/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_SMART_GRAPH_H
#define LEMON_SMART_GRAPH_H
///\brief SmartDigraph and SmartGraph classes.
#include <lemon/bits/graph_extender.h>
int target, source, next_in, next_out;
std::vector<NodeT> nodes;
typedef SmartDigraphBase Digraph;
SmartDigraphBase() : nodes(), arcs() { }
SmartDigraphBase(const SmartDigraphBase &_g)
: nodes(_g.nodes), arcs(_g.arcs) { }
int nodeNum() const { return nodes.size(); }
int arcNum() const { return arcs.size(); }
int maxNodeId() const { return nodes.size()-1; }
int maxArcId() const { return arcs.size()-1; }
nodes.push_back(NodeT());
Arc addArc(Node u, Node v) {
arcs[n].next_out = nodes[u._id].first_out;
arcs[n].next_in = nodes[v._id].first_in;
nodes[u._id].first_out = nodes[v._id].first_in = n;
Node source(Arc a) const { return Node(arcs[a._id].source); }
Node target(Arc a) const { return Node(arcs[a._id].target); }
static int id(Node v) { return v._id; }
static int id(Arc a) { return a._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
bool valid(Node n) const {
return n._id >= 0 && n._id < static_cast<int>(nodes.size());
bool valid(Arc a) const {
return a._id >= 0 && a._id < static_cast<int>(arcs.size());
friend class SmartDigraphBase;
friend class SmartDigraph;
explicit Node(int id) : _id(id) {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node i) const {return _id == i._id;}
bool operator!=(const Node i) const {return _id != i._id;}
bool operator<(const Node i) const {return _id < i._id;}
friend class SmartDigraphBase;
friend class SmartDigraph;
explicit Arc(int id) : _id(id) {}
Arc (Invalid) : _id(-1) {}
bool operator==(const Arc i) const {return _id == i._id;}
bool operator!=(const Arc i) const {return _id != i._id;}
bool operator<(const Arc i) const {return _id < i._id;}
void first(Node& node) const {
node._id = nodes.size() - 1;
static void next(Node& node) {
void first(Arc& arc) const {
arc._id = arcs.size() - 1;
static void next(Arc& arc) {
void firstOut(Arc& arc, const Node& node) const {
arc._id = nodes[node._id].first_out;
void nextOut(Arc& arc) const {
arc._id = arcs[arc._id].next_out;
void firstIn(Arc& arc, const Node& node) const {
arc._id = nodes[node._id].first_in;
void nextIn(Arc& arc) const {
arc._id = arcs[arc._id].next_in;
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase;
///\brief A smart directed graph class.
///\ref SmartDigraph is a simple and fast digraph implementation.
///It is also quite memory efficient but at the price
///that it does not support node and arc deletion
///(except for the Snapshot feature).
///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
///and it also provides some additional functionalities.
///Most of its member functions and nested classes are documented
///only in the concept class.
///This class provides constant time counting for nodes and arcs.
class SmartDigraph : public ExtendedSmartDigraphBase {
typedef ExtendedSmartDigraphBase Parent;
/// Digraphs are \e not copy constructible. Use DigraphCopy instead.
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
/// \brief Assignment of a digraph to another one is \e not allowed.
/// Use DigraphCopy instead.
void operator=(const SmartDigraph &) {}
///Add a new node to the digraph.
///This function adds a new node to the digraph.
Node addNode() { return Parent::addNode(); }
///Add a new arc to the digraph.
///This function adds a new arc to the digraph with source node \c s
Arc addArc(Node s, Node t) {
return Parent::addArc(s, t);
/// \brief Node validity check
/// This function gives back \c true if the given node is valid,
/// i.e. it is a real node of the digraph.
/// \warning A removed node (using Snapshot) could become valid again
/// if new nodes are added to the digraph.
bool valid(Node n) const { return Parent::valid(n); }
/// \brief Arc validity check
/// This function gives back \c true if the given arc is valid,
/// i.e. it is a real arc of the digraph.
/// \warning A removed arc (using Snapshot) could become valid again
/// if new arcs are added to the graph.
bool valid(Arc a) const { return Parent::valid(a); }
///This function splits the given node. First, a new node is added
///to the digraph, then the source of each outgoing arc of node \c n
///is moved to this new node.
///If the second parameter \c connect is \c true (this is the default
///value), then a new arc from node \c n to the newly created node
///\return The newly created node.
///\note All iterators remain valid.
///\warning This functionality cannot be used together with the Snapshot
Node split(Node n, bool connect = true)
nodes[b._id].first_out=nodes[n._id].first_out;
nodes[n._id].first_out=-1;
for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) {
///This function erases all nodes and arcs from the digraph.
/// Reserve memory for nodes.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be large (e.g. it will contain millions of nodes and/or arcs),
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
void reserveNode(int n) { nodes.reserve(n); };
/// Reserve memory for arcs.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be large (e.g. it will contain millions of nodes and/or arcs),
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
void reserveArc(int m) { arcs.reserve(m); };
void restoreSnapshot(const Snapshot &s)
while(s.arc_num<arcs.size()) {
Arc arc = arcFromId(arcs.size()-1);
Parent::notifier(Arc()).erase(arc);
nodes[arcs.back().source].first_out=arcs.back().next_out;
nodes[arcs.back().target].first_in=arcs.back().next_in;
while(s.node_num<nodes.size()) {
Node node = nodeFromId(nodes.size()-1);
Parent::notifier(Node()).erase(node);
///Class to make a snapshot of the digraph and to restore it later.
///Class to make a snapshot of the digraph and to restore it later.
///The newly added nodes and arcs can be removed using the
///restore() function. This is the only way for deleting nodes and/or
///arcs from a SmartDigraph structure.
///\note After a state is restored, you cannot restore a later state,
///i.e. you cannot add the removed nodes and arcs again using
///another Snapshot instance.
///\warning Node splitting cannot be restored.
///\warning The validity of the snapshot is not stored due to
///performance reasons. If you do not use the snapshot correctly,
///it can cause broken program, invalid or not restored state of
///the digraph or no change.
friend class SmartDigraph;
///You have to call save() to actually make a snapshot.
Snapshot() : _graph(0) {}
///Constructor that immediately makes a snapshot
///This constructor immediately makes a snapshot of the given digraph.
Snapshot(SmartDigraph &gr) : _graph(&gr) {
node_num=_graph->nodes.size();
arc_num=_graph->arcs.size();
///This function makes a snapshot of the given digraph.
///It can be called more than once. In case of a repeated
///call, the previous snapshot gets lost.
void save(SmartDigraph &gr) {
node_num=_graph->nodes.size();
arc_num=_graph->arcs.size();
///Undo the changes until a snapshot.
///This function undos the changes until the last snapshot
///created by save() or Snapshot(SmartDigraph&).
_graph->restoreSnapshot(*this);
std::vector<NodeT> nodes;
typedef SmartGraphBase Graph;
friend class SmartGraphBase;
explicit Node(int id) { _id = id;}
Node (Invalid) { _id = -1; }
bool operator==(const Node& node) const {return _id == node._id;}
bool operator!=(const Node& node) const {return _id != node._id;}
bool operator<(const Node& node) const {return _id < node._id;}
friend class SmartGraphBase;
explicit Edge(int id) { _id = id;}
Edge (Invalid) { _id = -1; }
bool operator==(const Edge& arc) const {return _id == arc._id;}
bool operator!=(const Edge& arc) const {return _id != arc._id;}
bool operator<(const Edge& arc) const {return _id < arc._id;}
friend class SmartGraphBase;
explicit Arc(int id) { _id = id;}
return _id != -1 ? edgeFromId(_id / 2) : INVALID;
Arc (Invalid) { _id = -1; }
bool operator==(const Arc& arc) const {return _id == arc._id;}
bool operator!=(const Arc& arc) const {return _id != arc._id;}
bool operator<(const Arc& arc) const {return _id < arc._id;}
int nodeNum() const { return nodes.size(); }
int edgeNum() const { return arcs.size() / 2; }
int arcNum() const { return arcs.size(); }
int maxNodeId() const { return nodes.size()-1; }
int maxEdgeId() const { return arcs.size() / 2 - 1; }
int maxArcId() const { return arcs.size()-1; }
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); }
Node target(Arc e) const { return Node(arcs[e._id].target); }
Node u(Edge e) const { return Node(arcs[2 * e._id].target); }
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
static bool direction(Arc e) {
static Arc direct(Edge e, bool d) {
return Arc(e._id * 2 + (d ? 1 : 0));
void first(Node& node) const {
node._id = nodes.size() - 1;
static void next(Node& node) {
void first(Arc& arc) const {
arc._id = arcs.size() - 1;
static void next(Arc& arc) {
void first(Edge& arc) const {
arc._id = arcs.size() / 2 - 1;
static void next(Edge& arc) {
void firstOut(Arc &arc, const Node& v) const {
arc._id = nodes[v._id].first_out;
void nextOut(Arc &arc) const {
arc._id = arcs[arc._id].next_out;
void firstIn(Arc &arc, const Node& v) const {
arc._id = ((nodes[v._id].first_out) ^ 1);
if (arc._id == -2) arc._id = -1;
void nextIn(Arc &arc) const {
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1);
if (arc._id == -2) arc._id = -1;
void firstInc(Edge &arc, bool& d, const Node& v) const {
int de = nodes[v._id].first_out;
void nextInc(Edge &arc, bool& d) const {
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out);
static int id(Node v) { return v._id; }
static int id(Arc e) { return e._id; }
static int id(Edge e) { return e._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
bool valid(Node n) const {
return n._id >= 0 && n._id < static_cast<int>(nodes.size());
bool valid(Arc a) const {
return a._id >= 0 && a._id < static_cast<int>(arcs.size());
bool valid(Edge e) const {
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size());
nodes.push_back(NodeT());
Edge addEdge(Node u, Node v) {
arcs[n | 1].target = v._id;
arcs[n].next_out = nodes[v._id].first_out;
nodes[v._id].first_out = n;
arcs[n | 1].next_out = nodes[u._id].first_out;
nodes[u._id].first_out = (n | 1);
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase;
/// \brief A smart undirected graph class.
/// \ref SmartGraph is a simple and fast graph implementation.
/// It is also quite memory efficient but at the price
/// that it does not support node and edge deletion
/// (except for the Snapshot feature).
/// This type fully conforms to the \ref concepts::Graph "Graph concept"
/// and it also provides some additional functionalities.
/// Most of its member functions and nested classes are documented
/// only in the concept class.
/// This class provides constant time counting for nodes, edges and arcs.
class SmartGraph : public ExtendedSmartGraphBase {
typedef ExtendedSmartGraphBase Parent;
/// Graphs are \e not copy constructible. Use GraphCopy instead.
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
/// \brief Assignment of a graph to another one is \e not allowed.
/// Use GraphCopy instead.
void operator=(const SmartGraph &) {}
/// \brief Add a new node to the graph.
/// This function adds a new node to the graph.
/// \return The new node.
Node addNode() { return Parent::addNode(); }
/// \brief Add a new edge to the graph.
/// This function adds a new edge to the graph between nodes
/// \c u and \c v with inherent orientation from node \c u to
/// \return The new edge.
Edge addEdge(Node u, Node v) {
return Parent::addEdge(u, v);
/// \brief Node validity check
/// This function gives back \c true if the given node is valid,
/// i.e. it is a real node of the graph.
/// \warning A removed node (using Snapshot) could become valid again
/// if new nodes are added to the graph.
bool valid(Node n) const { return Parent::valid(n); }
/// \brief Edge validity check
/// This function gives back \c true if the given edge is valid,
/// i.e. it is a real edge of the graph.
/// \warning A removed edge (using Snapshot) could become valid again
/// if new edges are added to the graph.
bool valid(Edge e) const { return Parent::valid(e); }
/// \brief Arc validity check
/// This function gives back \c true if the given arc is valid,
/// i.e. it is a real arc of the graph.
/// \warning A removed arc (using Snapshot) could become valid again
/// if new edges are added to the graph.
bool valid(Arc a) const { return Parent::valid(a); }
///This function erases all nodes and arcs from the graph.
/// Reserve memory for nodes.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the graph you want to build will
/// be large (e.g. it will contain millions of nodes and/or edges),
/// then it is worth reserving space for this amount before starting
void reserveNode(int n) { nodes.reserve(n); };
/// Reserve memory for edges.
/// Using this function, it is possible to avoid superfluous memory
/// allocation: if you know that the graph you want to build will
/// be large (e.g. it will contain millions of nodes and/or edges),
/// then it is worth reserving space for this amount before starting
void reserveEdge(int m) { arcs.reserve(2 * m); };
void saveSnapshot(Snapshot &s)
s.node_num = nodes.size();
void restoreSnapshot(const Snapshot &s)
while(s.arc_num<arcs.size()) {
Edge arc=edgeFromId(n/2);
Parent::notifier(Edge()).erase(arc);
dir.push_back(arcFromId(n));
dir.push_back(arcFromId(n-1));
Parent::notifier(Arc()).erase(dir);
nodes[arcs[n-1].target].first_out=arcs[n].next_out;
nodes[arcs[n].target].first_out=arcs[n-1].next_out;
while(s.node_num<nodes.size()) {
Node node = nodeFromId(n);
Parent::notifier(Node()).erase(node);
///Class to make a snapshot of the graph and to restore it later.
///Class to make a snapshot of the graph and to restore it later.
///The newly added nodes and edges can be removed using the
///restore() function. This is the only way for deleting nodes and/or
///edges from a SmartGraph structure.
///\note After a state is restored, you cannot restore a later state,
///i.e. you cannot add the removed nodes and edges again using
///another Snapshot instance.
///\warning The validity of the snapshot is not stored due to
///performance reasons. If you do not use the snapshot correctly,
///it can cause broken program, invalid or not restored state of
///the graph or no change.
///You have to call save() to actually make a snapshot.
Snapshot() : _graph(0) {}
///Constructor that immediately makes a snapshot
/// This constructor immediately makes a snapshot of the given graph.
Snapshot(SmartGraph &gr) {
///This function makes a snapshot of the given graph.
///It can be called more than once. In case of a repeated
///call, the previous snapshot gets lost.
void save(SmartGraph &gr)
///Undo the changes until the last snapshot.
///This function undos the changes until the last snapshot
///created by save() or Snapshot(SmartGraph&).
_graph->restoreSnapshot(*this);
#endif //LEMON_SMART_GRAPH_H