213 | 213 |
|
214 | 214 |
template <class T> |
215 | 215 |
struct SetPredMapTraits : public Traits { |
216 | 216 |
typedef T PredMap; |
217 | 217 |
static PredMap *createPredMap(const Digraph &) |
218 | 218 |
{ |
219 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
220 | 220 |
return 0; // ignore warnings |
221 | 221 |
} |
222 | 222 |
}; |
223 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
224 | 224 |
///\c PredMap type. |
225 | 225 |
/// |
226 | 226 |
///\ref named-templ-param "Named parameter" for setting |
227 | 227 |
///\c PredMap type. |
228 | 228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
229 | 229 |
template <class T> |
230 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
231 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
232 | 232 |
}; |
233 | 233 |
|
234 | 234 |
template <class T> |
235 | 235 |
struct SetDistMapTraits : public Traits { |
236 | 236 |
typedef T DistMap; |
237 | 237 |
static DistMap *createDistMap(const Digraph &) |
238 | 238 |
{ |
239 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
240 | 240 |
return 0; // ignore warnings |
241 | 241 |
} |
242 | 242 |
}; |
243 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
244 | 244 |
///\c DistMap type. |
245 | 245 |
/// |
246 | 246 |
///\ref named-templ-param "Named parameter" for setting |
247 | 247 |
///\c DistMap type. |
248 | 248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
249 | 249 |
template <class T> |
250 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
251 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
252 | 252 |
}; |
253 | 253 |
|
254 | 254 |
template <class T> |
255 | 255 |
struct SetReachedMapTraits : public Traits { |
256 | 256 |
typedef T ReachedMap; |
257 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
258 | 258 |
{ |
259 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
260 | 260 |
return 0; // ignore warnings |
261 | 261 |
} |
262 | 262 |
}; |
263 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
264 | 264 |
///\c ReachedMap type. |
265 | 265 |
/// |
266 | 266 |
///\ref named-templ-param "Named parameter" for setting |
267 | 267 |
///\c ReachedMap type. |
268 | 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
269 | 269 |
template <class T> |
270 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
271 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
272 | 272 |
}; |
273 | 273 |
|
274 | 274 |
template <class T> |
275 | 275 |
struct SetProcessedMapTraits : public Traits { |
276 | 276 |
typedef T ProcessedMap; |
277 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
278 | 278 |
{ |
279 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
280 | 280 |
return 0; // ignore warnings |
281 | 281 |
} |
282 | 282 |
}; |
283 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
284 | 284 |
///\c ProcessedMap type. |
285 | 285 |
/// |
286 | 286 |
///\ref named-templ-param "Named parameter" for setting |
287 | 287 |
///\c ProcessedMap type. |
288 | 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
289 | 289 |
template <class T> |
290 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
291 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
292 | 292 |
}; |
293 | 293 |
|
294 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
295 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
296 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
297 | 297 |
{ |
298 | 298 |
return new ProcessedMap(g); |
299 | 299 |
} |
300 | 300 |
}; |
301 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
302 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
303 | 303 |
/// |
304 | 304 |
///\ref named-templ-param "Named parameter" for setting |
305 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
306 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
307 | 307 |
struct SetStandardProcessedMap : |
308 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
309 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
310 | 310 |
}; |
311 | 311 |
|
312 | 312 |
///@} |
313 | 313 |
|
314 | 314 |
public: |
315 | 315 |
|
316 | 316 |
///Constructor. |
317 | 317 |
|
318 | 318 |
///Constructor. |
319 | 319 |
///\param g The digraph the algorithm runs on. |
320 | 320 |
Dfs(const Digraph &g) : |
321 | 321 |
G(&g), |
322 | 322 |
_pred(NULL), local_pred(false), |
323 | 323 |
_dist(NULL), local_dist(false), |
324 | 324 |
_reached(NULL), local_reached(false), |
325 | 325 |
_processed(NULL), local_processed(false) |
326 | 326 |
{ } |
327 | 327 |
|
328 | 328 |
///Destructor. |
329 | 329 |
~Dfs() |
330 | 330 |
{ |
331 | 331 |
if(local_pred) delete _pred; |
332 | 332 |
if(local_dist) delete _dist; |
333 | 333 |
if(local_reached) delete _reached; |
334 | 334 |
if(local_processed) delete _processed; |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
///Sets the map that stores the predecessor arcs. |
338 | 338 |
|
339 | 339 |
///Sets the map that stores the predecessor arcs. |
340 | 340 |
///If you don't use this function before calling \ref run(Node) "run()" |
341 | 341 |
///or \ref init(), an instance will be allocated automatically. |
342 | 342 |
///The destructor deallocates this automatically allocated map, |
343 | 343 |
///of course. |
344 | 344 |
///\return <tt> (*this) </tt> |
345 | 345 |
Dfs &predMap(PredMap &m) |
346 | 346 |
{ |
347 | 347 |
if(local_pred) { |
348 | 348 |
delete _pred; |
349 | 349 |
local_pred=false; |
350 | 350 |
} |
351 | 351 |
_pred = &m; |
352 | 352 |
return *this; |
353 | 353 |
} |
354 | 354 |
|
355 | 355 |
///Sets the map that indicates which nodes are reached. |
356 | 356 |
|
357 | 357 |
///Sets the map that indicates which nodes are reached. |
358 | 358 |
///If you don't use this function before calling \ref run(Node) "run()" |
359 | 359 |
///or \ref init(), an instance will be allocated automatically. |
360 | 360 |
///The destructor deallocates this automatically allocated map, |
361 | 361 |
///of course. |
362 | 362 |
///\return <tt> (*this) </tt> |
363 | 363 |
Dfs &reachedMap(ReachedMap &m) |
364 | 364 |
{ |
365 | 365 |
if(local_reached) { |
366 | 366 |
delete _reached; |
367 | 367 |
local_reached=false; |
368 | 368 |
} |
369 | 369 |
_reached = &m; |
370 | 370 |
return *this; |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
///Sets the map that indicates which nodes are processed. |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
377 | 377 |
///or \ref init(), an instance will be allocated automatically. |
378 | 378 |
///The destructor deallocates this automatically allocated map, |
379 | 379 |
///of course. |
380 | 380 |
///\return <tt> (*this) </tt> |
381 | 381 |
Dfs &processedMap(ProcessedMap &m) |
382 | 382 |
{ |
383 | 383 |
if(local_processed) { |
384 | 384 |
delete _processed; |
385 | 385 |
local_processed=false; |
386 | 386 |
} |
387 | 387 |
_processed = &m; |
388 | 388 |
return *this; |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
///Sets the map that stores the distances of the nodes. |
392 | 392 |
|
393 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
394 | 394 |
///the algorithm. |
395 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
396 | 396 |
///or \ref init(), an instance will be allocated automatically. |
397 | 397 |
///The destructor deallocates this automatically allocated map, |
398 | 398 |
///of course. |
399 | 399 |
///\return <tt> (*this) </tt> |
400 | 400 |
Dfs &distMap(DistMap &m) |
401 | 401 |
{ |
402 | 402 |
if(local_dist) { |
403 | 403 |
delete _dist; |
404 | 404 |
local_dist=false; |
405 | 405 |
} |
406 | 406 |
_dist = &m; |
407 | 407 |
return *this; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
public: |
411 | 411 |
|
412 | 412 |
///\name Execution Control |
413 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
414 | 414 |
///member functions called \ref run(Node) "run()".\n |
415 | 415 |
///If you need better control on the execution, you have to call |
416 | 416 |
///\ref init() first, then you can add a source node with \ref addSource() |
417 | 417 |
///and perform the actual computation with \ref start(). |
418 | 418 |
///This procedure can be repeated if there are nodes that have not |
419 | 419 |
///been reached. |
420 | 420 |
|
421 | 421 |
///@{ |
422 | 422 |
|
423 | 423 |
///\brief Initializes the internal data structures. |
424 | 424 |
/// |
425 | 425 |
///Initializes the internal data structures. |
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_stack.resize(countNodes(*G)); |
430 | 430 |
_stack_head=-1; |
431 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
432 | 432 |
_pred->set(u,INVALID); |
433 | 433 |
_reached->set(u,false); |
434 | 434 |
_processed->set(u,false); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
///Adds a new source node. |
439 | 439 |
|
440 | 440 |
///Adds a new source node to the set of nodes to be processed. |
441 | 441 |
/// |
442 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
443 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
444 | 444 |
///except for the last one will not be visited and distances will |
445 | 445 |
///also be wrong.) |
446 | 446 |
void addSource(Node s) |
447 | 447 |
{ |
448 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
449 | 449 |
if(!(*_reached)[s]) |
450 | 450 |
{ |
451 | 451 |
_reached->set(s,true); |
452 | 452 |
_pred->set(s,INVALID); |
453 | 453 |
OutArcIt e(*G,s); |
454 | 454 |
if(e!=INVALID) { |
455 | 455 |
_stack[++_stack_head]=e; |
456 | 456 |
_dist->set(s,_stack_head); |
457 | 457 |
} |
458 | 458 |
else { |
459 | 459 |
_processed->set(s,true); |
460 | 460 |
_dist->set(s,0); |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
///Processes the next arc. |
466 | 466 |
|
467 | 467 |
///Processes the next arc. |
468 | 468 |
/// |
469 | 469 |
///\return The processed arc. |
470 | 470 |
/// |
471 | 471 |
///\pre The stack must not be empty. |
472 | 472 |
Arc processNextArc() |
473 | 473 |
{ |
474 | 474 |
Node m; |
475 | 475 |
Arc e=_stack[_stack_head]; |
476 | 476 |
if(!(*_reached)[m=G->target(e)]) { |
477 | 477 |
_pred->set(m,e); |
478 | 478 |
_reached->set(m,true); |
479 | 479 |
++_stack_head; |
480 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
481 | 481 |
_dist->set(m,_stack_head); |
482 | 482 |
} |
483 | 483 |
else { |
484 | 484 |
m=G->source(e); |
485 | 485 |
++_stack[_stack_head]; |
486 | 486 |
} |
487 | 487 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
488 | 488 |
_processed->set(m,true); |
489 | 489 |
--_stack_head; |
490 | 490 |
if(_stack_head>=0) { |
491 | 491 |
m=G->source(_stack[_stack_head]); |
492 | 492 |
++_stack[_stack_head]; |
493 | 493 |
} |
494 | 494 |
} |
495 | 495 |
return e; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
///Next arc to be processed. |
499 | 499 |
|
500 | 500 |
///Next arc to be processed. |
501 | 501 |
/// |
502 | 502 |
///\return The next arc to be processed or \c INVALID if the stack |
503 | 503 |
///is empty. |
504 | 504 |
OutArcIt nextArc() const |
505 | 505 |
{ |
506 | 506 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
507 | 507 |
} |
508 | 508 |
|
509 | 509 |
///Returns \c false if there are nodes to be processed. |
510 | 510 |
|
511 | 511 |
///Returns \c false if there are nodes to be processed |
512 | 512 |
///in the queue (stack). |
513 | 513 |
bool emptyQueue() const { return _stack_head<0; } |
514 | 514 |
|
515 | 515 |
///Returns the number of the nodes to be processed. |
516 | 516 |
|
517 | 517 |
///Returns the number of the nodes to be processed |
518 | 518 |
///in the queue (stack). |
519 | 519 |
int queueSize() const { return _stack_head+1; } |
520 | 520 |
|
521 | 521 |
///Executes the algorithm. |
522 | 522 |
|
523 | 523 |
///Executes the algorithm. |
524 | 524 |
/// |
525 | 525 |
///This method runs the %DFS algorithm from the root node |
526 | 526 |
///in order to compute the DFS path to each node. |
527 | 527 |
/// |
528 | 528 |
/// The algorithm computes |
529 | 529 |
///- the %DFS tree, |
530 | 530 |
///- the distance of each node from the root in the %DFS tree. |
531 | 531 |
/// |
532 | 532 |
///\pre init() must be called and a root node should be |
533 | 533 |
///added with addSource() before using this function. |
534 | 534 |
/// |
535 | 535 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
536 | 536 |
///\code |
537 | 537 |
/// while ( !d.emptyQueue() ) { |
538 | 538 |
/// d.processNextArc(); |
539 | 539 |
/// } |
540 | 540 |
///\endcode |
541 | 541 |
void start() |
542 | 542 |
{ |
543 | 543 |
while ( !emptyQueue() ) processNextArc(); |
544 | 544 |
} |
545 | 545 |
|
546 | 546 |
///Executes the algorithm until the given target node is reached. |
547 | 547 |
|
548 | 548 |
///Executes the algorithm until the given target node is reached. |
549 | 549 |
/// |
550 | 550 |
///This method runs the %DFS algorithm from the root node |
551 | 551 |
///in order to compute the DFS path to \c t. |
552 | 552 |
/// |
553 | 553 |
///The algorithm computes |
554 | 554 |
///- the %DFS path to \c t, |
555 | 555 |
///- the distance of \c t from the root in the %DFS tree. |
556 | 556 |
/// |
557 | 557 |
///\pre init() must be called and a root node should be |
558 | 558 |
///added with addSource() before using this function. |
559 | 559 |
void start(Node t) |
560 | 560 |
{ |
561 | 561 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
562 | 562 |
processNextArc(); |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
///Executes the algorithm until a condition is met. |
566 | 566 |
|
567 | 567 |
///Executes the algorithm until a condition is met. |
568 | 568 |
/// |
569 | 569 |
///This method runs the %DFS algorithm from the root node |
570 | 570 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
571 | 571 |
/// |
572 | 572 |
///\param am A \c bool (or convertible) arc map. The algorithm |
573 | 573 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
574 | 574 |
/// |
575 | 575 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
576 | 576 |
///\c INVALID if no such arc was found. |
577 | 577 |
/// |
578 | 578 |
///\pre init() must be called and a root node should be |
579 | 579 |
///added with addSource() before using this function. |
580 | 580 |
/// |
581 | 581 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
582 | 582 |
///not a node map. |
583 | 583 |
template<class ArcBoolMap> |
584 | 584 |
Arc start(const ArcBoolMap &am) |
585 | 585 |
{ |
586 | 586 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
587 | 587 |
processNextArc(); |
588 | 588 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
589 | 589 |
} |
590 | 590 |
|
591 | 591 |
///Runs the algorithm from the given source node. |
592 | 592 |
|
593 | 593 |
///This method runs the %DFS algorithm from node \c s |
594 | 594 |
///in order to compute the DFS path to each node. |
595 | 595 |
/// |
596 | 596 |
///The algorithm computes |
597 | 597 |
///- the %DFS tree, |
598 | 598 |
///- the distance of each node from the root in the %DFS tree. |
599 | 599 |
/// |
600 | 600 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
601 | 601 |
///\code |
602 | 602 |
/// d.init(); |
603 | 603 |
/// d.addSource(s); |
604 | 604 |
/// d.start(); |
605 | 605 |
///\endcode |
606 | 606 |
void run(Node s) { |
607 | 607 |
init(); |
608 | 608 |
addSource(s); |
609 | 609 |
start(); |
610 | 610 |
} |
611 | 611 |
|
612 | 612 |
///Finds the %DFS path between \c s and \c t. |
613 | 613 |
|
614 | 614 |
///This method runs the %DFS algorithm from node \c s |
615 | 615 |
///in order to compute the DFS path to node \c t |
616 | 616 |
///(it stops searching when \c t is processed) |
617 | 617 |
/// |
618 | 618 |
///\return \c true if \c t is reachable form \c s. |
619 | 619 |
/// |
620 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
621 | 621 |
///just a shortcut of the following code. |
622 | 622 |
///\code |
623 | 623 |
/// d.init(); |
624 | 624 |
/// d.addSource(s); |
625 | 625 |
/// d.start(t); |
626 | 626 |
///\endcode |
627 | 627 |
bool run(Node s,Node t) { |
628 | 628 |
init(); |
629 | 629 |
addSource(s); |
630 | 630 |
start(t); |
631 | 631 |
return reached(t); |
632 | 632 |
} |
633 | 633 |
|
634 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
635 | 635 |
|
636 |
///This method runs the %DFS algorithm in order to compute the |
|
637 |
///%DFS path to each node. |
|
638 |
/// |
|
639 |
///The algorithm computes |
|
640 |
///- the %DFS tree (forest), |
|
641 |
///- the distance of each node from the root(s) in the %DFS tree. |
|
636 |
///This method runs the %DFS algorithm in order to visit all nodes |
|
637 |
///in the digraph. |
|
642 | 638 |
/// |
643 | 639 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
644 | 640 |
///\code |
645 | 641 |
/// d.init(); |
646 | 642 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
647 | 643 |
/// if (!d.reached(n)) { |
648 | 644 |
/// d.addSource(n); |
649 | 645 |
/// d.start(); |
650 | 646 |
/// } |
651 | 647 |
/// } |
652 | 648 |
///\endcode |
653 | 649 |
void run() { |
654 | 650 |
init(); |
655 | 651 |
for (NodeIt it(*G); it != INVALID; ++it) { |
656 | 652 |
if (!reached(it)) { |
657 | 653 |
addSource(it); |
658 | 654 |
start(); |
659 | 655 |
} |
660 | 656 |
} |
661 | 657 |
} |
662 | 658 |
|
663 | 659 |
///@} |
664 | 660 |
|
665 | 661 |
///\name Query Functions |
666 | 662 |
///The results of the DFS algorithm can be obtained using these |
667 | 663 |
///functions.\n |
668 | 664 |
///Either \ref run(Node) "run()" or \ref start() should be called |
669 | 665 |
///before using them. |
670 | 666 |
|
671 | 667 |
///@{ |
672 | 668 |
|
673 | 669 |
///The DFS path to the given node. |
674 | 670 |
|
675 | 671 |
///Returns the DFS path to the given node from the root(s). |
676 | 672 |
/// |
677 | 673 |
///\warning \c t should be reached from the root(s). |
678 | 674 |
/// |
679 | 675 |
///\pre Either \ref run(Node) "run()" or \ref init() |
680 | 676 |
///must be called before using this function. |
681 | 677 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
682 | 678 |
|
683 | 679 |
///The distance of the given node from the root(s). |
684 | 680 |
|
685 | 681 |
///Returns the distance of the given node from the root(s). |
686 | 682 |
/// |
687 | 683 |
///\warning If node \c v is not reached from the root(s), then |
688 | 684 |
///the return value of this function is undefined. |
689 | 685 |
/// |
690 | 686 |
///\pre Either \ref run(Node) "run()" or \ref init() |
691 | 687 |
///must be called before using this function. |
692 | 688 |
int dist(Node v) const { return (*_dist)[v]; } |
693 | 689 |
|
694 | 690 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
695 | 691 |
|
696 | 692 |
///This function returns the 'previous arc' of the %DFS tree for the |
697 | 693 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
698 | 694 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
699 | 695 |
///root(s) or if \c v is a root. |
700 | 696 |
/// |
701 | 697 |
///The %DFS tree used here is equal to the %DFS tree used in |
702 | 698 |
///\ref predNode() and \ref predMap(). |
703 | 699 |
/// |
704 | 700 |
///\pre Either \ref run(Node) "run()" or \ref init() |
705 | 701 |
///must be called before using this function. |
706 | 702 |
Arc predArc(Node v) const { return (*_pred)[v];} |
707 | 703 |
|
708 | 704 |
///Returns the 'previous node' of the %DFS tree for the given node. |
709 | 705 |
|
710 | 706 |
///This function returns the 'previous node' of the %DFS |
711 | 707 |
///tree for the node \c v, i.e. it returns the last but one node |
712 | 708 |
///of a %DFS path from a root to \c v. It is \c INVALID |
713 | 709 |
///if \c v is not reached from the root(s) or if \c v is a root. |
714 | 710 |
/// |
715 | 711 |
///The %DFS tree used here is equal to the %DFS tree used in |
716 | 712 |
///\ref predArc() and \ref predMap(). |
717 | 713 |
/// |
718 | 714 |
///\pre Either \ref run(Node) "run()" or \ref init() |
719 | 715 |
///must be called before using this function. |
720 | 716 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
721 | 717 |
G->source((*_pred)[v]); } |
722 | 718 |
|
723 | 719 |
///\brief Returns a const reference to the node map that stores the |
724 | 720 |
///distances of the nodes. |
725 | 721 |
/// |
726 | 722 |
///Returns a const reference to the node map that stores the |
727 | 723 |
///distances of the nodes calculated by the algorithm. |
728 | 724 |
/// |
729 | 725 |
///\pre Either \ref run(Node) "run()" or \ref init() |
730 | 726 |
///must be called before using this function. |
731 | 727 |
const DistMap &distMap() const { return *_dist;} |
732 | 728 |
|
733 | 729 |
///\brief Returns a const reference to the node map that stores the |
734 | 730 |
///predecessor arcs. |
735 | 731 |
/// |
736 | 732 |
///Returns a const reference to the node map that stores the predecessor |
737 | 733 |
///arcs, which form the DFS tree (forest). |
738 | 734 |
/// |
739 | 735 |
///\pre Either \ref run(Node) "run()" or \ref init() |
740 | 736 |
///must be called before using this function. |
741 | 737 |
const PredMap &predMap() const { return *_pred;} |
742 | 738 |
|
743 | 739 |
///Checks if the given node. node is reached from the root(s). |
744 | 740 |
|
745 | 741 |
///Returns \c true if \c v is reached from the root(s). |
746 | 742 |
/// |
747 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
748 | 744 |
///must be called before using this function. |
749 | 745 |
bool reached(Node v) const { return (*_reached)[v]; } |
750 | 746 |
|
751 | 747 |
///@} |
752 | 748 |
}; |
753 | 749 |
|
754 | 750 |
///Default traits class of dfs() function. |
755 | 751 |
|
756 | 752 |
///Default traits class of dfs() function. |
757 | 753 |
///\tparam GR Digraph type. |
758 | 754 |
template<class GR> |
759 | 755 |
struct DfsWizardDefaultTraits |
760 | 756 |
{ |
761 | 757 |
///The type of the digraph the algorithm runs on. |
762 | 758 |
typedef GR Digraph; |
763 | 759 |
|
764 | 760 |
///\brief The type of the map that stores the predecessor |
765 | 761 |
///arcs of the %DFS paths. |
766 | 762 |
/// |
767 | 763 |
///The type of the map that stores the predecessor |
768 | 764 |
///arcs of the %DFS paths. |
769 | 765 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
770 | 766 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
771 | 767 |
///Instantiates a PredMap. |
772 | 768 |
|
773 | 769 |
///This function instantiates a PredMap. |
774 | 770 |
///\param g is the digraph, to which we would like to define the |
775 | 771 |
///PredMap. |
776 | 772 |
static PredMap *createPredMap(const Digraph &g) |
777 | 773 |
{ |
778 | 774 |
return new PredMap(g); |
779 | 775 |
} |
780 | 776 |
|
781 | 777 |
///The type of the map that indicates which nodes are processed. |
782 | 778 |
|
783 | 779 |
///The type of the map that indicates which nodes are processed. |
784 | 780 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
785 | 781 |
///By default it is a NullMap. |
786 | 782 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
787 | 783 |
///Instantiates a ProcessedMap. |
788 | 784 |
|
789 | 785 |
///This function instantiates a ProcessedMap. |
790 | 786 |
///\param g is the digraph, to which |
791 | 787 |
///we would like to define the ProcessedMap. |
792 | 788 |
#ifdef DOXYGEN |
793 | 789 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
794 | 790 |
#else |
795 | 791 |
static ProcessedMap *createProcessedMap(const Digraph &) |
796 | 792 |
#endif |
797 | 793 |
{ |
798 | 794 |
return new ProcessedMap(); |
799 | 795 |
} |
800 | 796 |
|
801 | 797 |
///The type of the map that indicates which nodes are reached. |
802 | 798 |
|
803 | 799 |
///The type of the map that indicates which nodes are reached. |
804 | 800 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
805 | 801 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
806 | 802 |
///Instantiates a ReachedMap. |
807 | 803 |
|
808 | 804 |
///This function instantiates a ReachedMap. |
809 | 805 |
///\param g is the digraph, to which |
810 | 806 |
///we would like to define the ReachedMap. |
811 | 807 |
static ReachedMap *createReachedMap(const Digraph &g) |
812 | 808 |
{ |
813 | 809 |
return new ReachedMap(g); |
814 | 810 |
} |
815 | 811 |
|
816 | 812 |
///The type of the map that stores the distances of the nodes. |
817 | 813 |
|
818 | 814 |
///The type of the map that stores the distances of the nodes. |
819 | 815 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
820 | 816 |
typedef typename Digraph::template NodeMap<int> DistMap; |
821 | 817 |
///Instantiates a DistMap. |
822 | 818 |
|
823 | 819 |
///This function instantiates a DistMap. |
824 | 820 |
///\param g is the digraph, to which we would like to define |
825 | 821 |
///the DistMap |
826 | 822 |
static DistMap *createDistMap(const Digraph &g) |
827 | 823 |
{ |
828 | 824 |
return new DistMap(g); |
829 | 825 |
} |
830 | 826 |
|
831 | 827 |
///The type of the DFS paths. |
832 | 828 |
|
833 | 829 |
///The type of the DFS paths. |
834 | 830 |
///It must conform to the \ref concepts::Path "Path" concept. |
835 | 831 |
typedef lemon::Path<Digraph> Path; |
836 | 832 |
}; |
837 | 833 |
|
838 | 834 |
/// Default traits class used by DfsWizard |
839 | 835 |
|
840 | 836 |
/// Default traits class used by DfsWizard. |
841 | 837 |
/// \tparam GR The type of the digraph. |
842 | 838 |
template<class GR> |
843 | 839 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
844 | 840 |
{ |
845 | 841 |
|
846 | 842 |
typedef DfsWizardDefaultTraits<GR> Base; |
847 | 843 |
protected: |
848 | 844 |
//The type of the nodes in the digraph. |
849 | 845 |
typedef typename Base::Digraph::Node Node; |
850 | 846 |
|
851 | 847 |
//Pointer to the digraph the algorithm runs on. |
852 | 848 |
void *_g; |
853 | 849 |
//Pointer to the map of reached nodes. |
854 | 850 |
void *_reached; |
855 | 851 |
//Pointer to the map of processed nodes. |
856 | 852 |
void *_processed; |
857 | 853 |
//Pointer to the map of predecessors arcs. |
858 | 854 |
void *_pred; |
859 | 855 |
//Pointer to the map of distances. |
860 | 856 |
void *_dist; |
861 | 857 |
//Pointer to the DFS path to the target node. |
862 | 858 |
void *_path; |
863 | 859 |
//Pointer to the distance of the target node. |
864 | 860 |
int *_di; |
865 | 861 |
|
866 | 862 |
public: |
867 | 863 |
/// Constructor. |
868 | 864 |
|
869 | 865 |
/// This constructor does not require parameters, it initiates |
870 | 866 |
/// all of the attributes to \c 0. |
871 | 867 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
872 | 868 |
_dist(0), _path(0), _di(0) {} |
873 | 869 |
|
874 | 870 |
/// Constructor. |
875 | 871 |
|
876 | 872 |
/// This constructor requires one parameter, |
877 | 873 |
/// others are initiated to \c 0. |
878 | 874 |
/// \param g The digraph the algorithm runs on. |
879 | 875 |
DfsWizardBase(const GR &g) : |
880 | 876 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
881 | 877 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
882 | 878 |
|
883 | 879 |
}; |
884 | 880 |
|
885 | 881 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
886 | 882 |
|
887 | 883 |
/// This auxiliary class is created to implement the |
888 | 884 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
889 | 885 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
890 | 886 |
/// functions and features of the plain \ref Dfs. |
891 | 887 |
/// |
892 | 888 |
/// This class should only be used through the \ref dfs() function, |
893 | 889 |
/// which makes it easier to use the algorithm. |
894 | 890 |
template<class TR> |
895 | 891 |
class DfsWizard : public TR |
896 | 892 |
{ |
897 | 893 |
typedef TR Base; |
898 | 894 |
|
899 | 895 |
typedef typename TR::Digraph Digraph; |
900 | 896 |
|
901 | 897 |
typedef typename Digraph::Node Node; |
902 | 898 |
typedef typename Digraph::NodeIt NodeIt; |
903 | 899 |
typedef typename Digraph::Arc Arc; |
904 | 900 |
typedef typename Digraph::OutArcIt OutArcIt; |
905 | 901 |
|
906 | 902 |
typedef typename TR::PredMap PredMap; |
907 | 903 |
typedef typename TR::DistMap DistMap; |
908 | 904 |
typedef typename TR::ReachedMap ReachedMap; |
909 | 905 |
typedef typename TR::ProcessedMap ProcessedMap; |
910 | 906 |
typedef typename TR::Path Path; |
911 | 907 |
|
912 | 908 |
public: |
913 | 909 |
|
914 | 910 |
/// Constructor. |
915 | 911 |
DfsWizard() : TR() {} |
916 | 912 |
|
917 | 913 |
/// Constructor that requires parameters. |
918 | 914 |
|
919 | 915 |
/// Constructor that requires parameters. |
920 | 916 |
/// These parameters will be the default values for the traits class. |
921 | 917 |
/// \param g The digraph the algorithm runs on. |
922 | 918 |
DfsWizard(const Digraph &g) : |
923 | 919 |
TR(g) {} |
924 | 920 |
|
925 | 921 |
///Copy constructor |
926 | 922 |
DfsWizard(const TR &b) : TR(b) {} |
927 | 923 |
|
928 | 924 |
~DfsWizard() {} |
929 | 925 |
|
930 | 926 |
///Runs DFS algorithm from the given source node. |
931 | 927 |
|
932 | 928 |
///This method runs DFS algorithm from node \c s |
933 | 929 |
///in order to compute the DFS path to each node. |
934 | 930 |
void run(Node s) |
935 | 931 |
{ |
936 | 932 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
937 | 933 |
if (Base::_pred) |
938 | 934 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
939 | 935 |
if (Base::_dist) |
940 | 936 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
941 | 937 |
if (Base::_reached) |
942 | 938 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
943 | 939 |
if (Base::_processed) |
944 | 940 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
945 | 941 |
if (s!=INVALID) |
946 | 942 |
alg.run(s); |
947 | 943 |
else |
948 | 944 |
alg.run(); |
949 | 945 |
} |
950 | 946 |
|
951 | 947 |
///Finds the DFS path between \c s and \c t. |
952 | 948 |
|
953 | 949 |
///This method runs DFS algorithm from node \c s |
954 | 950 |
///in order to compute the DFS path to node \c t |
955 | 951 |
///(it stops searching when \c t is processed). |
956 | 952 |
/// |
957 | 953 |
///\return \c true if \c t is reachable form \c s. |
958 | 954 |
bool run(Node s, Node t) |
959 | 955 |
{ |
960 | 956 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
961 | 957 |
if (Base::_pred) |
962 | 958 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
963 | 959 |
if (Base::_dist) |
964 | 960 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
965 | 961 |
if (Base::_reached) |
966 | 962 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
967 | 963 |
if (Base::_processed) |
968 | 964 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
969 | 965 |
alg.run(s,t); |
970 | 966 |
if (Base::_path) |
971 | 967 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
972 | 968 |
if (Base::_di) |
973 | 969 |
*Base::_di = alg.dist(t); |
974 | 970 |
return alg.reached(t); |
975 | 971 |
} |
976 | 972 |
|
977 | 973 |
///Runs DFS algorithm to visit all nodes in the digraph. |
978 | 974 |
|
979 |
///This method runs DFS algorithm in order to compute |
|
980 |
///the DFS path to each node. |
|
975 |
///This method runs DFS algorithm in order to visit all nodes |
|
976 |
///in the digraph. |
|
981 | 977 |
void run() |
982 | 978 |
{ |
983 | 979 |
run(INVALID); |
984 | 980 |
} |
985 | 981 |
|
986 | 982 |
template<class T> |
987 | 983 |
struct SetPredMapBase : public Base { |
988 | 984 |
typedef T PredMap; |
989 | 985 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
990 | 986 |
SetPredMapBase(const TR &b) : TR(b) {} |
991 | 987 |
}; |
992 | 988 |
|
993 | 989 |
///\brief \ref named-templ-param "Named parameter" for setting |
994 | 990 |
///the predecessor map. |
995 | 991 |
/// |
996 | 992 |
///\ref named-templ-param "Named parameter" function for setting |
997 | 993 |
///the map that stores the predecessor arcs of the nodes. |
998 | 994 |
template<class T> |
999 | 995 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1000 | 996 |
{ |
1001 | 997 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1002 | 998 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1003 | 999 |
} |
1004 | 1000 |
|
1005 | 1001 |
template<class T> |
1006 | 1002 |
struct SetReachedMapBase : public Base { |
1007 | 1003 |
typedef T ReachedMap; |
1008 | 1004 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1009 | 1005 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1010 | 1006 |
}; |
1011 | 1007 |
|
1012 | 1008 |
///\brief \ref named-templ-param "Named parameter" for setting |
1013 | 1009 |
///the reached map. |
1014 | 1010 |
/// |
1015 | 1011 |
///\ref named-templ-param "Named parameter" function for setting |
1016 | 1012 |
///the map that indicates which nodes are reached. |
1017 | 1013 |
template<class T> |
1018 | 1014 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1019 | 1015 |
{ |
1020 | 1016 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1021 | 1017 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1022 | 1018 |
} |
1023 | 1019 |
|
1024 | 1020 |
template<class T> |
1025 | 1021 |
struct SetDistMapBase : public Base { |
1026 | 1022 |
typedef T DistMap; |
1027 | 1023 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1028 | 1024 |
SetDistMapBase(const TR &b) : TR(b) {} |
1029 | 1025 |
}; |
1030 | 1026 |
|
1031 | 1027 |
///\brief \ref named-templ-param "Named parameter" for setting |
1032 | 1028 |
///the distance map. |
1033 | 1029 |
/// |
1034 | 1030 |
///\ref named-templ-param "Named parameter" function for setting |
1035 | 1031 |
///the map that stores the distances of the nodes calculated |
1036 | 1032 |
///by the algorithm. |
1037 | 1033 |
template<class T> |
1038 | 1034 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1039 | 1035 |
{ |
1040 | 1036 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1041 | 1037 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1042 | 1038 |
} |
1043 | 1039 |
|
1044 | 1040 |
template<class T> |
1045 | 1041 |
struct SetProcessedMapBase : public Base { |
1046 | 1042 |
typedef T ProcessedMap; |
1047 | 1043 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1048 | 1044 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1049 | 1045 |
}; |
1050 | 1046 |
|
1051 | 1047 |
///\brief \ref named-func-param "Named parameter" for setting |
1052 | 1048 |
///the processed map. |
1053 | 1049 |
/// |
1054 | 1050 |
///\ref named-templ-param "Named parameter" function for setting |
1055 | 1051 |
///the map that indicates which nodes are processed. |
1056 | 1052 |
template<class T> |
1057 | 1053 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1058 | 1054 |
{ |
1059 | 1055 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1060 | 1056 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1061 | 1057 |
} |
1062 | 1058 |
|
1063 | 1059 |
template<class T> |
1064 | 1060 |
struct SetPathBase : public Base { |
1065 | 1061 |
typedef T Path; |
1066 | 1062 |
SetPathBase(const TR &b) : TR(b) {} |
1067 | 1063 |
}; |
1068 | 1064 |
///\brief \ref named-func-param "Named parameter" |
1069 | 1065 |
///for getting the DFS path to the target node. |
1070 | 1066 |
/// |
1071 | 1067 |
///\ref named-func-param "Named parameter" |
1072 | 1068 |
///for getting the DFS path to the target node. |
1073 | 1069 |
template<class T> |
1074 | 1070 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1075 | 1071 |
{ |
1076 | 1072 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1077 | 1073 |
return DfsWizard<SetPathBase<T> >(*this); |
1078 | 1074 |
} |
1079 | 1075 |
|
1080 | 1076 |
///\brief \ref named-func-param "Named parameter" |
1081 | 1077 |
///for getting the distance of the target node. |
1082 | 1078 |
/// |
1083 | 1079 |
///\ref named-func-param "Named parameter" |
1084 | 1080 |
///for getting the distance of the target node. |
1085 | 1081 |
DfsWizard dist(const int &d) |
1086 | 1082 |
{ |
1087 | 1083 |
Base::_di=const_cast<int*>(&d); |
1088 | 1084 |
return *this; |
1089 | 1085 |
} |
1090 | 1086 |
|
1091 | 1087 |
}; |
1092 | 1088 |
|
1093 | 1089 |
///Function-type interface for DFS algorithm. |
1094 | 1090 |
|
1095 | 1091 |
///\ingroup search |
1096 | 1092 |
///Function-type interface for DFS algorithm. |
1097 | 1093 |
/// |
1098 | 1094 |
///This function also has several \ref named-func-param "named parameters", |
1099 | 1095 |
///they are declared as the members of class \ref DfsWizard. |
1100 | 1096 |
///The following examples show how to use these parameters. |
1101 | 1097 |
///\code |
1102 | 1098 |
/// // Compute the DFS tree |
1103 | 1099 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1104 | 1100 |
/// |
1105 | 1101 |
/// // Compute the DFS path from s to t |
1106 | 1102 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1107 | 1103 |
///\endcode |
1108 | 1104 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
1109 | 1105 |
///to the end of the parameter list. |
1110 | 1106 |
///\sa DfsWizard |
1111 | 1107 |
///\sa Dfs |
1112 | 1108 |
template<class GR> |
1113 | 1109 |
DfsWizard<DfsWizardBase<GR> > |
1114 | 1110 |
dfs(const GR &digraph) |
1115 | 1111 |
{ |
1116 | 1112 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1117 | 1113 |
} |
1118 | 1114 |
|
1119 | 1115 |
#ifdef DOXYGEN |
1120 | 1116 |
/// \brief Visitor class for DFS. |
1121 | 1117 |
/// |
1122 | 1118 |
/// This class defines the interface of the DfsVisit events, and |
1123 | 1119 |
/// it could be the base of a real visitor class. |
1124 | 1120 |
template <typename GR> |
1125 | 1121 |
struct DfsVisitor { |
1126 | 1122 |
typedef GR Digraph; |
1127 | 1123 |
typedef typename Digraph::Arc Arc; |
1128 | 1124 |
typedef typename Digraph::Node Node; |
1129 | 1125 |
/// \brief Called for the source node of the DFS. |
1130 | 1126 |
/// |
1131 | 1127 |
/// This function is called for the source node of the DFS. |
1132 | 1128 |
void start(const Node& node) {} |
1133 | 1129 |
/// \brief Called when the source node is leaved. |
1134 | 1130 |
/// |
1135 | 1131 |
/// This function is called when the source node is leaved. |
1136 | 1132 |
void stop(const Node& node) {} |
1137 | 1133 |
/// \brief Called when a node is reached first time. |
1138 | 1134 |
/// |
1139 | 1135 |
/// This function is called when a node is reached first time. |
1140 | 1136 |
void reach(const Node& node) {} |
1141 | 1137 |
/// \brief Called when an arc reaches a new node. |
1142 | 1138 |
/// |
1143 | 1139 |
/// This function is called when the DFS finds an arc whose target node |
1144 | 1140 |
/// is not reached yet. |
1145 | 1141 |
void discover(const Arc& arc) {} |
1146 | 1142 |
/// \brief Called when an arc is examined but its target node is |
1147 | 1143 |
/// already discovered. |
1148 | 1144 |
/// |
1149 | 1145 |
/// This function is called when an arc is examined but its target node is |
1150 | 1146 |
/// already discovered. |
1151 | 1147 |
void examine(const Arc& arc) {} |
1152 | 1148 |
/// \brief Called when the DFS steps back from a node. |
1153 | 1149 |
/// |
1154 | 1150 |
/// This function is called when the DFS steps back from a node. |
1155 | 1151 |
void leave(const Node& node) {} |
1156 | 1152 |
/// \brief Called when the DFS steps back on an arc. |
1157 | 1153 |
/// |
1158 | 1154 |
/// This function is called when the DFS steps back on an arc. |
1159 | 1155 |
void backtrack(const Arc& arc) {} |
1160 | 1156 |
}; |
1161 | 1157 |
#else |
1162 | 1158 |
template <typename GR> |
1163 | 1159 |
struct DfsVisitor { |
1164 | 1160 |
typedef GR Digraph; |
1165 | 1161 |
typedef typename Digraph::Arc Arc; |
1166 | 1162 |
typedef typename Digraph::Node Node; |
1167 | 1163 |
void start(const Node&) {} |
1168 | 1164 |
void stop(const Node&) {} |
1169 | 1165 |
void reach(const Node&) {} |
1170 | 1166 |
void discover(const Arc&) {} |
1171 | 1167 |
void examine(const Arc&) {} |
1172 | 1168 |
void leave(const Node&) {} |
1173 | 1169 |
void backtrack(const Arc&) {} |
1174 | 1170 |
|
1175 | 1171 |
template <typename _Visitor> |
1176 | 1172 |
struct Constraints { |
1177 | 1173 |
void constraints() { |
1178 | 1174 |
Arc arc; |
1179 | 1175 |
Node node; |
1180 | 1176 |
visitor.start(node); |
1181 | 1177 |
visitor.stop(arc); |
1182 | 1178 |
visitor.reach(node); |
1183 | 1179 |
visitor.discover(arc); |
1184 | 1180 |
visitor.examine(arc); |
1185 | 1181 |
visitor.leave(node); |
1186 | 1182 |
visitor.backtrack(arc); |
1187 | 1183 |
} |
1188 | 1184 |
_Visitor& visitor; |
1189 | 1185 |
}; |
1190 | 1186 |
}; |
1191 | 1187 |
#endif |
1192 | 1188 |
|
1193 | 1189 |
/// \brief Default traits class of DfsVisit class. |
1194 | 1190 |
/// |
1195 | 1191 |
/// Default traits class of DfsVisit class. |
1196 | 1192 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1197 | 1193 |
template<class GR> |
1198 | 1194 |
struct DfsVisitDefaultTraits { |
1199 | 1195 |
|
1200 | 1196 |
/// \brief The type of the digraph the algorithm runs on. |
1201 | 1197 |
typedef GR Digraph; |
1202 | 1198 |
|
1203 | 1199 |
/// \brief The type of the map that indicates which nodes are reached. |
1204 | 1200 |
/// |
1205 | 1201 |
/// The type of the map that indicates which nodes are reached. |
1206 | 1202 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1207 | 1203 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1208 | 1204 |
|
1209 | 1205 |
/// \brief Instantiates a ReachedMap. |
1210 | 1206 |
/// |
1211 | 1207 |
/// This function instantiates a ReachedMap. |
1212 | 1208 |
/// \param digraph is the digraph, to which |
1213 | 1209 |
/// we would like to define the ReachedMap. |
1214 | 1210 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1215 | 1211 |
return new ReachedMap(digraph); |
1216 | 1212 |
} |
1217 | 1213 |
|
1218 | 1214 |
}; |
1219 | 1215 |
|
1220 | 1216 |
/// \ingroup search |
1221 | 1217 |
/// |
1222 | 1218 |
/// \brief DFS algorithm class with visitor interface. |
1223 | 1219 |
/// |
1224 | 1220 |
/// This class provides an efficient implementation of the DFS algorithm |
1225 | 1221 |
/// with visitor interface. |
1226 | 1222 |
/// |
1227 | 1223 |
/// The DfsVisit class provides an alternative interface to the Dfs |
1228 | 1224 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1229 | 1225 |
/// the member functions of the \c Visitor class on every DFS event. |
1230 | 1226 |
/// |
1231 | 1227 |
/// This interface of the DFS algorithm should be used in special cases |
1232 | 1228 |
/// when extra actions have to be performed in connection with certain |
1233 | 1229 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1234 | 1230 |
/// instead. |
1235 | 1231 |
/// |
1236 | 1232 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1237 | 1233 |
/// The default type is \ref ListDigraph. |
1238 | 1234 |
/// The value of GR is not used directly by \ref DfsVisit, |
1239 | 1235 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
1240 | 1236 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1241 | 1237 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
1242 | 1238 |
/// does not observe the DFS events. If you want to observe the DFS |
1243 | 1239 |
/// events, you should implement your own visitor class. |
1244 | 1240 |
/// \tparam TR Traits class to set various data types used by the |
1245 | 1241 |
/// algorithm. The default traits class is |
1246 | 1242 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
1247 | 1243 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1248 | 1244 |
/// a DFS visit traits class. |
1249 | 1245 |
#ifdef DOXYGEN |
1250 | 1246 |
template <typename GR, typename VS, typename TR> |
1251 | 1247 |
#else |
1252 | 1248 |
template <typename GR = ListDigraph, |
1253 | 1249 |
typename VS = DfsVisitor<GR>, |
1254 | 1250 |
typename TR = DfsVisitDefaultTraits<GR> > |
1255 | 1251 |
#endif |
1256 | 1252 |
class DfsVisit { |
1257 | 1253 |
public: |
1258 | 1254 |
|
1259 | 1255 |
///The traits class. |
1260 | 1256 |
typedef TR Traits; |
1261 | 1257 |
|
1262 | 1258 |
///The type of the digraph the algorithm runs on. |
1263 | 1259 |
typedef typename Traits::Digraph Digraph; |
1264 | 1260 |
|
1265 | 1261 |
///The visitor type used by the algorithm. |
1266 | 1262 |
typedef VS Visitor; |
1267 | 1263 |
|
1268 | 1264 |
///The type of the map that indicates which nodes are reached. |
1269 | 1265 |
typedef typename Traits::ReachedMap ReachedMap; |
1270 | 1266 |
|
1271 | 1267 |
private: |
1272 | 1268 |
|
1273 | 1269 |
typedef typename Digraph::Node Node; |
1274 | 1270 |
typedef typename Digraph::NodeIt NodeIt; |
1275 | 1271 |
typedef typename Digraph::Arc Arc; |
1276 | 1272 |
typedef typename Digraph::OutArcIt OutArcIt; |
1277 | 1273 |
|
1278 | 1274 |
//Pointer to the underlying digraph. |
1279 | 1275 |
const Digraph *_digraph; |
1280 | 1276 |
//Pointer to the visitor object. |
1281 | 1277 |
Visitor *_visitor; |
1282 | 1278 |
//Pointer to the map of reached status of the nodes. |
1283 | 1279 |
ReachedMap *_reached; |
1284 | 1280 |
//Indicates if _reached is locally allocated (true) or not. |
1285 | 1281 |
bool local_reached; |
1286 | 1282 |
|
1287 | 1283 |
std::vector<typename Digraph::Arc> _stack; |
1288 | 1284 |
int _stack_head; |
1289 | 1285 |
|
1290 | 1286 |
//Creates the maps if necessary. |
1291 | 1287 |
void create_maps() { |
1292 | 1288 |
if(!_reached) { |
1293 | 1289 |
local_reached = true; |
1294 | 1290 |
_reached = Traits::createReachedMap(*_digraph); |
1295 | 1291 |
} |
1296 | 1292 |
} |
1297 | 1293 |
|
1298 | 1294 |
protected: |
1299 | 1295 |
|
1300 | 1296 |
DfsVisit() {} |
1301 | 1297 |
|
1302 | 1298 |
public: |
1303 | 1299 |
|
1304 | 1300 |
typedef DfsVisit Create; |
1305 | 1301 |
|
1306 | 1302 |
/// \name Named Template Parameters |
1307 | 1303 |
|
1308 | 1304 |
///@{ |
1309 | 1305 |
template <class T> |
1310 | 1306 |
struct SetReachedMapTraits : public Traits { |
1311 | 1307 |
typedef T ReachedMap; |
1312 | 1308 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1313 | 1309 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1314 | 1310 |
return 0; // ignore warnings |
1315 | 1311 |
} |
1316 | 1312 |
}; |
1317 | 1313 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1318 | 1314 |
/// ReachedMap type. |
1319 | 1315 |
/// |
1320 | 1316 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1321 | 1317 |
template <class T> |
1322 | 1318 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1323 | 1319 |
SetReachedMapTraits<T> > { |
1324 | 1320 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1325 | 1321 |
}; |
1326 | 1322 |
///@} |
1327 | 1323 |
|
1328 | 1324 |
public: |
1329 | 1325 |
|
1330 | 1326 |
/// \brief Constructor. |
1331 | 1327 |
/// |
1332 | 1328 |
/// Constructor. |
1333 | 1329 |
/// |
1334 | 1330 |
/// \param digraph The digraph the algorithm runs on. |
1335 | 1331 |
/// \param visitor The visitor object of the algorithm. |
1336 | 1332 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1337 | 1333 |
: _digraph(&digraph), _visitor(&visitor), |
1338 | 1334 |
_reached(0), local_reached(false) {} |
1339 | 1335 |
|
1340 | 1336 |
/// \brief Destructor. |
1341 | 1337 |
~DfsVisit() { |
1342 | 1338 |
if(local_reached) delete _reached; |
1343 | 1339 |
} |
1344 | 1340 |
|
1345 | 1341 |
/// \brief Sets the map that indicates which nodes are reached. |
1346 | 1342 |
/// |
1347 | 1343 |
/// Sets the map that indicates which nodes are reached. |
1348 | 1344 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1349 | 1345 |
/// or \ref init(), an instance will be allocated automatically. |
1350 | 1346 |
/// The destructor deallocates this automatically allocated map, |
1351 | 1347 |
/// of course. |
1352 | 1348 |
/// \return <tt> (*this) </tt> |
1353 | 1349 |
DfsVisit &reachedMap(ReachedMap &m) { |
1354 | 1350 |
if(local_reached) { |
1355 | 1351 |
delete _reached; |
1356 | 1352 |
local_reached=false; |
1357 | 1353 |
} |
1358 | 1354 |
_reached = &m; |
1359 | 1355 |
return *this; |
1360 | 1356 |
} |
1361 | 1357 |
|
1362 | 1358 |
public: |
1363 | 1359 |
|
1364 | 1360 |
/// \name Execution Control |
1365 | 1361 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1366 | 1362 |
/// member functions called \ref run(Node) "run()".\n |
1367 | 1363 |
/// If you need better control on the execution, you have to call |
1368 | 1364 |
/// \ref init() first, then you can add a source node with \ref addSource() |
1369 | 1365 |
/// and perform the actual computation with \ref start(). |
1370 | 1366 |
/// This procedure can be repeated if there are nodes that have not |
1371 | 1367 |
/// been reached. |
1372 | 1368 |
|
1373 | 1369 |
/// @{ |
1374 | 1370 |
|
1375 | 1371 |
/// \brief Initializes the internal data structures. |
1376 | 1372 |
/// |
1377 | 1373 |
/// Initializes the internal data structures. |
1378 | 1374 |
void init() { |
1379 | 1375 |
create_maps(); |
1380 | 1376 |
_stack.resize(countNodes(*_digraph)); |
1381 | 1377 |
_stack_head = -1; |
1382 | 1378 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1383 | 1379 |
_reached->set(u, false); |
1384 | 1380 |
} |
1385 | 1381 |
} |
1386 | 1382 |
|
1387 | 1383 |
/// \brief Adds a new source node. |
1388 | 1384 |
/// |
1389 | 1385 |
/// Adds a new source node to the set of nodes to be processed. |
1390 | 1386 |
/// |
1391 | 1387 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1392 | 1388 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
1393 | 1389 |
/// except for the last one will not be visited and distances will |
1394 | 1390 |
/// also be wrong.) |
1395 | 1391 |
void addSource(Node s) |
1396 | 1392 |
{ |
1397 | 1393 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1398 | 1394 |
if(!(*_reached)[s]) { |
1399 | 1395 |
_reached->set(s,true); |
1400 | 1396 |
_visitor->start(s); |
1401 | 1397 |
_visitor->reach(s); |
1402 | 1398 |
Arc e; |
1403 | 1399 |
_digraph->firstOut(e, s); |
1404 | 1400 |
if (e != INVALID) { |
1405 | 1401 |
_stack[++_stack_head] = e; |
1406 | 1402 |
} else { |
1407 | 1403 |
_visitor->leave(s); |
1408 | 1404 |
_visitor->stop(s); |
1409 | 1405 |
} |
1410 | 1406 |
} |
1411 | 1407 |
} |
1412 | 1408 |
|
1413 | 1409 |
/// \brief Processes the next arc. |
1414 | 1410 |
/// |
1415 | 1411 |
/// Processes the next arc. |
1416 | 1412 |
/// |
1417 | 1413 |
/// \return The processed arc. |
1418 | 1414 |
/// |
1419 | 1415 |
/// \pre The stack must not be empty. |
1420 | 1416 |
Arc processNextArc() { |
1421 | 1417 |
Arc e = _stack[_stack_head]; |
1422 | 1418 |
Node m = _digraph->target(e); |
1423 | 1419 |
if(!(*_reached)[m]) { |
1424 | 1420 |
_visitor->discover(e); |
1425 | 1421 |
_visitor->reach(m); |
1426 | 1422 |
_reached->set(m, true); |
1427 | 1423 |
_digraph->firstOut(_stack[++_stack_head], m); |
1428 | 1424 |
} else { |
1429 | 1425 |
_visitor->examine(e); |
1430 | 1426 |
m = _digraph->source(e); |
1431 | 1427 |
_digraph->nextOut(_stack[_stack_head]); |
1432 | 1428 |
} |
1433 | 1429 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1434 | 1430 |
_visitor->leave(m); |
1435 | 1431 |
--_stack_head; |
1436 | 1432 |
if (_stack_head >= 0) { |
1437 | 1433 |
_visitor->backtrack(_stack[_stack_head]); |
1438 | 1434 |
m = _digraph->source(_stack[_stack_head]); |
1439 | 1435 |
_digraph->nextOut(_stack[_stack_head]); |
1440 | 1436 |
} else { |
1441 | 1437 |
_visitor->stop(m); |
1442 | 1438 |
} |
1443 | 1439 |
} |
1444 | 1440 |
return e; |
1445 | 1441 |
} |
1446 | 1442 |
|
1447 | 1443 |
/// \brief Next arc to be processed. |
1448 | 1444 |
/// |
1449 | 1445 |
/// Next arc to be processed. |
1450 | 1446 |
/// |
1451 | 1447 |
/// \return The next arc to be processed or INVALID if the stack is |
1452 | 1448 |
/// empty. |
1453 | 1449 |
Arc nextArc() const { |
1454 | 1450 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1455 | 1451 |
} |
1456 | 1452 |
|
1457 | 1453 |
/// \brief Returns \c false if there are nodes |
1458 | 1454 |
/// to be processed. |
1459 | 1455 |
/// |
1460 | 1456 |
/// Returns \c false if there are nodes |
1461 | 1457 |
/// to be processed in the queue (stack). |
1462 | 1458 |
bool emptyQueue() const { return _stack_head < 0; } |
1463 | 1459 |
|
1464 | 1460 |
/// \brief Returns the number of the nodes to be processed. |
1465 | 1461 |
/// |
1466 | 1462 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1467 | 1463 |
int queueSize() const { return _stack_head + 1; } |
1468 | 1464 |
|
1469 | 1465 |
/// \brief Executes the algorithm. |
1470 | 1466 |
/// |
1471 | 1467 |
/// Executes the algorithm. |
1472 | 1468 |
/// |
1473 | 1469 |
/// This method runs the %DFS algorithm from the root node |
1474 | 1470 |
/// in order to compute the %DFS path to each node. |
1475 | 1471 |
/// |
1476 | 1472 |
/// The algorithm computes |
1477 | 1473 |
/// - the %DFS tree, |
1478 | 1474 |
/// - the distance of each node from the root in the %DFS tree. |
1479 | 1475 |
/// |
1480 | 1476 |
/// \pre init() must be called and a root node should be |
1481 | 1477 |
/// added with addSource() before using this function. |
1482 | 1478 |
/// |
1483 | 1479 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1484 | 1480 |
/// \code |
1485 | 1481 |
/// while ( !d.emptyQueue() ) { |
1486 | 1482 |
/// d.processNextArc(); |
1487 | 1483 |
/// } |
1488 | 1484 |
/// \endcode |
1489 | 1485 |
void start() { |
1490 | 1486 |
while ( !emptyQueue() ) processNextArc(); |
1491 | 1487 |
} |
1492 | 1488 |
|
1493 | 1489 |
/// \brief Executes the algorithm until the given target node is reached. |
1494 | 1490 |
/// |
1495 | 1491 |
/// Executes the algorithm until the given target node is reached. |
1496 | 1492 |
/// |
1497 | 1493 |
/// This method runs the %DFS algorithm from the root node |
1498 | 1494 |
/// in order to compute the DFS path to \c t. |
1499 | 1495 |
/// |
1500 | 1496 |
/// The algorithm computes |
1501 | 1497 |
/// - the %DFS path to \c t, |
1502 | 1498 |
/// - the distance of \c t from the root in the %DFS tree. |
1503 | 1499 |
/// |
1504 | 1500 |
/// \pre init() must be called and a root node should be added |
1505 | 1501 |
/// with addSource() before using this function. |
1506 | 1502 |
void start(Node t) { |
1507 | 1503 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
1508 | 1504 |
processNextArc(); |
1509 | 1505 |
} |
1510 | 1506 |
|
1511 | 1507 |
/// \brief Executes the algorithm until a condition is met. |
1512 | 1508 |
/// |
1513 | 1509 |
/// Executes the algorithm until a condition is met. |
1514 | 1510 |
/// |
1515 | 1511 |
/// This method runs the %DFS algorithm from the root node |
1516 | 1512 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1517 | 1513 |
/// |
1518 | 1514 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1519 | 1515 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1520 | 1516 |
/// |
1521 | 1517 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1522 | 1518 |
/// \c INVALID if no such arc was found. |
1523 | 1519 |
/// |
1524 | 1520 |
/// \pre init() must be called and a root node should be added |
1525 | 1521 |
/// with addSource() before using this function. |
1526 | 1522 |
/// |
1527 | 1523 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1528 | 1524 |
/// not a node map. |
1529 | 1525 |
template <typename AM> |
1530 | 1526 |
Arc start(const AM &am) { |
1531 | 1527 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1532 | 1528 |
processNextArc(); |
1533 | 1529 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1534 | 1530 |
} |
1535 | 1531 |
|
1536 | 1532 |
/// \brief Runs the algorithm from the given source node. |
1537 | 1533 |
/// |
1538 | 1534 |
/// This method runs the %DFS algorithm from node \c s. |
1539 | 1535 |
/// in order to compute the DFS path to each node. |
1540 | 1536 |
/// |
1541 | 1537 |
/// The algorithm computes |
1542 | 1538 |
/// - the %DFS tree, |
1543 | 1539 |
/// - the distance of each node from the root in the %DFS tree. |
1544 | 1540 |
/// |
1545 | 1541 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1546 | 1542 |
///\code |
1547 | 1543 |
/// d.init(); |
1548 | 1544 |
/// d.addSource(s); |
1549 | 1545 |
/// d.start(); |
1550 | 1546 |
///\endcode |
1551 | 1547 |
void run(Node s) { |
1552 | 1548 |
init(); |
1553 | 1549 |
addSource(s); |
1554 | 1550 |
start(); |
1555 | 1551 |
} |
1556 | 1552 |
|
1557 | 1553 |
/// \brief Finds the %DFS path between \c s and \c t. |
1558 | 1554 |
|
1559 | 1555 |
/// This method runs the %DFS algorithm from node \c s |
1560 | 1556 |
/// in order to compute the DFS path to node \c t |
1561 | 1557 |
/// (it stops searching when \c t is processed). |
1562 | 1558 |
/// |
1563 | 1559 |
/// \return \c true if \c t is reachable form \c s. |
1564 | 1560 |
/// |
1565 | 1561 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1566 | 1562 |
/// just a shortcut of the following code. |
1567 | 1563 |
///\code |
1568 | 1564 |
/// d.init(); |
1569 | 1565 |
/// d.addSource(s); |
1570 | 1566 |
/// d.start(t); |
1571 | 1567 |
///\endcode |
1572 | 1568 |
bool run(Node s,Node t) { |
1573 | 1569 |
init(); |
1574 | 1570 |
addSource(s); |
1575 | 1571 |
start(t); |
1576 | 1572 |
return reached(t); |
1577 | 1573 |
} |
1578 | 1574 |
|
1579 | 1575 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1580 | 1576 |
|
1581 |
/// This method runs the %DFS algorithm in order to |
|
1582 |
/// compute the %DFS path to each node. |
|
1583 |
/// |
|
1584 |
/// The algorithm computes |
|
1585 |
/// - the %DFS tree (forest), |
|
1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
|
1577 |
/// This method runs the %DFS algorithm in order to visit all nodes |
|
1578 |
/// in the digraph. |
|
1587 | 1579 |
/// |
1588 | 1580 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1589 | 1581 |
///\code |
1590 | 1582 |
/// d.init(); |
1591 | 1583 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1592 | 1584 |
/// if (!d.reached(n)) { |
1593 | 1585 |
/// d.addSource(n); |
1594 | 1586 |
/// d.start(); |
1595 | 1587 |
/// } |
1596 | 1588 |
/// } |
1597 | 1589 |
///\endcode |
1598 | 1590 |
void run() { |
1599 | 1591 |
init(); |
1600 | 1592 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1601 | 1593 |
if (!reached(it)) { |
1602 | 1594 |
addSource(it); |
1603 | 1595 |
start(); |
1604 | 1596 |
} |
1605 | 1597 |
} |
1606 | 1598 |
} |
1607 | 1599 |
|
1608 | 1600 |
///@} |
1609 | 1601 |
|
1610 | 1602 |
/// \name Query Functions |
1611 | 1603 |
/// The results of the DFS algorithm can be obtained using these |
1612 | 1604 |
/// functions.\n |
1613 | 1605 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1614 | 1606 |
/// before using them. |
1615 | 1607 |
|
1616 | 1608 |
///@{ |
1617 | 1609 |
|
1618 | 1610 |
/// \brief Checks if the given node is reached from the root(s). |
1619 | 1611 |
/// |
1620 | 1612 |
/// Returns \c true if \c v is reached from the root(s). |
1621 | 1613 |
/// |
1622 | 1614 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1623 | 1615 |
/// must be called before using this function. |
1624 | 1616 |
bool reached(Node v) const { return (*_reached)[v]; } |
1625 | 1617 |
|
1626 | 1618 |
///@} |
1627 | 1619 |
|
1628 | 1620 |
}; |
1629 | 1621 |
|
1630 | 1622 |
} //END OF NAMESPACE LEMON |
1631 | 1623 |
|
1632 | 1624 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename V> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \e |
44 | 44 |
typedef V Value; |
45 | 45 |
/// \brief Gives back the zero value of the type. |
46 | 46 |
static Value zero() { |
47 | 47 |
return static_cast<Value>(0); |
48 | 48 |
} |
49 | 49 |
/// \brief Gives back the sum of the given two elements. |
50 | 50 |
static Value plus(const Value& left, const Value& right) { |
51 | 51 |
return left + right; |
52 | 52 |
} |
53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
54 | 54 |
static bool less(const Value& left, const Value& right) { |
55 | 55 |
return left < right; |
56 | 56 |
} |
57 | 57 |
}; |
58 | 58 |
|
59 | 59 |
///Default traits class of Dijkstra class. |
60 | 60 |
|
61 | 61 |
///Default traits class of Dijkstra class. |
62 | 62 |
///\tparam GR The type of the digraph. |
63 | 63 |
///\tparam LEN The type of the length map. |
64 | 64 |
template<typename GR, typename LEN> |
65 | 65 |
struct DijkstraDefaultTraits |
66 | 66 |
{ |
67 | 67 |
///The type of the digraph the algorithm runs on. |
68 | 68 |
typedef GR Digraph; |
69 | 69 |
|
70 | 70 |
///The type of the map that stores the arc lengths. |
71 | 71 |
|
72 | 72 |
///The type of the map that stores the arc lengths. |
73 | 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
74 | 74 |
typedef LEN LengthMap; |
75 | 75 |
///The type of the arc lengths. |
76 | 76 |
typedef typename LEN::Value Value; |
77 | 77 |
|
78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
79 | 79 |
|
80 | 80 |
/// This class defines the operations that are used in the algorithm. |
81 | 81 |
/// \see DijkstraDefaultOperationTraits |
82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
83 | 83 |
|
84 | 84 |
/// The cross reference type used by the heap. |
85 | 85 |
|
86 | 86 |
/// The cross reference type used by the heap. |
87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
89 | 89 |
///Instantiates a \c HeapCrossRef. |
90 | 90 |
|
91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
92 | 92 |
/// \param g is the digraph, to which we would like to define the |
93 | 93 |
/// \ref HeapCrossRef. |
94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
95 | 95 |
{ |
96 | 96 |
return new HeapCrossRef(g); |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
///The heap type used by the Dijkstra algorithm. |
102 | 102 |
/// |
103 | 103 |
///\sa BinHeap |
104 | 104 |
///\sa Dijkstra |
105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
106 | 106 |
///Instantiates a \c Heap. |
107 | 107 |
|
108 | 108 |
///This function instantiates a \ref Heap. |
109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
110 | 110 |
{ |
111 | 111 |
return new Heap(r); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 | 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 | 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
135 | 135 |
///By default it is a NullMap. |
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 | 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
160 | 160 |
///the \ref DistMap. |
161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
162 | 162 |
{ |
163 | 163 |
return new DistMap(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
///%Dijkstra algorithm class. |
168 | 168 |
|
169 | 169 |
/// \ingroup shortest_path |
170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
171 | 171 |
/// |
172 | 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
173 | 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
174 | 174 |
///the BellmanFord algorithm should be used instead. |
175 | 175 |
/// |
176 | 176 |
///The arc lengths are passed to the algorithm using a |
177 | 177 |
///\ref concepts::ReadMap "ReadMap", |
178 | 178 |
///so it is easy to change it to any kind of length. |
179 | 179 |
///The type of the length is determined by the |
180 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
181 | 181 |
///It is also possible to change the underlying priority heap. |
182 | 182 |
/// |
183 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
184 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
185 | 185 |
///it can be used easier. |
186 | 186 |
/// |
187 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
188 | 188 |
///The default type is \ref ListDigraph. |
189 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
190 | 190 |
///the lengths of the arcs. |
191 | 191 |
///It is read once for each arc, so the map may involve in |
192 | 192 |
///relatively time consuming process to compute the arc lengths if |
193 | 193 |
///it is necessary. The default map type is \ref |
194 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
195 | 195 |
#ifdef DOXYGEN |
196 | 196 |
template <typename GR, typename LEN, typename TR> |
197 | 197 |
#else |
198 | 198 |
template <typename GR=ListDigraph, |
199 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
200 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
201 | 201 |
#endif |
202 | 202 |
class Dijkstra { |
203 | 203 |
public: |
204 | 204 |
|
205 | 205 |
///The type of the digraph the algorithm runs on. |
206 | 206 |
typedef typename TR::Digraph Digraph; |
207 | 207 |
|
208 | 208 |
///The type of the arc lengths. |
209 |
typedef typename TR:: |
|
209 |
typedef typename TR::Value Value; |
|
210 | 210 |
///The type of the map that stores the arc lengths. |
211 | 211 |
typedef typename TR::LengthMap LengthMap; |
212 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
213 | 213 |
///shortest paths. |
214 | 214 |
typedef typename TR::PredMap PredMap; |
215 | 215 |
///The type of the map that stores the distances of the nodes. |
216 | 216 |
typedef typename TR::DistMap DistMap; |
217 | 217 |
///The type of the map that indicates which nodes are processed. |
218 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
219 | 219 |
///The type of the paths. |
220 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
221 | 221 |
///The cross reference type used for the current heap. |
222 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
223 | 223 |
///The heap type used by the algorithm. |
224 | 224 |
typedef typename TR::Heap Heap; |
225 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
226 | 226 |
///of the algorithm. |
227 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
228 | 228 |
|
229 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
230 | 230 |
typedef TR Traits; |
231 | 231 |
|
232 | 232 |
private: |
233 | 233 |
|
234 | 234 |
typedef typename Digraph::Node Node; |
235 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
236 | 236 |
typedef typename Digraph::Arc Arc; |
237 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
238 | 238 |
|
239 | 239 |
//Pointer to the underlying digraph. |
240 | 240 |
const Digraph *G; |
241 | 241 |
//Pointer to the length map. |
242 | 242 |
const LengthMap *_length; |
243 | 243 |
//Pointer to the map of predecessors arcs. |
244 | 244 |
PredMap *_pred; |
245 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
246 | 246 |
bool local_pred; |
247 | 247 |
//Pointer to the map of distances. |
248 | 248 |
DistMap *_dist; |
249 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
250 | 250 |
bool local_dist; |
251 | 251 |
//Pointer to the map of processed status of the nodes. |
252 | 252 |
ProcessedMap *_processed; |
253 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
254 | 254 |
bool local_processed; |
255 | 255 |
//Pointer to the heap cross references. |
256 | 256 |
HeapCrossRef *_heap_cross_ref; |
257 | 257 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
258 | 258 |
bool local_heap_cross_ref; |
259 | 259 |
//Pointer to the heap. |
260 | 260 |
Heap *_heap; |
261 | 261 |
//Indicates if _heap is locally allocated (true) or not. |
262 | 262 |
bool local_heap; |
263 | 263 |
|
264 | 264 |
//Creates the maps if necessary. |
265 | 265 |
void create_maps() |
266 | 266 |
{ |
267 | 267 |
if(!_pred) { |
268 | 268 |
local_pred = true; |
269 | 269 |
_pred = Traits::createPredMap(*G); |
270 | 270 |
} |
271 | 271 |
if(!_dist) { |
272 | 272 |
local_dist = true; |
273 | 273 |
_dist = Traits::createDistMap(*G); |
274 | 274 |
} |
275 | 275 |
if(!_processed) { |
276 | 276 |
local_processed = true; |
277 | 277 |
_processed = Traits::createProcessedMap(*G); |
278 | 278 |
} |
279 | 279 |
if (!_heap_cross_ref) { |
280 | 280 |
local_heap_cross_ref = true; |
281 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
282 | 282 |
} |
283 | 283 |
if (!_heap) { |
284 | 284 |
local_heap = true; |
285 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
286 | 286 |
} |
287 | 287 |
} |
288 | 288 |
|
289 | 289 |
public: |
290 | 290 |
|
291 | 291 |
typedef Dijkstra Create; |
292 | 292 |
|
293 | 293 |
///\name Named Template Parameters |
294 | 294 |
|
295 | 295 |
///@{ |
296 | 296 |
|
297 | 297 |
template <class T> |
298 | 298 |
struct SetPredMapTraits : public Traits { |
299 | 299 |
typedef T PredMap; |
300 | 300 |
static PredMap *createPredMap(const Digraph &) |
301 | 301 |
{ |
302 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
303 | 303 |
return 0; // ignore warnings |
304 | 304 |
} |
305 | 305 |
}; |
306 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
307 | 307 |
///\c PredMap type. |
308 | 308 |
/// |
309 | 309 |
///\ref named-templ-param "Named parameter" for setting |
310 | 310 |
///\c PredMap type. |
311 | 311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
312 | 312 |
template <class T> |
313 | 313 |
struct SetPredMap |
314 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
315 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
316 | 316 |
}; |
317 | 317 |
|
318 | 318 |
template <class T> |
319 | 319 |
struct SetDistMapTraits : public Traits { |
320 | 320 |
typedef T DistMap; |
321 | 321 |
static DistMap *createDistMap(const Digraph &) |
322 | 322 |
{ |
323 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
324 | 324 |
return 0; // ignore warnings |
325 | 325 |
} |
326 | 326 |
}; |
327 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
328 | 328 |
///\c DistMap type. |
329 | 329 |
/// |
330 | 330 |
///\ref named-templ-param "Named parameter" for setting |
331 | 331 |
///\c DistMap type. |
332 | 332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
333 | 333 |
template <class T> |
334 | 334 |
struct SetDistMap |
335 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
336 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
337 | 337 |
}; |
338 | 338 |
|
339 | 339 |
template <class T> |
340 | 340 |
struct SetProcessedMapTraits : public Traits { |
341 | 341 |
typedef T ProcessedMap; |
342 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
343 | 343 |
{ |
344 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
345 | 345 |
return 0; // ignore warnings |
346 | 346 |
} |
347 | 347 |
}; |
348 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
349 | 349 |
///\c ProcessedMap type. |
350 | 350 |
/// |
351 | 351 |
///\ref named-templ-param "Named parameter" for setting |
352 | 352 |
///\c ProcessedMap type. |
353 | 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
354 | 354 |
template <class T> |
355 | 355 |
struct SetProcessedMap |
356 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
357 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
358 | 358 |
}; |
359 | 359 |
|
360 | 360 |
struct SetStandardProcessedMapTraits : public Traits { |
361 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
362 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
363 | 363 |
{ |
364 | 364 |
return new ProcessedMap(g); |
365 | 365 |
} |
366 | 366 |
}; |
367 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
368 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
369 | 369 |
/// |
370 | 370 |
///\ref named-templ-param "Named parameter" for setting |
371 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
372 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
373 | 373 |
struct SetStandardProcessedMap |
374 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
375 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
376 | 376 |
Create; |
377 | 377 |
}; |
378 | 378 |
|
379 | 379 |
template <class H, class CR> |
380 | 380 |
struct SetHeapTraits : public Traits { |
381 | 381 |
typedef CR HeapCrossRef; |
382 | 382 |
typedef H Heap; |
383 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
384 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
385 | 385 |
return 0; // ignore warnings |
386 | 386 |
} |
387 | 387 |
static Heap *createHeap(HeapCrossRef &) |
388 | 388 |
{ |
389 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
390 | 390 |
return 0; // ignore warnings |
391 | 391 |
} |
392 | 392 |
}; |
393 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
394 | 394 |
///heap and cross reference types |
395 | 395 |
/// |
396 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
397 | 397 |
///reference types. If this named parameter is used, then external |
398 | 398 |
///heap and cross reference objects must be passed to the algorithm |
399 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
400 | 400 |
///or \ref init(). |
401 | 401 |
///\sa SetStandardHeap |
402 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
403 | 403 |
struct SetHeap |
404 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
405 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
template <class H, class CR> |
409 | 409 |
struct SetStandardHeapTraits : public Traits { |
410 | 410 |
typedef CR HeapCrossRef; |
411 | 411 |
typedef H Heap; |
412 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
413 | 413 |
return new HeapCrossRef(G); |
414 | 414 |
} |
415 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
416 | 416 |
{ |
417 | 417 |
return new Heap(R); |
418 | 418 |
} |
419 | 419 |
}; |
420 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
421 | 421 |
///heap and cross reference types with automatic allocation |
422 | 422 |
/// |
423 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
424 | 424 |
///reference types with automatic allocation. |
425 | 425 |
///They should have standard constructor interfaces to be able to |
426 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
427 | 427 |
///passed to the constructor of the cross reference and the cross |
428 | 428 |
///reference should be passed to the constructor of the heap). |
429 | 429 |
///However external heap and cross reference objects could also be |
430 | 430 |
///passed to the algorithm using the \ref heap() function before |
431 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
432 | 432 |
///\sa SetHeap |
433 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
434 | 434 |
struct SetStandardHeap |
435 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
436 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
437 | 437 |
Create; |
438 | 438 |
}; |
439 | 439 |
|
440 | 440 |
template <class T> |
441 | 441 |
struct SetOperationTraitsTraits : public Traits { |
442 | 442 |
typedef T OperationTraits; |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
446 | 446 |
///\c OperationTraits type |
447 | 447 |
/// |
448 | 448 |
///\ref named-templ-param "Named parameter" for setting |
449 | 449 |
///\c OperationTraits type. |
450 | 450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
451 | 451 |
template <class T> |
452 | 452 |
struct SetOperationTraits |
453 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
454 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
455 | 455 |
Create; |
456 | 456 |
}; |
457 | 457 |
|
458 | 458 |
///@} |
459 | 459 |
|
460 | 460 |
protected: |
461 | 461 |
|
462 | 462 |
Dijkstra() {} |
463 | 463 |
|
464 | 464 |
public: |
465 | 465 |
|
466 | 466 |
///Constructor. |
467 | 467 |
|
468 | 468 |
///Constructor. |
469 | 469 |
///\param g The digraph the algorithm runs on. |
470 | 470 |
///\param length The length map used by the algorithm. |
471 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
472 | 472 |
G(&g), _length(&length), |
473 | 473 |
_pred(NULL), local_pred(false), |
474 | 474 |
_dist(NULL), local_dist(false), |
475 | 475 |
_processed(NULL), local_processed(false), |
476 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
477 | 477 |
_heap(NULL), local_heap(false) |
478 | 478 |
{ } |
479 | 479 |
|
480 | 480 |
///Destructor. |
481 | 481 |
~Dijkstra() |
482 | 482 |
{ |
483 | 483 |
if(local_pred) delete _pred; |
484 | 484 |
if(local_dist) delete _dist; |
485 | 485 |
if(local_processed) delete _processed; |
486 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
487 | 487 |
if(local_heap) delete _heap; |
488 | 488 |
} |
489 | 489 |
|
490 | 490 |
///Sets the length map. |
491 | 491 |
|
492 | 492 |
///Sets the length map. |
493 | 493 |
///\return <tt> (*this) </tt> |
494 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
495 | 495 |
{ |
496 | 496 |
_length = &m; |
497 | 497 |
return *this; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
///Sets the map that stores the predecessor arcs. |
501 | 501 |
|
502 | 502 |
///Sets the map that stores the predecessor arcs. |
503 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
504 | 504 |
///or \ref init(), an instance will be allocated automatically. |
505 | 505 |
///The destructor deallocates this automatically allocated map, |
506 | 506 |
///of course. |
507 | 507 |
///\return <tt> (*this) </tt> |
508 | 508 |
Dijkstra &predMap(PredMap &m) |
509 | 509 |
{ |
510 | 510 |
if(local_pred) { |
511 | 511 |
delete _pred; |
512 | 512 |
local_pred=false; |
513 | 513 |
} |
514 | 514 |
_pred = &m; |
515 | 515 |
return *this; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Sets the map that indicates which nodes are processed. |
519 | 519 |
|
520 | 520 |
///Sets the map that indicates which nodes are processed. |
521 | 521 |
///If you don't use this function before calling \ref run(Node) "run()" |
522 | 522 |
///or \ref init(), an instance will be allocated automatically. |
523 | 523 |
///The destructor deallocates this automatically allocated map, |
524 | 524 |
///of course. |
525 | 525 |
///\return <tt> (*this) </tt> |
526 | 526 |
Dijkstra &processedMap(ProcessedMap &m) |
527 | 527 |
{ |
528 | 528 |
if(local_processed) { |
529 | 529 |
delete _processed; |
530 | 530 |
local_processed=false; |
531 | 531 |
} |
532 | 532 |
_processed = &m; |
533 | 533 |
return *this; |
534 | 534 |
} |
535 | 535 |
|
536 | 536 |
///Sets the map that stores the distances of the nodes. |
537 | 537 |
|
538 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
539 | 539 |
///algorithm. |
540 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
541 | 541 |
///or \ref init(), an instance will be allocated automatically. |
542 | 542 |
///The destructor deallocates this automatically allocated map, |
543 | 543 |
///of course. |
544 | 544 |
///\return <tt> (*this) </tt> |
545 | 545 |
Dijkstra &distMap(DistMap &m) |
546 | 546 |
{ |
547 | 547 |
if(local_dist) { |
548 | 548 |
delete _dist; |
549 | 549 |
local_dist=false; |
550 | 550 |
} |
551 | 551 |
_dist = &m; |
552 | 552 |
return *this; |
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
///Sets the heap and the cross reference used by algorithm. |
556 | 556 |
|
557 | 557 |
///Sets the heap and the cross reference used by algorithm. |
558 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
559 | 559 |
///or \ref init(), heap and cross reference instances will be |
560 | 560 |
///allocated automatically. |
561 | 561 |
///The destructor deallocates these automatically allocated objects, |
562 | 562 |
///of course. |
563 | 563 |
///\return <tt> (*this) </tt> |
564 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
565 | 565 |
{ |
566 | 566 |
if(local_heap_cross_ref) { |
567 | 567 |
delete _heap_cross_ref; |
568 | 568 |
local_heap_cross_ref=false; |
569 | 569 |
} |
570 | 570 |
_heap_cross_ref = &cr; |
571 | 571 |
if(local_heap) { |
572 | 572 |
delete _heap; |
573 | 573 |
local_heap=false; |
574 | 574 |
} |
575 | 575 |
_heap = &hp; |
576 | 576 |
return *this; |
577 | 577 |
} |
578 | 578 |
|
579 | 579 |
private: |
580 | 580 |
|
581 | 581 |
void finalizeNodeData(Node v,Value dst) |
582 | 582 |
{ |
583 | 583 |
_processed->set(v,true); |
584 | 584 |
_dist->set(v, dst); |
585 | 585 |
} |
586 | 586 |
|
587 | 587 |
public: |
588 | 588 |
|
589 | 589 |
///\name Execution Control |
590 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
591 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
592 | 592 |
///If you need better control on the execution, you have to call |
593 | 593 |
///\ref init() first, then you can add several source nodes with |
594 | 594 |
///\ref addSource(). Finally the actual path computation can be |
595 | 595 |
///performed with one of the \ref start() functions. |
596 | 596 |
|
597 | 597 |
///@{ |
598 | 598 |
|
599 | 599 |
///\brief Initializes the internal data structures. |
600 | 600 |
/// |
601 | 601 |
///Initializes the internal data structures. |
602 | 602 |
void init() |
603 | 603 |
{ |
604 | 604 |
create_maps(); |
605 | 605 |
_heap->clear(); |
606 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
607 | 607 |
_pred->set(u,INVALID); |
608 | 608 |
_processed->set(u,false); |
609 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
610 | 610 |
} |
611 | 611 |
} |
612 | 612 |
|
613 | 613 |
///Adds a new source node. |
614 | 614 |
|
615 | 615 |
///Adds a new source node to the priority heap. |
616 | 616 |
///The optional second parameter is the initial distance of the node. |
617 | 617 |
/// |
618 | 618 |
///The function checks if the node has already been added to the heap and |
619 | 619 |
///it is pushed to the heap only if either it was not in the heap |
620 | 620 |
///or the shortest path found till then is shorter than \c dst. |
621 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
622 | 622 |
{ |
623 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) { |
624 | 624 |
_heap->push(s,dst); |
625 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
626 | 626 |
_heap->set(s,dst); |
627 | 627 |
_pred->set(s,INVALID); |
628 | 628 |
} |
629 | 629 |
} |
630 | 630 |
|
631 | 631 |
///Processes the next node in the priority heap |
632 | 632 |
|
633 | 633 |
///Processes the next node in the priority heap. |
634 | 634 |
/// |
635 | 635 |
///\return The processed node. |
636 | 636 |
/// |
637 | 637 |
///\warning The priority heap must not be empty. |
638 | 638 |
Node processNextNode() |
639 | 639 |
{ |
640 | 640 |
Node v=_heap->top(); |
641 | 641 |
Value oldvalue=_heap->prio(); |
642 | 642 |
_heap->pop(); |
643 | 643 |
finalizeNodeData(v,oldvalue); |
644 | 644 |
|
645 | 645 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
646 | 646 |
Node w=G->target(e); |
647 | 647 |
switch(_heap->state(w)) { |
648 | 648 |
case Heap::PRE_HEAP: |
649 | 649 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
650 | 650 |
_pred->set(w,e); |
651 | 651 |
break; |
652 | 652 |
case Heap::IN_HEAP: |
653 | 653 |
{ |
654 | 654 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
655 | 655 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
656 | 656 |
_heap->decrease(w, newvalue); |
657 | 657 |
_pred->set(w,e); |
658 | 658 |
} |
659 | 659 |
} |
660 | 660 |
break; |
661 | 661 |
case Heap::POST_HEAP: |
662 | 662 |
break; |
663 | 663 |
} |
664 | 664 |
} |
665 | 665 |
return v; |
666 | 666 |
} |
667 | 667 |
|
668 | 668 |
///The next node to be processed. |
669 | 669 |
|
670 | 670 |
///Returns the next node to be processed or \c INVALID if the |
671 | 671 |
///priority heap is empty. |
672 | 672 |
Node nextNode() const |
673 | 673 |
{ |
674 | 674 |
return !_heap->empty()?_heap->top():INVALID; |
675 | 675 |
} |
676 | 676 |
|
677 | 677 |
///Returns \c false if there are nodes to be processed. |
678 | 678 |
|
679 | 679 |
///Returns \c false if there are nodes to be processed |
680 | 680 |
///in the priority heap. |
681 | 681 |
bool emptyQueue() const { return _heap->empty(); } |
682 | 682 |
|
683 | 683 |
///Returns the number of the nodes to be processed. |
684 | 684 |
|
685 | 685 |
///Returns the number of the nodes to be processed |
686 | 686 |
///in the priority heap. |
687 | 687 |
int queueSize() const { return _heap->size(); } |
688 | 688 |
|
689 | 689 |
///Executes the algorithm. |
690 | 690 |
|
691 | 691 |
///Executes the algorithm. |
692 | 692 |
/// |
693 | 693 |
///This method runs the %Dijkstra algorithm from the root node(s) |
694 | 694 |
///in order to compute the shortest path to each node. |
695 | 695 |
/// |
696 | 696 |
///The algorithm computes |
697 | 697 |
///- the shortest path tree (forest), |
698 | 698 |
///- the distance of each node from the root(s). |
699 | 699 |
/// |
700 | 700 |
///\pre init() must be called and at least one root node should be |
701 | 701 |
///added with addSource() before using this function. |
702 | 702 |
/// |
703 | 703 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
704 | 704 |
///\code |
705 | 705 |
/// while ( !d.emptyQueue() ) { |
706 | 706 |
/// d.processNextNode(); |
707 | 707 |
/// } |
708 | 708 |
///\endcode |
709 | 709 |
void start() |
710 | 710 |
{ |
711 | 711 |
while ( !emptyQueue() ) processNextNode(); |
712 | 712 |
} |
713 | 713 |
|
714 | 714 |
///Executes the algorithm until the given target node is processed. |
715 | 715 |
|
716 | 716 |
///Executes the algorithm until the given target node is processed. |
717 | 717 |
/// |
718 | 718 |
///This method runs the %Dijkstra algorithm from the root node(s) |
719 | 719 |
///in order to compute the shortest path to \c t. |
720 | 720 |
/// |
721 | 721 |
///The algorithm computes |
722 | 722 |
///- the shortest path to \c t, |
723 | 723 |
///- the distance of \c t from the root(s). |
724 | 724 |
/// |
725 | 725 |
///\pre init() must be called and at least one root node should be |
726 | 726 |
///added with addSource() before using this function. |
727 | 727 |
void start(Node t) |
728 | 728 |
{ |
729 | 729 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
730 | 730 |
if ( !_heap->empty() ) { |
731 | 731 |
finalizeNodeData(_heap->top(),_heap->prio()); |
732 | 732 |
_heap->pop(); |
733 | 733 |
} |
734 | 734 |
} |
735 | 735 |
|
736 | 736 |
///Executes the algorithm until a condition is met. |
737 | 737 |
|
738 | 738 |
///Executes the algorithm until a condition is met. |
739 | 739 |
/// |
740 | 740 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
741 | 741 |
///order to compute the shortest path to a node \c v with |
742 | 742 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
743 | 743 |
/// |
744 | 744 |
///\param nm A \c bool (or convertible) node map. The algorithm |
745 | 745 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
746 | 746 |
/// |
747 | 747 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
748 | 748 |
///\c INVALID if no such node was found. |
749 | 749 |
/// |
750 | 750 |
///\pre init() must be called and at least one root node should be |
751 | 751 |
///added with addSource() before using this function. |
752 | 752 |
template<class NodeBoolMap> |
753 | 753 |
Node start(const NodeBoolMap &nm) |
754 | 754 |
{ |
755 | 755 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
756 | 756 |
if ( _heap->empty() ) return INVALID; |
757 | 757 |
finalizeNodeData(_heap->top(),_heap->prio()); |
758 | 758 |
return _heap->top(); |
759 | 759 |
} |
760 | 760 |
|
761 | 761 |
///Runs the algorithm from the given source node. |
762 | 762 |
|
763 | 763 |
///This method runs the %Dijkstra algorithm from node \c s |
764 | 764 |
///in order to compute the shortest path to each node. |
765 | 765 |
/// |
766 | 766 |
///The algorithm computes |
767 | 767 |
///- the shortest path tree, |
768 | 768 |
///- the distance of each node from the root. |
769 | 769 |
/// |
770 | 770 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
771 | 771 |
///\code |
772 | 772 |
/// d.init(); |
773 | 773 |
/// d.addSource(s); |
774 | 774 |
/// d.start(); |
775 | 775 |
///\endcode |
776 | 776 |
void run(Node s) { |
777 | 777 |
init(); |
778 | 778 |
addSource(s); |
779 | 779 |
start(); |
780 | 780 |
} |
781 | 781 |
|
782 | 782 |
///Finds the shortest path between \c s and \c t. |
783 | 783 |
|
784 | 784 |
///This method runs the %Dijkstra algorithm from node \c s |
785 | 785 |
///in order to compute the shortest path to node \c t |
786 | 786 |
///(it stops searching when \c t is processed). |
787 | 787 |
/// |
788 | 788 |
///\return \c true if \c t is reachable form \c s. |
789 | 789 |
/// |
790 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
791 | 791 |
///shortcut of the following code. |
792 | 792 |
///\code |
793 | 793 |
/// d.init(); |
794 | 794 |
/// d.addSource(s); |
795 | 795 |
/// d.start(t); |
796 | 796 |
///\endcode |
797 | 797 |
bool run(Node s,Node t) { |
798 | 798 |
init(); |
799 | 799 |
addSource(s); |
800 | 800 |
start(t); |
801 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
802 | 802 |
} |
803 | 803 |
|
804 | 804 |
///@} |
805 | 805 |
|
806 | 806 |
///\name Query Functions |
807 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
808 | 808 |
///functions.\n |
809 | 809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
810 | 810 |
///before using them. |
811 | 811 |
|
812 | 812 |
///@{ |
813 | 813 |
|
814 | 814 |
///The shortest path to the given node. |
815 | 815 |
|
816 | 816 |
///Returns the shortest path to the given node from the root(s). |
817 | 817 |
/// |
818 | 818 |
///\warning \c t should be reached from the root(s). |
819 | 819 |
/// |
820 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
821 | 821 |
///must be called before using this function. |
822 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
823 | 823 |
|
824 | 824 |
///The distance of the given node from the root(s). |
825 | 825 |
|
826 | 826 |
///Returns the distance of the given node from the root(s). |
827 | 827 |
/// |
828 | 828 |
///\warning If node \c v is not reached from the root(s), then |
829 | 829 |
///the return value of this function is undefined. |
830 | 830 |
/// |
831 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
832 | 832 |
///must be called before using this function. |
833 | 833 |
Value dist(Node v) const { return (*_dist)[v]; } |
834 | 834 |
|
835 | 835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
836 | 836 |
///the given node. |
837 | 837 |
/// |
838 | 838 |
///This function returns the 'previous arc' of the shortest path |
839 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
840 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
841 | 841 |
///is not reached from the root(s) or if \c v is a root. |
842 | 842 |
/// |
843 | 843 |
///The shortest path tree used here is equal to the shortest path |
844 | 844 |
///tree used in \ref predNode() and \ref predMap(). |
845 | 845 |
/// |
846 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
847 | 847 |
///must be called before using this function. |
848 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
849 | 849 |
|
850 | 850 |
///\brief Returns the 'previous node' of the shortest path tree for |
851 | 851 |
///the given node. |
852 | 852 |
/// |
853 | 853 |
///This function returns the 'previous node' of the shortest path |
854 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
855 | 855 |
///of a shortest path from a root to \c v. It is \c INVALID |
856 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
857 | 857 |
/// |
858 | 858 |
///The shortest path tree used here is equal to the shortest path |
859 | 859 |
///tree used in \ref predArc() and \ref predMap(). |
860 | 860 |
/// |
861 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
862 | 862 |
///must be called before using this function. |
863 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
864 | 864 |
G->source((*_pred)[v]); } |
865 | 865 |
|
866 | 866 |
///\brief Returns a const reference to the node map that stores the |
867 | 867 |
///distances of the nodes. |
868 | 868 |
/// |
869 | 869 |
///Returns a const reference to the node map that stores the distances |
870 | 870 |
///of the nodes calculated by the algorithm. |
871 | 871 |
/// |
872 | 872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
873 | 873 |
///must be called before using this function. |
874 | 874 |
const DistMap &distMap() const { return *_dist;} |
875 | 875 |
|
876 | 876 |
///\brief Returns a const reference to the node map that stores the |
877 | 877 |
///predecessor arcs. |
878 | 878 |
/// |
879 | 879 |
///Returns a const reference to the node map that stores the predecessor |
880 | 880 |
///arcs, which form the shortest path tree (forest). |
881 | 881 |
/// |
882 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
883 | 883 |
///must be called before using this function. |
884 | 884 |
const PredMap &predMap() const { return *_pred;} |
885 | 885 |
|
886 | 886 |
///Checks if the given node is reached from the root(s). |
887 | 887 |
|
888 | 888 |
///Returns \c true if \c v is reached from the root(s). |
889 | 889 |
/// |
890 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
891 | 891 |
///must be called before using this function. |
892 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
893 | 893 |
Heap::PRE_HEAP; } |
894 | 894 |
|
895 | 895 |
///Checks if a node is processed. |
896 | 896 |
|
897 | 897 |
///Returns \c true if \c v is processed, i.e. the shortest |
898 | 898 |
///path to \c v has already found. |
899 | 899 |
/// |
900 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
901 | 901 |
///must be called before using this function. |
902 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
903 | 903 |
Heap::POST_HEAP; } |
904 | 904 |
|
905 | 905 |
///The current distance of the given node from the root(s). |
906 | 906 |
|
907 | 907 |
///Returns the current distance of the given node from the root(s). |
908 | 908 |
///It may be decreased in the following processes. |
909 | 909 |
/// |
910 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
911 | 911 |
///must be called before using this function and |
912 | 912 |
///node \c v must be reached but not necessarily processed. |
913 | 913 |
Value currentDist(Node v) const { |
914 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
915 | 915 |
} |
916 | 916 |
|
917 | 917 |
///@} |
918 | 918 |
}; |
919 | 919 |
|
920 | 920 |
|
921 | 921 |
///Default traits class of dijkstra() function. |
922 | 922 |
|
923 | 923 |
///Default traits class of dijkstra() function. |
924 | 924 |
///\tparam GR The type of the digraph. |
925 | 925 |
///\tparam LEN The type of the length map. |
926 | 926 |
template<class GR, class LEN> |
927 | 927 |
struct DijkstraWizardDefaultTraits |
928 | 928 |
{ |
929 | 929 |
///The type of the digraph the algorithm runs on. |
930 | 930 |
typedef GR Digraph; |
931 | 931 |
///The type of the map that stores the arc lengths. |
932 | 932 |
|
933 | 933 |
///The type of the map that stores the arc lengths. |
934 | 934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
935 | 935 |
typedef LEN LengthMap; |
936 | 936 |
///The type of the arc lengths. |
937 | 937 |
typedef typename LEN::Value Value; |
938 | 938 |
|
939 | 939 |
/// Operation traits for Dijkstra algorithm. |
940 | 940 |
|
941 | 941 |
/// This class defines the operations that are used in the algorithm. |
942 | 942 |
/// \see DijkstraDefaultOperationTraits |
943 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
944 | 944 |
|
945 | 945 |
/// The cross reference type used by the heap. |
946 | 946 |
|
947 | 947 |
/// The cross reference type used by the heap. |
948 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
949 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
950 | 950 |
///Instantiates a \ref HeapCrossRef. |
951 | 951 |
|
952 | 952 |
///This function instantiates a \ref HeapCrossRef. |
953 | 953 |
/// \param g is the digraph, to which we would like to define the |
954 | 954 |
/// HeapCrossRef. |
955 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
956 | 956 |
{ |
957 | 957 |
return new HeapCrossRef(g); |
958 | 958 |
} |
959 | 959 |
|
960 | 960 |
///The heap type used by the Dijkstra algorithm. |
961 | 961 |
|
962 | 962 |
///The heap type used by the Dijkstra algorithm. |
963 | 963 |
/// |
964 | 964 |
///\sa BinHeap |
965 | 965 |
///\sa Dijkstra |
966 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
967 | 967 |
std::less<Value> > Heap; |
968 | 968 |
|
969 | 969 |
///Instantiates a \ref Heap. |
970 | 970 |
|
971 | 971 |
///This function instantiates a \ref Heap. |
972 | 972 |
/// \param r is the HeapCrossRef which is used. |
973 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
974 | 974 |
{ |
975 | 975 |
return new Heap(r); |
976 | 976 |
} |
977 | 977 |
|
978 | 978 |
///\brief The type of the map that stores the predecessor |
979 | 979 |
///arcs of the shortest paths. |
980 | 980 |
/// |
981 | 981 |
///The type of the map that stores the predecessor |
982 | 982 |
///arcs of the shortest paths. |
983 | 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
984 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
985 | 985 |
///Instantiates a PredMap. |
986 | 986 |
|
987 | 987 |
///This function instantiates a PredMap. |
988 | 988 |
///\param g is the digraph, to which we would like to define the |
989 | 989 |
///PredMap. |
990 | 990 |
static PredMap *createPredMap(const Digraph &g) |
991 | 991 |
{ |
992 | 992 |
return new PredMap(g); |
993 | 993 |
} |
994 | 994 |
|
995 | 995 |
///The type of the map that indicates which nodes are processed. |
996 | 996 |
|
997 | 997 |
///The type of the map that indicates which nodes are processed. |
998 | 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
999 | 999 |
///By default it is a NullMap. |
1000 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1001 | 1001 |
///Instantiates a ProcessedMap. |
1002 | 1002 |
|
1003 | 1003 |
///This function instantiates a ProcessedMap. |
1004 | 1004 |
///\param g is the digraph, to which |
1005 | 1005 |
///we would like to define the ProcessedMap. |
1006 | 1006 |
#ifdef DOXYGEN |
1007 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1008 | 1008 |
#else |
1009 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1010 | 1010 |
#endif |
1011 | 1011 |
{ |
1012 | 1012 |
return new ProcessedMap(); |
1013 | 1013 |
} |
1014 | 1014 |
|
1015 | 1015 |
///The type of the map that stores the distances of the nodes. |
1016 | 1016 |
|
1017 | 1017 |
///The type of the map that stores the distances of the nodes. |
1018 | 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
1019 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
1020 | 1020 |
///Instantiates a DistMap. |
1021 | 1021 |
|
1022 | 1022 |
///This function instantiates a DistMap. |
1023 | 1023 |
///\param g is the digraph, to which we would like to define |
1024 | 1024 |
///the DistMap |
1025 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
1026 | 1026 |
{ |
1027 | 1027 |
return new DistMap(g); |
1028 | 1028 |
} |
1029 | 1029 |
|
1030 | 1030 |
///The type of the shortest paths. |
1031 | 1031 |
|
1032 | 1032 |
///The type of the shortest paths. |
1033 | 1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
1034 | 1034 |
typedef lemon::Path<Digraph> Path; |
1035 | 1035 |
}; |
1036 | 1036 |
|
1037 | 1037 |
/// Default traits class used by DijkstraWizard |
1038 | 1038 |
|
1039 | 1039 |
/// Default traits class used by DijkstraWizard. |
1040 | 1040 |
/// \tparam GR The type of the digraph. |
1041 | 1041 |
/// \tparam LEN The type of the length map. |
1042 | 1042 |
template<typename GR, typename LEN> |
1043 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
1044 | 1044 |
{ |
1045 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
1046 | 1046 |
protected: |
1047 | 1047 |
//The type of the nodes in the digraph. |
1048 | 1048 |
typedef typename Base::Digraph::Node Node; |
1049 | 1049 |
|
1050 | 1050 |
//Pointer to the digraph the algorithm runs on. |
1051 | 1051 |
void *_g; |
1052 | 1052 |
//Pointer to the length map. |
1053 | 1053 |
void *_length; |
1054 | 1054 |
//Pointer to the map of processed nodes. |
1055 | 1055 |
void *_processed; |
1056 | 1056 |
//Pointer to the map of predecessors arcs. |
1057 | 1057 |
void *_pred; |
1058 | 1058 |
//Pointer to the map of distances. |
1059 | 1059 |
void *_dist; |
1060 | 1060 |
//Pointer to the shortest path to the target node. |
1061 | 1061 |
void *_path; |
1062 | 1062 |
//Pointer to the distance of the target node. |
1063 | 1063 |
void *_di; |
1064 | 1064 |
|
1065 | 1065 |
public: |
1066 | 1066 |
/// Constructor. |
1067 | 1067 |
|
1068 | 1068 |
/// This constructor does not require parameters, therefore it initiates |
1069 | 1069 |
/// all of the attributes to \c 0. |
1070 | 1070 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1071 | 1071 |
_dist(0), _path(0), _di(0) {} |
1072 | 1072 |
|
1073 | 1073 |
/// Constructor. |
1074 | 1074 |
|
1075 | 1075 |
/// This constructor requires two parameters, |
1076 | 1076 |
/// others are initiated to \c 0. |
1077 | 1077 |
/// \param g The digraph the algorithm runs on. |
1078 | 1078 |
/// \param l The length map. |
1079 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
1080 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1081 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
1082 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1083 | 1083 |
|
1084 | 1084 |
}; |
1085 | 1085 |
|
1086 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1087 | 1087 |
|
1088 | 1088 |
/// This auxiliary class is created to implement the |
1089 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1090 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
1091 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
1092 | 1092 |
/// |
1093 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
1094 | 1094 |
/// which makes it easier to use the algorithm. |
1095 | 1095 |
template<class TR> |
1096 | 1096 |
class DijkstraWizard : public TR |
1097 | 1097 |
{ |
1098 | 1098 |
typedef TR Base; |
1099 | 1099 |
|
1100 | 1100 |
typedef typename TR::Digraph Digraph; |
1101 | 1101 |
|
1102 | 1102 |
typedef typename Digraph::Node Node; |
1103 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
1104 | 1104 |
typedef typename Digraph::Arc Arc; |
1105 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
1106 | 1106 |
|
1107 | 1107 |
typedef typename TR::LengthMap LengthMap; |
1108 | 1108 |
typedef typename LengthMap::Value Value; |
1109 | 1109 |
typedef typename TR::PredMap PredMap; |
1110 | 1110 |
typedef typename TR::DistMap DistMap; |
1111 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
1112 | 1112 |
typedef typename TR::Path Path; |
1113 | 1113 |
typedef typename TR::Heap Heap; |
1114 | 1114 |
|
1115 | 1115 |
public: |
1116 | 1116 |
|
1117 | 1117 |
/// Constructor. |
1118 | 1118 |
DijkstraWizard() : TR() {} |
1119 | 1119 |
|
1120 | 1120 |
/// Constructor that requires parameters. |
1121 | 1121 |
|
1122 | 1122 |
/// Constructor that requires parameters. |
1123 | 1123 |
/// These parameters will be the default values for the traits class. |
1124 | 1124 |
/// \param g The digraph the algorithm runs on. |
1125 | 1125 |
/// \param l The length map. |
1126 | 1126 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
1127 | 1127 |
TR(g,l) {} |
1128 | 1128 |
|
1129 | 1129 |
///Copy constructor |
1130 | 1130 |
DijkstraWizard(const TR &b) : TR(b) {} |
1131 | 1131 |
|
1132 | 1132 |
~DijkstraWizard() {} |
1133 | 1133 |
|
1134 | 1134 |
///Runs Dijkstra algorithm from the given source node. |
1135 | 1135 |
|
1136 | 1136 |
///This method runs %Dijkstra algorithm from the given source node |
1137 | 1137 |
///in order to compute the shortest path to each node. |
1138 | 1138 |
void run(Node s) |
1139 | 1139 |
{ |
1140 | 1140 |
Dijkstra<Digraph,LengthMap,TR> |
1141 | 1141 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1142 | 1142 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1143 | 1143 |
if (Base::_pred) |
1144 | 1144 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1145 | 1145 |
if (Base::_dist) |
1146 | 1146 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1147 | 1147 |
if (Base::_processed) |
1148 | 1148 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1149 | 1149 |
dijk.run(s); |
1150 | 1150 |
} |
1151 | 1151 |
|
1152 | 1152 |
///Finds the shortest path between \c s and \c t. |
1153 | 1153 |
|
1154 | 1154 |
///This method runs the %Dijkstra algorithm from node \c s |
1155 | 1155 |
///in order to compute the shortest path to node \c t |
1156 | 1156 |
///(it stops searching when \c t is processed). |
1157 | 1157 |
/// |
1158 | 1158 |
///\return \c true if \c t is reachable form \c s. |
1159 | 1159 |
bool run(Node s, Node t) |
1160 | 1160 |
{ |
1161 | 1161 |
Dijkstra<Digraph,LengthMap,TR> |
1162 | 1162 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1163 | 1163 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1164 | 1164 |
if (Base::_pred) |
1165 | 1165 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1166 | 1166 |
if (Base::_dist) |
1167 | 1167 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1168 | 1168 |
if (Base::_processed) |
1169 | 1169 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1170 | 1170 |
dijk.run(s,t); |
1171 | 1171 |
if (Base::_path) |
1172 | 1172 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
1173 | 1173 |
if (Base::_di) |
1174 | 1174 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
1175 | 1175 |
return dijk.reached(t); |
1176 | 1176 |
} |
1177 | 1177 |
|
1178 | 1178 |
template<class T> |
1179 | 1179 |
struct SetPredMapBase : public Base { |
1180 | 1180 |
typedef T PredMap; |
1181 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1182 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {} |
1183 | 1183 |
}; |
1184 | 1184 |
|
1185 | 1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
1186 | 1186 |
///the predecessor map. |
1187 | 1187 |
/// |
1188 | 1188 |
///\ref named-templ-param "Named parameter" function for setting |
1189 | 1189 |
///the map that stores the predecessor arcs of the nodes. |
1190 | 1190 |
template<class T> |
1191 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1192 | 1192 |
{ |
1193 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1194 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1195 | 1195 |
} |
1196 | 1196 |
|
1197 | 1197 |
template<class T> |
1198 | 1198 |
struct SetDistMapBase : public Base { |
1199 | 1199 |
typedef T DistMap; |
1200 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1201 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {} |
1202 | 1202 |
}; |
1203 | 1203 |
|
1204 | 1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
1205 | 1205 |
///the distance map. |
1206 | 1206 |
/// |
1207 | 1207 |
///\ref named-templ-param "Named parameter" function for setting |
1208 | 1208 |
///the map that stores the distances of the nodes calculated |
1209 | 1209 |
///by the algorithm. |
1210 | 1210 |
template<class T> |
1211 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1212 | 1212 |
{ |
1213 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1214 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1215 | 1215 |
} |
1216 | 1216 |
|
1217 | 1217 |
template<class T> |
1218 | 1218 |
struct SetProcessedMapBase : public Base { |
1219 | 1219 |
typedef T ProcessedMap; |
1220 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1221 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1222 | 1222 |
}; |
1223 | 1223 |
|
1224 | 1224 |
///\brief \ref named-func-param "Named parameter" for setting |
1225 | 1225 |
///the processed map. |
1226 | 1226 |
/// |
1227 | 1227 |
///\ref named-templ-param "Named parameter" function for setting |
1228 | 1228 |
///the map that indicates which nodes are processed. |
1229 | 1229 |
template<class T> |
1230 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1231 | 1231 |
{ |
1232 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1233 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1234 | 1234 |
} |
1235 | 1235 |
|
1236 | 1236 |
template<class T> |
1237 | 1237 |
struct SetPathBase : public Base { |
1238 | 1238 |
typedef T Path; |
1239 | 1239 |
SetPathBase(const TR &b) : TR(b) {} |
1240 | 1240 |
}; |
1241 | 1241 |
|
1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
1243 | 1243 |
///for getting the shortest path to the target node. |
1244 | 1244 |
/// |
1245 | 1245 |
///\ref named-func-param "Named parameter" |
1246 | 1246 |
///for getting the shortest path to the target node. |
1247 | 1247 |
template<class T> |
1248 | 1248 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
1249 | 1249 |
{ |
1250 | 1250 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1251 | 1251 |
return DijkstraWizard<SetPathBase<T> >(*this); |
1252 | 1252 |
} |
1253 | 1253 |
|
1254 | 1254 |
///\brief \ref named-func-param "Named parameter" |
1255 | 1255 |
///for getting the distance of the target node. |
1256 | 1256 |
/// |
1257 | 1257 |
///\ref named-func-param "Named parameter" |
1258 | 1258 |
///for getting the distance of the target node. |
1259 | 1259 |
DijkstraWizard dist(const Value &d) |
1260 | 1260 |
{ |
1261 | 1261 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1262 | 1262 |
return *this; |
1263 | 1263 |
} |
1264 | 1264 |
|
1265 | 1265 |
}; |
1266 | 1266 |
|
1267 | 1267 |
///Function-type interface for Dijkstra algorithm. |
1268 | 1268 |
|
1269 | 1269 |
/// \ingroup shortest_path |
1270 | 1270 |
///Function-type interface for Dijkstra algorithm. |
1271 | 1271 |
/// |
1272 | 1272 |
///This function also has several \ref named-func-param "named parameters", |
1273 | 1273 |
///they are declared as the members of class \ref DijkstraWizard. |
1274 | 1274 |
///The following examples show how to use these parameters. |
1275 | 1275 |
///\code |
1276 | 1276 |
/// // Compute shortest path from node s to each node |
1277 | 1277 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
1278 | 1278 |
/// |
1279 | 1279 |
/// // Compute shortest path from s to t |
1280 | 1280 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
1281 | 1281 |
///\endcode |
1282 | 1282 |
///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()" |
1283 | 1283 |
///to the end of the parameter list. |
1284 | 1284 |
///\sa DijkstraWizard |
1285 | 1285 |
///\sa Dijkstra |
1286 | 1286 |
template<typename GR, typename LEN> |
1287 | 1287 |
DijkstraWizard<DijkstraWizardBase<GR,LEN> > |
1288 | 1288 |
dijkstra(const GR &digraph, const LEN &length) |
1289 | 1289 |
{ |
1290 | 1290 |
return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length); |
1291 | 1291 |
} |
1292 | 1292 |
|
1293 | 1293 |
} //END OF NAMESPACE LEMON |
1294 | 1294 |
|
1295 | 1295 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EDGE_SET_H |
20 | 20 |
#define LEMON_EDGE_SET_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/edge_set_extender.h> |
24 | 24 |
|
25 | 25 |
/// \ingroup graphs |
26 | 26 |
/// \file |
27 | 27 |
/// \brief ArcSet and EdgeSet classes. |
28 | 28 |
/// |
29 | 29 |
/// Graphs which use another graph's node-set as own. |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
template <typename GR> |
33 | 33 |
class ListArcSetBase { |
34 | 34 |
public: |
35 | 35 |
|
36 | 36 |
typedef typename GR::Node Node; |
37 | 37 |
typedef typename GR::NodeIt NodeIt; |
38 | 38 |
|
39 | 39 |
protected: |
40 | 40 |
|
41 | 41 |
struct NodeT { |
42 | 42 |
int first_out, first_in; |
43 | 43 |
NodeT() : first_out(-1), first_in(-1) {} |
44 | 44 |
}; |
45 | 45 |
|
46 | 46 |
typedef typename ItemSetTraits<GR, Node>:: |
47 | 47 |
template Map<NodeT>::Type NodesImplBase; |
48 | 48 |
|
49 | 49 |
NodesImplBase* _nodes; |
50 | 50 |
|
51 | 51 |
struct ArcT { |
52 | 52 |
Node source, target; |
53 | 53 |
int next_out, next_in; |
54 | 54 |
int prev_out, prev_in; |
55 | 55 |
ArcT() : prev_out(-1), prev_in(-1) {} |
56 | 56 |
}; |
57 | 57 |
|
58 | 58 |
std::vector<ArcT> arcs; |
59 | 59 |
|
60 | 60 |
int first_arc; |
61 | 61 |
int first_free_arc; |
62 | 62 |
|
63 | 63 |
const GR* _graph; |
64 | 64 |
|
65 | 65 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
66 | 66 |
_graph = &graph; |
67 | 67 |
_nodes = &nodes; |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
|
72 | 72 |
class Arc { |
73 | 73 |
friend class ListArcSetBase<GR>; |
74 | 74 |
protected: |
75 | 75 |
Arc(int _id) : id(_id) {} |
76 | 76 |
int id; |
77 | 77 |
public: |
78 | 78 |
Arc() {} |
79 | 79 |
Arc(Invalid) : id(-1) {} |
80 | 80 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
81 | 81 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
82 | 82 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
ListArcSetBase() : first_arc(-1), first_free_arc(-1) {} |
86 | 86 |
|
87 | 87 |
Node addNode() { |
88 | 88 |
LEMON_ASSERT(false, |
89 | 89 |
"This graph structure does not support node insertion"); |
90 | 90 |
return INVALID; // avoid warning |
91 | 91 |
} |
92 | 92 |
|
93 | 93 |
Arc addArc(const Node& u, const Node& v) { |
94 | 94 |
int n; |
95 | 95 |
if (first_free_arc == -1) { |
96 | 96 |
n = arcs.size(); |
97 | 97 |
arcs.push_back(ArcT()); |
98 | 98 |
} else { |
99 | 99 |
n = first_free_arc; |
100 | 100 |
first_free_arc = arcs[first_free_arc].next_in; |
101 | 101 |
} |
102 | 102 |
arcs[n].next_in = (*_nodes)[v].first_in; |
103 | 103 |
if ((*_nodes)[v].first_in != -1) { |
104 | 104 |
arcs[(*_nodes)[v].first_in].prev_in = n; |
105 | 105 |
} |
106 | 106 |
(*_nodes)[v].first_in = n; |
107 | 107 |
arcs[n].next_out = (*_nodes)[u].first_out; |
108 | 108 |
if ((*_nodes)[u].first_out != -1) { |
109 | 109 |
arcs[(*_nodes)[u].first_out].prev_out = n; |
110 | 110 |
} |
111 | 111 |
(*_nodes)[u].first_out = n; |
112 | 112 |
arcs[n].source = u; |
113 | 113 |
arcs[n].target = v; |
114 | 114 |
return Arc(n); |
115 | 115 |
} |
116 | 116 |
|
117 | 117 |
void erase(const Arc& arc) { |
118 | 118 |
int n = arc.id; |
119 | 119 |
if (arcs[n].prev_in != -1) { |
120 | 120 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
121 | 121 |
} else { |
122 | 122 |
(*_nodes)[arcs[n].target].first_in = arcs[n].next_in; |
123 | 123 |
} |
124 | 124 |
if (arcs[n].next_in != -1) { |
125 | 125 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
if (arcs[n].prev_out != -1) { |
129 | 129 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
130 | 130 |
} else { |
131 | 131 |
(*_nodes)[arcs[n].source].first_out = arcs[n].next_out; |
132 | 132 |
} |
133 | 133 |
if (arcs[n].next_out != -1) { |
134 | 134 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
135 | 135 |
} |
136 | 136 |
|
137 | 137 |
} |
138 | 138 |
|
139 | 139 |
void clear() { |
140 | 140 |
Node node; |
141 | 141 |
for (first(node); node != INVALID; next(node)) { |
142 | 142 |
(*_nodes)[node].first_in = -1; |
143 | 143 |
(*_nodes)[node].first_out = -1; |
144 | 144 |
} |
145 | 145 |
arcs.clear(); |
146 | 146 |
first_arc = -1; |
147 | 147 |
first_free_arc = -1; |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
void first(Node& node) const { |
151 | 151 |
_graph->first(node); |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
void next(Node& node) const { |
155 | 155 |
_graph->next(node); |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
void first(Arc& arc) const { |
159 | 159 |
Node node; |
160 | 160 |
first(node); |
161 | 161 |
while (node != INVALID && (*_nodes)[node].first_in == -1) { |
162 | 162 |
next(node); |
163 | 163 |
} |
164 | 164 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
void next(Arc& arc) const { |
168 | 168 |
if (arcs[arc.id].next_in != -1) { |
169 | 169 |
arc.id = arcs[arc.id].next_in; |
170 | 170 |
} else { |
171 | 171 |
Node node = arcs[arc.id].target; |
172 | 172 |
next(node); |
173 | 173 |
while (node != INVALID && (*_nodes)[node].first_in == -1) { |
174 | 174 |
next(node); |
175 | 175 |
} |
176 | 176 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; |
177 | 177 |
} |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
void firstOut(Arc& arc, const Node& node) const { |
181 | 181 |
arc.id = (*_nodes)[node].first_out; |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
void nextOut(Arc& arc) const { |
185 | 185 |
arc.id = arcs[arc.id].next_out; |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
void firstIn(Arc& arc, const Node& node) const { |
189 | 189 |
arc.id = (*_nodes)[node].first_in; |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
void nextIn(Arc& arc) const { |
193 | 193 |
arc.id = arcs[arc.id].next_in; |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
int id(const Node& node) const { return _graph->id(node); } |
197 | 197 |
int id(const Arc& arc) const { return arc.id; } |
198 | 198 |
|
199 | 199 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
200 | 200 |
Arc arcFromId(int ix) const { return Arc(ix); } |
201 | 201 |
|
202 | 202 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
203 | 203 |
int maxArcId() const { return arcs.size() - 1; } |
204 | 204 |
|
205 | 205 |
Node source(const Arc& arc) const { return arcs[arc.id].source;} |
206 | 206 |
Node target(const Arc& arc) const { return arcs[arc.id].target;} |
207 | 207 |
|
208 | 208 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
209 | 209 |
|
210 | 210 |
NodeNotifier& notifier(Node) const { |
211 | 211 |
return _graph->notifier(Node()); |
212 | 212 |
} |
213 | 213 |
|
214 | 214 |
template <typename V> |
215 | 215 |
class NodeMap : public GR::template NodeMap<V> { |
216 | 216 |
typedef typename GR::template NodeMap<V> Parent; |
217 | 217 |
|
218 | 218 |
public: |
219 | 219 |
|
220 | 220 |
explicit NodeMap(const ListArcSetBase<GR>& arcset) |
221 | 221 |
: Parent(*arcset._graph) {} |
222 | 222 |
|
223 | 223 |
NodeMap(const ListArcSetBase<GR>& arcset, const V& value) |
224 | 224 |
: Parent(*arcset._graph, value) {} |
225 | 225 |
|
226 | 226 |
NodeMap& operator=(const NodeMap& cmap) { |
227 | 227 |
return operator=<NodeMap>(cmap); |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
template <typename CMap> |
231 | 231 |
NodeMap& operator=(const CMap& cmap) { |
232 | 232 |
Parent::operator=(cmap); |
233 | 233 |
return *this; |
234 | 234 |
} |
235 | 235 |
}; |
236 | 236 |
|
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
/// \ingroup graphs |
240 | 240 |
/// |
241 | 241 |
/// \brief Digraph using a node set of another digraph or graph and |
242 | 242 |
/// an own arc set. |
243 | 243 |
/// |
244 | 244 |
/// This structure can be used to establish another directed graph |
245 | 245 |
/// over a node set of an existing one. This class uses the same |
246 | 246 |
/// Node type as the underlying graph, and each valid node of the |
247 | 247 |
/// original graph is valid in this arc set, therefore the node |
248 | 248 |
/// objects of the original graph can be used directly with this |
249 | 249 |
/// class. The node handling functions (id handling, observing, and |
250 | 250 |
/// iterators) works equivalently as in the original graph. |
251 | 251 |
/// |
252 | 252 |
/// This implementation is based on doubly-linked lists, from each |
253 | 253 |
/// node the outgoing and the incoming arcs make up lists, therefore |
254 | 254 |
/// one arc can be erased in constant time. It also makes possible, |
255 | 255 |
/// that node can be removed from the underlying graph, in this case |
256 | 256 |
/// all arcs incident to the given node is erased from the arc set. |
257 | 257 |
/// |
258 |
/// This class fully conforms to the \ref concepts::Digraph |
|
259 |
/// "Digraph" concept. |
|
260 |
/// It provides only linear time counting for nodes and arcs. |
|
261 |
/// |
|
258 | 262 |
/// \param GR The type of the graph which shares its node set with |
259 | 263 |
/// this class. Its interface must conform to the |
260 | 264 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
261 | 265 |
/// concept. |
262 |
/// |
|
263 |
/// This class fully conforms to the \ref concepts::Digraph |
|
264 |
/// "Digraph" concept. |
|
265 | 266 |
template <typename GR> |
266 | 267 |
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > { |
267 | 268 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
268 | 269 |
|
269 | 270 |
public: |
270 | 271 |
|
271 | 272 |
typedef typename Parent::Node Node; |
272 | 273 |
typedef typename Parent::Arc Arc; |
273 | 274 |
|
274 | 275 |
typedef typename Parent::NodesImplBase NodesImplBase; |
275 | 276 |
|
276 | 277 |
void eraseNode(const Node& node) { |
277 | 278 |
Arc arc; |
278 | 279 |
Parent::firstOut(arc, node); |
279 | 280 |
while (arc != INVALID ) { |
280 | 281 |
erase(arc); |
281 | 282 |
Parent::firstOut(arc, node); |
282 | 283 |
} |
283 | 284 |
|
284 | 285 |
Parent::firstIn(arc, node); |
285 | 286 |
while (arc != INVALID ) { |
286 | 287 |
erase(arc); |
287 | 288 |
Parent::firstIn(arc, node); |
288 | 289 |
} |
289 | 290 |
} |
290 | 291 |
|
291 | 292 |
void clearNodes() { |
292 | 293 |
Parent::clear(); |
293 | 294 |
} |
294 | 295 |
|
295 | 296 |
class NodesImpl : public NodesImplBase { |
296 | 297 |
typedef NodesImplBase Parent; |
297 | 298 |
|
298 | 299 |
public: |
299 | 300 |
NodesImpl(const GR& graph, ListArcSet& arcset) |
300 | 301 |
: Parent(graph), _arcset(arcset) {} |
301 | 302 |
|
302 | 303 |
virtual ~NodesImpl() {} |
303 | 304 |
|
304 | 305 |
protected: |
305 | 306 |
|
306 | 307 |
virtual void erase(const Node& node) { |
307 | 308 |
_arcset.eraseNode(node); |
308 | 309 |
Parent::erase(node); |
309 | 310 |
} |
310 | 311 |
virtual void erase(const std::vector<Node>& nodes) { |
311 | 312 |
for (int i = 0; i < int(nodes.size()); ++i) { |
312 | 313 |
_arcset.eraseNode(nodes[i]); |
313 | 314 |
} |
314 | 315 |
Parent::erase(nodes); |
315 | 316 |
} |
316 | 317 |
virtual void clear() { |
317 | 318 |
_arcset.clearNodes(); |
318 | 319 |
Parent::clear(); |
319 | 320 |
} |
320 | 321 |
|
321 | 322 |
private: |
322 | 323 |
ListArcSet& _arcset; |
323 | 324 |
}; |
324 | 325 |
|
325 | 326 |
NodesImpl _nodes; |
326 | 327 |
|
327 | 328 |
public: |
328 | 329 |
|
329 | 330 |
/// \brief Constructor of the ArcSet. |
330 | 331 |
/// |
331 | 332 |
/// Constructor of the ArcSet. |
332 | 333 |
ListArcSet(const GR& graph) : _nodes(graph, *this) { |
333 | 334 |
Parent::initalize(graph, _nodes); |
334 | 335 |
} |
335 | 336 |
|
336 | 337 |
/// \brief Add a new arc to the digraph. |
337 | 338 |
/// |
338 | 339 |
/// Add a new arc to the digraph with source node \c s |
339 | 340 |
/// and target node \c t. |
340 | 341 |
/// \return The new arc. |
341 | 342 |
Arc addArc(const Node& s, const Node& t) { |
342 | 343 |
return Parent::addArc(s, t); |
343 | 344 |
} |
344 | 345 |
|
345 | 346 |
/// \brief Erase an arc from the digraph. |
346 | 347 |
/// |
347 | 348 |
/// Erase an arc \c a from the digraph. |
348 | 349 |
void erase(const Arc& a) { |
349 | 350 |
return Parent::erase(a); |
350 | 351 |
} |
351 | 352 |
|
352 | 353 |
}; |
353 | 354 |
|
354 | 355 |
template <typename GR> |
355 | 356 |
class ListEdgeSetBase { |
356 | 357 |
public: |
357 | 358 |
|
358 | 359 |
typedef typename GR::Node Node; |
359 | 360 |
typedef typename GR::NodeIt NodeIt; |
360 | 361 |
|
361 | 362 |
protected: |
362 | 363 |
|
363 | 364 |
struct NodeT { |
364 | 365 |
int first_out; |
365 | 366 |
NodeT() : first_out(-1) {} |
366 | 367 |
}; |
367 | 368 |
|
368 | 369 |
typedef typename ItemSetTraits<GR, Node>:: |
369 | 370 |
template Map<NodeT>::Type NodesImplBase; |
370 | 371 |
|
371 | 372 |
NodesImplBase* _nodes; |
372 | 373 |
|
373 | 374 |
struct ArcT { |
374 | 375 |
Node target; |
375 | 376 |
int prev_out, next_out; |
376 | 377 |
ArcT() : prev_out(-1), next_out(-1) {} |
377 | 378 |
}; |
378 | 379 |
|
379 | 380 |
std::vector<ArcT> arcs; |
380 | 381 |
|
381 | 382 |
int first_arc; |
382 | 383 |
int first_free_arc; |
383 | 384 |
|
384 | 385 |
const GR* _graph; |
385 | 386 |
|
386 | 387 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
387 | 388 |
_graph = &graph; |
388 | 389 |
_nodes = &nodes; |
389 | 390 |
} |
390 | 391 |
|
391 | 392 |
public: |
392 | 393 |
|
393 | 394 |
class Edge { |
394 | 395 |
friend class ListEdgeSetBase; |
395 | 396 |
protected: |
396 | 397 |
|
397 | 398 |
int id; |
398 | 399 |
explicit Edge(int _id) { id = _id;} |
399 | 400 |
|
400 | 401 |
public: |
401 | 402 |
Edge() {} |
402 | 403 |
Edge (Invalid) { id = -1; } |
403 | 404 |
bool operator==(const Edge& arc) const {return id == arc.id;} |
404 | 405 |
bool operator!=(const Edge& arc) const {return id != arc.id;} |
405 | 406 |
bool operator<(const Edge& arc) const {return id < arc.id;} |
406 | 407 |
}; |
407 | 408 |
|
408 | 409 |
class Arc { |
409 | 410 |
friend class ListEdgeSetBase; |
410 | 411 |
protected: |
411 | 412 |
Arc(int _id) : id(_id) {} |
412 | 413 |
int id; |
413 | 414 |
public: |
414 | 415 |
operator Edge() const { return edgeFromId(id / 2); } |
415 | 416 |
|
416 | 417 |
Arc() {} |
417 | 418 |
Arc(Invalid) : id(-1) {} |
418 | 419 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
419 | 420 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
420 | 421 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
421 | 422 |
}; |
422 | 423 |
|
423 | 424 |
ListEdgeSetBase() : first_arc(-1), first_free_arc(-1) {} |
424 | 425 |
|
425 | 426 |
Node addNode() { |
426 | 427 |
LEMON_ASSERT(false, |
427 | 428 |
"This graph structure does not support node insertion"); |
428 | 429 |
return INVALID; // avoid warning |
429 | 430 |
} |
430 | 431 |
|
431 | 432 |
Edge addEdge(const Node& u, const Node& v) { |
432 | 433 |
int n; |
433 | 434 |
|
434 | 435 |
if (first_free_arc == -1) { |
435 | 436 |
n = arcs.size(); |
436 | 437 |
arcs.push_back(ArcT()); |
437 | 438 |
arcs.push_back(ArcT()); |
438 | 439 |
} else { |
439 | 440 |
n = first_free_arc; |
440 | 441 |
first_free_arc = arcs[n].next_out; |
441 | 442 |
} |
442 | 443 |
|
443 | 444 |
arcs[n].target = u; |
444 | 445 |
arcs[n | 1].target = v; |
445 | 446 |
|
446 | 447 |
arcs[n].next_out = (*_nodes)[v].first_out; |
447 | 448 |
if ((*_nodes)[v].first_out != -1) { |
448 | 449 |
arcs[(*_nodes)[v].first_out].prev_out = n; |
449 | 450 |
} |
450 | 451 |
(*_nodes)[v].first_out = n; |
451 | 452 |
arcs[n].prev_out = -1; |
452 | 453 |
|
453 | 454 |
if ((*_nodes)[u].first_out != -1) { |
454 | 455 |
arcs[(*_nodes)[u].first_out].prev_out = (n | 1); |
455 | 456 |
} |
456 | 457 |
arcs[n | 1].next_out = (*_nodes)[u].first_out; |
457 | 458 |
(*_nodes)[u].first_out = (n | 1); |
458 | 459 |
arcs[n | 1].prev_out = -1; |
459 | 460 |
|
460 | 461 |
return Edge(n / 2); |
461 | 462 |
} |
462 | 463 |
|
463 | 464 |
void erase(const Edge& arc) { |
464 | 465 |
int n = arc.id * 2; |
465 | 466 |
|
466 | 467 |
if (arcs[n].next_out != -1) { |
467 | 468 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
468 | 469 |
} |
469 | 470 |
|
470 | 471 |
if (arcs[n].prev_out != -1) { |
471 | 472 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
472 | 473 |
} else { |
473 | 474 |
(*_nodes)[arcs[n | 1].target].first_out = arcs[n].next_out; |
474 | 475 |
} |
475 | 476 |
|
476 | 477 |
if (arcs[n | 1].next_out != -1) { |
477 | 478 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
478 | 479 |
} |
479 | 480 |
|
480 | 481 |
if (arcs[n | 1].prev_out != -1) { |
481 | 482 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
482 | 483 |
} else { |
483 | 484 |
(*_nodes)[arcs[n].target].first_out = arcs[n | 1].next_out; |
484 | 485 |
} |
485 | 486 |
|
486 | 487 |
arcs[n].next_out = first_free_arc; |
487 | 488 |
first_free_arc = n; |
488 | 489 |
|
489 | 490 |
} |
490 | 491 |
|
491 | 492 |
void clear() { |
492 | 493 |
Node node; |
493 | 494 |
for (first(node); node != INVALID; next(node)) { |
494 | 495 |
(*_nodes)[node].first_out = -1; |
495 | 496 |
} |
496 | 497 |
arcs.clear(); |
497 | 498 |
first_arc = -1; |
498 | 499 |
first_free_arc = -1; |
499 | 500 |
} |
500 | 501 |
|
501 | 502 |
void first(Node& node) const { |
502 | 503 |
_graph->first(node); |
503 | 504 |
} |
504 | 505 |
|
505 | 506 |
void next(Node& node) const { |
506 | 507 |
_graph->next(node); |
507 | 508 |
} |
508 | 509 |
|
509 | 510 |
void first(Arc& arc) const { |
510 | 511 |
Node node; |
511 | 512 |
first(node); |
512 | 513 |
while (node != INVALID && (*_nodes)[node].first_out == -1) { |
513 | 514 |
next(node); |
514 | 515 |
} |
515 | 516 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; |
516 | 517 |
} |
517 | 518 |
|
518 | 519 |
void next(Arc& arc) const { |
519 | 520 |
if (arcs[arc.id].next_out != -1) { |
520 | 521 |
arc.id = arcs[arc.id].next_out; |
521 | 522 |
} else { |
522 | 523 |
Node node = arcs[arc.id ^ 1].target; |
523 | 524 |
next(node); |
524 | 525 |
while(node != INVALID && (*_nodes)[node].first_out == -1) { |
525 | 526 |
next(node); |
526 | 527 |
} |
527 | 528 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; |
528 | 529 |
} |
529 | 530 |
} |
530 | 531 |
|
531 | 532 |
void first(Edge& edge) const { |
532 | 533 |
Node node; |
533 | 534 |
first(node); |
534 | 535 |
while (node != INVALID) { |
535 | 536 |
edge.id = (*_nodes)[node].first_out; |
536 | 537 |
while ((edge.id & 1) != 1) { |
537 | 538 |
edge.id = arcs[edge.id].next_out; |
538 | 539 |
} |
539 | 540 |
if (edge.id != -1) { |
540 | 541 |
edge.id /= 2; |
541 | 542 |
return; |
542 | 543 |
} |
543 | 544 |
next(node); |
544 | 545 |
} |
545 | 546 |
edge.id = -1; |
546 | 547 |
} |
547 | 548 |
|
548 | 549 |
void next(Edge& edge) const { |
549 | 550 |
Node node = arcs[edge.id * 2].target; |
550 | 551 |
edge.id = arcs[(edge.id * 2) | 1].next_out; |
551 | 552 |
while ((edge.id & 1) != 1) { |
552 | 553 |
edge.id = arcs[edge.id].next_out; |
553 | 554 |
} |
554 | 555 |
if (edge.id != -1) { |
555 | 556 |
edge.id /= 2; |
556 | 557 |
return; |
557 | 558 |
} |
558 | 559 |
next(node); |
559 | 560 |
while (node != INVALID) { |
560 | 561 |
edge.id = (*_nodes)[node].first_out; |
561 | 562 |
while ((edge.id & 1) != 1) { |
562 | 563 |
edge.id = arcs[edge.id].next_out; |
563 | 564 |
} |
564 | 565 |
if (edge.id != -1) { |
565 | 566 |
edge.id /= 2; |
566 | 567 |
return; |
567 | 568 |
} |
568 | 569 |
next(node); |
569 | 570 |
} |
570 | 571 |
edge.id = -1; |
571 | 572 |
} |
572 | 573 |
|
573 | 574 |
void firstOut(Arc& arc, const Node& node) const { |
574 | 575 |
arc.id = (*_nodes)[node].first_out; |
575 | 576 |
} |
576 | 577 |
|
577 | 578 |
void nextOut(Arc& arc) const { |
578 | 579 |
arc.id = arcs[arc.id].next_out; |
579 | 580 |
} |
580 | 581 |
|
581 | 582 |
void firstIn(Arc& arc, const Node& node) const { |
582 | 583 |
arc.id = (((*_nodes)[node].first_out) ^ 1); |
583 | 584 |
if (arc.id == -2) arc.id = -1; |
584 | 585 |
} |
585 | 586 |
|
586 | 587 |
void nextIn(Arc& arc) const { |
587 | 588 |
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); |
588 | 589 |
if (arc.id == -2) arc.id = -1; |
589 | 590 |
} |
590 | 591 |
|
591 | 592 |
void firstInc(Edge &arc, bool& dir, const Node& node) const { |
592 | 593 |
int de = (*_nodes)[node].first_out; |
593 | 594 |
if (de != -1 ) { |
594 | 595 |
arc.id = de / 2; |
595 | 596 |
dir = ((de & 1) == 1); |
596 | 597 |
} else { |
597 | 598 |
arc.id = -1; |
598 | 599 |
dir = true; |
599 | 600 |
} |
600 | 601 |
} |
601 | 602 |
void nextInc(Edge &arc, bool& dir) const { |
602 | 603 |
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); |
603 | 604 |
if (de != -1 ) { |
604 | 605 |
arc.id = de / 2; |
605 | 606 |
dir = ((de & 1) == 1); |
606 | 607 |
} else { |
607 | 608 |
arc.id = -1; |
608 | 609 |
dir = true; |
609 | 610 |
} |
610 | 611 |
} |
611 | 612 |
|
612 | 613 |
static bool direction(Arc arc) { |
613 | 614 |
return (arc.id & 1) == 1; |
614 | 615 |
} |
615 | 616 |
|
616 | 617 |
static Arc direct(Edge edge, bool dir) { |
617 | 618 |
return Arc(edge.id * 2 + (dir ? 1 : 0)); |
618 | 619 |
} |
619 | 620 |
|
620 | 621 |
int id(const Node& node) const { return _graph->id(node); } |
621 | 622 |
static int id(Arc e) { return e.id; } |
622 | 623 |
static int id(Edge e) { return e.id; } |
623 | 624 |
|
624 | 625 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); } |
625 | 626 |
static Arc arcFromId(int id) { return Arc(id);} |
626 | 627 |
static Edge edgeFromId(int id) { return Edge(id);} |
627 | 628 |
|
628 | 629 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
629 | 630 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
630 | 631 |
int maxArcId() const { return arcs.size()-1; } |
631 | 632 |
|
632 | 633 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; } |
633 | 634 |
Node target(Arc e) const { return arcs[e.id].target; } |
634 | 635 |
|
635 | 636 |
Node u(Edge e) const { return arcs[2 * e.id].target; } |
636 | 637 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; } |
637 | 638 |
|
638 | 639 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
639 | 640 |
|
640 | 641 |
NodeNotifier& notifier(Node) const { |
641 | 642 |
return _graph->notifier(Node()); |
642 | 643 |
} |
643 | 644 |
|
644 | 645 |
template <typename V> |
645 | 646 |
class NodeMap : public GR::template NodeMap<V> { |
646 | 647 |
typedef typename GR::template NodeMap<V> Parent; |
647 | 648 |
|
648 | 649 |
public: |
649 | 650 |
|
650 | 651 |
explicit NodeMap(const ListEdgeSetBase<GR>& arcset) |
651 | 652 |
: Parent(*arcset._graph) {} |
652 | 653 |
|
653 | 654 |
NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value) |
654 | 655 |
: Parent(*arcset._graph, value) {} |
655 | 656 |
|
656 | 657 |
NodeMap& operator=(const NodeMap& cmap) { |
657 | 658 |
return operator=<NodeMap>(cmap); |
658 | 659 |
} |
659 | 660 |
|
660 | 661 |
template <typename CMap> |
661 | 662 |
NodeMap& operator=(const CMap& cmap) { |
662 | 663 |
Parent::operator=(cmap); |
663 | 664 |
return *this; |
664 | 665 |
} |
665 | 666 |
}; |
666 | 667 |
|
667 | 668 |
}; |
668 | 669 |
|
669 | 670 |
/// \ingroup graphs |
670 | 671 |
/// |
671 | 672 |
/// \brief Graph using a node set of another digraph or graph and an |
672 | 673 |
/// own edge set. |
673 | 674 |
/// |
674 | 675 |
/// This structure can be used to establish another graph over a |
675 | 676 |
/// node set of an existing one. This class uses the same Node type |
676 | 677 |
/// as the underlying graph, and each valid node of the original |
677 | 678 |
/// graph is valid in this arc set, therefore the node objects of |
678 | 679 |
/// the original graph can be used directly with this class. The |
679 | 680 |
/// node handling functions (id handling, observing, and iterators) |
680 | 681 |
/// works equivalently as in the original graph. |
681 | 682 |
/// |
682 | 683 |
/// This implementation is based on doubly-linked lists, from each |
683 | 684 |
/// node the incident edges make up lists, therefore one edge can be |
684 | 685 |
/// erased in constant time. It also makes possible, that node can |
685 | 686 |
/// be removed from the underlying graph, in this case all edges |
686 | 687 |
/// incident to the given node is erased from the arc set. |
687 | 688 |
/// |
689 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
690 |
/// concept. |
|
691 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
692 |
/// |
|
688 | 693 |
/// \param GR The type of the graph which shares its node set |
689 | 694 |
/// with this class. Its interface must conform to the |
690 | 695 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
691 | 696 |
/// concept. |
692 |
/// |
|
693 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
694 |
/// concept. |
|
695 | 697 |
template <typename GR> |
696 | 698 |
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > { |
697 | 699 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
698 | 700 |
|
699 | 701 |
public: |
700 | 702 |
|
701 | 703 |
typedef typename Parent::Node Node; |
702 | 704 |
typedef typename Parent::Arc Arc; |
703 | 705 |
typedef typename Parent::Edge Edge; |
704 | 706 |
|
705 | 707 |
typedef typename Parent::NodesImplBase NodesImplBase; |
706 | 708 |
|
707 | 709 |
void eraseNode(const Node& node) { |
708 | 710 |
Arc arc; |
709 | 711 |
Parent::firstOut(arc, node); |
710 | 712 |
while (arc != INVALID ) { |
711 | 713 |
erase(arc); |
712 | 714 |
Parent::firstOut(arc, node); |
713 | 715 |
} |
714 | 716 |
|
715 | 717 |
} |
716 | 718 |
|
717 | 719 |
void clearNodes() { |
718 | 720 |
Parent::clear(); |
719 | 721 |
} |
720 | 722 |
|
721 | 723 |
class NodesImpl : public NodesImplBase { |
722 | 724 |
typedef NodesImplBase Parent; |
723 | 725 |
|
724 | 726 |
public: |
725 | 727 |
NodesImpl(const GR& graph, ListEdgeSet& arcset) |
726 | 728 |
: Parent(graph), _arcset(arcset) {} |
727 | 729 |
|
728 | 730 |
virtual ~NodesImpl() {} |
729 | 731 |
|
730 | 732 |
protected: |
731 | 733 |
|
732 | 734 |
virtual void erase(const Node& node) { |
733 | 735 |
_arcset.eraseNode(node); |
734 | 736 |
Parent::erase(node); |
735 | 737 |
} |
736 | 738 |
virtual void erase(const std::vector<Node>& nodes) { |
737 | 739 |
for (int i = 0; i < int(nodes.size()); ++i) { |
738 | 740 |
_arcset.eraseNode(nodes[i]); |
739 | 741 |
} |
740 | 742 |
Parent::erase(nodes); |
741 | 743 |
} |
742 | 744 |
virtual void clear() { |
743 | 745 |
_arcset.clearNodes(); |
744 | 746 |
Parent::clear(); |
745 | 747 |
} |
746 | 748 |
|
747 | 749 |
private: |
748 | 750 |
ListEdgeSet& _arcset; |
749 | 751 |
}; |
750 | 752 |
|
751 | 753 |
NodesImpl _nodes; |
752 | 754 |
|
753 | 755 |
public: |
754 | 756 |
|
755 | 757 |
/// \brief Constructor of the EdgeSet. |
756 | 758 |
/// |
757 | 759 |
/// Constructor of the EdgeSet. |
758 | 760 |
ListEdgeSet(const GR& graph) : _nodes(graph, *this) { |
759 | 761 |
Parent::initalize(graph, _nodes); |
760 | 762 |
} |
761 | 763 |
|
762 | 764 |
/// \brief Add a new edge to the graph. |
763 | 765 |
/// |
764 | 766 |
/// Add a new edge to the graph with node \c u |
765 | 767 |
/// and node \c v endpoints. |
766 | 768 |
/// \return The new edge. |
767 | 769 |
Edge addEdge(const Node& u, const Node& v) { |
768 | 770 |
return Parent::addEdge(u, v); |
769 | 771 |
} |
770 | 772 |
|
771 | 773 |
/// \brief Erase an edge from the graph. |
772 | 774 |
/// |
773 | 775 |
/// Erase the edge \c e from the graph. |
774 | 776 |
void erase(const Edge& e) { |
775 | 777 |
return Parent::erase(e); |
776 | 778 |
} |
777 | 779 |
|
778 | 780 |
}; |
779 | 781 |
|
780 | 782 |
template <typename GR> |
781 | 783 |
class SmartArcSetBase { |
782 | 784 |
public: |
783 | 785 |
|
784 | 786 |
typedef typename GR::Node Node; |
785 | 787 |
typedef typename GR::NodeIt NodeIt; |
786 | 788 |
|
787 | 789 |
protected: |
788 | 790 |
|
789 | 791 |
struct NodeT { |
790 | 792 |
int first_out, first_in; |
791 | 793 |
NodeT() : first_out(-1), first_in(-1) {} |
792 | 794 |
}; |
793 | 795 |
|
794 | 796 |
typedef typename ItemSetTraits<GR, Node>:: |
795 | 797 |
template Map<NodeT>::Type NodesImplBase; |
796 | 798 |
|
797 | 799 |
NodesImplBase* _nodes; |
798 | 800 |
|
799 | 801 |
struct ArcT { |
800 | 802 |
Node source, target; |
801 | 803 |
int next_out, next_in; |
802 | 804 |
ArcT() {} |
803 | 805 |
}; |
804 | 806 |
|
805 | 807 |
std::vector<ArcT> arcs; |
806 | 808 |
|
807 | 809 |
const GR* _graph; |
808 | 810 |
|
809 | 811 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
810 | 812 |
_graph = &graph; |
811 | 813 |
_nodes = &nodes; |
812 | 814 |
} |
813 | 815 |
|
814 | 816 |
public: |
815 | 817 |
|
816 | 818 |
class Arc { |
817 | 819 |
friend class SmartArcSetBase<GR>; |
818 | 820 |
protected: |
819 | 821 |
Arc(int _id) : id(_id) {} |
820 | 822 |
int id; |
821 | 823 |
public: |
822 | 824 |
Arc() {} |
823 | 825 |
Arc(Invalid) : id(-1) {} |
824 | 826 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
825 | 827 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
826 | 828 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
827 | 829 |
}; |
828 | 830 |
|
829 | 831 |
SmartArcSetBase() {} |
830 | 832 |
|
831 | 833 |
Node addNode() { |
832 | 834 |
LEMON_ASSERT(false, |
833 | 835 |
"This graph structure does not support node insertion"); |
834 | 836 |
return INVALID; // avoid warning |
835 | 837 |
} |
836 | 838 |
|
837 | 839 |
Arc addArc(const Node& u, const Node& v) { |
838 | 840 |
int n = arcs.size(); |
839 | 841 |
arcs.push_back(ArcT()); |
840 | 842 |
arcs[n].next_in = (*_nodes)[v].first_in; |
841 | 843 |
(*_nodes)[v].first_in = n; |
842 | 844 |
arcs[n].next_out = (*_nodes)[u].first_out; |
843 | 845 |
(*_nodes)[u].first_out = n; |
844 | 846 |
arcs[n].source = u; |
845 | 847 |
arcs[n].target = v; |
846 | 848 |
return Arc(n); |
847 | 849 |
} |
848 | 850 |
|
849 | 851 |
void clear() { |
850 | 852 |
Node node; |
851 | 853 |
for (first(node); node != INVALID; next(node)) { |
852 | 854 |
(*_nodes)[node].first_in = -1; |
853 | 855 |
(*_nodes)[node].first_out = -1; |
854 | 856 |
} |
855 | 857 |
arcs.clear(); |
856 | 858 |
} |
857 | 859 |
|
858 | 860 |
void first(Node& node) const { |
859 | 861 |
_graph->first(node); |
860 | 862 |
} |
861 | 863 |
|
862 | 864 |
void next(Node& node) const { |
863 | 865 |
_graph->next(node); |
864 | 866 |
} |
865 | 867 |
|
866 | 868 |
void first(Arc& arc) const { |
867 | 869 |
arc.id = arcs.size() - 1; |
868 | 870 |
} |
869 | 871 |
|
870 | 872 |
static void next(Arc& arc) { |
871 | 873 |
--arc.id; |
872 | 874 |
} |
873 | 875 |
|
874 | 876 |
void firstOut(Arc& arc, const Node& node) const { |
875 | 877 |
arc.id = (*_nodes)[node].first_out; |
876 | 878 |
} |
877 | 879 |
|
878 | 880 |
void nextOut(Arc& arc) const { |
879 | 881 |
arc.id = arcs[arc.id].next_out; |
880 | 882 |
} |
881 | 883 |
|
882 | 884 |
void firstIn(Arc& arc, const Node& node) const { |
883 | 885 |
arc.id = (*_nodes)[node].first_in; |
884 | 886 |
} |
885 | 887 |
|
886 | 888 |
void nextIn(Arc& arc) const { |
887 | 889 |
arc.id = arcs[arc.id].next_in; |
888 | 890 |
} |
889 | 891 |
|
890 | 892 |
int id(const Node& node) const { return _graph->id(node); } |
891 | 893 |
int id(const Arc& arc) const { return arc.id; } |
892 | 894 |
|
893 | 895 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
894 | 896 |
Arc arcFromId(int ix) const { return Arc(ix); } |
895 | 897 |
|
896 | 898 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
897 | 899 |
int maxArcId() const { return arcs.size() - 1; } |
898 | 900 |
|
899 | 901 |
Node source(const Arc& arc) const { return arcs[arc.id].source;} |
900 | 902 |
Node target(const Arc& arc) const { return arcs[arc.id].target;} |
901 | 903 |
|
902 | 904 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
903 | 905 |
|
904 | 906 |
NodeNotifier& notifier(Node) const { |
905 | 907 |
return _graph->notifier(Node()); |
906 | 908 |
} |
907 | 909 |
|
908 | 910 |
template <typename V> |
909 | 911 |
class NodeMap : public GR::template NodeMap<V> { |
910 | 912 |
typedef typename GR::template NodeMap<V> Parent; |
911 | 913 |
|
912 | 914 |
public: |
913 | 915 |
|
914 | 916 |
explicit NodeMap(const SmartArcSetBase<GR>& arcset) |
915 | 917 |
: Parent(*arcset._graph) { } |
916 | 918 |
|
917 | 919 |
NodeMap(const SmartArcSetBase<GR>& arcset, const V& value) |
918 | 920 |
: Parent(*arcset._graph, value) { } |
919 | 921 |
|
920 | 922 |
NodeMap& operator=(const NodeMap& cmap) { |
921 | 923 |
return operator=<NodeMap>(cmap); |
922 | 924 |
} |
923 | 925 |
|
924 | 926 |
template <typename CMap> |
925 | 927 |
NodeMap& operator=(const CMap& cmap) { |
926 | 928 |
Parent::operator=(cmap); |
927 | 929 |
return *this; |
928 | 930 |
} |
929 | 931 |
}; |
930 | 932 |
|
931 | 933 |
}; |
932 | 934 |
|
933 | 935 |
|
934 | 936 |
/// \ingroup graphs |
935 | 937 |
/// |
936 | 938 |
/// \brief Digraph using a node set of another digraph or graph and |
937 | 939 |
/// an own arc set. |
938 | 940 |
/// |
939 | 941 |
/// This structure can be used to establish another directed graph |
940 | 942 |
/// over a node set of an existing one. This class uses the same |
941 | 943 |
/// Node type as the underlying graph, and each valid node of the |
942 | 944 |
/// original graph is valid in this arc set, therefore the node |
943 | 945 |
/// objects of the original graph can be used directly with this |
944 | 946 |
/// class. The node handling functions (id handling, observing, and |
945 | 947 |
/// iterators) works equivalently as in the original graph. |
946 | 948 |
/// |
947 | 949 |
/// \param GR The type of the graph which shares its node set with |
948 | 950 |
/// this class. Its interface must conform to the |
949 | 951 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
950 | 952 |
/// concept. |
951 | 953 |
/// |
952 | 954 |
/// This implementation is slightly faster than the \c ListArcSet, |
953 | 955 |
/// because it uses continuous storage for arcs and it uses just |
954 | 956 |
/// single-linked lists for enumerate outgoing and incoming |
955 | 957 |
/// arcs. Therefore the arcs cannot be erased from the arc sets. |
956 | 958 |
/// |
959 |
/// This class fully conforms to the \ref concepts::Digraph "Digraph" |
|
960 |
/// concept. |
|
961 |
/// It provides only linear time counting for nodes and arcs. |
|
962 |
/// |
|
957 | 963 |
/// \warning If a node is erased from the underlying graph and this |
958 | 964 |
/// node is the source or target of one arc in the arc set, then |
959 | 965 |
/// the arc set is invalidated, and it cannot be used anymore. The |
960 | 966 |
/// validity can be checked with the \c valid() member function. |
961 |
/// |
|
962 |
/// This class fully conforms to the \ref concepts::Digraph |
|
963 |
/// "Digraph" concept. |
|
964 | 967 |
template <typename GR> |
965 | 968 |
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > { |
966 | 969 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
967 | 970 |
|
968 | 971 |
public: |
969 | 972 |
|
970 | 973 |
typedef typename Parent::Node Node; |
971 | 974 |
typedef typename Parent::Arc Arc; |
972 | 975 |
|
973 | 976 |
protected: |
974 | 977 |
|
975 | 978 |
typedef typename Parent::NodesImplBase NodesImplBase; |
976 | 979 |
|
977 | 980 |
void eraseNode(const Node& node) { |
978 | 981 |
if (typename Parent::InArcIt(*this, node) == INVALID && |
979 | 982 |
typename Parent::OutArcIt(*this, node) == INVALID) { |
980 | 983 |
return; |
981 | 984 |
} |
982 | 985 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
983 | 986 |
} |
984 | 987 |
|
985 | 988 |
void clearNodes() { |
986 | 989 |
Parent::clear(); |
987 | 990 |
} |
988 | 991 |
|
989 | 992 |
class NodesImpl : public NodesImplBase { |
990 | 993 |
typedef NodesImplBase Parent; |
991 | 994 |
|
992 | 995 |
public: |
993 | 996 |
NodesImpl(const GR& graph, SmartArcSet& arcset) |
994 | 997 |
: Parent(graph), _arcset(arcset) {} |
995 | 998 |
|
996 | 999 |
virtual ~NodesImpl() {} |
997 | 1000 |
|
998 | 1001 |
bool attached() const { |
999 | 1002 |
return Parent::attached(); |
1000 | 1003 |
} |
1001 | 1004 |
|
1002 | 1005 |
protected: |
1003 | 1006 |
|
1004 | 1007 |
virtual void erase(const Node& node) { |
1005 | 1008 |
try { |
1006 | 1009 |
_arcset.eraseNode(node); |
1007 | 1010 |
Parent::erase(node); |
1008 | 1011 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1009 | 1012 |
Parent::clear(); |
1010 | 1013 |
throw; |
1011 | 1014 |
} |
1012 | 1015 |
} |
1013 | 1016 |
virtual void erase(const std::vector<Node>& nodes) { |
1014 | 1017 |
try { |
1015 | 1018 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1016 | 1019 |
_arcset.eraseNode(nodes[i]); |
1017 | 1020 |
} |
1018 | 1021 |
Parent::erase(nodes); |
1019 | 1022 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1020 | 1023 |
Parent::clear(); |
1021 | 1024 |
throw; |
1022 | 1025 |
} |
1023 | 1026 |
} |
1024 | 1027 |
virtual void clear() { |
1025 | 1028 |
_arcset.clearNodes(); |
1026 | 1029 |
Parent::clear(); |
1027 | 1030 |
} |
1028 | 1031 |
|
1029 | 1032 |
private: |
1030 | 1033 |
SmartArcSet& _arcset; |
1031 | 1034 |
}; |
1032 | 1035 |
|
1033 | 1036 |
NodesImpl _nodes; |
1034 | 1037 |
|
1035 | 1038 |
public: |
1036 | 1039 |
|
1037 | 1040 |
/// \brief Constructor of the ArcSet. |
1038 | 1041 |
/// |
1039 | 1042 |
/// Constructor of the ArcSet. |
1040 | 1043 |
SmartArcSet(const GR& graph) : _nodes(graph, *this) { |
1041 | 1044 |
Parent::initalize(graph, _nodes); |
1042 | 1045 |
} |
1043 | 1046 |
|
1044 | 1047 |
/// \brief Add a new arc to the digraph. |
1045 | 1048 |
/// |
1046 | 1049 |
/// Add a new arc to the digraph with source node \c s |
1047 | 1050 |
/// and target node \c t. |
1048 | 1051 |
/// \return The new arc. |
1049 | 1052 |
Arc addArc(const Node& s, const Node& t) { |
1050 | 1053 |
return Parent::addArc(s, t); |
1051 | 1054 |
} |
1052 | 1055 |
|
1053 | 1056 |
/// \brief Validity check |
1054 | 1057 |
/// |
1055 | 1058 |
/// This functions gives back false if the ArcSet is |
1056 | 1059 |
/// invalidated. It occurs when a node in the underlying graph is |
1057 | 1060 |
/// erased and it is not isolated in the ArcSet. |
1058 | 1061 |
bool valid() const { |
1059 | 1062 |
return _nodes.attached(); |
1060 | 1063 |
} |
1061 | 1064 |
|
1062 | 1065 |
}; |
1063 | 1066 |
|
1064 | 1067 |
|
1065 | 1068 |
template <typename GR> |
1066 | 1069 |
class SmartEdgeSetBase { |
1067 | 1070 |
public: |
1068 | 1071 |
|
1069 | 1072 |
typedef typename GR::Node Node; |
1070 | 1073 |
typedef typename GR::NodeIt NodeIt; |
1071 | 1074 |
|
1072 | 1075 |
protected: |
1073 | 1076 |
|
1074 | 1077 |
struct NodeT { |
1075 | 1078 |
int first_out; |
1076 | 1079 |
NodeT() : first_out(-1) {} |
1077 | 1080 |
}; |
1078 | 1081 |
|
1079 | 1082 |
typedef typename ItemSetTraits<GR, Node>:: |
1080 | 1083 |
template Map<NodeT>::Type NodesImplBase; |
1081 | 1084 |
|
1082 | 1085 |
NodesImplBase* _nodes; |
1083 | 1086 |
|
1084 | 1087 |
struct ArcT { |
1085 | 1088 |
Node target; |
1086 | 1089 |
int next_out; |
1087 | 1090 |
ArcT() {} |
1088 | 1091 |
}; |
1089 | 1092 |
|
1090 | 1093 |
std::vector<ArcT> arcs; |
1091 | 1094 |
|
1092 | 1095 |
const GR* _graph; |
1093 | 1096 |
|
1094 | 1097 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
1095 | 1098 |
_graph = &graph; |
1096 | 1099 |
_nodes = &nodes; |
1097 | 1100 |
} |
1098 | 1101 |
|
1099 | 1102 |
public: |
1100 | 1103 |
|
1101 | 1104 |
class Edge { |
1102 | 1105 |
friend class SmartEdgeSetBase; |
1103 | 1106 |
protected: |
1104 | 1107 |
|
1105 | 1108 |
int id; |
1106 | 1109 |
explicit Edge(int _id) { id = _id;} |
1107 | 1110 |
|
1108 | 1111 |
public: |
1109 | 1112 |
Edge() {} |
1110 | 1113 |
Edge (Invalid) { id = -1; } |
1111 | 1114 |
bool operator==(const Edge& arc) const {return id == arc.id;} |
1112 | 1115 |
bool operator!=(const Edge& arc) const {return id != arc.id;} |
1113 | 1116 |
bool operator<(const Edge& arc) const {return id < arc.id;} |
1114 | 1117 |
}; |
1115 | 1118 |
|
1116 | 1119 |
class Arc { |
1117 | 1120 |
friend class SmartEdgeSetBase; |
1118 | 1121 |
protected: |
1119 | 1122 |
Arc(int _id) : id(_id) {} |
1120 | 1123 |
int id; |
1121 | 1124 |
public: |
1122 | 1125 |
operator Edge() const { return edgeFromId(id / 2); } |
1123 | 1126 |
|
1124 | 1127 |
Arc() {} |
1125 | 1128 |
Arc(Invalid) : id(-1) {} |
1126 | 1129 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
1127 | 1130 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
1128 | 1131 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
1129 | 1132 |
}; |
1130 | 1133 |
|
1131 | 1134 |
SmartEdgeSetBase() {} |
1132 | 1135 |
|
1133 | 1136 |
Node addNode() { |
1134 | 1137 |
LEMON_ASSERT(false, |
1135 | 1138 |
"This graph structure does not support node insertion"); |
1136 | 1139 |
return INVALID; // avoid warning |
1137 | 1140 |
} |
1138 | 1141 |
|
1139 | 1142 |
Edge addEdge(const Node& u, const Node& v) { |
1140 | 1143 |
int n = arcs.size(); |
1141 | 1144 |
arcs.push_back(ArcT()); |
1142 | 1145 |
arcs.push_back(ArcT()); |
1143 | 1146 |
|
1144 | 1147 |
arcs[n].target = u; |
1145 | 1148 |
arcs[n | 1].target = v; |
1146 | 1149 |
|
1147 | 1150 |
arcs[n].next_out = (*_nodes)[v].first_out; |
1148 | 1151 |
(*_nodes)[v].first_out = n; |
1149 | 1152 |
|
1150 | 1153 |
arcs[n | 1].next_out = (*_nodes)[u].first_out; |
1151 | 1154 |
(*_nodes)[u].first_out = (n | 1); |
1152 | 1155 |
|
1153 | 1156 |
return Edge(n / 2); |
1154 | 1157 |
} |
1155 | 1158 |
|
1156 | 1159 |
void clear() { |
1157 | 1160 |
Node node; |
1158 | 1161 |
for (first(node); node != INVALID; next(node)) { |
1159 | 1162 |
(*_nodes)[node].first_out = -1; |
1160 | 1163 |
} |
1161 | 1164 |
arcs.clear(); |
1162 | 1165 |
} |
1163 | 1166 |
|
1164 | 1167 |
void first(Node& node) const { |
1165 | 1168 |
_graph->first(node); |
1166 | 1169 |
} |
1167 | 1170 |
|
1168 | 1171 |
void next(Node& node) const { |
1169 | 1172 |
_graph->next(node); |
1170 | 1173 |
} |
1171 | 1174 |
|
1172 | 1175 |
void first(Arc& arc) const { |
1173 | 1176 |
arc.id = arcs.size() - 1; |
1174 | 1177 |
} |
1175 | 1178 |
|
1176 | 1179 |
static void next(Arc& arc) { |
1177 | 1180 |
--arc.id; |
1178 | 1181 |
} |
1179 | 1182 |
|
1180 | 1183 |
void first(Edge& arc) const { |
1181 | 1184 |
arc.id = arcs.size() / 2 - 1; |
1182 | 1185 |
} |
1183 | 1186 |
|
1184 | 1187 |
static void next(Edge& arc) { |
1185 | 1188 |
--arc.id; |
1186 | 1189 |
} |
1187 | 1190 |
|
1188 | 1191 |
void firstOut(Arc& arc, const Node& node) const { |
1189 | 1192 |
arc.id = (*_nodes)[node].first_out; |
1190 | 1193 |
} |
1191 | 1194 |
|
1192 | 1195 |
void nextOut(Arc& arc) const { |
1193 | 1196 |
arc.id = arcs[arc.id].next_out; |
1194 | 1197 |
} |
1195 | 1198 |
|
1196 | 1199 |
void firstIn(Arc& arc, const Node& node) const { |
1197 | 1200 |
arc.id = (((*_nodes)[node].first_out) ^ 1); |
1198 | 1201 |
if (arc.id == -2) arc.id = -1; |
1199 | 1202 |
} |
1200 | 1203 |
|
1201 | 1204 |
void nextIn(Arc& arc) const { |
1202 | 1205 |
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); |
1203 | 1206 |
if (arc.id == -2) arc.id = -1; |
1204 | 1207 |
} |
1205 | 1208 |
|
1206 | 1209 |
void firstInc(Edge &arc, bool& dir, const Node& node) const { |
1207 | 1210 |
int de = (*_nodes)[node].first_out; |
1208 | 1211 |
if (de != -1 ) { |
1209 | 1212 |
arc.id = de / 2; |
1210 | 1213 |
dir = ((de & 1) == 1); |
1211 | 1214 |
} else { |
1212 | 1215 |
arc.id = -1; |
1213 | 1216 |
dir = true; |
1214 | 1217 |
} |
1215 | 1218 |
} |
1216 | 1219 |
void nextInc(Edge &arc, bool& dir) const { |
1217 | 1220 |
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); |
1218 | 1221 |
if (de != -1 ) { |
1219 | 1222 |
arc.id = de / 2; |
1220 | 1223 |
dir = ((de & 1) == 1); |
1221 | 1224 |
} else { |
1222 | 1225 |
arc.id = -1; |
1223 | 1226 |
dir = true; |
1224 | 1227 |
} |
1225 | 1228 |
} |
1226 | 1229 |
|
1227 | 1230 |
static bool direction(Arc arc) { |
1228 | 1231 |
return (arc.id & 1) == 1; |
1229 | 1232 |
} |
1230 | 1233 |
|
1231 | 1234 |
static Arc direct(Edge edge, bool dir) { |
1232 | 1235 |
return Arc(edge.id * 2 + (dir ? 1 : 0)); |
1233 | 1236 |
} |
1234 | 1237 |
|
1235 | 1238 |
int id(Node node) const { return _graph->id(node); } |
1236 | 1239 |
static int id(Arc arc) { return arc.id; } |
1237 | 1240 |
static int id(Edge arc) { return arc.id; } |
1238 | 1241 |
|
1239 | 1242 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); } |
1240 | 1243 |
static Arc arcFromId(int id) { return Arc(id); } |
1241 | 1244 |
static Edge edgeFromId(int id) { return Edge(id);} |
1242 | 1245 |
|
1243 | 1246 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
1244 | 1247 |
int maxArcId() const { return arcs.size() - 1; } |
1245 | 1248 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
1246 | 1249 |
|
1247 | 1250 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; } |
1248 | 1251 |
Node target(Arc e) const { return arcs[e.id].target; } |
1249 | 1252 |
|
1250 | 1253 |
Node u(Edge e) const { return arcs[2 * e.id].target; } |
1251 | 1254 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; } |
1252 | 1255 |
|
1253 | 1256 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
1254 | 1257 |
|
1255 | 1258 |
NodeNotifier& notifier(Node) const { |
1256 | 1259 |
return _graph->notifier(Node()); |
1257 | 1260 |
} |
1258 | 1261 |
|
1259 | 1262 |
template <typename V> |
1260 | 1263 |
class NodeMap : public GR::template NodeMap<V> { |
1261 | 1264 |
typedef typename GR::template NodeMap<V> Parent; |
1262 | 1265 |
|
1263 | 1266 |
public: |
1264 | 1267 |
|
1265 | 1268 |
explicit NodeMap(const SmartEdgeSetBase<GR>& arcset) |
1266 | 1269 |
: Parent(*arcset._graph) { } |
1267 | 1270 |
|
1268 | 1271 |
NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value) |
1269 | 1272 |
: Parent(*arcset._graph, value) { } |
1270 | 1273 |
|
1271 | 1274 |
NodeMap& operator=(const NodeMap& cmap) { |
1272 | 1275 |
return operator=<NodeMap>(cmap); |
1273 | 1276 |
} |
1274 | 1277 |
|
1275 | 1278 |
template <typename CMap> |
1276 | 1279 |
NodeMap& operator=(const CMap& cmap) { |
1277 | 1280 |
Parent::operator=(cmap); |
1278 | 1281 |
return *this; |
1279 | 1282 |
} |
1280 | 1283 |
}; |
1281 | 1284 |
|
1282 | 1285 |
}; |
1283 | 1286 |
|
1284 | 1287 |
/// \ingroup graphs |
1285 | 1288 |
/// |
1286 | 1289 |
/// \brief Graph using a node set of another digraph or graph and an |
1287 | 1290 |
/// own edge set. |
1288 | 1291 |
/// |
1289 | 1292 |
/// This structure can be used to establish another graph over a |
1290 | 1293 |
/// node set of an existing one. This class uses the same Node type |
1291 | 1294 |
/// as the underlying graph, and each valid node of the original |
1292 | 1295 |
/// graph is valid in this arc set, therefore the node objects of |
1293 | 1296 |
/// the original graph can be used directly with this class. The |
1294 | 1297 |
/// node handling functions (id handling, observing, and iterators) |
1295 | 1298 |
/// works equivalently as in the original graph. |
1296 | 1299 |
/// |
1297 | 1300 |
/// \param GR The type of the graph which shares its node set |
1298 | 1301 |
/// with this class. Its interface must conform to the |
1299 | 1302 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
1300 | 1303 |
/// concept. |
1301 | 1304 |
/// |
1302 | 1305 |
/// This implementation is slightly faster than the \c ListEdgeSet, |
1303 | 1306 |
/// because it uses continuous storage for edges and it uses just |
1304 | 1307 |
/// single-linked lists for enumerate incident edges. Therefore the |
1305 | 1308 |
/// edges cannot be erased from the edge sets. |
1306 | 1309 |
/// |
1310 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
1311 |
/// concept. |
|
1312 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
1313 |
/// |
|
1307 | 1314 |
/// \warning If a node is erased from the underlying graph and this |
1308 | 1315 |
/// node is incident to one edge in the edge set, then the edge set |
1309 | 1316 |
/// is invalidated, and it cannot be used anymore. The validity can |
1310 | 1317 |
/// be checked with the \c valid() member function. |
1311 |
/// |
|
1312 |
/// This class fully conforms to the \ref concepts::Graph |
|
1313 |
/// "Graph" concept. |
|
1314 | 1318 |
template <typename GR> |
1315 | 1319 |
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > { |
1316 | 1320 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
1317 | 1321 |
|
1318 | 1322 |
public: |
1319 | 1323 |
|
1320 | 1324 |
typedef typename Parent::Node Node; |
1321 | 1325 |
typedef typename Parent::Arc Arc; |
1322 | 1326 |
typedef typename Parent::Edge Edge; |
1323 | 1327 |
|
1324 | 1328 |
protected: |
1325 | 1329 |
|
1326 | 1330 |
typedef typename Parent::NodesImplBase NodesImplBase; |
1327 | 1331 |
|
1328 | 1332 |
void eraseNode(const Node& node) { |
1329 | 1333 |
if (typename Parent::IncEdgeIt(*this, node) == INVALID) { |
1330 | 1334 |
return; |
1331 | 1335 |
} |
1332 | 1336 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
1333 | 1337 |
} |
1334 | 1338 |
|
1335 | 1339 |
void clearNodes() { |
1336 | 1340 |
Parent::clear(); |
1337 | 1341 |
} |
1338 | 1342 |
|
1339 | 1343 |
class NodesImpl : public NodesImplBase { |
1340 | 1344 |
typedef NodesImplBase Parent; |
1341 | 1345 |
|
1342 | 1346 |
public: |
1343 | 1347 |
NodesImpl(const GR& graph, SmartEdgeSet& arcset) |
1344 | 1348 |
: Parent(graph), _arcset(arcset) {} |
1345 | 1349 |
|
1346 | 1350 |
virtual ~NodesImpl() {} |
1347 | 1351 |
|
1348 | 1352 |
bool attached() const { |
1349 | 1353 |
return Parent::attached(); |
1350 | 1354 |
} |
1351 | 1355 |
|
1352 | 1356 |
protected: |
1353 | 1357 |
|
1354 | 1358 |
virtual void erase(const Node& node) { |
1355 | 1359 |
try { |
1356 | 1360 |
_arcset.eraseNode(node); |
1357 | 1361 |
Parent::erase(node); |
1358 | 1362 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1359 | 1363 |
Parent::clear(); |
1360 | 1364 |
throw; |
1361 | 1365 |
} |
1362 | 1366 |
} |
1363 | 1367 |
virtual void erase(const std::vector<Node>& nodes) { |
1364 | 1368 |
try { |
1365 | 1369 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1366 | 1370 |
_arcset.eraseNode(nodes[i]); |
1367 | 1371 |
} |
1368 | 1372 |
Parent::erase(nodes); |
1369 | 1373 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1370 | 1374 |
Parent::clear(); |
1371 | 1375 |
throw; |
1372 | 1376 |
} |
1373 | 1377 |
} |
1374 | 1378 |
virtual void clear() { |
1375 | 1379 |
_arcset.clearNodes(); |
1376 | 1380 |
Parent::clear(); |
1377 | 1381 |
} |
1378 | 1382 |
|
1379 | 1383 |
private: |
1380 | 1384 |
SmartEdgeSet& _arcset; |
1381 | 1385 |
}; |
1382 | 1386 |
|
1383 | 1387 |
NodesImpl _nodes; |
1384 | 1388 |
|
1385 | 1389 |
public: |
1386 | 1390 |
|
1387 | 1391 |
/// \brief Constructor of the EdgeSet. |
1388 | 1392 |
/// |
1389 | 1393 |
/// Constructor of the EdgeSet. |
1390 | 1394 |
SmartEdgeSet(const GR& graph) : _nodes(graph, *this) { |
1391 | 1395 |
Parent::initalize(graph, _nodes); |
1392 | 1396 |
} |
1393 | 1397 |
|
1394 | 1398 |
/// \brief Add a new edge to the graph. |
1395 | 1399 |
/// |
1396 | 1400 |
/// Add a new edge to the graph with node \c u |
1397 | 1401 |
/// and node \c v endpoints. |
1398 | 1402 |
/// \return The new edge. |
1399 | 1403 |
Edge addEdge(const Node& u, const Node& v) { |
1400 | 1404 |
return Parent::addEdge(u, v); |
1401 | 1405 |
} |
1402 | 1406 |
|
1403 | 1407 |
/// \brief Validity check |
1404 | 1408 |
/// |
1405 | 1409 |
/// This functions gives back false if the EdgeSet is |
1406 | 1410 |
/// invalidated. It occurs when a node in the underlying graph is |
1407 | 1411 |
/// erased and it is not isolated in the EdgeSet. |
1408 | 1412 |
bool valid() const { |
1409 | 1413 |
return _nodes.attached(); |
1410 | 1414 |
} |
1411 | 1415 |
|
1412 | 1416 |
}; |
1413 | 1417 |
|
1414 | 1418 |
} |
1415 | 1419 |
|
1416 | 1420 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_FULL_GRAPH_H |
20 | 20 |
#define LEMON_FULL_GRAPH_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/graph_extender.h> |
24 | 24 |
|
25 | 25 |
///\ingroup graphs |
26 | 26 |
///\file |
27 | 27 |
///\brief FullDigraph and FullGraph classes. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
class FullDigraphBase { |
32 | 32 |
public: |
33 | 33 |
|
34 | 34 |
typedef FullDigraphBase Digraph; |
35 | 35 |
|
36 | 36 |
class Node; |
37 | 37 |
class Arc; |
38 | 38 |
|
39 | 39 |
protected: |
40 | 40 |
|
41 | 41 |
int _node_num; |
42 | 42 |
int _arc_num; |
43 | 43 |
|
44 | 44 |
FullDigraphBase() {} |
45 | 45 |
|
46 | 46 |
void construct(int n) { _node_num = n; _arc_num = n * n; } |
47 | 47 |
|
48 | 48 |
public: |
49 | 49 |
|
50 | 50 |
typedef True NodeNumTag; |
51 | 51 |
typedef True ArcNumTag; |
52 | 52 |
|
53 | 53 |
Node operator()(int ix) const { return Node(ix); } |
54 | 54 |
static int index(const Node& node) { return node._id; } |
55 | 55 |
|
56 | 56 |
Arc arc(const Node& s, const Node& t) const { |
57 | 57 |
return Arc(s._id * _node_num + t._id); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
int nodeNum() const { return _node_num; } |
61 | 61 |
int arcNum() const { return _arc_num; } |
62 | 62 |
|
63 | 63 |
int maxNodeId() const { return _node_num - 1; } |
64 | 64 |
int maxArcId() const { return _arc_num - 1; } |
65 | 65 |
|
66 | 66 |
Node source(Arc arc) const { return arc._id / _node_num; } |
67 | 67 |
Node target(Arc arc) const { return arc._id % _node_num; } |
68 | 68 |
|
69 | 69 |
static int id(Node node) { return node._id; } |
70 | 70 |
static int id(Arc arc) { return arc._id; } |
71 | 71 |
|
72 | 72 |
static Node nodeFromId(int id) { return Node(id);} |
73 | 73 |
static Arc arcFromId(int id) { return Arc(id);} |
74 | 74 |
|
75 | 75 |
typedef True FindArcTag; |
76 | 76 |
|
77 | 77 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const { |
78 | 78 |
return prev == INVALID ? arc(s, t) : INVALID; |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
class Node { |
82 | 82 |
friend class FullDigraphBase; |
83 | 83 |
|
84 | 84 |
protected: |
85 | 85 |
int _id; |
86 | 86 |
Node(int id) : _id(id) {} |
87 | 87 |
public: |
88 | 88 |
Node() {} |
89 | 89 |
Node (Invalid) : _id(-1) {} |
90 | 90 |
bool operator==(const Node node) const {return _id == node._id;} |
91 | 91 |
bool operator!=(const Node node) const {return _id != node._id;} |
92 | 92 |
bool operator<(const Node node) const {return _id < node._id;} |
93 | 93 |
}; |
94 | 94 |
|
95 | 95 |
class Arc { |
96 | 96 |
friend class FullDigraphBase; |
97 | 97 |
|
98 | 98 |
protected: |
99 | 99 |
int _id; // _node_num * source + target; |
100 | 100 |
|
101 | 101 |
Arc(int id) : _id(id) {} |
102 | 102 |
|
103 | 103 |
public: |
104 | 104 |
Arc() { } |
105 | 105 |
Arc (Invalid) { _id = -1; } |
106 | 106 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
107 | 107 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
108 | 108 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
void first(Node& node) const { |
112 | 112 |
node._id = _node_num - 1; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
static void next(Node& node) { |
116 | 116 |
--node._id; |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
void first(Arc& arc) const { |
120 | 120 |
arc._id = _arc_num - 1; |
121 | 121 |
} |
122 | 122 |
|
123 | 123 |
static void next(Arc& arc) { |
124 | 124 |
--arc._id; |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
void firstOut(Arc& arc, const Node& node) const { |
128 | 128 |
arc._id = (node._id + 1) * _node_num - 1; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
void nextOut(Arc& arc) const { |
132 | 132 |
if (arc._id % _node_num == 0) arc._id = 0; |
133 | 133 |
--arc._id; |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
void firstIn(Arc& arc, const Node& node) const { |
137 | 137 |
arc._id = _arc_num + node._id - _node_num; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
void nextIn(Arc& arc) const { |
141 | 141 |
arc._id -= _node_num; |
142 | 142 |
if (arc._id < 0) arc._id = -1; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
148 | 148 |
|
149 | 149 |
/// \ingroup graphs |
150 | 150 |
/// |
151 | 151 |
/// \brief A directed full graph class. |
152 | 152 |
/// |
153 | 153 |
/// FullDigraph is a simple and fast implmenetation of directed full |
154 | 154 |
/// (complete) graphs. It contains an arc from each node to each node |
155 | 155 |
/// (including a loop for each node), therefore the number of arcs |
156 | 156 |
/// is the square of the number of nodes. |
157 | 157 |
/// This class is completely static and it needs constant memory space. |
158 | 158 |
/// Thus you can neither add nor delete nodes or arcs, however |
159 | 159 |
/// the structure can be resized using resize(). |
160 | 160 |
/// |
161 | 161 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
162 | 162 |
/// Most of its member functions and nested classes are documented |
163 | 163 |
/// only in the concept class. |
164 | 164 |
/// |
165 |
/// This class provides constant time counting for nodes and arcs. |
|
166 |
/// |
|
165 | 167 |
/// \note FullDigraph and FullGraph classes are very similar, |
166 | 168 |
/// but there are two differences. While this class conforms only |
167 | 169 |
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
168 | 170 |
/// conforms to the \ref concepts::Graph "Graph" concept, |
169 | 171 |
/// moreover FullGraph does not contain a loop for each |
170 | 172 |
/// node as this class does. |
171 | 173 |
/// |
172 | 174 |
/// \sa FullGraph |
173 | 175 |
class FullDigraph : public ExtendedFullDigraphBase { |
174 | 176 |
typedef ExtendedFullDigraphBase Parent; |
175 | 177 |
|
176 | 178 |
public: |
177 | 179 |
|
178 | 180 |
/// \brief Default constructor. |
179 | 181 |
/// |
180 | 182 |
/// Default constructor. The number of nodes and arcs will be zero. |
181 | 183 |
FullDigraph() { construct(0); } |
182 | 184 |
|
183 | 185 |
/// \brief Constructor |
184 | 186 |
/// |
185 | 187 |
/// Constructor. |
186 | 188 |
/// \param n The number of the nodes. |
187 | 189 |
FullDigraph(int n) { construct(n); } |
188 | 190 |
|
189 | 191 |
/// \brief Resizes the digraph |
190 | 192 |
/// |
191 | 193 |
/// This function resizes the digraph. It fully destroys and |
192 | 194 |
/// rebuilds the structure, therefore the maps of the digraph will be |
193 | 195 |
/// reallocated automatically and the previous values will be lost. |
194 | 196 |
void resize(int n) { |
195 | 197 |
Parent::notifier(Arc()).clear(); |
196 | 198 |
Parent::notifier(Node()).clear(); |
197 | 199 |
construct(n); |
198 | 200 |
Parent::notifier(Node()).build(); |
199 | 201 |
Parent::notifier(Arc()).build(); |
200 | 202 |
} |
201 | 203 |
|
202 | 204 |
/// \brief Returns the node with the given index. |
203 | 205 |
/// |
204 | 206 |
/// Returns the node with the given index. Since this structure is |
205 | 207 |
/// completely static, the nodes can be indexed with integers from |
206 | 208 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
209 |
/// The index of a node is the same as its ID. |
|
207 | 210 |
/// \sa index() |
208 | 211 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
209 | 212 |
|
210 | 213 |
/// \brief Returns the index of the given node. |
211 | 214 |
/// |
212 | 215 |
/// Returns the index of the given node. Since this structure is |
213 | 216 |
/// completely static, the nodes can be indexed with integers from |
214 | 217 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
218 |
/// The index of a node is the same as its ID. |
|
215 | 219 |
/// \sa operator()() |
216 | 220 |
static int index(const Node& node) { return Parent::index(node); } |
217 | 221 |
|
218 | 222 |
/// \brief Returns the arc connecting the given nodes. |
219 | 223 |
/// |
220 | 224 |
/// Returns the arc connecting the given nodes. |
221 | 225 |
Arc arc(Node u, Node v) const { |
222 | 226 |
return Parent::arc(u, v); |
223 | 227 |
} |
224 | 228 |
|
225 | 229 |
/// \brief Number of nodes. |
226 | 230 |
int nodeNum() const { return Parent::nodeNum(); } |
227 | 231 |
/// \brief Number of arcs. |
228 | 232 |
int arcNum() const { return Parent::arcNum(); } |
229 | 233 |
}; |
230 | 234 |
|
231 | 235 |
|
232 | 236 |
class FullGraphBase { |
233 | 237 |
public: |
234 | 238 |
|
235 | 239 |
typedef FullGraphBase Graph; |
236 | 240 |
|
237 | 241 |
class Node; |
238 | 242 |
class Arc; |
239 | 243 |
class Edge; |
240 | 244 |
|
241 | 245 |
protected: |
242 | 246 |
|
243 | 247 |
int _node_num; |
244 | 248 |
int _edge_num; |
245 | 249 |
|
246 | 250 |
FullGraphBase() {} |
247 | 251 |
|
248 | 252 |
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; } |
249 | 253 |
|
250 | 254 |
int _uid(int e) const { |
251 | 255 |
int u = e / _node_num; |
252 | 256 |
int v = e % _node_num; |
253 | 257 |
return u < v ? u : _node_num - 2 - u; |
254 | 258 |
} |
255 | 259 |
|
256 | 260 |
int _vid(int e) const { |
257 | 261 |
int u = e / _node_num; |
258 | 262 |
int v = e % _node_num; |
259 | 263 |
return u < v ? v : _node_num - 1 - v; |
260 | 264 |
} |
261 | 265 |
|
262 | 266 |
void _uvid(int e, int& u, int& v) const { |
263 | 267 |
u = e / _node_num; |
264 | 268 |
v = e % _node_num; |
265 | 269 |
if (u >= v) { |
266 | 270 |
u = _node_num - 2 - u; |
267 | 271 |
v = _node_num - 1 - v; |
268 | 272 |
} |
269 | 273 |
} |
270 | 274 |
|
271 | 275 |
void _stid(int a, int& s, int& t) const { |
272 | 276 |
if ((a & 1) == 1) { |
273 | 277 |
_uvid(a >> 1, s, t); |
274 | 278 |
} else { |
275 | 279 |
_uvid(a >> 1, t, s); |
276 | 280 |
} |
277 | 281 |
} |
278 | 282 |
|
279 | 283 |
int _eid(int u, int v) const { |
280 | 284 |
if (u < (_node_num - 1) / 2) { |
281 | 285 |
return u * _node_num + v; |
282 | 286 |
} else { |
283 | 287 |
return (_node_num - 1 - u) * _node_num - v - 1; |
284 | 288 |
} |
285 | 289 |
} |
286 | 290 |
|
287 | 291 |
public: |
288 | 292 |
|
289 | 293 |
Node operator()(int ix) const { return Node(ix); } |
290 | 294 |
static int index(const Node& node) { return node._id; } |
291 | 295 |
|
292 | 296 |
Edge edge(const Node& u, const Node& v) const { |
293 | 297 |
if (u._id < v._id) { |
294 | 298 |
return Edge(_eid(u._id, v._id)); |
295 | 299 |
} else if (u._id != v._id) { |
296 | 300 |
return Edge(_eid(v._id, u._id)); |
297 | 301 |
} else { |
298 | 302 |
return INVALID; |
299 | 303 |
} |
300 | 304 |
} |
301 | 305 |
|
302 | 306 |
Arc arc(const Node& s, const Node& t) const { |
303 | 307 |
if (s._id < t._id) { |
304 | 308 |
return Arc((_eid(s._id, t._id) << 1) | 1); |
305 | 309 |
} else if (s._id != t._id) { |
306 | 310 |
return Arc(_eid(t._id, s._id) << 1); |
307 | 311 |
} else { |
308 | 312 |
return INVALID; |
309 | 313 |
} |
310 | 314 |
} |
311 | 315 |
|
312 | 316 |
typedef True NodeNumTag; |
313 | 317 |
typedef True ArcNumTag; |
314 | 318 |
typedef True EdgeNumTag; |
315 | 319 |
|
316 | 320 |
int nodeNum() const { return _node_num; } |
317 | 321 |
int arcNum() const { return 2 * _edge_num; } |
318 | 322 |
int edgeNum() const { return _edge_num; } |
319 | 323 |
|
320 | 324 |
static int id(Node node) { return node._id; } |
321 | 325 |
static int id(Arc arc) { return arc._id; } |
322 | 326 |
static int id(Edge edge) { return edge._id; } |
323 | 327 |
|
324 | 328 |
int maxNodeId() const { return _node_num-1; } |
325 | 329 |
int maxArcId() const { return 2 * _edge_num-1; } |
326 | 330 |
int maxEdgeId() const { return _edge_num-1; } |
327 | 331 |
|
328 | 332 |
static Node nodeFromId(int id) { return Node(id);} |
329 | 333 |
static Arc arcFromId(int id) { return Arc(id);} |
330 | 334 |
static Edge edgeFromId(int id) { return Edge(id);} |
331 | 335 |
|
332 | 336 |
Node u(Edge edge) const { |
333 | 337 |
return Node(_uid(edge._id)); |
334 | 338 |
} |
335 | 339 |
|
336 | 340 |
Node v(Edge edge) const { |
337 | 341 |
return Node(_vid(edge._id)); |
338 | 342 |
} |
339 | 343 |
|
340 | 344 |
Node source(Arc arc) const { |
341 | 345 |
return Node((arc._id & 1) == 1 ? |
342 | 346 |
_uid(arc._id >> 1) : _vid(arc._id >> 1)); |
343 | 347 |
} |
344 | 348 |
|
345 | 349 |
Node target(Arc arc) const { |
346 | 350 |
return Node((arc._id & 1) == 1 ? |
347 | 351 |
_vid(arc._id >> 1) : _uid(arc._id >> 1)); |
348 | 352 |
} |
349 | 353 |
|
350 | 354 |
typedef True FindEdgeTag; |
351 | 355 |
typedef True FindArcTag; |
352 | 356 |
|
353 | 357 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
354 | 358 |
return prev != INVALID ? INVALID : edge(u, v); |
355 | 359 |
} |
356 | 360 |
|
357 | 361 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const { |
358 | 362 |
return prev != INVALID ? INVALID : arc(s, t); |
359 | 363 |
} |
360 | 364 |
|
361 | 365 |
class Node { |
362 | 366 |
friend class FullGraphBase; |
363 | 367 |
|
364 | 368 |
protected: |
365 | 369 |
int _id; |
366 | 370 |
Node(int id) : _id(id) {} |
367 | 371 |
public: |
368 | 372 |
Node() {} |
369 | 373 |
Node (Invalid) { _id = -1; } |
370 | 374 |
bool operator==(const Node node) const {return _id == node._id;} |
371 | 375 |
bool operator!=(const Node node) const {return _id != node._id;} |
372 | 376 |
bool operator<(const Node node) const {return _id < node._id;} |
373 | 377 |
}; |
374 | 378 |
|
375 | 379 |
class Edge { |
376 | 380 |
friend class FullGraphBase; |
377 | 381 |
friend class Arc; |
378 | 382 |
|
379 | 383 |
protected: |
380 | 384 |
int _id; |
381 | 385 |
|
382 | 386 |
Edge(int id) : _id(id) {} |
383 | 387 |
|
384 | 388 |
public: |
385 | 389 |
Edge() { } |
386 | 390 |
Edge (Invalid) { _id = -1; } |
387 | 391 |
|
388 | 392 |
bool operator==(const Edge edge) const {return _id == edge._id;} |
389 | 393 |
bool operator!=(const Edge edge) const {return _id != edge._id;} |
390 | 394 |
bool operator<(const Edge edge) const {return _id < edge._id;} |
391 | 395 |
}; |
392 | 396 |
|
393 | 397 |
class Arc { |
394 | 398 |
friend class FullGraphBase; |
395 | 399 |
|
396 | 400 |
protected: |
397 | 401 |
int _id; |
398 | 402 |
|
399 | 403 |
Arc(int id) : _id(id) {} |
400 | 404 |
|
401 | 405 |
public: |
402 | 406 |
Arc() { } |
403 | 407 |
Arc (Invalid) { _id = -1; } |
404 | 408 |
|
405 | 409 |
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); } |
406 | 410 |
|
407 | 411 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
408 | 412 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
409 | 413 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
410 | 414 |
}; |
411 | 415 |
|
412 | 416 |
static bool direction(Arc arc) { |
413 | 417 |
return (arc._id & 1) == 1; |
414 | 418 |
} |
415 | 419 |
|
416 | 420 |
static Arc direct(Edge edge, bool dir) { |
417 | 421 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
418 | 422 |
} |
419 | 423 |
|
420 | 424 |
void first(Node& node) const { |
421 | 425 |
node._id = _node_num - 1; |
422 | 426 |
} |
423 | 427 |
|
424 | 428 |
static void next(Node& node) { |
425 | 429 |
--node._id; |
426 | 430 |
} |
427 | 431 |
|
428 | 432 |
void first(Arc& arc) const { |
429 | 433 |
arc._id = (_edge_num << 1) - 1; |
430 | 434 |
} |
431 | 435 |
|
432 | 436 |
static void next(Arc& arc) { |
433 | 437 |
--arc._id; |
434 | 438 |
} |
435 | 439 |
|
436 | 440 |
void first(Edge& edge) const { |
437 | 441 |
edge._id = _edge_num - 1; |
438 | 442 |
} |
439 | 443 |
|
440 | 444 |
static void next(Edge& edge) { |
441 | 445 |
--edge._id; |
442 | 446 |
} |
443 | 447 |
|
444 | 448 |
void firstOut(Arc& arc, const Node& node) const { |
445 | 449 |
int s = node._id, t = _node_num - 1; |
446 | 450 |
if (s < t) { |
447 | 451 |
arc._id = (_eid(s, t) << 1) | 1; |
448 | 452 |
} else { |
449 | 453 |
--t; |
450 | 454 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
451 | 455 |
} |
452 | 456 |
} |
453 | 457 |
|
454 | 458 |
void nextOut(Arc& arc) const { |
455 | 459 |
int s, t; |
456 | 460 |
_stid(arc._id, s, t); |
457 | 461 |
--t; |
458 | 462 |
if (s < t) { |
459 | 463 |
arc._id = (_eid(s, t) << 1) | 1; |
460 | 464 |
} else { |
461 | 465 |
if (s == t) --t; |
462 | 466 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
463 | 467 |
} |
464 | 468 |
} |
465 | 469 |
|
466 | 470 |
void firstIn(Arc& arc, const Node& node) const { |
467 | 471 |
int s = _node_num - 1, t = node._id; |
468 | 472 |
if (s > t) { |
469 | 473 |
arc._id = (_eid(t, s) << 1); |
470 | 474 |
} else { |
471 | 475 |
--s; |
472 | 476 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
473 | 477 |
} |
474 | 478 |
} |
475 | 479 |
|
476 | 480 |
void nextIn(Arc& arc) const { |
477 | 481 |
int s, t; |
478 | 482 |
_stid(arc._id, s, t); |
479 | 483 |
--s; |
480 | 484 |
if (s > t) { |
481 | 485 |
arc._id = (_eid(t, s) << 1); |
482 | 486 |
} else { |
483 | 487 |
if (s == t) --s; |
484 | 488 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
485 | 489 |
} |
486 | 490 |
} |
487 | 491 |
|
488 | 492 |
void firstInc(Edge& edge, bool& dir, const Node& node) const { |
489 | 493 |
int u = node._id, v = _node_num - 1; |
490 | 494 |
if (u < v) { |
491 | 495 |
edge._id = _eid(u, v); |
492 | 496 |
dir = true; |
493 | 497 |
} else { |
494 | 498 |
--v; |
495 | 499 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
496 | 500 |
dir = false; |
497 | 501 |
} |
498 | 502 |
} |
499 | 503 |
|
500 | 504 |
void nextInc(Edge& edge, bool& dir) const { |
501 | 505 |
int u, v; |
502 | 506 |
if (dir) { |
503 | 507 |
_uvid(edge._id, u, v); |
504 | 508 |
--v; |
505 | 509 |
if (u < v) { |
506 | 510 |
edge._id = _eid(u, v); |
507 | 511 |
} else { |
508 | 512 |
--v; |
509 | 513 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
510 | 514 |
dir = false; |
511 | 515 |
} |
512 | 516 |
} else { |
513 | 517 |
_uvid(edge._id, v, u); |
514 | 518 |
--v; |
515 | 519 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
516 | 520 |
} |
517 | 521 |
} |
518 | 522 |
|
519 | 523 |
}; |
520 | 524 |
|
521 | 525 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
522 | 526 |
|
523 | 527 |
/// \ingroup graphs |
524 | 528 |
/// |
525 | 529 |
/// \brief An undirected full graph class. |
526 | 530 |
/// |
527 | 531 |
/// FullGraph is a simple and fast implmenetation of undirected full |
528 | 532 |
/// (complete) graphs. It contains an edge between every distinct pair |
529 | 533 |
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
530 | 534 |
/// This class is completely static and it needs constant memory space. |
531 | 535 |
/// Thus you can neither add nor delete nodes or edges, however |
532 | 536 |
/// the structure can be resized using resize(). |
533 | 537 |
/// |
534 | 538 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
535 | 539 |
/// Most of its member functions and nested classes are documented |
536 | 540 |
/// only in the concept class. |
537 | 541 |
/// |
542 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
543 |
/// |
|
538 | 544 |
/// \note FullDigraph and FullGraph classes are very similar, |
539 | 545 |
/// but there are two differences. While FullDigraph |
540 | 546 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
541 | 547 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
542 | 548 |
/// moreover this class does not contain a loop for each |
543 | 549 |
/// node as FullDigraph does. |
544 | 550 |
/// |
545 | 551 |
/// \sa FullDigraph |
546 | 552 |
class FullGraph : public ExtendedFullGraphBase { |
547 | 553 |
typedef ExtendedFullGraphBase Parent; |
548 | 554 |
|
549 | 555 |
public: |
550 | 556 |
|
551 | 557 |
/// \brief Default constructor. |
552 | 558 |
/// |
553 | 559 |
/// Default constructor. The number of nodes and edges will be zero. |
554 | 560 |
FullGraph() { construct(0); } |
555 | 561 |
|
556 | 562 |
/// \brief Constructor |
557 | 563 |
/// |
558 | 564 |
/// Constructor. |
559 | 565 |
/// \param n The number of the nodes. |
560 | 566 |
FullGraph(int n) { construct(n); } |
561 | 567 |
|
562 | 568 |
/// \brief Resizes the graph |
563 | 569 |
/// |
564 | 570 |
/// This function resizes the graph. It fully destroys and |
565 | 571 |
/// rebuilds the structure, therefore the maps of the graph will be |
566 | 572 |
/// reallocated automatically and the previous values will be lost. |
567 | 573 |
void resize(int n) { |
568 | 574 |
Parent::notifier(Arc()).clear(); |
569 | 575 |
Parent::notifier(Edge()).clear(); |
570 | 576 |
Parent::notifier(Node()).clear(); |
571 | 577 |
construct(n); |
572 | 578 |
Parent::notifier(Node()).build(); |
573 | 579 |
Parent::notifier(Edge()).build(); |
574 | 580 |
Parent::notifier(Arc()).build(); |
575 | 581 |
} |
576 | 582 |
|
577 | 583 |
/// \brief Returns the node with the given index. |
578 | 584 |
/// |
579 | 585 |
/// Returns the node with the given index. Since this structure is |
580 | 586 |
/// completely static, the nodes can be indexed with integers from |
581 | 587 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
588 |
/// The index of a node is the same as its ID. |
|
582 | 589 |
/// \sa index() |
583 | 590 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
584 | 591 |
|
585 | 592 |
/// \brief Returns the index of the given node. |
586 | 593 |
/// |
587 | 594 |
/// Returns the index of the given node. Since this structure is |
588 | 595 |
/// completely static, the nodes can be indexed with integers from |
589 | 596 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
597 |
/// The index of a node is the same as its ID. |
|
590 | 598 |
/// \sa operator()() |
591 | 599 |
static int index(const Node& node) { return Parent::index(node); } |
592 | 600 |
|
593 | 601 |
/// \brief Returns the arc connecting the given nodes. |
594 | 602 |
/// |
595 | 603 |
/// Returns the arc connecting the given nodes. |
596 | 604 |
Arc arc(Node s, Node t) const { |
597 | 605 |
return Parent::arc(s, t); |
598 | 606 |
} |
599 | 607 |
|
600 | 608 |
/// \brief Returns the edge connecting the given nodes. |
601 | 609 |
/// |
602 | 610 |
/// Returns the edge connecting the given nodes. |
603 | 611 |
Edge edge(Node u, Node v) const { |
604 | 612 |
return Parent::edge(u, v); |
605 | 613 |
} |
606 | 614 |
|
607 | 615 |
/// \brief Number of nodes. |
608 | 616 |
int nodeNum() const { return Parent::nodeNum(); } |
609 | 617 |
/// \brief Number of arcs. |
610 | 618 |
int arcNum() const { return Parent::arcNum(); } |
611 | 619 |
/// \brief Number of edges. |
612 | 620 |
int edgeNum() const { return Parent::edgeNum(); } |
613 | 621 |
|
614 | 622 |
}; |
615 | 623 |
|
616 | 624 |
|
617 | 625 |
} //namespace lemon |
618 | 626 |
|
619 | 627 |
|
620 | 628 |
#endif //LEMON_FULL_GRAPH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef GRID_GRAPH_H |
20 | 20 |
#define GRID_GRAPH_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/graph_extender.h> |
24 | 24 |
#include <lemon/dim2.h> |
25 | 25 |
#include <lemon/assert.h> |
26 | 26 |
|
27 | 27 |
///\ingroup graphs |
28 | 28 |
///\file |
29 | 29 |
///\brief GridGraph class. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
class GridGraphBase { |
34 | 34 |
|
35 | 35 |
public: |
36 | 36 |
|
37 | 37 |
typedef GridGraphBase Graph; |
38 | 38 |
|
39 | 39 |
class Node; |
40 | 40 |
class Edge; |
41 | 41 |
class Arc; |
42 | 42 |
|
43 | 43 |
public: |
44 | 44 |
|
45 | 45 |
GridGraphBase() {} |
46 | 46 |
|
47 | 47 |
protected: |
48 | 48 |
|
49 | 49 |
void construct(int width, int height) { |
50 | 50 |
_width = width; _height = height; |
51 | 51 |
_node_num = width * height; |
52 | 52 |
_edge_num = 2 * _node_num - width - height; |
53 | 53 |
_edge_limit = _node_num - _width; |
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
Node operator()(int i, int j) const { |
59 | 59 |
LEMON_DEBUG(0 <= i && i < _width && |
60 | 60 |
0 <= j && j < _height, "Index out of range"); |
61 | 61 |
return Node(i + j * _width); |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
int col(Node n) const { |
65 | 65 |
return n._id % _width; |
66 | 66 |
} |
67 | 67 |
|
68 | 68 |
int row(Node n) const { |
69 | 69 |
return n._id / _width; |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
dim2::Point<int> pos(Node n) const { |
73 | 73 |
return dim2::Point<int>(col(n), row(n)); |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
int width() const { |
77 | 77 |
return _width; |
78 | 78 |
} |
79 | 79 |
|
80 | 80 |
int height() const { |
81 | 81 |
return _height; |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
typedef True NodeNumTag; |
85 | 85 |
typedef True EdgeNumTag; |
86 | 86 |
typedef True ArcNumTag; |
87 | 87 |
|
88 | 88 |
int nodeNum() const { return _node_num; } |
89 | 89 |
int edgeNum() const { return _edge_num; } |
90 | 90 |
int arcNum() const { return 2 * _edge_num; } |
91 | 91 |
|
92 | 92 |
Node u(Edge edge) const { |
93 | 93 |
if (edge._id < _edge_limit) { |
94 | 94 |
return edge._id; |
95 | 95 |
} else { |
96 | 96 |
return (edge._id - _edge_limit) % (_width - 1) + |
97 | 97 |
(edge._id - _edge_limit) / (_width - 1) * _width; |
98 | 98 |
} |
99 | 99 |
} |
100 | 100 |
|
101 | 101 |
Node v(Edge edge) const { |
102 | 102 |
if (edge._id < _edge_limit) { |
103 | 103 |
return edge._id + _width; |
104 | 104 |
} else { |
105 | 105 |
return (edge._id - _edge_limit) % (_width - 1) + |
106 | 106 |
(edge._id - _edge_limit) / (_width - 1) * _width + 1; |
107 | 107 |
} |
108 | 108 |
} |
109 | 109 |
|
110 | 110 |
Node source(Arc arc) const { |
111 | 111 |
return (arc._id & 1) == 1 ? u(arc) : v(arc); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
Node target(Arc arc) const { |
115 | 115 |
return (arc._id & 1) == 1 ? v(arc) : u(arc); |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
static int id(Node node) { return node._id; } |
119 | 119 |
static int id(Edge edge) { return edge._id; } |
120 | 120 |
static int id(Arc arc) { return arc._id; } |
121 | 121 |
|
122 | 122 |
int maxNodeId() const { return _node_num - 1; } |
123 | 123 |
int maxEdgeId() const { return _edge_num - 1; } |
124 | 124 |
int maxArcId() const { return 2 * _edge_num - 1; } |
125 | 125 |
|
126 | 126 |
static Node nodeFromId(int id) { return Node(id);} |
127 | 127 |
static Edge edgeFromId(int id) { return Edge(id);} |
128 | 128 |
static Arc arcFromId(int id) { return Arc(id);} |
129 | 129 |
|
130 | 130 |
typedef True FindEdgeTag; |
131 | 131 |
typedef True FindArcTag; |
132 | 132 |
|
133 | 133 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
134 | 134 |
if (prev != INVALID) return INVALID; |
135 | 135 |
if (v._id > u._id) { |
136 | 136 |
if (v._id - u._id == _width) |
137 | 137 |
return Edge(u._id); |
138 | 138 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) { |
139 | 139 |
return Edge(u._id / _width * (_width - 1) + |
140 | 140 |
u._id % _width + _edge_limit); |
141 | 141 |
} |
142 | 142 |
} else { |
143 | 143 |
if (u._id - v._id == _width) |
144 | 144 |
return Edge(v._id); |
145 | 145 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) { |
146 | 146 |
return Edge(v._id / _width * (_width - 1) + |
147 | 147 |
v._id % _width + _edge_limit); |
148 | 148 |
} |
149 | 149 |
} |
150 | 150 |
return INVALID; |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const { |
154 | 154 |
if (prev != INVALID) return INVALID; |
155 | 155 |
if (v._id > u._id) { |
156 | 156 |
if (v._id - u._id == _width) |
157 | 157 |
return Arc((u._id << 1) | 1); |
158 | 158 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) { |
159 | 159 |
return Arc(((u._id / _width * (_width - 1) + |
160 | 160 |
u._id % _width + _edge_limit) << 1) | 1); |
161 | 161 |
} |
162 | 162 |
} else { |
163 | 163 |
if (u._id - v._id == _width) |
164 | 164 |
return Arc(v._id << 1); |
165 | 165 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) { |
166 | 166 |
return Arc((v._id / _width * (_width - 1) + |
167 | 167 |
v._id % _width + _edge_limit) << 1); |
168 | 168 |
} |
169 | 169 |
} |
170 | 170 |
return INVALID; |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
class Node { |
174 | 174 |
friend class GridGraphBase; |
175 | 175 |
|
176 | 176 |
protected: |
177 | 177 |
int _id; |
178 | 178 |
Node(int id) : _id(id) {} |
179 | 179 |
public: |
180 | 180 |
Node() {} |
181 | 181 |
Node (Invalid) : _id(-1) {} |
182 | 182 |
bool operator==(const Node node) const {return _id == node._id;} |
183 | 183 |
bool operator!=(const Node node) const {return _id != node._id;} |
184 | 184 |
bool operator<(const Node node) const {return _id < node._id;} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
class Edge { |
188 | 188 |
friend class GridGraphBase; |
189 | 189 |
friend class Arc; |
190 | 190 |
|
191 | 191 |
protected: |
192 | 192 |
int _id; |
193 | 193 |
|
194 | 194 |
Edge(int id) : _id(id) {} |
195 | 195 |
|
196 | 196 |
public: |
197 | 197 |
Edge() {} |
198 | 198 |
Edge (Invalid) : _id(-1) {} |
199 | 199 |
bool operator==(const Edge edge) const {return _id == edge._id;} |
200 | 200 |
bool operator!=(const Edge edge) const {return _id != edge._id;} |
201 | 201 |
bool operator<(const Edge edge) const {return _id < edge._id;} |
202 | 202 |
}; |
203 | 203 |
|
204 | 204 |
class Arc { |
205 | 205 |
friend class GridGraphBase; |
206 | 206 |
|
207 | 207 |
protected: |
208 | 208 |
int _id; |
209 | 209 |
|
210 | 210 |
Arc(int id) : _id(id) {} |
211 | 211 |
|
212 | 212 |
public: |
213 | 213 |
Arc() {} |
214 | 214 |
Arc (Invalid) : _id(-1) {} |
215 | 215 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; } |
216 | 216 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
217 | 217 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
218 | 218 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
219 | 219 |
}; |
220 | 220 |
|
221 | 221 |
static bool direction(Arc arc) { |
222 | 222 |
return (arc._id & 1) == 1; |
223 | 223 |
} |
224 | 224 |
|
225 | 225 |
static Arc direct(Edge edge, bool dir) { |
226 | 226 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
void first(Node& node) const { |
230 | 230 |
node._id = _node_num - 1; |
231 | 231 |
} |
232 | 232 |
|
233 | 233 |
static void next(Node& node) { |
234 | 234 |
--node._id; |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
void first(Edge& edge) const { |
238 | 238 |
edge._id = _edge_num - 1; |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
static void next(Edge& edge) { |
242 | 242 |
--edge._id; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
void first(Arc& arc) const { |
246 | 246 |
arc._id = 2 * _edge_num - 1; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
static void next(Arc& arc) { |
250 | 250 |
--arc._id; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
void firstOut(Arc& arc, const Node& node) const { |
254 | 254 |
if (node._id % _width < _width - 1) { |
255 | 255 |
arc._id = (_edge_limit + node._id % _width + |
256 | 256 |
(node._id / _width) * (_width - 1)) << 1 | 1; |
257 | 257 |
return; |
258 | 258 |
} |
259 | 259 |
if (node._id < _node_num - _width) { |
260 | 260 |
arc._id = node._id << 1 | 1; |
261 | 261 |
return; |
262 | 262 |
} |
263 | 263 |
if (node._id % _width > 0) { |
264 | 264 |
arc._id = (_edge_limit + node._id % _width + |
265 | 265 |
(node._id / _width) * (_width - 1) - 1) << 1; |
266 | 266 |
return; |
267 | 267 |
} |
268 | 268 |
if (node._id >= _width) { |
269 | 269 |
arc._id = (node._id - _width) << 1; |
270 | 270 |
return; |
271 | 271 |
} |
272 | 272 |
arc._id = -1; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
void nextOut(Arc& arc) const { |
276 | 276 |
int nid = arc._id >> 1; |
277 | 277 |
if ((arc._id & 1) == 1) { |
278 | 278 |
if (nid >= _edge_limit) { |
279 | 279 |
nid = (nid - _edge_limit) % (_width - 1) + |
280 | 280 |
(nid - _edge_limit) / (_width - 1) * _width; |
281 | 281 |
if (nid < _node_num - _width) { |
282 | 282 |
arc._id = nid << 1 | 1; |
283 | 283 |
return; |
284 | 284 |
} |
285 | 285 |
} |
286 | 286 |
if (nid % _width > 0) { |
287 | 287 |
arc._id = (_edge_limit + nid % _width + |
288 | 288 |
(nid / _width) * (_width - 1) - 1) << 1; |
289 | 289 |
return; |
290 | 290 |
} |
291 | 291 |
if (nid >= _width) { |
292 | 292 |
arc._id = (nid - _width) << 1; |
293 | 293 |
return; |
294 | 294 |
} |
295 | 295 |
} else { |
296 | 296 |
if (nid >= _edge_limit) { |
297 | 297 |
nid = (nid - _edge_limit) % (_width - 1) + |
298 | 298 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
299 | 299 |
if (nid >= _width) { |
300 | 300 |
arc._id = (nid - _width) << 1; |
301 | 301 |
return; |
302 | 302 |
} |
303 | 303 |
} |
304 | 304 |
} |
305 | 305 |
arc._id = -1; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
void firstIn(Arc& arc, const Node& node) const { |
309 | 309 |
if (node._id % _width < _width - 1) { |
310 | 310 |
arc._id = (_edge_limit + node._id % _width + |
311 | 311 |
(node._id / _width) * (_width - 1)) << 1; |
312 | 312 |
return; |
313 | 313 |
} |
314 | 314 |
if (node._id < _node_num - _width) { |
315 | 315 |
arc._id = node._id << 1; |
316 | 316 |
return; |
317 | 317 |
} |
318 | 318 |
if (node._id % _width > 0) { |
319 | 319 |
arc._id = (_edge_limit + node._id % _width + |
320 | 320 |
(node._id / _width) * (_width - 1) - 1) << 1 | 1; |
321 | 321 |
return; |
322 | 322 |
} |
323 | 323 |
if (node._id >= _width) { |
324 | 324 |
arc._id = (node._id - _width) << 1 | 1; |
325 | 325 |
return; |
326 | 326 |
} |
327 | 327 |
arc._id = -1; |
328 | 328 |
} |
329 | 329 |
|
330 | 330 |
void nextIn(Arc& arc) const { |
331 | 331 |
int nid = arc._id >> 1; |
332 | 332 |
if ((arc._id & 1) == 0) { |
333 | 333 |
if (nid >= _edge_limit) { |
334 | 334 |
nid = (nid - _edge_limit) % (_width - 1) + |
335 | 335 |
(nid - _edge_limit) / (_width - 1) * _width; |
336 | 336 |
if (nid < _node_num - _width) { |
337 | 337 |
arc._id = nid << 1; |
338 | 338 |
return; |
339 | 339 |
} |
340 | 340 |
} |
341 | 341 |
if (nid % _width > 0) { |
342 | 342 |
arc._id = (_edge_limit + nid % _width + |
343 | 343 |
(nid / _width) * (_width - 1) - 1) << 1 | 1; |
344 | 344 |
return; |
345 | 345 |
} |
346 | 346 |
if (nid >= _width) { |
347 | 347 |
arc._id = (nid - _width) << 1 | 1; |
348 | 348 |
return; |
349 | 349 |
} |
350 | 350 |
} else { |
351 | 351 |
if (nid >= _edge_limit) { |
352 | 352 |
nid = (nid - _edge_limit) % (_width - 1) + |
353 | 353 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
354 | 354 |
if (nid >= _width) { |
355 | 355 |
arc._id = (nid - _width) << 1 | 1; |
356 | 356 |
return; |
357 | 357 |
} |
358 | 358 |
} |
359 | 359 |
} |
360 | 360 |
arc._id = -1; |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
void firstInc(Edge& edge, bool& dir, const Node& node) const { |
364 | 364 |
if (node._id % _width < _width - 1) { |
365 | 365 |
edge._id = _edge_limit + node._id % _width + |
366 | 366 |
(node._id / _width) * (_width - 1); |
367 | 367 |
dir = true; |
368 | 368 |
return; |
369 | 369 |
} |
370 | 370 |
if (node._id < _node_num - _width) { |
371 | 371 |
edge._id = node._id; |
372 | 372 |
dir = true; |
373 | 373 |
return; |
374 | 374 |
} |
375 | 375 |
if (node._id % _width > 0) { |
376 | 376 |
edge._id = _edge_limit + node._id % _width + |
377 | 377 |
(node._id / _width) * (_width - 1) - 1; |
378 | 378 |
dir = false; |
379 | 379 |
return; |
380 | 380 |
} |
381 | 381 |
if (node._id >= _width) { |
382 | 382 |
edge._id = node._id - _width; |
383 | 383 |
dir = false; |
384 | 384 |
return; |
385 | 385 |
} |
386 | 386 |
edge._id = -1; |
387 | 387 |
dir = true; |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
void nextInc(Edge& edge, bool& dir) const { |
391 | 391 |
int nid = edge._id; |
392 | 392 |
if (dir) { |
393 | 393 |
if (nid >= _edge_limit) { |
394 | 394 |
nid = (nid - _edge_limit) % (_width - 1) + |
395 | 395 |
(nid - _edge_limit) / (_width - 1) * _width; |
396 | 396 |
if (nid < _node_num - _width) { |
397 | 397 |
edge._id = nid; |
398 | 398 |
return; |
399 | 399 |
} |
400 | 400 |
} |
401 | 401 |
if (nid % _width > 0) { |
402 | 402 |
edge._id = _edge_limit + nid % _width + |
403 | 403 |
(nid / _width) * (_width - 1) - 1; |
404 | 404 |
dir = false; |
405 | 405 |
return; |
406 | 406 |
} |
407 | 407 |
if (nid >= _width) { |
408 | 408 |
edge._id = nid - _width; |
409 | 409 |
dir = false; |
410 | 410 |
return; |
411 | 411 |
} |
412 | 412 |
} else { |
413 | 413 |
if (nid >= _edge_limit) { |
414 | 414 |
nid = (nid - _edge_limit) % (_width - 1) + |
415 | 415 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
416 | 416 |
if (nid >= _width) { |
417 | 417 |
edge._id = nid - _width; |
418 | 418 |
return; |
419 | 419 |
} |
420 | 420 |
} |
421 | 421 |
} |
422 | 422 |
edge._id = -1; |
423 | 423 |
dir = true; |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
Arc right(Node n) const { |
427 | 427 |
if (n._id % _width < _width - 1) { |
428 | 428 |
return Arc(((_edge_limit + n._id % _width + |
429 | 429 |
(n._id / _width) * (_width - 1)) << 1) | 1); |
430 | 430 |
} else { |
431 | 431 |
return INVALID; |
432 | 432 |
} |
433 | 433 |
} |
434 | 434 |
|
435 | 435 |
Arc left(Node n) const { |
436 | 436 |
if (n._id % _width > 0) { |
437 | 437 |
return Arc((_edge_limit + n._id % _width + |
438 | 438 |
(n._id / _width) * (_width - 1) - 1) << 1); |
439 | 439 |
} else { |
440 | 440 |
return INVALID; |
441 | 441 |
} |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
Arc up(Node n) const { |
445 | 445 |
if (n._id < _edge_limit) { |
446 | 446 |
return Arc((n._id << 1) | 1); |
447 | 447 |
} else { |
448 | 448 |
return INVALID; |
449 | 449 |
} |
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
Arc down(Node n) const { |
453 | 453 |
if (n._id >= _width) { |
454 | 454 |
return Arc((n._id - _width) << 1); |
455 | 455 |
} else { |
456 | 456 |
return INVALID; |
457 | 457 |
} |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
private: |
461 | 461 |
int _width, _height; |
462 | 462 |
int _node_num, _edge_num; |
463 | 463 |
int _edge_limit; |
464 | 464 |
}; |
465 | 465 |
|
466 | 466 |
|
467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
468 | 468 |
|
469 | 469 |
/// \ingroup graphs |
470 | 470 |
/// |
471 | 471 |
/// \brief Grid graph class |
472 | 472 |
/// |
473 | 473 |
/// GridGraph implements a special graph type. The nodes of the |
474 | 474 |
/// graph can be indexed by two integer values \c (i,j) where \c i is |
475 | 475 |
/// in the range <tt>[0..width()-1]</tt> and j is in the range |
476 | 476 |
/// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if |
477 | 477 |
/// the indices differ exactly on one position and the difference is |
478 | 478 |
/// also exactly one. The nodes of the graph can be obtained by position |
479 | 479 |
/// using the \c operator()() function and the indices of the nodes can |
480 | 480 |
/// be obtained using \c pos(), \c col() and \c row() members. The outgoing |
481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
483 | 483 |
/// origin. |
484 | 484 |
/// |
485 | 485 |
/// This class is completely static and it needs constant memory space. |
486 | 486 |
/// Thus you can neither add nor delete nodes or edges, however |
487 | 487 |
/// the structure can be resized using resize(). |
488 | 488 |
/// |
489 | 489 |
/// \image html grid_graph.png |
490 | 490 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
491 | 491 |
/// |
492 | 492 |
/// A short example about the basic usage: |
493 | 493 |
///\code |
494 | 494 |
/// GridGraph graph(rows, cols); |
495 | 495 |
/// GridGraph::NodeMap<int> val(graph); |
496 | 496 |
/// for (int i = 0; i < graph.width(); ++i) { |
497 | 497 |
/// for (int j = 0; j < graph.height(); ++j) { |
498 | 498 |
/// val[graph(i, j)] = i + j; |
499 | 499 |
/// } |
500 | 500 |
/// } |
501 | 501 |
///\endcode |
502 | 502 |
/// |
503 | 503 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
504 | 504 |
/// Most of its member functions and nested classes are documented |
505 | 505 |
/// only in the concept class. |
506 |
/// |
|
507 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
506 | 508 |
class GridGraph : public ExtendedGridGraphBase { |
507 | 509 |
typedef ExtendedGridGraphBase Parent; |
508 | 510 |
|
509 | 511 |
public: |
510 | 512 |
|
511 | 513 |
/// \brief Map to get the indices of the nodes as \ref dim2::Point |
512 | 514 |
/// "dim2::Point<int>". |
513 | 515 |
/// |
514 | 516 |
/// Map to get the indices of the nodes as \ref dim2::Point |
515 | 517 |
/// "dim2::Point<int>". |
516 | 518 |
class IndexMap { |
517 | 519 |
public: |
518 | 520 |
/// \brief The key type of the map |
519 | 521 |
typedef GridGraph::Node Key; |
520 | 522 |
/// \brief The value type of the map |
521 | 523 |
typedef dim2::Point<int> Value; |
522 | 524 |
|
523 | 525 |
/// \brief Constructor |
524 | 526 |
IndexMap(const GridGraph& graph) : _graph(graph) {} |
525 | 527 |
|
526 | 528 |
/// \brief The subscript operator |
527 | 529 |
Value operator[](Key key) const { |
528 | 530 |
return _graph.pos(key); |
529 | 531 |
} |
530 | 532 |
|
531 | 533 |
private: |
532 | 534 |
const GridGraph& _graph; |
533 | 535 |
}; |
534 | 536 |
|
535 | 537 |
/// \brief Map to get the column of the nodes. |
536 | 538 |
/// |
537 | 539 |
/// Map to get the column of the nodes. |
538 | 540 |
class ColMap { |
539 | 541 |
public: |
540 | 542 |
/// \brief The key type of the map |
541 | 543 |
typedef GridGraph::Node Key; |
542 | 544 |
/// \brief The value type of the map |
543 | 545 |
typedef int Value; |
544 | 546 |
|
545 | 547 |
/// \brief Constructor |
546 | 548 |
ColMap(const GridGraph& graph) : _graph(graph) {} |
547 | 549 |
|
548 | 550 |
/// \brief The subscript operator |
549 | 551 |
Value operator[](Key key) const { |
550 | 552 |
return _graph.col(key); |
551 | 553 |
} |
552 | 554 |
|
553 | 555 |
private: |
554 | 556 |
const GridGraph& _graph; |
555 | 557 |
}; |
556 | 558 |
|
557 | 559 |
/// \brief Map to get the row of the nodes. |
558 | 560 |
/// |
559 | 561 |
/// Map to get the row of the nodes. |
560 | 562 |
class RowMap { |
561 | 563 |
public: |
562 | 564 |
/// \brief The key type of the map |
563 | 565 |
typedef GridGraph::Node Key; |
564 | 566 |
/// \brief The value type of the map |
565 | 567 |
typedef int Value; |
566 | 568 |
|
567 | 569 |
/// \brief Constructor |
568 | 570 |
RowMap(const GridGraph& graph) : _graph(graph) {} |
569 | 571 |
|
570 | 572 |
/// \brief The subscript operator |
571 | 573 |
Value operator[](Key key) const { |
572 | 574 |
return _graph.row(key); |
573 | 575 |
} |
574 | 576 |
|
575 | 577 |
private: |
576 | 578 |
const GridGraph& _graph; |
577 | 579 |
}; |
578 | 580 |
|
579 | 581 |
/// \brief Constructor |
580 | 582 |
/// |
581 | 583 |
/// Construct a grid graph with the given size. |
582 | 584 |
GridGraph(int width, int height) { construct(width, height); } |
583 | 585 |
|
584 | 586 |
/// \brief Resizes the graph |
585 | 587 |
/// |
586 | 588 |
/// This function resizes the graph. It fully destroys and |
587 | 589 |
/// rebuilds the structure, therefore the maps of the graph will be |
588 | 590 |
/// reallocated automatically and the previous values will be lost. |
589 | 591 |
void resize(int width, int height) { |
590 | 592 |
Parent::notifier(Arc()).clear(); |
591 | 593 |
Parent::notifier(Edge()).clear(); |
592 | 594 |
Parent::notifier(Node()).clear(); |
593 | 595 |
construct(width, height); |
594 | 596 |
Parent::notifier(Node()).build(); |
595 | 597 |
Parent::notifier(Edge()).build(); |
596 | 598 |
Parent::notifier(Arc()).build(); |
597 | 599 |
} |
598 | 600 |
|
599 | 601 |
/// \brief The node on the given position. |
600 | 602 |
/// |
601 | 603 |
/// Gives back the node on the given position. |
602 | 604 |
Node operator()(int i, int j) const { |
603 | 605 |
return Parent::operator()(i, j); |
604 | 606 |
} |
605 | 607 |
|
606 | 608 |
/// \brief The column index of the node. |
607 | 609 |
/// |
608 | 610 |
/// Gives back the column index of the node. |
609 | 611 |
int col(Node n) const { |
610 | 612 |
return Parent::col(n); |
611 | 613 |
} |
612 | 614 |
|
613 | 615 |
/// \brief The row index of the node. |
614 | 616 |
/// |
615 | 617 |
/// Gives back the row index of the node. |
616 | 618 |
int row(Node n) const { |
617 | 619 |
return Parent::row(n); |
618 | 620 |
} |
619 | 621 |
|
620 | 622 |
/// \brief The position of the node. |
621 | 623 |
/// |
622 | 624 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
623 | 625 |
dim2::Point<int> pos(Node n) const { |
624 | 626 |
return Parent::pos(n); |
625 | 627 |
} |
626 | 628 |
|
627 | 629 |
/// \brief The number of the columns. |
628 | 630 |
/// |
629 | 631 |
/// Gives back the number of the columns. |
630 | 632 |
int width() const { |
631 | 633 |
return Parent::width(); |
632 | 634 |
} |
633 | 635 |
|
634 | 636 |
/// \brief The number of the rows. |
635 | 637 |
/// |
636 | 638 |
/// Gives back the number of the rows. |
637 | 639 |
int height() const { |
638 | 640 |
return Parent::height(); |
639 | 641 |
} |
640 | 642 |
|
641 | 643 |
/// \brief The arc goes right from the node. |
642 | 644 |
/// |
643 | 645 |
/// Gives back the arc goes right from the node. If there is not |
644 | 646 |
/// outgoing arc then it gives back INVALID. |
645 | 647 |
Arc right(Node n) const { |
646 | 648 |
return Parent::right(n); |
647 | 649 |
} |
648 | 650 |
|
649 | 651 |
/// \brief The arc goes left from the node. |
650 | 652 |
/// |
651 | 653 |
/// Gives back the arc goes left from the node. If there is not |
652 | 654 |
/// outgoing arc then it gives back INVALID. |
653 | 655 |
Arc left(Node n) const { |
654 | 656 |
return Parent::left(n); |
655 | 657 |
} |
656 | 658 |
|
657 | 659 |
/// \brief The arc goes up from the node. |
658 | 660 |
/// |
659 | 661 |
/// Gives back the arc goes up from the node. If there is not |
660 | 662 |
/// outgoing arc then it gives back INVALID. |
661 | 663 |
Arc up(Node n) const { |
662 | 664 |
return Parent::up(n); |
663 | 665 |
} |
664 | 666 |
|
665 | 667 |
/// \brief The arc goes down from the node. |
666 | 668 |
/// |
667 | 669 |
/// Gives back the arc goes down from the node. If there is not |
668 | 670 |
/// outgoing arc then it gives back INVALID. |
669 | 671 |
Arc down(Node n) const { |
670 | 672 |
return Parent::down(n); |
671 | 673 |
} |
672 | 674 |
|
673 | 675 |
/// \brief Index map of the grid graph |
674 | 676 |
/// |
675 | 677 |
/// Just returns an IndexMap for the grid graph. |
676 | 678 |
IndexMap indexMap() const { |
677 | 679 |
return IndexMap(*this); |
678 | 680 |
} |
679 | 681 |
|
680 | 682 |
/// \brief Row map of the grid graph |
681 | 683 |
/// |
682 | 684 |
/// Just returns a RowMap for the grid graph. |
683 | 685 |
RowMap rowMap() const { |
684 | 686 |
return RowMap(*this); |
685 | 687 |
} |
686 | 688 |
|
687 | 689 |
/// \brief Column map of the grid graph |
688 | 690 |
/// |
689 | 691 |
/// Just returns a ColMap for the grid graph. |
690 | 692 |
ColMap colMap() const { |
691 | 693 |
return ColMap(*this); |
692 | 694 |
} |
693 | 695 |
|
694 | 696 |
}; |
695 | 697 |
|
696 | 698 |
} |
697 | 699 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef HYPERCUBE_GRAPH_H |
20 | 20 |
#define HYPERCUBE_GRAPH_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <lemon/core.h> |
24 | 24 |
#include <lemon/assert.h> |
25 | 25 |
#include <lemon/bits/graph_extender.h> |
26 | 26 |
|
27 | 27 |
///\ingroup graphs |
28 | 28 |
///\file |
29 | 29 |
///\brief HypercubeGraph class. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
class HypercubeGraphBase { |
34 | 34 |
|
35 | 35 |
public: |
36 | 36 |
|
37 | 37 |
typedef HypercubeGraphBase Graph; |
38 | 38 |
|
39 | 39 |
class Node; |
40 | 40 |
class Edge; |
41 | 41 |
class Arc; |
42 | 42 |
|
43 | 43 |
public: |
44 | 44 |
|
45 | 45 |
HypercubeGraphBase() {} |
46 | 46 |
|
47 | 47 |
protected: |
48 | 48 |
|
49 | 49 |
void construct(int dim) { |
50 | 50 |
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1."); |
51 | 51 |
_dim = dim; |
52 | 52 |
_node_num = 1 << dim; |
53 | 53 |
_edge_num = dim * (1 << (dim-1)); |
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
typedef True NodeNumTag; |
59 | 59 |
typedef True EdgeNumTag; |
60 | 60 |
typedef True ArcNumTag; |
61 | 61 |
|
62 | 62 |
int nodeNum() const { return _node_num; } |
63 | 63 |
int edgeNum() const { return _edge_num; } |
64 | 64 |
int arcNum() const { return 2 * _edge_num; } |
65 | 65 |
|
66 | 66 |
int maxNodeId() const { return _node_num - 1; } |
67 | 67 |
int maxEdgeId() const { return _edge_num - 1; } |
68 | 68 |
int maxArcId() const { return 2 * _edge_num - 1; } |
69 | 69 |
|
70 | 70 |
static Node nodeFromId(int id) { return Node(id); } |
71 | 71 |
static Edge edgeFromId(int id) { return Edge(id); } |
72 | 72 |
static Arc arcFromId(int id) { return Arc(id); } |
73 | 73 |
|
74 | 74 |
static int id(Node node) { return node._id; } |
75 | 75 |
static int id(Edge edge) { return edge._id; } |
76 | 76 |
static int id(Arc arc) { return arc._id; } |
77 | 77 |
|
78 | 78 |
Node u(Edge edge) const { |
79 | 79 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
80 | 80 |
int k = edge._id >> (_dim-1); |
81 | 81 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)); |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
Node v(Edge edge) const { |
85 | 85 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
86 | 86 |
int k = edge._id >> (_dim-1); |
87 | 87 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k); |
88 | 88 |
} |
89 | 89 |
|
90 | 90 |
Node source(Arc arc) const { |
91 | 91 |
return (arc._id & 1) == 1 ? u(arc) : v(arc); |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
Node target(Arc arc) const { |
95 | 95 |
return (arc._id & 1) == 1 ? v(arc) : u(arc); |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
typedef True FindEdgeTag; |
99 | 99 |
typedef True FindArcTag; |
100 | 100 |
|
101 | 101 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
102 | 102 |
if (prev != INVALID) return INVALID; |
103 | 103 |
int d = u._id ^ v._id; |
104 | 104 |
int k = 0; |
105 | 105 |
if (d == 0) return INVALID; |
106 | 106 |
for ( ; (d & 1) == 0; d >>= 1) ++k; |
107 | 107 |
if (d >> 1 != 0) return INVALID; |
108 | 108 |
return (k << (_dim-1)) | ((u._id >> (k+1)) << k) | |
109 | 109 |
(u._id & ((1 << k) - 1)); |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const { |
113 | 113 |
Edge edge = findEdge(u, v, prev); |
114 | 114 |
if (edge == INVALID) return INVALID; |
115 | 115 |
int k = edge._id >> (_dim-1); |
116 | 116 |
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1; |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
class Node { |
120 | 120 |
friend class HypercubeGraphBase; |
121 | 121 |
|
122 | 122 |
protected: |
123 | 123 |
int _id; |
124 | 124 |
Node(int id) : _id(id) {} |
125 | 125 |
public: |
126 | 126 |
Node() {} |
127 | 127 |
Node (Invalid) : _id(-1) {} |
128 | 128 |
bool operator==(const Node node) const {return _id == node._id;} |
129 | 129 |
bool operator!=(const Node node) const {return _id != node._id;} |
130 | 130 |
bool operator<(const Node node) const {return _id < node._id;} |
131 | 131 |
}; |
132 | 132 |
|
133 | 133 |
class Edge { |
134 | 134 |
friend class HypercubeGraphBase; |
135 | 135 |
friend class Arc; |
136 | 136 |
|
137 | 137 |
protected: |
138 | 138 |
int _id; |
139 | 139 |
|
140 | 140 |
Edge(int id) : _id(id) {} |
141 | 141 |
|
142 | 142 |
public: |
143 | 143 |
Edge() {} |
144 | 144 |
Edge (Invalid) : _id(-1) {} |
145 | 145 |
bool operator==(const Edge edge) const {return _id == edge._id;} |
146 | 146 |
bool operator!=(const Edge edge) const {return _id != edge._id;} |
147 | 147 |
bool operator<(const Edge edge) const {return _id < edge._id;} |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
class Arc { |
151 | 151 |
friend class HypercubeGraphBase; |
152 | 152 |
|
153 | 153 |
protected: |
154 | 154 |
int _id; |
155 | 155 |
|
156 | 156 |
Arc(int id) : _id(id) {} |
157 | 157 |
|
158 | 158 |
public: |
159 | 159 |
Arc() {} |
160 | 160 |
Arc (Invalid) : _id(-1) {} |
161 | 161 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; } |
162 | 162 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
163 | 163 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
164 | 164 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
void first(Node& node) const { |
168 | 168 |
node._id = _node_num - 1; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
static void next(Node& node) { |
172 | 172 |
--node._id; |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
void first(Edge& edge) const { |
176 | 176 |
edge._id = _edge_num - 1; |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
static void next(Edge& edge) { |
180 | 180 |
--edge._id; |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
void first(Arc& arc) const { |
184 | 184 |
arc._id = 2 * _edge_num - 1; |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
static void next(Arc& arc) { |
188 | 188 |
--arc._id; |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
void firstInc(Edge& edge, bool& dir, const Node& node) const { |
192 | 192 |
edge._id = node._id >> 1; |
193 | 193 |
dir = (node._id & 1) == 0; |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
void nextInc(Edge& edge, bool& dir) const { |
197 | 197 |
Node n = dir ? u(edge) : v(edge); |
198 | 198 |
int k = (edge._id >> (_dim-1)) + 1; |
199 | 199 |
if (k < _dim) { |
200 | 200 |
edge._id = (k << (_dim-1)) | |
201 | 201 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
202 | 202 |
dir = ((n._id >> k) & 1) == 0; |
203 | 203 |
} else { |
204 | 204 |
edge._id = -1; |
205 | 205 |
dir = true; |
206 | 206 |
} |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
void firstOut(Arc& arc, const Node& node) const { |
210 | 210 |
arc._id = ((node._id >> 1) << 1) | (~node._id & 1); |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
void nextOut(Arc& arc) const { |
214 | 214 |
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc); |
215 | 215 |
int k = (arc._id >> _dim) + 1; |
216 | 216 |
if (k < _dim) { |
217 | 217 |
arc._id = (k << (_dim-1)) | |
218 | 218 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
219 | 219 |
arc._id = (arc._id << 1) | (~(n._id >> k) & 1); |
220 | 220 |
} else { |
221 | 221 |
arc._id = -1; |
222 | 222 |
} |
223 | 223 |
} |
224 | 224 |
|
225 | 225 |
void firstIn(Arc& arc, const Node& node) const { |
226 | 226 |
arc._id = ((node._id >> 1) << 1) | (node._id & 1); |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
void nextIn(Arc& arc) const { |
230 | 230 |
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc); |
231 | 231 |
int k = (arc._id >> _dim) + 1; |
232 | 232 |
if (k < _dim) { |
233 | 233 |
arc._id = (k << (_dim-1)) | |
234 | 234 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
235 | 235 |
arc._id = (arc._id << 1) | ((n._id >> k) & 1); |
236 | 236 |
} else { |
237 | 237 |
arc._id = -1; |
238 | 238 |
} |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
static bool direction(Arc arc) { |
242 | 242 |
return (arc._id & 1) == 1; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
static Arc direct(Edge edge, bool dir) { |
246 | 246 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
int dimension() const { |
250 | 250 |
return _dim; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
bool projection(Node node, int n) const { |
254 | 254 |
return static_cast<bool>(node._id & (1 << n)); |
255 | 255 |
} |
256 | 256 |
|
257 | 257 |
int dimension(Edge edge) const { |
258 | 258 |
return edge._id >> (_dim-1); |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
int dimension(Arc arc) const { |
262 | 262 |
return arc._id >> _dim; |
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
static int index(Node node) { |
266 | 266 |
return node._id; |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
Node operator()(int ix) const { |
270 | 270 |
return Node(ix); |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
private: |
274 | 274 |
int _dim; |
275 | 275 |
int _node_num, _edge_num; |
276 | 276 |
}; |
277 | 277 |
|
278 | 278 |
|
279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
280 | 280 |
|
281 | 281 |
/// \ingroup graphs |
282 | 282 |
/// |
283 | 283 |
/// \brief Hypercube graph class |
284 | 284 |
/// |
285 | 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
286 | 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
288 | 288 |
/// differ only on one position in the binary form. |
289 | 289 |
/// This class is completely static and it needs constant memory space. |
290 | 290 |
/// Thus you can neither add nor delete nodes or edges, however |
291 | 291 |
/// the structure can be resized using resize(). |
292 | 292 |
/// |
293 | 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
294 | 294 |
/// Most of its member functions and nested classes are documented |
295 | 295 |
/// only in the concept class. |
296 | 296 |
/// |
297 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
298 |
/// |
|
297 | 299 |
/// \note The type of the indices is chosen to \c int for efficiency |
298 | 300 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
299 | 301 |
/// (assuming that the size of \c int is 32 bit). |
300 | 302 |
class HypercubeGraph : public ExtendedHypercubeGraphBase { |
301 | 303 |
typedef ExtendedHypercubeGraphBase Parent; |
302 | 304 |
|
303 | 305 |
public: |
304 | 306 |
|
305 | 307 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
306 | 308 |
/// |
307 | 309 |
/// Constructs a hypercube graph with \c dim dimensions. |
308 | 310 |
HypercubeGraph(int dim) { construct(dim); } |
309 | 311 |
|
310 | 312 |
/// \brief Resizes the graph |
311 | 313 |
/// |
312 | 314 |
/// This function resizes the graph. It fully destroys and |
313 | 315 |
/// rebuilds the structure, therefore the maps of the graph will be |
314 | 316 |
/// reallocated automatically and the previous values will be lost. |
315 | 317 |
void resize(int dim) { |
316 | 318 |
Parent::notifier(Arc()).clear(); |
317 | 319 |
Parent::notifier(Edge()).clear(); |
318 | 320 |
Parent::notifier(Node()).clear(); |
319 | 321 |
construct(dim); |
320 | 322 |
Parent::notifier(Node()).build(); |
321 | 323 |
Parent::notifier(Edge()).build(); |
322 | 324 |
Parent::notifier(Arc()).build(); |
323 | 325 |
} |
324 | 326 |
|
325 | 327 |
/// \brief The number of dimensions. |
326 | 328 |
/// |
327 | 329 |
/// Gives back the number of dimensions. |
328 | 330 |
int dimension() const { |
329 | 331 |
return Parent::dimension(); |
330 | 332 |
} |
331 | 333 |
|
332 | 334 |
/// \brief Returns \c true if the n'th bit of the node is one. |
333 | 335 |
/// |
334 | 336 |
/// Returns \c true if the n'th bit of the node is one. |
335 | 337 |
bool projection(Node node, int n) const { |
336 | 338 |
return Parent::projection(node, n); |
337 | 339 |
} |
338 | 340 |
|
339 | 341 |
/// \brief The dimension id of an edge. |
340 | 342 |
/// |
341 | 343 |
/// Gives back the dimension id of the given edge. |
342 | 344 |
/// It is in the range <tt>[0..dim-1]</tt>. |
343 | 345 |
int dimension(Edge edge) const { |
344 | 346 |
return Parent::dimension(edge); |
345 | 347 |
} |
346 | 348 |
|
347 | 349 |
/// \brief The dimension id of an arc. |
348 | 350 |
/// |
349 | 351 |
/// Gives back the dimension id of the given arc. |
350 | 352 |
/// It is in the range <tt>[0..dim-1]</tt>. |
351 | 353 |
int dimension(Arc arc) const { |
352 | 354 |
return Parent::dimension(arc); |
353 | 355 |
} |
354 | 356 |
|
355 | 357 |
/// \brief The index of a node. |
356 | 358 |
/// |
357 | 359 |
/// Gives back the index of the given node. |
358 | 360 |
/// The lower bits of the integer describes the node. |
359 | 361 |
static int index(Node node) { |
360 | 362 |
return Parent::index(node); |
361 | 363 |
} |
362 | 364 |
|
363 | 365 |
/// \brief Gives back a node by its index. |
364 | 366 |
/// |
365 | 367 |
/// Gives back a node by its index. |
366 | 368 |
Node operator()(int ix) const { |
367 | 369 |
return Parent::operator()(ix); |
368 | 370 |
} |
369 | 371 |
|
370 | 372 |
/// \brief Number of nodes. |
371 | 373 |
int nodeNum() const { return Parent::nodeNum(); } |
372 | 374 |
/// \brief Number of edges. |
373 | 375 |
int edgeNum() const { return Parent::edgeNum(); } |
374 | 376 |
/// \brief Number of arcs. |
375 | 377 |
int arcNum() const { return Parent::arcNum(); } |
376 | 378 |
|
377 | 379 |
/// \brief Linear combination map. |
378 | 380 |
/// |
379 | 381 |
/// This map makes possible to give back a linear combination |
380 | 382 |
/// for each node. It works like the \c std::accumulate function, |
381 | 383 |
/// so it accumulates the \c bf binary function with the \c fv first |
382 | 384 |
/// value. The map accumulates only on that positions (dimensions) |
383 | 385 |
/// where the index of the node is one. The values that have to be |
384 | 386 |
/// accumulated should be given by the \c begin and \c end iterators |
385 | 387 |
/// and the length of this range should be equal to the dimension |
386 | 388 |
/// number of the graph. |
387 | 389 |
/// |
388 | 390 |
///\code |
389 | 391 |
/// const int DIM = 3; |
390 | 392 |
/// HypercubeGraph graph(DIM); |
391 | 393 |
/// dim2::Point<double> base[DIM]; |
392 | 394 |
/// for (int k = 0; k < DIM; ++k) { |
393 | 395 |
/// base[k].x = rnd(); |
394 | 396 |
/// base[k].y = rnd(); |
395 | 397 |
/// } |
396 | 398 |
/// HypercubeGraph::HyperMap<dim2::Point<double> > |
397 | 399 |
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0)); |
398 | 400 |
///\endcode |
399 | 401 |
/// |
400 | 402 |
/// \see HypercubeGraph |
401 | 403 |
template <typename T, typename BF = std::plus<T> > |
402 | 404 |
class HyperMap { |
403 | 405 |
public: |
404 | 406 |
|
405 | 407 |
/// \brief The key type of the map |
406 | 408 |
typedef Node Key; |
407 | 409 |
/// \brief The value type of the map |
408 | 410 |
typedef T Value; |
409 | 411 |
|
410 | 412 |
/// \brief Constructor for HyperMap. |
411 | 413 |
/// |
412 | 414 |
/// Construct a HyperMap for the given graph. The values that have |
413 | 415 |
/// to be accumulated should be given by the \c begin and \c end |
414 | 416 |
/// iterators and the length of this range should be equal to the |
415 | 417 |
/// dimension number of the graph. |
416 | 418 |
/// |
417 | 419 |
/// This map accumulates the \c bf binary function with the \c fv |
418 | 420 |
/// first value on that positions (dimensions) where the index of |
419 | 421 |
/// the node is one. |
420 | 422 |
template <typename It> |
421 | 423 |
HyperMap(const Graph& graph, It begin, It end, |
422 | 424 |
T fv = 0, const BF& bf = BF()) |
423 | 425 |
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) |
424 | 426 |
{ |
425 | 427 |
LEMON_ASSERT(_values.size() == graph.dimension(), |
426 | 428 |
"Wrong size of range"); |
427 | 429 |
} |
428 | 430 |
|
429 | 431 |
/// \brief The partial accumulated value. |
430 | 432 |
/// |
431 | 433 |
/// Gives back the partial accumulated value. |
432 | 434 |
Value operator[](const Key& k) const { |
433 | 435 |
Value val = _first_value; |
434 | 436 |
int id = _graph.index(k); |
435 | 437 |
int n = 0; |
436 | 438 |
while (id != 0) { |
437 | 439 |
if (id & 1) { |
438 | 440 |
val = _bin_func(val, _values[n]); |
439 | 441 |
} |
440 | 442 |
id >>= 1; |
441 | 443 |
++n; |
442 | 444 |
} |
443 | 445 |
return val; |
444 | 446 |
} |
445 | 447 |
|
446 | 448 |
private: |
447 | 449 |
const Graph& _graph; |
448 | 450 |
std::vector<T> _values; |
449 | 451 |
T _first_value; |
450 | 452 |
BF _bin_func; |
451 | 453 |
}; |
452 | 454 |
|
453 | 455 |
}; |
454 | 456 |
|
455 | 457 |
} |
456 | 458 |
|
457 | 459 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief ListDigraph and ListGraph classes. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
#include <lemon/bits/graph_extender.h> |
29 | 29 |
|
30 | 30 |
#include <vector> |
31 | 31 |
#include <list> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
class ListDigraph; |
36 | 36 |
|
37 | 37 |
class ListDigraphBase { |
38 | 38 |
|
39 | 39 |
protected: |
40 | 40 |
struct NodeT { |
41 | 41 |
int first_in, first_out; |
42 | 42 |
int prev, next; |
43 | 43 |
}; |
44 | 44 |
|
45 | 45 |
struct ArcT { |
46 | 46 |
int target, source; |
47 | 47 |
int prev_in, prev_out; |
48 | 48 |
int next_in, next_out; |
49 | 49 |
}; |
50 | 50 |
|
51 | 51 |
std::vector<NodeT> nodes; |
52 | 52 |
|
53 | 53 |
int first_node; |
54 | 54 |
|
55 | 55 |
int first_free_node; |
56 | 56 |
|
57 | 57 |
std::vector<ArcT> arcs; |
58 | 58 |
|
59 | 59 |
int first_free_arc; |
60 | 60 |
|
61 | 61 |
public: |
62 | 62 |
|
63 | 63 |
typedef ListDigraphBase Digraph; |
64 | 64 |
|
65 | 65 |
class Node { |
66 | 66 |
friend class ListDigraphBase; |
67 | 67 |
friend class ListDigraph; |
68 | 68 |
protected: |
69 | 69 |
|
70 | 70 |
int id; |
71 | 71 |
explicit Node(int pid) { id = pid;} |
72 | 72 |
|
73 | 73 |
public: |
74 | 74 |
Node() {} |
75 | 75 |
Node (Invalid) { id = -1; } |
76 | 76 |
bool operator==(const Node& node) const {return id == node.id;} |
77 | 77 |
bool operator!=(const Node& node) const {return id != node.id;} |
78 | 78 |
bool operator<(const Node& node) const {return id < node.id;} |
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
class Arc { |
82 | 82 |
friend class ListDigraphBase; |
83 | 83 |
friend class ListDigraph; |
84 | 84 |
protected: |
85 | 85 |
|
86 | 86 |
int id; |
87 | 87 |
explicit Arc(int pid) { id = pid;} |
88 | 88 |
|
89 | 89 |
public: |
90 | 90 |
Arc() {} |
91 | 91 |
Arc (Invalid) { id = -1; } |
92 | 92 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
93 | 93 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
94 | 94 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
95 | 95 |
}; |
96 | 96 |
|
97 | 97 |
|
98 | 98 |
|
99 | 99 |
ListDigraphBase() |
100 | 100 |
: nodes(), first_node(-1), |
101 | 101 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
102 | 102 |
|
103 | 103 |
|
104 | 104 |
int maxNodeId() const { return nodes.size()-1; } |
105 | 105 |
int maxArcId() const { return arcs.size()-1; } |
106 | 106 |
|
107 | 107 |
Node source(Arc e) const { return Node(arcs[e.id].source); } |
108 | 108 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
109 | 109 |
|
110 | 110 |
|
111 | 111 |
void first(Node& node) const { |
112 | 112 |
node.id = first_node; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
void next(Node& node) const { |
116 | 116 |
node.id = nodes[node.id].next; |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
|
120 | 120 |
void first(Arc& arc) const { |
121 | 121 |
int n; |
122 | 122 |
for(n = first_node; |
123 | 123 |
n != -1 && nodes[n].first_out == -1; |
124 | 124 |
n = nodes[n].next) {} |
125 | 125 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
void next(Arc& arc) const { |
129 | 129 |
if (arcs[arc.id].next_out != -1) { |
130 | 130 |
arc.id = arcs[arc.id].next_out; |
131 | 131 |
} else { |
132 | 132 |
int n; |
133 | 133 |
for(n = nodes[arcs[arc.id].source].next; |
134 | 134 |
n != -1 && nodes[n].first_out == -1; |
135 | 135 |
n = nodes[n].next) {} |
136 | 136 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
137 | 137 |
} |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
void firstOut(Arc &e, const Node& v) const { |
141 | 141 |
e.id = nodes[v.id].first_out; |
142 | 142 |
} |
143 | 143 |
void nextOut(Arc &e) const { |
144 | 144 |
e.id=arcs[e.id].next_out; |
145 | 145 |
} |
146 | 146 |
|
147 | 147 |
void firstIn(Arc &e, const Node& v) const { |
148 | 148 |
e.id = nodes[v.id].first_in; |
149 | 149 |
} |
150 | 150 |
void nextIn(Arc &e) const { |
151 | 151 |
e.id=arcs[e.id].next_in; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
|
155 | 155 |
static int id(Node v) { return v.id; } |
156 | 156 |
static int id(Arc e) { return e.id; } |
157 | 157 |
|
158 | 158 |
static Node nodeFromId(int id) { return Node(id);} |
159 | 159 |
static Arc arcFromId(int id) { return Arc(id);} |
160 | 160 |
|
161 | 161 |
bool valid(Node n) const { |
162 | 162 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
163 | 163 |
nodes[n.id].prev != -2; |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
bool valid(Arc a) const { |
167 | 167 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
168 | 168 |
arcs[a.id].prev_in != -2; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
Node addNode() { |
172 | 172 |
int n; |
173 | 173 |
|
174 | 174 |
if(first_free_node==-1) { |
175 | 175 |
n = nodes.size(); |
176 | 176 |
nodes.push_back(NodeT()); |
177 | 177 |
} else { |
178 | 178 |
n = first_free_node; |
179 | 179 |
first_free_node = nodes[n].next; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
nodes[n].next = first_node; |
183 | 183 |
if(first_node != -1) nodes[first_node].prev = n; |
184 | 184 |
first_node = n; |
185 | 185 |
nodes[n].prev = -1; |
186 | 186 |
|
187 | 187 |
nodes[n].first_in = nodes[n].first_out = -1; |
188 | 188 |
|
189 | 189 |
return Node(n); |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
Arc addArc(Node u, Node v) { |
193 | 193 |
int n; |
194 | 194 |
|
195 | 195 |
if (first_free_arc == -1) { |
196 | 196 |
n = arcs.size(); |
197 | 197 |
arcs.push_back(ArcT()); |
198 | 198 |
} else { |
199 | 199 |
n = first_free_arc; |
200 | 200 |
first_free_arc = arcs[n].next_in; |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
arcs[n].source = u.id; |
204 | 204 |
arcs[n].target = v.id; |
205 | 205 |
|
206 | 206 |
arcs[n].next_out = nodes[u.id].first_out; |
207 | 207 |
if(nodes[u.id].first_out != -1) { |
208 | 208 |
arcs[nodes[u.id].first_out].prev_out = n; |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
arcs[n].next_in = nodes[v.id].first_in; |
212 | 212 |
if(nodes[v.id].first_in != -1) { |
213 | 213 |
arcs[nodes[v.id].first_in].prev_in = n; |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
217 | 217 |
|
218 | 218 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
219 | 219 |
|
220 | 220 |
return Arc(n); |
221 | 221 |
} |
222 | 222 |
|
223 | 223 |
void erase(const Node& node) { |
224 | 224 |
int n = node.id; |
225 | 225 |
|
226 | 226 |
if(nodes[n].next != -1) { |
227 | 227 |
nodes[nodes[n].next].prev = nodes[n].prev; |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
if(nodes[n].prev != -1) { |
231 | 231 |
nodes[nodes[n].prev].next = nodes[n].next; |
232 | 232 |
} else { |
233 | 233 |
first_node = nodes[n].next; |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
nodes[n].next = first_free_node; |
237 | 237 |
first_free_node = n; |
238 | 238 |
nodes[n].prev = -2; |
239 | 239 |
|
240 | 240 |
} |
241 | 241 |
|
242 | 242 |
void erase(const Arc& arc) { |
243 | 243 |
int n = arc.id; |
244 | 244 |
|
245 | 245 |
if(arcs[n].next_in!=-1) { |
246 | 246 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
if(arcs[n].prev_in!=-1) { |
250 | 250 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
251 | 251 |
} else { |
252 | 252 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
253 | 253 |
} |
254 | 254 |
|
255 | 255 |
|
256 | 256 |
if(arcs[n].next_out!=-1) { |
257 | 257 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
if(arcs[n].prev_out!=-1) { |
261 | 261 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
262 | 262 |
} else { |
263 | 263 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
264 | 264 |
} |
265 | 265 |
|
266 | 266 |
arcs[n].next_in = first_free_arc; |
267 | 267 |
first_free_arc = n; |
268 | 268 |
arcs[n].prev_in = -2; |
269 | 269 |
} |
270 | 270 |
|
271 | 271 |
void clear() { |
272 | 272 |
arcs.clear(); |
273 | 273 |
nodes.clear(); |
274 | 274 |
first_node = first_free_node = first_free_arc = -1; |
275 | 275 |
} |
276 | 276 |
|
277 | 277 |
protected: |
278 | 278 |
void changeTarget(Arc e, Node n) |
279 | 279 |
{ |
280 | 280 |
if(arcs[e.id].next_in != -1) |
281 | 281 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
282 | 282 |
if(arcs[e.id].prev_in != -1) |
283 | 283 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
284 | 284 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
285 | 285 |
if (nodes[n.id].first_in != -1) { |
286 | 286 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
287 | 287 |
} |
288 | 288 |
arcs[e.id].target = n.id; |
289 | 289 |
arcs[e.id].prev_in = -1; |
290 | 290 |
arcs[e.id].next_in = nodes[n.id].first_in; |
291 | 291 |
nodes[n.id].first_in = e.id; |
292 | 292 |
} |
293 | 293 |
void changeSource(Arc e, Node n) |
294 | 294 |
{ |
295 | 295 |
if(arcs[e.id].next_out != -1) |
296 | 296 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
297 | 297 |
if(arcs[e.id].prev_out != -1) |
298 | 298 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
299 | 299 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
300 | 300 |
if (nodes[n.id].first_out != -1) { |
301 | 301 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
302 | 302 |
} |
303 | 303 |
arcs[e.id].source = n.id; |
304 | 304 |
arcs[e.id].prev_out = -1; |
305 | 305 |
arcs[e.id].next_out = nodes[n.id].first_out; |
306 | 306 |
nodes[n.id].first_out = e.id; |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
312 | 312 |
|
313 | 313 |
/// \addtogroup graphs |
314 | 314 |
/// @{ |
315 | 315 |
|
316 | 316 |
///A general directed graph structure. |
317 | 317 |
|
318 | 318 |
///\ref ListDigraph is a versatile and fast directed graph |
319 | 319 |
///implementation based on linked lists that are stored in |
320 | 320 |
///\c std::vector structures. |
321 | 321 |
/// |
322 | 322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
323 | 323 |
///and it also provides several useful additional functionalities. |
324 | 324 |
///Most of its member functions and nested classes are documented |
325 | 325 |
///only in the concept class. |
326 | 326 |
/// |
327 |
///This class provides only linear time counting for nodes and arcs. |
|
328 |
/// |
|
327 | 329 |
///\sa concepts::Digraph |
328 | 330 |
///\sa ListGraph |
329 | 331 |
class ListDigraph : public ExtendedListDigraphBase { |
330 | 332 |
typedef ExtendedListDigraphBase Parent; |
331 | 333 |
|
332 | 334 |
private: |
333 | 335 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
334 | 336 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
335 | 337 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
336 | 338 |
/// Use DigraphCopy instead. |
337 | 339 |
void operator=(const ListDigraph &) {} |
338 | 340 |
public: |
339 | 341 |
|
340 | 342 |
/// Constructor |
341 | 343 |
|
342 | 344 |
/// Constructor. |
343 | 345 |
/// |
344 | 346 |
ListDigraph() {} |
345 | 347 |
|
346 | 348 |
///Add a new node to the digraph. |
347 | 349 |
|
348 | 350 |
///This function adds a new node to the digraph. |
349 | 351 |
///\return The new node. |
350 | 352 |
Node addNode() { return Parent::addNode(); } |
351 | 353 |
|
352 | 354 |
///Add a new arc to the digraph. |
353 | 355 |
|
354 | 356 |
///This function adds a new arc to the digraph with source node \c s |
355 | 357 |
///and target node \c t. |
356 | 358 |
///\return The new arc. |
357 | 359 |
Arc addArc(Node s, Node t) { |
358 | 360 |
return Parent::addArc(s, t); |
359 | 361 |
} |
360 | 362 |
|
361 | 363 |
///\brief Erase a node from the digraph. |
362 | 364 |
/// |
363 |
///This function erases the given node |
|
365 |
///This function erases the given node along with its outgoing and |
|
366 |
///incoming arcs from the digraph. |
|
367 |
/// |
|
368 |
///\note All iterators referencing the removed node or the connected |
|
369 |
///arcs are invalidated, of course. |
|
364 | 370 |
void erase(Node n) { Parent::erase(n); } |
365 | 371 |
|
366 | 372 |
///\brief Erase an arc from the digraph. |
367 | 373 |
/// |
368 | 374 |
///This function erases the given arc from the digraph. |
375 |
/// |
|
376 |
///\note All iterators referencing the removed arc are invalidated, |
|
377 |
///of course. |
|
369 | 378 |
void erase(Arc a) { Parent::erase(a); } |
370 | 379 |
|
371 | 380 |
/// Node validity check |
372 | 381 |
|
373 | 382 |
/// This function gives back \c true if the given node is valid, |
374 | 383 |
/// i.e. it is a real node of the digraph. |
375 | 384 |
/// |
376 | 385 |
/// \warning A removed node could become valid again if new nodes are |
377 | 386 |
/// added to the digraph. |
378 | 387 |
bool valid(Node n) const { return Parent::valid(n); } |
379 | 388 |
|
380 | 389 |
/// Arc validity check |
381 | 390 |
|
382 | 391 |
/// This function gives back \c true if the given arc is valid, |
383 | 392 |
/// i.e. it is a real arc of the digraph. |
384 | 393 |
/// |
385 | 394 |
/// \warning A removed arc could become valid again if new arcs are |
386 | 395 |
/// added to the digraph. |
387 | 396 |
bool valid(Arc a) const { return Parent::valid(a); } |
388 | 397 |
|
389 | 398 |
/// Change the target node of an arc |
390 | 399 |
|
391 | 400 |
/// This function changes the target node of the given arc \c a to \c n. |
392 | 401 |
/// |
393 | 402 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
394 | 403 |
///arc remain valid, however \c InArcIt iterators are invalidated. |
395 | 404 |
/// |
396 | 405 |
///\warning This functionality cannot be used together with the Snapshot |
397 | 406 |
///feature. |
398 | 407 |
void changeTarget(Arc a, Node n) { |
399 | 408 |
Parent::changeTarget(a,n); |
400 | 409 |
} |
401 | 410 |
/// Change the source node of an arc |
402 | 411 |
|
403 | 412 |
/// This function changes the source node of the given arc \c a to \c n. |
404 | 413 |
/// |
405 | 414 |
///\note \c InArcIt iterators referencing the changed arc remain |
406 | 415 |
///valid, however \c ArcIt and \c OutArcIt iterators are invalidated. |
407 | 416 |
/// |
408 | 417 |
///\warning This functionality cannot be used together with the Snapshot |
409 | 418 |
///feature. |
410 | 419 |
void changeSource(Arc a, Node n) { |
411 | 420 |
Parent::changeSource(a,n); |
412 | 421 |
} |
413 | 422 |
|
414 | 423 |
/// Reverse the direction of an arc. |
415 | 424 |
|
416 | 425 |
/// This function reverses the direction of the given arc. |
417 | 426 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
418 | 427 |
///the changed arc are invalidated. |
419 | 428 |
/// |
420 | 429 |
///\warning This functionality cannot be used together with the Snapshot |
421 | 430 |
///feature. |
422 | 431 |
void reverseArc(Arc a) { |
423 | 432 |
Node t=target(a); |
424 | 433 |
changeTarget(a,source(a)); |
425 | 434 |
changeSource(a,t); |
426 | 435 |
} |
427 | 436 |
|
428 | 437 |
///Contract two nodes. |
429 | 438 |
|
430 | 439 |
///This function contracts the given two nodes. |
431 | 440 |
///Node \c v is removed, but instead of deleting its |
432 | 441 |
///incident arcs, they are joined to node \c u. |
433 | 442 |
///If the last parameter \c r is \c true (this is the default value), |
434 | 443 |
///then the newly created loops are removed. |
435 | 444 |
/// |
436 | 445 |
///\note The moved arcs are joined to node \c u using changeSource() |
437 | 446 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
438 | 447 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
439 | 448 |
///iterators are invalidated for the incomming arcs of \c v. |
440 | 449 |
///Moreover all iterators referencing node \c v or the removed |
441 | 450 |
///loops are also invalidated. Other iterators remain valid. |
442 | 451 |
/// |
443 | 452 |
///\warning This functionality cannot be used together with the Snapshot |
444 | 453 |
///feature. |
445 | 454 |
void contract(Node u, Node v, bool r = true) |
446 | 455 |
{ |
447 | 456 |
for(OutArcIt e(*this,v);e!=INVALID;) { |
448 | 457 |
OutArcIt f=e; |
449 | 458 |
++f; |
450 | 459 |
if(r && target(e)==u) erase(e); |
451 | 460 |
else changeSource(e,u); |
452 | 461 |
e=f; |
453 | 462 |
} |
454 | 463 |
for(InArcIt e(*this,v);e!=INVALID;) { |
455 | 464 |
InArcIt f=e; |
456 | 465 |
++f; |
457 | 466 |
if(r && source(e)==u) erase(e); |
458 | 467 |
else changeTarget(e,u); |
459 | 468 |
e=f; |
460 | 469 |
} |
461 | 470 |
erase(v); |
462 | 471 |
} |
463 | 472 |
|
464 | 473 |
///Split a node. |
465 | 474 |
|
466 | 475 |
///This function splits the given node. First, a new node is added |
467 | 476 |
///to the digraph, then the source of each outgoing arc of node \c n |
468 | 477 |
///is moved to this new node. |
469 | 478 |
///If the second parameter \c connect is \c true (this is the default |
470 | 479 |
///value), then a new arc from node \c n to the newly created node |
471 | 480 |
///is also added. |
472 | 481 |
///\return The newly created node. |
473 | 482 |
/// |
474 | 483 |
///\note All iterators remain valid. |
475 | 484 |
/// |
476 | 485 |
///\warning This functionality cannot be used together with the |
477 | 486 |
///Snapshot feature. |
478 | 487 |
Node split(Node n, bool connect = true) { |
479 | 488 |
Node b = addNode(); |
480 | 489 |
nodes[b.id].first_out=nodes[n.id].first_out; |
481 | 490 |
nodes[n.id].first_out=-1; |
482 | 491 |
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) { |
483 | 492 |
arcs[i].source=b.id; |
484 | 493 |
} |
485 | 494 |
if (connect) addArc(n,b); |
486 | 495 |
return b; |
487 | 496 |
} |
488 | 497 |
|
489 | 498 |
///Split an arc. |
490 | 499 |
|
491 | 500 |
///This function splits the given arc. First, a new node \c v is |
492 | 501 |
///added to the digraph, then the target node of the original arc |
493 | 502 |
///is set to \c v. Finally, an arc from \c v to the original target |
494 | 503 |
///is added. |
495 | 504 |
///\return The newly created node. |
496 | 505 |
/// |
497 | 506 |
///\note \c InArcIt iterators referencing the original arc are |
498 | 507 |
///invalidated. Other iterators remain valid. |
499 | 508 |
/// |
500 | 509 |
///\warning This functionality cannot be used together with the |
501 | 510 |
///Snapshot feature. |
502 | 511 |
Node split(Arc a) { |
503 | 512 |
Node v = addNode(); |
504 | 513 |
addArc(v,target(a)); |
505 | 514 |
changeTarget(a,v); |
506 | 515 |
return v; |
507 | 516 |
} |
508 | 517 |
|
509 | 518 |
///Clear the digraph. |
510 | 519 |
|
511 | 520 |
///This function erases all nodes and arcs from the digraph. |
512 | 521 |
/// |
522 |
///\note All iterators of the digraph are invalidated, of course. |
|
513 | 523 |
void clear() { |
514 | 524 |
Parent::clear(); |
515 | 525 |
} |
516 | 526 |
|
517 | 527 |
/// Reserve memory for nodes. |
518 | 528 |
|
519 | 529 |
/// Using this function, it is possible to avoid superfluous memory |
520 | 530 |
/// allocation: if you know that the digraph you want to build will |
521 | 531 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
522 | 532 |
/// then it is worth reserving space for this amount before starting |
523 | 533 |
/// to build the digraph. |
524 | 534 |
/// \sa reserveArc() |
525 | 535 |
void reserveNode(int n) { nodes.reserve(n); }; |
526 | 536 |
|
527 | 537 |
/// Reserve memory for arcs. |
528 | 538 |
|
529 | 539 |
/// Using this function, it is possible to avoid superfluous memory |
530 | 540 |
/// allocation: if you know that the digraph you want to build will |
531 | 541 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
532 | 542 |
/// then it is worth reserving space for this amount before starting |
533 | 543 |
/// to build the digraph. |
534 | 544 |
/// \sa reserveNode() |
535 | 545 |
void reserveArc(int m) { arcs.reserve(m); }; |
536 | 546 |
|
537 | 547 |
/// \brief Class to make a snapshot of the digraph and restore |
538 | 548 |
/// it later. |
539 | 549 |
/// |
540 | 550 |
/// Class to make a snapshot of the digraph and restore it later. |
541 | 551 |
/// |
542 | 552 |
/// The newly added nodes and arcs can be removed using the |
543 | 553 |
/// restore() function. |
544 | 554 |
/// |
545 | 555 |
/// \note After a state is restored, you cannot restore a later state, |
546 | 556 |
/// i.e. you cannot add the removed nodes and arcs again using |
547 | 557 |
/// another Snapshot instance. |
548 | 558 |
/// |
549 | 559 |
/// \warning Node and arc deletions and other modifications (e.g. |
550 | 560 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
551 | 561 |
/// restored. These events invalidate the snapshot. |
552 | 562 |
/// However the arcs and nodes that were added to the digraph after |
553 | 563 |
/// making the current snapshot can be removed without invalidating it. |
554 | 564 |
class Snapshot { |
555 | 565 |
protected: |
556 | 566 |
|
557 | 567 |
typedef Parent::NodeNotifier NodeNotifier; |
558 | 568 |
|
559 | 569 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
560 | 570 |
public: |
561 | 571 |
|
562 | 572 |
NodeObserverProxy(Snapshot& _snapshot) |
563 | 573 |
: snapshot(_snapshot) {} |
564 | 574 |
|
565 | 575 |
using NodeNotifier::ObserverBase::attach; |
566 | 576 |
using NodeNotifier::ObserverBase::detach; |
567 | 577 |
using NodeNotifier::ObserverBase::attached; |
568 | 578 |
|
569 | 579 |
protected: |
570 | 580 |
|
571 | 581 |
virtual void add(const Node& node) { |
572 | 582 |
snapshot.addNode(node); |
573 | 583 |
} |
574 | 584 |
virtual void add(const std::vector<Node>& nodes) { |
575 | 585 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
576 | 586 |
snapshot.addNode(nodes[i]); |
577 | 587 |
} |
578 | 588 |
} |
579 | 589 |
virtual void erase(const Node& node) { |
580 | 590 |
snapshot.eraseNode(node); |
581 | 591 |
} |
582 | 592 |
virtual void erase(const std::vector<Node>& nodes) { |
583 | 593 |
for (int i = 0; i < int(nodes.size()); ++i) { |
584 | 594 |
snapshot.eraseNode(nodes[i]); |
585 | 595 |
} |
586 | 596 |
} |
587 | 597 |
virtual void build() { |
588 | 598 |
Node node; |
589 | 599 |
std::vector<Node> nodes; |
590 | 600 |
for (notifier()->first(node); node != INVALID; |
591 | 601 |
notifier()->next(node)) { |
592 | 602 |
nodes.push_back(node); |
593 | 603 |
} |
594 | 604 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
595 | 605 |
snapshot.addNode(nodes[i]); |
596 | 606 |
} |
597 | 607 |
} |
598 | 608 |
virtual void clear() { |
599 | 609 |
Node node; |
600 | 610 |
for (notifier()->first(node); node != INVALID; |
601 | 611 |
notifier()->next(node)) { |
602 | 612 |
snapshot.eraseNode(node); |
603 | 613 |
} |
604 | 614 |
} |
605 | 615 |
|
606 | 616 |
Snapshot& snapshot; |
607 | 617 |
}; |
608 | 618 |
|
609 | 619 |
class ArcObserverProxy : public ArcNotifier::ObserverBase { |
610 | 620 |
public: |
611 | 621 |
|
612 | 622 |
ArcObserverProxy(Snapshot& _snapshot) |
613 | 623 |
: snapshot(_snapshot) {} |
614 | 624 |
|
615 | 625 |
using ArcNotifier::ObserverBase::attach; |
616 | 626 |
using ArcNotifier::ObserverBase::detach; |
617 | 627 |
using ArcNotifier::ObserverBase::attached; |
618 | 628 |
|
619 | 629 |
protected: |
620 | 630 |
|
621 | 631 |
virtual void add(const Arc& arc) { |
622 | 632 |
snapshot.addArc(arc); |
623 | 633 |
} |
624 | 634 |
virtual void add(const std::vector<Arc>& arcs) { |
625 | 635 |
for (int i = arcs.size() - 1; i >= 0; ++i) { |
626 | 636 |
snapshot.addArc(arcs[i]); |
627 | 637 |
} |
628 | 638 |
} |
629 | 639 |
virtual void erase(const Arc& arc) { |
630 | 640 |
snapshot.eraseArc(arc); |
631 | 641 |
} |
632 | 642 |
virtual void erase(const std::vector<Arc>& arcs) { |
633 | 643 |
for (int i = 0; i < int(arcs.size()); ++i) { |
634 | 644 |
snapshot.eraseArc(arcs[i]); |
635 | 645 |
} |
636 | 646 |
} |
637 | 647 |
virtual void build() { |
638 | 648 |
Arc arc; |
639 | 649 |
std::vector<Arc> arcs; |
640 | 650 |
for (notifier()->first(arc); arc != INVALID; |
641 | 651 |
notifier()->next(arc)) { |
642 | 652 |
arcs.push_back(arc); |
643 | 653 |
} |
644 | 654 |
for (int i = arcs.size() - 1; i >= 0; --i) { |
645 | 655 |
snapshot.addArc(arcs[i]); |
646 | 656 |
} |
647 | 657 |
} |
648 | 658 |
virtual void clear() { |
649 | 659 |
Arc arc; |
650 | 660 |
for (notifier()->first(arc); arc != INVALID; |
651 | 661 |
notifier()->next(arc)) { |
652 | 662 |
snapshot.eraseArc(arc); |
653 | 663 |
} |
654 | 664 |
} |
655 | 665 |
|
656 | 666 |
Snapshot& snapshot; |
657 | 667 |
}; |
658 | 668 |
|
659 | 669 |
ListDigraph *digraph; |
660 | 670 |
|
661 | 671 |
NodeObserverProxy node_observer_proxy; |
662 | 672 |
ArcObserverProxy arc_observer_proxy; |
663 | 673 |
|
664 | 674 |
std::list<Node> added_nodes; |
665 | 675 |
std::list<Arc> added_arcs; |
666 | 676 |
|
667 | 677 |
|
668 | 678 |
void addNode(const Node& node) { |
669 | 679 |
added_nodes.push_front(node); |
670 | 680 |
} |
671 | 681 |
void eraseNode(const Node& node) { |
672 | 682 |
std::list<Node>::iterator it = |
673 | 683 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
674 | 684 |
if (it == added_nodes.end()) { |
675 | 685 |
clear(); |
676 | 686 |
arc_observer_proxy.detach(); |
677 | 687 |
throw NodeNotifier::ImmediateDetach(); |
678 | 688 |
} else { |
679 | 689 |
added_nodes.erase(it); |
680 | 690 |
} |
681 | 691 |
} |
682 | 692 |
|
683 | 693 |
void addArc(const Arc& arc) { |
684 | 694 |
added_arcs.push_front(arc); |
685 | 695 |
} |
686 | 696 |
void eraseArc(const Arc& arc) { |
687 | 697 |
std::list<Arc>::iterator it = |
688 | 698 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
689 | 699 |
if (it == added_arcs.end()) { |
690 | 700 |
clear(); |
691 | 701 |
node_observer_proxy.detach(); |
692 | 702 |
throw ArcNotifier::ImmediateDetach(); |
693 | 703 |
} else { |
694 | 704 |
added_arcs.erase(it); |
695 | 705 |
} |
696 | 706 |
} |
697 | 707 |
|
698 | 708 |
void attach(ListDigraph &_digraph) { |
699 | 709 |
digraph = &_digraph; |
700 | 710 |
node_observer_proxy.attach(digraph->notifier(Node())); |
701 | 711 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
702 | 712 |
} |
703 | 713 |
|
704 | 714 |
void detach() { |
705 | 715 |
node_observer_proxy.detach(); |
706 | 716 |
arc_observer_proxy.detach(); |
707 | 717 |
} |
708 | 718 |
|
709 | 719 |
bool attached() const { |
710 | 720 |
return node_observer_proxy.attached(); |
711 | 721 |
} |
712 | 722 |
|
713 | 723 |
void clear() { |
714 | 724 |
added_nodes.clear(); |
715 | 725 |
added_arcs.clear(); |
716 | 726 |
} |
717 | 727 |
|
718 | 728 |
public: |
719 | 729 |
|
720 | 730 |
/// \brief Default constructor. |
721 | 731 |
/// |
722 | 732 |
/// Default constructor. |
723 | 733 |
/// You have to call save() to actually make a snapshot. |
724 | 734 |
Snapshot() |
725 | 735 |
: digraph(0), node_observer_proxy(*this), |
726 | 736 |
arc_observer_proxy(*this) {} |
727 | 737 |
|
728 | 738 |
/// \brief Constructor that immediately makes a snapshot. |
729 | 739 |
/// |
730 | 740 |
/// This constructor immediately makes a snapshot of the given digraph. |
731 | 741 |
Snapshot(ListDigraph &gr) |
732 | 742 |
: node_observer_proxy(*this), |
733 | 743 |
arc_observer_proxy(*this) { |
734 | 744 |
attach(gr); |
735 | 745 |
} |
736 | 746 |
|
737 | 747 |
/// \brief Make a snapshot. |
738 | 748 |
/// |
739 | 749 |
/// This function makes a snapshot of the given digraph. |
740 | 750 |
/// It can be called more than once. In case of a repeated |
741 | 751 |
/// call, the previous snapshot gets lost. |
742 | 752 |
void save(ListDigraph &gr) { |
743 | 753 |
if (attached()) { |
744 | 754 |
detach(); |
745 | 755 |
clear(); |
746 | 756 |
} |
747 | 757 |
attach(gr); |
748 | 758 |
} |
749 | 759 |
|
750 | 760 |
/// \brief Undo the changes until the last snapshot. |
751 | 761 |
/// |
752 | 762 |
/// This function undos the changes until the last snapshot |
753 | 763 |
/// created by save() or Snapshot(ListDigraph&). |
754 | 764 |
/// |
755 | 765 |
/// \warning This method invalidates the snapshot, i.e. repeated |
756 | 766 |
/// restoring is not supported unless you call save() again. |
757 | 767 |
void restore() { |
758 | 768 |
detach(); |
759 | 769 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
760 | 770 |
it != added_arcs.end(); ++it) { |
761 | 771 |
digraph->erase(*it); |
762 | 772 |
} |
763 | 773 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
764 | 774 |
it != added_nodes.end(); ++it) { |
765 | 775 |
digraph->erase(*it); |
766 | 776 |
} |
767 | 777 |
clear(); |
768 | 778 |
} |
769 | 779 |
|
770 | 780 |
/// \brief Returns \c true if the snapshot is valid. |
771 | 781 |
/// |
772 | 782 |
/// This function returns \c true if the snapshot is valid. |
773 | 783 |
bool valid() const { |
774 | 784 |
return attached(); |
775 | 785 |
} |
776 | 786 |
}; |
777 | 787 |
|
778 | 788 |
}; |
779 | 789 |
|
780 | 790 |
///@} |
781 | 791 |
|
782 | 792 |
class ListGraphBase { |
783 | 793 |
|
784 | 794 |
protected: |
785 | 795 |
|
786 | 796 |
struct NodeT { |
787 | 797 |
int first_out; |
788 | 798 |
int prev, next; |
789 | 799 |
}; |
790 | 800 |
|
791 | 801 |
struct ArcT { |
792 | 802 |
int target; |
793 | 803 |
int prev_out, next_out; |
794 | 804 |
}; |
795 | 805 |
|
796 | 806 |
std::vector<NodeT> nodes; |
797 | 807 |
|
798 | 808 |
int first_node; |
799 | 809 |
|
800 | 810 |
int first_free_node; |
801 | 811 |
|
802 | 812 |
std::vector<ArcT> arcs; |
803 | 813 |
|
804 | 814 |
int first_free_arc; |
805 | 815 |
|
806 | 816 |
public: |
807 | 817 |
|
808 | 818 |
typedef ListGraphBase Graph; |
809 | 819 |
|
810 | 820 |
class Node { |
811 | 821 |
friend class ListGraphBase; |
812 | 822 |
protected: |
813 | 823 |
|
814 | 824 |
int id; |
815 | 825 |
explicit Node(int pid) { id = pid;} |
816 | 826 |
|
817 | 827 |
public: |
818 | 828 |
Node() {} |
819 | 829 |
Node (Invalid) { id = -1; } |
820 | 830 |
bool operator==(const Node& node) const {return id == node.id;} |
821 | 831 |
bool operator!=(const Node& node) const {return id != node.id;} |
822 | 832 |
bool operator<(const Node& node) const {return id < node.id;} |
823 | 833 |
}; |
824 | 834 |
|
825 | 835 |
class Edge { |
826 | 836 |
friend class ListGraphBase; |
827 | 837 |
protected: |
828 | 838 |
|
829 | 839 |
int id; |
830 | 840 |
explicit Edge(int pid) { id = pid;} |
831 | 841 |
|
832 | 842 |
public: |
833 | 843 |
Edge() {} |
834 | 844 |
Edge (Invalid) { id = -1; } |
835 | 845 |
bool operator==(const Edge& edge) const {return id == edge.id;} |
836 | 846 |
bool operator!=(const Edge& edge) const {return id != edge.id;} |
837 | 847 |
bool operator<(const Edge& edge) const {return id < edge.id;} |
838 | 848 |
}; |
839 | 849 |
|
840 | 850 |
class Arc { |
841 | 851 |
friend class ListGraphBase; |
842 | 852 |
protected: |
843 | 853 |
|
844 | 854 |
int id; |
845 | 855 |
explicit Arc(int pid) { id = pid;} |
846 | 856 |
|
847 | 857 |
public: |
848 | 858 |
operator Edge() const { |
849 | 859 |
return id != -1 ? edgeFromId(id / 2) : INVALID; |
850 | 860 |
} |
851 | 861 |
|
852 | 862 |
Arc() {} |
853 | 863 |
Arc (Invalid) { id = -1; } |
854 | 864 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
855 | 865 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
856 | 866 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
857 | 867 |
}; |
858 | 868 |
|
859 | 869 |
ListGraphBase() |
860 | 870 |
: nodes(), first_node(-1), |
861 | 871 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
862 | 872 |
|
863 | 873 |
|
864 | 874 |
int maxNodeId() const { return nodes.size()-1; } |
865 | 875 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
866 | 876 |
int maxArcId() const { return arcs.size()-1; } |
867 | 877 |
|
868 | 878 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); } |
869 | 879 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
870 | 880 |
|
871 | 881 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); } |
872 | 882 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); } |
873 | 883 |
|
874 | 884 |
static bool direction(Arc e) { |
875 | 885 |
return (e.id & 1) == 1; |
876 | 886 |
} |
877 | 887 |
|
878 | 888 |
static Arc direct(Edge e, bool d) { |
879 | 889 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
880 | 890 |
} |
881 | 891 |
|
882 | 892 |
void first(Node& node) const { |
883 | 893 |
node.id = first_node; |
884 | 894 |
} |
885 | 895 |
|
886 | 896 |
void next(Node& node) const { |
887 | 897 |
node.id = nodes[node.id].next; |
888 | 898 |
} |
889 | 899 |
|
890 | 900 |
void first(Arc& e) const { |
891 | 901 |
int n = first_node; |
892 | 902 |
while (n != -1 && nodes[n].first_out == -1) { |
893 | 903 |
n = nodes[n].next; |
894 | 904 |
} |
895 | 905 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
896 | 906 |
} |
897 | 907 |
|
898 | 908 |
void next(Arc& e) const { |
899 | 909 |
if (arcs[e.id].next_out != -1) { |
900 | 910 |
e.id = arcs[e.id].next_out; |
901 | 911 |
} else { |
902 | 912 |
int n = nodes[arcs[e.id ^ 1].target].next; |
903 | 913 |
while(n != -1 && nodes[n].first_out == -1) { |
904 | 914 |
n = nodes[n].next; |
905 | 915 |
} |
906 | 916 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
907 | 917 |
} |
908 | 918 |
} |
909 | 919 |
|
910 | 920 |
void first(Edge& e) const { |
911 | 921 |
int n = first_node; |
912 | 922 |
while (n != -1) { |
913 | 923 |
e.id = nodes[n].first_out; |
914 | 924 |
while ((e.id & 1) != 1) { |
915 | 925 |
e.id = arcs[e.id].next_out; |
916 | 926 |
} |
917 | 927 |
if (e.id != -1) { |
918 | 928 |
e.id /= 2; |
919 | 929 |
return; |
920 | 930 |
} |
921 | 931 |
n = nodes[n].next; |
922 | 932 |
} |
923 | 933 |
e.id = -1; |
924 | 934 |
} |
925 | 935 |
|
926 | 936 |
void next(Edge& e) const { |
927 | 937 |
int n = arcs[e.id * 2].target; |
928 | 938 |
e.id = arcs[(e.id * 2) | 1].next_out; |
929 | 939 |
while ((e.id & 1) != 1) { |
930 | 940 |
e.id = arcs[e.id].next_out; |
931 | 941 |
} |
932 | 942 |
if (e.id != -1) { |
933 | 943 |
e.id /= 2; |
934 | 944 |
return; |
935 | 945 |
} |
936 | 946 |
n = nodes[n].next; |
937 | 947 |
while (n != -1) { |
938 | 948 |
e.id = nodes[n].first_out; |
939 | 949 |
while ((e.id & 1) != 1) { |
940 | 950 |
e.id = arcs[e.id].next_out; |
941 | 951 |
} |
942 | 952 |
if (e.id != -1) { |
943 | 953 |
e.id /= 2; |
944 | 954 |
return; |
945 | 955 |
} |
946 | 956 |
n = nodes[n].next; |
947 | 957 |
} |
948 | 958 |
e.id = -1; |
949 | 959 |
} |
950 | 960 |
|
951 | 961 |
void firstOut(Arc &e, const Node& v) const { |
952 | 962 |
e.id = nodes[v.id].first_out; |
953 | 963 |
} |
954 | 964 |
void nextOut(Arc &e) const { |
955 | 965 |
e.id = arcs[e.id].next_out; |
956 | 966 |
} |
957 | 967 |
|
958 | 968 |
void firstIn(Arc &e, const Node& v) const { |
959 | 969 |
e.id = ((nodes[v.id].first_out) ^ 1); |
960 | 970 |
if (e.id == -2) e.id = -1; |
961 | 971 |
} |
962 | 972 |
void nextIn(Arc &e) const { |
963 | 973 |
e.id = ((arcs[e.id ^ 1].next_out) ^ 1); |
964 | 974 |
if (e.id == -2) e.id = -1; |
965 | 975 |
} |
966 | 976 |
|
967 | 977 |
void firstInc(Edge &e, bool& d, const Node& v) const { |
968 | 978 |
int a = nodes[v.id].first_out; |
969 | 979 |
if (a != -1 ) { |
970 | 980 |
e.id = a / 2; |
971 | 981 |
d = ((a & 1) == 1); |
972 | 982 |
} else { |
973 | 983 |
e.id = -1; |
974 | 984 |
d = true; |
975 | 985 |
} |
976 | 986 |
} |
977 | 987 |
void nextInc(Edge &e, bool& d) const { |
978 | 988 |
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); |
979 | 989 |
if (a != -1 ) { |
980 | 990 |
e.id = a / 2; |
981 | 991 |
d = ((a & 1) == 1); |
982 | 992 |
} else { |
983 | 993 |
e.id = -1; |
984 | 994 |
d = true; |
985 | 995 |
} |
986 | 996 |
} |
987 | 997 |
|
988 | 998 |
static int id(Node v) { return v.id; } |
989 | 999 |
static int id(Arc e) { return e.id; } |
990 | 1000 |
static int id(Edge e) { return e.id; } |
991 | 1001 |
|
992 | 1002 |
static Node nodeFromId(int id) { return Node(id);} |
993 | 1003 |
static Arc arcFromId(int id) { return Arc(id);} |
994 | 1004 |
static Edge edgeFromId(int id) { return Edge(id);} |
995 | 1005 |
|
996 | 1006 |
bool valid(Node n) const { |
997 | 1007 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
998 | 1008 |
nodes[n.id].prev != -2; |
999 | 1009 |
} |
1000 | 1010 |
|
1001 | 1011 |
bool valid(Arc a) const { |
1002 | 1012 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
1003 | 1013 |
arcs[a.id].prev_out != -2; |
1004 | 1014 |
} |
1005 | 1015 |
|
1006 | 1016 |
bool valid(Edge e) const { |
1007 | 1017 |
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) && |
1008 | 1018 |
arcs[2 * e.id].prev_out != -2; |
1009 | 1019 |
} |
1010 | 1020 |
|
1011 | 1021 |
Node addNode() { |
1012 | 1022 |
int n; |
1013 | 1023 |
|
1014 | 1024 |
if(first_free_node==-1) { |
1015 | 1025 |
n = nodes.size(); |
1016 | 1026 |
nodes.push_back(NodeT()); |
1017 | 1027 |
} else { |
1018 | 1028 |
n = first_free_node; |
1019 | 1029 |
first_free_node = nodes[n].next; |
1020 | 1030 |
} |
1021 | 1031 |
|
1022 | 1032 |
nodes[n].next = first_node; |
1023 | 1033 |
if (first_node != -1) nodes[first_node].prev = n; |
1024 | 1034 |
first_node = n; |
1025 | 1035 |
nodes[n].prev = -1; |
1026 | 1036 |
|
1027 | 1037 |
nodes[n].first_out = -1; |
1028 | 1038 |
|
1029 | 1039 |
return Node(n); |
1030 | 1040 |
} |
1031 | 1041 |
|
1032 | 1042 |
Edge addEdge(Node u, Node v) { |
1033 | 1043 |
int n; |
1034 | 1044 |
|
1035 | 1045 |
if (first_free_arc == -1) { |
1036 | 1046 |
n = arcs.size(); |
1037 | 1047 |
arcs.push_back(ArcT()); |
1038 | 1048 |
arcs.push_back(ArcT()); |
1039 | 1049 |
} else { |
1040 | 1050 |
n = first_free_arc; |
1041 | 1051 |
first_free_arc = arcs[n].next_out; |
1042 | 1052 |
} |
1043 | 1053 |
|
1044 | 1054 |
arcs[n].target = u.id; |
1045 | 1055 |
arcs[n | 1].target = v.id; |
1046 | 1056 |
|
1047 | 1057 |
arcs[n].next_out = nodes[v.id].first_out; |
1048 | 1058 |
if (nodes[v.id].first_out != -1) { |
1049 | 1059 |
arcs[nodes[v.id].first_out].prev_out = n; |
1050 | 1060 |
} |
1051 | 1061 |
arcs[n].prev_out = -1; |
1052 | 1062 |
nodes[v.id].first_out = n; |
1053 | 1063 |
|
1054 | 1064 |
arcs[n | 1].next_out = nodes[u.id].first_out; |
1055 | 1065 |
if (nodes[u.id].first_out != -1) { |
1056 | 1066 |
arcs[nodes[u.id].first_out].prev_out = (n | 1); |
1057 | 1067 |
} |
1058 | 1068 |
arcs[n | 1].prev_out = -1; |
1059 | 1069 |
nodes[u.id].first_out = (n | 1); |
1060 | 1070 |
|
1061 | 1071 |
return Edge(n / 2); |
1062 | 1072 |
} |
1063 | 1073 |
|
1064 | 1074 |
void erase(const Node& node) { |
1065 | 1075 |
int n = node.id; |
1066 | 1076 |
|
1067 | 1077 |
if(nodes[n].next != -1) { |
1068 | 1078 |
nodes[nodes[n].next].prev = nodes[n].prev; |
1069 | 1079 |
} |
1070 | 1080 |
|
1071 | 1081 |
if(nodes[n].prev != -1) { |
1072 | 1082 |
nodes[nodes[n].prev].next = nodes[n].next; |
1073 | 1083 |
} else { |
1074 | 1084 |
first_node = nodes[n].next; |
1075 | 1085 |
} |
1076 | 1086 |
|
1077 | 1087 |
nodes[n].next = first_free_node; |
1078 | 1088 |
first_free_node = n; |
1079 | 1089 |
nodes[n].prev = -2; |
1080 | 1090 |
} |
1081 | 1091 |
|
1082 | 1092 |
void erase(const Edge& edge) { |
1083 | 1093 |
int n = edge.id * 2; |
1084 | 1094 |
|
1085 | 1095 |
if (arcs[n].next_out != -1) { |
1086 | 1096 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
1087 | 1097 |
} |
1088 | 1098 |
|
1089 | 1099 |
if (arcs[n].prev_out != -1) { |
1090 | 1100 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
1091 | 1101 |
} else { |
1092 | 1102 |
nodes[arcs[n | 1].target].first_out = arcs[n].next_out; |
1093 | 1103 |
} |
1094 | 1104 |
|
1095 | 1105 |
if (arcs[n | 1].next_out != -1) { |
1096 | 1106 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
1097 | 1107 |
} |
1098 | 1108 |
|
1099 | 1109 |
if (arcs[n | 1].prev_out != -1) { |
1100 | 1110 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
1101 | 1111 |
} else { |
1102 | 1112 |
nodes[arcs[n].target].first_out = arcs[n | 1].next_out; |
1103 | 1113 |
} |
1104 | 1114 |
|
1105 | 1115 |
arcs[n].next_out = first_free_arc; |
1106 | 1116 |
first_free_arc = n; |
1107 | 1117 |
arcs[n].prev_out = -2; |
1108 | 1118 |
arcs[n | 1].prev_out = -2; |
1109 | 1119 |
|
1110 | 1120 |
} |
1111 | 1121 |
|
1112 | 1122 |
void clear() { |
1113 | 1123 |
arcs.clear(); |
1114 | 1124 |
nodes.clear(); |
1115 | 1125 |
first_node = first_free_node = first_free_arc = -1; |
1116 | 1126 |
} |
1117 | 1127 |
|
1118 | 1128 |
protected: |
1119 | 1129 |
|
1120 | 1130 |
void changeV(Edge e, Node n) { |
1121 | 1131 |
if(arcs[2 * e.id].next_out != -1) { |
1122 | 1132 |
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; |
1123 | 1133 |
} |
1124 | 1134 |
if(arcs[2 * e.id].prev_out != -1) { |
1125 | 1135 |
arcs[arcs[2 * e.id].prev_out].next_out = |
1126 | 1136 |
arcs[2 * e.id].next_out; |
1127 | 1137 |
} else { |
1128 | 1138 |
nodes[arcs[(2 * e.id) | 1].target].first_out = |
1129 | 1139 |
arcs[2 * e.id].next_out; |
1130 | 1140 |
} |
1131 | 1141 |
|
1132 | 1142 |
if (nodes[n.id].first_out != -1) { |
1133 | 1143 |
arcs[nodes[n.id].first_out].prev_out = 2 * e.id; |
1134 | 1144 |
} |
1135 | 1145 |
arcs[(2 * e.id) | 1].target = n.id; |
1136 | 1146 |
arcs[2 * e.id].prev_out = -1; |
1137 | 1147 |
arcs[2 * e.id].next_out = nodes[n.id].first_out; |
1138 | 1148 |
nodes[n.id].first_out = 2 * e.id; |
1139 | 1149 |
} |
1140 | 1150 |
|
1141 | 1151 |
void changeU(Edge e, Node n) { |
1142 | 1152 |
if(arcs[(2 * e.id) | 1].next_out != -1) { |
1143 | 1153 |
arcs[arcs[(2 * e.id) | 1].next_out].prev_out = |
1144 | 1154 |
arcs[(2 * e.id) | 1].prev_out; |
1145 | 1155 |
} |
1146 | 1156 |
if(arcs[(2 * e.id) | 1].prev_out != -1) { |
1147 | 1157 |
arcs[arcs[(2 * e.id) | 1].prev_out].next_out = |
1148 | 1158 |
arcs[(2 * e.id) | 1].next_out; |
1149 | 1159 |
} else { |
1150 | 1160 |
nodes[arcs[2 * e.id].target].first_out = |
1151 | 1161 |
arcs[(2 * e.id) | 1].next_out; |
1152 | 1162 |
} |
1153 | 1163 |
|
1154 | 1164 |
if (nodes[n.id].first_out != -1) { |
1155 | 1165 |
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); |
1156 | 1166 |
} |
1157 | 1167 |
arcs[2 * e.id].target = n.id; |
1158 | 1168 |
arcs[(2 * e.id) | 1].prev_out = -1; |
1159 | 1169 |
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; |
1160 | 1170 |
nodes[n.id].first_out = ((2 * e.id) | 1); |
1161 | 1171 |
} |
1162 | 1172 |
|
1163 | 1173 |
}; |
1164 | 1174 |
|
1165 | 1175 |
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase; |
1166 | 1176 |
|
1167 | 1177 |
|
1168 | 1178 |
/// \addtogroup graphs |
1169 | 1179 |
/// @{ |
1170 | 1180 |
|
1171 | 1181 |
///A general undirected graph structure. |
1172 | 1182 |
|
1173 | 1183 |
///\ref ListGraph is a versatile and fast undirected graph |
1174 | 1184 |
///implementation based on linked lists that are stored in |
1175 | 1185 |
///\c std::vector structures. |
1176 | 1186 |
/// |
1177 | 1187 |
///This type fully conforms to the \ref concepts::Graph "Graph concept" |
1178 | 1188 |
///and it also provides several useful additional functionalities. |
1179 | 1189 |
///Most of its member functions and nested classes are documented |
1180 | 1190 |
///only in the concept class. |
1181 | 1191 |
/// |
1192 |
///This class provides only linear time counting for nodes, edges and arcs. |
|
1193 |
/// |
|
1182 | 1194 |
///\sa concepts::Graph |
1183 | 1195 |
///\sa ListDigraph |
1184 | 1196 |
class ListGraph : public ExtendedListGraphBase { |
1185 | 1197 |
typedef ExtendedListGraphBase Parent; |
1186 | 1198 |
|
1187 | 1199 |
private: |
1188 | 1200 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
1189 | 1201 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {}; |
1190 | 1202 |
/// \brief Assignment of a graph to another one is \e not allowed. |
1191 | 1203 |
/// Use GraphCopy instead. |
1192 | 1204 |
void operator=(const ListGraph &) {} |
1193 | 1205 |
public: |
1194 | 1206 |
/// Constructor |
1195 | 1207 |
|
1196 | 1208 |
/// Constructor. |
1197 | 1209 |
/// |
1198 | 1210 |
ListGraph() {} |
1199 | 1211 |
|
1200 | 1212 |
typedef Parent::OutArcIt IncEdgeIt; |
1201 | 1213 |
|
1202 | 1214 |
/// \brief Add a new node to the graph. |
1203 | 1215 |
/// |
1204 | 1216 |
/// This function adds a new node to the graph. |
1205 | 1217 |
/// \return The new node. |
1206 | 1218 |
Node addNode() { return Parent::addNode(); } |
1207 | 1219 |
|
1208 | 1220 |
/// \brief Add a new edge to the graph. |
1209 | 1221 |
/// |
1210 | 1222 |
/// This function adds a new edge to the graph between nodes |
1211 | 1223 |
/// \c u and \c v with inherent orientation from node \c u to |
1212 | 1224 |
/// node \c v. |
1213 | 1225 |
/// \return The new edge. |
1214 | 1226 |
Edge addEdge(Node u, Node v) { |
1215 | 1227 |
return Parent::addEdge(u, v); |
1216 | 1228 |
} |
1217 | 1229 |
|
1218 | 1230 |
///\brief Erase a node from the graph. |
1219 | 1231 |
/// |
1220 |
/// This function erases the given node |
|
1232 |
/// This function erases the given node along with its incident arcs |
|
1233 |
/// from the graph. |
|
1234 |
/// |
|
1235 |
/// \note All iterators referencing the removed node or the incident |
|
1236 |
/// edges are invalidated, of course. |
|
1221 | 1237 |
void erase(Node n) { Parent::erase(n); } |
1222 | 1238 |
|
1223 | 1239 |
///\brief Erase an edge from the graph. |
1224 | 1240 |
/// |
1225 | 1241 |
/// This function erases the given edge from the graph. |
1242 |
/// |
|
1243 |
/// \note All iterators referencing the removed edge are invalidated, |
|
1244 |
/// of course. |
|
1226 | 1245 |
void erase(Edge e) { Parent::erase(e); } |
1227 | 1246 |
/// Node validity check |
1228 | 1247 |
|
1229 | 1248 |
/// This function gives back \c true if the given node is valid, |
1230 | 1249 |
/// i.e. it is a real node of the graph. |
1231 | 1250 |
/// |
1232 | 1251 |
/// \warning A removed node could become valid again if new nodes are |
1233 | 1252 |
/// added to the graph. |
1234 | 1253 |
bool valid(Node n) const { return Parent::valid(n); } |
1235 | 1254 |
/// Edge validity check |
1236 | 1255 |
|
1237 | 1256 |
/// This function gives back \c true if the given edge is valid, |
1238 | 1257 |
/// i.e. it is a real edge of the graph. |
1239 | 1258 |
/// |
1240 | 1259 |
/// \warning A removed edge could become valid again if new edges are |
1241 | 1260 |
/// added to the graph. |
1242 | 1261 |
bool valid(Edge e) const { return Parent::valid(e); } |
1243 | 1262 |
/// Arc validity check |
1244 | 1263 |
|
1245 | 1264 |
/// This function gives back \c true if the given arc is valid, |
1246 | 1265 |
/// i.e. it is a real arc of the graph. |
1247 | 1266 |
/// |
1248 | 1267 |
/// \warning A removed arc could become valid again if new edges are |
1249 | 1268 |
/// added to the graph. |
1250 | 1269 |
bool valid(Arc a) const { return Parent::valid(a); } |
1251 | 1270 |
|
1252 | 1271 |
/// \brief Change the first node of an edge. |
1253 | 1272 |
/// |
1254 | 1273 |
/// This function changes the first node of the given edge \c e to \c n. |
1255 | 1274 |
/// |
1256 | 1275 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
1257 | 1276 |
///changed edge are invalidated and all other iterators whose |
1258 | 1277 |
///base node is the changed node are also invalidated. |
1259 | 1278 |
/// |
1260 | 1279 |
///\warning This functionality cannot be used together with the |
1261 | 1280 |
///Snapshot feature. |
1262 | 1281 |
void changeU(Edge e, Node n) { |
1263 | 1282 |
Parent::changeU(e,n); |
1264 | 1283 |
} |
1265 | 1284 |
/// \brief Change the second node of an edge. |
1266 | 1285 |
/// |
1267 | 1286 |
/// This function changes the second node of the given edge \c e to \c n. |
1268 | 1287 |
/// |
1269 | 1288 |
///\note \c EdgeIt iterators referencing the changed edge remain |
1270 | 1289 |
///valid, however \c ArcIt iterators referencing the changed edge and |
1271 | 1290 |
///all other iterators whose base node is the changed node are also |
1272 | 1291 |
///invalidated. |
1273 | 1292 |
/// |
1274 | 1293 |
///\warning This functionality cannot be used together with the |
1275 | 1294 |
///Snapshot feature. |
1276 | 1295 |
void changeV(Edge e, Node n) { |
1277 | 1296 |
Parent::changeV(e,n); |
1278 | 1297 |
} |
1279 | 1298 |
|
1280 | 1299 |
/// \brief Contract two nodes. |
1281 | 1300 |
/// |
1282 | 1301 |
/// This function contracts the given two nodes. |
1283 | 1302 |
/// Node \c b is removed, but instead of deleting |
1284 | 1303 |
/// its incident edges, they are joined to node \c a. |
1285 | 1304 |
/// If the last parameter \c r is \c true (this is the default value), |
1286 | 1305 |
/// then the newly created loops are removed. |
1287 | 1306 |
/// |
1288 | 1307 |
/// \note The moved edges are joined to node \c a using changeU() |
1289 | 1308 |
/// or changeV(), thus all edge and arc iterators whose base node is |
1290 | 1309 |
/// \c b are invalidated. |
1291 | 1310 |
/// Moreover all iterators referencing node \c b or the removed |
1292 | 1311 |
/// loops are also invalidated. Other iterators remain valid. |
1293 | 1312 |
/// |
1294 | 1313 |
///\warning This functionality cannot be used together with the |
1295 | 1314 |
///Snapshot feature. |
1296 | 1315 |
void contract(Node a, Node b, bool r = true) { |
1297 | 1316 |
for(IncEdgeIt e(*this, b); e!=INVALID;) { |
1298 | 1317 |
IncEdgeIt f = e; ++f; |
1299 | 1318 |
if (r && runningNode(e) == a) { |
1300 | 1319 |
erase(e); |
1301 | 1320 |
} else if (u(e) == b) { |
1302 | 1321 |
changeU(e, a); |
1303 | 1322 |
} else { |
1304 | 1323 |
changeV(e, a); |
1305 | 1324 |
} |
1306 | 1325 |
e = f; |
1307 | 1326 |
} |
1308 | 1327 |
erase(b); |
1309 | 1328 |
} |
1310 | 1329 |
|
1311 | 1330 |
///Clear the graph. |
1312 | 1331 |
|
1313 | 1332 |
///This function erases all nodes and arcs from the graph. |
1314 | 1333 |
/// |
1334 |
///\note All iterators of the graph are invalidated, of course. |
|
1315 | 1335 |
void clear() { |
1316 | 1336 |
Parent::clear(); |
1317 | 1337 |
} |
1318 | 1338 |
|
1319 | 1339 |
/// Reserve memory for nodes. |
1320 | 1340 |
|
1321 | 1341 |
/// Using this function, it is possible to avoid superfluous memory |
1322 | 1342 |
/// allocation: if you know that the graph you want to build will |
1323 | 1343 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
1324 | 1344 |
/// then it is worth reserving space for this amount before starting |
1325 | 1345 |
/// to build the graph. |
1326 | 1346 |
/// \sa reserveEdge() |
1327 | 1347 |
void reserveNode(int n) { nodes.reserve(n); }; |
1328 | 1348 |
|
1329 | 1349 |
/// Reserve memory for edges. |
1330 | 1350 |
|
1331 | 1351 |
/// Using this function, it is possible to avoid superfluous memory |
1332 | 1352 |
/// allocation: if you know that the graph you want to build will |
1333 | 1353 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
1334 | 1354 |
/// then it is worth reserving space for this amount before starting |
1335 | 1355 |
/// to build the graph. |
1336 | 1356 |
/// \sa reserveNode() |
1337 | 1357 |
void reserveEdge(int m) { arcs.reserve(2 * m); }; |
1338 | 1358 |
|
1339 | 1359 |
/// \brief Class to make a snapshot of the graph and restore |
1340 | 1360 |
/// it later. |
1341 | 1361 |
/// |
1342 | 1362 |
/// Class to make a snapshot of the graph and restore it later. |
1343 | 1363 |
/// |
1344 | 1364 |
/// The newly added nodes and edges can be removed |
1345 | 1365 |
/// using the restore() function. |
1346 | 1366 |
/// |
1347 | 1367 |
/// \note After a state is restored, you cannot restore a later state, |
1348 | 1368 |
/// i.e. you cannot add the removed nodes and edges again using |
1349 | 1369 |
/// another Snapshot instance. |
1350 | 1370 |
/// |
1351 | 1371 |
/// \warning Node and edge deletions and other modifications |
1352 | 1372 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
1353 | 1373 |
/// cannot be restored. These events invalidate the snapshot. |
1354 | 1374 |
/// However the edges and nodes that were added to the graph after |
1355 | 1375 |
/// making the current snapshot can be removed without invalidating it. |
1356 | 1376 |
class Snapshot { |
1357 | 1377 |
protected: |
1358 | 1378 |
|
1359 | 1379 |
typedef Parent::NodeNotifier NodeNotifier; |
1360 | 1380 |
|
1361 | 1381 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
1362 | 1382 |
public: |
1363 | 1383 |
|
1364 | 1384 |
NodeObserverProxy(Snapshot& _snapshot) |
1365 | 1385 |
: snapshot(_snapshot) {} |
1366 | 1386 |
|
1367 | 1387 |
using NodeNotifier::ObserverBase::attach; |
1368 | 1388 |
using NodeNotifier::ObserverBase::detach; |
1369 | 1389 |
using NodeNotifier::ObserverBase::attached; |
1370 | 1390 |
|
1371 | 1391 |
protected: |
1372 | 1392 |
|
1373 | 1393 |
virtual void add(const Node& node) { |
1374 | 1394 |
snapshot.addNode(node); |
1375 | 1395 |
} |
1376 | 1396 |
virtual void add(const std::vector<Node>& nodes) { |
1377 | 1397 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
1378 | 1398 |
snapshot.addNode(nodes[i]); |
1379 | 1399 |
} |
1380 | 1400 |
} |
1381 | 1401 |
virtual void erase(const Node& node) { |
1382 | 1402 |
snapshot.eraseNode(node); |
1383 | 1403 |
} |
1384 | 1404 |
virtual void erase(const std::vector<Node>& nodes) { |
1385 | 1405 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1386 | 1406 |
snapshot.eraseNode(nodes[i]); |
1387 | 1407 |
} |
1388 | 1408 |
} |
1389 | 1409 |
virtual void build() { |
1390 | 1410 |
Node node; |
1391 | 1411 |
std::vector<Node> nodes; |
1392 | 1412 |
for (notifier()->first(node); node != INVALID; |
1393 | 1413 |
notifier()->next(node)) { |
1394 | 1414 |
nodes.push_back(node); |
1395 | 1415 |
} |
1396 | 1416 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
1397 | 1417 |
snapshot.addNode(nodes[i]); |
1398 | 1418 |
} |
1399 | 1419 |
} |
1400 | 1420 |
virtual void clear() { |
1401 | 1421 |
Node node; |
1402 | 1422 |
for (notifier()->first(node); node != INVALID; |
1403 | 1423 |
notifier()->next(node)) { |
1404 | 1424 |
snapshot.eraseNode(node); |
1405 | 1425 |
} |
1406 | 1426 |
} |
1407 | 1427 |
|
1408 | 1428 |
Snapshot& snapshot; |
1409 | 1429 |
}; |
1410 | 1430 |
|
1411 | 1431 |
class EdgeObserverProxy : public EdgeNotifier::ObserverBase { |
1412 | 1432 |
public: |
1413 | 1433 |
|
1414 | 1434 |
EdgeObserverProxy(Snapshot& _snapshot) |
1415 | 1435 |
: snapshot(_snapshot) {} |
1416 | 1436 |
|
1417 | 1437 |
using EdgeNotifier::ObserverBase::attach; |
1418 | 1438 |
using EdgeNotifier::ObserverBase::detach; |
1419 | 1439 |
using EdgeNotifier::ObserverBase::attached; |
1420 | 1440 |
|
1421 | 1441 |
protected: |
1422 | 1442 |
|
1423 | 1443 |
virtual void add(const Edge& edge) { |
1424 | 1444 |
snapshot.addEdge(edge); |
1425 | 1445 |
} |
1426 | 1446 |
virtual void add(const std::vector<Edge>& edges) { |
1427 | 1447 |
for (int i = edges.size() - 1; i >= 0; ++i) { |
1428 | 1448 |
snapshot.addEdge(edges[i]); |
1429 | 1449 |
} |
1430 | 1450 |
} |
1431 | 1451 |
virtual void erase(const Edge& edge) { |
1432 | 1452 |
snapshot.eraseEdge(edge); |
1433 | 1453 |
} |
1434 | 1454 |
virtual void erase(const std::vector<Edge>& edges) { |
1435 | 1455 |
for (int i = 0; i < int(edges.size()); ++i) { |
1436 | 1456 |
snapshot.eraseEdge(edges[i]); |
1437 | 1457 |
} |
1438 | 1458 |
} |
1439 | 1459 |
virtual void build() { |
1440 | 1460 |
Edge edge; |
1441 | 1461 |
std::vector<Edge> edges; |
1442 | 1462 |
for (notifier()->first(edge); edge != INVALID; |
1443 | 1463 |
notifier()->next(edge)) { |
1444 | 1464 |
edges.push_back(edge); |
1445 | 1465 |
} |
1446 | 1466 |
for (int i = edges.size() - 1; i >= 0; --i) { |
1447 | 1467 |
snapshot.addEdge(edges[i]); |
1448 | 1468 |
} |
1449 | 1469 |
} |
1450 | 1470 |
virtual void clear() { |
1451 | 1471 |
Edge edge; |
1452 | 1472 |
for (notifier()->first(edge); edge != INVALID; |
1453 | 1473 |
notifier()->next(edge)) { |
1454 | 1474 |
snapshot.eraseEdge(edge); |
1455 | 1475 |
} |
1456 | 1476 |
} |
1457 | 1477 |
|
1458 | 1478 |
Snapshot& snapshot; |
1459 | 1479 |
}; |
1460 | 1480 |
|
1461 | 1481 |
ListGraph *graph; |
1462 | 1482 |
|
1463 | 1483 |
NodeObserverProxy node_observer_proxy; |
1464 | 1484 |
EdgeObserverProxy edge_observer_proxy; |
1465 | 1485 |
|
1466 | 1486 |
std::list<Node> added_nodes; |
1467 | 1487 |
std::list<Edge> added_edges; |
1468 | 1488 |
|
1469 | 1489 |
|
1470 | 1490 |
void addNode(const Node& node) { |
1471 | 1491 |
added_nodes.push_front(node); |
1472 | 1492 |
} |
1473 | 1493 |
void eraseNode(const Node& node) { |
1474 | 1494 |
std::list<Node>::iterator it = |
1475 | 1495 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
1476 | 1496 |
if (it == added_nodes.end()) { |
1477 | 1497 |
clear(); |
1478 | 1498 |
edge_observer_proxy.detach(); |
1479 | 1499 |
throw NodeNotifier::ImmediateDetach(); |
1480 | 1500 |
} else { |
1481 | 1501 |
added_nodes.erase(it); |
1482 | 1502 |
} |
1483 | 1503 |
} |
1484 | 1504 |
|
1485 | 1505 |
void addEdge(const Edge& edge) { |
1486 | 1506 |
added_edges.push_front(edge); |
1487 | 1507 |
} |
1488 | 1508 |
void eraseEdge(const Edge& edge) { |
1489 | 1509 |
std::list<Edge>::iterator it = |
1490 | 1510 |
std::find(added_edges.begin(), added_edges.end(), edge); |
1491 | 1511 |
if (it == added_edges.end()) { |
1492 | 1512 |
clear(); |
1493 | 1513 |
node_observer_proxy.detach(); |
1494 | 1514 |
throw EdgeNotifier::ImmediateDetach(); |
1495 | 1515 |
} else { |
1496 | 1516 |
added_edges.erase(it); |
1497 | 1517 |
} |
1498 | 1518 |
} |
1499 | 1519 |
|
1500 | 1520 |
void attach(ListGraph &_graph) { |
1501 | 1521 |
graph = &_graph; |
1502 | 1522 |
node_observer_proxy.attach(graph->notifier(Node())); |
1503 | 1523 |
edge_observer_proxy.attach(graph->notifier(Edge())); |
1504 | 1524 |
} |
1505 | 1525 |
|
1506 | 1526 |
void detach() { |
1507 | 1527 |
node_observer_proxy.detach(); |
1508 | 1528 |
edge_observer_proxy.detach(); |
1509 | 1529 |
} |
1510 | 1530 |
|
1511 | 1531 |
bool attached() const { |
1512 | 1532 |
return node_observer_proxy.attached(); |
1513 | 1533 |
} |
1514 | 1534 |
|
1515 | 1535 |
void clear() { |
1516 | 1536 |
added_nodes.clear(); |
1517 | 1537 |
added_edges.clear(); |
1518 | 1538 |
} |
1519 | 1539 |
|
1520 | 1540 |
public: |
1521 | 1541 |
|
1522 | 1542 |
/// \brief Default constructor. |
1523 | 1543 |
/// |
1524 | 1544 |
/// Default constructor. |
1525 | 1545 |
/// You have to call save() to actually make a snapshot. |
1526 | 1546 |
Snapshot() |
1527 | 1547 |
: graph(0), node_observer_proxy(*this), |
1528 | 1548 |
edge_observer_proxy(*this) {} |
1529 | 1549 |
|
1530 | 1550 |
/// \brief Constructor that immediately makes a snapshot. |
1531 | 1551 |
/// |
1532 | 1552 |
/// This constructor immediately makes a snapshot of the given graph. |
1533 | 1553 |
Snapshot(ListGraph &gr) |
1534 | 1554 |
: node_observer_proxy(*this), |
1535 | 1555 |
edge_observer_proxy(*this) { |
1536 | 1556 |
attach(gr); |
1537 | 1557 |
} |
1538 | 1558 |
|
1539 | 1559 |
/// \brief Make a snapshot. |
1540 | 1560 |
/// |
1541 | 1561 |
/// This function makes a snapshot of the given graph. |
1542 | 1562 |
/// It can be called more than once. In case of a repeated |
1543 | 1563 |
/// call, the previous snapshot gets lost. |
1544 | 1564 |
void save(ListGraph &gr) { |
1545 | 1565 |
if (attached()) { |
1546 | 1566 |
detach(); |
1547 | 1567 |
clear(); |
1548 | 1568 |
} |
1549 | 1569 |
attach(gr); |
1550 | 1570 |
} |
1551 | 1571 |
|
1552 | 1572 |
/// \brief Undo the changes until the last snapshot. |
1553 | 1573 |
/// |
1554 | 1574 |
/// This function undos the changes until the last snapshot |
1555 | 1575 |
/// created by save() or Snapshot(ListGraph&). |
1556 | 1576 |
/// |
1557 | 1577 |
/// \warning This method invalidates the snapshot, i.e. repeated |
1558 | 1578 |
/// restoring is not supported unless you call save() again. |
1559 | 1579 |
void restore() { |
1560 | 1580 |
detach(); |
1561 | 1581 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
1562 | 1582 |
it != added_edges.end(); ++it) { |
1563 | 1583 |
graph->erase(*it); |
1564 | 1584 |
} |
1565 | 1585 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
1566 | 1586 |
it != added_nodes.end(); ++it) { |
1567 | 1587 |
graph->erase(*it); |
1568 | 1588 |
} |
1569 | 1589 |
clear(); |
1570 | 1590 |
} |
1571 | 1591 |
|
1572 | 1592 |
/// \brief Returns \c true if the snapshot is valid. |
1573 | 1593 |
/// |
1574 | 1594 |
/// This function returns \c true if the snapshot is valid. |
1575 | 1595 |
bool valid() const { |
1576 | 1596 |
return attached(); |
1577 | 1597 |
} |
1578 | 1598 |
}; |
1579 | 1599 |
}; |
1580 | 1600 |
|
1581 | 1601 |
/// @} |
1582 | 1602 |
} //namespace lemon |
1583 | 1603 |
|
1584 | 1604 |
|
1585 | 1605 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SMART_GRAPH_H |
20 | 20 |
#define LEMON_SMART_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief SmartDigraph and SmartGraph classes. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/bits/graph_extender.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
class SmartDigraph; |
35 | 35 |
|
36 | 36 |
class SmartDigraphBase { |
37 | 37 |
protected: |
38 | 38 |
|
39 | 39 |
struct NodeT |
40 | 40 |
{ |
41 | 41 |
int first_in, first_out; |
42 | 42 |
NodeT() {} |
43 | 43 |
}; |
44 | 44 |
struct ArcT |
45 | 45 |
{ |
46 | 46 |
int target, source, next_in, next_out; |
47 | 47 |
ArcT() {} |
48 | 48 |
}; |
49 | 49 |
|
50 | 50 |
std::vector<NodeT> nodes; |
51 | 51 |
std::vector<ArcT> arcs; |
52 | 52 |
|
53 | 53 |
public: |
54 | 54 |
|
55 | 55 |
typedef SmartDigraphBase Digraph; |
56 | 56 |
|
57 | 57 |
class Node; |
58 | 58 |
class Arc; |
59 | 59 |
|
60 | 60 |
public: |
61 | 61 |
|
62 | 62 |
SmartDigraphBase() : nodes(), arcs() { } |
63 | 63 |
SmartDigraphBase(const SmartDigraphBase &_g) |
64 | 64 |
: nodes(_g.nodes), arcs(_g.arcs) { } |
65 | 65 |
|
66 | 66 |
typedef True NodeNumTag; |
67 | 67 |
typedef True ArcNumTag; |
68 | 68 |
|
69 | 69 |
int nodeNum() const { return nodes.size(); } |
70 | 70 |
int arcNum() const { return arcs.size(); } |
71 | 71 |
|
72 | 72 |
int maxNodeId() const { return nodes.size()-1; } |
73 | 73 |
int maxArcId() const { return arcs.size()-1; } |
74 | 74 |
|
75 | 75 |
Node addNode() { |
76 | 76 |
int n = nodes.size(); |
77 | 77 |
nodes.push_back(NodeT()); |
78 | 78 |
nodes[n].first_in = -1; |
79 | 79 |
nodes[n].first_out = -1; |
80 | 80 |
return Node(n); |
81 | 81 |
} |
82 | 82 |
|
83 | 83 |
Arc addArc(Node u, Node v) { |
84 | 84 |
int n = arcs.size(); |
85 | 85 |
arcs.push_back(ArcT()); |
86 | 86 |
arcs[n].source = u._id; |
87 | 87 |
arcs[n].target = v._id; |
88 | 88 |
arcs[n].next_out = nodes[u._id].first_out; |
89 | 89 |
arcs[n].next_in = nodes[v._id].first_in; |
90 | 90 |
nodes[u._id].first_out = nodes[v._id].first_in = n; |
91 | 91 |
|
92 | 92 |
return Arc(n); |
93 | 93 |
} |
94 | 94 |
|
95 | 95 |
void clear() { |
96 | 96 |
arcs.clear(); |
97 | 97 |
nodes.clear(); |
98 | 98 |
} |
99 | 99 |
|
100 | 100 |
Node source(Arc a) const { return Node(arcs[a._id].source); } |
101 | 101 |
Node target(Arc a) const { return Node(arcs[a._id].target); } |
102 | 102 |
|
103 | 103 |
static int id(Node v) { return v._id; } |
104 | 104 |
static int id(Arc a) { return a._id; } |
105 | 105 |
|
106 | 106 |
static Node nodeFromId(int id) { return Node(id);} |
107 | 107 |
static Arc arcFromId(int id) { return Arc(id);} |
108 | 108 |
|
109 | 109 |
bool valid(Node n) const { |
110 | 110 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
111 | 111 |
} |
112 | 112 |
bool valid(Arc a) const { |
113 | 113 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
class Node { |
117 | 117 |
friend class SmartDigraphBase; |
118 | 118 |
friend class SmartDigraph; |
119 | 119 |
|
120 | 120 |
protected: |
121 | 121 |
int _id; |
122 | 122 |
explicit Node(int id) : _id(id) {} |
123 | 123 |
public: |
124 | 124 |
Node() {} |
125 | 125 |
Node (Invalid) : _id(-1) {} |
126 | 126 |
bool operator==(const Node i) const {return _id == i._id;} |
127 | 127 |
bool operator!=(const Node i) const {return _id != i._id;} |
128 | 128 |
bool operator<(const Node i) const {return _id < i._id;} |
129 | 129 |
}; |
130 | 130 |
|
131 | 131 |
|
132 | 132 |
class Arc { |
133 | 133 |
friend class SmartDigraphBase; |
134 | 134 |
friend class SmartDigraph; |
135 | 135 |
|
136 | 136 |
protected: |
137 | 137 |
int _id; |
138 | 138 |
explicit Arc(int id) : _id(id) {} |
139 | 139 |
public: |
140 | 140 |
Arc() { } |
141 | 141 |
Arc (Invalid) : _id(-1) {} |
142 | 142 |
bool operator==(const Arc i) const {return _id == i._id;} |
143 | 143 |
bool operator!=(const Arc i) const {return _id != i._id;} |
144 | 144 |
bool operator<(const Arc i) const {return _id < i._id;} |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
void first(Node& node) const { |
148 | 148 |
node._id = nodes.size() - 1; |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
static void next(Node& node) { |
152 | 152 |
--node._id; |
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
void first(Arc& arc) const { |
156 | 156 |
arc._id = arcs.size() - 1; |
157 | 157 |
} |
158 | 158 |
|
159 | 159 |
static void next(Arc& arc) { |
160 | 160 |
--arc._id; |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
void firstOut(Arc& arc, const Node& node) const { |
164 | 164 |
arc._id = nodes[node._id].first_out; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
void nextOut(Arc& arc) const { |
168 | 168 |
arc._id = arcs[arc._id].next_out; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
void firstIn(Arc& arc, const Node& node) const { |
172 | 172 |
arc._id = nodes[node._id].first_in; |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
void nextIn(Arc& arc) const { |
176 | 176 |
arc._id = arcs[arc._id].next_in; |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
}; |
180 | 180 |
|
181 | 181 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
182 | 182 |
|
183 | 183 |
///\ingroup graphs |
184 | 184 |
/// |
185 | 185 |
///\brief A smart directed graph class. |
186 | 186 |
/// |
187 | 187 |
///\ref SmartDigraph is a simple and fast digraph implementation. |
188 | 188 |
///It is also quite memory efficient but at the price |
189 | 189 |
///that it does not support node and arc deletion |
190 | 190 |
///(except for the Snapshot feature). |
191 | 191 |
/// |
192 | 192 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
193 | 193 |
///and it also provides some additional functionalities. |
194 | 194 |
///Most of its member functions and nested classes are documented |
195 | 195 |
///only in the concept class. |
196 | 196 |
/// |
197 |
///This class provides constant time counting for nodes and arcs. |
|
198 |
/// |
|
197 | 199 |
///\sa concepts::Digraph |
198 | 200 |
///\sa SmartGraph |
199 | 201 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
200 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
201 | 203 |
|
202 | 204 |
private: |
203 | 205 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
204 | 206 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {}; |
205 | 207 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
206 | 208 |
/// Use DigraphCopy instead. |
207 | 209 |
void operator=(const SmartDigraph &) {} |
208 | 210 |
|
209 | 211 |
public: |
210 | 212 |
|
211 | 213 |
/// Constructor |
212 | 214 |
|
213 | 215 |
/// Constructor. |
214 | 216 |
/// |
215 | 217 |
SmartDigraph() {}; |
216 | 218 |
|
217 | 219 |
///Add a new node to the digraph. |
218 | 220 |
|
219 | 221 |
///This function adds a new node to the digraph. |
220 | 222 |
///\return The new node. |
221 | 223 |
Node addNode() { return Parent::addNode(); } |
222 | 224 |
|
223 | 225 |
///Add a new arc to the digraph. |
224 | 226 |
|
225 | 227 |
///This function adds a new arc to the digraph with source node \c s |
226 | 228 |
///and target node \c t. |
227 | 229 |
///\return The new arc. |
228 | 230 |
Arc addArc(Node s, Node t) { |
229 | 231 |
return Parent::addArc(s, t); |
230 | 232 |
} |
231 | 233 |
|
232 | 234 |
/// \brief Node validity check |
233 | 235 |
/// |
234 | 236 |
/// This function gives back \c true if the given node is valid, |
235 | 237 |
/// i.e. it is a real node of the digraph. |
236 | 238 |
/// |
237 | 239 |
/// \warning A removed node (using Snapshot) could become valid again |
238 | 240 |
/// if new nodes are added to the digraph. |
239 | 241 |
bool valid(Node n) const { return Parent::valid(n); } |
240 | 242 |
|
241 | 243 |
/// \brief Arc validity check |
242 | 244 |
/// |
243 | 245 |
/// This function gives back \c true if the given arc is valid, |
244 | 246 |
/// i.e. it is a real arc of the digraph. |
245 | 247 |
/// |
246 | 248 |
/// \warning A removed arc (using Snapshot) could become valid again |
247 | 249 |
/// if new arcs are added to the graph. |
248 | 250 |
bool valid(Arc a) const { return Parent::valid(a); } |
249 | 251 |
|
250 | 252 |
///Split a node. |
251 | 253 |
|
252 | 254 |
///This function splits the given node. First, a new node is added |
253 | 255 |
///to the digraph, then the source of each outgoing arc of node \c n |
254 | 256 |
///is moved to this new node. |
255 | 257 |
///If the second parameter \c connect is \c true (this is the default |
256 | 258 |
///value), then a new arc from node \c n to the newly created node |
257 | 259 |
///is also added. |
258 | 260 |
///\return The newly created node. |
259 | 261 |
/// |
260 | 262 |
///\note All iterators remain valid. |
261 | 263 |
/// |
262 | 264 |
///\warning This functionality cannot be used together with the Snapshot |
263 | 265 |
///feature. |
264 | 266 |
Node split(Node n, bool connect = true) |
265 | 267 |
{ |
266 | 268 |
Node b = addNode(); |
267 | 269 |
nodes[b._id].first_out=nodes[n._id].first_out; |
268 | 270 |
nodes[n._id].first_out=-1; |
269 | 271 |
for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) { |
270 | 272 |
arcs[i].source=b._id; |
271 | 273 |
} |
272 | 274 |
if(connect) addArc(n,b); |
273 | 275 |
return b; |
274 | 276 |
} |
275 | 277 |
|
276 | 278 |
///Clear the digraph. |
277 | 279 |
|
278 | 280 |
///This function erases all nodes and arcs from the digraph. |
279 | 281 |
/// |
280 | 282 |
void clear() { |
281 | 283 |
Parent::clear(); |
282 | 284 |
} |
283 | 285 |
|
284 | 286 |
/// Reserve memory for nodes. |
285 | 287 |
|
286 | 288 |
/// Using this function, it is possible to avoid superfluous memory |
287 | 289 |
/// allocation: if you know that the digraph you want to build will |
288 | 290 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
289 | 291 |
/// then it is worth reserving space for this amount before starting |
290 | 292 |
/// to build the digraph. |
291 | 293 |
/// \sa reserveArc() |
292 | 294 |
void reserveNode(int n) { nodes.reserve(n); }; |
293 | 295 |
|
294 | 296 |
/// Reserve memory for arcs. |
295 | 297 |
|
296 | 298 |
/// Using this function, it is possible to avoid superfluous memory |
297 | 299 |
/// allocation: if you know that the digraph you want to build will |
298 | 300 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
299 | 301 |
/// then it is worth reserving space for this amount before starting |
300 | 302 |
/// to build the digraph. |
301 | 303 |
/// \sa reserveNode() |
302 | 304 |
void reserveArc(int m) { arcs.reserve(m); }; |
303 | 305 |
|
304 | 306 |
public: |
305 | 307 |
|
306 | 308 |
class Snapshot; |
307 | 309 |
|
308 | 310 |
protected: |
309 | 311 |
|
310 | 312 |
void restoreSnapshot(const Snapshot &s) |
311 | 313 |
{ |
312 | 314 |
while(s.arc_num<arcs.size()) { |
313 | 315 |
Arc arc = arcFromId(arcs.size()-1); |
314 | 316 |
Parent::notifier(Arc()).erase(arc); |
315 | 317 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
316 | 318 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
317 | 319 |
arcs.pop_back(); |
318 | 320 |
} |
319 | 321 |
while(s.node_num<nodes.size()) { |
320 | 322 |
Node node = nodeFromId(nodes.size()-1); |
321 | 323 |
Parent::notifier(Node()).erase(node); |
322 | 324 |
nodes.pop_back(); |
323 | 325 |
} |
324 | 326 |
} |
325 | 327 |
|
326 | 328 |
public: |
327 | 329 |
|
328 | 330 |
///Class to make a snapshot of the digraph and to restore it later. |
329 | 331 |
|
330 | 332 |
///Class to make a snapshot of the digraph and to restore it later. |
331 | 333 |
/// |
332 | 334 |
///The newly added nodes and arcs can be removed using the |
333 | 335 |
///restore() function. This is the only way for deleting nodes and/or |
334 | 336 |
///arcs from a SmartDigraph structure. |
335 | 337 |
/// |
336 | 338 |
///\note After a state is restored, you cannot restore a later state, |
337 | 339 |
///i.e. you cannot add the removed nodes and arcs again using |
338 | 340 |
///another Snapshot instance. |
339 | 341 |
/// |
340 | 342 |
///\warning Node splitting cannot be restored. |
341 | 343 |
///\warning The validity of the snapshot is not stored due to |
342 | 344 |
///performance reasons. If you do not use the snapshot correctly, |
343 | 345 |
///it can cause broken program, invalid or not restored state of |
344 | 346 |
///the digraph or no change. |
345 | 347 |
class Snapshot |
346 | 348 |
{ |
347 | 349 |
SmartDigraph *_graph; |
348 | 350 |
protected: |
349 | 351 |
friend class SmartDigraph; |
350 | 352 |
unsigned int node_num; |
351 | 353 |
unsigned int arc_num; |
352 | 354 |
public: |
353 | 355 |
///Default constructor. |
354 | 356 |
|
355 | 357 |
///Default constructor. |
356 | 358 |
///You have to call save() to actually make a snapshot. |
357 | 359 |
Snapshot() : _graph(0) {} |
358 | 360 |
///Constructor that immediately makes a snapshot |
359 | 361 |
|
360 | 362 |
///This constructor immediately makes a snapshot of the given digraph. |
361 | 363 |
/// |
362 | 364 |
Snapshot(SmartDigraph &gr) : _graph(&gr) { |
363 | 365 |
node_num=_graph->nodes.size(); |
364 | 366 |
arc_num=_graph->arcs.size(); |
365 | 367 |
} |
366 | 368 |
|
367 | 369 |
///Make a snapshot. |
368 | 370 |
|
369 | 371 |
///This function makes a snapshot of the given digraph. |
370 | 372 |
///It can be called more than once. In case of a repeated |
371 | 373 |
///call, the previous snapshot gets lost. |
372 | 374 |
void save(SmartDigraph &gr) { |
373 | 375 |
_graph=&gr; |
374 | 376 |
node_num=_graph->nodes.size(); |
375 | 377 |
arc_num=_graph->arcs.size(); |
376 | 378 |
} |
377 | 379 |
|
378 | 380 |
///Undo the changes until a snapshot. |
379 | 381 |
|
380 | 382 |
///This function undos the changes until the last snapshot |
381 | 383 |
///created by save() or Snapshot(SmartDigraph&). |
382 | 384 |
void restore() |
383 | 385 |
{ |
384 | 386 |
_graph->restoreSnapshot(*this); |
385 | 387 |
} |
386 | 388 |
}; |
387 | 389 |
}; |
388 | 390 |
|
389 | 391 |
|
390 | 392 |
class SmartGraphBase { |
391 | 393 |
|
392 | 394 |
protected: |
393 | 395 |
|
394 | 396 |
struct NodeT { |
395 | 397 |
int first_out; |
396 | 398 |
}; |
397 | 399 |
|
398 | 400 |
struct ArcT { |
399 | 401 |
int target; |
400 | 402 |
int next_out; |
401 | 403 |
}; |
402 | 404 |
|
403 | 405 |
std::vector<NodeT> nodes; |
404 | 406 |
std::vector<ArcT> arcs; |
405 | 407 |
|
406 | 408 |
int first_free_arc; |
407 | 409 |
|
408 | 410 |
public: |
409 | 411 |
|
410 | 412 |
typedef SmartGraphBase Graph; |
411 | 413 |
|
412 | 414 |
class Node; |
413 | 415 |
class Arc; |
414 | 416 |
class Edge; |
415 | 417 |
|
416 | 418 |
class Node { |
417 | 419 |
friend class SmartGraphBase; |
418 | 420 |
protected: |
419 | 421 |
|
420 | 422 |
int _id; |
421 | 423 |
explicit Node(int id) { _id = id;} |
422 | 424 |
|
423 | 425 |
public: |
424 | 426 |
Node() {} |
425 | 427 |
Node (Invalid) { _id = -1; } |
426 | 428 |
bool operator==(const Node& node) const {return _id == node._id;} |
427 | 429 |
bool operator!=(const Node& node) const {return _id != node._id;} |
428 | 430 |
bool operator<(const Node& node) const {return _id < node._id;} |
429 | 431 |
}; |
430 | 432 |
|
431 | 433 |
class Edge { |
432 | 434 |
friend class SmartGraphBase; |
433 | 435 |
protected: |
434 | 436 |
|
435 | 437 |
int _id; |
436 | 438 |
explicit Edge(int id) { _id = id;} |
437 | 439 |
|
438 | 440 |
public: |
439 | 441 |
Edge() {} |
440 | 442 |
Edge (Invalid) { _id = -1; } |
441 | 443 |
bool operator==(const Edge& arc) const {return _id == arc._id;} |
442 | 444 |
bool operator!=(const Edge& arc) const {return _id != arc._id;} |
443 | 445 |
bool operator<(const Edge& arc) const {return _id < arc._id;} |
444 | 446 |
}; |
445 | 447 |
|
446 | 448 |
class Arc { |
447 | 449 |
friend class SmartGraphBase; |
448 | 450 |
protected: |
449 | 451 |
|
450 | 452 |
int _id; |
451 | 453 |
explicit Arc(int id) { _id = id;} |
452 | 454 |
|
453 | 455 |
public: |
454 | 456 |
operator Edge() const { |
455 | 457 |
return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
456 | 458 |
} |
457 | 459 |
|
458 | 460 |
Arc() {} |
459 | 461 |
Arc (Invalid) { _id = -1; } |
460 | 462 |
bool operator==(const Arc& arc) const {return _id == arc._id;} |
461 | 463 |
bool operator!=(const Arc& arc) const {return _id != arc._id;} |
462 | 464 |
bool operator<(const Arc& arc) const {return _id < arc._id;} |
463 | 465 |
}; |
464 | 466 |
|
465 | 467 |
|
466 | 468 |
|
467 | 469 |
SmartGraphBase() |
468 | 470 |
: nodes(), arcs() {} |
469 | 471 |
|
470 | 472 |
typedef True NodeNumTag; |
471 | 473 |
typedef True EdgeNumTag; |
472 | 474 |
typedef True ArcNumTag; |
473 | 475 |
|
474 | 476 |
int nodeNum() const { return nodes.size(); } |
475 | 477 |
int edgeNum() const { return arcs.size() / 2; } |
476 | 478 |
int arcNum() const { return arcs.size(); } |
477 | 479 |
|
478 | 480 |
int maxNodeId() const { return nodes.size()-1; } |
479 | 481 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
480 | 482 |
int maxArcId() const { return arcs.size()-1; } |
481 | 483 |
|
482 | 484 |
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); } |
483 | 485 |
Node target(Arc e) const { return Node(arcs[e._id].target); } |
484 | 486 |
|
485 | 487 |
Node u(Edge e) const { return Node(arcs[2 * e._id].target); } |
486 | 488 |
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); } |
487 | 489 |
|
488 | 490 |
static bool direction(Arc e) { |
489 | 491 |
return (e._id & 1) == 1; |
490 | 492 |
} |
491 | 493 |
|
492 | 494 |
static Arc direct(Edge e, bool d) { |
493 | 495 |
return Arc(e._id * 2 + (d ? 1 : 0)); |
494 | 496 |
} |
495 | 497 |
|
496 | 498 |
void first(Node& node) const { |
497 | 499 |
node._id = nodes.size() - 1; |
498 | 500 |
} |
499 | 501 |
|
500 | 502 |
static void next(Node& node) { |
501 | 503 |
--node._id; |
502 | 504 |
} |
503 | 505 |
|
504 | 506 |
void first(Arc& arc) const { |
505 | 507 |
arc._id = arcs.size() - 1; |
506 | 508 |
} |
507 | 509 |
|
508 | 510 |
static void next(Arc& arc) { |
509 | 511 |
--arc._id; |
510 | 512 |
} |
511 | 513 |
|
512 | 514 |
void first(Edge& arc) const { |
513 | 515 |
arc._id = arcs.size() / 2 - 1; |
514 | 516 |
} |
515 | 517 |
|
516 | 518 |
static void next(Edge& arc) { |
517 | 519 |
--arc._id; |
518 | 520 |
} |
519 | 521 |
|
520 | 522 |
void firstOut(Arc &arc, const Node& v) const { |
521 | 523 |
arc._id = nodes[v._id].first_out; |
522 | 524 |
} |
523 | 525 |
void nextOut(Arc &arc) const { |
524 | 526 |
arc._id = arcs[arc._id].next_out; |
525 | 527 |
} |
526 | 528 |
|
527 | 529 |
void firstIn(Arc &arc, const Node& v) const { |
528 | 530 |
arc._id = ((nodes[v._id].first_out) ^ 1); |
529 | 531 |
if (arc._id == -2) arc._id = -1; |
530 | 532 |
} |
531 | 533 |
void nextIn(Arc &arc) const { |
532 | 534 |
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1); |
533 | 535 |
if (arc._id == -2) arc._id = -1; |
534 | 536 |
} |
535 | 537 |
|
536 | 538 |
void firstInc(Edge &arc, bool& d, const Node& v) const { |
537 | 539 |
int de = nodes[v._id].first_out; |
538 | 540 |
if (de != -1) { |
539 | 541 |
arc._id = de / 2; |
540 | 542 |
d = ((de & 1) == 1); |
541 | 543 |
} else { |
542 | 544 |
arc._id = -1; |
543 | 545 |
d = true; |
544 | 546 |
} |
545 | 547 |
} |
546 | 548 |
void nextInc(Edge &arc, bool& d) const { |
547 | 549 |
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out); |
548 | 550 |
if (de != -1) { |
549 | 551 |
arc._id = de / 2; |
550 | 552 |
d = ((de & 1) == 1); |
551 | 553 |
} else { |
552 | 554 |
arc._id = -1; |
553 | 555 |
d = true; |
554 | 556 |
} |
555 | 557 |
} |
556 | 558 |
|
557 | 559 |
static int id(Node v) { return v._id; } |
558 | 560 |
static int id(Arc e) { return e._id; } |
559 | 561 |
static int id(Edge e) { return e._id; } |
560 | 562 |
|
561 | 563 |
static Node nodeFromId(int id) { return Node(id);} |
562 | 564 |
static Arc arcFromId(int id) { return Arc(id);} |
563 | 565 |
static Edge edgeFromId(int id) { return Edge(id);} |
564 | 566 |
|
565 | 567 |
bool valid(Node n) const { |
566 | 568 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
567 | 569 |
} |
568 | 570 |
bool valid(Arc a) const { |
569 | 571 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
570 | 572 |
} |
571 | 573 |
bool valid(Edge e) const { |
572 | 574 |
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size()); |
573 | 575 |
} |
574 | 576 |
|
575 | 577 |
Node addNode() { |
576 | 578 |
int n = nodes.size(); |
577 | 579 |
nodes.push_back(NodeT()); |
578 | 580 |
nodes[n].first_out = -1; |
579 | 581 |
|
580 | 582 |
return Node(n); |
581 | 583 |
} |
582 | 584 |
|
583 | 585 |
Edge addEdge(Node u, Node v) { |
584 | 586 |
int n = arcs.size(); |
585 | 587 |
arcs.push_back(ArcT()); |
586 | 588 |
arcs.push_back(ArcT()); |
587 | 589 |
|
588 | 590 |
arcs[n].target = u._id; |
589 | 591 |
arcs[n | 1].target = v._id; |
590 | 592 |
|
591 | 593 |
arcs[n].next_out = nodes[v._id].first_out; |
592 | 594 |
nodes[v._id].first_out = n; |
593 | 595 |
|
594 | 596 |
arcs[n | 1].next_out = nodes[u._id].first_out; |
595 | 597 |
nodes[u._id].first_out = (n | 1); |
596 | 598 |
|
597 | 599 |
return Edge(n / 2); |
598 | 600 |
} |
599 | 601 |
|
600 | 602 |
void clear() { |
601 | 603 |
arcs.clear(); |
602 | 604 |
nodes.clear(); |
603 | 605 |
} |
604 | 606 |
|
605 | 607 |
}; |
606 | 608 |
|
607 | 609 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
608 | 610 |
|
609 | 611 |
/// \ingroup graphs |
610 | 612 |
/// |
611 | 613 |
/// \brief A smart undirected graph class. |
612 | 614 |
/// |
613 | 615 |
/// \ref SmartGraph is a simple and fast graph implementation. |
614 | 616 |
/// It is also quite memory efficient but at the price |
615 | 617 |
/// that it does not support node and edge deletion |
616 | 618 |
/// (except for the Snapshot feature). |
617 | 619 |
/// |
618 | 620 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept" |
619 | 621 |
/// and it also provides some additional functionalities. |
620 | 622 |
/// Most of its member functions and nested classes are documented |
621 | 623 |
/// only in the concept class. |
622 | 624 |
/// |
625 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
626 |
/// |
|
623 | 627 |
/// \sa concepts::Graph |
624 | 628 |
/// \sa SmartDigraph |
625 | 629 |
class SmartGraph : public ExtendedSmartGraphBase { |
626 | 630 |
typedef ExtendedSmartGraphBase Parent; |
627 | 631 |
|
628 | 632 |
private: |
629 | 633 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
630 | 634 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {}; |
631 | 635 |
/// \brief Assignment of a graph to another one is \e not allowed. |
632 | 636 |
/// Use GraphCopy instead. |
633 | 637 |
void operator=(const SmartGraph &) {} |
634 | 638 |
|
635 | 639 |
public: |
636 | 640 |
|
637 | 641 |
/// Constructor |
638 | 642 |
|
639 | 643 |
/// Constructor. |
640 | 644 |
/// |
641 | 645 |
SmartGraph() {} |
642 | 646 |
|
643 | 647 |
/// \brief Add a new node to the graph. |
644 | 648 |
/// |
645 | 649 |
/// This function adds a new node to the graph. |
646 | 650 |
/// \return The new node. |
647 | 651 |
Node addNode() { return Parent::addNode(); } |
648 | 652 |
|
649 | 653 |
/// \brief Add a new edge to the graph. |
650 | 654 |
/// |
651 | 655 |
/// This function adds a new edge to the graph between nodes |
652 | 656 |
/// \c u and \c v with inherent orientation from node \c u to |
653 | 657 |
/// node \c v. |
654 | 658 |
/// \return The new edge. |
655 | 659 |
Edge addEdge(Node u, Node v) { |
656 | 660 |
return Parent::addEdge(u, v); |
657 | 661 |
} |
658 | 662 |
|
659 | 663 |
/// \brief Node validity check |
660 | 664 |
/// |
661 | 665 |
/// This function gives back \c true if the given node is valid, |
662 | 666 |
/// i.e. it is a real node of the graph. |
663 | 667 |
/// |
664 | 668 |
/// \warning A removed node (using Snapshot) could become valid again |
665 | 669 |
/// if new nodes are added to the graph. |
666 | 670 |
bool valid(Node n) const { return Parent::valid(n); } |
667 | 671 |
|
668 | 672 |
/// \brief Edge validity check |
669 | 673 |
/// |
670 | 674 |
/// This function gives back \c true if the given edge is valid, |
671 | 675 |
/// i.e. it is a real edge of the graph. |
672 | 676 |
/// |
673 | 677 |
/// \warning A removed edge (using Snapshot) could become valid again |
674 | 678 |
/// if new edges are added to the graph. |
675 | 679 |
bool valid(Edge e) const { return Parent::valid(e); } |
676 | 680 |
|
677 | 681 |
/// \brief Arc validity check |
678 | 682 |
/// |
679 | 683 |
/// This function gives back \c true if the given arc is valid, |
680 | 684 |
/// i.e. it is a real arc of the graph. |
681 | 685 |
/// |
682 | 686 |
/// \warning A removed arc (using Snapshot) could become valid again |
683 | 687 |
/// if new edges are added to the graph. |
684 | 688 |
bool valid(Arc a) const { return Parent::valid(a); } |
685 | 689 |
|
686 | 690 |
///Clear the graph. |
687 | 691 |
|
688 | 692 |
///This function erases all nodes and arcs from the graph. |
689 | 693 |
/// |
690 | 694 |
void clear() { |
691 | 695 |
Parent::clear(); |
692 | 696 |
} |
693 | 697 |
|
694 | 698 |
/// Reserve memory for nodes. |
695 | 699 |
|
696 | 700 |
/// Using this function, it is possible to avoid superfluous memory |
697 | 701 |
/// allocation: if you know that the graph you want to build will |
698 | 702 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
699 | 703 |
/// then it is worth reserving space for this amount before starting |
700 | 704 |
/// to build the graph. |
701 | 705 |
/// \sa reserveEdge() |
702 | 706 |
void reserveNode(int n) { nodes.reserve(n); }; |
703 | 707 |
|
704 | 708 |
/// Reserve memory for edges. |
705 | 709 |
|
706 | 710 |
/// Using this function, it is possible to avoid superfluous memory |
707 | 711 |
/// allocation: if you know that the graph you want to build will |
708 | 712 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
709 | 713 |
/// then it is worth reserving space for this amount before starting |
710 | 714 |
/// to build the graph. |
711 | 715 |
/// \sa reserveNode() |
712 | 716 |
void reserveEdge(int m) { arcs.reserve(2 * m); }; |
713 | 717 |
|
714 | 718 |
public: |
715 | 719 |
|
716 | 720 |
class Snapshot; |
717 | 721 |
|
718 | 722 |
protected: |
719 | 723 |
|
720 | 724 |
void saveSnapshot(Snapshot &s) |
721 | 725 |
{ |
722 | 726 |
s._graph = this; |
723 | 727 |
s.node_num = nodes.size(); |
724 | 728 |
s.arc_num = arcs.size(); |
725 | 729 |
} |
726 | 730 |
|
727 | 731 |
void restoreSnapshot(const Snapshot &s) |
728 | 732 |
{ |
729 | 733 |
while(s.arc_num<arcs.size()) { |
730 | 734 |
int n=arcs.size()-1; |
731 | 735 |
Edge arc=edgeFromId(n/2); |
732 | 736 |
Parent::notifier(Edge()).erase(arc); |
733 | 737 |
std::vector<Arc> dir; |
734 | 738 |
dir.push_back(arcFromId(n)); |
735 | 739 |
dir.push_back(arcFromId(n-1)); |
736 | 740 |
Parent::notifier(Arc()).erase(dir); |
737 | 741 |
nodes[arcs[n-1].target].first_out=arcs[n].next_out; |
738 | 742 |
nodes[arcs[n].target].first_out=arcs[n-1].next_out; |
739 | 743 |
arcs.pop_back(); |
740 | 744 |
arcs.pop_back(); |
741 | 745 |
} |
742 | 746 |
while(s.node_num<nodes.size()) { |
743 | 747 |
int n=nodes.size()-1; |
744 | 748 |
Node node = nodeFromId(n); |
745 | 749 |
Parent::notifier(Node()).erase(node); |
746 | 750 |
nodes.pop_back(); |
747 | 751 |
} |
748 | 752 |
} |
749 | 753 |
|
750 | 754 |
public: |
751 | 755 |
|
752 | 756 |
///Class to make a snapshot of the graph and to restore it later. |
753 | 757 |
|
754 | 758 |
///Class to make a snapshot of the graph and to restore it later. |
755 | 759 |
/// |
756 | 760 |
///The newly added nodes and edges can be removed using the |
757 | 761 |
///restore() function. This is the only way for deleting nodes and/or |
758 | 762 |
///edges from a SmartGraph structure. |
759 | 763 |
/// |
760 | 764 |
///\note After a state is restored, you cannot restore a later state, |
761 | 765 |
///i.e. you cannot add the removed nodes and edges again using |
762 | 766 |
///another Snapshot instance. |
763 | 767 |
/// |
764 | 768 |
///\warning The validity of the snapshot is not stored due to |
765 | 769 |
///performance reasons. If you do not use the snapshot correctly, |
766 | 770 |
///it can cause broken program, invalid or not restored state of |
767 | 771 |
///the graph or no change. |
768 | 772 |
class Snapshot |
769 | 773 |
{ |
770 | 774 |
SmartGraph *_graph; |
771 | 775 |
protected: |
772 | 776 |
friend class SmartGraph; |
773 | 777 |
unsigned int node_num; |
774 | 778 |
unsigned int arc_num; |
775 | 779 |
public: |
776 | 780 |
///Default constructor. |
777 | 781 |
|
778 | 782 |
///Default constructor. |
779 | 783 |
///You have to call save() to actually make a snapshot. |
780 | 784 |
Snapshot() : _graph(0) {} |
781 | 785 |
///Constructor that immediately makes a snapshot |
782 | 786 |
|
783 | 787 |
/// This constructor immediately makes a snapshot of the given graph. |
784 | 788 |
/// |
785 | 789 |
Snapshot(SmartGraph &gr) { |
786 | 790 |
gr.saveSnapshot(*this); |
787 | 791 |
} |
788 | 792 |
|
789 | 793 |
///Make a snapshot. |
790 | 794 |
|
791 | 795 |
///This function makes a snapshot of the given graph. |
792 | 796 |
///It can be called more than once. In case of a repeated |
793 | 797 |
///call, the previous snapshot gets lost. |
794 | 798 |
void save(SmartGraph &gr) |
795 | 799 |
{ |
796 | 800 |
gr.saveSnapshot(*this); |
797 | 801 |
} |
798 | 802 |
|
799 | 803 |
///Undo the changes until the last snapshot. |
800 | 804 |
|
801 | 805 |
///This function undos the changes until the last snapshot |
802 | 806 |
///created by save() or Snapshot(SmartGraph&). |
803 | 807 |
void restore() |
804 | 808 |
{ |
805 | 809 |
_graph->restoreSnapshot(*this); |
806 | 810 |
} |
807 | 811 |
}; |
808 | 812 |
}; |
809 | 813 |
|
810 | 814 |
} //namespace lemon |
811 | 815 |
|
812 | 816 |
|
813 | 817 |
#endif //LEMON_SMART_GRAPH_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_STATIC_GRAPH_H |
20 | 20 |
#define LEMON_STATIC_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief StaticDigraph class. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/bits/graph_extender.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
class StaticDigraphBase { |
32 | 32 |
public: |
33 | 33 |
|
34 | 34 |
StaticDigraphBase() |
35 | 35 |
: built(false), node_num(0), arc_num(0), |
36 | 36 |
node_first_out(NULL), node_first_in(NULL), |
37 | 37 |
arc_source(NULL), arc_target(NULL), |
38 | 38 |
arc_next_in(NULL), arc_next_out(NULL) {} |
39 | 39 |
|
40 | 40 |
~StaticDigraphBase() { |
41 | 41 |
if (built) { |
42 | 42 |
delete[] node_first_out; |
43 | 43 |
delete[] node_first_in; |
44 | 44 |
delete[] arc_source; |
45 | 45 |
delete[] arc_target; |
46 | 46 |
delete[] arc_next_out; |
47 | 47 |
delete[] arc_next_in; |
48 | 48 |
} |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
class Node { |
52 | 52 |
friend class StaticDigraphBase; |
53 | 53 |
protected: |
54 | 54 |
int id; |
55 | 55 |
Node(int _id) : id(_id) {} |
56 | 56 |
public: |
57 | 57 |
Node() {} |
58 | 58 |
Node (Invalid) : id(-1) {} |
59 | 59 |
bool operator==(const Node& node) const { return id == node.id; } |
60 | 60 |
bool operator!=(const Node& node) const { return id != node.id; } |
61 | 61 |
bool operator<(const Node& node) const { return id < node.id; } |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
class Arc { |
65 | 65 |
friend class StaticDigraphBase; |
66 | 66 |
protected: |
67 | 67 |
int id; |
68 | 68 |
Arc(int _id) : id(_id) {} |
69 | 69 |
public: |
70 | 70 |
Arc() { } |
71 | 71 |
Arc (Invalid) : id(-1) {} |
72 | 72 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
73 | 73 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
74 | 74 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
Node source(const Arc& e) const { return Node(arc_source[e.id]); } |
78 | 78 |
Node target(const Arc& e) const { return Node(arc_target[e.id]); } |
79 | 79 |
|
80 | 80 |
void first(Node& n) const { n.id = node_num - 1; } |
81 | 81 |
static void next(Node& n) { --n.id; } |
82 | 82 |
|
83 | 83 |
void first(Arc& e) const { e.id = arc_num - 1; } |
84 | 84 |
static void next(Arc& e) { --e.id; } |
85 | 85 |
|
86 | 86 |
void firstOut(Arc& e, const Node& n) const { |
87 | 87 |
e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? |
88 | 88 |
node_first_out[n.id] : -1; |
89 | 89 |
} |
90 | 90 |
void nextOut(Arc& e) const { e.id = arc_next_out[e.id]; } |
91 | 91 |
|
92 | 92 |
void firstIn(Arc& e, const Node& n) const { e.id = node_first_in[n.id]; } |
93 | 93 |
void nextIn(Arc& e) const { e.id = arc_next_in[e.id]; } |
94 | 94 |
|
95 | 95 |
static int id(const Node& n) { return n.id; } |
96 | 96 |
static Node nodeFromId(int id) { return Node(id); } |
97 | 97 |
int maxNodeId() const { return node_num - 1; } |
98 | 98 |
|
99 | 99 |
static int id(const Arc& e) { return e.id; } |
100 | 100 |
static Arc arcFromId(int id) { return Arc(id); } |
101 | 101 |
int maxArcId() const { return arc_num - 1; } |
102 | 102 |
|
103 | 103 |
typedef True NodeNumTag; |
104 | 104 |
typedef True ArcNumTag; |
105 | 105 |
|
106 | 106 |
int nodeNum() const { return node_num; } |
107 | 107 |
int arcNum() const { return arc_num; } |
108 | 108 |
|
109 | 109 |
private: |
110 | 110 |
|
111 | 111 |
template <typename Digraph, typename NodeRefMap> |
112 | 112 |
class ArcLess { |
113 | 113 |
public: |
114 | 114 |
typedef typename Digraph::Arc Arc; |
115 | 115 |
|
116 | 116 |
ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) |
117 | 117 |
: digraph(_graph), nodeRef(_nodeRef) {} |
118 | 118 |
|
119 | 119 |
bool operator()(const Arc& left, const Arc& right) const { |
120 | 120 |
return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)]; |
121 | 121 |
} |
122 | 122 |
private: |
123 | 123 |
const Digraph& digraph; |
124 | 124 |
const NodeRefMap& nodeRef; |
125 | 125 |
}; |
126 | 126 |
|
127 | 127 |
public: |
128 | 128 |
|
129 | 129 |
typedef True BuildTag; |
130 | 130 |
|
131 | 131 |
void clear() { |
132 | 132 |
if (built) { |
133 | 133 |
delete[] node_first_out; |
134 | 134 |
delete[] node_first_in; |
135 | 135 |
delete[] arc_source; |
136 | 136 |
delete[] arc_target; |
137 | 137 |
delete[] arc_next_out; |
138 | 138 |
delete[] arc_next_in; |
139 | 139 |
} |
140 | 140 |
built = false; |
141 | 141 |
node_num = 0; |
142 | 142 |
arc_num = 0; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
146 | 146 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
147 | 147 |
typedef typename Digraph::Node GNode; |
148 | 148 |
typedef typename Digraph::Arc GArc; |
149 | 149 |
|
150 | 150 |
built = true; |
151 | 151 |
|
152 | 152 |
node_num = countNodes(digraph); |
153 | 153 |
arc_num = countArcs(digraph); |
154 | 154 |
|
155 | 155 |
node_first_out = new int[node_num + 1]; |
156 | 156 |
node_first_in = new int[node_num]; |
157 | 157 |
|
158 | 158 |
arc_source = new int[arc_num]; |
159 | 159 |
arc_target = new int[arc_num]; |
160 | 160 |
arc_next_out = new int[arc_num]; |
161 | 161 |
arc_next_in = new int[arc_num]; |
162 | 162 |
|
163 | 163 |
int node_index = 0; |
164 | 164 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
165 | 165 |
nodeRef[n] = Node(node_index); |
166 | 166 |
node_first_in[node_index] = -1; |
167 | 167 |
++node_index; |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
ArcLess<Digraph, NodeRefMap> arcLess(digraph, nodeRef); |
171 | 171 |
|
172 | 172 |
int arc_index = 0; |
173 | 173 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
174 | 174 |
int source = nodeRef[n].id; |
175 | 175 |
std::vector<GArc> arcs; |
176 | 176 |
for (typename Digraph::OutArcIt e(digraph, n); e != INVALID; ++e) { |
177 | 177 |
arcs.push_back(e); |
178 | 178 |
} |
179 | 179 |
if (!arcs.empty()) { |
180 | 180 |
node_first_out[source] = arc_index; |
181 | 181 |
std::sort(arcs.begin(), arcs.end(), arcLess); |
182 | 182 |
for (typename std::vector<GArc>::iterator it = arcs.begin(); |
183 | 183 |
it != arcs.end(); ++it) { |
184 | 184 |
int target = nodeRef[digraph.target(*it)].id; |
185 | 185 |
arcRef[*it] = Arc(arc_index); |
186 | 186 |
arc_source[arc_index] = source; |
187 | 187 |
arc_target[arc_index] = target; |
188 | 188 |
arc_next_in[arc_index] = node_first_in[target]; |
189 | 189 |
node_first_in[target] = arc_index; |
190 | 190 |
arc_next_out[arc_index] = arc_index + 1; |
191 | 191 |
++arc_index; |
192 | 192 |
} |
193 | 193 |
arc_next_out[arc_index - 1] = -1; |
194 | 194 |
} else { |
195 | 195 |
node_first_out[source] = arc_index; |
196 | 196 |
} |
197 | 197 |
} |
198 | 198 |
node_first_out[node_num] = arc_num; |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
template <typename ArcListIterator> |
202 | 202 |
void build(int n, ArcListIterator first, ArcListIterator last) { |
203 | 203 |
built = true; |
204 | 204 |
|
205 | 205 |
node_num = n; |
206 | 206 |
arc_num = std::distance(first, last); |
207 | 207 |
|
208 | 208 |
node_first_out = new int[node_num + 1]; |
209 | 209 |
node_first_in = new int[node_num]; |
210 | 210 |
|
211 | 211 |
arc_source = new int[arc_num]; |
212 | 212 |
arc_target = new int[arc_num]; |
213 | 213 |
arc_next_out = new int[arc_num]; |
214 | 214 |
arc_next_in = new int[arc_num]; |
215 | 215 |
|
216 | 216 |
for (int i = 0; i != node_num; ++i) { |
217 | 217 |
node_first_in[i] = -1; |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
int arc_index = 0; |
221 | 221 |
for (int i = 0; i != node_num; ++i) { |
222 | 222 |
node_first_out[i] = arc_index; |
223 | 223 |
for ( ; first != last && (*first).first == i; ++first) { |
224 | 224 |
int j = (*first).second; |
225 | 225 |
LEMON_ASSERT(j >= 0 && j < node_num, |
226 | 226 |
"Wrong arc list for StaticDigraph::build()"); |
227 | 227 |
arc_source[arc_index] = i; |
228 | 228 |
arc_target[arc_index] = j; |
229 | 229 |
arc_next_in[arc_index] = node_first_in[j]; |
230 | 230 |
node_first_in[j] = arc_index; |
231 | 231 |
arc_next_out[arc_index] = arc_index + 1; |
232 | 232 |
++arc_index; |
233 | 233 |
} |
234 | 234 |
if (arc_index > node_first_out[i]) |
235 | 235 |
arc_next_out[arc_index - 1] = -1; |
236 | 236 |
} |
237 | 237 |
LEMON_ASSERT(first == last, |
238 | 238 |
"Wrong arc list for StaticDigraph::build()"); |
239 | 239 |
node_first_out[node_num] = arc_num; |
240 | 240 |
} |
241 | 241 |
|
242 | 242 |
protected: |
243 | 243 |
|
244 | 244 |
void fastFirstOut(Arc& e, const Node& n) const { |
245 | 245 |
e.id = node_first_out[n.id]; |
246 | 246 |
} |
247 | 247 |
|
248 | 248 |
static void fastNextOut(Arc& e) { |
249 | 249 |
++e.id; |
250 | 250 |
} |
251 | 251 |
void fastLastOut(Arc& e, const Node& n) const { |
252 | 252 |
e.id = node_first_out[n.id + 1]; |
253 | 253 |
} |
254 | 254 |
|
255 | 255 |
protected: |
256 | 256 |
bool built; |
257 | 257 |
int node_num; |
258 | 258 |
int arc_num; |
259 | 259 |
int *node_first_out; |
260 | 260 |
int *node_first_in; |
261 | 261 |
int *arc_source; |
262 | 262 |
int *arc_target; |
263 | 263 |
int *arc_next_in; |
264 | 264 |
int *arc_next_out; |
265 | 265 |
}; |
266 | 266 |
|
267 | 267 |
typedef DigraphExtender<StaticDigraphBase> ExtendedStaticDigraphBase; |
268 | 268 |
|
269 | 269 |
|
270 | 270 |
/// \ingroup graphs |
271 | 271 |
/// |
272 | 272 |
/// \brief A static directed graph class. |
273 | 273 |
/// |
274 | 274 |
/// \ref StaticDigraph is a highly efficient digraph implementation, |
275 | 275 |
/// but it is fully static. |
276 | 276 |
/// It stores only two \c int values for each node and only four \c int |
277 | 277 |
/// values for each arc. Moreover it provides faster item iteration than |
278 | 278 |
/// \ref ListDigraph and \ref SmartDigraph, especially using \c OutArcIt |
279 | 279 |
/// iterators, since its arcs are stored in an appropriate order. |
280 | 280 |
/// However it only provides build() and clear() functions and does not |
281 | 281 |
/// support any other modification of the digraph. |
282 | 282 |
/// |
283 | 283 |
/// Since this digraph structure is completely static, its nodes and arcs |
284 | 284 |
/// can be indexed with integers from the ranges <tt>[0..nodeNum()-1]</tt> |
285 | 285 |
/// and <tt>[0..arcNum()-1]</tt>, respectively. |
286 | 286 |
/// The index of an item is the same as its ID, it can be obtained |
287 | 287 |
/// using the corresponding \ref index() or \ref concepts::Digraph::id() |
288 | 288 |
/// "id()" function. A node or arc with a certain index can be obtained |
289 | 289 |
/// using node() or arc(). |
290 | 290 |
/// |
291 | 291 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
292 | 292 |
/// Most of its member functions and nested classes are documented |
293 | 293 |
/// only in the concept class. |
294 | 294 |
/// |
295 |
/// This class provides constant time counting for nodes and arcs. |
|
296 |
/// |
|
295 | 297 |
/// \sa concepts::Digraph |
296 | 298 |
class StaticDigraph : public ExtendedStaticDigraphBase { |
297 | 299 |
public: |
298 | 300 |
|
299 | 301 |
typedef ExtendedStaticDigraphBase Parent; |
300 | 302 |
|
301 | 303 |
public: |
302 | 304 |
|
303 | 305 |
/// \brief Constructor |
304 | 306 |
/// |
305 | 307 |
/// Default constructor. |
306 | 308 |
StaticDigraph() : Parent() {} |
307 | 309 |
|
308 | 310 |
/// \brief The node with the given index. |
309 | 311 |
/// |
310 | 312 |
/// This function returns the node with the given index. |
311 | 313 |
/// \sa index() |
312 | 314 |
static Node node(int ix) { return Parent::nodeFromId(ix); } |
313 | 315 |
|
314 | 316 |
/// \brief The arc with the given index. |
315 | 317 |
/// |
316 | 318 |
/// This function returns the arc with the given index. |
317 | 319 |
/// \sa index() |
318 | 320 |
static Arc arc(int ix) { return Parent::arcFromId(ix); } |
319 | 321 |
|
320 | 322 |
/// \brief The index of the given node. |
321 | 323 |
/// |
322 | 324 |
/// This function returns the index of the the given node. |
323 | 325 |
/// \sa node() |
324 | 326 |
static int index(Node node) { return Parent::id(node); } |
325 | 327 |
|
326 | 328 |
/// \brief The index of the given arc. |
327 | 329 |
/// |
328 | 330 |
/// This function returns the index of the the given arc. |
329 | 331 |
/// \sa arc() |
330 | 332 |
static int index(Arc arc) { return Parent::id(arc); } |
331 | 333 |
|
332 | 334 |
/// \brief Number of nodes. |
333 | 335 |
/// |
334 | 336 |
/// This function returns the number of nodes. |
335 | 337 |
int nodeNum() const { return node_num; } |
336 | 338 |
|
337 | 339 |
/// \brief Number of arcs. |
338 | 340 |
/// |
339 | 341 |
/// This function returns the number of arcs. |
340 | 342 |
int arcNum() const { return arc_num; } |
341 | 343 |
|
342 | 344 |
/// \brief Build the digraph copying another digraph. |
343 | 345 |
/// |
344 | 346 |
/// This function builds the digraph copying another digraph of any |
345 | 347 |
/// kind. It can be called more than once, but in such case, the whole |
346 | 348 |
/// structure and all maps will be cleared and rebuilt. |
347 | 349 |
/// |
348 | 350 |
/// This method also makes possible to copy a digraph to a StaticDigraph |
349 | 351 |
/// structure using \ref DigraphCopy. |
350 | 352 |
/// |
351 | 353 |
/// \param digraph An existing digraph to be copied. |
352 | 354 |
/// \param nodeRef The node references will be copied into this map. |
353 | 355 |
/// Its key type must be \c Digraph::Node and its value type must be |
354 | 356 |
/// \c StaticDigraph::Node. |
355 | 357 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
356 | 358 |
/// concept. |
357 | 359 |
/// \param arcRef The arc references will be copied into this map. |
358 | 360 |
/// Its key type must be \c Digraph::Arc and its value type must be |
359 | 361 |
/// \c StaticDigraph::Arc. |
360 | 362 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
361 | 363 |
/// |
362 | 364 |
/// \note If you do not need the arc references, then you could use |
363 | 365 |
/// \ref NullMap for the last parameter. However the node references |
364 | 366 |
/// are required by the function itself, thus they must be readable |
365 | 367 |
/// from the map. |
366 | 368 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
367 | 369 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
368 | 370 |
if (built) Parent::clear(); |
369 | 371 |
Parent::build(digraph, nodeRef, arcRef); |
370 | 372 |
} |
371 | 373 |
|
372 | 374 |
/// \brief Build the digraph from an arc list. |
373 | 375 |
/// |
374 | 376 |
/// This function builds the digraph from the given arc list. |
375 | 377 |
/// It can be called more than once, but in such case, the whole |
376 | 378 |
/// structure and all maps will be cleared and rebuilt. |
377 | 379 |
/// |
378 | 380 |
/// The list of the arcs must be given in the range <tt>[begin, end)</tt> |
379 | 381 |
/// specified by STL compatible itartors whose \c value_type must be |
380 | 382 |
/// <tt>std::pair<int,int></tt>. |
381 | 383 |
/// Each arc must be specified by a pair of integer indices |
382 | 384 |
/// from the range <tt>[0..n-1]</tt>. <i>The pairs must be in a |
383 | 385 |
/// non-decreasing order with respect to their first values.</i> |
384 | 386 |
/// If the k-th pair in the list is <tt>(i,j)</tt>, then |
385 | 387 |
/// <tt>arc(k-1)</tt> will connect <tt>node(i)</tt> to <tt>node(j)</tt>. |
386 | 388 |
/// |
387 | 389 |
/// \param n The number of nodes. |
388 | 390 |
/// \param begin An iterator pointing to the beginning of the arc list. |
389 | 391 |
/// \param end An iterator pointing to the end of the arc list. |
390 | 392 |
/// |
391 | 393 |
/// For example, a simple digraph can be constructed like this. |
392 | 394 |
/// \code |
393 | 395 |
/// std::vector<std::pair<int,int> > arcs; |
394 | 396 |
/// arcs.push_back(std::make_pair(0,1)); |
395 | 397 |
/// arcs.push_back(std::make_pair(0,2)); |
396 | 398 |
/// arcs.push_back(std::make_pair(1,3)); |
397 | 399 |
/// arcs.push_back(std::make_pair(1,2)); |
398 | 400 |
/// arcs.push_back(std::make_pair(3,0)); |
399 | 401 |
/// StaticDigraph gr; |
400 | 402 |
/// gr.build(4, arcs.begin(), arcs.end()); |
401 | 403 |
/// \endcode |
402 | 404 |
template <typename ArcListIterator> |
403 | 405 |
void build(int n, ArcListIterator begin, ArcListIterator end) { |
404 | 406 |
if (built) Parent::clear(); |
405 | 407 |
StaticDigraphBase::build(n, begin, end); |
406 | 408 |
notifier(Node()).build(); |
407 | 409 |
notifier(Arc()).build(); |
408 | 410 |
} |
409 | 411 |
|
410 | 412 |
/// \brief Clear the digraph. |
411 | 413 |
/// |
412 | 414 |
/// This function erases all nodes and arcs from the digraph. |
413 | 415 |
void clear() { |
414 | 416 |
Parent::clear(); |
415 | 417 |
} |
416 | 418 |
|
417 | 419 |
protected: |
418 | 420 |
|
419 | 421 |
using Parent::fastFirstOut; |
420 | 422 |
using Parent::fastNextOut; |
421 | 423 |
using Parent::fastLastOut; |
422 | 424 |
|
423 | 425 |
public: |
424 | 426 |
|
425 | 427 |
class OutArcIt : public Arc { |
426 | 428 |
public: |
427 | 429 |
|
428 | 430 |
OutArcIt() { } |
429 | 431 |
|
430 | 432 |
OutArcIt(Invalid i) : Arc(i) { } |
431 | 433 |
|
432 | 434 |
OutArcIt(const StaticDigraph& digraph, const Node& node) { |
433 | 435 |
digraph.fastFirstOut(*this, node); |
434 | 436 |
digraph.fastLastOut(last, node); |
435 | 437 |
if (last == *this) *this = INVALID; |
436 | 438 |
} |
437 | 439 |
|
438 | 440 |
OutArcIt(const StaticDigraph& digraph, const Arc& arc) : Arc(arc) { |
439 | 441 |
if (arc != INVALID) { |
440 | 442 |
digraph.fastLastOut(last, digraph.source(arc)); |
441 | 443 |
} |
442 | 444 |
} |
443 | 445 |
|
444 | 446 |
OutArcIt& operator++() { |
445 | 447 |
StaticDigraph::fastNextOut(*this); |
446 | 448 |
if (last == *this) *this = INVALID; |
447 | 449 |
return *this; |
448 | 450 |
} |
449 | 451 |
|
450 | 452 |
private: |
451 | 453 |
Arc last; |
452 | 454 |
}; |
453 | 455 |
|
454 | 456 |
Node baseNode(const OutArcIt &arc) const { |
455 | 457 |
return Parent::source(static_cast<const Arc&>(arc)); |
456 | 458 |
} |
457 | 459 |
|
458 | 460 |
Node runningNode(const OutArcIt &arc) const { |
459 | 461 |
return Parent::target(static_cast<const Arc&>(arc)); |
460 | 462 |
} |
461 | 463 |
|
462 | 464 |
Node baseNode(const InArcIt &arc) const { |
463 | 465 |
return Parent::target(static_cast<const Arc&>(arc)); |
464 | 466 |
} |
465 | 467 |
|
466 | 468 |
Node runningNode(const InArcIt &arc) const { |
467 | 469 |
return Parent::source(static_cast<const Arc&>(arc)); |
468 | 470 |
} |
469 | 471 |
|
470 | 472 |
}; |
471 | 473 |
|
472 | 474 |
} |
473 | 475 |
|
474 | 476 |
#endif |
0 comments (0 inline)