0
11
0
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ADAPTORS_H |
| 20 | 20 |
#define LEMON_ADAPTORS_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup graph_adaptors |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
| 25 | 25 |
/// |
| 26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/maps.h> |
| 30 | 30 |
#include <lemon/bits/variant.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
| 33 | 33 |
#include <lemon/bits/map_extender.h> |
| 34 | 34 |
#include <lemon/tolerance.h> |
| 35 | 35 |
|
| 36 | 36 |
#include <algorithm> |
| 37 | 37 |
|
| 38 | 38 |
namespace lemon {
|
| 39 | 39 |
|
| 40 | 40 |
#ifdef _MSC_VER |
| 41 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
| 42 | 42 |
#else |
| 43 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
| 44 | 44 |
#endif |
| 45 | 45 |
|
| 46 | 46 |
template<typename DGR> |
| 47 | 47 |
class DigraphAdaptorBase {
|
| 48 | 48 |
public: |
| 49 | 49 |
typedef DGR Digraph; |
| 50 | 50 |
typedef DigraphAdaptorBase Adaptor; |
| 51 | 51 |
|
| 52 | 52 |
protected: |
| 53 | 53 |
DGR* _digraph; |
| 54 | 54 |
DigraphAdaptorBase() : _digraph(0) { }
|
| 55 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; }
|
| 56 | 56 |
|
| 57 | 57 |
public: |
| 58 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
|
| 59 | 59 |
|
| 60 | 60 |
typedef typename DGR::Node Node; |
| 61 | 61 |
typedef typename DGR::Arc Arc; |
| 62 | 62 |
|
| 63 | 63 |
void first(Node& i) const { _digraph->first(i); }
|
| 64 | 64 |
void first(Arc& i) const { _digraph->first(i); }
|
| 65 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
|
| 66 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
|
| 67 | 67 |
|
| 68 | 68 |
void next(Node& i) const { _digraph->next(i); }
|
| 69 | 69 |
void next(Arc& i) const { _digraph->next(i); }
|
| 70 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); }
|
| 71 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); }
|
| 72 | 72 |
|
| 73 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); }
|
| 74 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); }
|
| 75 | 75 |
|
| 76 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
| 77 | 77 |
int nodeNum() const { return _digraph->nodeNum(); }
|
| 78 | 78 |
|
| 79 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
| 80 | 80 |
int arcNum() const { return _digraph->arcNum(); }
|
| 81 | 81 |
|
| 82 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 83 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
|
| 84 | 84 |
return _digraph->findArc(u, v, prev); |
| 85 | 85 |
} |
| 86 | 86 |
|
| 87 | 87 |
Node addNode() { return _digraph->addNode(); }
|
| 88 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
|
| 89 | 89 |
|
| 90 | 90 |
void erase(const Node& n) { _digraph->erase(n); }
|
| 91 | 91 |
void erase(const Arc& a) { _digraph->erase(a); }
|
| 92 | 92 |
|
| 93 | 93 |
void clear() { _digraph->clear(); }
|
| 94 | 94 |
|
| 95 | 95 |
int id(const Node& n) const { return _digraph->id(n); }
|
| 96 | 96 |
int id(const Arc& a) const { return _digraph->id(a); }
|
| 97 | 97 |
|
| 98 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
|
| 99 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
|
| 100 | 100 |
|
| 101 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); }
|
| 102 | 102 |
int maxArcId() const { return _digraph->maxArcId(); }
|
| 103 | 103 |
|
| 104 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
| 105 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
|
| 106 | 106 |
|
| 107 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
| 108 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
|
| 109 | 109 |
|
| 110 | 110 |
template <typename V> |
| 111 | 111 |
class NodeMap : public DGR::template NodeMap<V> {
|
| 112 | 112 |
typedef typename DGR::template NodeMap<V> Parent; |
| 113 | 113 |
|
| 114 | 114 |
public: |
| 115 | 115 |
explicit NodeMap(const Adaptor& adaptor) |
| 116 | 116 |
: Parent(*adaptor._digraph) {}
|
| 117 | 117 |
NodeMap(const Adaptor& adaptor, const V& value) |
| 118 | 118 |
: Parent(*adaptor._digraph, value) { }
|
| 119 | 119 |
|
| 120 | 120 |
private: |
| 121 | 121 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 122 | 122 |
return operator=<NodeMap>(cmap); |
| 123 | 123 |
} |
| 124 | 124 |
|
| 125 | 125 |
template <typename CMap> |
| 126 | 126 |
NodeMap& operator=(const CMap& cmap) {
|
| 127 | 127 |
Parent::operator=(cmap); |
| 128 | 128 |
return *this; |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
}; |
| 132 | 132 |
|
| 133 | 133 |
template <typename V> |
| 134 | 134 |
class ArcMap : public DGR::template ArcMap<V> {
|
| 135 | 135 |
typedef typename DGR::template ArcMap<V> Parent; |
| 136 | 136 |
|
| 137 | 137 |
public: |
| 138 | 138 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
| 139 | 139 |
: Parent(*adaptor._digraph) {}
|
| 140 | 140 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
| 141 | 141 |
: Parent(*adaptor._digraph, value) {}
|
| 142 | 142 |
|
| 143 | 143 |
private: |
| 144 | 144 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 145 | 145 |
return operator=<ArcMap>(cmap); |
| 146 | 146 |
} |
| 147 | 147 |
|
| 148 | 148 |
template <typename CMap> |
| 149 | 149 |
ArcMap& operator=(const CMap& cmap) {
|
| 150 | 150 |
Parent::operator=(cmap); |
| 151 | 151 |
return *this; |
| 152 | 152 |
} |
| 153 | 153 |
|
| 154 | 154 |
}; |
| 155 | 155 |
|
| 156 | 156 |
}; |
| 157 | 157 |
|
| 158 | 158 |
template<typename GR> |
| 159 | 159 |
class GraphAdaptorBase {
|
| 160 | 160 |
public: |
| 161 | 161 |
typedef GR Graph; |
| 162 | 162 |
|
| 163 | 163 |
protected: |
| 164 | 164 |
GR* _graph; |
| 165 | 165 |
|
| 166 | 166 |
GraphAdaptorBase() : _graph(0) {}
|
| 167 | 167 |
|
| 168 | 168 |
void initialize(GR& graph) { _graph = &graph; }
|
| 169 | 169 |
|
| 170 | 170 |
public: |
| 171 | 171 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {}
|
| 172 | 172 |
|
| 173 | 173 |
typedef typename GR::Node Node; |
| 174 | 174 |
typedef typename GR::Arc Arc; |
| 175 | 175 |
typedef typename GR::Edge Edge; |
| 176 | 176 |
|
| 177 | 177 |
void first(Node& i) const { _graph->first(i); }
|
| 178 | 178 |
void first(Arc& i) const { _graph->first(i); }
|
| 179 | 179 |
void first(Edge& i) const { _graph->first(i); }
|
| 180 | 180 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
|
| 181 | 181 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
|
| 182 | 182 |
void firstInc(Edge &i, bool &d, const Node &n) const {
|
| 183 | 183 |
_graph->firstInc(i, d, n); |
| 184 | 184 |
} |
| 185 | 185 |
|
| 186 | 186 |
void next(Node& i) const { _graph->next(i); }
|
| 187 | 187 |
void next(Arc& i) const { _graph->next(i); }
|
| 188 | 188 |
void next(Edge& i) const { _graph->next(i); }
|
| 189 | 189 |
void nextIn(Arc& i) const { _graph->nextIn(i); }
|
| 190 | 190 |
void nextOut(Arc& i) const { _graph->nextOut(i); }
|
| 191 | 191 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
|
| 192 | 192 |
|
| 193 | 193 |
Node u(const Edge& e) const { return _graph->u(e); }
|
| 194 | 194 |
Node v(const Edge& e) const { return _graph->v(e); }
|
| 195 | 195 |
|
| 196 | 196 |
Node source(const Arc& a) const { return _graph->source(a); }
|
| 197 | 197 |
Node target(const Arc& a) const { return _graph->target(a); }
|
| 198 | 198 |
|
| 199 | 199 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
| 200 | 200 |
int nodeNum() const { return _graph->nodeNum(); }
|
| 201 | 201 |
|
| 202 | 202 |
typedef ArcNumTagIndicator<Graph> ArcNumTag; |
| 203 | 203 |
int arcNum() const { return _graph->arcNum(); }
|
| 204 | 204 |
|
| 205 | 205 |
typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
| 206 | 206 |
int edgeNum() const { return _graph->edgeNum(); }
|
| 207 | 207 |
|
| 208 | 208 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 209 | 209 |
Arc findArc(const Node& u, const Node& v, |
| 210 | 210 |
const Arc& prev = INVALID) const {
|
| 211 | 211 |
return _graph->findArc(u, v, prev); |
| 212 | 212 |
} |
| 213 | 213 |
|
| 214 | 214 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 215 | 215 |
Edge findEdge(const Node& u, const Node& v, |
| 216 | 216 |
const Edge& prev = INVALID) const {
|
| 217 | 217 |
return _graph->findEdge(u, v, prev); |
| 218 | 218 |
} |
| 219 | 219 |
|
| 220 | 220 |
Node addNode() { return _graph->addNode(); }
|
| 221 | 221 |
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
|
| 222 | 222 |
|
| 223 | 223 |
void erase(const Node& i) { _graph->erase(i); }
|
| 224 | 224 |
void erase(const Edge& i) { _graph->erase(i); }
|
| 225 | 225 |
|
| 226 | 226 |
void clear() { _graph->clear(); }
|
| 227 | 227 |
|
| 228 | 228 |
bool direction(const Arc& a) const { return _graph->direction(a); }
|
| 229 | 229 |
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
|
| 230 | 230 |
|
| 231 | 231 |
int id(const Node& v) const { return _graph->id(v); }
|
| 232 | 232 |
int id(const Arc& a) const { return _graph->id(a); }
|
| 233 | 233 |
int id(const Edge& e) const { return _graph->id(e); }
|
| 234 | 234 |
|
| 235 | 235 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
|
| 236 | 236 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
|
| 237 | 237 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
|
| 238 | 238 |
|
| 239 | 239 |
int maxNodeId() const { return _graph->maxNodeId(); }
|
| 240 | 240 |
int maxArcId() const { return _graph->maxArcId(); }
|
| 241 | 241 |
int maxEdgeId() const { return _graph->maxEdgeId(); }
|
| 242 | 242 |
|
| 243 | 243 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 244 | 244 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
|
| 245 | 245 |
|
| 246 | 246 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
| 247 | 247 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
|
| 248 | 248 |
|
| 249 | 249 |
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier; |
| 250 | 250 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
|
| 251 | 251 |
|
| 252 | 252 |
template <typename V> |
| 253 | 253 |
class NodeMap : public GR::template NodeMap<V> {
|
| 254 | 254 |
typedef typename GR::template NodeMap<V> Parent; |
| 255 | 255 |
|
| 256 | 256 |
public: |
| 257 | 257 |
explicit NodeMap(const GraphAdaptorBase<GR>& adapter) |
| 258 | 258 |
: Parent(*adapter._graph) {}
|
| 259 | 259 |
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
| 260 | 260 |
: Parent(*adapter._graph, value) {}
|
| 261 | 261 |
|
| 262 | 262 |
private: |
| 263 | 263 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 264 | 264 |
return operator=<NodeMap>(cmap); |
| 265 | 265 |
} |
| 266 | 266 |
|
| 267 | 267 |
template <typename CMap> |
| 268 | 268 |
NodeMap& operator=(const CMap& cmap) {
|
| 269 | 269 |
Parent::operator=(cmap); |
| 270 | 270 |
return *this; |
| 271 | 271 |
} |
| 272 | 272 |
|
| 273 | 273 |
}; |
| 274 | 274 |
|
| 275 | 275 |
template <typename V> |
| 276 | 276 |
class ArcMap : public GR::template ArcMap<V> {
|
| 277 | 277 |
typedef typename GR::template ArcMap<V> Parent; |
| 278 | 278 |
|
| 279 | 279 |
public: |
| 280 | 280 |
explicit ArcMap(const GraphAdaptorBase<GR>& adapter) |
| 281 | 281 |
: Parent(*adapter._graph) {}
|
| 282 | 282 |
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
| 283 | 283 |
: Parent(*adapter._graph, value) {}
|
| 284 | 284 |
|
| 285 | 285 |
private: |
| 286 | 286 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 287 | 287 |
return operator=<ArcMap>(cmap); |
| 288 | 288 |
} |
| 289 | 289 |
|
| 290 | 290 |
template <typename CMap> |
| 291 | 291 |
ArcMap& operator=(const CMap& cmap) {
|
| 292 | 292 |
Parent::operator=(cmap); |
| 293 | 293 |
return *this; |
| 294 | 294 |
} |
| 295 | 295 |
}; |
| 296 | 296 |
|
| 297 | 297 |
template <typename V> |
| 298 | 298 |
class EdgeMap : public GR::template EdgeMap<V> {
|
| 299 | 299 |
typedef typename GR::template EdgeMap<V> Parent; |
| 300 | 300 |
|
| 301 | 301 |
public: |
| 302 | 302 |
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter) |
| 303 | 303 |
: Parent(*adapter._graph) {}
|
| 304 | 304 |
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
| 305 | 305 |
: Parent(*adapter._graph, value) {}
|
| 306 | 306 |
|
| 307 | 307 |
private: |
| 308 | 308 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 309 | 309 |
return operator=<EdgeMap>(cmap); |
| 310 | 310 |
} |
| 311 | 311 |
|
| 312 | 312 |
template <typename CMap> |
| 313 | 313 |
EdgeMap& operator=(const CMap& cmap) {
|
| 314 | 314 |
Parent::operator=(cmap); |
| 315 | 315 |
return *this; |
| 316 | 316 |
} |
| 317 | 317 |
}; |
| 318 | 318 |
|
| 319 | 319 |
}; |
| 320 | 320 |
|
| 321 | 321 |
template <typename DGR> |
| 322 | 322 |
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
|
| 323 | 323 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 324 | 324 |
public: |
| 325 | 325 |
typedef DGR Digraph; |
| 326 | 326 |
protected: |
| 327 | 327 |
ReverseDigraphBase() : Parent() { }
|
| 328 | 328 |
public: |
| 329 | 329 |
typedef typename Parent::Node Node; |
| 330 | 330 |
typedef typename Parent::Arc Arc; |
| 331 | 331 |
|
| 332 | 332 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
|
| 333 | 333 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
|
| 334 | 334 |
|
| 335 | 335 |
void nextIn(Arc& a) const { Parent::nextOut(a); }
|
| 336 | 336 |
void nextOut(Arc& a) const { Parent::nextIn(a); }
|
| 337 | 337 |
|
| 338 | 338 |
Node source(const Arc& a) const { return Parent::target(a); }
|
| 339 | 339 |
Node target(const Arc& a) const { return Parent::source(a); }
|
| 340 | 340 |
|
| 341 | 341 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
|
| 342 | 342 |
|
| 343 | 343 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 344 | 344 |
Arc findArc(const Node& u, const Node& v, |
| 345 | 345 |
const Arc& prev = INVALID) const {
|
| 346 | 346 |
return Parent::findArc(v, u, prev); |
| 347 | 347 |
} |
| 348 | 348 |
|
| 349 | 349 |
}; |
| 350 | 350 |
|
| 351 | 351 |
/// \ingroup graph_adaptors |
| 352 | 352 |
/// |
| 353 | 353 |
/// \brief Adaptor class for reversing the orientation of the arcs in |
| 354 | 354 |
/// a digraph. |
| 355 | 355 |
/// |
| 356 | 356 |
/// ReverseDigraph can be used for reversing the arcs in a digraph. |
| 357 | 357 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
| 358 | 358 |
/// |
| 359 | 359 |
/// The adapted digraph can also be modified through this adaptor |
| 360 | 360 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 361 | 361 |
/// parameter is set to be \c const. |
| 362 | 362 |
/// |
| 363 |
/// This class provides item counting in the same time as the adapted |
|
| 364 |
/// digraph structure. |
|
| 365 |
/// |
|
| 363 | 366 |
/// \tparam DGR The type of the adapted digraph. |
| 364 | 367 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 365 | 368 |
/// It can also be specified to be \c const. |
| 366 | 369 |
/// |
| 367 | 370 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 368 | 371 |
/// digraph are convertible to each other. |
| 369 | 372 |
template<typename DGR> |
| 370 | 373 |
#ifdef DOXYGEN |
| 371 | 374 |
class ReverseDigraph {
|
| 372 | 375 |
#else |
| 373 | 376 |
class ReverseDigraph : |
| 374 | 377 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
|
| 375 | 378 |
#endif |
| 376 | 379 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
| 377 | 380 |
public: |
| 378 | 381 |
/// The type of the adapted digraph. |
| 379 | 382 |
typedef DGR Digraph; |
| 380 | 383 |
protected: |
| 381 | 384 |
ReverseDigraph() { }
|
| 382 | 385 |
public: |
| 383 | 386 |
|
| 384 | 387 |
/// \brief Constructor |
| 385 | 388 |
/// |
| 386 | 389 |
/// Creates a reverse digraph adaptor for the given digraph. |
| 387 | 390 |
explicit ReverseDigraph(DGR& digraph) {
|
| 388 | 391 |
Parent::initialize(digraph); |
| 389 | 392 |
} |
| 390 | 393 |
}; |
| 391 | 394 |
|
| 392 | 395 |
/// \brief Returns a read-only ReverseDigraph adaptor |
| 393 | 396 |
/// |
| 394 | 397 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
| 395 | 398 |
/// \ingroup graph_adaptors |
| 396 | 399 |
/// \relates ReverseDigraph |
| 397 | 400 |
template<typename DGR> |
| 398 | 401 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
|
| 399 | 402 |
return ReverseDigraph<const DGR>(digraph); |
| 400 | 403 |
} |
| 401 | 404 |
|
| 402 | 405 |
|
| 403 | 406 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
| 404 | 407 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> {
|
| 405 | 408 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 406 | 409 |
public: |
| 407 | 410 |
typedef DGR Digraph; |
| 408 | 411 |
typedef NF NodeFilterMap; |
| 409 | 412 |
typedef AF ArcFilterMap; |
| 410 | 413 |
|
| 411 | 414 |
typedef SubDigraphBase Adaptor; |
| 412 | 415 |
protected: |
| 413 | 416 |
NF* _node_filter; |
| 414 | 417 |
AF* _arc_filter; |
| 415 | 418 |
SubDigraphBase() |
| 416 | 419 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 417 | 420 |
|
| 418 | 421 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 419 | 422 |
Parent::initialize(digraph); |
| 420 | 423 |
_node_filter = &node_filter; |
| 421 | 424 |
_arc_filter = &arc_filter; |
| 422 | 425 |
} |
| 423 | 426 |
|
| 424 | 427 |
public: |
| 425 | 428 |
|
| 426 | 429 |
typedef typename Parent::Node Node; |
| 427 | 430 |
typedef typename Parent::Arc Arc; |
| 428 | 431 |
|
| 429 | 432 |
void first(Node& i) const {
|
| 430 | 433 |
Parent::first(i); |
| 431 | 434 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 432 | 435 |
} |
| 433 | 436 |
|
| 434 | 437 |
void first(Arc& i) const {
|
| 435 | 438 |
Parent::first(i); |
| 436 | 439 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 437 | 440 |
|| !(*_node_filter)[Parent::source(i)] |
| 438 | 441 |
|| !(*_node_filter)[Parent::target(i)])) |
| 439 | 442 |
Parent::next(i); |
| 440 | 443 |
} |
| 441 | 444 |
|
| 442 | 445 |
void firstIn(Arc& i, const Node& n) const {
|
| 443 | 446 |
Parent::firstIn(i, n); |
| 444 | 447 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 445 | 448 |
|| !(*_node_filter)[Parent::source(i)])) |
| 446 | 449 |
Parent::nextIn(i); |
| 447 | 450 |
} |
| 448 | 451 |
|
| 449 | 452 |
void firstOut(Arc& i, const Node& n) const {
|
| 450 | 453 |
Parent::firstOut(i, n); |
| 451 | 454 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 452 | 455 |
|| !(*_node_filter)[Parent::target(i)])) |
| 453 | 456 |
Parent::nextOut(i); |
| 454 | 457 |
} |
| 455 | 458 |
|
| 456 | 459 |
void next(Node& i) const {
|
| 457 | 460 |
Parent::next(i); |
| 458 | 461 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 459 | 462 |
} |
| 460 | 463 |
|
| 461 | 464 |
void next(Arc& i) const {
|
| 462 | 465 |
Parent::next(i); |
| 463 | 466 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 464 | 467 |
|| !(*_node_filter)[Parent::source(i)] |
| 465 | 468 |
|| !(*_node_filter)[Parent::target(i)])) |
| 466 | 469 |
Parent::next(i); |
| 467 | 470 |
} |
| 468 | 471 |
|
| 469 | 472 |
void nextIn(Arc& i) const {
|
| 470 | 473 |
Parent::nextIn(i); |
| 471 | 474 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 472 | 475 |
|| !(*_node_filter)[Parent::source(i)])) |
| 473 | 476 |
Parent::nextIn(i); |
| 474 | 477 |
} |
| 475 | 478 |
|
| 476 | 479 |
void nextOut(Arc& i) const {
|
| 477 | 480 |
Parent::nextOut(i); |
| 478 | 481 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 479 | 482 |
|| !(*_node_filter)[Parent::target(i)])) |
| 480 | 483 |
Parent::nextOut(i); |
| 481 | 484 |
} |
| 482 | 485 |
|
| 483 | 486 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 484 | 487 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
|
| 485 | 488 |
|
| 486 | 489 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 487 | 490 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
|
| 488 | 491 |
|
| 489 | 492 |
typedef False NodeNumTag; |
| 490 | 493 |
typedef False ArcNumTag; |
| 491 | 494 |
|
| 492 | 495 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 493 | 496 |
Arc findArc(const Node& source, const Node& target, |
| 494 | 497 |
const Arc& prev = INVALID) const {
|
| 495 | 498 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
|
| 496 | 499 |
return INVALID; |
| 497 | 500 |
} |
| 498 | 501 |
Arc arc = Parent::findArc(source, target, prev); |
| 499 | 502 |
while (arc != INVALID && !(*_arc_filter)[arc]) {
|
| 500 | 503 |
arc = Parent::findArc(source, target, arc); |
| 501 | 504 |
} |
| 502 | 505 |
return arc; |
| 503 | 506 |
} |
| 504 | 507 |
|
| 505 | 508 |
public: |
| 506 | 509 |
|
| 507 | 510 |
template <typename V> |
| 508 | 511 |
class NodeMap |
| 509 | 512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 510 | 513 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
| 511 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 512 | 515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
| 513 | 516 |
|
| 514 | 517 |
public: |
| 515 | 518 |
typedef V Value; |
| 516 | 519 |
|
| 517 | 520 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
| 518 | 521 |
: Parent(adaptor) {}
|
| 519 | 522 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
| 520 | 523 |
: Parent(adaptor, value) {}
|
| 521 | 524 |
|
| 522 | 525 |
private: |
| 523 | 526 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 524 | 527 |
return operator=<NodeMap>(cmap); |
| 525 | 528 |
} |
| 526 | 529 |
|
| 527 | 530 |
template <typename CMap> |
| 528 | 531 |
NodeMap& operator=(const CMap& cmap) {
|
| 529 | 532 |
Parent::operator=(cmap); |
| 530 | 533 |
return *this; |
| 531 | 534 |
} |
| 532 | 535 |
}; |
| 533 | 536 |
|
| 534 | 537 |
template <typename V> |
| 535 | 538 |
class ArcMap |
| 536 | 539 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 537 | 540 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
| 538 | 541 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 539 | 542 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 540 | 543 |
|
| 541 | 544 |
public: |
| 542 | 545 |
typedef V Value; |
| 543 | 546 |
|
| 544 | 547 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
| 545 | 548 |
: Parent(adaptor) {}
|
| 546 | 549 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
| 547 | 550 |
: Parent(adaptor, value) {}
|
| 548 | 551 |
|
| 549 | 552 |
private: |
| 550 | 553 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 551 | 554 |
return operator=<ArcMap>(cmap); |
| 552 | 555 |
} |
| 553 | 556 |
|
| 554 | 557 |
template <typename CMap> |
| 555 | 558 |
ArcMap& operator=(const CMap& cmap) {
|
| 556 | 559 |
Parent::operator=(cmap); |
| 557 | 560 |
return *this; |
| 558 | 561 |
} |
| 559 | 562 |
}; |
| 560 | 563 |
|
| 561 | 564 |
}; |
| 562 | 565 |
|
| 563 | 566 |
template <typename DGR, typename NF, typename AF> |
| 564 | 567 |
class SubDigraphBase<DGR, NF, AF, false> |
| 565 | 568 |
: public DigraphAdaptorBase<DGR> {
|
| 566 | 569 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 567 | 570 |
public: |
| 568 | 571 |
typedef DGR Digraph; |
| 569 | 572 |
typedef NF NodeFilterMap; |
| 570 | 573 |
typedef AF ArcFilterMap; |
| 571 | 574 |
|
| 572 | 575 |
typedef SubDigraphBase Adaptor; |
| 573 | 576 |
protected: |
| 574 | 577 |
NF* _node_filter; |
| 575 | 578 |
AF* _arc_filter; |
| 576 | 579 |
SubDigraphBase() |
| 577 | 580 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 578 | 581 |
|
| 579 | 582 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 580 | 583 |
Parent::initialize(digraph); |
| 581 | 584 |
_node_filter = &node_filter; |
| 582 | 585 |
_arc_filter = &arc_filter; |
| 583 | 586 |
} |
| 584 | 587 |
|
| 585 | 588 |
public: |
| 586 | 589 |
|
| 587 | 590 |
typedef typename Parent::Node Node; |
| 588 | 591 |
typedef typename Parent::Arc Arc; |
| 589 | 592 |
|
| 590 | 593 |
void first(Node& i) const {
|
| 591 | 594 |
Parent::first(i); |
| 592 | 595 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 593 | 596 |
} |
| 594 | 597 |
|
| 595 | 598 |
void first(Arc& i) const {
|
| 596 | 599 |
Parent::first(i); |
| 597 | 600 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
| 598 | 601 |
} |
| 599 | 602 |
|
| 600 | 603 |
void firstIn(Arc& i, const Node& n) const {
|
| 601 | 604 |
Parent::firstIn(i, n); |
| 602 | 605 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
| 603 | 606 |
} |
| 604 | 607 |
|
| 605 | 608 |
void firstOut(Arc& i, const Node& n) const {
|
| 606 | 609 |
Parent::firstOut(i, n); |
| 607 | 610 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
| 608 | 611 |
} |
| 609 | 612 |
|
| 610 | 613 |
void next(Node& i) const {
|
| 611 | 614 |
Parent::next(i); |
| 612 | 615 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 613 | 616 |
} |
| 614 | 617 |
void next(Arc& i) const {
|
| 615 | 618 |
Parent::next(i); |
| 616 | 619 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
| 617 | 620 |
} |
| 618 | 621 |
void nextIn(Arc& i) const {
|
| 619 | 622 |
Parent::nextIn(i); |
| 620 | 623 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
| 621 | 624 |
} |
| 622 | 625 |
|
| 623 | 626 |
void nextOut(Arc& i) const {
|
| 624 | 627 |
Parent::nextOut(i); |
| 625 | 628 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
| 626 | 629 |
} |
| 627 | 630 |
|
| 628 | 631 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 629 | 632 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
|
| 630 | 633 |
|
| 631 | 634 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 632 | 635 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
|
| 633 | 636 |
|
| 634 | 637 |
typedef False NodeNumTag; |
| 635 | 638 |
typedef False ArcNumTag; |
| 636 | 639 |
|
| 637 | 640 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 638 | 641 |
Arc findArc(const Node& source, const Node& target, |
| 639 | 642 |
const Arc& prev = INVALID) const {
|
| 640 | 643 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
|
| 641 | 644 |
return INVALID; |
| 642 | 645 |
} |
| 643 | 646 |
Arc arc = Parent::findArc(source, target, prev); |
| 644 | 647 |
while (arc != INVALID && !(*_arc_filter)[arc]) {
|
| 645 | 648 |
arc = Parent::findArc(source, target, arc); |
| 646 | 649 |
} |
| 647 | 650 |
return arc; |
| 648 | 651 |
} |
| 649 | 652 |
|
| 650 | 653 |
template <typename V> |
| 651 | 654 |
class NodeMap |
| 652 | 655 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 653 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
| 654 | 657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 655 | 658 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
| 656 | 659 |
|
| 657 | 660 |
public: |
| 658 | 661 |
typedef V Value; |
| 659 | 662 |
|
| 660 | 663 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
| 661 | 664 |
: Parent(adaptor) {}
|
| 662 | 665 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
| 663 | 666 |
: Parent(adaptor, value) {}
|
| 664 | 667 |
|
| 665 | 668 |
private: |
| 666 | 669 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 667 | 670 |
return operator=<NodeMap>(cmap); |
| 668 | 671 |
} |
| 669 | 672 |
|
| 670 | 673 |
template <typename CMap> |
| 671 | 674 |
NodeMap& operator=(const CMap& cmap) {
|
| 672 | 675 |
Parent::operator=(cmap); |
| 673 | 676 |
return *this; |
| 674 | 677 |
} |
| 675 | 678 |
}; |
| 676 | 679 |
|
| 677 | 680 |
template <typename V> |
| 678 | 681 |
class ArcMap |
| 679 | 682 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 680 | 683 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
| 681 | 684 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 682 | 685 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 683 | 686 |
|
| 684 | 687 |
public: |
| 685 | 688 |
typedef V Value; |
| 686 | 689 |
|
| 687 | 690 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
| 688 | 691 |
: Parent(adaptor) {}
|
| 689 | 692 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
| 690 | 693 |
: Parent(adaptor, value) {}
|
| 691 | 694 |
|
| 692 | 695 |
private: |
| 693 | 696 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 694 | 697 |
return operator=<ArcMap>(cmap); |
| 695 | 698 |
} |
| 696 | 699 |
|
| 697 | 700 |
template <typename CMap> |
| 698 | 701 |
ArcMap& operator=(const CMap& cmap) {
|
| 699 | 702 |
Parent::operator=(cmap); |
| 700 | 703 |
return *this; |
| 701 | 704 |
} |
| 702 | 705 |
}; |
| 703 | 706 |
|
| 704 | 707 |
}; |
| 705 | 708 |
|
| 706 | 709 |
/// \ingroup graph_adaptors |
| 707 | 710 |
/// |
| 708 | 711 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
| 709 | 712 |
/// |
| 710 | 713 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
| 711 | 714 |
/// A \c bool node map and a \c bool arc map must be specified, which |
| 712 | 715 |
/// define the filters for nodes and arcs. |
| 713 | 716 |
/// Only the nodes and arcs with \c true filter value are |
| 714 | 717 |
/// shown in the subdigraph. The arcs that are incident to hidden |
| 715 | 718 |
/// nodes are also filtered out. |
| 716 | 719 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
| 717 | 720 |
/// |
| 718 | 721 |
/// The adapted digraph can also be modified through this adaptor |
| 719 | 722 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 720 | 723 |
/// parameter is set to be \c const. |
| 721 | 724 |
/// |
| 725 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 726 |
/// |
|
| 722 | 727 |
/// \tparam DGR The type of the adapted digraph. |
| 723 | 728 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 724 | 729 |
/// It can also be specified to be \c const. |
| 725 | 730 |
/// \tparam NF The type of the node filter map. |
| 726 | 731 |
/// It must be a \c bool (or convertible) node map of the |
| 727 | 732 |
/// adapted digraph. The default type is |
| 728 | 733 |
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>". |
| 729 | 734 |
/// \tparam AF The type of the arc filter map. |
| 730 | 735 |
/// It must be \c bool (or convertible) arc map of the |
| 731 | 736 |
/// adapted digraph. The default type is |
| 732 | 737 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
| 733 | 738 |
/// |
| 734 | 739 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 735 | 740 |
/// digraph are convertible to each other. |
| 736 | 741 |
/// |
| 737 | 742 |
/// \see FilterNodes |
| 738 | 743 |
/// \see FilterArcs |
| 739 | 744 |
#ifdef DOXYGEN |
| 740 | 745 |
template<typename DGR, typename NF, typename AF> |
| 741 | 746 |
class SubDigraph {
|
| 742 | 747 |
#else |
| 743 | 748 |
template<typename DGR, |
| 744 | 749 |
typename NF = typename DGR::template NodeMap<bool>, |
| 745 | 750 |
typename AF = typename DGR::template ArcMap<bool> > |
| 746 | 751 |
class SubDigraph : |
| 747 | 752 |
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
|
| 748 | 753 |
#endif |
| 749 | 754 |
public: |
| 750 | 755 |
/// The type of the adapted digraph. |
| 751 | 756 |
typedef DGR Digraph; |
| 752 | 757 |
/// The type of the node filter map. |
| 753 | 758 |
typedef NF NodeFilterMap; |
| 754 | 759 |
/// The type of the arc filter map. |
| 755 | 760 |
typedef AF ArcFilterMap; |
| 756 | 761 |
|
| 757 | 762 |
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > |
| 758 | 763 |
Parent; |
| 759 | 764 |
|
| 760 | 765 |
typedef typename Parent::Node Node; |
| 761 | 766 |
typedef typename Parent::Arc Arc; |
| 762 | 767 |
|
| 763 | 768 |
protected: |
| 764 | 769 |
SubDigraph() { }
|
| 765 | 770 |
public: |
| 766 | 771 |
|
| 767 | 772 |
/// \brief Constructor |
| 768 | 773 |
/// |
| 769 | 774 |
/// Creates a subdigraph for the given digraph with the |
| 770 | 775 |
/// given node and arc filter maps. |
| 771 | 776 |
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 772 | 777 |
Parent::initialize(digraph, node_filter, arc_filter); |
| 773 | 778 |
} |
| 774 | 779 |
|
| 775 | 780 |
/// \brief Sets the status of the given node |
| 776 | 781 |
/// |
| 777 | 782 |
/// This function sets the status of the given node. |
| 778 | 783 |
/// It is done by simply setting the assigned value of \c n |
| 779 | 784 |
/// to \c v in the node filter map. |
| 780 | 785 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 781 | 786 |
|
| 782 | 787 |
/// \brief Sets the status of the given arc |
| 783 | 788 |
/// |
| 784 | 789 |
/// This function sets the status of the given arc. |
| 785 | 790 |
/// It is done by simply setting the assigned value of \c a |
| 786 | 791 |
/// to \c v in the arc filter map. |
| 787 | 792 |
void status(const Arc& a, bool v) const { Parent::status(a, v); }
|
| 788 | 793 |
|
| 789 | 794 |
/// \brief Returns the status of the given node |
| 790 | 795 |
/// |
| 791 | 796 |
/// This function returns the status of the given node. |
| 792 | 797 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
| 793 | 798 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 794 | 799 |
|
| 795 | 800 |
/// \brief Returns the status of the given arc |
| 796 | 801 |
/// |
| 797 | 802 |
/// This function returns the status of the given arc. |
| 798 | 803 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
| 799 | 804 |
bool status(const Arc& a) const { return Parent::status(a); }
|
| 800 | 805 |
|
| 801 | 806 |
/// \brief Disables the given node |
| 802 | 807 |
/// |
| 803 | 808 |
/// This function disables the given node in the subdigraph, |
| 804 | 809 |
/// so the iteration jumps over it. |
| 805 | 810 |
/// It is the same as \ref status() "status(n, false)". |
| 806 | 811 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 807 | 812 |
|
| 808 | 813 |
/// \brief Disables the given arc |
| 809 | 814 |
/// |
| 810 | 815 |
/// This function disables the given arc in the subdigraph, |
| 811 | 816 |
/// so the iteration jumps over it. |
| 812 | 817 |
/// It is the same as \ref status() "status(a, false)". |
| 813 | 818 |
void disable(const Arc& a) const { Parent::status(a, false); }
|
| 814 | 819 |
|
| 815 | 820 |
/// \brief Enables the given node |
| 816 | 821 |
/// |
| 817 | 822 |
/// This function enables the given node in the subdigraph. |
| 818 | 823 |
/// It is the same as \ref status() "status(n, true)". |
| 819 | 824 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 820 | 825 |
|
| 821 | 826 |
/// \brief Enables the given arc |
| 822 | 827 |
/// |
| 823 | 828 |
/// This function enables the given arc in the subdigraph. |
| 824 | 829 |
/// It is the same as \ref status() "status(a, true)". |
| 825 | 830 |
void enable(const Arc& a) const { Parent::status(a, true); }
|
| 826 | 831 |
|
| 827 | 832 |
}; |
| 828 | 833 |
|
| 829 | 834 |
/// \brief Returns a read-only SubDigraph adaptor |
| 830 | 835 |
/// |
| 831 | 836 |
/// This function just returns a read-only \ref SubDigraph adaptor. |
| 832 | 837 |
/// \ingroup graph_adaptors |
| 833 | 838 |
/// \relates SubDigraph |
| 834 | 839 |
template<typename DGR, typename NF, typename AF> |
| 835 | 840 |
SubDigraph<const DGR, NF, AF> |
| 836 | 841 |
subDigraph(const DGR& digraph, |
| 837 | 842 |
NF& node_filter, AF& arc_filter) {
|
| 838 | 843 |
return SubDigraph<const DGR, NF, AF> |
| 839 | 844 |
(digraph, node_filter, arc_filter); |
| 840 | 845 |
} |
| 841 | 846 |
|
| 842 | 847 |
template<typename DGR, typename NF, typename AF> |
| 843 | 848 |
SubDigraph<const DGR, const NF, AF> |
| 844 | 849 |
subDigraph(const DGR& digraph, |
| 845 | 850 |
const NF& node_filter, AF& arc_filter) {
|
| 846 | 851 |
return SubDigraph<const DGR, const NF, AF> |
| 847 | 852 |
(digraph, node_filter, arc_filter); |
| 848 | 853 |
} |
| 849 | 854 |
|
| 850 | 855 |
template<typename DGR, typename NF, typename AF> |
| 851 | 856 |
SubDigraph<const DGR, NF, const AF> |
| 852 | 857 |
subDigraph(const DGR& digraph, |
| 853 | 858 |
NF& node_filter, const AF& arc_filter) {
|
| 854 | 859 |
return SubDigraph<const DGR, NF, const AF> |
| 855 | 860 |
(digraph, node_filter, arc_filter); |
| 856 | 861 |
} |
| 857 | 862 |
|
| 858 | 863 |
template<typename DGR, typename NF, typename AF> |
| 859 | 864 |
SubDigraph<const DGR, const NF, const AF> |
| 860 | 865 |
subDigraph(const DGR& digraph, |
| 861 | 866 |
const NF& node_filter, const AF& arc_filter) {
|
| 862 | 867 |
return SubDigraph<const DGR, const NF, const AF> |
| 863 | 868 |
(digraph, node_filter, arc_filter); |
| 864 | 869 |
} |
| 865 | 870 |
|
| 866 | 871 |
|
| 867 | 872 |
template <typename GR, typename NF, typename EF, bool ch = true> |
| 868 | 873 |
class SubGraphBase : public GraphAdaptorBase<GR> {
|
| 869 | 874 |
typedef GraphAdaptorBase<GR> Parent; |
| 870 | 875 |
public: |
| 871 | 876 |
typedef GR Graph; |
| 872 | 877 |
typedef NF NodeFilterMap; |
| 873 | 878 |
typedef EF EdgeFilterMap; |
| 874 | 879 |
|
| 875 | 880 |
typedef SubGraphBase Adaptor; |
| 876 | 881 |
protected: |
| 877 | 882 |
|
| 878 | 883 |
NF* _node_filter; |
| 879 | 884 |
EF* _edge_filter; |
| 880 | 885 |
|
| 881 | 886 |
SubGraphBase() |
| 882 | 887 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
| 883 | 888 |
|
| 884 | 889 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
|
| 885 | 890 |
Parent::initialize(graph); |
| 886 | 891 |
_node_filter = &node_filter; |
| 887 | 892 |
_edge_filter = &edge_filter; |
| 888 | 893 |
} |
| 889 | 894 |
|
| 890 | 895 |
public: |
| 891 | 896 |
|
| 892 | 897 |
typedef typename Parent::Node Node; |
| 893 | 898 |
typedef typename Parent::Arc Arc; |
| 894 | 899 |
typedef typename Parent::Edge Edge; |
| 895 | 900 |
|
| 896 | 901 |
void first(Node& i) const {
|
| 897 | 902 |
Parent::first(i); |
| 898 | 903 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 899 | 904 |
} |
| 900 | 905 |
|
| 901 | 906 |
void first(Arc& i) const {
|
| 902 | 907 |
Parent::first(i); |
| 903 | 908 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 904 | 909 |
|| !(*_node_filter)[Parent::source(i)] |
| 905 | 910 |
|| !(*_node_filter)[Parent::target(i)])) |
| 906 | 911 |
Parent::next(i); |
| 907 | 912 |
} |
| 908 | 913 |
|
| 909 | 914 |
void first(Edge& i) const {
|
| 910 | 915 |
Parent::first(i); |
| 911 | 916 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 912 | 917 |
|| !(*_node_filter)[Parent::u(i)] |
| 913 | 918 |
|| !(*_node_filter)[Parent::v(i)])) |
| 914 | 919 |
Parent::next(i); |
| 915 | 920 |
} |
| 916 | 921 |
|
| 917 | 922 |
void firstIn(Arc& i, const Node& n) const {
|
| 918 | 923 |
Parent::firstIn(i, n); |
| 919 | 924 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 920 | 925 |
|| !(*_node_filter)[Parent::source(i)])) |
| 921 | 926 |
Parent::nextIn(i); |
| 922 | 927 |
} |
| 923 | 928 |
|
| 924 | 929 |
void firstOut(Arc& i, const Node& n) const {
|
| 925 | 930 |
Parent::firstOut(i, n); |
| 926 | 931 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 927 | 932 |
|| !(*_node_filter)[Parent::target(i)])) |
| 928 | 933 |
Parent::nextOut(i); |
| 929 | 934 |
} |
| 930 | 935 |
|
| 931 | 936 |
void firstInc(Edge& i, bool& d, const Node& n) const {
|
| 932 | 937 |
Parent::firstInc(i, d, n); |
| 933 | 938 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 934 | 939 |
|| !(*_node_filter)[Parent::u(i)] |
| 935 | 940 |
|| !(*_node_filter)[Parent::v(i)])) |
| 936 | 941 |
Parent::nextInc(i, d); |
| 937 | 942 |
} |
| 938 | 943 |
|
| 939 | 944 |
void next(Node& i) const {
|
| 940 | 945 |
Parent::next(i); |
| 941 | 946 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 942 | 947 |
} |
| 943 | 948 |
|
| 944 | 949 |
void next(Arc& i) const {
|
| 945 | 950 |
Parent::next(i); |
| 946 | 951 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 947 | 952 |
|| !(*_node_filter)[Parent::source(i)] |
| 948 | 953 |
|| !(*_node_filter)[Parent::target(i)])) |
| 949 | 954 |
Parent::next(i); |
| 950 | 955 |
} |
| 951 | 956 |
|
| 952 | 957 |
void next(Edge& i) const {
|
| 953 | 958 |
Parent::next(i); |
| 954 | 959 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 955 | 960 |
|| !(*_node_filter)[Parent::u(i)] |
| 956 | 961 |
|| !(*_node_filter)[Parent::v(i)])) |
| 957 | 962 |
Parent::next(i); |
| 958 | 963 |
} |
| 959 | 964 |
|
| 960 | 965 |
void nextIn(Arc& i) const {
|
| 961 | 966 |
Parent::nextIn(i); |
| 962 | 967 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 963 | 968 |
|| !(*_node_filter)[Parent::source(i)])) |
| 964 | 969 |
Parent::nextIn(i); |
| 965 | 970 |
} |
| 966 | 971 |
|
| 967 | 972 |
void nextOut(Arc& i) const {
|
| 968 | 973 |
Parent::nextOut(i); |
| 969 | 974 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 970 | 975 |
|| !(*_node_filter)[Parent::target(i)])) |
| 971 | 976 |
Parent::nextOut(i); |
| 972 | 977 |
} |
| 973 | 978 |
|
| 974 | 979 |
void nextInc(Edge& i, bool& d) const {
|
| 975 | 980 |
Parent::nextInc(i, d); |
| 976 | 981 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 977 | 982 |
|| !(*_node_filter)[Parent::u(i)] |
| 978 | 983 |
|| !(*_node_filter)[Parent::v(i)])) |
| 979 | 984 |
Parent::nextInc(i, d); |
| 980 | 985 |
} |
| 981 | 986 |
|
| 982 | 987 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 983 | 988 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
|
| 984 | 989 |
|
| 985 | 990 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 986 | 991 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
|
| 987 | 992 |
|
| 988 | 993 |
typedef False NodeNumTag; |
| 989 | 994 |
typedef False ArcNumTag; |
| 990 | 995 |
typedef False EdgeNumTag; |
| 991 | 996 |
|
| 992 | 997 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 993 | 998 |
Arc findArc(const Node& u, const Node& v, |
| 994 | 999 |
const Arc& prev = INVALID) const {
|
| 995 | 1000 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
|
| 996 | 1001 |
return INVALID; |
| 997 | 1002 |
} |
| 998 | 1003 |
Arc arc = Parent::findArc(u, v, prev); |
| 999 | 1004 |
while (arc != INVALID && !(*_edge_filter)[arc]) {
|
| 1000 | 1005 |
arc = Parent::findArc(u, v, arc); |
| 1001 | 1006 |
} |
| 1002 | 1007 |
return arc; |
| 1003 | 1008 |
} |
| 1004 | 1009 |
|
| 1005 | 1010 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 1006 | 1011 |
Edge findEdge(const Node& u, const Node& v, |
| 1007 | 1012 |
const Edge& prev = INVALID) const {
|
| 1008 | 1013 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
|
| 1009 | 1014 |
return INVALID; |
| 1010 | 1015 |
} |
| 1011 | 1016 |
Edge edge = Parent::findEdge(u, v, prev); |
| 1012 | 1017 |
while (edge != INVALID && !(*_edge_filter)[edge]) {
|
| 1013 | 1018 |
edge = Parent::findEdge(u, v, edge); |
| 1014 | 1019 |
} |
| 1015 | 1020 |
return edge; |
| 1016 | 1021 |
} |
| 1017 | 1022 |
|
| 1018 | 1023 |
template <typename V> |
| 1019 | 1024 |
class NodeMap |
| 1020 | 1025 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1021 | 1026 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1022 | 1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1023 | 1028 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1024 | 1029 |
|
| 1025 | 1030 |
public: |
| 1026 | 1031 |
typedef V Value; |
| 1027 | 1032 |
|
| 1028 | 1033 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1029 | 1034 |
: Parent(adaptor) {}
|
| 1030 | 1035 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1031 | 1036 |
: Parent(adaptor, value) {}
|
| 1032 | 1037 |
|
| 1033 | 1038 |
private: |
| 1034 | 1039 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 1035 | 1040 |
return operator=<NodeMap>(cmap); |
| 1036 | 1041 |
} |
| 1037 | 1042 |
|
| 1038 | 1043 |
template <typename CMap> |
| 1039 | 1044 |
NodeMap& operator=(const CMap& cmap) {
|
| 1040 | 1045 |
Parent::operator=(cmap); |
| 1041 | 1046 |
return *this; |
| 1042 | 1047 |
} |
| 1043 | 1048 |
}; |
| 1044 | 1049 |
|
| 1045 | 1050 |
template <typename V> |
| 1046 | 1051 |
class ArcMap |
| 1047 | 1052 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1048 | 1053 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1049 | 1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1050 | 1055 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1051 | 1056 |
|
| 1052 | 1057 |
public: |
| 1053 | 1058 |
typedef V Value; |
| 1054 | 1059 |
|
| 1055 | 1060 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1056 | 1061 |
: Parent(adaptor) {}
|
| 1057 | 1062 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1058 | 1063 |
: Parent(adaptor, value) {}
|
| 1059 | 1064 |
|
| 1060 | 1065 |
private: |
| 1061 | 1066 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 1062 | 1067 |
return operator=<ArcMap>(cmap); |
| 1063 | 1068 |
} |
| 1064 | 1069 |
|
| 1065 | 1070 |
template <typename CMap> |
| 1066 | 1071 |
ArcMap& operator=(const CMap& cmap) {
|
| 1067 | 1072 |
Parent::operator=(cmap); |
| 1068 | 1073 |
return *this; |
| 1069 | 1074 |
} |
| 1070 | 1075 |
}; |
| 1071 | 1076 |
|
| 1072 | 1077 |
template <typename V> |
| 1073 | 1078 |
class EdgeMap |
| 1074 | 1079 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1075 | 1080 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1076 | 1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1077 | 1082 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
| 1078 | 1083 |
|
| 1079 | 1084 |
public: |
| 1080 | 1085 |
typedef V Value; |
| 1081 | 1086 |
|
| 1082 | 1087 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1083 | 1088 |
: Parent(adaptor) {}
|
| 1084 | 1089 |
|
| 1085 | 1090 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1086 | 1091 |
: Parent(adaptor, value) {}
|
| 1087 | 1092 |
|
| 1088 | 1093 |
private: |
| 1089 | 1094 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 1090 | 1095 |
return operator=<EdgeMap>(cmap); |
| 1091 | 1096 |
} |
| 1092 | 1097 |
|
| 1093 | 1098 |
template <typename CMap> |
| 1094 | 1099 |
EdgeMap& operator=(const CMap& cmap) {
|
| 1095 | 1100 |
Parent::operator=(cmap); |
| 1096 | 1101 |
return *this; |
| 1097 | 1102 |
} |
| 1098 | 1103 |
}; |
| 1099 | 1104 |
|
| 1100 | 1105 |
}; |
| 1101 | 1106 |
|
| 1102 | 1107 |
template <typename GR, typename NF, typename EF> |
| 1103 | 1108 |
class SubGraphBase<GR, NF, EF, false> |
| 1104 | 1109 |
: public GraphAdaptorBase<GR> {
|
| 1105 | 1110 |
typedef GraphAdaptorBase<GR> Parent; |
| 1106 | 1111 |
public: |
| 1107 | 1112 |
typedef GR Graph; |
| 1108 | 1113 |
typedef NF NodeFilterMap; |
| 1109 | 1114 |
typedef EF EdgeFilterMap; |
| 1110 | 1115 |
|
| 1111 | 1116 |
typedef SubGraphBase Adaptor; |
| 1112 | 1117 |
protected: |
| 1113 | 1118 |
NF* _node_filter; |
| 1114 | 1119 |
EF* _edge_filter; |
| 1115 | 1120 |
SubGraphBase() |
| 1116 | 1121 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
| 1117 | 1122 |
|
| 1118 | 1123 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
|
| 1119 | 1124 |
Parent::initialize(graph); |
| 1120 | 1125 |
_node_filter = &node_filter; |
| 1121 | 1126 |
_edge_filter = &edge_filter; |
| 1122 | 1127 |
} |
| 1123 | 1128 |
|
| 1124 | 1129 |
public: |
| 1125 | 1130 |
|
| 1126 | 1131 |
typedef typename Parent::Node Node; |
| 1127 | 1132 |
typedef typename Parent::Arc Arc; |
| 1128 | 1133 |
typedef typename Parent::Edge Edge; |
| 1129 | 1134 |
|
| 1130 | 1135 |
void first(Node& i) const {
|
| 1131 | 1136 |
Parent::first(i); |
| 1132 | 1137 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 1133 | 1138 |
} |
| 1134 | 1139 |
|
| 1135 | 1140 |
void first(Arc& i) const {
|
| 1136 | 1141 |
Parent::first(i); |
| 1137 | 1142 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1138 | 1143 |
} |
| 1139 | 1144 |
|
| 1140 | 1145 |
void first(Edge& i) const {
|
| 1141 | 1146 |
Parent::first(i); |
| 1142 | 1147 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1143 | 1148 |
} |
| 1144 | 1149 |
|
| 1145 | 1150 |
void firstIn(Arc& i, const Node& n) const {
|
| 1146 | 1151 |
Parent::firstIn(i, n); |
| 1147 | 1152 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
| 1148 | 1153 |
} |
| 1149 | 1154 |
|
| 1150 | 1155 |
void firstOut(Arc& i, const Node& n) const {
|
| 1151 | 1156 |
Parent::firstOut(i, n); |
| 1152 | 1157 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
| 1153 | 1158 |
} |
| 1154 | 1159 |
|
| 1155 | 1160 |
void firstInc(Edge& i, bool& d, const Node& n) const {
|
| 1156 | 1161 |
Parent::firstInc(i, d, n); |
| 1157 | 1162 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
| 1158 | 1163 |
} |
| 1159 | 1164 |
|
| 1160 | 1165 |
void next(Node& i) const {
|
| 1161 | 1166 |
Parent::next(i); |
| 1162 | 1167 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 1163 | 1168 |
} |
| 1164 | 1169 |
void next(Arc& i) const {
|
| 1165 | 1170 |
Parent::next(i); |
| 1166 | 1171 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1167 | 1172 |
} |
| 1168 | 1173 |
void next(Edge& i) const {
|
| 1169 | 1174 |
Parent::next(i); |
| 1170 | 1175 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1171 | 1176 |
} |
| 1172 | 1177 |
void nextIn(Arc& i) const {
|
| 1173 | 1178 |
Parent::nextIn(i); |
| 1174 | 1179 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
| 1175 | 1180 |
} |
| 1176 | 1181 |
|
| 1177 | 1182 |
void nextOut(Arc& i) const {
|
| 1178 | 1183 |
Parent::nextOut(i); |
| 1179 | 1184 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
| 1180 | 1185 |
} |
| 1181 | 1186 |
void nextInc(Edge& i, bool& d) const {
|
| 1182 | 1187 |
Parent::nextInc(i, d); |
| 1183 | 1188 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
| 1184 | 1189 |
} |
| 1185 | 1190 |
|
| 1186 | 1191 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 1187 | 1192 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
|
| 1188 | 1193 |
|
| 1189 | 1194 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 1190 | 1195 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
|
| 1191 | 1196 |
|
| 1192 | 1197 |
typedef False NodeNumTag; |
| 1193 | 1198 |
typedef False ArcNumTag; |
| 1194 | 1199 |
typedef False EdgeNumTag; |
| 1195 | 1200 |
|
| 1196 | 1201 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 1197 | 1202 |
Arc findArc(const Node& u, const Node& v, |
| 1198 | 1203 |
const Arc& prev = INVALID) const {
|
| 1199 | 1204 |
Arc arc = Parent::findArc(u, v, prev); |
| 1200 | 1205 |
while (arc != INVALID && !(*_edge_filter)[arc]) {
|
| 1201 | 1206 |
arc = Parent::findArc(u, v, arc); |
| 1202 | 1207 |
} |
| 1203 | 1208 |
return arc; |
| 1204 | 1209 |
} |
| 1205 | 1210 |
|
| 1206 | 1211 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 1207 | 1212 |
Edge findEdge(const Node& u, const Node& v, |
| 1208 | 1213 |
const Edge& prev = INVALID) const {
|
| 1209 | 1214 |
Edge edge = Parent::findEdge(u, v, prev); |
| 1210 | 1215 |
while (edge != INVALID && !(*_edge_filter)[edge]) {
|
| 1211 | 1216 |
edge = Parent::findEdge(u, v, edge); |
| 1212 | 1217 |
} |
| 1213 | 1218 |
return edge; |
| 1214 | 1219 |
} |
| 1215 | 1220 |
|
| 1216 | 1221 |
template <typename V> |
| 1217 | 1222 |
class NodeMap |
| 1218 | 1223 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1219 | 1224 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1220 | 1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1221 | 1226 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1222 | 1227 |
|
| 1223 | 1228 |
public: |
| 1224 | 1229 |
typedef V Value; |
| 1225 | 1230 |
|
| 1226 | 1231 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1227 | 1232 |
: Parent(adaptor) {}
|
| 1228 | 1233 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1229 | 1234 |
: Parent(adaptor, value) {}
|
| 1230 | 1235 |
|
| 1231 | 1236 |
private: |
| 1232 | 1237 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 1233 | 1238 |
return operator=<NodeMap>(cmap); |
| 1234 | 1239 |
} |
| 1235 | 1240 |
|
| 1236 | 1241 |
template <typename CMap> |
| 1237 | 1242 |
NodeMap& operator=(const CMap& cmap) {
|
| 1238 | 1243 |
Parent::operator=(cmap); |
| 1239 | 1244 |
return *this; |
| 1240 | 1245 |
} |
| 1241 | 1246 |
}; |
| 1242 | 1247 |
|
| 1243 | 1248 |
template <typename V> |
| 1244 | 1249 |
class ArcMap |
| 1245 | 1250 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1246 | 1251 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1247 | 1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1248 | 1253 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1249 | 1254 |
|
| 1250 | 1255 |
public: |
| 1251 | 1256 |
typedef V Value; |
| 1252 | 1257 |
|
| 1253 | 1258 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1254 | 1259 |
: Parent(adaptor) {}
|
| 1255 | 1260 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1256 | 1261 |
: Parent(adaptor, value) {}
|
| 1257 | 1262 |
|
| 1258 | 1263 |
private: |
| 1259 | 1264 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 1260 | 1265 |
return operator=<ArcMap>(cmap); |
| 1261 | 1266 |
} |
| 1262 | 1267 |
|
| 1263 | 1268 |
template <typename CMap> |
| 1264 | 1269 |
ArcMap& operator=(const CMap& cmap) {
|
| 1265 | 1270 |
Parent::operator=(cmap); |
| 1266 | 1271 |
return *this; |
| 1267 | 1272 |
} |
| 1268 | 1273 |
}; |
| 1269 | 1274 |
|
| 1270 | 1275 |
template <typename V> |
| 1271 | 1276 |
class EdgeMap |
| 1272 | 1277 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1273 | 1278 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1274 | 1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1275 | 1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
| 1276 | 1281 |
|
| 1277 | 1282 |
public: |
| 1278 | 1283 |
typedef V Value; |
| 1279 | 1284 |
|
| 1280 | 1285 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1281 | 1286 |
: Parent(adaptor) {}
|
| 1282 | 1287 |
|
| 1283 | 1288 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1284 | 1289 |
: Parent(adaptor, value) {}
|
| 1285 | 1290 |
|
| 1286 | 1291 |
private: |
| 1287 | 1292 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 1288 | 1293 |
return operator=<EdgeMap>(cmap); |
| 1289 | 1294 |
} |
| 1290 | 1295 |
|
| 1291 | 1296 |
template <typename CMap> |
| 1292 | 1297 |
EdgeMap& operator=(const CMap& cmap) {
|
| 1293 | 1298 |
Parent::operator=(cmap); |
| 1294 | 1299 |
return *this; |
| 1295 | 1300 |
} |
| 1296 | 1301 |
}; |
| 1297 | 1302 |
|
| 1298 | 1303 |
}; |
| 1299 | 1304 |
|
| 1300 | 1305 |
/// \ingroup graph_adaptors |
| 1301 | 1306 |
/// |
| 1302 | 1307 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
| 1303 | 1308 |
/// graph. |
| 1304 | 1309 |
/// |
| 1305 | 1310 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
| 1306 | 1311 |
/// A \c bool node map and a \c bool edge map must be specified, which |
| 1307 | 1312 |
/// define the filters for nodes and edges. |
| 1308 | 1313 |
/// Only the nodes and edges with \c true filter value are |
| 1309 | 1314 |
/// shown in the subgraph. The edges that are incident to hidden |
| 1310 | 1315 |
/// nodes are also filtered out. |
| 1311 | 1316 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 1312 | 1317 |
/// |
| 1313 | 1318 |
/// The adapted graph can also be modified through this adaptor |
| 1314 | 1319 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1315 | 1320 |
/// parameter is set to be \c const. |
| 1316 | 1321 |
/// |
| 1322 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
| 1323 |
/// |
|
| 1317 | 1324 |
/// \tparam GR The type of the adapted graph. |
| 1318 | 1325 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1319 | 1326 |
/// It can also be specified to be \c const. |
| 1320 | 1327 |
/// \tparam NF The type of the node filter map. |
| 1321 | 1328 |
/// It must be a \c bool (or convertible) node map of the |
| 1322 | 1329 |
/// adapted graph. The default type is |
| 1323 | 1330 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
| 1324 | 1331 |
/// \tparam EF The type of the edge filter map. |
| 1325 | 1332 |
/// It must be a \c bool (or convertible) edge map of the |
| 1326 | 1333 |
/// adapted graph. The default type is |
| 1327 | 1334 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
| 1328 | 1335 |
/// |
| 1329 | 1336 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
| 1330 | 1337 |
/// adapted graph are convertible to each other. |
| 1331 | 1338 |
/// |
| 1332 | 1339 |
/// \see FilterNodes |
| 1333 | 1340 |
/// \see FilterEdges |
| 1334 | 1341 |
#ifdef DOXYGEN |
| 1335 | 1342 |
template<typename GR, typename NF, typename EF> |
| 1336 | 1343 |
class SubGraph {
|
| 1337 | 1344 |
#else |
| 1338 | 1345 |
template<typename GR, |
| 1339 | 1346 |
typename NF = typename GR::template NodeMap<bool>, |
| 1340 | 1347 |
typename EF = typename GR::template EdgeMap<bool> > |
| 1341 | 1348 |
class SubGraph : |
| 1342 | 1349 |
public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
|
| 1343 | 1350 |
#endif |
| 1344 | 1351 |
public: |
| 1345 | 1352 |
/// The type of the adapted graph. |
| 1346 | 1353 |
typedef GR Graph; |
| 1347 | 1354 |
/// The type of the node filter map. |
| 1348 | 1355 |
typedef NF NodeFilterMap; |
| 1349 | 1356 |
/// The type of the edge filter map. |
| 1350 | 1357 |
typedef EF EdgeFilterMap; |
| 1351 | 1358 |
|
| 1352 | 1359 |
typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > |
| 1353 | 1360 |
Parent; |
| 1354 | 1361 |
|
| 1355 | 1362 |
typedef typename Parent::Node Node; |
| 1356 | 1363 |
typedef typename Parent::Edge Edge; |
| 1357 | 1364 |
|
| 1358 | 1365 |
protected: |
| 1359 | 1366 |
SubGraph() { }
|
| 1360 | 1367 |
public: |
| 1361 | 1368 |
|
| 1362 | 1369 |
/// \brief Constructor |
| 1363 | 1370 |
/// |
| 1364 | 1371 |
/// Creates a subgraph for the given graph with the given node |
| 1365 | 1372 |
/// and edge filter maps. |
| 1366 | 1373 |
SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
|
| 1367 | 1374 |
initialize(graph, node_filter, edge_filter); |
| 1368 | 1375 |
} |
| 1369 | 1376 |
|
| 1370 | 1377 |
/// \brief Sets the status of the given node |
| 1371 | 1378 |
/// |
| 1372 | 1379 |
/// This function sets the status of the given node. |
| 1373 | 1380 |
/// It is done by simply setting the assigned value of \c n |
| 1374 | 1381 |
/// to \c v in the node filter map. |
| 1375 | 1382 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 1376 | 1383 |
|
| 1377 | 1384 |
/// \brief Sets the status of the given edge |
| 1378 | 1385 |
/// |
| 1379 | 1386 |
/// This function sets the status of the given edge. |
| 1380 | 1387 |
/// It is done by simply setting the assigned value of \c e |
| 1381 | 1388 |
/// to \c v in the edge filter map. |
| 1382 | 1389 |
void status(const Edge& e, bool v) const { Parent::status(e, v); }
|
| 1383 | 1390 |
|
| 1384 | 1391 |
/// \brief Returns the status of the given node |
| 1385 | 1392 |
/// |
| 1386 | 1393 |
/// This function returns the status of the given node. |
| 1387 | 1394 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
| 1388 | 1395 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 1389 | 1396 |
|
| 1390 | 1397 |
/// \brief Returns the status of the given edge |
| 1391 | 1398 |
/// |
| 1392 | 1399 |
/// This function returns the status of the given edge. |
| 1393 | 1400 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
| 1394 | 1401 |
bool status(const Edge& e) const { return Parent::status(e); }
|
| 1395 | 1402 |
|
| 1396 | 1403 |
/// \brief Disables the given node |
| 1397 | 1404 |
/// |
| 1398 | 1405 |
/// This function disables the given node in the subdigraph, |
| 1399 | 1406 |
/// so the iteration jumps over it. |
| 1400 | 1407 |
/// It is the same as \ref status() "status(n, false)". |
| 1401 | 1408 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 1402 | 1409 |
|
| 1403 | 1410 |
/// \brief Disables the given edge |
| 1404 | 1411 |
/// |
| 1405 | 1412 |
/// This function disables the given edge in the subgraph, |
| 1406 | 1413 |
/// so the iteration jumps over it. |
| 1407 | 1414 |
/// It is the same as \ref status() "status(e, false)". |
| 1408 | 1415 |
void disable(const Edge& e) const { Parent::status(e, false); }
|
| 1409 | 1416 |
|
| 1410 | 1417 |
/// \brief Enables the given node |
| 1411 | 1418 |
/// |
| 1412 | 1419 |
/// This function enables the given node in the subdigraph. |
| 1413 | 1420 |
/// It is the same as \ref status() "status(n, true)". |
| 1414 | 1421 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 1415 | 1422 |
|
| 1416 | 1423 |
/// \brief Enables the given edge |
| 1417 | 1424 |
/// |
| 1418 | 1425 |
/// This function enables the given edge in the subgraph. |
| 1419 | 1426 |
/// It is the same as \ref status() "status(e, true)". |
| 1420 | 1427 |
void enable(const Edge& e) const { Parent::status(e, true); }
|
| 1421 | 1428 |
|
| 1422 | 1429 |
}; |
| 1423 | 1430 |
|
| 1424 | 1431 |
/// \brief Returns a read-only SubGraph adaptor |
| 1425 | 1432 |
/// |
| 1426 | 1433 |
/// This function just returns a read-only \ref SubGraph adaptor. |
| 1427 | 1434 |
/// \ingroup graph_adaptors |
| 1428 | 1435 |
/// \relates SubGraph |
| 1429 | 1436 |
template<typename GR, typename NF, typename EF> |
| 1430 | 1437 |
SubGraph<const GR, NF, EF> |
| 1431 | 1438 |
subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
|
| 1432 | 1439 |
return SubGraph<const GR, NF, EF> |
| 1433 | 1440 |
(graph, node_filter, edge_filter); |
| 1434 | 1441 |
} |
| 1435 | 1442 |
|
| 1436 | 1443 |
template<typename GR, typename NF, typename EF> |
| 1437 | 1444 |
SubGraph<const GR, const NF, EF> |
| 1438 | 1445 |
subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
|
| 1439 | 1446 |
return SubGraph<const GR, const NF, EF> |
| 1440 | 1447 |
(graph, node_filter, edge_filter); |
| 1441 | 1448 |
} |
| 1442 | 1449 |
|
| 1443 | 1450 |
template<typename GR, typename NF, typename EF> |
| 1444 | 1451 |
SubGraph<const GR, NF, const EF> |
| 1445 | 1452 |
subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
|
| 1446 | 1453 |
return SubGraph<const GR, NF, const EF> |
| 1447 | 1454 |
(graph, node_filter, edge_filter); |
| 1448 | 1455 |
} |
| 1449 | 1456 |
|
| 1450 | 1457 |
template<typename GR, typename NF, typename EF> |
| 1451 | 1458 |
SubGraph<const GR, const NF, const EF> |
| 1452 | 1459 |
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
|
| 1453 | 1460 |
return SubGraph<const GR, const NF, const EF> |
| 1454 | 1461 |
(graph, node_filter, edge_filter); |
| 1455 | 1462 |
} |
| 1456 | 1463 |
|
| 1457 | 1464 |
|
| 1458 | 1465 |
/// \ingroup graph_adaptors |
| 1459 | 1466 |
/// |
| 1460 | 1467 |
/// \brief Adaptor class for hiding nodes in a digraph or a graph. |
| 1461 | 1468 |
/// |
| 1462 | 1469 |
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a |
| 1463 | 1470 |
/// graph. A \c bool node map must be specified, which defines the filter |
| 1464 | 1471 |
/// for the nodes. Only the nodes with \c true filter value and the |
| 1465 | 1472 |
/// arcs/edges incident to nodes both with \c true filter value are shown |
| 1466 | 1473 |
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph |
| 1467 | 1474 |
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept |
| 1468 | 1475 |
/// depending on the \c GR template parameter. |
| 1469 | 1476 |
/// |
| 1470 | 1477 |
/// The adapted (di)graph can also be modified through this adaptor |
| 1471 | 1478 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
| 1472 | 1479 |
/// parameter is set to be \c const. |
| 1473 | 1480 |
/// |
| 1481 |
/// This class provides only linear time item counting. |
|
| 1482 |
/// |
|
| 1474 | 1483 |
/// \tparam GR The type of the adapted digraph or graph. |
| 1475 | 1484 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
| 1476 | 1485 |
/// or the \ref concepts::Graph "Graph" concept. |
| 1477 | 1486 |
/// It can also be specified to be \c const. |
| 1478 | 1487 |
/// \tparam NF The type of the node filter map. |
| 1479 | 1488 |
/// It must be a \c bool (or convertible) node map of the |
| 1480 | 1489 |
/// adapted (di)graph. The default type is |
| 1481 | 1490 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
| 1482 | 1491 |
/// |
| 1483 | 1492 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
| 1484 | 1493 |
/// adapted (di)graph are convertible to each other. |
| 1485 | 1494 |
#ifdef DOXYGEN |
| 1486 | 1495 |
template<typename GR, typename NF> |
| 1487 | 1496 |
class FilterNodes {
|
| 1488 | 1497 |
#else |
| 1489 | 1498 |
template<typename GR, |
| 1490 | 1499 |
typename NF = typename GR::template NodeMap<bool>, |
| 1491 | 1500 |
typename Enable = void> |
| 1492 | 1501 |
class FilterNodes : |
| 1493 | 1502 |
public DigraphAdaptorExtender< |
| 1494 | 1503 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
| 1495 | 1504 |
true> > {
|
| 1496 | 1505 |
#endif |
| 1497 | 1506 |
typedef DigraphAdaptorExtender< |
| 1498 | 1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
| 1499 | 1508 |
true> > Parent; |
| 1500 | 1509 |
|
| 1501 | 1510 |
public: |
| 1502 | 1511 |
|
| 1503 | 1512 |
typedef GR Digraph; |
| 1504 | 1513 |
typedef NF NodeFilterMap; |
| 1505 | 1514 |
|
| 1506 | 1515 |
typedef typename Parent::Node Node; |
| 1507 | 1516 |
|
| 1508 | 1517 |
protected: |
| 1509 | 1518 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
| 1510 | 1519 |
|
| 1511 | 1520 |
FilterNodes() : const_true_map() {}
|
| 1512 | 1521 |
|
| 1513 | 1522 |
public: |
| 1514 | 1523 |
|
| 1515 | 1524 |
/// \brief Constructor |
| 1516 | 1525 |
/// |
| 1517 | 1526 |
/// Creates a subgraph for the given digraph or graph with the |
| 1518 | 1527 |
/// given node filter map. |
| 1519 | 1528 |
FilterNodes(GR& graph, NF& node_filter) |
| 1520 | 1529 |
: Parent(), const_true_map() |
| 1521 | 1530 |
{
|
| 1522 | 1531 |
Parent::initialize(graph, node_filter, const_true_map); |
| 1523 | 1532 |
} |
| 1524 | 1533 |
|
| 1525 | 1534 |
/// \brief Sets the status of the given node |
| 1526 | 1535 |
/// |
| 1527 | 1536 |
/// This function sets the status of the given node. |
| 1528 | 1537 |
/// It is done by simply setting the assigned value of \c n |
| 1529 | 1538 |
/// to \c v in the node filter map. |
| 1530 | 1539 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 1531 | 1540 |
|
| 1532 | 1541 |
/// \brief Returns the status of the given node |
| 1533 | 1542 |
/// |
| 1534 | 1543 |
/// This function returns the status of the given node. |
| 1535 | 1544 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
| 1536 | 1545 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 1537 | 1546 |
|
| 1538 | 1547 |
/// \brief Disables the given node |
| 1539 | 1548 |
/// |
| 1540 | 1549 |
/// This function disables the given node, so the iteration |
| 1541 | 1550 |
/// jumps over it. |
| 1542 | 1551 |
/// It is the same as \ref status() "status(n, false)". |
| 1543 | 1552 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 1544 | 1553 |
|
| 1545 | 1554 |
/// \brief Enables the given node |
| 1546 | 1555 |
/// |
| 1547 | 1556 |
/// This function enables the given node. |
| 1548 | 1557 |
/// It is the same as \ref status() "status(n, true)". |
| 1549 | 1558 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 1550 | 1559 |
|
| 1551 | 1560 |
}; |
| 1552 | 1561 |
|
| 1553 | 1562 |
template<typename GR, typename NF> |
| 1554 | 1563 |
class FilterNodes<GR, NF, |
| 1555 | 1564 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
| 1556 | 1565 |
public GraphAdaptorExtender< |
| 1557 | 1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
| 1558 | 1567 |
true> > {
|
| 1559 | 1568 |
|
| 1560 | 1569 |
typedef GraphAdaptorExtender< |
| 1561 | 1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
| 1562 | 1571 |
true> > Parent; |
| 1563 | 1572 |
|
| 1564 | 1573 |
public: |
| 1565 | 1574 |
|
| 1566 | 1575 |
typedef GR Graph; |
| 1567 | 1576 |
typedef NF NodeFilterMap; |
| 1568 | 1577 |
|
| 1569 | 1578 |
typedef typename Parent::Node Node; |
| 1570 | 1579 |
|
| 1571 | 1580 |
protected: |
| 1572 | 1581 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
| 1573 | 1582 |
|
| 1574 | 1583 |
FilterNodes() : const_true_map() {}
|
| 1575 | 1584 |
|
| 1576 | 1585 |
public: |
| 1577 | 1586 |
|
| 1578 | 1587 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
| 1579 | 1588 |
Parent(), const_true_map() {
|
| 1580 | 1589 |
Parent::initialize(graph, node_filter, const_true_map); |
| 1581 | 1590 |
} |
| 1582 | 1591 |
|
| 1583 | 1592 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 1584 | 1593 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 1585 | 1594 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 1586 | 1595 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 1587 | 1596 |
|
| 1588 | 1597 |
}; |
| 1589 | 1598 |
|
| 1590 | 1599 |
|
| 1591 | 1600 |
/// \brief Returns a read-only FilterNodes adaptor |
| 1592 | 1601 |
/// |
| 1593 | 1602 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
| 1594 | 1603 |
/// \ingroup graph_adaptors |
| 1595 | 1604 |
/// \relates FilterNodes |
| 1596 | 1605 |
template<typename GR, typename NF> |
| 1597 | 1606 |
FilterNodes<const GR, NF> |
| 1598 | 1607 |
filterNodes(const GR& graph, NF& node_filter) {
|
| 1599 | 1608 |
return FilterNodes<const GR, NF>(graph, node_filter); |
| 1600 | 1609 |
} |
| 1601 | 1610 |
|
| 1602 | 1611 |
template<typename GR, typename NF> |
| 1603 | 1612 |
FilterNodes<const GR, const NF> |
| 1604 | 1613 |
filterNodes(const GR& graph, const NF& node_filter) {
|
| 1605 | 1614 |
return FilterNodes<const GR, const NF>(graph, node_filter); |
| 1606 | 1615 |
} |
| 1607 | 1616 |
|
| 1608 | 1617 |
/// \ingroup graph_adaptors |
| 1609 | 1618 |
/// |
| 1610 | 1619 |
/// \brief Adaptor class for hiding arcs in a digraph. |
| 1611 | 1620 |
/// |
| 1612 | 1621 |
/// FilterArcs adaptor can be used for hiding arcs in a digraph. |
| 1613 | 1622 |
/// A \c bool arc map must be specified, which defines the filter for |
| 1614 | 1623 |
/// the arcs. Only the arcs with \c true filter value are shown in the |
| 1615 | 1624 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
| 1616 | 1625 |
/// "Digraph" concept. |
| 1617 | 1626 |
/// |
| 1618 | 1627 |
/// The adapted digraph can also be modified through this adaptor |
| 1619 | 1628 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 1620 | 1629 |
/// parameter is set to be \c const. |
| 1621 | 1630 |
/// |
| 1631 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 1632 |
/// |
|
| 1622 | 1633 |
/// \tparam DGR The type of the adapted digraph. |
| 1623 | 1634 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 1624 | 1635 |
/// It can also be specified to be \c const. |
| 1625 | 1636 |
/// \tparam AF The type of the arc filter map. |
| 1626 | 1637 |
/// It must be a \c bool (or convertible) arc map of the |
| 1627 | 1638 |
/// adapted digraph. The default type is |
| 1628 | 1639 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
| 1629 | 1640 |
/// |
| 1630 | 1641 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 1631 | 1642 |
/// digraph are convertible to each other. |
| 1632 | 1643 |
#ifdef DOXYGEN |
| 1633 | 1644 |
template<typename DGR, |
| 1634 | 1645 |
typename AF> |
| 1635 | 1646 |
class FilterArcs {
|
| 1636 | 1647 |
#else |
| 1637 | 1648 |
template<typename DGR, |
| 1638 | 1649 |
typename AF = typename DGR::template ArcMap<bool> > |
| 1639 | 1650 |
class FilterArcs : |
| 1640 | 1651 |
public DigraphAdaptorExtender< |
| 1641 | 1652 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
| 1642 | 1653 |
AF, false> > {
|
| 1643 | 1654 |
#endif |
| 1644 | 1655 |
typedef DigraphAdaptorExtender< |
| 1645 | 1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
| 1646 | 1657 |
AF, false> > Parent; |
| 1647 | 1658 |
|
| 1648 | 1659 |
public: |
| 1649 | 1660 |
|
| 1650 | 1661 |
/// The type of the adapted digraph. |
| 1651 | 1662 |
typedef DGR Digraph; |
| 1652 | 1663 |
/// The type of the arc filter map. |
| 1653 | 1664 |
typedef AF ArcFilterMap; |
| 1654 | 1665 |
|
| 1655 | 1666 |
typedef typename Parent::Arc Arc; |
| 1656 | 1667 |
|
| 1657 | 1668 |
protected: |
| 1658 | 1669 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
| 1659 | 1670 |
|
| 1660 | 1671 |
FilterArcs() : const_true_map() {}
|
| 1661 | 1672 |
|
| 1662 | 1673 |
public: |
| 1663 | 1674 |
|
| 1664 | 1675 |
/// \brief Constructor |
| 1665 | 1676 |
/// |
| 1666 | 1677 |
/// Creates a subdigraph for the given digraph with the given arc |
| 1667 | 1678 |
/// filter map. |
| 1668 | 1679 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
| 1669 | 1680 |
: Parent(), const_true_map() {
|
| 1670 | 1681 |
Parent::initialize(digraph, const_true_map, arc_filter); |
| 1671 | 1682 |
} |
| 1672 | 1683 |
|
| 1673 | 1684 |
/// \brief Sets the status of the given arc |
| 1674 | 1685 |
/// |
| 1675 | 1686 |
/// This function sets the status of the given arc. |
| 1676 | 1687 |
/// It is done by simply setting the assigned value of \c a |
| 1677 | 1688 |
/// to \c v in the arc filter map. |
| 1678 | 1689 |
void status(const Arc& a, bool v) const { Parent::status(a, v); }
|
| 1679 | 1690 |
|
| 1680 | 1691 |
/// \brief Returns the status of the given arc |
| 1681 | 1692 |
/// |
| 1682 | 1693 |
/// This function returns the status of the given arc. |
| 1683 | 1694 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
| 1684 | 1695 |
bool status(const Arc& a) const { return Parent::status(a); }
|
| 1685 | 1696 |
|
| 1686 | 1697 |
/// \brief Disables the given arc |
| 1687 | 1698 |
/// |
| 1688 | 1699 |
/// This function disables the given arc in the subdigraph, |
| 1689 | 1700 |
/// so the iteration jumps over it. |
| 1690 | 1701 |
/// It is the same as \ref status() "status(a, false)". |
| 1691 | 1702 |
void disable(const Arc& a) const { Parent::status(a, false); }
|
| 1692 | 1703 |
|
| 1693 | 1704 |
/// \brief Enables the given arc |
| 1694 | 1705 |
/// |
| 1695 | 1706 |
/// This function enables the given arc in the subdigraph. |
| 1696 | 1707 |
/// It is the same as \ref status() "status(a, true)". |
| 1697 | 1708 |
void enable(const Arc& a) const { Parent::status(a, true); }
|
| 1698 | 1709 |
|
| 1699 | 1710 |
}; |
| 1700 | 1711 |
|
| 1701 | 1712 |
/// \brief Returns a read-only FilterArcs adaptor |
| 1702 | 1713 |
/// |
| 1703 | 1714 |
/// This function just returns a read-only \ref FilterArcs adaptor. |
| 1704 | 1715 |
/// \ingroup graph_adaptors |
| 1705 | 1716 |
/// \relates FilterArcs |
| 1706 | 1717 |
template<typename DGR, typename AF> |
| 1707 | 1718 |
FilterArcs<const DGR, AF> |
| 1708 | 1719 |
filterArcs(const DGR& digraph, AF& arc_filter) {
|
| 1709 | 1720 |
return FilterArcs<const DGR, AF>(digraph, arc_filter); |
| 1710 | 1721 |
} |
| 1711 | 1722 |
|
| 1712 | 1723 |
template<typename DGR, typename AF> |
| 1713 | 1724 |
FilterArcs<const DGR, const AF> |
| 1714 | 1725 |
filterArcs(const DGR& digraph, const AF& arc_filter) {
|
| 1715 | 1726 |
return FilterArcs<const DGR, const AF>(digraph, arc_filter); |
| 1716 | 1727 |
} |
| 1717 | 1728 |
|
| 1718 | 1729 |
/// \ingroup graph_adaptors |
| 1719 | 1730 |
/// |
| 1720 | 1731 |
/// \brief Adaptor class for hiding edges in a graph. |
| 1721 | 1732 |
/// |
| 1722 | 1733 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
| 1723 | 1734 |
/// A \c bool edge map must be specified, which defines the filter for |
| 1724 | 1735 |
/// the edges. Only the edges with \c true filter value are shown in the |
| 1725 | 1736 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
| 1726 | 1737 |
/// "Graph" concept. |
| 1727 | 1738 |
/// |
| 1728 | 1739 |
/// The adapted graph can also be modified through this adaptor |
| 1729 | 1740 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1730 | 1741 |
/// parameter is set to be \c const. |
| 1731 | 1742 |
/// |
| 1743 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
| 1744 |
/// |
|
| 1732 | 1745 |
/// \tparam GR The type of the adapted graph. |
| 1733 | 1746 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1734 | 1747 |
/// It can also be specified to be \c const. |
| 1735 | 1748 |
/// \tparam EF The type of the edge filter map. |
| 1736 | 1749 |
/// It must be a \c bool (or convertible) edge map of the |
| 1737 | 1750 |
/// adapted graph. The default type is |
| 1738 | 1751 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
| 1739 | 1752 |
/// |
| 1740 | 1753 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
| 1741 | 1754 |
/// adapted graph are convertible to each other. |
| 1742 | 1755 |
#ifdef DOXYGEN |
| 1743 | 1756 |
template<typename GR, |
| 1744 | 1757 |
typename EF> |
| 1745 | 1758 |
class FilterEdges {
|
| 1746 | 1759 |
#else |
| 1747 | 1760 |
template<typename GR, |
| 1748 | 1761 |
typename EF = typename GR::template EdgeMap<bool> > |
| 1749 | 1762 |
class FilterEdges : |
| 1750 | 1763 |
public GraphAdaptorExtender< |
| 1751 | 1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
| 1752 | 1765 |
EF, false> > {
|
| 1753 | 1766 |
#endif |
| 1754 | 1767 |
typedef GraphAdaptorExtender< |
| 1755 | 1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
| 1756 | 1769 |
EF, false> > Parent; |
| 1757 | 1770 |
|
| 1758 | 1771 |
public: |
| 1759 | 1772 |
|
| 1760 | 1773 |
/// The type of the adapted graph. |
| 1761 | 1774 |
typedef GR Graph; |
| 1762 | 1775 |
/// The type of the edge filter map. |
| 1763 | 1776 |
typedef EF EdgeFilterMap; |
| 1764 | 1777 |
|
| 1765 | 1778 |
typedef typename Parent::Edge Edge; |
| 1766 | 1779 |
|
| 1767 | 1780 |
protected: |
| 1768 | 1781 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
| 1769 | 1782 |
|
| 1770 | 1783 |
FilterEdges() : const_true_map(true) {
|
| 1771 | 1784 |
Parent::setNodeFilterMap(const_true_map); |
| 1772 | 1785 |
} |
| 1773 | 1786 |
|
| 1774 | 1787 |
public: |
| 1775 | 1788 |
|
| 1776 | 1789 |
/// \brief Constructor |
| 1777 | 1790 |
/// |
| 1778 | 1791 |
/// Creates a subgraph for the given graph with the given edge |
| 1779 | 1792 |
/// filter map. |
| 1780 | 1793 |
FilterEdges(GR& graph, EF& edge_filter) |
| 1781 | 1794 |
: Parent(), const_true_map() {
|
| 1782 | 1795 |
Parent::initialize(graph, const_true_map, edge_filter); |
| 1783 | 1796 |
} |
| 1784 | 1797 |
|
| 1785 | 1798 |
/// \brief Sets the status of the given edge |
| 1786 | 1799 |
/// |
| 1787 | 1800 |
/// This function sets the status of the given edge. |
| 1788 | 1801 |
/// It is done by simply setting the assigned value of \c e |
| 1789 | 1802 |
/// to \c v in the edge filter map. |
| 1790 | 1803 |
void status(const Edge& e, bool v) const { Parent::status(e, v); }
|
| 1791 | 1804 |
|
| 1792 | 1805 |
/// \brief Returns the status of the given edge |
| 1793 | 1806 |
/// |
| 1794 | 1807 |
/// This function returns the status of the given edge. |
| 1795 | 1808 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
| 1796 | 1809 |
bool status(const Edge& e) const { return Parent::status(e); }
|
| 1797 | 1810 |
|
| 1798 | 1811 |
/// \brief Disables the given edge |
| 1799 | 1812 |
/// |
| 1800 | 1813 |
/// This function disables the given edge in the subgraph, |
| 1801 | 1814 |
/// so the iteration jumps over it. |
| 1802 | 1815 |
/// It is the same as \ref status() "status(e, false)". |
| 1803 | 1816 |
void disable(const Edge& e) const { Parent::status(e, false); }
|
| 1804 | 1817 |
|
| 1805 | 1818 |
/// \brief Enables the given edge |
| 1806 | 1819 |
/// |
| 1807 | 1820 |
/// This function enables the given edge in the subgraph. |
| 1808 | 1821 |
/// It is the same as \ref status() "status(e, true)". |
| 1809 | 1822 |
void enable(const Edge& e) const { Parent::status(e, true); }
|
| 1810 | 1823 |
|
| 1811 | 1824 |
}; |
| 1812 | 1825 |
|
| 1813 | 1826 |
/// \brief Returns a read-only FilterEdges adaptor |
| 1814 | 1827 |
/// |
| 1815 | 1828 |
/// This function just returns a read-only \ref FilterEdges adaptor. |
| 1816 | 1829 |
/// \ingroup graph_adaptors |
| 1817 | 1830 |
/// \relates FilterEdges |
| 1818 | 1831 |
template<typename GR, typename EF> |
| 1819 | 1832 |
FilterEdges<const GR, EF> |
| 1820 | 1833 |
filterEdges(const GR& graph, EF& edge_filter) {
|
| 1821 | 1834 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
| 1822 | 1835 |
} |
| 1823 | 1836 |
|
| 1824 | 1837 |
template<typename GR, typename EF> |
| 1825 | 1838 |
FilterEdges<const GR, const EF> |
| 1826 | 1839 |
filterEdges(const GR& graph, const EF& edge_filter) {
|
| 1827 | 1840 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
| 1828 | 1841 |
} |
| 1829 | 1842 |
|
| 1830 | 1843 |
|
| 1831 | 1844 |
template <typename DGR> |
| 1832 | 1845 |
class UndirectorBase {
|
| 1833 | 1846 |
public: |
| 1834 | 1847 |
typedef DGR Digraph; |
| 1835 | 1848 |
typedef UndirectorBase Adaptor; |
| 1836 | 1849 |
|
| 1837 | 1850 |
typedef True UndirectedTag; |
| 1838 | 1851 |
|
| 1839 | 1852 |
typedef typename Digraph::Arc Edge; |
| 1840 | 1853 |
typedef typename Digraph::Node Node; |
| 1841 | 1854 |
|
| 1842 | 1855 |
class Arc {
|
| 1843 | 1856 |
friend class UndirectorBase; |
| 1844 | 1857 |
protected: |
| 1845 | 1858 |
Edge _edge; |
| 1846 | 1859 |
bool _forward; |
| 1847 | 1860 |
|
| 1848 | 1861 |
Arc(const Edge& edge, bool forward) |
| 1849 | 1862 |
: _edge(edge), _forward(forward) {}
|
| 1850 | 1863 |
|
| 1851 | 1864 |
public: |
| 1852 | 1865 |
Arc() {}
|
| 1853 | 1866 |
|
| 1854 | 1867 |
Arc(Invalid) : _edge(INVALID), _forward(true) {}
|
| 1855 | 1868 |
|
| 1856 | 1869 |
operator const Edge&() const { return _edge; }
|
| 1857 | 1870 |
|
| 1858 | 1871 |
bool operator==(const Arc &other) const {
|
| 1859 | 1872 |
return _forward == other._forward && _edge == other._edge; |
| 1860 | 1873 |
} |
| 1861 | 1874 |
bool operator!=(const Arc &other) const {
|
| 1862 | 1875 |
return _forward != other._forward || _edge != other._edge; |
| 1863 | 1876 |
} |
| 1864 | 1877 |
bool operator<(const Arc &other) const {
|
| 1865 | 1878 |
return _forward < other._forward || |
| 1866 | 1879 |
(_forward == other._forward && _edge < other._edge); |
| 1867 | 1880 |
} |
| 1868 | 1881 |
}; |
| 1869 | 1882 |
|
| 1870 | 1883 |
void first(Node& n) const {
|
| 1871 | 1884 |
_digraph->first(n); |
| 1872 | 1885 |
} |
| 1873 | 1886 |
|
| 1874 | 1887 |
void next(Node& n) const {
|
| 1875 | 1888 |
_digraph->next(n); |
| 1876 | 1889 |
} |
| 1877 | 1890 |
|
| 1878 | 1891 |
void first(Arc& a) const {
|
| 1879 | 1892 |
_digraph->first(a._edge); |
| 1880 | 1893 |
a._forward = true; |
| 1881 | 1894 |
} |
| 1882 | 1895 |
|
| 1883 | 1896 |
void next(Arc& a) const {
|
| 1884 | 1897 |
if (a._forward) {
|
| 1885 | 1898 |
a._forward = false; |
| 1886 | 1899 |
} else {
|
| 1887 | 1900 |
_digraph->next(a._edge); |
| 1888 | 1901 |
a._forward = true; |
| 1889 | 1902 |
} |
| 1890 | 1903 |
} |
| 1891 | 1904 |
|
| 1892 | 1905 |
void first(Edge& e) const {
|
| 1893 | 1906 |
_digraph->first(e); |
| 1894 | 1907 |
} |
| 1895 | 1908 |
|
| 1896 | 1909 |
void next(Edge& e) const {
|
| 1897 | 1910 |
_digraph->next(e); |
| 1898 | 1911 |
} |
| 1899 | 1912 |
|
| 1900 | 1913 |
void firstOut(Arc& a, const Node& n) const {
|
| 1901 | 1914 |
_digraph->firstIn(a._edge, n); |
| 1902 | 1915 |
if (a._edge != INVALID ) {
|
| 1903 | 1916 |
a._forward = false; |
| 1904 | 1917 |
} else {
|
| 1905 | 1918 |
_digraph->firstOut(a._edge, n); |
| 1906 | 1919 |
a._forward = true; |
| 1907 | 1920 |
} |
| 1908 | 1921 |
} |
| 1909 | 1922 |
void nextOut(Arc &a) const {
|
| 1910 | 1923 |
if (!a._forward) {
|
| 1911 | 1924 |
Node n = _digraph->target(a._edge); |
| 1912 | 1925 |
_digraph->nextIn(a._edge); |
| 1913 | 1926 |
if (a._edge == INVALID) {
|
| 1914 | 1927 |
_digraph->firstOut(a._edge, n); |
| 1915 | 1928 |
a._forward = true; |
| 1916 | 1929 |
} |
| 1917 | 1930 |
} |
| 1918 | 1931 |
else {
|
| 1919 | 1932 |
_digraph->nextOut(a._edge); |
| 1920 | 1933 |
} |
| 1921 | 1934 |
} |
| 1922 | 1935 |
|
| 1923 | 1936 |
void firstIn(Arc &a, const Node &n) const {
|
| 1924 | 1937 |
_digraph->firstOut(a._edge, n); |
| 1925 | 1938 |
if (a._edge != INVALID ) {
|
| 1926 | 1939 |
a._forward = false; |
| 1927 | 1940 |
} else {
|
| 1928 | 1941 |
_digraph->firstIn(a._edge, n); |
| 1929 | 1942 |
a._forward = true; |
| 1930 | 1943 |
} |
| 1931 | 1944 |
} |
| 1932 | 1945 |
void nextIn(Arc &a) const {
|
| 1933 | 1946 |
if (!a._forward) {
|
| 1934 | 1947 |
Node n = _digraph->source(a._edge); |
| 1935 | 1948 |
_digraph->nextOut(a._edge); |
| 1936 | 1949 |
if (a._edge == INVALID ) {
|
| 1937 | 1950 |
_digraph->firstIn(a._edge, n); |
| 1938 | 1951 |
a._forward = true; |
| 1939 | 1952 |
} |
| 1940 | 1953 |
} |
| 1941 | 1954 |
else {
|
| 1942 | 1955 |
_digraph->nextIn(a._edge); |
| 1943 | 1956 |
} |
| 1944 | 1957 |
} |
| 1945 | 1958 |
|
| 1946 | 1959 |
void firstInc(Edge &e, bool &d, const Node &n) const {
|
| 1947 | 1960 |
d = true; |
| 1948 | 1961 |
_digraph->firstOut(e, n); |
| 1949 | 1962 |
if (e != INVALID) return; |
| 1950 | 1963 |
d = false; |
| 1951 | 1964 |
_digraph->firstIn(e, n); |
| 1952 | 1965 |
} |
| 1953 | 1966 |
|
| 1954 | 1967 |
void nextInc(Edge &e, bool &d) const {
|
| 1955 | 1968 |
if (d) {
|
| 1956 | 1969 |
Node s = _digraph->source(e); |
| 1957 | 1970 |
_digraph->nextOut(e); |
| 1958 | 1971 |
if (e != INVALID) return; |
| 1959 | 1972 |
d = false; |
| 1960 | 1973 |
_digraph->firstIn(e, s); |
| 1961 | 1974 |
} else {
|
| 1962 | 1975 |
_digraph->nextIn(e); |
| 1963 | 1976 |
} |
| 1964 | 1977 |
} |
| 1965 | 1978 |
|
| 1966 | 1979 |
Node u(const Edge& e) const {
|
| 1967 | 1980 |
return _digraph->source(e); |
| 1968 | 1981 |
} |
| 1969 | 1982 |
|
| 1970 | 1983 |
Node v(const Edge& e) const {
|
| 1971 | 1984 |
return _digraph->target(e); |
| 1972 | 1985 |
} |
| 1973 | 1986 |
|
| 1974 | 1987 |
Node source(const Arc &a) const {
|
| 1975 | 1988 |
return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge); |
| 1976 | 1989 |
} |
| 1977 | 1990 |
|
| 1978 | 1991 |
Node target(const Arc &a) const {
|
| 1979 | 1992 |
return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge); |
| 1980 | 1993 |
} |
| 1981 | 1994 |
|
| 1982 | 1995 |
static Arc direct(const Edge &e, bool d) {
|
| 1983 | 1996 |
return Arc(e, d); |
| 1984 | 1997 |
} |
| 1985 | 1998 |
|
| 1986 | 1999 |
static bool direction(const Arc &a) { return a._forward; }
|
| 1987 | 2000 |
|
| 1988 | 2001 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
|
| 1989 | 2002 |
Arc arcFromId(int ix) const {
|
| 1990 | 2003 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
| 1991 | 2004 |
} |
| 1992 | 2005 |
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
|
| 1993 | 2006 |
|
| 1994 | 2007 |
int id(const Node &n) const { return _digraph->id(n); }
|
| 1995 | 2008 |
int id(const Arc &a) const {
|
| 1996 | 2009 |
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); |
| 1997 | 2010 |
} |
| 1998 | 2011 |
int id(const Edge &e) const { return _digraph->id(e); }
|
| 1999 | 2012 |
|
| 2000 | 2013 |
int maxNodeId() const { return _digraph->maxNodeId(); }
|
| 2001 | 2014 |
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
|
| 2002 | 2015 |
int maxEdgeId() const { return _digraph->maxArcId(); }
|
| 2003 | 2016 |
|
| 2004 | 2017 |
Node addNode() { return _digraph->addNode(); }
|
| 2005 | 2018 |
Edge addEdge(const Node& u, const Node& v) {
|
| 2006 | 2019 |
return _digraph->addArc(u, v); |
| 2007 | 2020 |
} |
| 2008 | 2021 |
|
| 2009 | 2022 |
void erase(const Node& i) { _digraph->erase(i); }
|
| 2010 | 2023 |
void erase(const Edge& i) { _digraph->erase(i); }
|
| 2011 | 2024 |
|
| 2012 | 2025 |
void clear() { _digraph->clear(); }
|
| 2013 | 2026 |
|
| 2014 | 2027 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
| 2015 | 2028 |
int nodeNum() const { return _digraph->nodeNum(); }
|
| 2016 | 2029 |
|
| 2017 | 2030 |
typedef ArcNumTagIndicator<Digraph> ArcNumTag; |
| 2018 | 2031 |
int arcNum() const { return 2 * _digraph->arcNum(); }
|
| 2019 | 2032 |
|
| 2020 | 2033 |
typedef ArcNumTag EdgeNumTag; |
| 2021 | 2034 |
int edgeNum() const { return _digraph->arcNum(); }
|
| 2022 | 2035 |
|
| 2023 | 2036 |
typedef FindArcTagIndicator<Digraph> FindArcTag; |
| 2024 | 2037 |
Arc findArc(Node s, Node t, Arc p = INVALID) const {
|
| 2025 | 2038 |
if (p == INVALID) {
|
| 2026 | 2039 |
Edge arc = _digraph->findArc(s, t); |
| 2027 | 2040 |
if (arc != INVALID) return direct(arc, true); |
| 2028 | 2041 |
arc = _digraph->findArc(t, s); |
| 2029 | 2042 |
if (arc != INVALID) return direct(arc, false); |
| 2030 | 2043 |
} else if (direction(p)) {
|
| 2031 | 2044 |
Edge arc = _digraph->findArc(s, t, p); |
| 2032 | 2045 |
if (arc != INVALID) return direct(arc, true); |
| 2033 | 2046 |
arc = _digraph->findArc(t, s); |
| 2034 | 2047 |
if (arc != INVALID) return direct(arc, false); |
| 2035 | 2048 |
} else {
|
| 2036 | 2049 |
Edge arc = _digraph->findArc(t, s, p); |
| 2037 | 2050 |
if (arc != INVALID) return direct(arc, false); |
| 2038 | 2051 |
} |
| 2039 | 2052 |
return INVALID; |
| 2040 | 2053 |
} |
| 2041 | 2054 |
|
| 2042 | 2055 |
typedef FindArcTag FindEdgeTag; |
| 2043 | 2056 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const {
|
| 2044 | 2057 |
if (s != t) {
|
| 2045 | 2058 |
if (p == INVALID) {
|
| 2046 | 2059 |
Edge arc = _digraph->findArc(s, t); |
| 2047 | 2060 |
if (arc != INVALID) return arc; |
| 2048 | 2061 |
arc = _digraph->findArc(t, s); |
| 2049 | 2062 |
if (arc != INVALID) return arc; |
| 2050 | 2063 |
} else if (_digraph->source(p) == s) {
|
| 2051 | 2064 |
Edge arc = _digraph->findArc(s, t, p); |
| 2052 | 2065 |
if (arc != INVALID) return arc; |
| 2053 | 2066 |
arc = _digraph->findArc(t, s); |
| 2054 | 2067 |
if (arc != INVALID) return arc; |
| 2055 | 2068 |
} else {
|
| 2056 | 2069 |
Edge arc = _digraph->findArc(t, s, p); |
| 2057 | 2070 |
if (arc != INVALID) return arc; |
| 2058 | 2071 |
} |
| 2059 | 2072 |
} else {
|
| 2060 | 2073 |
return _digraph->findArc(s, t, p); |
| 2061 | 2074 |
} |
| 2062 | 2075 |
return INVALID; |
| 2063 | 2076 |
} |
| 2064 | 2077 |
|
| 2065 | 2078 |
private: |
| 2066 | 2079 |
|
| 2067 | 2080 |
template <typename V> |
| 2068 | 2081 |
class ArcMapBase {
|
| 2069 | 2082 |
private: |
| 2070 | 2083 |
|
| 2071 | 2084 |
typedef typename DGR::template ArcMap<V> MapImpl; |
| 2072 | 2085 |
|
| 2073 | 2086 |
public: |
| 2074 | 2087 |
|
| 2075 | 2088 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
| 2076 | 2089 |
|
| 2077 | 2090 |
typedef V Value; |
| 2078 | 2091 |
typedef Arc Key; |
| 2079 | 2092 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
| 2080 | 2093 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
| 2081 | 2094 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
| 2082 | 2095 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
| 2083 | 2096 |
|
| 2084 | 2097 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
| 2085 | 2098 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
|
| 2086 | 2099 |
|
| 2087 | 2100 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2088 | 2101 |
: _forward(*adaptor._digraph, value), |
| 2089 | 2102 |
_backward(*adaptor._digraph, value) {}
|
| 2090 | 2103 |
|
| 2091 | 2104 |
void set(const Arc& a, const V& value) {
|
| 2092 | 2105 |
if (direction(a)) {
|
| 2093 | 2106 |
_forward.set(a, value); |
| 2094 | 2107 |
} else {
|
| 2095 | 2108 |
_backward.set(a, value); |
| 2096 | 2109 |
} |
| 2097 | 2110 |
} |
| 2098 | 2111 |
|
| 2099 | 2112 |
ConstReturnValue operator[](const Arc& a) const {
|
| 2100 | 2113 |
if (direction(a)) {
|
| 2101 | 2114 |
return _forward[a]; |
| 2102 | 2115 |
} else {
|
| 2103 | 2116 |
return _backward[a]; |
| 2104 | 2117 |
} |
| 2105 | 2118 |
} |
| 2106 | 2119 |
|
| 2107 | 2120 |
ReturnValue operator[](const Arc& a) {
|
| 2108 | 2121 |
if (direction(a)) {
|
| 2109 | 2122 |
return _forward[a]; |
| 2110 | 2123 |
} else {
|
| 2111 | 2124 |
return _backward[a]; |
| 2112 | 2125 |
} |
| 2113 | 2126 |
} |
| 2114 | 2127 |
|
| 2115 | 2128 |
protected: |
| 2116 | 2129 |
|
| 2117 | 2130 |
MapImpl _forward, _backward; |
| 2118 | 2131 |
|
| 2119 | 2132 |
}; |
| 2120 | 2133 |
|
| 2121 | 2134 |
public: |
| 2122 | 2135 |
|
| 2123 | 2136 |
template <typename V> |
| 2124 | 2137 |
class NodeMap : public DGR::template NodeMap<V> {
|
| 2125 | 2138 |
typedef typename DGR::template NodeMap<V> Parent; |
| 2126 | 2139 |
|
| 2127 | 2140 |
public: |
| 2128 | 2141 |
typedef V Value; |
| 2129 | 2142 |
|
| 2130 | 2143 |
explicit NodeMap(const UndirectorBase<DGR>& adaptor) |
| 2131 | 2144 |
: Parent(*adaptor._digraph) {}
|
| 2132 | 2145 |
|
| 2133 | 2146 |
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2134 | 2147 |
: Parent(*adaptor._digraph, value) { }
|
| 2135 | 2148 |
|
| 2136 | 2149 |
private: |
| 2137 | 2150 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 2138 | 2151 |
return operator=<NodeMap>(cmap); |
| 2139 | 2152 |
} |
| 2140 | 2153 |
|
| 2141 | 2154 |
template <typename CMap> |
| 2142 | 2155 |
NodeMap& operator=(const CMap& cmap) {
|
| 2143 | 2156 |
Parent::operator=(cmap); |
| 2144 | 2157 |
return *this; |
| 2145 | 2158 |
} |
| 2146 | 2159 |
|
| 2147 | 2160 |
}; |
| 2148 | 2161 |
|
| 2149 | 2162 |
template <typename V> |
| 2150 | 2163 |
class ArcMap |
| 2151 | 2164 |
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
|
| 2152 | 2165 |
typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent; |
| 2153 | 2166 |
|
| 2154 | 2167 |
public: |
| 2155 | 2168 |
typedef V Value; |
| 2156 | 2169 |
|
| 2157 | 2170 |
explicit ArcMap(const UndirectorBase<DGR>& adaptor) |
| 2158 | 2171 |
: Parent(adaptor) {}
|
| 2159 | 2172 |
|
| 2160 | 2173 |
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2161 | 2174 |
: Parent(adaptor, value) {}
|
| 2162 | 2175 |
|
| 2163 | 2176 |
private: |
| 2164 | 2177 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 2165 | 2178 |
return operator=<ArcMap>(cmap); |
| 2166 | 2179 |
} |
| 2167 | 2180 |
|
| 2168 | 2181 |
template <typename CMap> |
| 2169 | 2182 |
ArcMap& operator=(const CMap& cmap) {
|
| 2170 | 2183 |
Parent::operator=(cmap); |
| 2171 | 2184 |
return *this; |
| 2172 | 2185 |
} |
| 2173 | 2186 |
}; |
| 2174 | 2187 |
|
| 2175 | 2188 |
template <typename V> |
| 2176 | 2189 |
class EdgeMap : public Digraph::template ArcMap<V> {
|
| 2177 | 2190 |
typedef typename Digraph::template ArcMap<V> Parent; |
| 2178 | 2191 |
|
| 2179 | 2192 |
public: |
| 2180 | 2193 |
typedef V Value; |
| 2181 | 2194 |
|
| 2182 | 2195 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
| 2183 | 2196 |
: Parent(*adaptor._digraph) {}
|
| 2184 | 2197 |
|
| 2185 | 2198 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2186 | 2199 |
: Parent(*adaptor._digraph, value) {}
|
| 2187 | 2200 |
|
| 2188 | 2201 |
private: |
| 2189 | 2202 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 2190 | 2203 |
return operator=<EdgeMap>(cmap); |
| 2191 | 2204 |
} |
| 2192 | 2205 |
|
| 2193 | 2206 |
template <typename CMap> |
| 2194 | 2207 |
EdgeMap& operator=(const CMap& cmap) {
|
| 2195 | 2208 |
Parent::operator=(cmap); |
| 2196 | 2209 |
return *this; |
| 2197 | 2210 |
} |
| 2198 | 2211 |
|
| 2199 | 2212 |
}; |
| 2200 | 2213 |
|
| 2201 | 2214 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
| 2202 | 2215 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
|
| 2203 | 2216 |
|
| 2204 | 2217 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
| 2205 | 2218 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
|
| 2206 | 2219 |
|
| 2207 | 2220 |
typedef EdgeNotifier ArcNotifier; |
| 2208 | 2221 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
|
| 2209 | 2222 |
|
| 2210 | 2223 |
protected: |
| 2211 | 2224 |
|
| 2212 | 2225 |
UndirectorBase() : _digraph(0) {}
|
| 2213 | 2226 |
|
| 2214 | 2227 |
DGR* _digraph; |
| 2215 | 2228 |
|
| 2216 | 2229 |
void initialize(DGR& digraph) {
|
| 2217 | 2230 |
_digraph = &digraph; |
| 2218 | 2231 |
} |
| 2219 | 2232 |
|
| 2220 | 2233 |
}; |
| 2221 | 2234 |
|
| 2222 | 2235 |
/// \ingroup graph_adaptors |
| 2223 | 2236 |
/// |
| 2224 | 2237 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
| 2225 | 2238 |
/// |
| 2226 | 2239 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
| 2227 | 2240 |
/// graph. All arcs of the underlying digraph are showed in the |
| 2228 | 2241 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
| 2229 | 2242 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 2230 | 2243 |
/// |
| 2231 | 2244 |
/// The adapted digraph can also be modified through this adaptor |
| 2232 | 2245 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 2233 | 2246 |
/// parameter is set to be \c const. |
| 2234 | 2247 |
/// |
| 2248 |
/// This class provides item counting in the same time as the adapted |
|
| 2249 |
/// digraph structure. |
|
| 2250 |
/// |
|
| 2235 | 2251 |
/// \tparam DGR The type of the adapted digraph. |
| 2236 | 2252 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2237 | 2253 |
/// It can also be specified to be \c const. |
| 2238 | 2254 |
/// |
| 2239 | 2255 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2240 | 2256 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
| 2241 | 2257 |
/// and the \c Arc type of the adapted digraph are also convertible to |
| 2242 | 2258 |
/// each other. |
| 2243 | 2259 |
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type |
| 2244 | 2260 |
/// of the adapted digraph.) |
| 2245 | 2261 |
template<typename DGR> |
| 2246 | 2262 |
#ifdef DOXYGEN |
| 2247 | 2263 |
class Undirector {
|
| 2248 | 2264 |
#else |
| 2249 | 2265 |
class Undirector : |
| 2250 | 2266 |
public GraphAdaptorExtender<UndirectorBase<DGR> > {
|
| 2251 | 2267 |
#endif |
| 2252 | 2268 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
| 2253 | 2269 |
public: |
| 2254 | 2270 |
/// The type of the adapted digraph. |
| 2255 | 2271 |
typedef DGR Digraph; |
| 2256 | 2272 |
protected: |
| 2257 | 2273 |
Undirector() { }
|
| 2258 | 2274 |
public: |
| 2259 | 2275 |
|
| 2260 | 2276 |
/// \brief Constructor |
| 2261 | 2277 |
/// |
| 2262 | 2278 |
/// Creates an undirected graph from the given digraph. |
| 2263 | 2279 |
Undirector(DGR& digraph) {
|
| 2264 | 2280 |
initialize(digraph); |
| 2265 | 2281 |
} |
| 2266 | 2282 |
|
| 2267 | 2283 |
/// \brief Arc map combined from two original arc maps |
| 2268 | 2284 |
/// |
| 2269 | 2285 |
/// This map adaptor class adapts two arc maps of the underlying |
| 2270 | 2286 |
/// digraph to get an arc map of the undirected graph. |
| 2271 | 2287 |
/// Its value type is inherited from the first arc map type (\c FW). |
| 2272 | 2288 |
/// \tparam FW The type of the "foward" arc map. |
| 2273 | 2289 |
/// \tparam BK The type of the "backward" arc map. |
| 2274 | 2290 |
template <typename FW, typename BK> |
| 2275 | 2291 |
class CombinedArcMap {
|
| 2276 | 2292 |
public: |
| 2277 | 2293 |
|
| 2278 | 2294 |
/// The key type of the map |
| 2279 | 2295 |
typedef typename Parent::Arc Key; |
| 2280 | 2296 |
/// The value type of the map |
| 2281 | 2297 |
typedef typename FW::Value Value; |
| 2282 | 2298 |
|
| 2283 | 2299 |
typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag; |
| 2284 | 2300 |
|
| 2285 | 2301 |
typedef typename MapTraits<FW>::ReturnValue ReturnValue; |
| 2286 | 2302 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue; |
| 2287 | 2303 |
typedef typename MapTraits<FW>::ReturnValue Reference; |
| 2288 | 2304 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReference; |
| 2289 | 2305 |
|
| 2290 | 2306 |
/// Constructor |
| 2291 | 2307 |
CombinedArcMap(FW& forward, BK& backward) |
| 2292 | 2308 |
: _forward(&forward), _backward(&backward) {}
|
| 2293 | 2309 |
|
| 2294 | 2310 |
/// Sets the value associated with the given key. |
| 2295 | 2311 |
void set(const Key& e, const Value& a) {
|
| 2296 | 2312 |
if (Parent::direction(e)) {
|
| 2297 | 2313 |
_forward->set(e, a); |
| 2298 | 2314 |
} else {
|
| 2299 | 2315 |
_backward->set(e, a); |
| 2300 | 2316 |
} |
| 2301 | 2317 |
} |
| 2302 | 2318 |
|
| 2303 | 2319 |
/// Returns the value associated with the given key. |
| 2304 | 2320 |
ConstReturnValue operator[](const Key& e) const {
|
| 2305 | 2321 |
if (Parent::direction(e)) {
|
| 2306 | 2322 |
return (*_forward)[e]; |
| 2307 | 2323 |
} else {
|
| 2308 | 2324 |
return (*_backward)[e]; |
| 2309 | 2325 |
} |
| 2310 | 2326 |
} |
| 2311 | 2327 |
|
| 2312 | 2328 |
/// Returns a reference to the value associated with the given key. |
| 2313 | 2329 |
ReturnValue operator[](const Key& e) {
|
| 2314 | 2330 |
if (Parent::direction(e)) {
|
| 2315 | 2331 |
return (*_forward)[e]; |
| 2316 | 2332 |
} else {
|
| 2317 | 2333 |
return (*_backward)[e]; |
| 2318 | 2334 |
} |
| 2319 | 2335 |
} |
| 2320 | 2336 |
|
| 2321 | 2337 |
protected: |
| 2322 | 2338 |
|
| 2323 | 2339 |
FW* _forward; |
| 2324 | 2340 |
BK* _backward; |
| 2325 | 2341 |
|
| 2326 | 2342 |
}; |
| 2327 | 2343 |
|
| 2328 | 2344 |
/// \brief Returns a combined arc map |
| 2329 | 2345 |
/// |
| 2330 | 2346 |
/// This function just returns a combined arc map. |
| 2331 | 2347 |
template <typename FW, typename BK> |
| 2332 | 2348 |
static CombinedArcMap<FW, BK> |
| 2333 | 2349 |
combinedArcMap(FW& forward, BK& backward) {
|
| 2334 | 2350 |
return CombinedArcMap<FW, BK>(forward, backward); |
| 2335 | 2351 |
} |
| 2336 | 2352 |
|
| 2337 | 2353 |
template <typename FW, typename BK> |
| 2338 | 2354 |
static CombinedArcMap<const FW, BK> |
| 2339 | 2355 |
combinedArcMap(const FW& forward, BK& backward) {
|
| 2340 | 2356 |
return CombinedArcMap<const FW, BK>(forward, backward); |
| 2341 | 2357 |
} |
| 2342 | 2358 |
|
| 2343 | 2359 |
template <typename FW, typename BK> |
| 2344 | 2360 |
static CombinedArcMap<FW, const BK> |
| 2345 | 2361 |
combinedArcMap(FW& forward, const BK& backward) {
|
| 2346 | 2362 |
return CombinedArcMap<FW, const BK>(forward, backward); |
| 2347 | 2363 |
} |
| 2348 | 2364 |
|
| 2349 | 2365 |
template <typename FW, typename BK> |
| 2350 | 2366 |
static CombinedArcMap<const FW, const BK> |
| 2351 | 2367 |
combinedArcMap(const FW& forward, const BK& backward) {
|
| 2352 | 2368 |
return CombinedArcMap<const FW, const BK>(forward, backward); |
| 2353 | 2369 |
} |
| 2354 | 2370 |
|
| 2355 | 2371 |
}; |
| 2356 | 2372 |
|
| 2357 | 2373 |
/// \brief Returns a read-only Undirector adaptor |
| 2358 | 2374 |
/// |
| 2359 | 2375 |
/// This function just returns a read-only \ref Undirector adaptor. |
| 2360 | 2376 |
/// \ingroup graph_adaptors |
| 2361 | 2377 |
/// \relates Undirector |
| 2362 | 2378 |
template<typename DGR> |
| 2363 | 2379 |
Undirector<const DGR> undirector(const DGR& digraph) {
|
| 2364 | 2380 |
return Undirector<const DGR>(digraph); |
| 2365 | 2381 |
} |
| 2366 | 2382 |
|
| 2367 | 2383 |
|
| 2368 | 2384 |
template <typename GR, typename DM> |
| 2369 | 2385 |
class OrienterBase {
|
| 2370 | 2386 |
public: |
| 2371 | 2387 |
|
| 2372 | 2388 |
typedef GR Graph; |
| 2373 | 2389 |
typedef DM DirectionMap; |
| 2374 | 2390 |
|
| 2375 | 2391 |
typedef typename GR::Node Node; |
| 2376 | 2392 |
typedef typename GR::Edge Arc; |
| 2377 | 2393 |
|
| 2378 | 2394 |
void reverseArc(const Arc& arc) {
|
| 2379 | 2395 |
_direction->set(arc, !(*_direction)[arc]); |
| 2380 | 2396 |
} |
| 2381 | 2397 |
|
| 2382 | 2398 |
void first(Node& i) const { _graph->first(i); }
|
| 2383 | 2399 |
void first(Arc& i) const { _graph->first(i); }
|
| 2384 | 2400 |
void firstIn(Arc& i, const Node& n) const {
|
| 2385 | 2401 |
bool d = true; |
| 2386 | 2402 |
_graph->firstInc(i, d, n); |
| 2387 | 2403 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
| 2388 | 2404 |
} |
| 2389 | 2405 |
void firstOut(Arc& i, const Node& n ) const {
|
| 2390 | 2406 |
bool d = true; |
| 2391 | 2407 |
_graph->firstInc(i, d, n); |
| 2392 | 2408 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
| 2393 | 2409 |
} |
| 2394 | 2410 |
|
| 2395 | 2411 |
void next(Node& i) const { _graph->next(i); }
|
| 2396 | 2412 |
void next(Arc& i) const { _graph->next(i); }
|
| 2397 | 2413 |
void nextIn(Arc& i) const {
|
| 2398 | 2414 |
bool d = !(*_direction)[i]; |
| 2399 | 2415 |
_graph->nextInc(i, d); |
| 2400 | 2416 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
| 2401 | 2417 |
} |
| 2402 | 2418 |
void nextOut(Arc& i) const {
|
| 2403 | 2419 |
bool d = (*_direction)[i]; |
| 2404 | 2420 |
_graph->nextInc(i, d); |
| 2405 | 2421 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
| 2406 | 2422 |
} |
| 2407 | 2423 |
|
| 2408 | 2424 |
Node source(const Arc& e) const {
|
| 2409 | 2425 |
return (*_direction)[e] ? _graph->u(e) : _graph->v(e); |
| 2410 | 2426 |
} |
| 2411 | 2427 |
Node target(const Arc& e) const {
|
| 2412 | 2428 |
return (*_direction)[e] ? _graph->v(e) : _graph->u(e); |
| 2413 | 2429 |
} |
| 2414 | 2430 |
|
| 2415 | 2431 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
| 2416 | 2432 |
int nodeNum() const { return _graph->nodeNum(); }
|
| 2417 | 2433 |
|
| 2418 | 2434 |
typedef EdgeNumTagIndicator<Graph> ArcNumTag; |
| 2419 | 2435 |
int arcNum() const { return _graph->edgeNum(); }
|
| 2420 | 2436 |
|
| 2421 | 2437 |
typedef FindEdgeTagIndicator<Graph> FindArcTag; |
| 2422 | 2438 |
Arc findArc(const Node& u, const Node& v, |
| 2423 | 2439 |
const Arc& prev = INVALID) const {
|
| 2424 | 2440 |
Arc arc = _graph->findEdge(u, v, prev); |
| 2425 | 2441 |
while (arc != INVALID && source(arc) != u) {
|
| 2426 | 2442 |
arc = _graph->findEdge(u, v, arc); |
| 2427 | 2443 |
} |
| 2428 | 2444 |
return arc; |
| 2429 | 2445 |
} |
| 2430 | 2446 |
|
| 2431 | 2447 |
Node addNode() {
|
| 2432 | 2448 |
return Node(_graph->addNode()); |
| 2433 | 2449 |
} |
| 2434 | 2450 |
|
| 2435 | 2451 |
Arc addArc(const Node& u, const Node& v) {
|
| 2436 | 2452 |
Arc arc = _graph->addEdge(u, v); |
| 2437 | 2453 |
_direction->set(arc, _graph->u(arc) == u); |
| 2438 | 2454 |
return arc; |
| 2439 | 2455 |
} |
| 2440 | 2456 |
|
| 2441 | 2457 |
void erase(const Node& i) { _graph->erase(i); }
|
| 2442 | 2458 |
void erase(const Arc& i) { _graph->erase(i); }
|
| 2443 | 2459 |
|
| 2444 | 2460 |
void clear() { _graph->clear(); }
|
| 2445 | 2461 |
|
| 2446 | 2462 |
int id(const Node& v) const { return _graph->id(v); }
|
| 2447 | 2463 |
int id(const Arc& e) const { return _graph->id(e); }
|
| 2448 | 2464 |
|
| 2449 | 2465 |
Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
|
| 2450 | 2466 |
Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
|
| 2451 | 2467 |
|
| 2452 | 2468 |
int maxNodeId() const { return _graph->maxNodeId(); }
|
| 2453 | 2469 |
int maxArcId() const { return _graph->maxEdgeId(); }
|
| 2454 | 2470 |
|
| 2455 | 2471 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 2456 | 2472 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
|
| 2457 | 2473 |
|
| 2458 | 2474 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
| 2459 | 2475 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
|
| 2460 | 2476 |
|
| 2461 | 2477 |
template <typename V> |
| 2462 | 2478 |
class NodeMap : public GR::template NodeMap<V> {
|
| 2463 | 2479 |
typedef typename GR::template NodeMap<V> Parent; |
| 2464 | 2480 |
|
| 2465 | 2481 |
public: |
| 2466 | 2482 |
|
| 2467 | 2483 |
explicit NodeMap(const OrienterBase<GR, DM>& adapter) |
| 2468 | 2484 |
: Parent(*adapter._graph) {}
|
| 2469 | 2485 |
|
| 2470 | 2486 |
NodeMap(const OrienterBase<GR, DM>& adapter, const V& value) |
| 2471 | 2487 |
: Parent(*adapter._graph, value) {}
|
| 2472 | 2488 |
|
| 2473 | 2489 |
private: |
| 2474 | 2490 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 2475 | 2491 |
return operator=<NodeMap>(cmap); |
| 2476 | 2492 |
} |
| 2477 | 2493 |
|
| 2478 | 2494 |
template <typename CMap> |
| 2479 | 2495 |
NodeMap& operator=(const CMap& cmap) {
|
| 2480 | 2496 |
Parent::operator=(cmap); |
| 2481 | 2497 |
return *this; |
| 2482 | 2498 |
} |
| 2483 | 2499 |
|
| 2484 | 2500 |
}; |
| 2485 | 2501 |
|
| 2486 | 2502 |
template <typename V> |
| 2487 | 2503 |
class ArcMap : public GR::template EdgeMap<V> {
|
| 2488 | 2504 |
typedef typename Graph::template EdgeMap<V> Parent; |
| 2489 | 2505 |
|
| 2490 | 2506 |
public: |
| 2491 | 2507 |
|
| 2492 | 2508 |
explicit ArcMap(const OrienterBase<GR, DM>& adapter) |
| 2493 | 2509 |
: Parent(*adapter._graph) { }
|
| 2494 | 2510 |
|
| 2495 | 2511 |
ArcMap(const OrienterBase<GR, DM>& adapter, const V& value) |
| 2496 | 2512 |
: Parent(*adapter._graph, value) { }
|
| 2497 | 2513 |
|
| 2498 | 2514 |
private: |
| 2499 | 2515 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 2500 | 2516 |
return operator=<ArcMap>(cmap); |
| 2501 | 2517 |
} |
| 2502 | 2518 |
|
| 2503 | 2519 |
template <typename CMap> |
| 2504 | 2520 |
ArcMap& operator=(const CMap& cmap) {
|
| 2505 | 2521 |
Parent::operator=(cmap); |
| 2506 | 2522 |
return *this; |
| 2507 | 2523 |
} |
| 2508 | 2524 |
}; |
| 2509 | 2525 |
|
| 2510 | 2526 |
|
| 2511 | 2527 |
|
| 2512 | 2528 |
protected: |
| 2513 | 2529 |
Graph* _graph; |
| 2514 | 2530 |
DM* _direction; |
| 2515 | 2531 |
|
| 2516 | 2532 |
void initialize(GR& graph, DM& direction) {
|
| 2517 | 2533 |
_graph = &graph; |
| 2518 | 2534 |
_direction = &direction; |
| 2519 | 2535 |
} |
| 2520 | 2536 |
|
| 2521 | 2537 |
}; |
| 2522 | 2538 |
|
| 2523 | 2539 |
/// \ingroup graph_adaptors |
| 2524 | 2540 |
/// |
| 2525 | 2541 |
/// \brief Adaptor class for orienting the edges of a graph to get a digraph |
| 2526 | 2542 |
/// |
| 2527 | 2543 |
/// Orienter adaptor can be used for orienting the edges of a graph to |
| 2528 | 2544 |
/// get a digraph. A \c bool edge map of the underlying graph must be |
| 2529 | 2545 |
/// specified, which define the direction of the arcs in the adaptor. |
| 2530 | 2546 |
/// The arcs can be easily reversed by the \c reverseArc() member function |
| 2531 | 2547 |
/// of the adaptor. |
| 2532 | 2548 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2533 | 2549 |
/// |
| 2534 | 2550 |
/// The adapted graph can also be modified through this adaptor |
| 2535 | 2551 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 2536 | 2552 |
/// parameter is set to be \c const. |
| 2537 | 2553 |
/// |
| 2554 |
/// This class provides item counting in the same time as the adapted |
|
| 2555 |
/// graph structure. |
|
| 2556 |
/// |
|
| 2538 | 2557 |
/// \tparam GR The type of the adapted graph. |
| 2539 | 2558 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 2540 | 2559 |
/// It can also be specified to be \c const. |
| 2541 | 2560 |
/// \tparam DM The type of the direction map. |
| 2542 | 2561 |
/// It must be a \c bool (or convertible) edge map of the |
| 2543 | 2562 |
/// adapted graph. The default type is |
| 2544 | 2563 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
| 2545 | 2564 |
/// |
| 2546 | 2565 |
/// \note The \c Node type of this adaptor and the adapted graph are |
| 2547 | 2566 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
| 2548 | 2567 |
/// and the \c Edge type of the adapted graph are also convertible to |
| 2549 | 2568 |
/// each other. |
| 2550 | 2569 |
#ifdef DOXYGEN |
| 2551 | 2570 |
template<typename GR, |
| 2552 | 2571 |
typename DM> |
| 2553 | 2572 |
class Orienter {
|
| 2554 | 2573 |
#else |
| 2555 | 2574 |
template<typename GR, |
| 2556 | 2575 |
typename DM = typename GR::template EdgeMap<bool> > |
| 2557 | 2576 |
class Orienter : |
| 2558 | 2577 |
public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
|
| 2559 | 2578 |
#endif |
| 2560 | 2579 |
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent; |
| 2561 | 2580 |
public: |
| 2562 | 2581 |
|
| 2563 | 2582 |
/// The type of the adapted graph. |
| 2564 | 2583 |
typedef GR Graph; |
| 2565 | 2584 |
/// The type of the direction edge map. |
| 2566 | 2585 |
typedef DM DirectionMap; |
| 2567 | 2586 |
|
| 2568 | 2587 |
typedef typename Parent::Arc Arc; |
| 2569 | 2588 |
|
| 2570 | 2589 |
protected: |
| 2571 | 2590 |
Orienter() { }
|
| 2572 | 2591 |
|
| 2573 | 2592 |
public: |
| 2574 | 2593 |
|
| 2575 | 2594 |
/// \brief Constructor |
| 2576 | 2595 |
/// |
| 2577 | 2596 |
/// Constructor of the adaptor. |
| 2578 | 2597 |
Orienter(GR& graph, DM& direction) {
|
| 2579 | 2598 |
Parent::initialize(graph, direction); |
| 2580 | 2599 |
} |
| 2581 | 2600 |
|
| 2582 | 2601 |
/// \brief Reverses the given arc |
| 2583 | 2602 |
/// |
| 2584 | 2603 |
/// This function reverses the given arc. |
| 2585 | 2604 |
/// It is done by simply negate the assigned value of \c a |
| 2586 | 2605 |
/// in the direction map. |
| 2587 | 2606 |
void reverseArc(const Arc& a) {
|
| 2588 | 2607 |
Parent::reverseArc(a); |
| 2589 | 2608 |
} |
| 2590 | 2609 |
}; |
| 2591 | 2610 |
|
| 2592 | 2611 |
/// \brief Returns a read-only Orienter adaptor |
| 2593 | 2612 |
/// |
| 2594 | 2613 |
/// This function just returns a read-only \ref Orienter adaptor. |
| 2595 | 2614 |
/// \ingroup graph_adaptors |
| 2596 | 2615 |
/// \relates Orienter |
| 2597 | 2616 |
template<typename GR, typename DM> |
| 2598 | 2617 |
Orienter<const GR, DM> |
| 2599 | 2618 |
orienter(const GR& graph, DM& direction) {
|
| 2600 | 2619 |
return Orienter<const GR, DM>(graph, direction); |
| 2601 | 2620 |
} |
| 2602 | 2621 |
|
| 2603 | 2622 |
template<typename GR, typename DM> |
| 2604 | 2623 |
Orienter<const GR, const DM> |
| 2605 | 2624 |
orienter(const GR& graph, const DM& direction) {
|
| 2606 | 2625 |
return Orienter<const GR, const DM>(graph, direction); |
| 2607 | 2626 |
} |
| 2608 | 2627 |
|
| 2609 | 2628 |
namespace _adaptor_bits {
|
| 2610 | 2629 |
|
| 2611 | 2630 |
template <typename DGR, typename CM, typename FM, typename TL> |
| 2612 | 2631 |
class ResForwardFilter {
|
| 2613 | 2632 |
public: |
| 2614 | 2633 |
|
| 2615 | 2634 |
typedef typename DGR::Arc Key; |
| 2616 | 2635 |
typedef bool Value; |
| 2617 | 2636 |
|
| 2618 | 2637 |
private: |
| 2619 | 2638 |
|
| 2620 | 2639 |
const CM* _capacity; |
| 2621 | 2640 |
const FM* _flow; |
| 2622 | 2641 |
TL _tolerance; |
| 2623 | 2642 |
|
| 2624 | 2643 |
public: |
| 2625 | 2644 |
|
| 2626 | 2645 |
ResForwardFilter(const CM& capacity, const FM& flow, |
| 2627 | 2646 |
const TL& tolerance = TL()) |
| 2628 | 2647 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
|
| 2629 | 2648 |
|
| 2630 | 2649 |
bool operator[](const typename DGR::Arc& a) const {
|
| 2631 | 2650 |
return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); |
| 2632 | 2651 |
} |
| 2633 | 2652 |
}; |
| 2634 | 2653 |
|
| 2635 | 2654 |
template<typename DGR,typename CM, typename FM, typename TL> |
| 2636 | 2655 |
class ResBackwardFilter {
|
| 2637 | 2656 |
public: |
| 2638 | 2657 |
|
| 2639 | 2658 |
typedef typename DGR::Arc Key; |
| 2640 | 2659 |
typedef bool Value; |
| 2641 | 2660 |
|
| 2642 | 2661 |
private: |
| 2643 | 2662 |
|
| 2644 | 2663 |
const CM* _capacity; |
| 2645 | 2664 |
const FM* _flow; |
| 2646 | 2665 |
TL _tolerance; |
| 2647 | 2666 |
|
| 2648 | 2667 |
public: |
| 2649 | 2668 |
|
| 2650 | 2669 |
ResBackwardFilter(const CM& capacity, const FM& flow, |
| 2651 | 2670 |
const TL& tolerance = TL()) |
| 2652 | 2671 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
|
| 2653 | 2672 |
|
| 2654 | 2673 |
bool operator[](const typename DGR::Arc& a) const {
|
| 2655 | 2674 |
return _tolerance.positive((*_flow)[a]); |
| 2656 | 2675 |
} |
| 2657 | 2676 |
}; |
| 2658 | 2677 |
|
| 2659 | 2678 |
} |
| 2660 | 2679 |
|
| 2661 | 2680 |
/// \ingroup graph_adaptors |
| 2662 | 2681 |
/// |
| 2663 | 2682 |
/// \brief Adaptor class for composing the residual digraph for directed |
| 2664 | 2683 |
/// flow and circulation problems. |
| 2665 | 2684 |
/// |
| 2666 | 2685 |
/// ResidualDigraph can be used for composing the \e residual digraph |
| 2667 | 2686 |
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$ |
| 2668 | 2687 |
/// be a directed graph and let \f$ F \f$ be a number type. |
| 2669 | 2688 |
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs. |
| 2670 | 2689 |
/// This adaptor implements a digraph structure with node set \f$ V \f$ |
| 2671 | 2690 |
/// and arc set \f$ A_{forward}\cup A_{backward} \f$,
|
| 2672 | 2691 |
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
|
| 2673 | 2692 |
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
|
| 2674 | 2693 |
/// called residual digraph. |
| 2675 | 2694 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
|
| 2676 | 2695 |
/// multiplicities are counted, i.e. the adaptor has exactly |
| 2677 | 2696 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
|
| 2678 | 2697 |
/// arcs). |
| 2679 | 2698 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2680 | 2699 |
/// |
| 2700 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 2701 |
/// |
|
| 2681 | 2702 |
/// \tparam DGR The type of the adapted digraph. |
| 2682 | 2703 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2683 | 2704 |
/// It is implicitly \c const. |
| 2684 | 2705 |
/// \tparam CM The type of the capacity map. |
| 2685 | 2706 |
/// It must be an arc map of some numerical type, which defines |
| 2686 | 2707 |
/// the capacities in the flow problem. It is implicitly \c const. |
| 2687 | 2708 |
/// The default type is |
| 2688 | 2709 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 2689 | 2710 |
/// \tparam FM The type of the flow map. |
| 2690 | 2711 |
/// It must be an arc map of some numerical type, which defines |
| 2691 | 2712 |
/// the flow values in the flow problem. The default type is \c CM. |
| 2692 | 2713 |
/// \tparam TL The tolerance type for handling inexact computation. |
| 2693 | 2714 |
/// The default tolerance type depends on the value type of the |
| 2694 | 2715 |
/// capacity map. |
| 2695 | 2716 |
/// |
| 2696 | 2717 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
| 2697 | 2718 |
/// adaptors. |
| 2698 | 2719 |
/// |
| 2699 | 2720 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2700 | 2721 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
| 2701 | 2722 |
/// is convertible to the \c Arc type of the adapted digraph. |
| 2702 | 2723 |
#ifdef DOXYGEN |
| 2703 | 2724 |
template<typename DGR, typename CM, typename FM, typename TL> |
| 2704 | 2725 |
class ResidualDigraph |
| 2705 | 2726 |
#else |
| 2706 | 2727 |
template<typename DGR, |
| 2707 | 2728 |
typename CM = typename DGR::template ArcMap<int>, |
| 2708 | 2729 |
typename FM = CM, |
| 2709 | 2730 |
typename TL = Tolerance<typename CM::Value> > |
| 2710 | 2731 |
class ResidualDigraph |
| 2711 | 2732 |
: public SubDigraph< |
| 2712 | 2733 |
Undirector<const DGR>, |
| 2713 | 2734 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
| 2714 | 2735 |
typename Undirector<const DGR>::template CombinedArcMap< |
| 2715 | 2736 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
| 2716 | 2737 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
| 2717 | 2738 |
#endif |
| 2718 | 2739 |
{
|
| 2719 | 2740 |
public: |
| 2720 | 2741 |
|
| 2721 | 2742 |
/// The type of the underlying digraph. |
| 2722 | 2743 |
typedef DGR Digraph; |
| 2723 | 2744 |
/// The type of the capacity map. |
| 2724 | 2745 |
typedef CM CapacityMap; |
| 2725 | 2746 |
/// The type of the flow map. |
| 2726 | 2747 |
typedef FM FlowMap; |
| 2727 | 2748 |
/// The tolerance type. |
| 2728 | 2749 |
typedef TL Tolerance; |
| 2729 | 2750 |
|
| 2730 | 2751 |
typedef typename CapacityMap::Value Value; |
| 2731 | 2752 |
typedef ResidualDigraph Adaptor; |
| 2732 | 2753 |
|
| 2733 | 2754 |
protected: |
| 2734 | 2755 |
|
| 2735 | 2756 |
typedef Undirector<const Digraph> Undirected; |
| 2736 | 2757 |
|
| 2737 | 2758 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
| 2738 | 2759 |
|
| 2739 | 2760 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
| 2740 | 2761 |
FM, TL> ForwardFilter; |
| 2741 | 2762 |
|
| 2742 | 2763 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
| 2743 | 2764 |
FM, TL> BackwardFilter; |
| 2744 | 2765 |
|
| 2745 | 2766 |
typedef typename Undirected:: |
| 2746 | 2767 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
| 2747 | 2768 |
|
| 2748 | 2769 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
| 2749 | 2770 |
|
| 2750 | 2771 |
const CapacityMap* _capacity; |
| 2751 | 2772 |
FlowMap* _flow; |
| 2752 | 2773 |
|
| 2753 | 2774 |
Undirected _graph; |
| 2754 | 2775 |
NodeFilter _node_filter; |
| 2755 | 2776 |
ForwardFilter _forward_filter; |
| 2756 | 2777 |
BackwardFilter _backward_filter; |
| 2757 | 2778 |
ArcFilter _arc_filter; |
| 2758 | 2779 |
|
| 2759 | 2780 |
public: |
| 2760 | 2781 |
|
| 2761 | 2782 |
/// \brief Constructor |
| 2762 | 2783 |
/// |
| 2763 | 2784 |
/// Constructor of the residual digraph adaptor. The parameters are the |
| 2764 | 2785 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
| 2765 | 2786 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
| 2766 | 2787 |
FM& flow, const TL& tolerance = Tolerance()) |
| 2767 | 2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
| 2768 | 2789 |
_graph(digraph), _node_filter(), |
| 2769 | 2790 |
_forward_filter(capacity, flow, tolerance), |
| 2770 | 2791 |
_backward_filter(capacity, flow, tolerance), |
| 2771 | 2792 |
_arc_filter(_forward_filter, _backward_filter) |
| 2772 | 2793 |
{
|
| 2773 | 2794 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
| 2774 | 2795 |
} |
| 2775 | 2796 |
|
| 2776 | 2797 |
typedef typename Parent::Arc Arc; |
| 2777 | 2798 |
|
| 2778 | 2799 |
/// \brief Returns the residual capacity of the given arc. |
| 2779 | 2800 |
/// |
| 2780 | 2801 |
/// Returns the residual capacity of the given arc. |
| 2781 | 2802 |
Value residualCapacity(const Arc& a) const {
|
| 2782 | 2803 |
if (Undirected::direction(a)) {
|
| 2783 | 2804 |
return (*_capacity)[a] - (*_flow)[a]; |
| 2784 | 2805 |
} else {
|
| 2785 | 2806 |
return (*_flow)[a]; |
| 2786 | 2807 |
} |
| 2787 | 2808 |
} |
| 2788 | 2809 |
|
| 2789 | 2810 |
/// \brief Augments on the given arc in the residual digraph. |
| 2790 | 2811 |
/// |
| 2791 | 2812 |
/// Augments on the given arc in the residual digraph. It increases |
| 2792 | 2813 |
/// or decreases the flow value on the original arc according to the |
| 2793 | 2814 |
/// direction of the residual arc. |
| 2794 | 2815 |
void augment(const Arc& a, const Value& v) const {
|
| 2795 | 2816 |
if (Undirected::direction(a)) {
|
| 2796 | 2817 |
_flow->set(a, (*_flow)[a] + v); |
| 2797 | 2818 |
} else {
|
| 2798 | 2819 |
_flow->set(a, (*_flow)[a] - v); |
| 2799 | 2820 |
} |
| 2800 | 2821 |
} |
| 2801 | 2822 |
|
| 2802 | 2823 |
/// \brief Returns \c true if the given residual arc is a forward arc. |
| 2803 | 2824 |
/// |
| 2804 | 2825 |
/// Returns \c true if the given residual arc has the same orientation |
| 2805 | 2826 |
/// as the original arc, i.e. it is a so called forward arc. |
| 2806 | 2827 |
static bool forward(const Arc& a) {
|
| 2807 | 2828 |
return Undirected::direction(a); |
| 2808 | 2829 |
} |
| 2809 | 2830 |
|
| 2810 | 2831 |
/// \brief Returns \c true if the given residual arc is a backward arc. |
| 2811 | 2832 |
/// |
| 2812 | 2833 |
/// Returns \c true if the given residual arc has the opposite orientation |
| 2813 | 2834 |
/// than the original arc, i.e. it is a so called backward arc. |
| 2814 | 2835 |
static bool backward(const Arc& a) {
|
| 2815 | 2836 |
return !Undirected::direction(a); |
| 2816 | 2837 |
} |
| 2817 | 2838 |
|
| 2818 | 2839 |
/// \brief Returns the forward oriented residual arc. |
| 2819 | 2840 |
/// |
| 2820 | 2841 |
/// Returns the forward oriented residual arc related to the given |
| 2821 | 2842 |
/// arc of the underlying digraph. |
| 2822 | 2843 |
static Arc forward(const typename Digraph::Arc& a) {
|
| 2823 | 2844 |
return Undirected::direct(a, true); |
| 2824 | 2845 |
} |
| 2825 | 2846 |
|
| 2826 | 2847 |
/// \brief Returns the backward oriented residual arc. |
| 2827 | 2848 |
/// |
| 2828 | 2849 |
/// Returns the backward oriented residual arc related to the given |
| 2829 | 2850 |
/// arc of the underlying digraph. |
| 2830 | 2851 |
static Arc backward(const typename Digraph::Arc& a) {
|
| 2831 | 2852 |
return Undirected::direct(a, false); |
| 2832 | 2853 |
} |
| 2833 | 2854 |
|
| 2834 | 2855 |
/// \brief Residual capacity map. |
| 2835 | 2856 |
/// |
| 2836 | 2857 |
/// This map adaptor class can be used for obtaining the residual |
| 2837 | 2858 |
/// capacities as an arc map of the residual digraph. |
| 2838 | 2859 |
/// Its value type is inherited from the capacity map. |
| 2839 | 2860 |
class ResidualCapacity {
|
| 2840 | 2861 |
protected: |
| 2841 | 2862 |
const Adaptor* _adaptor; |
| 2842 | 2863 |
public: |
| 2843 | 2864 |
/// The key type of the map |
| 2844 | 2865 |
typedef Arc Key; |
| 2845 | 2866 |
/// The value type of the map |
| 2846 | 2867 |
typedef typename CapacityMap::Value Value; |
| 2847 | 2868 |
|
| 2848 | 2869 |
/// Constructor |
| 2849 | 2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
| 2850 | 2871 |
: _adaptor(&adaptor) {}
|
| 2851 | 2872 |
|
| 2852 | 2873 |
/// Returns the value associated with the given residual arc |
| 2853 | 2874 |
Value operator[](const Arc& a) const {
|
| 2854 | 2875 |
return _adaptor->residualCapacity(a); |
| 2855 | 2876 |
} |
| 2856 | 2877 |
|
| 2857 | 2878 |
}; |
| 2858 | 2879 |
|
| 2859 | 2880 |
/// \brief Returns a residual capacity map |
| 2860 | 2881 |
/// |
| 2861 | 2882 |
/// This function just returns a residual capacity map. |
| 2862 | 2883 |
ResidualCapacity residualCapacity() const {
|
| 2863 | 2884 |
return ResidualCapacity(*this); |
| 2864 | 2885 |
} |
| 2865 | 2886 |
|
| 2866 | 2887 |
}; |
| 2867 | 2888 |
|
| 2868 | 2889 |
/// \brief Returns a (read-only) Residual adaptor |
| 2869 | 2890 |
/// |
| 2870 | 2891 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
| 2871 | 2892 |
/// \ingroup graph_adaptors |
| 2872 | 2893 |
/// \relates ResidualDigraph |
| 2873 | 2894 |
template<typename DGR, typename CM, typename FM> |
| 2874 | 2895 |
ResidualDigraph<DGR, CM, FM> |
| 2875 | 2896 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
|
| 2876 | 2897 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
| 2877 | 2898 |
} |
| 2878 | 2899 |
|
| 2879 | 2900 |
|
| 2880 | 2901 |
template <typename DGR> |
| 2881 | 2902 |
class SplitNodesBase {
|
| 2882 | 2903 |
typedef DigraphAdaptorBase<const DGR> Parent; |
| 2883 | 2904 |
|
| 2884 | 2905 |
public: |
| 2885 | 2906 |
|
| 2886 | 2907 |
typedef DGR Digraph; |
| 2887 | 2908 |
typedef SplitNodesBase Adaptor; |
| 2888 | 2909 |
|
| 2889 | 2910 |
typedef typename DGR::Node DigraphNode; |
| 2890 | 2911 |
typedef typename DGR::Arc DigraphArc; |
| 2891 | 2912 |
|
| 2892 | 2913 |
class Node; |
| 2893 | 2914 |
class Arc; |
| 2894 | 2915 |
|
| 2895 | 2916 |
private: |
| 2896 | 2917 |
|
| 2897 | 2918 |
template <typename T> class NodeMapBase; |
| 2898 | 2919 |
template <typename T> class ArcMapBase; |
| 2899 | 2920 |
|
| 2900 | 2921 |
public: |
| 2901 | 2922 |
|
| 2902 | 2923 |
class Node : public DigraphNode {
|
| 2903 | 2924 |
friend class SplitNodesBase; |
| 2904 | 2925 |
template <typename T> friend class NodeMapBase; |
| 2905 | 2926 |
private: |
| 2906 | 2927 |
|
| 2907 | 2928 |
bool _in; |
| 2908 | 2929 |
Node(DigraphNode node, bool in) |
| 2909 | 2930 |
: DigraphNode(node), _in(in) {}
|
| 2910 | 2931 |
|
| 2911 | 2932 |
public: |
| 2912 | 2933 |
|
| 2913 | 2934 |
Node() {}
|
| 2914 | 2935 |
Node(Invalid) : DigraphNode(INVALID), _in(true) {}
|
| 2915 | 2936 |
|
| 2916 | 2937 |
bool operator==(const Node& node) const {
|
| 2917 | 2938 |
return DigraphNode::operator==(node) && _in == node._in; |
| 2918 | 2939 |
} |
| 2919 | 2940 |
|
| 2920 | 2941 |
bool operator!=(const Node& node) const {
|
| 2921 | 2942 |
return !(*this == node); |
| 2922 | 2943 |
} |
| 2923 | 2944 |
|
| 2924 | 2945 |
bool operator<(const Node& node) const {
|
| 2925 | 2946 |
return DigraphNode::operator<(node) || |
| 2926 | 2947 |
(DigraphNode::operator==(node) && _in < node._in); |
| 2927 | 2948 |
} |
| 2928 | 2949 |
}; |
| 2929 | 2950 |
|
| 2930 | 2951 |
class Arc {
|
| 2931 | 2952 |
friend class SplitNodesBase; |
| 2932 | 2953 |
template <typename T> friend class ArcMapBase; |
| 2933 | 2954 |
private: |
| 2934 | 2955 |
typedef BiVariant<DigraphArc, DigraphNode> ArcImpl; |
| 2935 | 2956 |
|
| 2936 | 2957 |
explicit Arc(const DigraphArc& arc) : _item(arc) {}
|
| 2937 | 2958 |
explicit Arc(const DigraphNode& node) : _item(node) {}
|
| 2938 | 2959 |
|
| 2939 | 2960 |
ArcImpl _item; |
| 2940 | 2961 |
|
| 2941 | 2962 |
public: |
| 2942 | 2963 |
Arc() {}
|
| 2943 | 2964 |
Arc(Invalid) : _item(DigraphArc(INVALID)) {}
|
| 2944 | 2965 |
|
| 2945 | 2966 |
bool operator==(const Arc& arc) const {
|
| 2946 | 2967 |
if (_item.firstState()) {
|
| 2947 | 2968 |
if (arc._item.firstState()) {
|
| 2948 | 2969 |
return _item.first() == arc._item.first(); |
| 2949 | 2970 |
} |
| 2950 | 2971 |
} else {
|
| 2951 | 2972 |
if (arc._item.secondState()) {
|
| 2952 | 2973 |
return _item.second() == arc._item.second(); |
| 2953 | 2974 |
} |
| 2954 | 2975 |
} |
| 2955 | 2976 |
return false; |
| 2956 | 2977 |
} |
| 2957 | 2978 |
|
| 2958 | 2979 |
bool operator!=(const Arc& arc) const {
|
| 2959 | 2980 |
return !(*this == arc); |
| 2960 | 2981 |
} |
| 2961 | 2982 |
|
| 2962 | 2983 |
bool operator<(const Arc& arc) const {
|
| 2963 | 2984 |
if (_item.firstState()) {
|
| 2964 | 2985 |
if (arc._item.firstState()) {
|
| 2965 | 2986 |
return _item.first() < arc._item.first(); |
| 2966 | 2987 |
} |
| 2967 | 2988 |
return false; |
| 2968 | 2989 |
} else {
|
| 2969 | 2990 |
if (arc._item.secondState()) {
|
| 2970 | 2991 |
return _item.second() < arc._item.second(); |
| 2971 | 2992 |
} |
| 2972 | 2993 |
return true; |
| 2973 | 2994 |
} |
| 2974 | 2995 |
} |
| 2975 | 2996 |
|
| 2976 | 2997 |
operator DigraphArc() const { return _item.first(); }
|
| 2977 | 2998 |
operator DigraphNode() const { return _item.second(); }
|
| 2978 | 2999 |
|
| 2979 | 3000 |
}; |
| 2980 | 3001 |
|
| 2981 | 3002 |
void first(Node& n) const {
|
| 2982 | 3003 |
_digraph->first(n); |
| 2983 | 3004 |
n._in = true; |
| 2984 | 3005 |
} |
| 2985 | 3006 |
|
| 2986 | 3007 |
void next(Node& n) const {
|
| 2987 | 3008 |
if (n._in) {
|
| 2988 | 3009 |
n._in = false; |
| 2989 | 3010 |
} else {
|
| 2990 | 3011 |
n._in = true; |
| 2991 | 3012 |
_digraph->next(n); |
| 2992 | 3013 |
} |
| 2993 | 3014 |
} |
| 2994 | 3015 |
|
| 2995 | 3016 |
void first(Arc& e) const {
|
| 2996 | 3017 |
e._item.setSecond(); |
| 2997 | 3018 |
_digraph->first(e._item.second()); |
| 2998 | 3019 |
if (e._item.second() == INVALID) {
|
| 2999 | 3020 |
e._item.setFirst(); |
| 3000 | 3021 |
_digraph->first(e._item.first()); |
| 3001 | 3022 |
} |
| 3002 | 3023 |
} |
| 3003 | 3024 |
|
| 3004 | 3025 |
void next(Arc& e) const {
|
| 3005 | 3026 |
if (e._item.secondState()) {
|
| 3006 | 3027 |
_digraph->next(e._item.second()); |
| 3007 | 3028 |
if (e._item.second() == INVALID) {
|
| 3008 | 3029 |
e._item.setFirst(); |
| 3009 | 3030 |
_digraph->first(e._item.first()); |
| 3010 | 3031 |
} |
| 3011 | 3032 |
} else {
|
| 3012 | 3033 |
_digraph->next(e._item.first()); |
| 3013 | 3034 |
} |
| 3014 | 3035 |
} |
| 3015 | 3036 |
|
| 3016 | 3037 |
void firstOut(Arc& e, const Node& n) const {
|
| 3017 | 3038 |
if (n._in) {
|
| 3018 | 3039 |
e._item.setSecond(n); |
| 3019 | 3040 |
} else {
|
| 3020 | 3041 |
e._item.setFirst(); |
| 3021 | 3042 |
_digraph->firstOut(e._item.first(), n); |
| 3022 | 3043 |
} |
| 3023 | 3044 |
} |
| 3024 | 3045 |
|
| 3025 | 3046 |
void nextOut(Arc& e) const {
|
| 3026 | 3047 |
if (!e._item.firstState()) {
|
| 3027 | 3048 |
e._item.setFirst(INVALID); |
| 3028 | 3049 |
} else {
|
| 3029 | 3050 |
_digraph->nextOut(e._item.first()); |
| 3030 | 3051 |
} |
| 3031 | 3052 |
} |
| 3032 | 3053 |
|
| 3033 | 3054 |
void firstIn(Arc& e, const Node& n) const {
|
| 3034 | 3055 |
if (!n._in) {
|
| 3035 | 3056 |
e._item.setSecond(n); |
| 3036 | 3057 |
} else {
|
| 3037 | 3058 |
e._item.setFirst(); |
| 3038 | 3059 |
_digraph->firstIn(e._item.first(), n); |
| 3039 | 3060 |
} |
| 3040 | 3061 |
} |
| 3041 | 3062 |
|
| 3042 | 3063 |
void nextIn(Arc& e) const {
|
| 3043 | 3064 |
if (!e._item.firstState()) {
|
| 3044 | 3065 |
e._item.setFirst(INVALID); |
| 3045 | 3066 |
} else {
|
| 3046 | 3067 |
_digraph->nextIn(e._item.first()); |
| 3047 | 3068 |
} |
| 3048 | 3069 |
} |
| 3049 | 3070 |
|
| 3050 | 3071 |
Node source(const Arc& e) const {
|
| 3051 | 3072 |
if (e._item.firstState()) {
|
| 3052 | 3073 |
return Node(_digraph->source(e._item.first()), false); |
| 3053 | 3074 |
} else {
|
| 3054 | 3075 |
return Node(e._item.second(), true); |
| 3055 | 3076 |
} |
| 3056 | 3077 |
} |
| 3057 | 3078 |
|
| 3058 | 3079 |
Node target(const Arc& e) const {
|
| 3059 | 3080 |
if (e._item.firstState()) {
|
| 3060 | 3081 |
return Node(_digraph->target(e._item.first()), true); |
| 3061 | 3082 |
} else {
|
| 3062 | 3083 |
return Node(e._item.second(), false); |
| 3063 | 3084 |
} |
| 3064 | 3085 |
} |
| 3065 | 3086 |
|
| 3066 | 3087 |
int id(const Node& n) const {
|
| 3067 | 3088 |
return (_digraph->id(n) << 1) | (n._in ? 0 : 1); |
| 3068 | 3089 |
} |
| 3069 | 3090 |
Node nodeFromId(int ix) const {
|
| 3070 | 3091 |
return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); |
| 3071 | 3092 |
} |
| 3072 | 3093 |
int maxNodeId() const {
|
| 3073 | 3094 |
return 2 * _digraph->maxNodeId() + 1; |
| 3074 | 3095 |
} |
| 3075 | 3096 |
|
| 3076 | 3097 |
int id(const Arc& e) const {
|
| 3077 | 3098 |
if (e._item.firstState()) {
|
| 3078 | 3099 |
return _digraph->id(e._item.first()) << 1; |
| 3079 | 3100 |
} else {
|
| 3080 | 3101 |
return (_digraph->id(e._item.second()) << 1) | 1; |
| 3081 | 3102 |
} |
| 3082 | 3103 |
} |
| 3083 | 3104 |
Arc arcFromId(int ix) const {
|
| 3084 | 3105 |
if ((ix & 1) == 0) {
|
| 3085 | 3106 |
return Arc(_digraph->arcFromId(ix >> 1)); |
| 3086 | 3107 |
} else {
|
| 3087 | 3108 |
return Arc(_digraph->nodeFromId(ix >> 1)); |
| 3088 | 3109 |
} |
| 3089 | 3110 |
} |
| 3090 | 3111 |
int maxArcId() const {
|
| 3091 | 3112 |
return std::max(_digraph->maxNodeId() << 1, |
| 3092 | 3113 |
(_digraph->maxArcId() << 1) | 1); |
| 3093 | 3114 |
} |
| 3094 | 3115 |
|
| 3095 | 3116 |
static bool inNode(const Node& n) {
|
| 3096 | 3117 |
return n._in; |
| 3097 | 3118 |
} |
| 3098 | 3119 |
|
| 3099 | 3120 |
static bool outNode(const Node& n) {
|
| 3100 | 3121 |
return !n._in; |
| 3101 | 3122 |
} |
| 3102 | 3123 |
|
| 3103 | 3124 |
static bool origArc(const Arc& e) {
|
| 3104 | 3125 |
return e._item.firstState(); |
| 3105 | 3126 |
} |
| 3106 | 3127 |
|
| 3107 | 3128 |
static bool bindArc(const Arc& e) {
|
| 3108 | 3129 |
return e._item.secondState(); |
| 3109 | 3130 |
} |
| 3110 | 3131 |
|
| 3111 | 3132 |
static Node inNode(const DigraphNode& n) {
|
| 3112 | 3133 |
return Node(n, true); |
| 3113 | 3134 |
} |
| 3114 | 3135 |
|
| 3115 | 3136 |
static Node outNode(const DigraphNode& n) {
|
| 3116 | 3137 |
return Node(n, false); |
| 3117 | 3138 |
} |
| 3118 | 3139 |
|
| 3119 | 3140 |
static Arc arc(const DigraphNode& n) {
|
| 3120 | 3141 |
return Arc(n); |
| 3121 | 3142 |
} |
| 3122 | 3143 |
|
| 3123 | 3144 |
static Arc arc(const DigraphArc& e) {
|
| 3124 | 3145 |
return Arc(e); |
| 3125 | 3146 |
} |
| 3126 | 3147 |
|
| 3127 | 3148 |
typedef True NodeNumTag; |
| 3128 | 3149 |
int nodeNum() const {
|
| 3129 | 3150 |
return 2 * countNodes(*_digraph); |
| 3130 | 3151 |
} |
| 3131 | 3152 |
|
| 3132 | 3153 |
typedef True ArcNumTag; |
| 3133 | 3154 |
int arcNum() const {
|
| 3134 | 3155 |
return countArcs(*_digraph) + countNodes(*_digraph); |
| 3135 | 3156 |
} |
| 3136 | 3157 |
|
| 3137 | 3158 |
typedef True FindArcTag; |
| 3138 | 3159 |
Arc findArc(const Node& u, const Node& v, |
| 3139 | 3160 |
const Arc& prev = INVALID) const {
|
| 3140 | 3161 |
if (inNode(u) && outNode(v)) {
|
| 3141 | 3162 |
if (static_cast<const DigraphNode&>(u) == |
| 3142 | 3163 |
static_cast<const DigraphNode&>(v) && prev == INVALID) {
|
| 3143 | 3164 |
return Arc(u); |
| 3144 | 3165 |
} |
| 3145 | 3166 |
} |
| 3146 | 3167 |
else if (outNode(u) && inNode(v)) {
|
| 3147 | 3168 |
return Arc(::lemon::findArc(*_digraph, u, v, prev)); |
| 3148 | 3169 |
} |
| 3149 | 3170 |
return INVALID; |
| 3150 | 3171 |
} |
| 3151 | 3172 |
|
| 3152 | 3173 |
private: |
| 3153 | 3174 |
|
| 3154 | 3175 |
template <typename V> |
| 3155 | 3176 |
class NodeMapBase |
| 3156 | 3177 |
: public MapTraits<typename Parent::template NodeMap<V> > {
|
| 3157 | 3178 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
| 3158 | 3179 |
public: |
| 3159 | 3180 |
typedef Node Key; |
| 3160 | 3181 |
typedef V Value; |
| 3161 | 3182 |
typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag; |
| 3162 | 3183 |
typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue; |
| 3163 | 3184 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue; |
| 3164 | 3185 |
typedef typename MapTraits<NodeImpl>::ReturnValue Reference; |
| 3165 | 3186 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference; |
| 3166 | 3187 |
|
| 3167 | 3188 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor) |
| 3168 | 3189 |
: _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
|
| 3169 | 3190 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
| 3170 | 3191 |
: _in_map(*adaptor._digraph, value), |
| 3171 | 3192 |
_out_map(*adaptor._digraph, value) {}
|
| 3172 | 3193 |
|
| 3173 | 3194 |
void set(const Node& key, const V& val) {
|
| 3174 | 3195 |
if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
|
| 3175 | 3196 |
else {_out_map.set(key, val); }
|
| 3176 | 3197 |
} |
| 3177 | 3198 |
|
| 3178 | 3199 |
ReturnValue operator[](const Node& key) {
|
| 3179 | 3200 |
if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
|
| 3180 | 3201 |
else { return _out_map[key]; }
|
| 3181 | 3202 |
} |
| 3182 | 3203 |
|
| 3183 | 3204 |
ConstReturnValue operator[](const Node& key) const {
|
| 3184 | 3205 |
if (Adaptor::inNode(key)) { return _in_map[key]; }
|
| 3185 | 3206 |
else { return _out_map[key]; }
|
| 3186 | 3207 |
} |
| 3187 | 3208 |
|
| 3188 | 3209 |
private: |
| 3189 | 3210 |
NodeImpl _in_map, _out_map; |
| 3190 | 3211 |
}; |
| 3191 | 3212 |
|
| 3192 | 3213 |
template <typename V> |
| 3193 | 3214 |
class ArcMapBase |
| 3194 | 3215 |
: public MapTraits<typename Parent::template ArcMap<V> > {
|
| 3195 | 3216 |
typedef typename Parent::template ArcMap<V> ArcImpl; |
| 3196 | 3217 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
| 3197 | 3218 |
public: |
| 3198 | 3219 |
typedef Arc Key; |
| 3199 | 3220 |
typedef V Value; |
| 3200 | 3221 |
typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag; |
| 3201 | 3222 |
typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue; |
| 3202 | 3223 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue; |
| 3203 | 3224 |
typedef typename MapTraits<ArcImpl>::ReturnValue Reference; |
| 3204 | 3225 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference; |
| 3205 | 3226 |
|
| 3206 | 3227 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor) |
| 3207 | 3228 |
: _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
|
| 3208 | 3229 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
| 3209 | 3230 |
: _arc_map(*adaptor._digraph, value), |
| 3210 | 3231 |
_node_map(*adaptor._digraph, value) {}
|
| 3211 | 3232 |
|
| 3212 | 3233 |
void set(const Arc& key, const V& val) {
|
| 3213 | 3234 |
if (SplitNodesBase<DGR>::origArc(key)) {
|
| 3214 | 3235 |
_arc_map.set(static_cast<const DigraphArc&>(key), val); |
| 3215 | 3236 |
} else {
|
| 3216 | 3237 |
_node_map.set(static_cast<const DigraphNode&>(key), val); |
| 3217 | 3238 |
} |
| 3218 | 3239 |
} |
| 3219 | 3240 |
|
| 3220 | 3241 |
ReturnValue operator[](const Arc& key) {
|
| 3221 | 3242 |
if (SplitNodesBase<DGR>::origArc(key)) {
|
| 3222 | 3243 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
| 3223 | 3244 |
} else {
|
| 3224 | 3245 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
| 3225 | 3246 |
} |
| 3226 | 3247 |
} |
| 3227 | 3248 |
|
| 3228 | 3249 |
ConstReturnValue operator[](const Arc& key) const {
|
| 3229 | 3250 |
if (SplitNodesBase<DGR>::origArc(key)) {
|
| 3230 | 3251 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
| 3231 | 3252 |
} else {
|
| 3232 | 3253 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
| 3233 | 3254 |
} |
| 3234 | 3255 |
} |
| 3235 | 3256 |
|
| 3236 | 3257 |
private: |
| 3237 | 3258 |
ArcImpl _arc_map; |
| 3238 | 3259 |
NodeImpl _node_map; |
| 3239 | 3260 |
}; |
| 3240 | 3261 |
|
| 3241 | 3262 |
public: |
| 3242 | 3263 |
|
| 3243 | 3264 |
template <typename V> |
| 3244 | 3265 |
class NodeMap |
| 3245 | 3266 |
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
|
| 3246 | 3267 |
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent; |
| 3247 | 3268 |
|
| 3248 | 3269 |
public: |
| 3249 | 3270 |
typedef V Value; |
| 3250 | 3271 |
|
| 3251 | 3272 |
NodeMap(const SplitNodesBase<DGR>& adaptor) |
| 3252 | 3273 |
: Parent(adaptor) {}
|
| 3253 | 3274 |
|
| 3254 | 3275 |
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
| 3255 | 3276 |
: Parent(adaptor, value) {}
|
| 3256 | 3277 |
|
| 3257 | 3278 |
private: |
| 3258 | 3279 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 3259 | 3280 |
return operator=<NodeMap>(cmap); |
| 3260 | 3281 |
} |
| 3261 | 3282 |
|
| 3262 | 3283 |
template <typename CMap> |
| 3263 | 3284 |
NodeMap& operator=(const CMap& cmap) {
|
| 3264 | 3285 |
Parent::operator=(cmap); |
| 3265 | 3286 |
return *this; |
| 3266 | 3287 |
} |
| 3267 | 3288 |
}; |
| 3268 | 3289 |
|
| 3269 | 3290 |
template <typename V> |
| 3270 | 3291 |
class ArcMap |
| 3271 | 3292 |
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
|
| 3272 | 3293 |
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent; |
| 3273 | 3294 |
|
| 3274 | 3295 |
public: |
| 3275 | 3296 |
typedef V Value; |
| 3276 | 3297 |
|
| 3277 | 3298 |
ArcMap(const SplitNodesBase<DGR>& adaptor) |
| 3278 | 3299 |
: Parent(adaptor) {}
|
| 3279 | 3300 |
|
| 3280 | 3301 |
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
| 3281 | 3302 |
: Parent(adaptor, value) {}
|
| 3282 | 3303 |
|
| 3283 | 3304 |
private: |
| 3284 | 3305 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 3285 | 3306 |
return operator=<ArcMap>(cmap); |
| 3286 | 3307 |
} |
| 3287 | 3308 |
|
| 3288 | 3309 |
template <typename CMap> |
| 3289 | 3310 |
ArcMap& operator=(const CMap& cmap) {
|
| 3290 | 3311 |
Parent::operator=(cmap); |
| 3291 | 3312 |
return *this; |
| 3292 | 3313 |
} |
| 3293 | 3314 |
}; |
| 3294 | 3315 |
|
| 3295 | 3316 |
protected: |
| 3296 | 3317 |
|
| 3297 | 3318 |
SplitNodesBase() : _digraph(0) {}
|
| 3298 | 3319 |
|
| 3299 | 3320 |
DGR* _digraph; |
| 3300 | 3321 |
|
| 3301 | 3322 |
void initialize(Digraph& digraph) {
|
| 3302 | 3323 |
_digraph = &digraph; |
| 3303 | 3324 |
} |
| 3304 | 3325 |
|
| 3305 | 3326 |
}; |
| 3306 | 3327 |
|
| 3307 | 3328 |
/// \ingroup graph_adaptors |
| 3308 | 3329 |
/// |
| 3309 | 3330 |
/// \brief Adaptor class for splitting the nodes of a digraph. |
| 3310 | 3331 |
/// |
| 3311 | 3332 |
/// SplitNodes adaptor can be used for splitting each node into an |
| 3312 | 3333 |
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor |
| 3313 | 3334 |
/// replaces each node \f$ u \f$ in the digraph with two nodes, |
| 3314 | 3335 |
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
|
| 3315 | 3336 |
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the |
| 3316 | 3337 |
/// new target of the arc will be \f$ u_{in} \f$ and similarly the
|
| 3317 | 3338 |
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
|
| 3318 | 3339 |
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
|
| 3319 | 3340 |
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
|
| 3320 | 3341 |
/// |
| 3321 | 3342 |
/// The aim of this class is running an algorithm with respect to node |
| 3322 | 3343 |
/// costs or capacities if the algorithm considers only arc costs or |
| 3323 | 3344 |
/// capacities directly. |
| 3324 | 3345 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
| 3325 | 3346 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
| 3326 | 3347 |
/// in the adaptor. |
| 3327 | 3348 |
/// |
| 3349 |
/// This class provides item counting in the same time as the adapted |
|
| 3350 |
/// digraph structure. |
|
| 3351 |
/// |
|
| 3328 | 3352 |
/// \tparam DGR The type of the adapted digraph. |
| 3329 | 3353 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 3330 | 3354 |
/// It is implicitly \c const. |
| 3331 | 3355 |
/// |
| 3332 | 3356 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
| 3333 | 3357 |
/// type of the adapted digraph. |
| 3334 | 3358 |
template <typename DGR> |
| 3335 | 3359 |
#ifdef DOXYGEN |
| 3336 | 3360 |
class SplitNodes {
|
| 3337 | 3361 |
#else |
| 3338 | 3362 |
class SplitNodes |
| 3339 | 3363 |
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
|
| 3340 | 3364 |
#endif |
| 3341 | 3365 |
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent; |
| 3342 | 3366 |
|
| 3343 | 3367 |
public: |
| 3344 | 3368 |
typedef DGR Digraph; |
| 3345 | 3369 |
|
| 3346 | 3370 |
typedef typename DGR::Node DigraphNode; |
| 3347 | 3371 |
typedef typename DGR::Arc DigraphArc; |
| 3348 | 3372 |
|
| 3349 | 3373 |
typedef typename Parent::Node Node; |
| 3350 | 3374 |
typedef typename Parent::Arc Arc; |
| 3351 | 3375 |
|
| 3352 | 3376 |
/// \brief Constructor |
| 3353 | 3377 |
/// |
| 3354 | 3378 |
/// Constructor of the adaptor. |
| 3355 | 3379 |
SplitNodes(const DGR& g) {
|
| 3356 | 3380 |
Parent::initialize(g); |
| 3357 | 3381 |
} |
| 3358 | 3382 |
|
| 3359 | 3383 |
/// \brief Returns \c true if the given node is an in-node. |
| 3360 | 3384 |
/// |
| 3361 | 3385 |
/// Returns \c true if the given node is an in-node. |
| 3362 | 3386 |
static bool inNode(const Node& n) {
|
| 3363 | 3387 |
return Parent::inNode(n); |
| 3364 | 3388 |
} |
| 3365 | 3389 |
|
| 3366 | 3390 |
/// \brief Returns \c true if the given node is an out-node. |
| 3367 | 3391 |
/// |
| 3368 | 3392 |
/// Returns \c true if the given node is an out-node. |
| 3369 | 3393 |
static bool outNode(const Node& n) {
|
| 3370 | 3394 |
return Parent::outNode(n); |
| 3371 | 3395 |
} |
| 3372 | 3396 |
|
| 3373 | 3397 |
/// \brief Returns \c true if the given arc is an original arc. |
| 3374 | 3398 |
/// |
| 3375 | 3399 |
/// Returns \c true if the given arc is one of the arcs in the |
| 3376 | 3400 |
/// original digraph. |
| 3377 | 3401 |
static bool origArc(const Arc& a) {
|
| 3378 | 3402 |
return Parent::origArc(a); |
| 3379 | 3403 |
} |
| 3380 | 3404 |
|
| 3381 | 3405 |
/// \brief Returns \c true if the given arc is a bind arc. |
| 3382 | 3406 |
/// |
| 3383 | 3407 |
/// Returns \c true if the given arc is a bind arc, i.e. it connects |
| 3384 | 3408 |
/// an in-node and an out-node. |
| 3385 | 3409 |
static bool bindArc(const Arc& a) {
|
| 3386 | 3410 |
return Parent::bindArc(a); |
| 3387 | 3411 |
} |
| 3388 | 3412 |
|
| 3389 | 3413 |
/// \brief Returns the in-node created from the given original node. |
| 3390 | 3414 |
/// |
| 3391 | 3415 |
/// Returns the in-node created from the given original node. |
| 3392 | 3416 |
static Node inNode(const DigraphNode& n) {
|
| 3393 | 3417 |
return Parent::inNode(n); |
| 3394 | 3418 |
} |
| 3395 | 3419 |
|
| 3396 | 3420 |
/// \brief Returns the out-node created from the given original node. |
| 3397 | 3421 |
/// |
| 3398 | 3422 |
/// Returns the out-node created from the given original node. |
| 3399 | 3423 |
static Node outNode(const DigraphNode& n) {
|
| 3400 | 3424 |
return Parent::outNode(n); |
| 3401 | 3425 |
} |
| 3402 | 3426 |
|
| 3403 | 3427 |
/// \brief Returns the bind arc that corresponds to the given |
| 3404 | 3428 |
/// original node. |
| 3405 | 3429 |
/// |
| 3406 | 3430 |
/// Returns the bind arc in the adaptor that corresponds to the given |
| 3407 | 3431 |
/// original node, i.e. the arc connecting the in-node and out-node |
| 3408 | 3432 |
/// of \c n. |
| 3409 | 3433 |
static Arc arc(const DigraphNode& n) {
|
| 3410 | 3434 |
return Parent::arc(n); |
| 3411 | 3435 |
} |
| 3412 | 3436 |
|
| 3413 | 3437 |
/// \brief Returns the arc that corresponds to the given original arc. |
| 3414 | 3438 |
/// |
| 3415 | 3439 |
/// Returns the arc in the adaptor that corresponds to the given |
| 3416 | 3440 |
/// original arc. |
| 3417 | 3441 |
static Arc arc(const DigraphArc& a) {
|
| 3418 | 3442 |
return Parent::arc(a); |
| 3419 | 3443 |
} |
| 3420 | 3444 |
|
| 3421 | 3445 |
/// \brief Node map combined from two original node maps |
| 3422 | 3446 |
/// |
| 3423 | 3447 |
/// This map adaptor class adapts two node maps of the original digraph |
| 3424 | 3448 |
/// to get a node map of the split digraph. |
| 3425 | 3449 |
/// Its value type is inherited from the first node map type (\c IN). |
| 3426 | 3450 |
/// \tparam IN The type of the node map for the in-nodes. |
| 3427 | 3451 |
/// \tparam OUT The type of the node map for the out-nodes. |
| 3428 | 3452 |
template <typename IN, typename OUT> |
| 3429 | 3453 |
class CombinedNodeMap {
|
| 3430 | 3454 |
public: |
| 3431 | 3455 |
|
| 3432 | 3456 |
/// The key type of the map |
| 3433 | 3457 |
typedef Node Key; |
| 3434 | 3458 |
/// The value type of the map |
| 3435 | 3459 |
typedef typename IN::Value Value; |
| 3436 | 3460 |
|
| 3437 | 3461 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
| 3438 | 3462 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
| 3439 | 3463 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
| 3440 | 3464 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
| 3441 | 3465 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
| 3442 | 3466 |
|
| 3443 | 3467 |
/// Constructor |
| 3444 | 3468 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
| 3445 | 3469 |
: _in_map(in_map), _out_map(out_map) {}
|
| 3446 | 3470 |
|
| 3447 | 3471 |
/// Returns the value associated with the given key. |
| 3448 | 3472 |
Value operator[](const Key& key) const {
|
| 3449 | 3473 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3450 | 3474 |
return _in_map[key]; |
| 3451 | 3475 |
} else {
|
| 3452 | 3476 |
return _out_map[key]; |
| 3453 | 3477 |
} |
| 3454 | 3478 |
} |
| 3455 | 3479 |
|
| 3456 | 3480 |
/// Returns a reference to the value associated with the given key. |
| 3457 | 3481 |
Value& operator[](const Key& key) {
|
| 3458 | 3482 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3459 | 3483 |
return _in_map[key]; |
| 3460 | 3484 |
} else {
|
| 3461 | 3485 |
return _out_map[key]; |
| 3462 | 3486 |
} |
| 3463 | 3487 |
} |
| 3464 | 3488 |
|
| 3465 | 3489 |
/// Sets the value associated with the given key. |
| 3466 | 3490 |
void set(const Key& key, const Value& value) {
|
| 3467 | 3491 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3468 | 3492 |
_in_map.set(key, value); |
| 3469 | 3493 |
} else {
|
| 3470 | 3494 |
_out_map.set(key, value); |
| 3471 | 3495 |
} |
| 3472 | 3496 |
} |
| 3473 | 3497 |
|
| 3474 | 3498 |
private: |
| 3475 | 3499 |
|
| 3476 | 3500 |
IN& _in_map; |
| 3477 | 3501 |
OUT& _out_map; |
| 3478 | 3502 |
|
| 3479 | 3503 |
}; |
| 3480 | 3504 |
|
| 3481 | 3505 |
|
| 3482 | 3506 |
/// \brief Returns a combined node map |
| 3483 | 3507 |
/// |
| 3484 | 3508 |
/// This function just returns a combined node map. |
| 3485 | 3509 |
template <typename IN, typename OUT> |
| 3486 | 3510 |
static CombinedNodeMap<IN, OUT> |
| 3487 | 3511 |
combinedNodeMap(IN& in_map, OUT& out_map) {
|
| 3488 | 3512 |
return CombinedNodeMap<IN, OUT>(in_map, out_map); |
| 3489 | 3513 |
} |
| 3490 | 3514 |
|
| 3491 | 3515 |
template <typename IN, typename OUT> |
| 3492 | 3516 |
static CombinedNodeMap<const IN, OUT> |
| 3493 | 3517 |
combinedNodeMap(const IN& in_map, OUT& out_map) {
|
| 3494 | 3518 |
return CombinedNodeMap<const IN, OUT>(in_map, out_map); |
| 3495 | 3519 |
} |
| 3496 | 3520 |
|
| 3497 | 3521 |
template <typename IN, typename OUT> |
| 3498 | 3522 |
static CombinedNodeMap<IN, const OUT> |
| 3499 | 3523 |
combinedNodeMap(IN& in_map, const OUT& out_map) {
|
| 3500 | 3524 |
return CombinedNodeMap<IN, const OUT>(in_map, out_map); |
| 3501 | 3525 |
} |
| 3502 | 3526 |
|
| 3503 | 3527 |
template <typename IN, typename OUT> |
| 3504 | 3528 |
static CombinedNodeMap<const IN, const OUT> |
| 3505 | 3529 |
combinedNodeMap(const IN& in_map, const OUT& out_map) {
|
| 3506 | 3530 |
return CombinedNodeMap<const IN, const OUT>(in_map, out_map); |
| 3507 | 3531 |
} |
| 3508 | 3532 |
|
| 3509 | 3533 |
/// \brief Arc map combined from an arc map and a node map of the |
| 3510 | 3534 |
/// original digraph. |
| 3511 | 3535 |
/// |
| 3512 | 3536 |
/// This map adaptor class adapts an arc map and a node map of the |
| 3513 | 3537 |
/// original digraph to get an arc map of the split digraph. |
| 3514 | 3538 |
/// Its value type is inherited from the original arc map type (\c AM). |
| 3515 | 3539 |
/// \tparam AM The type of the arc map. |
| 3516 | 3540 |
/// \tparam NM the type of the node map. |
| 3517 | 3541 |
template <typename AM, typename NM> |
| 3518 | 3542 |
class CombinedArcMap {
|
| 3519 | 3543 |
public: |
| 3520 | 3544 |
|
| 3521 | 3545 |
/// The key type of the map |
| 3522 | 3546 |
typedef Arc Key; |
| 3523 | 3547 |
/// The value type of the map |
| 3524 | 3548 |
typedef typename AM::Value Value; |
| 3525 | 3549 |
|
| 3526 | 3550 |
typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag; |
| 3527 | 3551 |
typedef typename MapTraits<AM>::ReturnValue ReturnValue; |
| 3528 | 3552 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue; |
| 3529 | 3553 |
typedef typename MapTraits<AM>::ReturnValue Reference; |
| 3530 | 3554 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReference; |
| 3531 | 3555 |
|
| 3532 | 3556 |
/// Constructor |
| 3533 | 3557 |
CombinedArcMap(AM& arc_map, NM& node_map) |
| 3534 | 3558 |
: _arc_map(arc_map), _node_map(node_map) {}
|
| 3535 | 3559 |
|
| 3536 | 3560 |
/// Returns the value associated with the given key. |
| 3537 | 3561 |
Value operator[](const Key& arc) const {
|
| 3538 | 3562 |
if (SplitNodesBase<const DGR>::origArc(arc)) {
|
| 3539 | 3563 |
return _arc_map[arc]; |
| 3540 | 3564 |
} else {
|
| 3541 | 3565 |
return _node_map[arc]; |
| 3542 | 3566 |
} |
| 3543 | 3567 |
} |
| 3544 | 3568 |
|
| 3545 | 3569 |
/// Returns a reference to the value associated with the given key. |
| 3546 | 3570 |
Value& operator[](const Key& arc) {
|
| 3547 | 3571 |
if (SplitNodesBase<const DGR>::origArc(arc)) {
|
| 3548 | 3572 |
return _arc_map[arc]; |
| 3549 | 3573 |
} else {
|
| 3550 | 3574 |
return _node_map[arc]; |
| 3551 | 3575 |
} |
| 3552 | 3576 |
} |
| 3553 | 3577 |
|
| 3554 | 3578 |
/// Sets the value associated with the given key. |
| 3555 | 3579 |
void set(const Arc& arc, const Value& val) {
|
| 3556 | 3580 |
if (SplitNodesBase<const DGR>::origArc(arc)) {
|
| 3557 | 3581 |
_arc_map.set(arc, val); |
| 3558 | 3582 |
} else {
|
| 3559 | 3583 |
_node_map.set(arc, val); |
| 3560 | 3584 |
} |
| 3561 | 3585 |
} |
| 3562 | 3586 |
|
| 3563 | 3587 |
private: |
| 3564 | 3588 |
|
| 3565 | 3589 |
AM& _arc_map; |
| 3566 | 3590 |
NM& _node_map; |
| 3567 | 3591 |
|
| 3568 | 3592 |
}; |
| 3569 | 3593 |
|
| 3570 | 3594 |
/// \brief Returns a combined arc map |
| 3571 | 3595 |
/// |
| 3572 | 3596 |
/// This function just returns a combined arc map. |
| 3573 | 3597 |
template <typename ArcMap, typename NodeMap> |
| 3574 | 3598 |
static CombinedArcMap<ArcMap, NodeMap> |
| 3575 | 3599 |
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
|
| 3576 | 3600 |
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map); |
| 3577 | 3601 |
} |
| 3578 | 3602 |
|
| 3579 | 3603 |
template <typename ArcMap, typename NodeMap> |
| 3580 | 3604 |
static CombinedArcMap<const ArcMap, NodeMap> |
| 3581 | 3605 |
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
|
| 3582 | 3606 |
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map); |
| 3583 | 3607 |
} |
| 3584 | 3608 |
|
| 3585 | 3609 |
template <typename ArcMap, typename NodeMap> |
| 3586 | 3610 |
static CombinedArcMap<ArcMap, const NodeMap> |
| 3587 | 3611 |
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
|
| 3588 | 3612 |
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map); |
| 3589 | 3613 |
} |
| 3590 | 3614 |
|
| 3591 | 3615 |
template <typename ArcMap, typename NodeMap> |
| 3592 | 3616 |
static CombinedArcMap<const ArcMap, const NodeMap> |
| 3593 | 3617 |
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
|
| 3594 | 3618 |
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map); |
| 3595 | 3619 |
} |
| 3596 | 3620 |
|
| 3597 | 3621 |
}; |
| 3598 | 3622 |
|
| 3599 | 3623 |
/// \brief Returns a (read-only) SplitNodes adaptor |
| 3600 | 3624 |
/// |
| 3601 | 3625 |
/// This function just returns a (read-only) \ref SplitNodes adaptor. |
| 3602 | 3626 |
/// \ingroup graph_adaptors |
| 3603 | 3627 |
/// \relates SplitNodes |
| 3604 | 3628 |
template<typename DGR> |
| 3605 | 3629 |
SplitNodes<DGR> |
| 3606 | 3630 |
splitNodes(const DGR& digraph) {
|
| 3607 | 3631 |
return SplitNodes<DGR>(digraph); |
| 3608 | 3632 |
} |
| 3609 | 3633 |
|
| 3610 | 3634 |
#undef LEMON_SCOPE_FIX |
| 3611 | 3635 |
|
| 3612 | 3636 |
} //namespace lemon |
| 3613 | 3637 |
|
| 3614 | 3638 |
#endif //LEMON_ADAPTORS_H |
| ... | ... |
@@ -320,1430 +320,1422 @@ |
| 320 | 320 |
///Constructor. |
| 321 | 321 |
///\param g The digraph the algorithm runs on. |
| 322 | 322 |
Bfs(const Digraph &g) : |
| 323 | 323 |
G(&g), |
| 324 | 324 |
_pred(NULL), local_pred(false), |
| 325 | 325 |
_dist(NULL), local_dist(false), |
| 326 | 326 |
_reached(NULL), local_reached(false), |
| 327 | 327 |
_processed(NULL), local_processed(false) |
| 328 | 328 |
{ }
|
| 329 | 329 |
|
| 330 | 330 |
///Destructor. |
| 331 | 331 |
~Bfs() |
| 332 | 332 |
{
|
| 333 | 333 |
if(local_pred) delete _pred; |
| 334 | 334 |
if(local_dist) delete _dist; |
| 335 | 335 |
if(local_reached) delete _reached; |
| 336 | 336 |
if(local_processed) delete _processed; |
| 337 | 337 |
} |
| 338 | 338 |
|
| 339 | 339 |
///Sets the map that stores the predecessor arcs. |
| 340 | 340 |
|
| 341 | 341 |
///Sets the map that stores the predecessor arcs. |
| 342 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 343 | 343 |
///or \ref init(), an instance will be allocated automatically. |
| 344 | 344 |
///The destructor deallocates this automatically allocated map, |
| 345 | 345 |
///of course. |
| 346 | 346 |
///\return <tt> (*this) </tt> |
| 347 | 347 |
Bfs &predMap(PredMap &m) |
| 348 | 348 |
{
|
| 349 | 349 |
if(local_pred) {
|
| 350 | 350 |
delete _pred; |
| 351 | 351 |
local_pred=false; |
| 352 | 352 |
} |
| 353 | 353 |
_pred = &m; |
| 354 | 354 |
return *this; |
| 355 | 355 |
} |
| 356 | 356 |
|
| 357 | 357 |
///Sets the map that indicates which nodes are reached. |
| 358 | 358 |
|
| 359 | 359 |
///Sets the map that indicates which nodes are reached. |
| 360 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 361 | 361 |
///or \ref init(), an instance will be allocated automatically. |
| 362 | 362 |
///The destructor deallocates this automatically allocated map, |
| 363 | 363 |
///of course. |
| 364 | 364 |
///\return <tt> (*this) </tt> |
| 365 | 365 |
Bfs &reachedMap(ReachedMap &m) |
| 366 | 366 |
{
|
| 367 | 367 |
if(local_reached) {
|
| 368 | 368 |
delete _reached; |
| 369 | 369 |
local_reached=false; |
| 370 | 370 |
} |
| 371 | 371 |
_reached = &m; |
| 372 | 372 |
return *this; |
| 373 | 373 |
} |
| 374 | 374 |
|
| 375 | 375 |
///Sets the map that indicates which nodes are processed. |
| 376 | 376 |
|
| 377 | 377 |
///Sets the map that indicates which nodes are processed. |
| 378 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 379 | 379 |
///or \ref init(), an instance will be allocated automatically. |
| 380 | 380 |
///The destructor deallocates this automatically allocated map, |
| 381 | 381 |
///of course. |
| 382 | 382 |
///\return <tt> (*this) </tt> |
| 383 | 383 |
Bfs &processedMap(ProcessedMap &m) |
| 384 | 384 |
{
|
| 385 | 385 |
if(local_processed) {
|
| 386 | 386 |
delete _processed; |
| 387 | 387 |
local_processed=false; |
| 388 | 388 |
} |
| 389 | 389 |
_processed = &m; |
| 390 | 390 |
return *this; |
| 391 | 391 |
} |
| 392 | 392 |
|
| 393 | 393 |
///Sets the map that stores the distances of the nodes. |
| 394 | 394 |
|
| 395 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
| 396 | 396 |
///the algorithm. |
| 397 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 398 | 398 |
///or \ref init(), an instance will be allocated automatically. |
| 399 | 399 |
///The destructor deallocates this automatically allocated map, |
| 400 | 400 |
///of course. |
| 401 | 401 |
///\return <tt> (*this) </tt> |
| 402 | 402 |
Bfs &distMap(DistMap &m) |
| 403 | 403 |
{
|
| 404 | 404 |
if(local_dist) {
|
| 405 | 405 |
delete _dist; |
| 406 | 406 |
local_dist=false; |
| 407 | 407 |
} |
| 408 | 408 |
_dist = &m; |
| 409 | 409 |
return *this; |
| 410 | 410 |
} |
| 411 | 411 |
|
| 412 | 412 |
public: |
| 413 | 413 |
|
| 414 | 414 |
///\name Execution Control |
| 415 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 416 | 416 |
///member functions called \ref run(Node) "run()".\n |
| 417 | 417 |
///If you need better control on the execution, you have to call |
| 418 | 418 |
///\ref init() first, then you can add several source nodes with |
| 419 | 419 |
///\ref addSource(). Finally the actual path computation can be |
| 420 | 420 |
///performed with one of the \ref start() functions. |
| 421 | 421 |
|
| 422 | 422 |
///@{
|
| 423 | 423 |
|
| 424 | 424 |
///\brief Initializes the internal data structures. |
| 425 | 425 |
/// |
| 426 | 426 |
///Initializes the internal data structures. |
| 427 | 427 |
void init() |
| 428 | 428 |
{
|
| 429 | 429 |
create_maps(); |
| 430 | 430 |
_queue.resize(countNodes(*G)); |
| 431 | 431 |
_queue_head=_queue_tail=0; |
| 432 | 432 |
_curr_dist=1; |
| 433 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 434 | 434 |
_pred->set(u,INVALID); |
| 435 | 435 |
_reached->set(u,false); |
| 436 | 436 |
_processed->set(u,false); |
| 437 | 437 |
} |
| 438 | 438 |
} |
| 439 | 439 |
|
| 440 | 440 |
///Adds a new source node. |
| 441 | 441 |
|
| 442 | 442 |
///Adds a new source node to the set of nodes to be processed. |
| 443 | 443 |
/// |
| 444 | 444 |
void addSource(Node s) |
| 445 | 445 |
{
|
| 446 | 446 |
if(!(*_reached)[s]) |
| 447 | 447 |
{
|
| 448 | 448 |
_reached->set(s,true); |
| 449 | 449 |
_pred->set(s,INVALID); |
| 450 | 450 |
_dist->set(s,0); |
| 451 | 451 |
_queue[_queue_head++]=s; |
| 452 | 452 |
_queue_next_dist=_queue_head; |
| 453 | 453 |
} |
| 454 | 454 |
} |
| 455 | 455 |
|
| 456 | 456 |
///Processes the next node. |
| 457 | 457 |
|
| 458 | 458 |
///Processes the next node. |
| 459 | 459 |
/// |
| 460 | 460 |
///\return The processed node. |
| 461 | 461 |
/// |
| 462 | 462 |
///\pre The queue must not be empty. |
| 463 | 463 |
Node processNextNode() |
| 464 | 464 |
{
|
| 465 | 465 |
if(_queue_tail==_queue_next_dist) {
|
| 466 | 466 |
_curr_dist++; |
| 467 | 467 |
_queue_next_dist=_queue_head; |
| 468 | 468 |
} |
| 469 | 469 |
Node n=_queue[_queue_tail++]; |
| 470 | 470 |
_processed->set(n,true); |
| 471 | 471 |
Node m; |
| 472 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 473 | 473 |
if(!(*_reached)[m=G->target(e)]) {
|
| 474 | 474 |
_queue[_queue_head++]=m; |
| 475 | 475 |
_reached->set(m,true); |
| 476 | 476 |
_pred->set(m,e); |
| 477 | 477 |
_dist->set(m,_curr_dist); |
| 478 | 478 |
} |
| 479 | 479 |
return n; |
| 480 | 480 |
} |
| 481 | 481 |
|
| 482 | 482 |
///Processes the next node. |
| 483 | 483 |
|
| 484 | 484 |
///Processes the next node and checks if the given target node |
| 485 | 485 |
///is reached. If the target node is reachable from the processed |
| 486 | 486 |
///node, then the \c reach parameter will be set to \c true. |
| 487 | 487 |
/// |
| 488 | 488 |
///\param target The target node. |
| 489 | 489 |
///\retval reach Indicates if the target node is reached. |
| 490 | 490 |
///It should be initially \c false. |
| 491 | 491 |
/// |
| 492 | 492 |
///\return The processed node. |
| 493 | 493 |
/// |
| 494 | 494 |
///\pre The queue must not be empty. |
| 495 | 495 |
Node processNextNode(Node target, bool& reach) |
| 496 | 496 |
{
|
| 497 | 497 |
if(_queue_tail==_queue_next_dist) {
|
| 498 | 498 |
_curr_dist++; |
| 499 | 499 |
_queue_next_dist=_queue_head; |
| 500 | 500 |
} |
| 501 | 501 |
Node n=_queue[_queue_tail++]; |
| 502 | 502 |
_processed->set(n,true); |
| 503 | 503 |
Node m; |
| 504 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 505 | 505 |
if(!(*_reached)[m=G->target(e)]) {
|
| 506 | 506 |
_queue[_queue_head++]=m; |
| 507 | 507 |
_reached->set(m,true); |
| 508 | 508 |
_pred->set(m,e); |
| 509 | 509 |
_dist->set(m,_curr_dist); |
| 510 | 510 |
reach = reach || (target == m); |
| 511 | 511 |
} |
| 512 | 512 |
return n; |
| 513 | 513 |
} |
| 514 | 514 |
|
| 515 | 515 |
///Processes the next node. |
| 516 | 516 |
|
| 517 | 517 |
///Processes the next node and checks if at least one of reached |
| 518 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
| 519 | 519 |
///with \c true value is reachable from the processed node, then the |
| 520 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
| 521 | 521 |
/// |
| 522 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
| 523 | 523 |
///possible targets. |
| 524 | 524 |
///\retval rnode The reached target node. |
| 525 | 525 |
///It should be initially \c INVALID. |
| 526 | 526 |
/// |
| 527 | 527 |
///\return The processed node. |
| 528 | 528 |
/// |
| 529 | 529 |
///\pre The queue must not be empty. |
| 530 | 530 |
template<class NM> |
| 531 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
| 532 | 532 |
{
|
| 533 | 533 |
if(_queue_tail==_queue_next_dist) {
|
| 534 | 534 |
_curr_dist++; |
| 535 | 535 |
_queue_next_dist=_queue_head; |
| 536 | 536 |
} |
| 537 | 537 |
Node n=_queue[_queue_tail++]; |
| 538 | 538 |
_processed->set(n,true); |
| 539 | 539 |
Node m; |
| 540 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 541 | 541 |
if(!(*_reached)[m=G->target(e)]) {
|
| 542 | 542 |
_queue[_queue_head++]=m; |
| 543 | 543 |
_reached->set(m,true); |
| 544 | 544 |
_pred->set(m,e); |
| 545 | 545 |
_dist->set(m,_curr_dist); |
| 546 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 547 | 547 |
} |
| 548 | 548 |
return n; |
| 549 | 549 |
} |
| 550 | 550 |
|
| 551 | 551 |
///The next node to be processed. |
| 552 | 552 |
|
| 553 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
| 554 | 554 |
///is empty. |
| 555 | 555 |
Node nextNode() const |
| 556 | 556 |
{
|
| 557 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
| 558 | 558 |
} |
| 559 | 559 |
|
| 560 | 560 |
///Returns \c false if there are nodes to be processed. |
| 561 | 561 |
|
| 562 | 562 |
///Returns \c false if there are nodes to be processed |
| 563 | 563 |
///in the queue. |
| 564 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; }
|
| 565 | 565 |
|
| 566 | 566 |
///Returns the number of the nodes to be processed. |
| 567 | 567 |
|
| 568 | 568 |
///Returns the number of the nodes to be processed |
| 569 | 569 |
///in the queue. |
| 570 | 570 |
int queueSize() const { return _queue_head-_queue_tail; }
|
| 571 | 571 |
|
| 572 | 572 |
///Executes the algorithm. |
| 573 | 573 |
|
| 574 | 574 |
///Executes the algorithm. |
| 575 | 575 |
/// |
| 576 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
| 577 | 577 |
///in order to compute the shortest path to each node. |
| 578 | 578 |
/// |
| 579 | 579 |
///The algorithm computes |
| 580 | 580 |
///- the shortest path tree (forest), |
| 581 | 581 |
///- the distance of each node from the root(s). |
| 582 | 582 |
/// |
| 583 | 583 |
///\pre init() must be called and at least one root node should be |
| 584 | 584 |
///added with addSource() before using this function. |
| 585 | 585 |
/// |
| 586 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
| 587 | 587 |
///\code |
| 588 | 588 |
/// while ( !b.emptyQueue() ) {
|
| 589 | 589 |
/// b.processNextNode(); |
| 590 | 590 |
/// } |
| 591 | 591 |
///\endcode |
| 592 | 592 |
void start() |
| 593 | 593 |
{
|
| 594 | 594 |
while ( !emptyQueue() ) processNextNode(); |
| 595 | 595 |
} |
| 596 | 596 |
|
| 597 | 597 |
///Executes the algorithm until the given target node is reached. |
| 598 | 598 |
|
| 599 | 599 |
///Executes the algorithm until the given target node is reached. |
| 600 | 600 |
/// |
| 601 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
| 602 | 602 |
///in order to compute the shortest path to \c t. |
| 603 | 603 |
/// |
| 604 | 604 |
///The algorithm computes |
| 605 | 605 |
///- the shortest path to \c t, |
| 606 | 606 |
///- the distance of \c t from the root(s). |
| 607 | 607 |
/// |
| 608 | 608 |
///\pre init() must be called and at least one root node should be |
| 609 | 609 |
///added with addSource() before using this function. |
| 610 | 610 |
/// |
| 611 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 612 | 612 |
///\code |
| 613 | 613 |
/// bool reach = false; |
| 614 | 614 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 615 | 615 |
/// b.processNextNode(t, reach); |
| 616 | 616 |
/// } |
| 617 | 617 |
///\endcode |
| 618 | 618 |
void start(Node t) |
| 619 | 619 |
{
|
| 620 | 620 |
bool reach = false; |
| 621 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 622 | 622 |
} |
| 623 | 623 |
|
| 624 | 624 |
///Executes the algorithm until a condition is met. |
| 625 | 625 |
|
| 626 | 626 |
///Executes the algorithm until a condition is met. |
| 627 | 627 |
/// |
| 628 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
| 629 | 629 |
///order to compute the shortest path to a node \c v with |
| 630 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 631 | 631 |
/// |
| 632 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 633 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 634 | 634 |
/// |
| 635 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 636 | 636 |
///\c INVALID if no such node was found. |
| 637 | 637 |
/// |
| 638 | 638 |
///\pre init() must be called and at least one root node should be |
| 639 | 639 |
///added with addSource() before using this function. |
| 640 | 640 |
/// |
| 641 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 642 | 642 |
///\code |
| 643 | 643 |
/// Node rnode = INVALID; |
| 644 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 645 | 645 |
/// b.processNextNode(nm, rnode); |
| 646 | 646 |
/// } |
| 647 | 647 |
/// return rnode; |
| 648 | 648 |
///\endcode |
| 649 | 649 |
template<class NodeBoolMap> |
| 650 | 650 |
Node start(const NodeBoolMap &nm) |
| 651 | 651 |
{
|
| 652 | 652 |
Node rnode = INVALID; |
| 653 | 653 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 654 | 654 |
processNextNode(nm, rnode); |
| 655 | 655 |
} |
| 656 | 656 |
return rnode; |
| 657 | 657 |
} |
| 658 | 658 |
|
| 659 | 659 |
///Runs the algorithm from the given source node. |
| 660 | 660 |
|
| 661 | 661 |
///This method runs the %BFS algorithm from node \c s |
| 662 | 662 |
///in order to compute the shortest path to each node. |
| 663 | 663 |
/// |
| 664 | 664 |
///The algorithm computes |
| 665 | 665 |
///- the shortest path tree, |
| 666 | 666 |
///- the distance of each node from the root. |
| 667 | 667 |
/// |
| 668 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 669 | 669 |
///\code |
| 670 | 670 |
/// b.init(); |
| 671 | 671 |
/// b.addSource(s); |
| 672 | 672 |
/// b.start(); |
| 673 | 673 |
///\endcode |
| 674 | 674 |
void run(Node s) {
|
| 675 | 675 |
init(); |
| 676 | 676 |
addSource(s); |
| 677 | 677 |
start(); |
| 678 | 678 |
} |
| 679 | 679 |
|
| 680 | 680 |
///Finds the shortest path between \c s and \c t. |
| 681 | 681 |
|
| 682 | 682 |
///This method runs the %BFS algorithm from node \c s |
| 683 | 683 |
///in order to compute the shortest path to node \c t |
| 684 | 684 |
///(it stops searching when \c t is processed). |
| 685 | 685 |
/// |
| 686 | 686 |
///\return \c true if \c t is reachable form \c s. |
| 687 | 687 |
/// |
| 688 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 689 | 689 |
///shortcut of the following code. |
| 690 | 690 |
///\code |
| 691 | 691 |
/// b.init(); |
| 692 | 692 |
/// b.addSource(s); |
| 693 | 693 |
/// b.start(t); |
| 694 | 694 |
///\endcode |
| 695 | 695 |
bool run(Node s,Node t) {
|
| 696 | 696 |
init(); |
| 697 | 697 |
addSource(s); |
| 698 | 698 |
start(t); |
| 699 | 699 |
return reached(t); |
| 700 | 700 |
} |
| 701 | 701 |
|
| 702 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
| 703 | 703 |
|
| 704 |
///This method runs the %BFS algorithm in order to |
|
| 705 |
///compute the shortest path to each node. |
|
| 706 |
/// |
|
| 707 |
///The algorithm computes |
|
| 708 |
///- the shortest path tree (forest), |
|
| 709 |
///- the distance of each node from the root(s). |
|
| 704 |
///This method runs the %BFS algorithm in order to visit all nodes |
|
| 705 |
///in the digraph. |
|
| 710 | 706 |
/// |
| 711 | 707 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 712 | 708 |
///\code |
| 713 | 709 |
/// b.init(); |
| 714 | 710 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 715 | 711 |
/// if (!b.reached(n)) {
|
| 716 | 712 |
/// b.addSource(n); |
| 717 | 713 |
/// b.start(); |
| 718 | 714 |
/// } |
| 719 | 715 |
/// } |
| 720 | 716 |
///\endcode |
| 721 | 717 |
void run() {
|
| 722 | 718 |
init(); |
| 723 | 719 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 724 | 720 |
if (!reached(n)) {
|
| 725 | 721 |
addSource(n); |
| 726 | 722 |
start(); |
| 727 | 723 |
} |
| 728 | 724 |
} |
| 729 | 725 |
} |
| 730 | 726 |
|
| 731 | 727 |
///@} |
| 732 | 728 |
|
| 733 | 729 |
///\name Query Functions |
| 734 | 730 |
///The results of the BFS algorithm can be obtained using these |
| 735 | 731 |
///functions.\n |
| 736 | 732 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 737 | 733 |
///before using them. |
| 738 | 734 |
|
| 739 | 735 |
///@{
|
| 740 | 736 |
|
| 741 | 737 |
///The shortest path to the given node. |
| 742 | 738 |
|
| 743 | 739 |
///Returns the shortest path to the given node from the root(s). |
| 744 | 740 |
/// |
| 745 | 741 |
///\warning \c t should be reached from the root(s). |
| 746 | 742 |
/// |
| 747 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 748 | 744 |
///must be called before using this function. |
| 749 | 745 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 750 | 746 |
|
| 751 | 747 |
///The distance of the given node from the root(s). |
| 752 | 748 |
|
| 753 | 749 |
///Returns the distance of the given node from the root(s). |
| 754 | 750 |
/// |
| 755 | 751 |
///\warning If node \c v is not reached from the root(s), then |
| 756 | 752 |
///the return value of this function is undefined. |
| 757 | 753 |
/// |
| 758 | 754 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 759 | 755 |
///must be called before using this function. |
| 760 | 756 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 761 | 757 |
|
| 762 | 758 |
///\brief Returns the 'previous arc' of the shortest path tree for |
| 763 | 759 |
///the given node. |
| 764 | 760 |
/// |
| 765 | 761 |
///This function returns the 'previous arc' of the shortest path |
| 766 | 762 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 767 | 763 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 768 | 764 |
///is not reached from the root(s) or if \c v is a root. |
| 769 | 765 |
/// |
| 770 | 766 |
///The shortest path tree used here is equal to the shortest path |
| 771 | 767 |
///tree used in \ref predNode() and \ref predMap(). |
| 772 | 768 |
/// |
| 773 | 769 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 774 | 770 |
///must be called before using this function. |
| 775 | 771 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 776 | 772 |
|
| 777 | 773 |
///\brief Returns the 'previous node' of the shortest path tree for |
| 778 | 774 |
///the given node. |
| 779 | 775 |
/// |
| 780 | 776 |
///This function returns the 'previous node' of the shortest path |
| 781 | 777 |
///tree for the node \c v, i.e. it returns the last but one node |
| 782 | 778 |
///of a shortest path from a root to \c v. It is \c INVALID |
| 783 | 779 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 784 | 780 |
/// |
| 785 | 781 |
///The shortest path tree used here is equal to the shortest path |
| 786 | 782 |
///tree used in \ref predArc() and \ref predMap(). |
| 787 | 783 |
/// |
| 788 | 784 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 789 | 785 |
///must be called before using this function. |
| 790 | 786 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 791 | 787 |
G->source((*_pred)[v]); } |
| 792 | 788 |
|
| 793 | 789 |
///\brief Returns a const reference to the node map that stores the |
| 794 | 790 |
/// distances of the nodes. |
| 795 | 791 |
/// |
| 796 | 792 |
///Returns a const reference to the node map that stores the distances |
| 797 | 793 |
///of the nodes calculated by the algorithm. |
| 798 | 794 |
/// |
| 799 | 795 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 800 | 796 |
///must be called before using this function. |
| 801 | 797 |
const DistMap &distMap() const { return *_dist;}
|
| 802 | 798 |
|
| 803 | 799 |
///\brief Returns a const reference to the node map that stores the |
| 804 | 800 |
///predecessor arcs. |
| 805 | 801 |
/// |
| 806 | 802 |
///Returns a const reference to the node map that stores the predecessor |
| 807 | 803 |
///arcs, which form the shortest path tree (forest). |
| 808 | 804 |
/// |
| 809 | 805 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 810 | 806 |
///must be called before using this function. |
| 811 | 807 |
const PredMap &predMap() const { return *_pred;}
|
| 812 | 808 |
|
| 813 | 809 |
///Checks if the given node is reached from the root(s). |
| 814 | 810 |
|
| 815 | 811 |
///Returns \c true if \c v is reached from the root(s). |
| 816 | 812 |
/// |
| 817 | 813 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 818 | 814 |
///must be called before using this function. |
| 819 | 815 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 820 | 816 |
|
| 821 | 817 |
///@} |
| 822 | 818 |
}; |
| 823 | 819 |
|
| 824 | 820 |
///Default traits class of bfs() function. |
| 825 | 821 |
|
| 826 | 822 |
///Default traits class of bfs() function. |
| 827 | 823 |
///\tparam GR Digraph type. |
| 828 | 824 |
template<class GR> |
| 829 | 825 |
struct BfsWizardDefaultTraits |
| 830 | 826 |
{
|
| 831 | 827 |
///The type of the digraph the algorithm runs on. |
| 832 | 828 |
typedef GR Digraph; |
| 833 | 829 |
|
| 834 | 830 |
///\brief The type of the map that stores the predecessor |
| 835 | 831 |
///arcs of the shortest paths. |
| 836 | 832 |
/// |
| 837 | 833 |
///The type of the map that stores the predecessor |
| 838 | 834 |
///arcs of the shortest paths. |
| 839 | 835 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 840 | 836 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 841 | 837 |
///Instantiates a PredMap. |
| 842 | 838 |
|
| 843 | 839 |
///This function instantiates a PredMap. |
| 844 | 840 |
///\param g is the digraph, to which we would like to define the |
| 845 | 841 |
///PredMap. |
| 846 | 842 |
static PredMap *createPredMap(const Digraph &g) |
| 847 | 843 |
{
|
| 848 | 844 |
return new PredMap(g); |
| 849 | 845 |
} |
| 850 | 846 |
|
| 851 | 847 |
///The type of the map that indicates which nodes are processed. |
| 852 | 848 |
|
| 853 | 849 |
///The type of the map that indicates which nodes are processed. |
| 854 | 850 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 855 | 851 |
///By default it is a NullMap. |
| 856 | 852 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 857 | 853 |
///Instantiates a ProcessedMap. |
| 858 | 854 |
|
| 859 | 855 |
///This function instantiates a ProcessedMap. |
| 860 | 856 |
///\param g is the digraph, to which |
| 861 | 857 |
///we would like to define the ProcessedMap. |
| 862 | 858 |
#ifdef DOXYGEN |
| 863 | 859 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 864 | 860 |
#else |
| 865 | 861 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 866 | 862 |
#endif |
| 867 | 863 |
{
|
| 868 | 864 |
return new ProcessedMap(); |
| 869 | 865 |
} |
| 870 | 866 |
|
| 871 | 867 |
///The type of the map that indicates which nodes are reached. |
| 872 | 868 |
|
| 873 | 869 |
///The type of the map that indicates which nodes are reached. |
| 874 | 870 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 875 | 871 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 876 | 872 |
///Instantiates a ReachedMap. |
| 877 | 873 |
|
| 878 | 874 |
///This function instantiates a ReachedMap. |
| 879 | 875 |
///\param g is the digraph, to which |
| 880 | 876 |
///we would like to define the ReachedMap. |
| 881 | 877 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 882 | 878 |
{
|
| 883 | 879 |
return new ReachedMap(g); |
| 884 | 880 |
} |
| 885 | 881 |
|
| 886 | 882 |
///The type of the map that stores the distances of the nodes. |
| 887 | 883 |
|
| 888 | 884 |
///The type of the map that stores the distances of the nodes. |
| 889 | 885 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 890 | 886 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 891 | 887 |
///Instantiates a DistMap. |
| 892 | 888 |
|
| 893 | 889 |
///This function instantiates a DistMap. |
| 894 | 890 |
///\param g is the digraph, to which we would like to define |
| 895 | 891 |
///the DistMap |
| 896 | 892 |
static DistMap *createDistMap(const Digraph &g) |
| 897 | 893 |
{
|
| 898 | 894 |
return new DistMap(g); |
| 899 | 895 |
} |
| 900 | 896 |
|
| 901 | 897 |
///The type of the shortest paths. |
| 902 | 898 |
|
| 903 | 899 |
///The type of the shortest paths. |
| 904 | 900 |
///It must conform to the \ref concepts::Path "Path" concept. |
| 905 | 901 |
typedef lemon::Path<Digraph> Path; |
| 906 | 902 |
}; |
| 907 | 903 |
|
| 908 | 904 |
/// Default traits class used by BfsWizard |
| 909 | 905 |
|
| 910 | 906 |
/// Default traits class used by BfsWizard. |
| 911 | 907 |
/// \tparam GR The type of the digraph. |
| 912 | 908 |
template<class GR> |
| 913 | 909 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 914 | 910 |
{
|
| 915 | 911 |
|
| 916 | 912 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 917 | 913 |
protected: |
| 918 | 914 |
//The type of the nodes in the digraph. |
| 919 | 915 |
typedef typename Base::Digraph::Node Node; |
| 920 | 916 |
|
| 921 | 917 |
//Pointer to the digraph the algorithm runs on. |
| 922 | 918 |
void *_g; |
| 923 | 919 |
//Pointer to the map of reached nodes. |
| 924 | 920 |
void *_reached; |
| 925 | 921 |
//Pointer to the map of processed nodes. |
| 926 | 922 |
void *_processed; |
| 927 | 923 |
//Pointer to the map of predecessors arcs. |
| 928 | 924 |
void *_pred; |
| 929 | 925 |
//Pointer to the map of distances. |
| 930 | 926 |
void *_dist; |
| 931 | 927 |
//Pointer to the shortest path to the target node. |
| 932 | 928 |
void *_path; |
| 933 | 929 |
//Pointer to the distance of the target node. |
| 934 | 930 |
int *_di; |
| 935 | 931 |
|
| 936 | 932 |
public: |
| 937 | 933 |
/// Constructor. |
| 938 | 934 |
|
| 939 | 935 |
/// This constructor does not require parameters, it initiates |
| 940 | 936 |
/// all of the attributes to \c 0. |
| 941 | 937 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 942 | 938 |
_dist(0), _path(0), _di(0) {}
|
| 943 | 939 |
|
| 944 | 940 |
/// Constructor. |
| 945 | 941 |
|
| 946 | 942 |
/// This constructor requires one parameter, |
| 947 | 943 |
/// others are initiated to \c 0. |
| 948 | 944 |
/// \param g The digraph the algorithm runs on. |
| 949 | 945 |
BfsWizardBase(const GR &g) : |
| 950 | 946 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 951 | 947 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 952 | 948 |
|
| 953 | 949 |
}; |
| 954 | 950 |
|
| 955 | 951 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
| 956 | 952 |
|
| 957 | 953 |
/// This auxiliary class is created to implement the |
| 958 | 954 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 959 | 955 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 960 | 956 |
/// functions and features of the plain \ref Bfs. |
| 961 | 957 |
/// |
| 962 | 958 |
/// This class should only be used through the \ref bfs() function, |
| 963 | 959 |
/// which makes it easier to use the algorithm. |
| 964 | 960 |
template<class TR> |
| 965 | 961 |
class BfsWizard : public TR |
| 966 | 962 |
{
|
| 967 | 963 |
typedef TR Base; |
| 968 | 964 |
|
| 969 | 965 |
typedef typename TR::Digraph Digraph; |
| 970 | 966 |
|
| 971 | 967 |
typedef typename Digraph::Node Node; |
| 972 | 968 |
typedef typename Digraph::NodeIt NodeIt; |
| 973 | 969 |
typedef typename Digraph::Arc Arc; |
| 974 | 970 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 975 | 971 |
|
| 976 | 972 |
typedef typename TR::PredMap PredMap; |
| 977 | 973 |
typedef typename TR::DistMap DistMap; |
| 978 | 974 |
typedef typename TR::ReachedMap ReachedMap; |
| 979 | 975 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 980 | 976 |
typedef typename TR::Path Path; |
| 981 | 977 |
|
| 982 | 978 |
public: |
| 983 | 979 |
|
| 984 | 980 |
/// Constructor. |
| 985 | 981 |
BfsWizard() : TR() {}
|
| 986 | 982 |
|
| 987 | 983 |
/// Constructor that requires parameters. |
| 988 | 984 |
|
| 989 | 985 |
/// Constructor that requires parameters. |
| 990 | 986 |
/// These parameters will be the default values for the traits class. |
| 991 | 987 |
/// \param g The digraph the algorithm runs on. |
| 992 | 988 |
BfsWizard(const Digraph &g) : |
| 993 | 989 |
TR(g) {}
|
| 994 | 990 |
|
| 995 | 991 |
///Copy constructor |
| 996 | 992 |
BfsWizard(const TR &b) : TR(b) {}
|
| 997 | 993 |
|
| 998 | 994 |
~BfsWizard() {}
|
| 999 | 995 |
|
| 1000 | 996 |
///Runs BFS algorithm from the given source node. |
| 1001 | 997 |
|
| 1002 | 998 |
///This method runs BFS algorithm from node \c s |
| 1003 | 999 |
///in order to compute the shortest path to each node. |
| 1004 | 1000 |
void run(Node s) |
| 1005 | 1001 |
{
|
| 1006 | 1002 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1007 | 1003 |
if (Base::_pred) |
| 1008 | 1004 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1009 | 1005 |
if (Base::_dist) |
| 1010 | 1006 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1011 | 1007 |
if (Base::_reached) |
| 1012 | 1008 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1013 | 1009 |
if (Base::_processed) |
| 1014 | 1010 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1015 | 1011 |
if (s!=INVALID) |
| 1016 | 1012 |
alg.run(s); |
| 1017 | 1013 |
else |
| 1018 | 1014 |
alg.run(); |
| 1019 | 1015 |
} |
| 1020 | 1016 |
|
| 1021 | 1017 |
///Finds the shortest path between \c s and \c t. |
| 1022 | 1018 |
|
| 1023 | 1019 |
///This method runs BFS algorithm from node \c s |
| 1024 | 1020 |
///in order to compute the shortest path to node \c t |
| 1025 | 1021 |
///(it stops searching when \c t is processed). |
| 1026 | 1022 |
/// |
| 1027 | 1023 |
///\return \c true if \c t is reachable form \c s. |
| 1028 | 1024 |
bool run(Node s, Node t) |
| 1029 | 1025 |
{
|
| 1030 | 1026 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1031 | 1027 |
if (Base::_pred) |
| 1032 | 1028 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1033 | 1029 |
if (Base::_dist) |
| 1034 | 1030 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1035 | 1031 |
if (Base::_reached) |
| 1036 | 1032 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1037 | 1033 |
if (Base::_processed) |
| 1038 | 1034 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1039 | 1035 |
alg.run(s,t); |
| 1040 | 1036 |
if (Base::_path) |
| 1041 | 1037 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 1042 | 1038 |
if (Base::_di) |
| 1043 | 1039 |
*Base::_di = alg.dist(t); |
| 1044 | 1040 |
return alg.reached(t); |
| 1045 | 1041 |
} |
| 1046 | 1042 |
|
| 1047 | 1043 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1048 | 1044 |
|
| 1049 |
///This method runs BFS algorithm in order to compute |
|
| 1050 |
///the shortest path to each node. |
|
| 1045 |
///This method runs BFS algorithm in order to visit all nodes |
|
| 1046 |
///in the digraph. |
|
| 1051 | 1047 |
void run() |
| 1052 | 1048 |
{
|
| 1053 | 1049 |
run(INVALID); |
| 1054 | 1050 |
} |
| 1055 | 1051 |
|
| 1056 | 1052 |
template<class T> |
| 1057 | 1053 |
struct SetPredMapBase : public Base {
|
| 1058 | 1054 |
typedef T PredMap; |
| 1059 | 1055 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1060 | 1056 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1061 | 1057 |
}; |
| 1062 | 1058 |
|
| 1063 | 1059 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1064 | 1060 |
///the predecessor map. |
| 1065 | 1061 |
/// |
| 1066 | 1062 |
///\ref named-templ-param "Named parameter" function for setting |
| 1067 | 1063 |
///the map that stores the predecessor arcs of the nodes. |
| 1068 | 1064 |
template<class T> |
| 1069 | 1065 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1070 | 1066 |
{
|
| 1071 | 1067 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1072 | 1068 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1073 | 1069 |
} |
| 1074 | 1070 |
|
| 1075 | 1071 |
template<class T> |
| 1076 | 1072 |
struct SetReachedMapBase : public Base {
|
| 1077 | 1073 |
typedef T ReachedMap; |
| 1078 | 1074 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1079 | 1075 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1080 | 1076 |
}; |
| 1081 | 1077 |
|
| 1082 | 1078 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1083 | 1079 |
///the reached map. |
| 1084 | 1080 |
/// |
| 1085 | 1081 |
///\ref named-templ-param "Named parameter" function for setting |
| 1086 | 1082 |
///the map that indicates which nodes are reached. |
| 1087 | 1083 |
template<class T> |
| 1088 | 1084 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1089 | 1085 |
{
|
| 1090 | 1086 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1091 | 1087 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1092 | 1088 |
} |
| 1093 | 1089 |
|
| 1094 | 1090 |
template<class T> |
| 1095 | 1091 |
struct SetDistMapBase : public Base {
|
| 1096 | 1092 |
typedef T DistMap; |
| 1097 | 1093 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1098 | 1094 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1099 | 1095 |
}; |
| 1100 | 1096 |
|
| 1101 | 1097 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1102 | 1098 |
///the distance map. |
| 1103 | 1099 |
/// |
| 1104 | 1100 |
///\ref named-templ-param "Named parameter" function for setting |
| 1105 | 1101 |
///the map that stores the distances of the nodes calculated |
| 1106 | 1102 |
///by the algorithm. |
| 1107 | 1103 |
template<class T> |
| 1108 | 1104 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1109 | 1105 |
{
|
| 1110 | 1106 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1111 | 1107 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1112 | 1108 |
} |
| 1113 | 1109 |
|
| 1114 | 1110 |
template<class T> |
| 1115 | 1111 |
struct SetProcessedMapBase : public Base {
|
| 1116 | 1112 |
typedef T ProcessedMap; |
| 1117 | 1113 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1118 | 1114 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1119 | 1115 |
}; |
| 1120 | 1116 |
|
| 1121 | 1117 |
///\brief \ref named-func-param "Named parameter" for setting |
| 1122 | 1118 |
///the processed map. |
| 1123 | 1119 |
/// |
| 1124 | 1120 |
///\ref named-templ-param "Named parameter" function for setting |
| 1125 | 1121 |
///the map that indicates which nodes are processed. |
| 1126 | 1122 |
template<class T> |
| 1127 | 1123 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1128 | 1124 |
{
|
| 1129 | 1125 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1130 | 1126 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1131 | 1127 |
} |
| 1132 | 1128 |
|
| 1133 | 1129 |
template<class T> |
| 1134 | 1130 |
struct SetPathBase : public Base {
|
| 1135 | 1131 |
typedef T Path; |
| 1136 | 1132 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1137 | 1133 |
}; |
| 1138 | 1134 |
///\brief \ref named-func-param "Named parameter" |
| 1139 | 1135 |
///for getting the shortest path to the target node. |
| 1140 | 1136 |
/// |
| 1141 | 1137 |
///\ref named-func-param "Named parameter" |
| 1142 | 1138 |
///for getting the shortest path to the target node. |
| 1143 | 1139 |
template<class T> |
| 1144 | 1140 |
BfsWizard<SetPathBase<T> > path(const T &t) |
| 1145 | 1141 |
{
|
| 1146 | 1142 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1147 | 1143 |
return BfsWizard<SetPathBase<T> >(*this); |
| 1148 | 1144 |
} |
| 1149 | 1145 |
|
| 1150 | 1146 |
///\brief \ref named-func-param "Named parameter" |
| 1151 | 1147 |
///for getting the distance of the target node. |
| 1152 | 1148 |
/// |
| 1153 | 1149 |
///\ref named-func-param "Named parameter" |
| 1154 | 1150 |
///for getting the distance of the target node. |
| 1155 | 1151 |
BfsWizard dist(const int &d) |
| 1156 | 1152 |
{
|
| 1157 | 1153 |
Base::_di=const_cast<int*>(&d); |
| 1158 | 1154 |
return *this; |
| 1159 | 1155 |
} |
| 1160 | 1156 |
|
| 1161 | 1157 |
}; |
| 1162 | 1158 |
|
| 1163 | 1159 |
///Function-type interface for BFS algorithm. |
| 1164 | 1160 |
|
| 1165 | 1161 |
/// \ingroup search |
| 1166 | 1162 |
///Function-type interface for BFS algorithm. |
| 1167 | 1163 |
/// |
| 1168 | 1164 |
///This function also has several \ref named-func-param "named parameters", |
| 1169 | 1165 |
///they are declared as the members of class \ref BfsWizard. |
| 1170 | 1166 |
///The following examples show how to use these parameters. |
| 1171 | 1167 |
///\code |
| 1172 | 1168 |
/// // Compute shortest path from node s to each node |
| 1173 | 1169 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
| 1174 | 1170 |
/// |
| 1175 | 1171 |
/// // Compute shortest path from s to t |
| 1176 | 1172 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
| 1177 | 1173 |
///\endcode |
| 1178 | 1174 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
| 1179 | 1175 |
///to the end of the parameter list. |
| 1180 | 1176 |
///\sa BfsWizard |
| 1181 | 1177 |
///\sa Bfs |
| 1182 | 1178 |
template<class GR> |
| 1183 | 1179 |
BfsWizard<BfsWizardBase<GR> > |
| 1184 | 1180 |
bfs(const GR &digraph) |
| 1185 | 1181 |
{
|
| 1186 | 1182 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
| 1187 | 1183 |
} |
| 1188 | 1184 |
|
| 1189 | 1185 |
#ifdef DOXYGEN |
| 1190 | 1186 |
/// \brief Visitor class for BFS. |
| 1191 | 1187 |
/// |
| 1192 | 1188 |
/// This class defines the interface of the BfsVisit events, and |
| 1193 | 1189 |
/// it could be the base of a real visitor class. |
| 1194 | 1190 |
template <typename GR> |
| 1195 | 1191 |
struct BfsVisitor {
|
| 1196 | 1192 |
typedef GR Digraph; |
| 1197 | 1193 |
typedef typename Digraph::Arc Arc; |
| 1198 | 1194 |
typedef typename Digraph::Node Node; |
| 1199 | 1195 |
/// \brief Called for the source node(s) of the BFS. |
| 1200 | 1196 |
/// |
| 1201 | 1197 |
/// This function is called for the source node(s) of the BFS. |
| 1202 | 1198 |
void start(const Node& node) {}
|
| 1203 | 1199 |
/// \brief Called when a node is reached first time. |
| 1204 | 1200 |
/// |
| 1205 | 1201 |
/// This function is called when a node is reached first time. |
| 1206 | 1202 |
void reach(const Node& node) {}
|
| 1207 | 1203 |
/// \brief Called when a node is processed. |
| 1208 | 1204 |
/// |
| 1209 | 1205 |
/// This function is called when a node is processed. |
| 1210 | 1206 |
void process(const Node& node) {}
|
| 1211 | 1207 |
/// \brief Called when an arc reaches a new node. |
| 1212 | 1208 |
/// |
| 1213 | 1209 |
/// This function is called when the BFS finds an arc whose target node |
| 1214 | 1210 |
/// is not reached yet. |
| 1215 | 1211 |
void discover(const Arc& arc) {}
|
| 1216 | 1212 |
/// \brief Called when an arc is examined but its target node is |
| 1217 | 1213 |
/// already discovered. |
| 1218 | 1214 |
/// |
| 1219 | 1215 |
/// This function is called when an arc is examined but its target node is |
| 1220 | 1216 |
/// already discovered. |
| 1221 | 1217 |
void examine(const Arc& arc) {}
|
| 1222 | 1218 |
}; |
| 1223 | 1219 |
#else |
| 1224 | 1220 |
template <typename GR> |
| 1225 | 1221 |
struct BfsVisitor {
|
| 1226 | 1222 |
typedef GR Digraph; |
| 1227 | 1223 |
typedef typename Digraph::Arc Arc; |
| 1228 | 1224 |
typedef typename Digraph::Node Node; |
| 1229 | 1225 |
void start(const Node&) {}
|
| 1230 | 1226 |
void reach(const Node&) {}
|
| 1231 | 1227 |
void process(const Node&) {}
|
| 1232 | 1228 |
void discover(const Arc&) {}
|
| 1233 | 1229 |
void examine(const Arc&) {}
|
| 1234 | 1230 |
|
| 1235 | 1231 |
template <typename _Visitor> |
| 1236 | 1232 |
struct Constraints {
|
| 1237 | 1233 |
void constraints() {
|
| 1238 | 1234 |
Arc arc; |
| 1239 | 1235 |
Node node; |
| 1240 | 1236 |
visitor.start(node); |
| 1241 | 1237 |
visitor.reach(node); |
| 1242 | 1238 |
visitor.process(node); |
| 1243 | 1239 |
visitor.discover(arc); |
| 1244 | 1240 |
visitor.examine(arc); |
| 1245 | 1241 |
} |
| 1246 | 1242 |
_Visitor& visitor; |
| 1247 | 1243 |
}; |
| 1248 | 1244 |
}; |
| 1249 | 1245 |
#endif |
| 1250 | 1246 |
|
| 1251 | 1247 |
/// \brief Default traits class of BfsVisit class. |
| 1252 | 1248 |
/// |
| 1253 | 1249 |
/// Default traits class of BfsVisit class. |
| 1254 | 1250 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1255 | 1251 |
template<class GR> |
| 1256 | 1252 |
struct BfsVisitDefaultTraits {
|
| 1257 | 1253 |
|
| 1258 | 1254 |
/// \brief The type of the digraph the algorithm runs on. |
| 1259 | 1255 |
typedef GR Digraph; |
| 1260 | 1256 |
|
| 1261 | 1257 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1262 | 1258 |
/// |
| 1263 | 1259 |
/// The type of the map that indicates which nodes are reached. |
| 1264 | 1260 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1265 | 1261 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1266 | 1262 |
|
| 1267 | 1263 |
/// \brief Instantiates a ReachedMap. |
| 1268 | 1264 |
/// |
| 1269 | 1265 |
/// This function instantiates a ReachedMap. |
| 1270 | 1266 |
/// \param digraph is the digraph, to which |
| 1271 | 1267 |
/// we would like to define the ReachedMap. |
| 1272 | 1268 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1273 | 1269 |
return new ReachedMap(digraph); |
| 1274 | 1270 |
} |
| 1275 | 1271 |
|
| 1276 | 1272 |
}; |
| 1277 | 1273 |
|
| 1278 | 1274 |
/// \ingroup search |
| 1279 | 1275 |
/// |
| 1280 | 1276 |
/// \brief BFS algorithm class with visitor interface. |
| 1281 | 1277 |
/// |
| 1282 | 1278 |
/// This class provides an efficient implementation of the BFS algorithm |
| 1283 | 1279 |
/// with visitor interface. |
| 1284 | 1280 |
/// |
| 1285 | 1281 |
/// The BfsVisit class provides an alternative interface to the Bfs |
| 1286 | 1282 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1287 | 1283 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1288 | 1284 |
/// |
| 1289 | 1285 |
/// This interface of the BFS algorithm should be used in special cases |
| 1290 | 1286 |
/// when extra actions have to be performed in connection with certain |
| 1291 | 1287 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1292 | 1288 |
/// instead. |
| 1293 | 1289 |
/// |
| 1294 | 1290 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1295 | 1291 |
/// The default type is \ref ListDigraph. |
| 1296 | 1292 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1297 | 1293 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
| 1298 | 1294 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1299 | 1295 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
| 1300 | 1296 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1301 | 1297 |
/// events, you should implement your own visitor class. |
| 1302 | 1298 |
/// \tparam TR Traits class to set various data types used by the |
| 1303 | 1299 |
/// algorithm. The default traits class is |
| 1304 | 1300 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
| 1305 | 1301 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1306 | 1302 |
/// a BFS visit traits class. |
| 1307 | 1303 |
#ifdef DOXYGEN |
| 1308 | 1304 |
template <typename GR, typename VS, typename TR> |
| 1309 | 1305 |
#else |
| 1310 | 1306 |
template <typename GR = ListDigraph, |
| 1311 | 1307 |
typename VS = BfsVisitor<GR>, |
| 1312 | 1308 |
typename TR = BfsVisitDefaultTraits<GR> > |
| 1313 | 1309 |
#endif |
| 1314 | 1310 |
class BfsVisit {
|
| 1315 | 1311 |
public: |
| 1316 | 1312 |
|
| 1317 | 1313 |
///The traits class. |
| 1318 | 1314 |
typedef TR Traits; |
| 1319 | 1315 |
|
| 1320 | 1316 |
///The type of the digraph the algorithm runs on. |
| 1321 | 1317 |
typedef typename Traits::Digraph Digraph; |
| 1322 | 1318 |
|
| 1323 | 1319 |
///The visitor type used by the algorithm. |
| 1324 | 1320 |
typedef VS Visitor; |
| 1325 | 1321 |
|
| 1326 | 1322 |
///The type of the map that indicates which nodes are reached. |
| 1327 | 1323 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1328 | 1324 |
|
| 1329 | 1325 |
private: |
| 1330 | 1326 |
|
| 1331 | 1327 |
typedef typename Digraph::Node Node; |
| 1332 | 1328 |
typedef typename Digraph::NodeIt NodeIt; |
| 1333 | 1329 |
typedef typename Digraph::Arc Arc; |
| 1334 | 1330 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1335 | 1331 |
|
| 1336 | 1332 |
//Pointer to the underlying digraph. |
| 1337 | 1333 |
const Digraph *_digraph; |
| 1338 | 1334 |
//Pointer to the visitor object. |
| 1339 | 1335 |
Visitor *_visitor; |
| 1340 | 1336 |
//Pointer to the map of reached status of the nodes. |
| 1341 | 1337 |
ReachedMap *_reached; |
| 1342 | 1338 |
//Indicates if _reached is locally allocated (true) or not. |
| 1343 | 1339 |
bool local_reached; |
| 1344 | 1340 |
|
| 1345 | 1341 |
std::vector<typename Digraph::Node> _list; |
| 1346 | 1342 |
int _list_front, _list_back; |
| 1347 | 1343 |
|
| 1348 | 1344 |
//Creates the maps if necessary. |
| 1349 | 1345 |
void create_maps() {
|
| 1350 | 1346 |
if(!_reached) {
|
| 1351 | 1347 |
local_reached = true; |
| 1352 | 1348 |
_reached = Traits::createReachedMap(*_digraph); |
| 1353 | 1349 |
} |
| 1354 | 1350 |
} |
| 1355 | 1351 |
|
| 1356 | 1352 |
protected: |
| 1357 | 1353 |
|
| 1358 | 1354 |
BfsVisit() {}
|
| 1359 | 1355 |
|
| 1360 | 1356 |
public: |
| 1361 | 1357 |
|
| 1362 | 1358 |
typedef BfsVisit Create; |
| 1363 | 1359 |
|
| 1364 | 1360 |
/// \name Named Template Parameters |
| 1365 | 1361 |
|
| 1366 | 1362 |
///@{
|
| 1367 | 1363 |
template <class T> |
| 1368 | 1364 |
struct SetReachedMapTraits : public Traits {
|
| 1369 | 1365 |
typedef T ReachedMap; |
| 1370 | 1366 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1371 | 1367 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1372 | 1368 |
return 0; // ignore warnings |
| 1373 | 1369 |
} |
| 1374 | 1370 |
}; |
| 1375 | 1371 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1376 | 1372 |
/// ReachedMap type. |
| 1377 | 1373 |
/// |
| 1378 | 1374 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1379 | 1375 |
template <class T> |
| 1380 | 1376 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1381 | 1377 |
SetReachedMapTraits<T> > {
|
| 1382 | 1378 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1383 | 1379 |
}; |
| 1384 | 1380 |
///@} |
| 1385 | 1381 |
|
| 1386 | 1382 |
public: |
| 1387 | 1383 |
|
| 1388 | 1384 |
/// \brief Constructor. |
| 1389 | 1385 |
/// |
| 1390 | 1386 |
/// Constructor. |
| 1391 | 1387 |
/// |
| 1392 | 1388 |
/// \param digraph The digraph the algorithm runs on. |
| 1393 | 1389 |
/// \param visitor The visitor object of the algorithm. |
| 1394 | 1390 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1395 | 1391 |
: _digraph(&digraph), _visitor(&visitor), |
| 1396 | 1392 |
_reached(0), local_reached(false) {}
|
| 1397 | 1393 |
|
| 1398 | 1394 |
/// \brief Destructor. |
| 1399 | 1395 |
~BfsVisit() {
|
| 1400 | 1396 |
if(local_reached) delete _reached; |
| 1401 | 1397 |
} |
| 1402 | 1398 |
|
| 1403 | 1399 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1404 | 1400 |
/// |
| 1405 | 1401 |
/// Sets the map that indicates which nodes are reached. |
| 1406 | 1402 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1407 | 1403 |
/// or \ref init(), an instance will be allocated automatically. |
| 1408 | 1404 |
/// The destructor deallocates this automatically allocated map, |
| 1409 | 1405 |
/// of course. |
| 1410 | 1406 |
/// \return <tt> (*this) </tt> |
| 1411 | 1407 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1412 | 1408 |
if(local_reached) {
|
| 1413 | 1409 |
delete _reached; |
| 1414 | 1410 |
local_reached = false; |
| 1415 | 1411 |
} |
| 1416 | 1412 |
_reached = &m; |
| 1417 | 1413 |
return *this; |
| 1418 | 1414 |
} |
| 1419 | 1415 |
|
| 1420 | 1416 |
public: |
| 1421 | 1417 |
|
| 1422 | 1418 |
/// \name Execution Control |
| 1423 | 1419 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1424 | 1420 |
/// member functions called \ref run(Node) "run()".\n |
| 1425 | 1421 |
/// If you need better control on the execution, you have to call |
| 1426 | 1422 |
/// \ref init() first, then you can add several source nodes with |
| 1427 | 1423 |
/// \ref addSource(). Finally the actual path computation can be |
| 1428 | 1424 |
/// performed with one of the \ref start() functions. |
| 1429 | 1425 |
|
| 1430 | 1426 |
/// @{
|
| 1431 | 1427 |
|
| 1432 | 1428 |
/// \brief Initializes the internal data structures. |
| 1433 | 1429 |
/// |
| 1434 | 1430 |
/// Initializes the internal data structures. |
| 1435 | 1431 |
void init() {
|
| 1436 | 1432 |
create_maps(); |
| 1437 | 1433 |
_list.resize(countNodes(*_digraph)); |
| 1438 | 1434 |
_list_front = _list_back = -1; |
| 1439 | 1435 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1440 | 1436 |
_reached->set(u, false); |
| 1441 | 1437 |
} |
| 1442 | 1438 |
} |
| 1443 | 1439 |
|
| 1444 | 1440 |
/// \brief Adds a new source node. |
| 1445 | 1441 |
/// |
| 1446 | 1442 |
/// Adds a new source node to the set of nodes to be processed. |
| 1447 | 1443 |
void addSource(Node s) {
|
| 1448 | 1444 |
if(!(*_reached)[s]) {
|
| 1449 | 1445 |
_reached->set(s,true); |
| 1450 | 1446 |
_visitor->start(s); |
| 1451 | 1447 |
_visitor->reach(s); |
| 1452 | 1448 |
_list[++_list_back] = s; |
| 1453 | 1449 |
} |
| 1454 | 1450 |
} |
| 1455 | 1451 |
|
| 1456 | 1452 |
/// \brief Processes the next node. |
| 1457 | 1453 |
/// |
| 1458 | 1454 |
/// Processes the next node. |
| 1459 | 1455 |
/// |
| 1460 | 1456 |
/// \return The processed node. |
| 1461 | 1457 |
/// |
| 1462 | 1458 |
/// \pre The queue must not be empty. |
| 1463 | 1459 |
Node processNextNode() {
|
| 1464 | 1460 |
Node n = _list[++_list_front]; |
| 1465 | 1461 |
_visitor->process(n); |
| 1466 | 1462 |
Arc e; |
| 1467 | 1463 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1468 | 1464 |
Node m = _digraph->target(e); |
| 1469 | 1465 |
if (!(*_reached)[m]) {
|
| 1470 | 1466 |
_visitor->discover(e); |
| 1471 | 1467 |
_visitor->reach(m); |
| 1472 | 1468 |
_reached->set(m, true); |
| 1473 | 1469 |
_list[++_list_back] = m; |
| 1474 | 1470 |
} else {
|
| 1475 | 1471 |
_visitor->examine(e); |
| 1476 | 1472 |
} |
| 1477 | 1473 |
} |
| 1478 | 1474 |
return n; |
| 1479 | 1475 |
} |
| 1480 | 1476 |
|
| 1481 | 1477 |
/// \brief Processes the next node. |
| 1482 | 1478 |
/// |
| 1483 | 1479 |
/// Processes the next node and checks if the given target node |
| 1484 | 1480 |
/// is reached. If the target node is reachable from the processed |
| 1485 | 1481 |
/// node, then the \c reach parameter will be set to \c true. |
| 1486 | 1482 |
/// |
| 1487 | 1483 |
/// \param target The target node. |
| 1488 | 1484 |
/// \retval reach Indicates if the target node is reached. |
| 1489 | 1485 |
/// It should be initially \c false. |
| 1490 | 1486 |
/// |
| 1491 | 1487 |
/// \return The processed node. |
| 1492 | 1488 |
/// |
| 1493 | 1489 |
/// \pre The queue must not be empty. |
| 1494 | 1490 |
Node processNextNode(Node target, bool& reach) {
|
| 1495 | 1491 |
Node n = _list[++_list_front]; |
| 1496 | 1492 |
_visitor->process(n); |
| 1497 | 1493 |
Arc e; |
| 1498 | 1494 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1499 | 1495 |
Node m = _digraph->target(e); |
| 1500 | 1496 |
if (!(*_reached)[m]) {
|
| 1501 | 1497 |
_visitor->discover(e); |
| 1502 | 1498 |
_visitor->reach(m); |
| 1503 | 1499 |
_reached->set(m, true); |
| 1504 | 1500 |
_list[++_list_back] = m; |
| 1505 | 1501 |
reach = reach || (target == m); |
| 1506 | 1502 |
} else {
|
| 1507 | 1503 |
_visitor->examine(e); |
| 1508 | 1504 |
} |
| 1509 | 1505 |
} |
| 1510 | 1506 |
return n; |
| 1511 | 1507 |
} |
| 1512 | 1508 |
|
| 1513 | 1509 |
/// \brief Processes the next node. |
| 1514 | 1510 |
/// |
| 1515 | 1511 |
/// Processes the next node and checks if at least one of reached |
| 1516 | 1512 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1517 | 1513 |
/// with \c true value is reachable from the processed node, then the |
| 1518 | 1514 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1519 | 1515 |
/// |
| 1520 | 1516 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1521 | 1517 |
/// possible targets. |
| 1522 | 1518 |
/// \retval rnode The reached target node. |
| 1523 | 1519 |
/// It should be initially \c INVALID. |
| 1524 | 1520 |
/// |
| 1525 | 1521 |
/// \return The processed node. |
| 1526 | 1522 |
/// |
| 1527 | 1523 |
/// \pre The queue must not be empty. |
| 1528 | 1524 |
template <typename NM> |
| 1529 | 1525 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1530 | 1526 |
Node n = _list[++_list_front]; |
| 1531 | 1527 |
_visitor->process(n); |
| 1532 | 1528 |
Arc e; |
| 1533 | 1529 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1534 | 1530 |
Node m = _digraph->target(e); |
| 1535 | 1531 |
if (!(*_reached)[m]) {
|
| 1536 | 1532 |
_visitor->discover(e); |
| 1537 | 1533 |
_visitor->reach(m); |
| 1538 | 1534 |
_reached->set(m, true); |
| 1539 | 1535 |
_list[++_list_back] = m; |
| 1540 | 1536 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 1541 | 1537 |
} else {
|
| 1542 | 1538 |
_visitor->examine(e); |
| 1543 | 1539 |
} |
| 1544 | 1540 |
} |
| 1545 | 1541 |
return n; |
| 1546 | 1542 |
} |
| 1547 | 1543 |
|
| 1548 | 1544 |
/// \brief The next node to be processed. |
| 1549 | 1545 |
/// |
| 1550 | 1546 |
/// Returns the next node to be processed or \c INVALID if the queue |
| 1551 | 1547 |
/// is empty. |
| 1552 | 1548 |
Node nextNode() const {
|
| 1553 | 1549 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
| 1554 | 1550 |
} |
| 1555 | 1551 |
|
| 1556 | 1552 |
/// \brief Returns \c false if there are nodes |
| 1557 | 1553 |
/// to be processed. |
| 1558 | 1554 |
/// |
| 1559 | 1555 |
/// Returns \c false if there are nodes |
| 1560 | 1556 |
/// to be processed in the queue. |
| 1561 | 1557 |
bool emptyQueue() const { return _list_front == _list_back; }
|
| 1562 | 1558 |
|
| 1563 | 1559 |
/// \brief Returns the number of the nodes to be processed. |
| 1564 | 1560 |
/// |
| 1565 | 1561 |
/// Returns the number of the nodes to be processed in the queue. |
| 1566 | 1562 |
int queueSize() const { return _list_back - _list_front; }
|
| 1567 | 1563 |
|
| 1568 | 1564 |
/// \brief Executes the algorithm. |
| 1569 | 1565 |
/// |
| 1570 | 1566 |
/// Executes the algorithm. |
| 1571 | 1567 |
/// |
| 1572 | 1568 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1573 | 1569 |
/// in order to compute the shortest path to each node. |
| 1574 | 1570 |
/// |
| 1575 | 1571 |
/// The algorithm computes |
| 1576 | 1572 |
/// - the shortest path tree (forest), |
| 1577 | 1573 |
/// - the distance of each node from the root(s). |
| 1578 | 1574 |
/// |
| 1579 | 1575 |
/// \pre init() must be called and at least one root node should be added |
| 1580 | 1576 |
/// with addSource() before using this function. |
| 1581 | 1577 |
/// |
| 1582 | 1578 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
| 1583 | 1579 |
/// \code |
| 1584 | 1580 |
/// while ( !b.emptyQueue() ) {
|
| 1585 | 1581 |
/// b.processNextNode(); |
| 1586 | 1582 |
/// } |
| 1587 | 1583 |
/// \endcode |
| 1588 | 1584 |
void start() {
|
| 1589 | 1585 |
while ( !emptyQueue() ) processNextNode(); |
| 1590 | 1586 |
} |
| 1591 | 1587 |
|
| 1592 | 1588 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1593 | 1589 |
/// |
| 1594 | 1590 |
/// Executes the algorithm until the given target node is reached. |
| 1595 | 1591 |
/// |
| 1596 | 1592 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1597 | 1593 |
/// in order to compute the shortest path to \c t. |
| 1598 | 1594 |
/// |
| 1599 | 1595 |
/// The algorithm computes |
| 1600 | 1596 |
/// - the shortest path to \c t, |
| 1601 | 1597 |
/// - the distance of \c t from the root(s). |
| 1602 | 1598 |
/// |
| 1603 | 1599 |
/// \pre init() must be called and at least one root node should be |
| 1604 | 1600 |
/// added with addSource() before using this function. |
| 1605 | 1601 |
/// |
| 1606 | 1602 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 1607 | 1603 |
/// \code |
| 1608 | 1604 |
/// bool reach = false; |
| 1609 | 1605 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 1610 | 1606 |
/// b.processNextNode(t, reach); |
| 1611 | 1607 |
/// } |
| 1612 | 1608 |
/// \endcode |
| 1613 | 1609 |
void start(Node t) {
|
| 1614 | 1610 |
bool reach = false; |
| 1615 | 1611 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 1616 | 1612 |
} |
| 1617 | 1613 |
|
| 1618 | 1614 |
/// \brief Executes the algorithm until a condition is met. |
| 1619 | 1615 |
/// |
| 1620 | 1616 |
/// Executes the algorithm until a condition is met. |
| 1621 | 1617 |
/// |
| 1622 | 1618 |
/// This method runs the %BFS algorithm from the root node(s) in |
| 1623 | 1619 |
/// order to compute the shortest path to a node \c v with |
| 1624 | 1620 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 1625 | 1621 |
/// |
| 1626 | 1622 |
/// \param nm must be a bool (or convertible) node map. The |
| 1627 | 1623 |
/// algorithm will stop when it reaches a node \c v with |
| 1628 | 1624 |
/// <tt>nm[v]</tt> true. |
| 1629 | 1625 |
/// |
| 1630 | 1626 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
| 1631 | 1627 |
/// \c INVALID if no such node was found. |
| 1632 | 1628 |
/// |
| 1633 | 1629 |
/// \pre init() must be called and at least one root node should be |
| 1634 | 1630 |
/// added with addSource() before using this function. |
| 1635 | 1631 |
/// |
| 1636 | 1632 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 1637 | 1633 |
/// \code |
| 1638 | 1634 |
/// Node rnode = INVALID; |
| 1639 | 1635 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 1640 | 1636 |
/// b.processNextNode(nm, rnode); |
| 1641 | 1637 |
/// } |
| 1642 | 1638 |
/// return rnode; |
| 1643 | 1639 |
/// \endcode |
| 1644 | 1640 |
template <typename NM> |
| 1645 | 1641 |
Node start(const NM &nm) {
|
| 1646 | 1642 |
Node rnode = INVALID; |
| 1647 | 1643 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 1648 | 1644 |
processNextNode(nm, rnode); |
| 1649 | 1645 |
} |
| 1650 | 1646 |
return rnode; |
| 1651 | 1647 |
} |
| 1652 | 1648 |
|
| 1653 | 1649 |
/// \brief Runs the algorithm from the given source node. |
| 1654 | 1650 |
/// |
| 1655 | 1651 |
/// This method runs the %BFS algorithm from node \c s |
| 1656 | 1652 |
/// in order to compute the shortest path to each node. |
| 1657 | 1653 |
/// |
| 1658 | 1654 |
/// The algorithm computes |
| 1659 | 1655 |
/// - the shortest path tree, |
| 1660 | 1656 |
/// - the distance of each node from the root. |
| 1661 | 1657 |
/// |
| 1662 | 1658 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1663 | 1659 |
///\code |
| 1664 | 1660 |
/// b.init(); |
| 1665 | 1661 |
/// b.addSource(s); |
| 1666 | 1662 |
/// b.start(); |
| 1667 | 1663 |
///\endcode |
| 1668 | 1664 |
void run(Node s) {
|
| 1669 | 1665 |
init(); |
| 1670 | 1666 |
addSource(s); |
| 1671 | 1667 |
start(); |
| 1672 | 1668 |
} |
| 1673 | 1669 |
|
| 1674 | 1670 |
/// \brief Finds the shortest path between \c s and \c t. |
| 1675 | 1671 |
/// |
| 1676 | 1672 |
/// This method runs the %BFS algorithm from node \c s |
| 1677 | 1673 |
/// in order to compute the shortest path to node \c t |
| 1678 | 1674 |
/// (it stops searching when \c t is processed). |
| 1679 | 1675 |
/// |
| 1680 | 1676 |
/// \return \c true if \c t is reachable form \c s. |
| 1681 | 1677 |
/// |
| 1682 | 1678 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 1683 | 1679 |
/// shortcut of the following code. |
| 1684 | 1680 |
///\code |
| 1685 | 1681 |
/// b.init(); |
| 1686 | 1682 |
/// b.addSource(s); |
| 1687 | 1683 |
/// b.start(t); |
| 1688 | 1684 |
///\endcode |
| 1689 | 1685 |
bool run(Node s,Node t) {
|
| 1690 | 1686 |
init(); |
| 1691 | 1687 |
addSource(s); |
| 1692 | 1688 |
start(t); |
| 1693 | 1689 |
return reached(t); |
| 1694 | 1690 |
} |
| 1695 | 1691 |
|
| 1696 | 1692 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1697 | 1693 |
/// |
| 1698 |
/// This method runs the %BFS algorithm in order to |
|
| 1699 |
/// compute the shortest path to each node. |
|
| 1700 |
/// |
|
| 1701 |
/// The algorithm computes |
|
| 1702 |
/// - the shortest path tree (forest), |
|
| 1703 |
/// - the distance of each node from the root(s). |
|
| 1694 |
/// This method runs the %BFS algorithm in order to visit all nodes |
|
| 1695 |
/// in the digraph. |
|
| 1704 | 1696 |
/// |
| 1705 | 1697 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1706 | 1698 |
///\code |
| 1707 | 1699 |
/// b.init(); |
| 1708 | 1700 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1709 | 1701 |
/// if (!b.reached(n)) {
|
| 1710 | 1702 |
/// b.addSource(n); |
| 1711 | 1703 |
/// b.start(); |
| 1712 | 1704 |
/// } |
| 1713 | 1705 |
/// } |
| 1714 | 1706 |
///\endcode |
| 1715 | 1707 |
void run() {
|
| 1716 | 1708 |
init(); |
| 1717 | 1709 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1718 | 1710 |
if (!reached(it)) {
|
| 1719 | 1711 |
addSource(it); |
| 1720 | 1712 |
start(); |
| 1721 | 1713 |
} |
| 1722 | 1714 |
} |
| 1723 | 1715 |
} |
| 1724 | 1716 |
|
| 1725 | 1717 |
///@} |
| 1726 | 1718 |
|
| 1727 | 1719 |
/// \name Query Functions |
| 1728 | 1720 |
/// The results of the BFS algorithm can be obtained using these |
| 1729 | 1721 |
/// functions.\n |
| 1730 | 1722 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1731 | 1723 |
/// before using them. |
| 1732 | 1724 |
|
| 1733 | 1725 |
///@{
|
| 1734 | 1726 |
|
| 1735 | 1727 |
/// \brief Checks if the given node is reached from the root(s). |
| 1736 | 1728 |
/// |
| 1737 | 1729 |
/// Returns \c true if \c v is reached from the root(s). |
| 1738 | 1730 |
/// |
| 1739 | 1731 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1740 | 1732 |
/// must be called before using this function. |
| 1741 | 1733 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1742 | 1734 |
|
| 1743 | 1735 |
///@} |
| 1744 | 1736 |
|
| 1745 | 1737 |
}; |
| 1746 | 1738 |
|
| 1747 | 1739 |
} //END OF NAMESPACE LEMON |
| 1748 | 1740 |
|
| 1749 | 1741 |
#endif |
| ... | ... |
@@ -252,1381 +252,1373 @@ |
| 252 | 252 |
}; |
| 253 | 253 |
|
| 254 | 254 |
template <class T> |
| 255 | 255 |
struct SetReachedMapTraits : public Traits {
|
| 256 | 256 |
typedef T ReachedMap; |
| 257 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
| 258 | 258 |
{
|
| 259 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 260 | 260 |
return 0; // ignore warnings |
| 261 | 261 |
} |
| 262 | 262 |
}; |
| 263 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 264 | 264 |
///\c ReachedMap type. |
| 265 | 265 |
/// |
| 266 | 266 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 267 |
///\c ReachedMap type. |
| 268 | 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 269 | 269 |
template <class T> |
| 270 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 271 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 272 | 272 |
}; |
| 273 | 273 |
|
| 274 | 274 |
template <class T> |
| 275 | 275 |
struct SetProcessedMapTraits : public Traits {
|
| 276 | 276 |
typedef T ProcessedMap; |
| 277 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 278 | 278 |
{
|
| 279 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 280 | 280 |
return 0; // ignore warnings |
| 281 | 281 |
} |
| 282 | 282 |
}; |
| 283 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 284 | 284 |
///\c ProcessedMap type. |
| 285 | 285 |
/// |
| 286 | 286 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 287 |
///\c ProcessedMap type. |
| 288 | 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 289 | 289 |
template <class T> |
| 290 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 291 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 292 | 292 |
}; |
| 293 | 293 |
|
| 294 | 294 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 295 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 296 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 297 | 297 |
{
|
| 298 | 298 |
return new ProcessedMap(g); |
| 299 | 299 |
} |
| 300 | 300 |
}; |
| 301 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 302 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 303 | 303 |
/// |
| 304 | 304 |
///\ref named-templ-param "Named parameter" for setting |
| 305 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 306 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
| 307 | 307 |
struct SetStandardProcessedMap : |
| 308 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 309 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 310 | 310 |
}; |
| 311 | 311 |
|
| 312 | 312 |
///@} |
| 313 | 313 |
|
| 314 | 314 |
public: |
| 315 | 315 |
|
| 316 | 316 |
///Constructor. |
| 317 | 317 |
|
| 318 | 318 |
///Constructor. |
| 319 | 319 |
///\param g The digraph the algorithm runs on. |
| 320 | 320 |
Dfs(const Digraph &g) : |
| 321 | 321 |
G(&g), |
| 322 | 322 |
_pred(NULL), local_pred(false), |
| 323 | 323 |
_dist(NULL), local_dist(false), |
| 324 | 324 |
_reached(NULL), local_reached(false), |
| 325 | 325 |
_processed(NULL), local_processed(false) |
| 326 | 326 |
{ }
|
| 327 | 327 |
|
| 328 | 328 |
///Destructor. |
| 329 | 329 |
~Dfs() |
| 330 | 330 |
{
|
| 331 | 331 |
if(local_pred) delete _pred; |
| 332 | 332 |
if(local_dist) delete _dist; |
| 333 | 333 |
if(local_reached) delete _reached; |
| 334 | 334 |
if(local_processed) delete _processed; |
| 335 | 335 |
} |
| 336 | 336 |
|
| 337 | 337 |
///Sets the map that stores the predecessor arcs. |
| 338 | 338 |
|
| 339 | 339 |
///Sets the map that stores the predecessor arcs. |
| 340 | 340 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 341 | 341 |
///or \ref init(), an instance will be allocated automatically. |
| 342 | 342 |
///The destructor deallocates this automatically allocated map, |
| 343 | 343 |
///of course. |
| 344 | 344 |
///\return <tt> (*this) </tt> |
| 345 | 345 |
Dfs &predMap(PredMap &m) |
| 346 | 346 |
{
|
| 347 | 347 |
if(local_pred) {
|
| 348 | 348 |
delete _pred; |
| 349 | 349 |
local_pred=false; |
| 350 | 350 |
} |
| 351 | 351 |
_pred = &m; |
| 352 | 352 |
return *this; |
| 353 | 353 |
} |
| 354 | 354 |
|
| 355 | 355 |
///Sets the map that indicates which nodes are reached. |
| 356 | 356 |
|
| 357 | 357 |
///Sets the map that indicates which nodes are reached. |
| 358 | 358 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 359 | 359 |
///or \ref init(), an instance will be allocated automatically. |
| 360 | 360 |
///The destructor deallocates this automatically allocated map, |
| 361 | 361 |
///of course. |
| 362 | 362 |
///\return <tt> (*this) </tt> |
| 363 | 363 |
Dfs &reachedMap(ReachedMap &m) |
| 364 | 364 |
{
|
| 365 | 365 |
if(local_reached) {
|
| 366 | 366 |
delete _reached; |
| 367 | 367 |
local_reached=false; |
| 368 | 368 |
} |
| 369 | 369 |
_reached = &m; |
| 370 | 370 |
return *this; |
| 371 | 371 |
} |
| 372 | 372 |
|
| 373 | 373 |
///Sets the map that indicates which nodes are processed. |
| 374 | 374 |
|
| 375 | 375 |
///Sets the map that indicates which nodes are processed. |
| 376 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 377 | 377 |
///or \ref init(), an instance will be allocated automatically. |
| 378 | 378 |
///The destructor deallocates this automatically allocated map, |
| 379 | 379 |
///of course. |
| 380 | 380 |
///\return <tt> (*this) </tt> |
| 381 | 381 |
Dfs &processedMap(ProcessedMap &m) |
| 382 | 382 |
{
|
| 383 | 383 |
if(local_processed) {
|
| 384 | 384 |
delete _processed; |
| 385 | 385 |
local_processed=false; |
| 386 | 386 |
} |
| 387 | 387 |
_processed = &m; |
| 388 | 388 |
return *this; |
| 389 | 389 |
} |
| 390 | 390 |
|
| 391 | 391 |
///Sets the map that stores the distances of the nodes. |
| 392 | 392 |
|
| 393 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
| 394 | 394 |
///the algorithm. |
| 395 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 396 | 396 |
///or \ref init(), an instance will be allocated automatically. |
| 397 | 397 |
///The destructor deallocates this automatically allocated map, |
| 398 | 398 |
///of course. |
| 399 | 399 |
///\return <tt> (*this) </tt> |
| 400 | 400 |
Dfs &distMap(DistMap &m) |
| 401 | 401 |
{
|
| 402 | 402 |
if(local_dist) {
|
| 403 | 403 |
delete _dist; |
| 404 | 404 |
local_dist=false; |
| 405 | 405 |
} |
| 406 | 406 |
_dist = &m; |
| 407 | 407 |
return *this; |
| 408 | 408 |
} |
| 409 | 409 |
|
| 410 | 410 |
public: |
| 411 | 411 |
|
| 412 | 412 |
///\name Execution Control |
| 413 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 414 | 414 |
///member functions called \ref run(Node) "run()".\n |
| 415 | 415 |
///If you need better control on the execution, you have to call |
| 416 | 416 |
///\ref init() first, then you can add a source node with \ref addSource() |
| 417 | 417 |
///and perform the actual computation with \ref start(). |
| 418 | 418 |
///This procedure can be repeated if there are nodes that have not |
| 419 | 419 |
///been reached. |
| 420 | 420 |
|
| 421 | 421 |
///@{
|
| 422 | 422 |
|
| 423 | 423 |
///\brief Initializes the internal data structures. |
| 424 | 424 |
/// |
| 425 | 425 |
///Initializes the internal data structures. |
| 426 | 426 |
void init() |
| 427 | 427 |
{
|
| 428 | 428 |
create_maps(); |
| 429 | 429 |
_stack.resize(countNodes(*G)); |
| 430 | 430 |
_stack_head=-1; |
| 431 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 432 | 432 |
_pred->set(u,INVALID); |
| 433 | 433 |
_reached->set(u,false); |
| 434 | 434 |
_processed->set(u,false); |
| 435 | 435 |
} |
| 436 | 436 |
} |
| 437 | 437 |
|
| 438 | 438 |
///Adds a new source node. |
| 439 | 439 |
|
| 440 | 440 |
///Adds a new source node to the set of nodes to be processed. |
| 441 | 441 |
/// |
| 442 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
| 443 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
| 444 | 444 |
///except for the last one will not be visited and distances will |
| 445 | 445 |
///also be wrong.) |
| 446 | 446 |
void addSource(Node s) |
| 447 | 447 |
{
|
| 448 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 449 | 449 |
if(!(*_reached)[s]) |
| 450 | 450 |
{
|
| 451 | 451 |
_reached->set(s,true); |
| 452 | 452 |
_pred->set(s,INVALID); |
| 453 | 453 |
OutArcIt e(*G,s); |
| 454 | 454 |
if(e!=INVALID) {
|
| 455 | 455 |
_stack[++_stack_head]=e; |
| 456 | 456 |
_dist->set(s,_stack_head); |
| 457 | 457 |
} |
| 458 | 458 |
else {
|
| 459 | 459 |
_processed->set(s,true); |
| 460 | 460 |
_dist->set(s,0); |
| 461 | 461 |
} |
| 462 | 462 |
} |
| 463 | 463 |
} |
| 464 | 464 |
|
| 465 | 465 |
///Processes the next arc. |
| 466 | 466 |
|
| 467 | 467 |
///Processes the next arc. |
| 468 | 468 |
/// |
| 469 | 469 |
///\return The processed arc. |
| 470 | 470 |
/// |
| 471 | 471 |
///\pre The stack must not be empty. |
| 472 | 472 |
Arc processNextArc() |
| 473 | 473 |
{
|
| 474 | 474 |
Node m; |
| 475 | 475 |
Arc e=_stack[_stack_head]; |
| 476 | 476 |
if(!(*_reached)[m=G->target(e)]) {
|
| 477 | 477 |
_pred->set(m,e); |
| 478 | 478 |
_reached->set(m,true); |
| 479 | 479 |
++_stack_head; |
| 480 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
| 481 | 481 |
_dist->set(m,_stack_head); |
| 482 | 482 |
} |
| 483 | 483 |
else {
|
| 484 | 484 |
m=G->source(e); |
| 485 | 485 |
++_stack[_stack_head]; |
| 486 | 486 |
} |
| 487 | 487 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
| 488 | 488 |
_processed->set(m,true); |
| 489 | 489 |
--_stack_head; |
| 490 | 490 |
if(_stack_head>=0) {
|
| 491 | 491 |
m=G->source(_stack[_stack_head]); |
| 492 | 492 |
++_stack[_stack_head]; |
| 493 | 493 |
} |
| 494 | 494 |
} |
| 495 | 495 |
return e; |
| 496 | 496 |
} |
| 497 | 497 |
|
| 498 | 498 |
///Next arc to be processed. |
| 499 | 499 |
|
| 500 | 500 |
///Next arc to be processed. |
| 501 | 501 |
/// |
| 502 | 502 |
///\return The next arc to be processed or \c INVALID if the stack |
| 503 | 503 |
///is empty. |
| 504 | 504 |
OutArcIt nextArc() const |
| 505 | 505 |
{
|
| 506 | 506 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
| 507 | 507 |
} |
| 508 | 508 |
|
| 509 | 509 |
///Returns \c false if there are nodes to be processed. |
| 510 | 510 |
|
| 511 | 511 |
///Returns \c false if there are nodes to be processed |
| 512 | 512 |
///in the queue (stack). |
| 513 | 513 |
bool emptyQueue() const { return _stack_head<0; }
|
| 514 | 514 |
|
| 515 | 515 |
///Returns the number of the nodes to be processed. |
| 516 | 516 |
|
| 517 | 517 |
///Returns the number of the nodes to be processed |
| 518 | 518 |
///in the queue (stack). |
| 519 | 519 |
int queueSize() const { return _stack_head+1; }
|
| 520 | 520 |
|
| 521 | 521 |
///Executes the algorithm. |
| 522 | 522 |
|
| 523 | 523 |
///Executes the algorithm. |
| 524 | 524 |
/// |
| 525 | 525 |
///This method runs the %DFS algorithm from the root node |
| 526 | 526 |
///in order to compute the DFS path to each node. |
| 527 | 527 |
/// |
| 528 | 528 |
/// The algorithm computes |
| 529 | 529 |
///- the %DFS tree, |
| 530 | 530 |
///- the distance of each node from the root in the %DFS tree. |
| 531 | 531 |
/// |
| 532 | 532 |
///\pre init() must be called and a root node should be |
| 533 | 533 |
///added with addSource() before using this function. |
| 534 | 534 |
/// |
| 535 | 535 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 536 | 536 |
///\code |
| 537 | 537 |
/// while ( !d.emptyQueue() ) {
|
| 538 | 538 |
/// d.processNextArc(); |
| 539 | 539 |
/// } |
| 540 | 540 |
///\endcode |
| 541 | 541 |
void start() |
| 542 | 542 |
{
|
| 543 | 543 |
while ( !emptyQueue() ) processNextArc(); |
| 544 | 544 |
} |
| 545 | 545 |
|
| 546 | 546 |
///Executes the algorithm until the given target node is reached. |
| 547 | 547 |
|
| 548 | 548 |
///Executes the algorithm until the given target node is reached. |
| 549 | 549 |
/// |
| 550 | 550 |
///This method runs the %DFS algorithm from the root node |
| 551 | 551 |
///in order to compute the DFS path to \c t. |
| 552 | 552 |
/// |
| 553 | 553 |
///The algorithm computes |
| 554 | 554 |
///- the %DFS path to \c t, |
| 555 | 555 |
///- the distance of \c t from the root in the %DFS tree. |
| 556 | 556 |
/// |
| 557 | 557 |
///\pre init() must be called and a root node should be |
| 558 | 558 |
///added with addSource() before using this function. |
| 559 | 559 |
void start(Node t) |
| 560 | 560 |
{
|
| 561 | 561 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
| 562 | 562 |
processNextArc(); |
| 563 | 563 |
} |
| 564 | 564 |
|
| 565 | 565 |
///Executes the algorithm until a condition is met. |
| 566 | 566 |
|
| 567 | 567 |
///Executes the algorithm until a condition is met. |
| 568 | 568 |
/// |
| 569 | 569 |
///This method runs the %DFS algorithm from the root node |
| 570 | 570 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
| 571 | 571 |
/// |
| 572 | 572 |
///\param am A \c bool (or convertible) arc map. The algorithm |
| 573 | 573 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 574 | 574 |
/// |
| 575 | 575 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
| 576 | 576 |
///\c INVALID if no such arc was found. |
| 577 | 577 |
/// |
| 578 | 578 |
///\pre init() must be called and a root node should be |
| 579 | 579 |
///added with addSource() before using this function. |
| 580 | 580 |
/// |
| 581 | 581 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 582 | 582 |
///not a node map. |
| 583 | 583 |
template<class ArcBoolMap> |
| 584 | 584 |
Arc start(const ArcBoolMap &am) |
| 585 | 585 |
{
|
| 586 | 586 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 587 | 587 |
processNextArc(); |
| 588 | 588 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 589 | 589 |
} |
| 590 | 590 |
|
| 591 | 591 |
///Runs the algorithm from the given source node. |
| 592 | 592 |
|
| 593 | 593 |
///This method runs the %DFS algorithm from node \c s |
| 594 | 594 |
///in order to compute the DFS path to each node. |
| 595 | 595 |
/// |
| 596 | 596 |
///The algorithm computes |
| 597 | 597 |
///- the %DFS tree, |
| 598 | 598 |
///- the distance of each node from the root in the %DFS tree. |
| 599 | 599 |
/// |
| 600 | 600 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 601 | 601 |
///\code |
| 602 | 602 |
/// d.init(); |
| 603 | 603 |
/// d.addSource(s); |
| 604 | 604 |
/// d.start(); |
| 605 | 605 |
///\endcode |
| 606 | 606 |
void run(Node s) {
|
| 607 | 607 |
init(); |
| 608 | 608 |
addSource(s); |
| 609 | 609 |
start(); |
| 610 | 610 |
} |
| 611 | 611 |
|
| 612 | 612 |
///Finds the %DFS path between \c s and \c t. |
| 613 | 613 |
|
| 614 | 614 |
///This method runs the %DFS algorithm from node \c s |
| 615 | 615 |
///in order to compute the DFS path to node \c t |
| 616 | 616 |
///(it stops searching when \c t is processed) |
| 617 | 617 |
/// |
| 618 | 618 |
///\return \c true if \c t is reachable form \c s. |
| 619 | 619 |
/// |
| 620 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 621 | 621 |
///just a shortcut of the following code. |
| 622 | 622 |
///\code |
| 623 | 623 |
/// d.init(); |
| 624 | 624 |
/// d.addSource(s); |
| 625 | 625 |
/// d.start(t); |
| 626 | 626 |
///\endcode |
| 627 | 627 |
bool run(Node s,Node t) {
|
| 628 | 628 |
init(); |
| 629 | 629 |
addSource(s); |
| 630 | 630 |
start(t); |
| 631 | 631 |
return reached(t); |
| 632 | 632 |
} |
| 633 | 633 |
|
| 634 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
| 635 | 635 |
|
| 636 |
///This method runs the %DFS algorithm in order to compute the |
|
| 637 |
///%DFS path to each node. |
|
| 638 |
/// |
|
| 639 |
///The algorithm computes |
|
| 640 |
///- the %DFS tree (forest), |
|
| 641 |
///- the distance of each node from the root(s) in the %DFS tree. |
|
| 636 |
///This method runs the %DFS algorithm in order to visit all nodes |
|
| 637 |
///in the digraph. |
|
| 642 | 638 |
/// |
| 643 | 639 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 644 | 640 |
///\code |
| 645 | 641 |
/// d.init(); |
| 646 | 642 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 647 | 643 |
/// if (!d.reached(n)) {
|
| 648 | 644 |
/// d.addSource(n); |
| 649 | 645 |
/// d.start(); |
| 650 | 646 |
/// } |
| 651 | 647 |
/// } |
| 652 | 648 |
///\endcode |
| 653 | 649 |
void run() {
|
| 654 | 650 |
init(); |
| 655 | 651 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 656 | 652 |
if (!reached(it)) {
|
| 657 | 653 |
addSource(it); |
| 658 | 654 |
start(); |
| 659 | 655 |
} |
| 660 | 656 |
} |
| 661 | 657 |
} |
| 662 | 658 |
|
| 663 | 659 |
///@} |
| 664 | 660 |
|
| 665 | 661 |
///\name Query Functions |
| 666 | 662 |
///The results of the DFS algorithm can be obtained using these |
| 667 | 663 |
///functions.\n |
| 668 | 664 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 669 | 665 |
///before using them. |
| 670 | 666 |
|
| 671 | 667 |
///@{
|
| 672 | 668 |
|
| 673 | 669 |
///The DFS path to the given node. |
| 674 | 670 |
|
| 675 | 671 |
///Returns the DFS path to the given node from the root(s). |
| 676 | 672 |
/// |
| 677 | 673 |
///\warning \c t should be reached from the root(s). |
| 678 | 674 |
/// |
| 679 | 675 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 680 | 676 |
///must be called before using this function. |
| 681 | 677 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 682 | 678 |
|
| 683 | 679 |
///The distance of the given node from the root(s). |
| 684 | 680 |
|
| 685 | 681 |
///Returns the distance of the given node from the root(s). |
| 686 | 682 |
/// |
| 687 | 683 |
///\warning If node \c v is not reached from the root(s), then |
| 688 | 684 |
///the return value of this function is undefined. |
| 689 | 685 |
/// |
| 690 | 686 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 691 | 687 |
///must be called before using this function. |
| 692 | 688 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 693 | 689 |
|
| 694 | 690 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
| 695 | 691 |
|
| 696 | 692 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 697 | 693 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 698 | 694 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 699 | 695 |
///root(s) or if \c v is a root. |
| 700 | 696 |
/// |
| 701 | 697 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 702 | 698 |
///\ref predNode() and \ref predMap(). |
| 703 | 699 |
/// |
| 704 | 700 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 705 | 701 |
///must be called before using this function. |
| 706 | 702 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 707 | 703 |
|
| 708 | 704 |
///Returns the 'previous node' of the %DFS tree for the given node. |
| 709 | 705 |
|
| 710 | 706 |
///This function returns the 'previous node' of the %DFS |
| 711 | 707 |
///tree for the node \c v, i.e. it returns the last but one node |
| 712 | 708 |
///of a %DFS path from a root to \c v. It is \c INVALID |
| 713 | 709 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 714 | 710 |
/// |
| 715 | 711 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 716 | 712 |
///\ref predArc() and \ref predMap(). |
| 717 | 713 |
/// |
| 718 | 714 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 719 | 715 |
///must be called before using this function. |
| 720 | 716 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 721 | 717 |
G->source((*_pred)[v]); } |
| 722 | 718 |
|
| 723 | 719 |
///\brief Returns a const reference to the node map that stores the |
| 724 | 720 |
///distances of the nodes. |
| 725 | 721 |
/// |
| 726 | 722 |
///Returns a const reference to the node map that stores the |
| 727 | 723 |
///distances of the nodes calculated by the algorithm. |
| 728 | 724 |
/// |
| 729 | 725 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 730 | 726 |
///must be called before using this function. |
| 731 | 727 |
const DistMap &distMap() const { return *_dist;}
|
| 732 | 728 |
|
| 733 | 729 |
///\brief Returns a const reference to the node map that stores the |
| 734 | 730 |
///predecessor arcs. |
| 735 | 731 |
/// |
| 736 | 732 |
///Returns a const reference to the node map that stores the predecessor |
| 737 | 733 |
///arcs, which form the DFS tree (forest). |
| 738 | 734 |
/// |
| 739 | 735 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 740 | 736 |
///must be called before using this function. |
| 741 | 737 |
const PredMap &predMap() const { return *_pred;}
|
| 742 | 738 |
|
| 743 | 739 |
///Checks if the given node. node is reached from the root(s). |
| 744 | 740 |
|
| 745 | 741 |
///Returns \c true if \c v is reached from the root(s). |
| 746 | 742 |
/// |
| 747 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 748 | 744 |
///must be called before using this function. |
| 749 | 745 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 750 | 746 |
|
| 751 | 747 |
///@} |
| 752 | 748 |
}; |
| 753 | 749 |
|
| 754 | 750 |
///Default traits class of dfs() function. |
| 755 | 751 |
|
| 756 | 752 |
///Default traits class of dfs() function. |
| 757 | 753 |
///\tparam GR Digraph type. |
| 758 | 754 |
template<class GR> |
| 759 | 755 |
struct DfsWizardDefaultTraits |
| 760 | 756 |
{
|
| 761 | 757 |
///The type of the digraph the algorithm runs on. |
| 762 | 758 |
typedef GR Digraph; |
| 763 | 759 |
|
| 764 | 760 |
///\brief The type of the map that stores the predecessor |
| 765 | 761 |
///arcs of the %DFS paths. |
| 766 | 762 |
/// |
| 767 | 763 |
///The type of the map that stores the predecessor |
| 768 | 764 |
///arcs of the %DFS paths. |
| 769 | 765 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 770 | 766 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 771 | 767 |
///Instantiates a PredMap. |
| 772 | 768 |
|
| 773 | 769 |
///This function instantiates a PredMap. |
| 774 | 770 |
///\param g is the digraph, to which we would like to define the |
| 775 | 771 |
///PredMap. |
| 776 | 772 |
static PredMap *createPredMap(const Digraph &g) |
| 777 | 773 |
{
|
| 778 | 774 |
return new PredMap(g); |
| 779 | 775 |
} |
| 780 | 776 |
|
| 781 | 777 |
///The type of the map that indicates which nodes are processed. |
| 782 | 778 |
|
| 783 | 779 |
///The type of the map that indicates which nodes are processed. |
| 784 | 780 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 785 | 781 |
///By default it is a NullMap. |
| 786 | 782 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 787 | 783 |
///Instantiates a ProcessedMap. |
| 788 | 784 |
|
| 789 | 785 |
///This function instantiates a ProcessedMap. |
| 790 | 786 |
///\param g is the digraph, to which |
| 791 | 787 |
///we would like to define the ProcessedMap. |
| 792 | 788 |
#ifdef DOXYGEN |
| 793 | 789 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 794 | 790 |
#else |
| 795 | 791 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 796 | 792 |
#endif |
| 797 | 793 |
{
|
| 798 | 794 |
return new ProcessedMap(); |
| 799 | 795 |
} |
| 800 | 796 |
|
| 801 | 797 |
///The type of the map that indicates which nodes are reached. |
| 802 | 798 |
|
| 803 | 799 |
///The type of the map that indicates which nodes are reached. |
| 804 | 800 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 805 | 801 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 806 | 802 |
///Instantiates a ReachedMap. |
| 807 | 803 |
|
| 808 | 804 |
///This function instantiates a ReachedMap. |
| 809 | 805 |
///\param g is the digraph, to which |
| 810 | 806 |
///we would like to define the ReachedMap. |
| 811 | 807 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 812 | 808 |
{
|
| 813 | 809 |
return new ReachedMap(g); |
| 814 | 810 |
} |
| 815 | 811 |
|
| 816 | 812 |
///The type of the map that stores the distances of the nodes. |
| 817 | 813 |
|
| 818 | 814 |
///The type of the map that stores the distances of the nodes. |
| 819 | 815 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 820 | 816 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 821 | 817 |
///Instantiates a DistMap. |
| 822 | 818 |
|
| 823 | 819 |
///This function instantiates a DistMap. |
| 824 | 820 |
///\param g is the digraph, to which we would like to define |
| 825 | 821 |
///the DistMap |
| 826 | 822 |
static DistMap *createDistMap(const Digraph &g) |
| 827 | 823 |
{
|
| 828 | 824 |
return new DistMap(g); |
| 829 | 825 |
} |
| 830 | 826 |
|
| 831 | 827 |
///The type of the DFS paths. |
| 832 | 828 |
|
| 833 | 829 |
///The type of the DFS paths. |
| 834 | 830 |
///It must conform to the \ref concepts::Path "Path" concept. |
| 835 | 831 |
typedef lemon::Path<Digraph> Path; |
| 836 | 832 |
}; |
| 837 | 833 |
|
| 838 | 834 |
/// Default traits class used by DfsWizard |
| 839 | 835 |
|
| 840 | 836 |
/// Default traits class used by DfsWizard. |
| 841 | 837 |
/// \tparam GR The type of the digraph. |
| 842 | 838 |
template<class GR> |
| 843 | 839 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 844 | 840 |
{
|
| 845 | 841 |
|
| 846 | 842 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 847 | 843 |
protected: |
| 848 | 844 |
//The type of the nodes in the digraph. |
| 849 | 845 |
typedef typename Base::Digraph::Node Node; |
| 850 | 846 |
|
| 851 | 847 |
//Pointer to the digraph the algorithm runs on. |
| 852 | 848 |
void *_g; |
| 853 | 849 |
//Pointer to the map of reached nodes. |
| 854 | 850 |
void *_reached; |
| 855 | 851 |
//Pointer to the map of processed nodes. |
| 856 | 852 |
void *_processed; |
| 857 | 853 |
//Pointer to the map of predecessors arcs. |
| 858 | 854 |
void *_pred; |
| 859 | 855 |
//Pointer to the map of distances. |
| 860 | 856 |
void *_dist; |
| 861 | 857 |
//Pointer to the DFS path to the target node. |
| 862 | 858 |
void *_path; |
| 863 | 859 |
//Pointer to the distance of the target node. |
| 864 | 860 |
int *_di; |
| 865 | 861 |
|
| 866 | 862 |
public: |
| 867 | 863 |
/// Constructor. |
| 868 | 864 |
|
| 869 | 865 |
/// This constructor does not require parameters, it initiates |
| 870 | 866 |
/// all of the attributes to \c 0. |
| 871 | 867 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 872 | 868 |
_dist(0), _path(0), _di(0) {}
|
| 873 | 869 |
|
| 874 | 870 |
/// Constructor. |
| 875 | 871 |
|
| 876 | 872 |
/// This constructor requires one parameter, |
| 877 | 873 |
/// others are initiated to \c 0. |
| 878 | 874 |
/// \param g The digraph the algorithm runs on. |
| 879 | 875 |
DfsWizardBase(const GR &g) : |
| 880 | 876 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 881 | 877 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 882 | 878 |
|
| 883 | 879 |
}; |
| 884 | 880 |
|
| 885 | 881 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
| 886 | 882 |
|
| 887 | 883 |
/// This auxiliary class is created to implement the |
| 888 | 884 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 889 | 885 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 890 | 886 |
/// functions and features of the plain \ref Dfs. |
| 891 | 887 |
/// |
| 892 | 888 |
/// This class should only be used through the \ref dfs() function, |
| 893 | 889 |
/// which makes it easier to use the algorithm. |
| 894 | 890 |
template<class TR> |
| 895 | 891 |
class DfsWizard : public TR |
| 896 | 892 |
{
|
| 897 | 893 |
typedef TR Base; |
| 898 | 894 |
|
| 899 | 895 |
typedef typename TR::Digraph Digraph; |
| 900 | 896 |
|
| 901 | 897 |
typedef typename Digraph::Node Node; |
| 902 | 898 |
typedef typename Digraph::NodeIt NodeIt; |
| 903 | 899 |
typedef typename Digraph::Arc Arc; |
| 904 | 900 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 905 | 901 |
|
| 906 | 902 |
typedef typename TR::PredMap PredMap; |
| 907 | 903 |
typedef typename TR::DistMap DistMap; |
| 908 | 904 |
typedef typename TR::ReachedMap ReachedMap; |
| 909 | 905 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 910 | 906 |
typedef typename TR::Path Path; |
| 911 | 907 |
|
| 912 | 908 |
public: |
| 913 | 909 |
|
| 914 | 910 |
/// Constructor. |
| 915 | 911 |
DfsWizard() : TR() {}
|
| 916 | 912 |
|
| 917 | 913 |
/// Constructor that requires parameters. |
| 918 | 914 |
|
| 919 | 915 |
/// Constructor that requires parameters. |
| 920 | 916 |
/// These parameters will be the default values for the traits class. |
| 921 | 917 |
/// \param g The digraph the algorithm runs on. |
| 922 | 918 |
DfsWizard(const Digraph &g) : |
| 923 | 919 |
TR(g) {}
|
| 924 | 920 |
|
| 925 | 921 |
///Copy constructor |
| 926 | 922 |
DfsWizard(const TR &b) : TR(b) {}
|
| 927 | 923 |
|
| 928 | 924 |
~DfsWizard() {}
|
| 929 | 925 |
|
| 930 | 926 |
///Runs DFS algorithm from the given source node. |
| 931 | 927 |
|
| 932 | 928 |
///This method runs DFS algorithm from node \c s |
| 933 | 929 |
///in order to compute the DFS path to each node. |
| 934 | 930 |
void run(Node s) |
| 935 | 931 |
{
|
| 936 | 932 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 937 | 933 |
if (Base::_pred) |
| 938 | 934 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 939 | 935 |
if (Base::_dist) |
| 940 | 936 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 941 | 937 |
if (Base::_reached) |
| 942 | 938 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 943 | 939 |
if (Base::_processed) |
| 944 | 940 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 945 | 941 |
if (s!=INVALID) |
| 946 | 942 |
alg.run(s); |
| 947 | 943 |
else |
| 948 | 944 |
alg.run(); |
| 949 | 945 |
} |
| 950 | 946 |
|
| 951 | 947 |
///Finds the DFS path between \c s and \c t. |
| 952 | 948 |
|
| 953 | 949 |
///This method runs DFS algorithm from node \c s |
| 954 | 950 |
///in order to compute the DFS path to node \c t |
| 955 | 951 |
///(it stops searching when \c t is processed). |
| 956 | 952 |
/// |
| 957 | 953 |
///\return \c true if \c t is reachable form \c s. |
| 958 | 954 |
bool run(Node s, Node t) |
| 959 | 955 |
{
|
| 960 | 956 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 961 | 957 |
if (Base::_pred) |
| 962 | 958 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 963 | 959 |
if (Base::_dist) |
| 964 | 960 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 965 | 961 |
if (Base::_reached) |
| 966 | 962 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 967 | 963 |
if (Base::_processed) |
| 968 | 964 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 969 | 965 |
alg.run(s,t); |
| 970 | 966 |
if (Base::_path) |
| 971 | 967 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 972 | 968 |
if (Base::_di) |
| 973 | 969 |
*Base::_di = alg.dist(t); |
| 974 | 970 |
return alg.reached(t); |
| 975 | 971 |
} |
| 976 | 972 |
|
| 977 | 973 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 978 | 974 |
|
| 979 |
///This method runs DFS algorithm in order to compute |
|
| 980 |
///the DFS path to each node. |
|
| 975 |
///This method runs DFS algorithm in order to visit all nodes |
|
| 976 |
///in the digraph. |
|
| 981 | 977 |
void run() |
| 982 | 978 |
{
|
| 983 | 979 |
run(INVALID); |
| 984 | 980 |
} |
| 985 | 981 |
|
| 986 | 982 |
template<class T> |
| 987 | 983 |
struct SetPredMapBase : public Base {
|
| 988 | 984 |
typedef T PredMap; |
| 989 | 985 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 990 | 986 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 991 | 987 |
}; |
| 992 | 988 |
|
| 993 | 989 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 994 | 990 |
///the predecessor map. |
| 995 | 991 |
/// |
| 996 | 992 |
///\ref named-templ-param "Named parameter" function for setting |
| 997 | 993 |
///the map that stores the predecessor arcs of the nodes. |
| 998 | 994 |
template<class T> |
| 999 | 995 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1000 | 996 |
{
|
| 1001 | 997 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1002 | 998 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 1003 | 999 |
} |
| 1004 | 1000 |
|
| 1005 | 1001 |
template<class T> |
| 1006 | 1002 |
struct SetReachedMapBase : public Base {
|
| 1007 | 1003 |
typedef T ReachedMap; |
| 1008 | 1004 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1009 | 1005 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1010 | 1006 |
}; |
| 1011 | 1007 |
|
| 1012 | 1008 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1013 | 1009 |
///the reached map. |
| 1014 | 1010 |
/// |
| 1015 | 1011 |
///\ref named-templ-param "Named parameter" function for setting |
| 1016 | 1012 |
///the map that indicates which nodes are reached. |
| 1017 | 1013 |
template<class T> |
| 1018 | 1014 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1019 | 1015 |
{
|
| 1020 | 1016 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1021 | 1017 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1022 | 1018 |
} |
| 1023 | 1019 |
|
| 1024 | 1020 |
template<class T> |
| 1025 | 1021 |
struct SetDistMapBase : public Base {
|
| 1026 | 1022 |
typedef T DistMap; |
| 1027 | 1023 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1028 | 1024 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1029 | 1025 |
}; |
| 1030 | 1026 |
|
| 1031 | 1027 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1032 | 1028 |
///the distance map. |
| 1033 | 1029 |
/// |
| 1034 | 1030 |
///\ref named-templ-param "Named parameter" function for setting |
| 1035 | 1031 |
///the map that stores the distances of the nodes calculated |
| 1036 | 1032 |
///by the algorithm. |
| 1037 | 1033 |
template<class T> |
| 1038 | 1034 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1039 | 1035 |
{
|
| 1040 | 1036 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1041 | 1037 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1042 | 1038 |
} |
| 1043 | 1039 |
|
| 1044 | 1040 |
template<class T> |
| 1045 | 1041 |
struct SetProcessedMapBase : public Base {
|
| 1046 | 1042 |
typedef T ProcessedMap; |
| 1047 | 1043 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1048 | 1044 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1049 | 1045 |
}; |
| 1050 | 1046 |
|
| 1051 | 1047 |
///\brief \ref named-func-param "Named parameter" for setting |
| 1052 | 1048 |
///the processed map. |
| 1053 | 1049 |
/// |
| 1054 | 1050 |
///\ref named-templ-param "Named parameter" function for setting |
| 1055 | 1051 |
///the map that indicates which nodes are processed. |
| 1056 | 1052 |
template<class T> |
| 1057 | 1053 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1058 | 1054 |
{
|
| 1059 | 1055 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1060 | 1056 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1061 | 1057 |
} |
| 1062 | 1058 |
|
| 1063 | 1059 |
template<class T> |
| 1064 | 1060 |
struct SetPathBase : public Base {
|
| 1065 | 1061 |
typedef T Path; |
| 1066 | 1062 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1067 | 1063 |
}; |
| 1068 | 1064 |
///\brief \ref named-func-param "Named parameter" |
| 1069 | 1065 |
///for getting the DFS path to the target node. |
| 1070 | 1066 |
/// |
| 1071 | 1067 |
///\ref named-func-param "Named parameter" |
| 1072 | 1068 |
///for getting the DFS path to the target node. |
| 1073 | 1069 |
template<class T> |
| 1074 | 1070 |
DfsWizard<SetPathBase<T> > path(const T &t) |
| 1075 | 1071 |
{
|
| 1076 | 1072 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1077 | 1073 |
return DfsWizard<SetPathBase<T> >(*this); |
| 1078 | 1074 |
} |
| 1079 | 1075 |
|
| 1080 | 1076 |
///\brief \ref named-func-param "Named parameter" |
| 1081 | 1077 |
///for getting the distance of the target node. |
| 1082 | 1078 |
/// |
| 1083 | 1079 |
///\ref named-func-param "Named parameter" |
| 1084 | 1080 |
///for getting the distance of the target node. |
| 1085 | 1081 |
DfsWizard dist(const int &d) |
| 1086 | 1082 |
{
|
| 1087 | 1083 |
Base::_di=const_cast<int*>(&d); |
| 1088 | 1084 |
return *this; |
| 1089 | 1085 |
} |
| 1090 | 1086 |
|
| 1091 | 1087 |
}; |
| 1092 | 1088 |
|
| 1093 | 1089 |
///Function-type interface for DFS algorithm. |
| 1094 | 1090 |
|
| 1095 | 1091 |
///\ingroup search |
| 1096 | 1092 |
///Function-type interface for DFS algorithm. |
| 1097 | 1093 |
/// |
| 1098 | 1094 |
///This function also has several \ref named-func-param "named parameters", |
| 1099 | 1095 |
///they are declared as the members of class \ref DfsWizard. |
| 1100 | 1096 |
///The following examples show how to use these parameters. |
| 1101 | 1097 |
///\code |
| 1102 | 1098 |
/// // Compute the DFS tree |
| 1103 | 1099 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
| 1104 | 1100 |
/// |
| 1105 | 1101 |
/// // Compute the DFS path from s to t |
| 1106 | 1102 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
| 1107 | 1103 |
///\endcode |
| 1108 | 1104 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
| 1109 | 1105 |
///to the end of the parameter list. |
| 1110 | 1106 |
///\sa DfsWizard |
| 1111 | 1107 |
///\sa Dfs |
| 1112 | 1108 |
template<class GR> |
| 1113 | 1109 |
DfsWizard<DfsWizardBase<GR> > |
| 1114 | 1110 |
dfs(const GR &digraph) |
| 1115 | 1111 |
{
|
| 1116 | 1112 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
| 1117 | 1113 |
} |
| 1118 | 1114 |
|
| 1119 | 1115 |
#ifdef DOXYGEN |
| 1120 | 1116 |
/// \brief Visitor class for DFS. |
| 1121 | 1117 |
/// |
| 1122 | 1118 |
/// This class defines the interface of the DfsVisit events, and |
| 1123 | 1119 |
/// it could be the base of a real visitor class. |
| 1124 | 1120 |
template <typename GR> |
| 1125 | 1121 |
struct DfsVisitor {
|
| 1126 | 1122 |
typedef GR Digraph; |
| 1127 | 1123 |
typedef typename Digraph::Arc Arc; |
| 1128 | 1124 |
typedef typename Digraph::Node Node; |
| 1129 | 1125 |
/// \brief Called for the source node of the DFS. |
| 1130 | 1126 |
/// |
| 1131 | 1127 |
/// This function is called for the source node of the DFS. |
| 1132 | 1128 |
void start(const Node& node) {}
|
| 1133 | 1129 |
/// \brief Called when the source node is leaved. |
| 1134 | 1130 |
/// |
| 1135 | 1131 |
/// This function is called when the source node is leaved. |
| 1136 | 1132 |
void stop(const Node& node) {}
|
| 1137 | 1133 |
/// \brief Called when a node is reached first time. |
| 1138 | 1134 |
/// |
| 1139 | 1135 |
/// This function is called when a node is reached first time. |
| 1140 | 1136 |
void reach(const Node& node) {}
|
| 1141 | 1137 |
/// \brief Called when an arc reaches a new node. |
| 1142 | 1138 |
/// |
| 1143 | 1139 |
/// This function is called when the DFS finds an arc whose target node |
| 1144 | 1140 |
/// is not reached yet. |
| 1145 | 1141 |
void discover(const Arc& arc) {}
|
| 1146 | 1142 |
/// \brief Called when an arc is examined but its target node is |
| 1147 | 1143 |
/// already discovered. |
| 1148 | 1144 |
/// |
| 1149 | 1145 |
/// This function is called when an arc is examined but its target node is |
| 1150 | 1146 |
/// already discovered. |
| 1151 | 1147 |
void examine(const Arc& arc) {}
|
| 1152 | 1148 |
/// \brief Called when the DFS steps back from a node. |
| 1153 | 1149 |
/// |
| 1154 | 1150 |
/// This function is called when the DFS steps back from a node. |
| 1155 | 1151 |
void leave(const Node& node) {}
|
| 1156 | 1152 |
/// \brief Called when the DFS steps back on an arc. |
| 1157 | 1153 |
/// |
| 1158 | 1154 |
/// This function is called when the DFS steps back on an arc. |
| 1159 | 1155 |
void backtrack(const Arc& arc) {}
|
| 1160 | 1156 |
}; |
| 1161 | 1157 |
#else |
| 1162 | 1158 |
template <typename GR> |
| 1163 | 1159 |
struct DfsVisitor {
|
| 1164 | 1160 |
typedef GR Digraph; |
| 1165 | 1161 |
typedef typename Digraph::Arc Arc; |
| 1166 | 1162 |
typedef typename Digraph::Node Node; |
| 1167 | 1163 |
void start(const Node&) {}
|
| 1168 | 1164 |
void stop(const Node&) {}
|
| 1169 | 1165 |
void reach(const Node&) {}
|
| 1170 | 1166 |
void discover(const Arc&) {}
|
| 1171 | 1167 |
void examine(const Arc&) {}
|
| 1172 | 1168 |
void leave(const Node&) {}
|
| 1173 | 1169 |
void backtrack(const Arc&) {}
|
| 1174 | 1170 |
|
| 1175 | 1171 |
template <typename _Visitor> |
| 1176 | 1172 |
struct Constraints {
|
| 1177 | 1173 |
void constraints() {
|
| 1178 | 1174 |
Arc arc; |
| 1179 | 1175 |
Node node; |
| 1180 | 1176 |
visitor.start(node); |
| 1181 | 1177 |
visitor.stop(arc); |
| 1182 | 1178 |
visitor.reach(node); |
| 1183 | 1179 |
visitor.discover(arc); |
| 1184 | 1180 |
visitor.examine(arc); |
| 1185 | 1181 |
visitor.leave(node); |
| 1186 | 1182 |
visitor.backtrack(arc); |
| 1187 | 1183 |
} |
| 1188 | 1184 |
_Visitor& visitor; |
| 1189 | 1185 |
}; |
| 1190 | 1186 |
}; |
| 1191 | 1187 |
#endif |
| 1192 | 1188 |
|
| 1193 | 1189 |
/// \brief Default traits class of DfsVisit class. |
| 1194 | 1190 |
/// |
| 1195 | 1191 |
/// Default traits class of DfsVisit class. |
| 1196 | 1192 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1197 | 1193 |
template<class GR> |
| 1198 | 1194 |
struct DfsVisitDefaultTraits {
|
| 1199 | 1195 |
|
| 1200 | 1196 |
/// \brief The type of the digraph the algorithm runs on. |
| 1201 | 1197 |
typedef GR Digraph; |
| 1202 | 1198 |
|
| 1203 | 1199 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1204 | 1200 |
/// |
| 1205 | 1201 |
/// The type of the map that indicates which nodes are reached. |
| 1206 | 1202 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1207 | 1203 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1208 | 1204 |
|
| 1209 | 1205 |
/// \brief Instantiates a ReachedMap. |
| 1210 | 1206 |
/// |
| 1211 | 1207 |
/// This function instantiates a ReachedMap. |
| 1212 | 1208 |
/// \param digraph is the digraph, to which |
| 1213 | 1209 |
/// we would like to define the ReachedMap. |
| 1214 | 1210 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1215 | 1211 |
return new ReachedMap(digraph); |
| 1216 | 1212 |
} |
| 1217 | 1213 |
|
| 1218 | 1214 |
}; |
| 1219 | 1215 |
|
| 1220 | 1216 |
/// \ingroup search |
| 1221 | 1217 |
/// |
| 1222 | 1218 |
/// \brief DFS algorithm class with visitor interface. |
| 1223 | 1219 |
/// |
| 1224 | 1220 |
/// This class provides an efficient implementation of the DFS algorithm |
| 1225 | 1221 |
/// with visitor interface. |
| 1226 | 1222 |
/// |
| 1227 | 1223 |
/// The DfsVisit class provides an alternative interface to the Dfs |
| 1228 | 1224 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1229 | 1225 |
/// the member functions of the \c Visitor class on every DFS event. |
| 1230 | 1226 |
/// |
| 1231 | 1227 |
/// This interface of the DFS algorithm should be used in special cases |
| 1232 | 1228 |
/// when extra actions have to be performed in connection with certain |
| 1233 | 1229 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
| 1234 | 1230 |
/// instead. |
| 1235 | 1231 |
/// |
| 1236 | 1232 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1237 | 1233 |
/// The default type is \ref ListDigraph. |
| 1238 | 1234 |
/// The value of GR is not used directly by \ref DfsVisit, |
| 1239 | 1235 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
| 1240 | 1236 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1241 | 1237 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
| 1242 | 1238 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1243 | 1239 |
/// events, you should implement your own visitor class. |
| 1244 | 1240 |
/// \tparam TR Traits class to set various data types used by the |
| 1245 | 1241 |
/// algorithm. The default traits class is |
| 1246 | 1242 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
| 1247 | 1243 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
| 1248 | 1244 |
/// a DFS visit traits class. |
| 1249 | 1245 |
#ifdef DOXYGEN |
| 1250 | 1246 |
template <typename GR, typename VS, typename TR> |
| 1251 | 1247 |
#else |
| 1252 | 1248 |
template <typename GR = ListDigraph, |
| 1253 | 1249 |
typename VS = DfsVisitor<GR>, |
| 1254 | 1250 |
typename TR = DfsVisitDefaultTraits<GR> > |
| 1255 | 1251 |
#endif |
| 1256 | 1252 |
class DfsVisit {
|
| 1257 | 1253 |
public: |
| 1258 | 1254 |
|
| 1259 | 1255 |
///The traits class. |
| 1260 | 1256 |
typedef TR Traits; |
| 1261 | 1257 |
|
| 1262 | 1258 |
///The type of the digraph the algorithm runs on. |
| 1263 | 1259 |
typedef typename Traits::Digraph Digraph; |
| 1264 | 1260 |
|
| 1265 | 1261 |
///The visitor type used by the algorithm. |
| 1266 | 1262 |
typedef VS Visitor; |
| 1267 | 1263 |
|
| 1268 | 1264 |
///The type of the map that indicates which nodes are reached. |
| 1269 | 1265 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1270 | 1266 |
|
| 1271 | 1267 |
private: |
| 1272 | 1268 |
|
| 1273 | 1269 |
typedef typename Digraph::Node Node; |
| 1274 | 1270 |
typedef typename Digraph::NodeIt NodeIt; |
| 1275 | 1271 |
typedef typename Digraph::Arc Arc; |
| 1276 | 1272 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1277 | 1273 |
|
| 1278 | 1274 |
//Pointer to the underlying digraph. |
| 1279 | 1275 |
const Digraph *_digraph; |
| 1280 | 1276 |
//Pointer to the visitor object. |
| 1281 | 1277 |
Visitor *_visitor; |
| 1282 | 1278 |
//Pointer to the map of reached status of the nodes. |
| 1283 | 1279 |
ReachedMap *_reached; |
| 1284 | 1280 |
//Indicates if _reached is locally allocated (true) or not. |
| 1285 | 1281 |
bool local_reached; |
| 1286 | 1282 |
|
| 1287 | 1283 |
std::vector<typename Digraph::Arc> _stack; |
| 1288 | 1284 |
int _stack_head; |
| 1289 | 1285 |
|
| 1290 | 1286 |
//Creates the maps if necessary. |
| 1291 | 1287 |
void create_maps() {
|
| 1292 | 1288 |
if(!_reached) {
|
| 1293 | 1289 |
local_reached = true; |
| 1294 | 1290 |
_reached = Traits::createReachedMap(*_digraph); |
| 1295 | 1291 |
} |
| 1296 | 1292 |
} |
| 1297 | 1293 |
|
| 1298 | 1294 |
protected: |
| 1299 | 1295 |
|
| 1300 | 1296 |
DfsVisit() {}
|
| 1301 | 1297 |
|
| 1302 | 1298 |
public: |
| 1303 | 1299 |
|
| 1304 | 1300 |
typedef DfsVisit Create; |
| 1305 | 1301 |
|
| 1306 | 1302 |
/// \name Named Template Parameters |
| 1307 | 1303 |
|
| 1308 | 1304 |
///@{
|
| 1309 | 1305 |
template <class T> |
| 1310 | 1306 |
struct SetReachedMapTraits : public Traits {
|
| 1311 | 1307 |
typedef T ReachedMap; |
| 1312 | 1308 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1313 | 1309 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1314 | 1310 |
return 0; // ignore warnings |
| 1315 | 1311 |
} |
| 1316 | 1312 |
}; |
| 1317 | 1313 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1318 | 1314 |
/// ReachedMap type. |
| 1319 | 1315 |
/// |
| 1320 | 1316 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1321 | 1317 |
template <class T> |
| 1322 | 1318 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
| 1323 | 1319 |
SetReachedMapTraits<T> > {
|
| 1324 | 1320 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1325 | 1321 |
}; |
| 1326 | 1322 |
///@} |
| 1327 | 1323 |
|
| 1328 | 1324 |
public: |
| 1329 | 1325 |
|
| 1330 | 1326 |
/// \brief Constructor. |
| 1331 | 1327 |
/// |
| 1332 | 1328 |
/// Constructor. |
| 1333 | 1329 |
/// |
| 1334 | 1330 |
/// \param digraph The digraph the algorithm runs on. |
| 1335 | 1331 |
/// \param visitor The visitor object of the algorithm. |
| 1336 | 1332 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1337 | 1333 |
: _digraph(&digraph), _visitor(&visitor), |
| 1338 | 1334 |
_reached(0), local_reached(false) {}
|
| 1339 | 1335 |
|
| 1340 | 1336 |
/// \brief Destructor. |
| 1341 | 1337 |
~DfsVisit() {
|
| 1342 | 1338 |
if(local_reached) delete _reached; |
| 1343 | 1339 |
} |
| 1344 | 1340 |
|
| 1345 | 1341 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1346 | 1342 |
/// |
| 1347 | 1343 |
/// Sets the map that indicates which nodes are reached. |
| 1348 | 1344 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1349 | 1345 |
/// or \ref init(), an instance will be allocated automatically. |
| 1350 | 1346 |
/// The destructor deallocates this automatically allocated map, |
| 1351 | 1347 |
/// of course. |
| 1352 | 1348 |
/// \return <tt> (*this) </tt> |
| 1353 | 1349 |
DfsVisit &reachedMap(ReachedMap &m) {
|
| 1354 | 1350 |
if(local_reached) {
|
| 1355 | 1351 |
delete _reached; |
| 1356 | 1352 |
local_reached=false; |
| 1357 | 1353 |
} |
| 1358 | 1354 |
_reached = &m; |
| 1359 | 1355 |
return *this; |
| 1360 | 1356 |
} |
| 1361 | 1357 |
|
| 1362 | 1358 |
public: |
| 1363 | 1359 |
|
| 1364 | 1360 |
/// \name Execution Control |
| 1365 | 1361 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1366 | 1362 |
/// member functions called \ref run(Node) "run()".\n |
| 1367 | 1363 |
/// If you need better control on the execution, you have to call |
| 1368 | 1364 |
/// \ref init() first, then you can add a source node with \ref addSource() |
| 1369 | 1365 |
/// and perform the actual computation with \ref start(). |
| 1370 | 1366 |
/// This procedure can be repeated if there are nodes that have not |
| 1371 | 1367 |
/// been reached. |
| 1372 | 1368 |
|
| 1373 | 1369 |
/// @{
|
| 1374 | 1370 |
|
| 1375 | 1371 |
/// \brief Initializes the internal data structures. |
| 1376 | 1372 |
/// |
| 1377 | 1373 |
/// Initializes the internal data structures. |
| 1378 | 1374 |
void init() {
|
| 1379 | 1375 |
create_maps(); |
| 1380 | 1376 |
_stack.resize(countNodes(*_digraph)); |
| 1381 | 1377 |
_stack_head = -1; |
| 1382 | 1378 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1383 | 1379 |
_reached->set(u, false); |
| 1384 | 1380 |
} |
| 1385 | 1381 |
} |
| 1386 | 1382 |
|
| 1387 | 1383 |
/// \brief Adds a new source node. |
| 1388 | 1384 |
/// |
| 1389 | 1385 |
/// Adds a new source node to the set of nodes to be processed. |
| 1390 | 1386 |
/// |
| 1391 | 1387 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
| 1392 | 1388 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
| 1393 | 1389 |
/// except for the last one will not be visited and distances will |
| 1394 | 1390 |
/// also be wrong.) |
| 1395 | 1391 |
void addSource(Node s) |
| 1396 | 1392 |
{
|
| 1397 | 1393 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 1398 | 1394 |
if(!(*_reached)[s]) {
|
| 1399 | 1395 |
_reached->set(s,true); |
| 1400 | 1396 |
_visitor->start(s); |
| 1401 | 1397 |
_visitor->reach(s); |
| 1402 | 1398 |
Arc e; |
| 1403 | 1399 |
_digraph->firstOut(e, s); |
| 1404 | 1400 |
if (e != INVALID) {
|
| 1405 | 1401 |
_stack[++_stack_head] = e; |
| 1406 | 1402 |
} else {
|
| 1407 | 1403 |
_visitor->leave(s); |
| 1408 | 1404 |
_visitor->stop(s); |
| 1409 | 1405 |
} |
| 1410 | 1406 |
} |
| 1411 | 1407 |
} |
| 1412 | 1408 |
|
| 1413 | 1409 |
/// \brief Processes the next arc. |
| 1414 | 1410 |
/// |
| 1415 | 1411 |
/// Processes the next arc. |
| 1416 | 1412 |
/// |
| 1417 | 1413 |
/// \return The processed arc. |
| 1418 | 1414 |
/// |
| 1419 | 1415 |
/// \pre The stack must not be empty. |
| 1420 | 1416 |
Arc processNextArc() {
|
| 1421 | 1417 |
Arc e = _stack[_stack_head]; |
| 1422 | 1418 |
Node m = _digraph->target(e); |
| 1423 | 1419 |
if(!(*_reached)[m]) {
|
| 1424 | 1420 |
_visitor->discover(e); |
| 1425 | 1421 |
_visitor->reach(m); |
| 1426 | 1422 |
_reached->set(m, true); |
| 1427 | 1423 |
_digraph->firstOut(_stack[++_stack_head], m); |
| 1428 | 1424 |
} else {
|
| 1429 | 1425 |
_visitor->examine(e); |
| 1430 | 1426 |
m = _digraph->source(e); |
| 1431 | 1427 |
_digraph->nextOut(_stack[_stack_head]); |
| 1432 | 1428 |
} |
| 1433 | 1429 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
| 1434 | 1430 |
_visitor->leave(m); |
| 1435 | 1431 |
--_stack_head; |
| 1436 | 1432 |
if (_stack_head >= 0) {
|
| 1437 | 1433 |
_visitor->backtrack(_stack[_stack_head]); |
| 1438 | 1434 |
m = _digraph->source(_stack[_stack_head]); |
| 1439 | 1435 |
_digraph->nextOut(_stack[_stack_head]); |
| 1440 | 1436 |
} else {
|
| 1441 | 1437 |
_visitor->stop(m); |
| 1442 | 1438 |
} |
| 1443 | 1439 |
} |
| 1444 | 1440 |
return e; |
| 1445 | 1441 |
} |
| 1446 | 1442 |
|
| 1447 | 1443 |
/// \brief Next arc to be processed. |
| 1448 | 1444 |
/// |
| 1449 | 1445 |
/// Next arc to be processed. |
| 1450 | 1446 |
/// |
| 1451 | 1447 |
/// \return The next arc to be processed or INVALID if the stack is |
| 1452 | 1448 |
/// empty. |
| 1453 | 1449 |
Arc nextArc() const {
|
| 1454 | 1450 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
| 1455 | 1451 |
} |
| 1456 | 1452 |
|
| 1457 | 1453 |
/// \brief Returns \c false if there are nodes |
| 1458 | 1454 |
/// to be processed. |
| 1459 | 1455 |
/// |
| 1460 | 1456 |
/// Returns \c false if there are nodes |
| 1461 | 1457 |
/// to be processed in the queue (stack). |
| 1462 | 1458 |
bool emptyQueue() const { return _stack_head < 0; }
|
| 1463 | 1459 |
|
| 1464 | 1460 |
/// \brief Returns the number of the nodes to be processed. |
| 1465 | 1461 |
/// |
| 1466 | 1462 |
/// Returns the number of the nodes to be processed in the queue (stack). |
| 1467 | 1463 |
int queueSize() const { return _stack_head + 1; }
|
| 1468 | 1464 |
|
| 1469 | 1465 |
/// \brief Executes the algorithm. |
| 1470 | 1466 |
/// |
| 1471 | 1467 |
/// Executes the algorithm. |
| 1472 | 1468 |
/// |
| 1473 | 1469 |
/// This method runs the %DFS algorithm from the root node |
| 1474 | 1470 |
/// in order to compute the %DFS path to each node. |
| 1475 | 1471 |
/// |
| 1476 | 1472 |
/// The algorithm computes |
| 1477 | 1473 |
/// - the %DFS tree, |
| 1478 | 1474 |
/// - the distance of each node from the root in the %DFS tree. |
| 1479 | 1475 |
/// |
| 1480 | 1476 |
/// \pre init() must be called and a root node should be |
| 1481 | 1477 |
/// added with addSource() before using this function. |
| 1482 | 1478 |
/// |
| 1483 | 1479 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
| 1484 | 1480 |
/// \code |
| 1485 | 1481 |
/// while ( !d.emptyQueue() ) {
|
| 1486 | 1482 |
/// d.processNextArc(); |
| 1487 | 1483 |
/// } |
| 1488 | 1484 |
/// \endcode |
| 1489 | 1485 |
void start() {
|
| 1490 | 1486 |
while ( !emptyQueue() ) processNextArc(); |
| 1491 | 1487 |
} |
| 1492 | 1488 |
|
| 1493 | 1489 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1494 | 1490 |
/// |
| 1495 | 1491 |
/// Executes the algorithm until the given target node is reached. |
| 1496 | 1492 |
/// |
| 1497 | 1493 |
/// This method runs the %DFS algorithm from the root node |
| 1498 | 1494 |
/// in order to compute the DFS path to \c t. |
| 1499 | 1495 |
/// |
| 1500 | 1496 |
/// The algorithm computes |
| 1501 | 1497 |
/// - the %DFS path to \c t, |
| 1502 | 1498 |
/// - the distance of \c t from the root in the %DFS tree. |
| 1503 | 1499 |
/// |
| 1504 | 1500 |
/// \pre init() must be called and a root node should be added |
| 1505 | 1501 |
/// with addSource() before using this function. |
| 1506 | 1502 |
void start(Node t) {
|
| 1507 | 1503 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
| 1508 | 1504 |
processNextArc(); |
| 1509 | 1505 |
} |
| 1510 | 1506 |
|
| 1511 | 1507 |
/// \brief Executes the algorithm until a condition is met. |
| 1512 | 1508 |
/// |
| 1513 | 1509 |
/// Executes the algorithm until a condition is met. |
| 1514 | 1510 |
/// |
| 1515 | 1511 |
/// This method runs the %DFS algorithm from the root node |
| 1516 | 1512 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
| 1517 | 1513 |
/// |
| 1518 | 1514 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
| 1519 | 1515 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 1520 | 1516 |
/// |
| 1521 | 1517 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
| 1522 | 1518 |
/// \c INVALID if no such arc was found. |
| 1523 | 1519 |
/// |
| 1524 | 1520 |
/// \pre init() must be called and a root node should be added |
| 1525 | 1521 |
/// with addSource() before using this function. |
| 1526 | 1522 |
/// |
| 1527 | 1523 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 1528 | 1524 |
/// not a node map. |
| 1529 | 1525 |
template <typename AM> |
| 1530 | 1526 |
Arc start(const AM &am) {
|
| 1531 | 1527 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 1532 | 1528 |
processNextArc(); |
| 1533 | 1529 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 1534 | 1530 |
} |
| 1535 | 1531 |
|
| 1536 | 1532 |
/// \brief Runs the algorithm from the given source node. |
| 1537 | 1533 |
/// |
| 1538 | 1534 |
/// This method runs the %DFS algorithm from node \c s. |
| 1539 | 1535 |
/// in order to compute the DFS path to each node. |
| 1540 | 1536 |
/// |
| 1541 | 1537 |
/// The algorithm computes |
| 1542 | 1538 |
/// - the %DFS tree, |
| 1543 | 1539 |
/// - the distance of each node from the root in the %DFS tree. |
| 1544 | 1540 |
/// |
| 1545 | 1541 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 1546 | 1542 |
///\code |
| 1547 | 1543 |
/// d.init(); |
| 1548 | 1544 |
/// d.addSource(s); |
| 1549 | 1545 |
/// d.start(); |
| 1550 | 1546 |
///\endcode |
| 1551 | 1547 |
void run(Node s) {
|
| 1552 | 1548 |
init(); |
| 1553 | 1549 |
addSource(s); |
| 1554 | 1550 |
start(); |
| 1555 | 1551 |
} |
| 1556 | 1552 |
|
| 1557 | 1553 |
/// \brief Finds the %DFS path between \c s and \c t. |
| 1558 | 1554 |
|
| 1559 | 1555 |
/// This method runs the %DFS algorithm from node \c s |
| 1560 | 1556 |
/// in order to compute the DFS path to node \c t |
| 1561 | 1557 |
/// (it stops searching when \c t is processed). |
| 1562 | 1558 |
/// |
| 1563 | 1559 |
/// \return \c true if \c t is reachable form \c s. |
| 1564 | 1560 |
/// |
| 1565 | 1561 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 1566 | 1562 |
/// just a shortcut of the following code. |
| 1567 | 1563 |
///\code |
| 1568 | 1564 |
/// d.init(); |
| 1569 | 1565 |
/// d.addSource(s); |
| 1570 | 1566 |
/// d.start(t); |
| 1571 | 1567 |
///\endcode |
| 1572 | 1568 |
bool run(Node s,Node t) {
|
| 1573 | 1569 |
init(); |
| 1574 | 1570 |
addSource(s); |
| 1575 | 1571 |
start(t); |
| 1576 | 1572 |
return reached(t); |
| 1577 | 1573 |
} |
| 1578 | 1574 |
|
| 1579 | 1575 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1580 | 1576 |
|
| 1581 |
/// This method runs the %DFS algorithm in order to |
|
| 1582 |
/// compute the %DFS path to each node. |
|
| 1583 |
/// |
|
| 1584 |
/// The algorithm computes |
|
| 1585 |
/// - the %DFS tree (forest), |
|
| 1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
|
| 1577 |
/// This method runs the %DFS algorithm in order to visit all nodes |
|
| 1578 |
/// in the digraph. |
|
| 1587 | 1579 |
/// |
| 1588 | 1580 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1589 | 1581 |
///\code |
| 1590 | 1582 |
/// d.init(); |
| 1591 | 1583 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1592 | 1584 |
/// if (!d.reached(n)) {
|
| 1593 | 1585 |
/// d.addSource(n); |
| 1594 | 1586 |
/// d.start(); |
| 1595 | 1587 |
/// } |
| 1596 | 1588 |
/// } |
| 1597 | 1589 |
///\endcode |
| 1598 | 1590 |
void run() {
|
| 1599 | 1591 |
init(); |
| 1600 | 1592 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1601 | 1593 |
if (!reached(it)) {
|
| 1602 | 1594 |
addSource(it); |
| 1603 | 1595 |
start(); |
| 1604 | 1596 |
} |
| 1605 | 1597 |
} |
| 1606 | 1598 |
} |
| 1607 | 1599 |
|
| 1608 | 1600 |
///@} |
| 1609 | 1601 |
|
| 1610 | 1602 |
/// \name Query Functions |
| 1611 | 1603 |
/// The results of the DFS algorithm can be obtained using these |
| 1612 | 1604 |
/// functions.\n |
| 1613 | 1605 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1614 | 1606 |
/// before using them. |
| 1615 | 1607 |
|
| 1616 | 1608 |
///@{
|
| 1617 | 1609 |
|
| 1618 | 1610 |
/// \brief Checks if the given node is reached from the root(s). |
| 1619 | 1611 |
/// |
| 1620 | 1612 |
/// Returns \c true if \c v is reached from the root(s). |
| 1621 | 1613 |
/// |
| 1622 | 1614 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1623 | 1615 |
/// must be called before using this function. |
| 1624 | 1616 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1625 | 1617 |
|
| 1626 | 1618 |
///@} |
| 1627 | 1619 |
|
| 1628 | 1620 |
}; |
| 1629 | 1621 |
|
| 1630 | 1622 |
} //END OF NAMESPACE LEMON |
| 1631 | 1623 |
|
| 1632 | 1624 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
| 20 | 20 |
#define LEMON_DIJKSTRA_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Dijkstra algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <limits> |
| 27 | 27 |
#include <lemon/list_graph.h> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/bits/path_dump.h> |
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/error.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
#include <lemon/path.h> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
| 38 | 38 |
/// |
| 39 | 39 |
/// This operation traits class defines all computational operations and |
| 40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
| 41 | 41 |
template <typename V> |
| 42 | 42 |
struct DijkstraDefaultOperationTraits {
|
| 43 | 43 |
/// \e |
| 44 | 44 |
typedef V Value; |
| 45 | 45 |
/// \brief Gives back the zero value of the type. |
| 46 | 46 |
static Value zero() {
|
| 47 | 47 |
return static_cast<Value>(0); |
| 48 | 48 |
} |
| 49 | 49 |
/// \brief Gives back the sum of the given two elements. |
| 50 | 50 |
static Value plus(const Value& left, const Value& right) {
|
| 51 | 51 |
return left + right; |
| 52 | 52 |
} |
| 53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
| 54 | 54 |
static bool less(const Value& left, const Value& right) {
|
| 55 | 55 |
return left < right; |
| 56 | 56 |
} |
| 57 | 57 |
}; |
| 58 | 58 |
|
| 59 | 59 |
///Default traits class of Dijkstra class. |
| 60 | 60 |
|
| 61 | 61 |
///Default traits class of Dijkstra class. |
| 62 | 62 |
///\tparam GR The type of the digraph. |
| 63 | 63 |
///\tparam LEN The type of the length map. |
| 64 | 64 |
template<typename GR, typename LEN> |
| 65 | 65 |
struct DijkstraDefaultTraits |
| 66 | 66 |
{
|
| 67 | 67 |
///The type of the digraph the algorithm runs on. |
| 68 | 68 |
typedef GR Digraph; |
| 69 | 69 |
|
| 70 | 70 |
///The type of the map that stores the arc lengths. |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 | 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 74 | 74 |
typedef LEN LengthMap; |
| 75 | 75 |
///The type of the arc lengths. |
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
| 79 | 79 |
|
| 80 | 80 |
/// This class defines the operations that are used in the algorithm. |
| 81 | 81 |
/// \see DijkstraDefaultOperationTraits |
| 82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 83 | 83 |
|
| 84 | 84 |
/// The cross reference type used by the heap. |
| 85 | 85 |
|
| 86 | 86 |
/// The cross reference type used by the heap. |
| 87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 89 | 89 |
///Instantiates a \c HeapCrossRef. |
| 90 | 90 |
|
| 91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
| 92 | 92 |
/// \param g is the digraph, to which we would like to define the |
| 93 | 93 |
/// \ref HeapCrossRef. |
| 94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 95 | 95 |
{
|
| 96 | 96 |
return new HeapCrossRef(g); |
| 97 | 97 |
} |
| 98 | 98 |
|
| 99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
| 100 | 100 |
|
| 101 | 101 |
///The heap type used by the Dijkstra algorithm. |
| 102 | 102 |
/// |
| 103 | 103 |
///\sa BinHeap |
| 104 | 104 |
///\sa Dijkstra |
| 105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
| 106 | 106 |
///Instantiates a \c Heap. |
| 107 | 107 |
|
| 108 | 108 |
///This function instantiates a \ref Heap. |
| 109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
| 110 | 110 |
{
|
| 111 | 111 |
return new Heap(r); |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
///\brief The type of the map that stores the predecessor |
| 115 | 115 |
///arcs of the shortest paths. |
| 116 | 116 |
/// |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 | 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| 122 | 122 |
|
| 123 | 123 |
///This function instantiates a \ref PredMap. |
| 124 | 124 |
///\param g is the digraph, to which we would like to define the |
| 125 | 125 |
///\ref PredMap. |
| 126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
| 127 | 127 |
{
|
| 128 | 128 |
return new PredMap(g); |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
///The type of the map that indicates which nodes are processed. |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 | 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 135 | 135 |
///By default it is a NullMap. |
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 137 | 137 |
///Instantiates a \c ProcessedMap. |
| 138 | 138 |
|
| 139 | 139 |
///This function instantiates a \ref ProcessedMap. |
| 140 | 140 |
///\param g is the digraph, to which |
| 141 | 141 |
///we would like to define the \ref ProcessedMap. |
| 142 | 142 |
#ifdef DOXYGEN |
| 143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 144 | 144 |
#else |
| 145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 146 | 146 |
#endif |
| 147 | 147 |
{
|
| 148 | 148 |
return new ProcessedMap(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
///The type of the map that stores the distances of the nodes. |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 | 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| 157 | 157 |
|
| 158 | 158 |
///This function instantiates a \ref DistMap. |
| 159 | 159 |
///\param g is the digraph, to which we would like to define |
| 160 | 160 |
///the \ref DistMap. |
| 161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
| 162 | 162 |
{
|
| 163 | 163 |
return new DistMap(g); |
| 164 | 164 |
} |
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
///%Dijkstra algorithm class. |
| 168 | 168 |
|
| 169 | 169 |
/// \ingroup shortest_path |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 | 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
| 173 | 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
| 174 | 174 |
///the BellmanFord algorithm should be used instead. |
| 175 | 175 |
/// |
| 176 | 176 |
///The arc lengths are passed to the algorithm using a |
| 177 | 177 |
///\ref concepts::ReadMap "ReadMap", |
| 178 | 178 |
///so it is easy to change it to any kind of length. |
| 179 | 179 |
///The type of the length is determined by the |
| 180 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 181 | 181 |
///It is also possible to change the underlying priority heap. |
| 182 | 182 |
/// |
| 183 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
| 184 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
| 185 | 185 |
///it can be used easier. |
| 186 | 186 |
/// |
| 187 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 188 | 188 |
///The default type is \ref ListDigraph. |
| 189 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 190 | 190 |
///the lengths of the arcs. |
| 191 | 191 |
///It is read once for each arc, so the map may involve in |
| 192 | 192 |
///relatively time consuming process to compute the arc lengths if |
| 193 | 193 |
///it is necessary. The default map type is \ref |
| 194 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 195 | 195 |
#ifdef DOXYGEN |
| 196 | 196 |
template <typename GR, typename LEN, typename TR> |
| 197 | 197 |
#else |
| 198 | 198 |
template <typename GR=ListDigraph, |
| 199 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
| 200 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
| 201 | 201 |
#endif |
| 202 | 202 |
class Dijkstra {
|
| 203 | 203 |
public: |
| 204 | 204 |
|
| 205 | 205 |
///The type of the digraph the algorithm runs on. |
| 206 | 206 |
typedef typename TR::Digraph Digraph; |
| 207 | 207 |
|
| 208 | 208 |
///The type of the arc lengths. |
| 209 |
typedef typename TR:: |
|
| 209 |
typedef typename TR::Value Value; |
|
| 210 | 210 |
///The type of the map that stores the arc lengths. |
| 211 | 211 |
typedef typename TR::LengthMap LengthMap; |
| 212 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
| 213 | 213 |
///shortest paths. |
| 214 | 214 |
typedef typename TR::PredMap PredMap; |
| 215 | 215 |
///The type of the map that stores the distances of the nodes. |
| 216 | 216 |
typedef typename TR::DistMap DistMap; |
| 217 | 217 |
///The type of the map that indicates which nodes are processed. |
| 218 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 219 | 219 |
///The type of the paths. |
| 220 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 221 | 221 |
///The cross reference type used for the current heap. |
| 222 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
| 223 | 223 |
///The heap type used by the algorithm. |
| 224 | 224 |
typedef typename TR::Heap Heap; |
| 225 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
| 226 | 226 |
///of the algorithm. |
| 227 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
| 228 | 228 |
|
| 229 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
| 230 | 230 |
typedef TR Traits; |
| 231 | 231 |
|
| 232 | 232 |
private: |
| 233 | 233 |
|
| 234 | 234 |
typedef typename Digraph::Node Node; |
| 235 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
| 236 | 236 |
typedef typename Digraph::Arc Arc; |
| 237 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 238 | 238 |
|
| 239 | 239 |
//Pointer to the underlying digraph. |
| 240 | 240 |
const Digraph *G; |
| 241 | 241 |
//Pointer to the length map. |
| 242 | 242 |
const LengthMap *_length; |
| 243 | 243 |
//Pointer to the map of predecessors arcs. |
| 244 | 244 |
PredMap *_pred; |
| 245 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
| 246 | 246 |
bool local_pred; |
| 247 | 247 |
//Pointer to the map of distances. |
| 248 | 248 |
DistMap *_dist; |
| 249 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
| 250 | 250 |
bool local_dist; |
| 251 | 251 |
//Pointer to the map of processed status of the nodes. |
| 252 | 252 |
ProcessedMap *_processed; |
| 253 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
| 254 | 254 |
bool local_processed; |
| 255 | 255 |
//Pointer to the heap cross references. |
| 256 | 256 |
HeapCrossRef *_heap_cross_ref; |
| 257 | 257 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
| 258 | 258 |
bool local_heap_cross_ref; |
| 259 | 259 |
//Pointer to the heap. |
| 260 | 260 |
Heap *_heap; |
| 261 | 261 |
//Indicates if _heap is locally allocated (true) or not. |
| 262 | 262 |
bool local_heap; |
| 263 | 263 |
|
| 264 | 264 |
//Creates the maps if necessary. |
| 265 | 265 |
void create_maps() |
| 266 | 266 |
{
|
| 267 | 267 |
if(!_pred) {
|
| 268 | 268 |
local_pred = true; |
| 269 | 269 |
_pred = Traits::createPredMap(*G); |
| 270 | 270 |
} |
| 271 | 271 |
if(!_dist) {
|
| 272 | 272 |
local_dist = true; |
| 273 | 273 |
_dist = Traits::createDistMap(*G); |
| 274 | 274 |
} |
| 275 | 275 |
if(!_processed) {
|
| 276 | 276 |
local_processed = true; |
| 277 | 277 |
_processed = Traits::createProcessedMap(*G); |
| 278 | 278 |
} |
| 279 | 279 |
if (!_heap_cross_ref) {
|
| 280 | 280 |
local_heap_cross_ref = true; |
| 281 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
| 282 | 282 |
} |
| 283 | 283 |
if (!_heap) {
|
| 284 | 284 |
local_heap = true; |
| 285 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
| 286 | 286 |
} |
| 287 | 287 |
} |
| 288 | 288 |
|
| 289 | 289 |
public: |
| 290 | 290 |
|
| 291 | 291 |
typedef Dijkstra Create; |
| 292 | 292 |
|
| 293 | 293 |
///\name Named Template Parameters |
| 294 | 294 |
|
| 295 | 295 |
///@{
|
| 296 | 296 |
|
| 297 | 297 |
template <class T> |
| 298 | 298 |
struct SetPredMapTraits : public Traits {
|
| 299 | 299 |
typedef T PredMap; |
| 300 | 300 |
static PredMap *createPredMap(const Digraph &) |
| 301 | 301 |
{
|
| 302 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 303 | 303 |
return 0; // ignore warnings |
| 304 | 304 |
} |
| 305 | 305 |
}; |
| 306 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 307 | 307 |
///\c PredMap type. |
| 308 | 308 |
/// |
| 309 | 309 |
///\ref named-templ-param "Named parameter" for setting |
| 310 | 310 |
///\c PredMap type. |
| 311 | 311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 312 | 312 |
template <class T> |
| 313 | 313 |
struct SetPredMap |
| 314 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 315 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 316 | 316 |
}; |
| 317 | 317 |
|
| 318 | 318 |
template <class T> |
| 319 | 319 |
struct SetDistMapTraits : public Traits {
|
| 320 | 320 |
typedef T DistMap; |
| 321 | 321 |
static DistMap *createDistMap(const Digraph &) |
| 322 | 322 |
{
|
| 323 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 324 | 324 |
return 0; // ignore warnings |
| 325 | 325 |
} |
| 326 | 326 |
}; |
| 327 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 328 | 328 |
///\c DistMap type. |
| 329 | 329 |
/// |
| 330 | 330 |
///\ref named-templ-param "Named parameter" for setting |
| 331 | 331 |
///\c DistMap type. |
| 332 | 332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 333 | 333 |
template <class T> |
| 334 | 334 |
struct SetDistMap |
| 335 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 336 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 337 | 337 |
}; |
| 338 | 338 |
|
| 339 | 339 |
template <class T> |
| 340 | 340 |
struct SetProcessedMapTraits : public Traits {
|
| 341 | 341 |
typedef T ProcessedMap; |
| 342 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 343 | 343 |
{
|
| 344 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 345 | 345 |
return 0; // ignore warnings |
| 346 | 346 |
} |
| 347 | 347 |
}; |
| 348 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 349 | 349 |
///\c ProcessedMap type. |
| 350 | 350 |
/// |
| 351 | 351 |
///\ref named-templ-param "Named parameter" for setting |
| 352 | 352 |
///\c ProcessedMap type. |
| 353 | 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 354 | 354 |
template <class T> |
| 355 | 355 |
struct SetProcessedMap |
| 356 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 357 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 358 | 358 |
}; |
| 359 | 359 |
|
| 360 | 360 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 361 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 362 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 363 | 363 |
{
|
| 364 | 364 |
return new ProcessedMap(g); |
| 365 | 365 |
} |
| 366 | 366 |
}; |
| 367 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 368 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 369 | 369 |
/// |
| 370 | 370 |
///\ref named-templ-param "Named parameter" for setting |
| 371 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 372 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
| 373 | 373 |
struct SetStandardProcessedMap |
| 374 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
|
| 375 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
| 376 | 376 |
Create; |
| 377 | 377 |
}; |
| 378 | 378 |
|
| 379 | 379 |
template <class H, class CR> |
| 380 | 380 |
struct SetHeapTraits : public Traits {
|
| 381 | 381 |
typedef CR HeapCrossRef; |
| 382 | 382 |
typedef H Heap; |
| 383 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
|
| 384 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| 385 | 385 |
return 0; // ignore warnings |
| 386 | 386 |
} |
| 387 | 387 |
static Heap *createHeap(HeapCrossRef &) |
| 388 | 388 |
{
|
| 389 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
| 390 | 390 |
return 0; // ignore warnings |
| 391 | 391 |
} |
| 392 | 392 |
}; |
| 393 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 394 | 394 |
///heap and cross reference types |
| 395 | 395 |
/// |
| 396 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 397 | 397 |
///reference types. If this named parameter is used, then external |
| 398 | 398 |
///heap and cross reference objects must be passed to the algorithm |
| 399 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
| 400 | 400 |
///or \ref init(). |
| 401 | 401 |
///\sa SetStandardHeap |
| 402 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 403 | 403 |
struct SetHeap |
| 404 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
|
| 405 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
| 406 | 406 |
}; |
| 407 | 407 |
|
| 408 | 408 |
template <class H, class CR> |
| 409 | 409 |
struct SetStandardHeapTraits : public Traits {
|
| 410 | 410 |
typedef CR HeapCrossRef; |
| 411 | 411 |
typedef H Heap; |
| 412 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
|
| 413 | 413 |
return new HeapCrossRef(G); |
| 414 | 414 |
} |
| 415 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
| 416 | 416 |
{
|
| 417 | 417 |
return new Heap(R); |
| 418 | 418 |
} |
| 419 | 419 |
}; |
| 420 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 421 | 421 |
///heap and cross reference types with automatic allocation |
| 422 | 422 |
/// |
| 423 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 424 | 424 |
///reference types with automatic allocation. |
| 425 | 425 |
///They should have standard constructor interfaces to be able to |
| 426 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
| 427 | 427 |
///passed to the constructor of the cross reference and the cross |
| 428 | 428 |
///reference should be passed to the constructor of the heap). |
| 429 | 429 |
///However external heap and cross reference objects could also be |
| 430 | 430 |
///passed to the algorithm using the \ref heap() function before |
| 431 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
| 432 | 432 |
///\sa SetHeap |
| 433 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 434 | 434 |
struct SetStandardHeap |
| 435 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| 436 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
| 437 | 437 |
Create; |
| 438 | 438 |
}; |
| 439 | 439 |
|
| 440 | 440 |
template <class T> |
| 441 | 441 |
struct SetOperationTraitsTraits : public Traits {
|
| 442 | 442 |
typedef T OperationTraits; |
| 443 | 443 |
}; |
| 444 | 444 |
|
| 445 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 446 | 446 |
///\c OperationTraits type |
| 447 | 447 |
/// |
| 448 | 448 |
///\ref named-templ-param "Named parameter" for setting |
| 449 | 449 |
///\c OperationTraits type. |
| 450 | 450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
| 451 | 451 |
template <class T> |
| 452 | 452 |
struct SetOperationTraits |
| 453 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 454 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 455 | 455 |
Create; |
| 456 | 456 |
}; |
| 457 | 457 |
|
| 458 | 458 |
///@} |
| 459 | 459 |
|
| 460 | 460 |
protected: |
| 461 | 461 |
|
| 462 | 462 |
Dijkstra() {}
|
| 463 | 463 |
|
| 464 | 464 |
public: |
| 465 | 465 |
|
| 466 | 466 |
///Constructor. |
| 467 | 467 |
|
| 468 | 468 |
///Constructor. |
| 469 | 469 |
///\param g The digraph the algorithm runs on. |
| 470 | 470 |
///\param length The length map used by the algorithm. |
| 471 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
| 472 | 472 |
G(&g), _length(&length), |
| 473 | 473 |
_pred(NULL), local_pred(false), |
| 474 | 474 |
_dist(NULL), local_dist(false), |
| 475 | 475 |
_processed(NULL), local_processed(false), |
| 476 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
| 477 | 477 |
_heap(NULL), local_heap(false) |
| 478 | 478 |
{ }
|
| 479 | 479 |
|
| 480 | 480 |
///Destructor. |
| 481 | 481 |
~Dijkstra() |
| 482 | 482 |
{
|
| 483 | 483 |
if(local_pred) delete _pred; |
| 484 | 484 |
if(local_dist) delete _dist; |
| 485 | 485 |
if(local_processed) delete _processed; |
| 486 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
| 487 | 487 |
if(local_heap) delete _heap; |
| 488 | 488 |
} |
| 489 | 489 |
|
| 490 | 490 |
///Sets the length map. |
| 491 | 491 |
|
| 492 | 492 |
///Sets the length map. |
| 493 | 493 |
///\return <tt> (*this) </tt> |
| 494 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
| 495 | 495 |
{
|
| 496 | 496 |
_length = &m; |
| 497 | 497 |
return *this; |
| 498 | 498 |
} |
| 499 | 499 |
|
| 500 | 500 |
///Sets the map that stores the predecessor arcs. |
| 501 | 501 |
|
| 502 | 502 |
///Sets the map that stores the predecessor arcs. |
| 503 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 504 | 504 |
///or \ref init(), an instance will be allocated automatically. |
| 505 | 505 |
///The destructor deallocates this automatically allocated map, |
| 506 | 506 |
///of course. |
| 507 | 507 |
///\return <tt> (*this) </tt> |
| 508 | 508 |
Dijkstra &predMap(PredMap &m) |
| 509 | 509 |
{
|
| 510 | 510 |
if(local_pred) {
|
| 511 | 511 |
delete _pred; |
| 512 | 512 |
local_pred=false; |
| 513 | 513 |
} |
| 514 | 514 |
_pred = &m; |
| 515 | 515 |
return *this; |
| 516 | 516 |
} |
| 517 | 517 |
|
| 518 | 518 |
///Sets the map that indicates which nodes are processed. |
| 519 | 519 |
|
| 520 | 520 |
///Sets the map that indicates which nodes are processed. |
| 521 | 521 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 522 | 522 |
///or \ref init(), an instance will be allocated automatically. |
| 523 | 523 |
///The destructor deallocates this automatically allocated map, |
| 524 | 524 |
///of course. |
| 525 | 525 |
///\return <tt> (*this) </tt> |
| 526 | 526 |
Dijkstra &processedMap(ProcessedMap &m) |
| 527 | 527 |
{
|
| 528 | 528 |
if(local_processed) {
|
| 529 | 529 |
delete _processed; |
| 530 | 530 |
local_processed=false; |
| 531 | 531 |
} |
| 532 | 532 |
_processed = &m; |
| 533 | 533 |
return *this; |
| 534 | 534 |
} |
| 535 | 535 |
|
| 536 | 536 |
///Sets the map that stores the distances of the nodes. |
| 537 | 537 |
|
| 538 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
| 539 | 539 |
///algorithm. |
| 540 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 541 | 541 |
///or \ref init(), an instance will be allocated automatically. |
| 542 | 542 |
///The destructor deallocates this automatically allocated map, |
| 543 | 543 |
///of course. |
| 544 | 544 |
///\return <tt> (*this) </tt> |
| 545 | 545 |
Dijkstra &distMap(DistMap &m) |
| 546 | 546 |
{
|
| 547 | 547 |
if(local_dist) {
|
| 548 | 548 |
delete _dist; |
| 549 | 549 |
local_dist=false; |
| 550 | 550 |
} |
| 551 | 551 |
_dist = &m; |
| 552 | 552 |
return *this; |
| 553 | 553 |
} |
| 554 | 554 |
|
| 555 | 555 |
///Sets the heap and the cross reference used by algorithm. |
| 556 | 556 |
|
| 557 | 557 |
///Sets the heap and the cross reference used by algorithm. |
| 558 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 559 | 559 |
///or \ref init(), heap and cross reference instances will be |
| 560 | 560 |
///allocated automatically. |
| 561 | 561 |
///The destructor deallocates these automatically allocated objects, |
| 562 | 562 |
///of course. |
| 563 | 563 |
///\return <tt> (*this) </tt> |
| 564 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
| 565 | 565 |
{
|
| 566 | 566 |
if(local_heap_cross_ref) {
|
| 567 | 567 |
delete _heap_cross_ref; |
| 568 | 568 |
local_heap_cross_ref=false; |
| 569 | 569 |
} |
| 570 | 570 |
_heap_cross_ref = &cr; |
| 571 | 571 |
if(local_heap) {
|
| 572 | 572 |
delete _heap; |
| 573 | 573 |
local_heap=false; |
| 574 | 574 |
} |
| 575 | 575 |
_heap = &hp; |
| 576 | 576 |
return *this; |
| 577 | 577 |
} |
| 578 | 578 |
|
| 579 | 579 |
private: |
| 580 | 580 |
|
| 581 | 581 |
void finalizeNodeData(Node v,Value dst) |
| 582 | 582 |
{
|
| 583 | 583 |
_processed->set(v,true); |
| 584 | 584 |
_dist->set(v, dst); |
| 585 | 585 |
} |
| 586 | 586 |
|
| 587 | 587 |
public: |
| 588 | 588 |
|
| 589 | 589 |
///\name Execution Control |
| 590 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 591 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
| 592 | 592 |
///If you need better control on the execution, you have to call |
| 593 | 593 |
///\ref init() first, then you can add several source nodes with |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_EDGE_SET_H |
| 20 | 20 |
#define LEMON_EDGE_SET_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/edge_set_extender.h> |
| 24 | 24 |
|
| 25 | 25 |
/// \ingroup graphs |
| 26 | 26 |
/// \file |
| 27 | 27 |
/// \brief ArcSet and EdgeSet classes. |
| 28 | 28 |
/// |
| 29 | 29 |
/// Graphs which use another graph's node-set as own. |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
template <typename GR> |
| 33 | 33 |
class ListArcSetBase {
|
| 34 | 34 |
public: |
| 35 | 35 |
|
| 36 | 36 |
typedef typename GR::Node Node; |
| 37 | 37 |
typedef typename GR::NodeIt NodeIt; |
| 38 | 38 |
|
| 39 | 39 |
protected: |
| 40 | 40 |
|
| 41 | 41 |
struct NodeT {
|
| 42 | 42 |
int first_out, first_in; |
| 43 | 43 |
NodeT() : first_out(-1), first_in(-1) {}
|
| 44 | 44 |
}; |
| 45 | 45 |
|
| 46 | 46 |
typedef typename ItemSetTraits<GR, Node>:: |
| 47 | 47 |
template Map<NodeT>::Type NodesImplBase; |
| 48 | 48 |
|
| 49 | 49 |
NodesImplBase* _nodes; |
| 50 | 50 |
|
| 51 | 51 |
struct ArcT {
|
| 52 | 52 |
Node source, target; |
| 53 | 53 |
int next_out, next_in; |
| 54 | 54 |
int prev_out, prev_in; |
| 55 | 55 |
ArcT() : prev_out(-1), prev_in(-1) {}
|
| 56 | 56 |
}; |
| 57 | 57 |
|
| 58 | 58 |
std::vector<ArcT> arcs; |
| 59 | 59 |
|
| 60 | 60 |
int first_arc; |
| 61 | 61 |
int first_free_arc; |
| 62 | 62 |
|
| 63 | 63 |
const GR* _graph; |
| 64 | 64 |
|
| 65 | 65 |
void initalize(const GR& graph, NodesImplBase& nodes) {
|
| 66 | 66 |
_graph = &graph; |
| 67 | 67 |
_nodes = &nodes; |
| 68 | 68 |
} |
| 69 | 69 |
|
| 70 | 70 |
public: |
| 71 | 71 |
|
| 72 | 72 |
class Arc {
|
| 73 | 73 |
friend class ListArcSetBase<GR>; |
| 74 | 74 |
protected: |
| 75 | 75 |
Arc(int _id) : id(_id) {}
|
| 76 | 76 |
int id; |
| 77 | 77 |
public: |
| 78 | 78 |
Arc() {}
|
| 79 | 79 |
Arc(Invalid) : id(-1) {}
|
| 80 | 80 |
bool operator==(const Arc& arc) const { return id == arc.id; }
|
| 81 | 81 |
bool operator!=(const Arc& arc) const { return id != arc.id; }
|
| 82 | 82 |
bool operator<(const Arc& arc) const { return id < arc.id; }
|
| 83 | 83 |
}; |
| 84 | 84 |
|
| 85 | 85 |
ListArcSetBase() : first_arc(-1), first_free_arc(-1) {}
|
| 86 | 86 |
|
| 87 | 87 |
Node addNode() {
|
| 88 | 88 |
LEMON_ASSERT(false, |
| 89 | 89 |
"This graph structure does not support node insertion"); |
| 90 | 90 |
return INVALID; // avoid warning |
| 91 | 91 |
} |
| 92 | 92 |
|
| 93 | 93 |
Arc addArc(const Node& u, const Node& v) {
|
| 94 | 94 |
int n; |
| 95 | 95 |
if (first_free_arc == -1) {
|
| 96 | 96 |
n = arcs.size(); |
| 97 | 97 |
arcs.push_back(ArcT()); |
| 98 | 98 |
} else {
|
| 99 | 99 |
n = first_free_arc; |
| 100 | 100 |
first_free_arc = arcs[first_free_arc].next_in; |
| 101 | 101 |
} |
| 102 | 102 |
arcs[n].next_in = (*_nodes)[v].first_in; |
| 103 | 103 |
if ((*_nodes)[v].first_in != -1) {
|
| 104 | 104 |
arcs[(*_nodes)[v].first_in].prev_in = n; |
| 105 | 105 |
} |
| 106 | 106 |
(*_nodes)[v].first_in = n; |
| 107 | 107 |
arcs[n].next_out = (*_nodes)[u].first_out; |
| 108 | 108 |
if ((*_nodes)[u].first_out != -1) {
|
| 109 | 109 |
arcs[(*_nodes)[u].first_out].prev_out = n; |
| 110 | 110 |
} |
| 111 | 111 |
(*_nodes)[u].first_out = n; |
| 112 | 112 |
arcs[n].source = u; |
| 113 | 113 |
arcs[n].target = v; |
| 114 | 114 |
return Arc(n); |
| 115 | 115 |
} |
| 116 | 116 |
|
| 117 | 117 |
void erase(const Arc& arc) {
|
| 118 | 118 |
int n = arc.id; |
| 119 | 119 |
if (arcs[n].prev_in != -1) {
|
| 120 | 120 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
| 121 | 121 |
} else {
|
| 122 | 122 |
(*_nodes)[arcs[n].target].first_in = arcs[n].next_in; |
| 123 | 123 |
} |
| 124 | 124 |
if (arcs[n].next_in != -1) {
|
| 125 | 125 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
| 126 | 126 |
} |
| 127 | 127 |
|
| 128 | 128 |
if (arcs[n].prev_out != -1) {
|
| 129 | 129 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
| 130 | 130 |
} else {
|
| 131 | 131 |
(*_nodes)[arcs[n].source].first_out = arcs[n].next_out; |
| 132 | 132 |
} |
| 133 | 133 |
if (arcs[n].next_out != -1) {
|
| 134 | 134 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
| 135 | 135 |
} |
| 136 | 136 |
|
| 137 | 137 |
} |
| 138 | 138 |
|
| 139 | 139 |
void clear() {
|
| 140 | 140 |
Node node; |
| 141 | 141 |
for (first(node); node != INVALID; next(node)) {
|
| 142 | 142 |
(*_nodes)[node].first_in = -1; |
| 143 | 143 |
(*_nodes)[node].first_out = -1; |
| 144 | 144 |
} |
| 145 | 145 |
arcs.clear(); |
| 146 | 146 |
first_arc = -1; |
| 147 | 147 |
first_free_arc = -1; |
| 148 | 148 |
} |
| 149 | 149 |
|
| 150 | 150 |
void first(Node& node) const {
|
| 151 | 151 |
_graph->first(node); |
| 152 | 152 |
} |
| 153 | 153 |
|
| 154 | 154 |
void next(Node& node) const {
|
| 155 | 155 |
_graph->next(node); |
| 156 | 156 |
} |
| 157 | 157 |
|
| 158 | 158 |
void first(Arc& arc) const {
|
| 159 | 159 |
Node node; |
| 160 | 160 |
first(node); |
| 161 | 161 |
while (node != INVALID && (*_nodes)[node].first_in == -1) {
|
| 162 | 162 |
next(node); |
| 163 | 163 |
} |
| 164 | 164 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; |
| 165 | 165 |
} |
| 166 | 166 |
|
| 167 | 167 |
void next(Arc& arc) const {
|
| 168 | 168 |
if (arcs[arc.id].next_in != -1) {
|
| 169 | 169 |
arc.id = arcs[arc.id].next_in; |
| 170 | 170 |
} else {
|
| 171 | 171 |
Node node = arcs[arc.id].target; |
| 172 | 172 |
next(node); |
| 173 | 173 |
while (node != INVALID && (*_nodes)[node].first_in == -1) {
|
| 174 | 174 |
next(node); |
| 175 | 175 |
} |
| 176 | 176 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; |
| 177 | 177 |
} |
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
void firstOut(Arc& arc, const Node& node) const {
|
| 181 | 181 |
arc.id = (*_nodes)[node].first_out; |
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 | 184 |
void nextOut(Arc& arc) const {
|
| 185 | 185 |
arc.id = arcs[arc.id].next_out; |
| 186 | 186 |
} |
| 187 | 187 |
|
| 188 | 188 |
void firstIn(Arc& arc, const Node& node) const {
|
| 189 | 189 |
arc.id = (*_nodes)[node].first_in; |
| 190 | 190 |
} |
| 191 | 191 |
|
| 192 | 192 |
void nextIn(Arc& arc) const {
|
| 193 | 193 |
arc.id = arcs[arc.id].next_in; |
| 194 | 194 |
} |
| 195 | 195 |
|
| 196 | 196 |
int id(const Node& node) const { return _graph->id(node); }
|
| 197 | 197 |
int id(const Arc& arc) const { return arc.id; }
|
| 198 | 198 |
|
| 199 | 199 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
|
| 200 | 200 |
Arc arcFromId(int ix) const { return Arc(ix); }
|
| 201 | 201 |
|
| 202 | 202 |
int maxNodeId() const { return _graph->maxNodeId(); };
|
| 203 | 203 |
int maxArcId() const { return arcs.size() - 1; }
|
| 204 | 204 |
|
| 205 | 205 |
Node source(const Arc& arc) const { return arcs[arc.id].source;}
|
| 206 | 206 |
Node target(const Arc& arc) const { return arcs[arc.id].target;}
|
| 207 | 207 |
|
| 208 | 208 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 209 | 209 |
|
| 210 | 210 |
NodeNotifier& notifier(Node) const {
|
| 211 | 211 |
return _graph->notifier(Node()); |
| 212 | 212 |
} |
| 213 | 213 |
|
| 214 | 214 |
template <typename V> |
| 215 | 215 |
class NodeMap : public GR::template NodeMap<V> {
|
| 216 | 216 |
typedef typename GR::template NodeMap<V> Parent; |
| 217 | 217 |
|
| 218 | 218 |
public: |
| 219 | 219 |
|
| 220 | 220 |
explicit NodeMap(const ListArcSetBase<GR>& arcset) |
| 221 | 221 |
: Parent(*arcset._graph) {}
|
| 222 | 222 |
|
| 223 | 223 |
NodeMap(const ListArcSetBase<GR>& arcset, const V& value) |
| 224 | 224 |
: Parent(*arcset._graph, value) {}
|
| 225 | 225 |
|
| 226 | 226 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 227 | 227 |
return operator=<NodeMap>(cmap); |
| 228 | 228 |
} |
| 229 | 229 |
|
| 230 | 230 |
template <typename CMap> |
| 231 | 231 |
NodeMap& operator=(const CMap& cmap) {
|
| 232 | 232 |
Parent::operator=(cmap); |
| 233 | 233 |
return *this; |
| 234 | 234 |
} |
| 235 | 235 |
}; |
| 236 | 236 |
|
| 237 | 237 |
}; |
| 238 | 238 |
|
| 239 | 239 |
/// \ingroup graphs |
| 240 | 240 |
/// |
| 241 | 241 |
/// \brief Digraph using a node set of another digraph or graph and |
| 242 | 242 |
/// an own arc set. |
| 243 | 243 |
/// |
| 244 | 244 |
/// This structure can be used to establish another directed graph |
| 245 | 245 |
/// over a node set of an existing one. This class uses the same |
| 246 | 246 |
/// Node type as the underlying graph, and each valid node of the |
| 247 | 247 |
/// original graph is valid in this arc set, therefore the node |
| 248 | 248 |
/// objects of the original graph can be used directly with this |
| 249 | 249 |
/// class. The node handling functions (id handling, observing, and |
| 250 | 250 |
/// iterators) works equivalently as in the original graph. |
| 251 | 251 |
/// |
| 252 | 252 |
/// This implementation is based on doubly-linked lists, from each |
| 253 | 253 |
/// node the outgoing and the incoming arcs make up lists, therefore |
| 254 | 254 |
/// one arc can be erased in constant time. It also makes possible, |
| 255 | 255 |
/// that node can be removed from the underlying graph, in this case |
| 256 | 256 |
/// all arcs incident to the given node is erased from the arc set. |
| 257 | 257 |
/// |
| 258 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 259 |
/// "Digraph" concept. |
|
| 260 |
/// It provides only linear time counting for nodes and arcs. |
|
| 261 |
/// |
|
| 258 | 262 |
/// \param GR The type of the graph which shares its node set with |
| 259 | 263 |
/// this class. Its interface must conform to the |
| 260 | 264 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 261 | 265 |
/// concept. |
| 262 |
/// |
|
| 263 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 264 |
/// "Digraph" concept. |
|
| 265 | 266 |
template <typename GR> |
| 266 | 267 |
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > {
|
| 267 | 268 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
| 268 | 269 |
|
| 269 | 270 |
public: |
| 270 | 271 |
|
| 271 | 272 |
typedef typename Parent::Node Node; |
| 272 | 273 |
typedef typename Parent::Arc Arc; |
| 273 | 274 |
|
| 274 | 275 |
typedef typename Parent::NodesImplBase NodesImplBase; |
| 275 | 276 |
|
| 276 | 277 |
void eraseNode(const Node& node) {
|
| 277 | 278 |
Arc arc; |
| 278 | 279 |
Parent::firstOut(arc, node); |
| 279 | 280 |
while (arc != INVALID ) {
|
| 280 | 281 |
erase(arc); |
| 281 | 282 |
Parent::firstOut(arc, node); |
| 282 | 283 |
} |
| 283 | 284 |
|
| 284 | 285 |
Parent::firstIn(arc, node); |
| 285 | 286 |
while (arc != INVALID ) {
|
| 286 | 287 |
erase(arc); |
| 287 | 288 |
Parent::firstIn(arc, node); |
| 288 | 289 |
} |
| 289 | 290 |
} |
| 290 | 291 |
|
| 291 | 292 |
void clearNodes() {
|
| 292 | 293 |
Parent::clear(); |
| 293 | 294 |
} |
| 294 | 295 |
|
| 295 | 296 |
class NodesImpl : public NodesImplBase {
|
| 296 | 297 |
typedef NodesImplBase Parent; |
| 297 | 298 |
|
| 298 | 299 |
public: |
| 299 | 300 |
NodesImpl(const GR& graph, ListArcSet& arcset) |
| 300 | 301 |
: Parent(graph), _arcset(arcset) {}
|
| 301 | 302 |
|
| 302 | 303 |
virtual ~NodesImpl() {}
|
| 303 | 304 |
|
| 304 | 305 |
protected: |
| 305 | 306 |
|
| 306 | 307 |
virtual void erase(const Node& node) {
|
| 307 | 308 |
_arcset.eraseNode(node); |
| 308 | 309 |
Parent::erase(node); |
| 309 | 310 |
} |
| 310 | 311 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 311 | 312 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 312 | 313 |
_arcset.eraseNode(nodes[i]); |
| 313 | 314 |
} |
| 314 | 315 |
Parent::erase(nodes); |
| 315 | 316 |
} |
| 316 | 317 |
virtual void clear() {
|
| 317 | 318 |
_arcset.clearNodes(); |
| 318 | 319 |
Parent::clear(); |
| 319 | 320 |
} |
| 320 | 321 |
|
| 321 | 322 |
private: |
| 322 | 323 |
ListArcSet& _arcset; |
| 323 | 324 |
}; |
| 324 | 325 |
|
| 325 | 326 |
NodesImpl _nodes; |
| 326 | 327 |
|
| 327 | 328 |
public: |
| 328 | 329 |
|
| 329 | 330 |
/// \brief Constructor of the ArcSet. |
| 330 | 331 |
/// |
| 331 | 332 |
/// Constructor of the ArcSet. |
| 332 | 333 |
ListArcSet(const GR& graph) : _nodes(graph, *this) {
|
| 333 | 334 |
Parent::initalize(graph, _nodes); |
| 334 | 335 |
} |
| 335 | 336 |
|
| 336 | 337 |
/// \brief Add a new arc to the digraph. |
| 337 | 338 |
/// |
| 338 | 339 |
/// Add a new arc to the digraph with source node \c s |
| 339 | 340 |
/// and target node \c t. |
| 340 | 341 |
/// \return The new arc. |
| 341 | 342 |
Arc addArc(const Node& s, const Node& t) {
|
| 342 | 343 |
return Parent::addArc(s, t); |
| 343 | 344 |
} |
| 344 | 345 |
|
| 345 | 346 |
/// \brief Erase an arc from the digraph. |
| 346 | 347 |
/// |
| 347 | 348 |
/// Erase an arc \c a from the digraph. |
| 348 | 349 |
void erase(const Arc& a) {
|
| 349 | 350 |
return Parent::erase(a); |
| 350 | 351 |
} |
| 351 | 352 |
|
| 352 | 353 |
}; |
| 353 | 354 |
|
| 354 | 355 |
template <typename GR> |
| 355 | 356 |
class ListEdgeSetBase {
|
| 356 | 357 |
public: |
| 357 | 358 |
|
| 358 | 359 |
typedef typename GR::Node Node; |
| 359 | 360 |
typedef typename GR::NodeIt NodeIt; |
| 360 | 361 |
|
| 361 | 362 |
protected: |
| 362 | 363 |
|
| 363 | 364 |
struct NodeT {
|
| 364 | 365 |
int first_out; |
| 365 | 366 |
NodeT() : first_out(-1) {}
|
| 366 | 367 |
}; |
| 367 | 368 |
|
| 368 | 369 |
typedef typename ItemSetTraits<GR, Node>:: |
| 369 | 370 |
template Map<NodeT>::Type NodesImplBase; |
| 370 | 371 |
|
| 371 | 372 |
NodesImplBase* _nodes; |
| 372 | 373 |
|
| 373 | 374 |
struct ArcT {
|
| 374 | 375 |
Node target; |
| 375 | 376 |
int prev_out, next_out; |
| 376 | 377 |
ArcT() : prev_out(-1), next_out(-1) {}
|
| 377 | 378 |
}; |
| 378 | 379 |
|
| 379 | 380 |
std::vector<ArcT> arcs; |
| 380 | 381 |
|
| 381 | 382 |
int first_arc; |
| 382 | 383 |
int first_free_arc; |
| 383 | 384 |
|
| 384 | 385 |
const GR* _graph; |
| 385 | 386 |
|
| 386 | 387 |
void initalize(const GR& graph, NodesImplBase& nodes) {
|
| 387 | 388 |
_graph = &graph; |
| 388 | 389 |
_nodes = &nodes; |
| 389 | 390 |
} |
| 390 | 391 |
|
| 391 | 392 |
public: |
| 392 | 393 |
|
| 393 | 394 |
class Edge {
|
| 394 | 395 |
friend class ListEdgeSetBase; |
| 395 | 396 |
protected: |
| 396 | 397 |
|
| 397 | 398 |
int id; |
| 398 | 399 |
explicit Edge(int _id) { id = _id;}
|
| 399 | 400 |
|
| 400 | 401 |
public: |
| 401 | 402 |
Edge() {}
|
| 402 | 403 |
Edge (Invalid) { id = -1; }
|
| 403 | 404 |
bool operator==(const Edge& arc) const {return id == arc.id;}
|
| 404 | 405 |
bool operator!=(const Edge& arc) const {return id != arc.id;}
|
| 405 | 406 |
bool operator<(const Edge& arc) const {return id < arc.id;}
|
| 406 | 407 |
}; |
| 407 | 408 |
|
| 408 | 409 |
class Arc {
|
| 409 | 410 |
friend class ListEdgeSetBase; |
| 410 | 411 |
protected: |
| 411 | 412 |
Arc(int _id) : id(_id) {}
|
| 412 | 413 |
int id; |
| 413 | 414 |
public: |
| 414 | 415 |
operator Edge() const { return edgeFromId(id / 2); }
|
| 415 | 416 |
|
| 416 | 417 |
Arc() {}
|
| 417 | 418 |
Arc(Invalid) : id(-1) {}
|
| 418 | 419 |
bool operator==(const Arc& arc) const { return id == arc.id; }
|
| 419 | 420 |
bool operator!=(const Arc& arc) const { return id != arc.id; }
|
| 420 | 421 |
bool operator<(const Arc& arc) const { return id < arc.id; }
|
| 421 | 422 |
}; |
| 422 | 423 |
|
| 423 | 424 |
ListEdgeSetBase() : first_arc(-1), first_free_arc(-1) {}
|
| 424 | 425 |
|
| 425 | 426 |
Node addNode() {
|
| 426 | 427 |
LEMON_ASSERT(false, |
| 427 | 428 |
"This graph structure does not support node insertion"); |
| 428 | 429 |
return INVALID; // avoid warning |
| 429 | 430 |
} |
| 430 | 431 |
|
| 431 | 432 |
Edge addEdge(const Node& u, const Node& v) {
|
| 432 | 433 |
int n; |
| 433 | 434 |
|
| 434 | 435 |
if (first_free_arc == -1) {
|
| 435 | 436 |
n = arcs.size(); |
| 436 | 437 |
arcs.push_back(ArcT()); |
| 437 | 438 |
arcs.push_back(ArcT()); |
| 438 | 439 |
} else {
|
| 439 | 440 |
n = first_free_arc; |
| 440 | 441 |
first_free_arc = arcs[n].next_out; |
| 441 | 442 |
} |
| 442 | 443 |
|
| 443 | 444 |
arcs[n].target = u; |
| 444 | 445 |
arcs[n | 1].target = v; |
| 445 | 446 |
|
| 446 | 447 |
arcs[n].next_out = (*_nodes)[v].first_out; |
| 447 | 448 |
if ((*_nodes)[v].first_out != -1) {
|
| 448 | 449 |
arcs[(*_nodes)[v].first_out].prev_out = n; |
| 449 | 450 |
} |
| 450 | 451 |
(*_nodes)[v].first_out = n; |
| 451 | 452 |
arcs[n].prev_out = -1; |
| 452 | 453 |
|
| 453 | 454 |
if ((*_nodes)[u].first_out != -1) {
|
| 454 | 455 |
arcs[(*_nodes)[u].first_out].prev_out = (n | 1); |
| 455 | 456 |
} |
| 456 | 457 |
arcs[n | 1].next_out = (*_nodes)[u].first_out; |
| 457 | 458 |
(*_nodes)[u].first_out = (n | 1); |
| 458 | 459 |
arcs[n | 1].prev_out = -1; |
| 459 | 460 |
|
| 460 | 461 |
return Edge(n / 2); |
| 461 | 462 |
} |
| 462 | 463 |
|
| 463 | 464 |
void erase(const Edge& arc) {
|
| 464 | 465 |
int n = arc.id * 2; |
| 465 | 466 |
|
| 466 | 467 |
if (arcs[n].next_out != -1) {
|
| 467 | 468 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
| 468 | 469 |
} |
| 469 | 470 |
|
| 470 | 471 |
if (arcs[n].prev_out != -1) {
|
| 471 | 472 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
| 472 | 473 |
} else {
|
| 473 | 474 |
(*_nodes)[arcs[n | 1].target].first_out = arcs[n].next_out; |
| 474 | 475 |
} |
| 475 | 476 |
|
| 476 | 477 |
if (arcs[n | 1].next_out != -1) {
|
| 477 | 478 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
| 478 | 479 |
} |
| 479 | 480 |
|
| 480 | 481 |
if (arcs[n | 1].prev_out != -1) {
|
| 481 | 482 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
| 482 | 483 |
} else {
|
| 483 | 484 |
(*_nodes)[arcs[n].target].first_out = arcs[n | 1].next_out; |
| 484 | 485 |
} |
| 485 | 486 |
|
| 486 | 487 |
arcs[n].next_out = first_free_arc; |
| 487 | 488 |
first_free_arc = n; |
| 488 | 489 |
|
| 489 | 490 |
} |
| 490 | 491 |
|
| 491 | 492 |
void clear() {
|
| 492 | 493 |
Node node; |
| 493 | 494 |
for (first(node); node != INVALID; next(node)) {
|
| 494 | 495 |
(*_nodes)[node].first_out = -1; |
| 495 | 496 |
} |
| 496 | 497 |
arcs.clear(); |
| 497 | 498 |
first_arc = -1; |
| 498 | 499 |
first_free_arc = -1; |
| 499 | 500 |
} |
| 500 | 501 |
|
| 501 | 502 |
void first(Node& node) const {
|
| 502 | 503 |
_graph->first(node); |
| 503 | 504 |
} |
| 504 | 505 |
|
| 505 | 506 |
void next(Node& node) const {
|
| 506 | 507 |
_graph->next(node); |
| 507 | 508 |
} |
| 508 | 509 |
|
| 509 | 510 |
void first(Arc& arc) const {
|
| 510 | 511 |
Node node; |
| 511 | 512 |
first(node); |
| 512 | 513 |
while (node != INVALID && (*_nodes)[node].first_out == -1) {
|
| 513 | 514 |
next(node); |
| 514 | 515 |
} |
| 515 | 516 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; |
| 516 | 517 |
} |
| 517 | 518 |
|
| 518 | 519 |
void next(Arc& arc) const {
|
| 519 | 520 |
if (arcs[arc.id].next_out != -1) {
|
| 520 | 521 |
arc.id = arcs[arc.id].next_out; |
| 521 | 522 |
} else {
|
| 522 | 523 |
Node node = arcs[arc.id ^ 1].target; |
| 523 | 524 |
next(node); |
| 524 | 525 |
while(node != INVALID && (*_nodes)[node].first_out == -1) {
|
| 525 | 526 |
next(node); |
| 526 | 527 |
} |
| 527 | 528 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; |
| 528 | 529 |
} |
| 529 | 530 |
} |
| 530 | 531 |
|
| 531 | 532 |
void first(Edge& edge) const {
|
| 532 | 533 |
Node node; |
| 533 | 534 |
first(node); |
| 534 | 535 |
while (node != INVALID) {
|
| 535 | 536 |
edge.id = (*_nodes)[node].first_out; |
| 536 | 537 |
while ((edge.id & 1) != 1) {
|
| 537 | 538 |
edge.id = arcs[edge.id].next_out; |
| 538 | 539 |
} |
| 539 | 540 |
if (edge.id != -1) {
|
| 540 | 541 |
edge.id /= 2; |
| 541 | 542 |
return; |
| 542 | 543 |
} |
| 543 | 544 |
next(node); |
| 544 | 545 |
} |
| 545 | 546 |
edge.id = -1; |
| 546 | 547 |
} |
| 547 | 548 |
|
| 548 | 549 |
void next(Edge& edge) const {
|
| 549 | 550 |
Node node = arcs[edge.id * 2].target; |
| 550 | 551 |
edge.id = arcs[(edge.id * 2) | 1].next_out; |
| 551 | 552 |
while ((edge.id & 1) != 1) {
|
| 552 | 553 |
edge.id = arcs[edge.id].next_out; |
| 553 | 554 |
} |
| 554 | 555 |
if (edge.id != -1) {
|
| 555 | 556 |
edge.id /= 2; |
| 556 | 557 |
return; |
| 557 | 558 |
} |
| 558 | 559 |
next(node); |
| 559 | 560 |
while (node != INVALID) {
|
| 560 | 561 |
edge.id = (*_nodes)[node].first_out; |
| 561 | 562 |
while ((edge.id & 1) != 1) {
|
| 562 | 563 |
edge.id = arcs[edge.id].next_out; |
| 563 | 564 |
} |
| 564 | 565 |
if (edge.id != -1) {
|
| 565 | 566 |
edge.id /= 2; |
| 566 | 567 |
return; |
| 567 | 568 |
} |
| 568 | 569 |
next(node); |
| 569 | 570 |
} |
| 570 | 571 |
edge.id = -1; |
| 571 | 572 |
} |
| 572 | 573 |
|
| 573 | 574 |
void firstOut(Arc& arc, const Node& node) const {
|
| 574 | 575 |
arc.id = (*_nodes)[node].first_out; |
| 575 | 576 |
} |
| 576 | 577 |
|
| 577 | 578 |
void nextOut(Arc& arc) const {
|
| 578 | 579 |
arc.id = arcs[arc.id].next_out; |
| 579 | 580 |
} |
| 580 | 581 |
|
| 581 | 582 |
void firstIn(Arc& arc, const Node& node) const {
|
| 582 | 583 |
arc.id = (((*_nodes)[node].first_out) ^ 1); |
| 583 | 584 |
if (arc.id == -2) arc.id = -1; |
| 584 | 585 |
} |
| 585 | 586 |
|
| 586 | 587 |
void nextIn(Arc& arc) const {
|
| 587 | 588 |
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); |
| 588 | 589 |
if (arc.id == -2) arc.id = -1; |
| 589 | 590 |
} |
| 590 | 591 |
|
| 591 | 592 |
void firstInc(Edge &arc, bool& dir, const Node& node) const {
|
| 592 | 593 |
int de = (*_nodes)[node].first_out; |
| 593 | 594 |
if (de != -1 ) {
|
| 594 | 595 |
arc.id = de / 2; |
| 595 | 596 |
dir = ((de & 1) == 1); |
| 596 | 597 |
} else {
|
| 597 | 598 |
arc.id = -1; |
| 598 | 599 |
dir = true; |
| 599 | 600 |
} |
| 600 | 601 |
} |
| 601 | 602 |
void nextInc(Edge &arc, bool& dir) const {
|
| 602 | 603 |
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); |
| 603 | 604 |
if (de != -1 ) {
|
| 604 | 605 |
arc.id = de / 2; |
| 605 | 606 |
dir = ((de & 1) == 1); |
| 606 | 607 |
} else {
|
| 607 | 608 |
arc.id = -1; |
| 608 | 609 |
dir = true; |
| 609 | 610 |
} |
| 610 | 611 |
} |
| 611 | 612 |
|
| 612 | 613 |
static bool direction(Arc arc) {
|
| 613 | 614 |
return (arc.id & 1) == 1; |
| 614 | 615 |
} |
| 615 | 616 |
|
| 616 | 617 |
static Arc direct(Edge edge, bool dir) {
|
| 617 | 618 |
return Arc(edge.id * 2 + (dir ? 1 : 0)); |
| 618 | 619 |
} |
| 619 | 620 |
|
| 620 | 621 |
int id(const Node& node) const { return _graph->id(node); }
|
| 621 | 622 |
static int id(Arc e) { return e.id; }
|
| 622 | 623 |
static int id(Edge e) { return e.id; }
|
| 623 | 624 |
|
| 624 | 625 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
|
| 625 | 626 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 626 | 627 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 627 | 628 |
|
| 628 | 629 |
int maxNodeId() const { return _graph->maxNodeId(); };
|
| 629 | 630 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 630 | 631 |
int maxArcId() const { return arcs.size()-1; }
|
| 631 | 632 |
|
| 632 | 633 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; }
|
| 633 | 634 |
Node target(Arc e) const { return arcs[e.id].target; }
|
| 634 | 635 |
|
| 635 | 636 |
Node u(Edge e) const { return arcs[2 * e.id].target; }
|
| 636 | 637 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
|
| 637 | 638 |
|
| 638 | 639 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 639 | 640 |
|
| 640 | 641 |
NodeNotifier& notifier(Node) const {
|
| 641 | 642 |
return _graph->notifier(Node()); |
| 642 | 643 |
} |
| 643 | 644 |
|
| 644 | 645 |
template <typename V> |
| 645 | 646 |
class NodeMap : public GR::template NodeMap<V> {
|
| 646 | 647 |
typedef typename GR::template NodeMap<V> Parent; |
| 647 | 648 |
|
| 648 | 649 |
public: |
| 649 | 650 |
|
| 650 | 651 |
explicit NodeMap(const ListEdgeSetBase<GR>& arcset) |
| 651 | 652 |
: Parent(*arcset._graph) {}
|
| 652 | 653 |
|
| 653 | 654 |
NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value) |
| 654 | 655 |
: Parent(*arcset._graph, value) {}
|
| 655 | 656 |
|
| 656 | 657 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 657 | 658 |
return operator=<NodeMap>(cmap); |
| 658 | 659 |
} |
| 659 | 660 |
|
| 660 | 661 |
template <typename CMap> |
| 661 | 662 |
NodeMap& operator=(const CMap& cmap) {
|
| 662 | 663 |
Parent::operator=(cmap); |
| 663 | 664 |
return *this; |
| 664 | 665 |
} |
| 665 | 666 |
}; |
| 666 | 667 |
|
| 667 | 668 |
}; |
| 668 | 669 |
|
| 669 | 670 |
/// \ingroup graphs |
| 670 | 671 |
/// |
| 671 | 672 |
/// \brief Graph using a node set of another digraph or graph and an |
| 672 | 673 |
/// own edge set. |
| 673 | 674 |
/// |
| 674 | 675 |
/// This structure can be used to establish another graph over a |
| 675 | 676 |
/// node set of an existing one. This class uses the same Node type |
| 676 | 677 |
/// as the underlying graph, and each valid node of the original |
| 677 | 678 |
/// graph is valid in this arc set, therefore the node objects of |
| 678 | 679 |
/// the original graph can be used directly with this class. The |
| 679 | 680 |
/// node handling functions (id handling, observing, and iterators) |
| 680 | 681 |
/// works equivalently as in the original graph. |
| 681 | 682 |
/// |
| 682 | 683 |
/// This implementation is based on doubly-linked lists, from each |
| 683 | 684 |
/// node the incident edges make up lists, therefore one edge can be |
| 684 | 685 |
/// erased in constant time. It also makes possible, that node can |
| 685 | 686 |
/// be removed from the underlying graph, in this case all edges |
| 686 | 687 |
/// incident to the given node is erased from the arc set. |
| 687 | 688 |
/// |
| 689 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 690 |
/// concept. |
|
| 691 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
| 692 |
/// |
|
| 688 | 693 |
/// \param GR The type of the graph which shares its node set |
| 689 | 694 |
/// with this class. Its interface must conform to the |
| 690 | 695 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 691 | 696 |
/// concept. |
| 692 |
/// |
|
| 693 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 694 |
/// concept. |
|
| 695 | 697 |
template <typename GR> |
| 696 | 698 |
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > {
|
| 697 | 699 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
| 698 | 700 |
|
| 699 | 701 |
public: |
| 700 | 702 |
|
| 701 | 703 |
typedef typename Parent::Node Node; |
| 702 | 704 |
typedef typename Parent::Arc Arc; |
| 703 | 705 |
typedef typename Parent::Edge Edge; |
| 704 | 706 |
|
| 705 | 707 |
typedef typename Parent::NodesImplBase NodesImplBase; |
| 706 | 708 |
|
| 707 | 709 |
void eraseNode(const Node& node) {
|
| 708 | 710 |
Arc arc; |
| 709 | 711 |
Parent::firstOut(arc, node); |
| 710 | 712 |
while (arc != INVALID ) {
|
| 711 | 713 |
erase(arc); |
| 712 | 714 |
Parent::firstOut(arc, node); |
| 713 | 715 |
} |
| 714 | 716 |
|
| 715 | 717 |
} |
| 716 | 718 |
|
| 717 | 719 |
void clearNodes() {
|
| 718 | 720 |
Parent::clear(); |
| 719 | 721 |
} |
| 720 | 722 |
|
| 721 | 723 |
class NodesImpl : public NodesImplBase {
|
| 722 | 724 |
typedef NodesImplBase Parent; |
| 723 | 725 |
|
| 724 | 726 |
public: |
| 725 | 727 |
NodesImpl(const GR& graph, ListEdgeSet& arcset) |
| 726 | 728 |
: Parent(graph), _arcset(arcset) {}
|
| 727 | 729 |
|
| 728 | 730 |
virtual ~NodesImpl() {}
|
| 729 | 731 |
|
| 730 | 732 |
protected: |
| 731 | 733 |
|
| 732 | 734 |
virtual void erase(const Node& node) {
|
| 733 | 735 |
_arcset.eraseNode(node); |
| 734 | 736 |
Parent::erase(node); |
| 735 | 737 |
} |
| 736 | 738 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 737 | 739 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 738 | 740 |
_arcset.eraseNode(nodes[i]); |
| 739 | 741 |
} |
| 740 | 742 |
Parent::erase(nodes); |
| 741 | 743 |
} |
| 742 | 744 |
virtual void clear() {
|
| 743 | 745 |
_arcset.clearNodes(); |
| 744 | 746 |
Parent::clear(); |
| 745 | 747 |
} |
| 746 | 748 |
|
| 747 | 749 |
private: |
| 748 | 750 |
ListEdgeSet& _arcset; |
| 749 | 751 |
}; |
| 750 | 752 |
|
| 751 | 753 |
NodesImpl _nodes; |
| 752 | 754 |
|
| 753 | 755 |
public: |
| 754 | 756 |
|
| 755 | 757 |
/// \brief Constructor of the EdgeSet. |
| 756 | 758 |
/// |
| 757 | 759 |
/// Constructor of the EdgeSet. |
| 758 | 760 |
ListEdgeSet(const GR& graph) : _nodes(graph, *this) {
|
| 759 | 761 |
Parent::initalize(graph, _nodes); |
| 760 | 762 |
} |
| 761 | 763 |
|
| 762 | 764 |
/// \brief Add a new edge to the graph. |
| 763 | 765 |
/// |
| 764 | 766 |
/// Add a new edge to the graph with node \c u |
| 765 | 767 |
/// and node \c v endpoints. |
| 766 | 768 |
/// \return The new edge. |
| 767 | 769 |
Edge addEdge(const Node& u, const Node& v) {
|
| 768 | 770 |
return Parent::addEdge(u, v); |
| 769 | 771 |
} |
| 770 | 772 |
|
| 771 | 773 |
/// \brief Erase an edge from the graph. |
| 772 | 774 |
/// |
| 773 | 775 |
/// Erase the edge \c e from the graph. |
| 774 | 776 |
void erase(const Edge& e) {
|
| 775 | 777 |
return Parent::erase(e); |
| 776 | 778 |
} |
| 777 | 779 |
|
| 778 | 780 |
}; |
| 779 | 781 |
|
| 780 | 782 |
template <typename GR> |
| 781 | 783 |
class SmartArcSetBase {
|
| 782 | 784 |
public: |
| 783 | 785 |
|
| 784 | 786 |
typedef typename GR::Node Node; |
| 785 | 787 |
typedef typename GR::NodeIt NodeIt; |
| 786 | 788 |
|
| 787 | 789 |
protected: |
| 788 | 790 |
|
| 789 | 791 |
struct NodeT {
|
| 790 | 792 |
int first_out, first_in; |
| 791 | 793 |
NodeT() : first_out(-1), first_in(-1) {}
|
| 792 | 794 |
}; |
| 793 | 795 |
|
| 794 | 796 |
typedef typename ItemSetTraits<GR, Node>:: |
| 795 | 797 |
template Map<NodeT>::Type NodesImplBase; |
| 796 | 798 |
|
| 797 | 799 |
NodesImplBase* _nodes; |
| 798 | 800 |
|
| 799 | 801 |
struct ArcT {
|
| 800 | 802 |
Node source, target; |
| 801 | 803 |
int next_out, next_in; |
| 802 | 804 |
ArcT() {}
|
| 803 | 805 |
}; |
| 804 | 806 |
|
| 805 | 807 |
std::vector<ArcT> arcs; |
| 806 | 808 |
|
| 807 | 809 |
const GR* _graph; |
| 808 | 810 |
|
| 809 | 811 |
void initalize(const GR& graph, NodesImplBase& nodes) {
|
| 810 | 812 |
_graph = &graph; |
| 811 | 813 |
_nodes = &nodes; |
| 812 | 814 |
} |
| 813 | 815 |
|
| 814 | 816 |
public: |
| 815 | 817 |
|
| 816 | 818 |
class Arc {
|
| 817 | 819 |
friend class SmartArcSetBase<GR>; |
| 818 | 820 |
protected: |
| 819 | 821 |
Arc(int _id) : id(_id) {}
|
| 820 | 822 |
int id; |
| 821 | 823 |
public: |
| 822 | 824 |
Arc() {}
|
| 823 | 825 |
Arc(Invalid) : id(-1) {}
|
| 824 | 826 |
bool operator==(const Arc& arc) const { return id == arc.id; }
|
| 825 | 827 |
bool operator!=(const Arc& arc) const { return id != arc.id; }
|
| 826 | 828 |
bool operator<(const Arc& arc) const { return id < arc.id; }
|
| 827 | 829 |
}; |
| 828 | 830 |
|
| 829 | 831 |
SmartArcSetBase() {}
|
| 830 | 832 |
|
| 831 | 833 |
Node addNode() {
|
| 832 | 834 |
LEMON_ASSERT(false, |
| 833 | 835 |
"This graph structure does not support node insertion"); |
| 834 | 836 |
return INVALID; // avoid warning |
| 835 | 837 |
} |
| 836 | 838 |
|
| 837 | 839 |
Arc addArc(const Node& u, const Node& v) {
|
| 838 | 840 |
int n = arcs.size(); |
| 839 | 841 |
arcs.push_back(ArcT()); |
| 840 | 842 |
arcs[n].next_in = (*_nodes)[v].first_in; |
| 841 | 843 |
(*_nodes)[v].first_in = n; |
| 842 | 844 |
arcs[n].next_out = (*_nodes)[u].first_out; |
| 843 | 845 |
(*_nodes)[u].first_out = n; |
| 844 | 846 |
arcs[n].source = u; |
| 845 | 847 |
arcs[n].target = v; |
| 846 | 848 |
return Arc(n); |
| 847 | 849 |
} |
| 848 | 850 |
|
| 849 | 851 |
void clear() {
|
| 850 | 852 |
Node node; |
| 851 | 853 |
for (first(node); node != INVALID; next(node)) {
|
| 852 | 854 |
(*_nodes)[node].first_in = -1; |
| 853 | 855 |
(*_nodes)[node].first_out = -1; |
| 854 | 856 |
} |
| 855 | 857 |
arcs.clear(); |
| 856 | 858 |
} |
| 857 | 859 |
|
| 858 | 860 |
void first(Node& node) const {
|
| 859 | 861 |
_graph->first(node); |
| 860 | 862 |
} |
| 861 | 863 |
|
| 862 | 864 |
void next(Node& node) const {
|
| 863 | 865 |
_graph->next(node); |
| 864 | 866 |
} |
| 865 | 867 |
|
| 866 | 868 |
void first(Arc& arc) const {
|
| 867 | 869 |
arc.id = arcs.size() - 1; |
| 868 | 870 |
} |
| 869 | 871 |
|
| 870 | 872 |
static void next(Arc& arc) {
|
| 871 | 873 |
--arc.id; |
| 872 | 874 |
} |
| 873 | 875 |
|
| 874 | 876 |
void firstOut(Arc& arc, const Node& node) const {
|
| 875 | 877 |
arc.id = (*_nodes)[node].first_out; |
| 876 | 878 |
} |
| 877 | 879 |
|
| 878 | 880 |
void nextOut(Arc& arc) const {
|
| 879 | 881 |
arc.id = arcs[arc.id].next_out; |
| 880 | 882 |
} |
| 881 | 883 |
|
| 882 | 884 |
void firstIn(Arc& arc, const Node& node) const {
|
| 883 | 885 |
arc.id = (*_nodes)[node].first_in; |
| 884 | 886 |
} |
| 885 | 887 |
|
| 886 | 888 |
void nextIn(Arc& arc) const {
|
| 887 | 889 |
arc.id = arcs[arc.id].next_in; |
| 888 | 890 |
} |
| 889 | 891 |
|
| 890 | 892 |
int id(const Node& node) const { return _graph->id(node); }
|
| 891 | 893 |
int id(const Arc& arc) const { return arc.id; }
|
| 892 | 894 |
|
| 893 | 895 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
|
| 894 | 896 |
Arc arcFromId(int ix) const { return Arc(ix); }
|
| 895 | 897 |
|
| 896 | 898 |
int maxNodeId() const { return _graph->maxNodeId(); };
|
| 897 | 899 |
int maxArcId() const { return arcs.size() - 1; }
|
| 898 | 900 |
|
| 899 | 901 |
Node source(const Arc& arc) const { return arcs[arc.id].source;}
|
| 900 | 902 |
Node target(const Arc& arc) const { return arcs[arc.id].target;}
|
| 901 | 903 |
|
| 902 | 904 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 903 | 905 |
|
| 904 | 906 |
NodeNotifier& notifier(Node) const {
|
| 905 | 907 |
return _graph->notifier(Node()); |
| 906 | 908 |
} |
| 907 | 909 |
|
| 908 | 910 |
template <typename V> |
| 909 | 911 |
class NodeMap : public GR::template NodeMap<V> {
|
| 910 | 912 |
typedef typename GR::template NodeMap<V> Parent; |
| 911 | 913 |
|
| 912 | 914 |
public: |
| 913 | 915 |
|
| 914 | 916 |
explicit NodeMap(const SmartArcSetBase<GR>& arcset) |
| 915 | 917 |
: Parent(*arcset._graph) { }
|
| 916 | 918 |
|
| 917 | 919 |
NodeMap(const SmartArcSetBase<GR>& arcset, const V& value) |
| 918 | 920 |
: Parent(*arcset._graph, value) { }
|
| 919 | 921 |
|
| 920 | 922 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 921 | 923 |
return operator=<NodeMap>(cmap); |
| 922 | 924 |
} |
| 923 | 925 |
|
| 924 | 926 |
template <typename CMap> |
| 925 | 927 |
NodeMap& operator=(const CMap& cmap) {
|
| 926 | 928 |
Parent::operator=(cmap); |
| 927 | 929 |
return *this; |
| 928 | 930 |
} |
| 929 | 931 |
}; |
| 930 | 932 |
|
| 931 | 933 |
}; |
| 932 | 934 |
|
| 933 | 935 |
|
| 934 | 936 |
/// \ingroup graphs |
| 935 | 937 |
/// |
| 936 | 938 |
/// \brief Digraph using a node set of another digraph or graph and |
| 937 | 939 |
/// an own arc set. |
| 938 | 940 |
/// |
| 939 | 941 |
/// This structure can be used to establish another directed graph |
| 940 | 942 |
/// over a node set of an existing one. This class uses the same |
| 941 | 943 |
/// Node type as the underlying graph, and each valid node of the |
| 942 | 944 |
/// original graph is valid in this arc set, therefore the node |
| 943 | 945 |
/// objects of the original graph can be used directly with this |
| 944 | 946 |
/// class. The node handling functions (id handling, observing, and |
| 945 | 947 |
/// iterators) works equivalently as in the original graph. |
| 946 | 948 |
/// |
| 947 | 949 |
/// \param GR The type of the graph which shares its node set with |
| 948 | 950 |
/// this class. Its interface must conform to the |
| 949 | 951 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 950 | 952 |
/// concept. |
| 951 | 953 |
/// |
| 952 | 954 |
/// This implementation is slightly faster than the \c ListArcSet, |
| 953 | 955 |
/// because it uses continuous storage for arcs and it uses just |
| 954 | 956 |
/// single-linked lists for enumerate outgoing and incoming |
| 955 | 957 |
/// arcs. Therefore the arcs cannot be erased from the arc sets. |
| 956 | 958 |
/// |
| 959 |
/// This class fully conforms to the \ref concepts::Digraph "Digraph" |
|
| 960 |
/// concept. |
|
| 961 |
/// It provides only linear time counting for nodes and arcs. |
|
| 962 |
/// |
|
| 957 | 963 |
/// \warning If a node is erased from the underlying graph and this |
| 958 | 964 |
/// node is the source or target of one arc in the arc set, then |
| 959 | 965 |
/// the arc set is invalidated, and it cannot be used anymore. The |
| 960 | 966 |
/// validity can be checked with the \c valid() member function. |
| 961 |
/// |
|
| 962 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 963 |
/// "Digraph" concept. |
|
| 964 | 967 |
template <typename GR> |
| 965 | 968 |
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > {
|
| 966 | 969 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
| 967 | 970 |
|
| 968 | 971 |
public: |
| 969 | 972 |
|
| 970 | 973 |
typedef typename Parent::Node Node; |
| 971 | 974 |
typedef typename Parent::Arc Arc; |
| 972 | 975 |
|
| 973 | 976 |
protected: |
| 974 | 977 |
|
| 975 | 978 |
typedef typename Parent::NodesImplBase NodesImplBase; |
| 976 | 979 |
|
| 977 | 980 |
void eraseNode(const Node& node) {
|
| 978 | 981 |
if (typename Parent::InArcIt(*this, node) == INVALID && |
| 979 | 982 |
typename Parent::OutArcIt(*this, node) == INVALID) {
|
| 980 | 983 |
return; |
| 981 | 984 |
} |
| 982 | 985 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
| 983 | 986 |
} |
| 984 | 987 |
|
| 985 | 988 |
void clearNodes() {
|
| 986 | 989 |
Parent::clear(); |
| 987 | 990 |
} |
| 988 | 991 |
|
| 989 | 992 |
class NodesImpl : public NodesImplBase {
|
| 990 | 993 |
typedef NodesImplBase Parent; |
| 991 | 994 |
|
| 992 | 995 |
public: |
| 993 | 996 |
NodesImpl(const GR& graph, SmartArcSet& arcset) |
| 994 | 997 |
: Parent(graph), _arcset(arcset) {}
|
| 995 | 998 |
|
| 996 | 999 |
virtual ~NodesImpl() {}
|
| 997 | 1000 |
|
| 998 | 1001 |
bool attached() const {
|
| 999 | 1002 |
return Parent::attached(); |
| 1000 | 1003 |
} |
| 1001 | 1004 |
|
| 1002 | 1005 |
protected: |
| 1003 | 1006 |
|
| 1004 | 1007 |
virtual void erase(const Node& node) {
|
| 1005 | 1008 |
try {
|
| 1006 | 1009 |
_arcset.eraseNode(node); |
| 1007 | 1010 |
Parent::erase(node); |
| 1008 | 1011 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
|
| 1009 | 1012 |
Parent::clear(); |
| 1010 | 1013 |
throw; |
| 1011 | 1014 |
} |
| 1012 | 1015 |
} |
| 1013 | 1016 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 1014 | 1017 |
try {
|
| 1015 | 1018 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 1016 | 1019 |
_arcset.eraseNode(nodes[i]); |
| 1017 | 1020 |
} |
| 1018 | 1021 |
Parent::erase(nodes); |
| 1019 | 1022 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
|
| 1020 | 1023 |
Parent::clear(); |
| 1021 | 1024 |
throw; |
| 1022 | 1025 |
} |
| 1023 | 1026 |
} |
| 1024 | 1027 |
virtual void clear() {
|
| 1025 | 1028 |
_arcset.clearNodes(); |
| 1026 | 1029 |
Parent::clear(); |
| 1027 | 1030 |
} |
| 1028 | 1031 |
|
| 1029 | 1032 |
private: |
| 1030 | 1033 |
SmartArcSet& _arcset; |
| 1031 | 1034 |
}; |
| 1032 | 1035 |
|
| 1033 | 1036 |
NodesImpl _nodes; |
| 1034 | 1037 |
|
| 1035 | 1038 |
public: |
| 1036 | 1039 |
|
| 1037 | 1040 |
/// \brief Constructor of the ArcSet. |
| 1038 | 1041 |
/// |
| 1039 | 1042 |
/// Constructor of the ArcSet. |
| 1040 | 1043 |
SmartArcSet(const GR& graph) : _nodes(graph, *this) {
|
| 1041 | 1044 |
Parent::initalize(graph, _nodes); |
| 1042 | 1045 |
} |
| 1043 | 1046 |
|
| 1044 | 1047 |
/// \brief Add a new arc to the digraph. |
| 1045 | 1048 |
/// |
| 1046 | 1049 |
/// Add a new arc to the digraph with source node \c s |
| 1047 | 1050 |
/// and target node \c t. |
| 1048 | 1051 |
/// \return The new arc. |
| 1049 | 1052 |
Arc addArc(const Node& s, const Node& t) {
|
| 1050 | 1053 |
return Parent::addArc(s, t); |
| 1051 | 1054 |
} |
| 1052 | 1055 |
|
| 1053 | 1056 |
/// \brief Validity check |
| 1054 | 1057 |
/// |
| 1055 | 1058 |
/// This functions gives back false if the ArcSet is |
| 1056 | 1059 |
/// invalidated. It occurs when a node in the underlying graph is |
| 1057 | 1060 |
/// erased and it is not isolated in the ArcSet. |
| 1058 | 1061 |
bool valid() const {
|
| 1059 | 1062 |
return _nodes.attached(); |
| 1060 | 1063 |
} |
| 1061 | 1064 |
|
| 1062 | 1065 |
}; |
| 1063 | 1066 |
|
| 1064 | 1067 |
|
| 1065 | 1068 |
template <typename GR> |
| 1066 | 1069 |
class SmartEdgeSetBase {
|
| 1067 | 1070 |
public: |
| 1068 | 1071 |
|
| 1069 | 1072 |
typedef typename GR::Node Node; |
| 1070 | 1073 |
typedef typename GR::NodeIt NodeIt; |
| 1071 | 1074 |
|
| 1072 | 1075 |
protected: |
| 1073 | 1076 |
|
| 1074 | 1077 |
struct NodeT {
|
| 1075 | 1078 |
int first_out; |
| 1076 | 1079 |
NodeT() : first_out(-1) {}
|
| 1077 | 1080 |
}; |
| 1078 | 1081 |
|
| 1079 | 1082 |
typedef typename ItemSetTraits<GR, Node>:: |
| 1080 | 1083 |
template Map<NodeT>::Type NodesImplBase; |
| 1081 | 1084 |
|
| 1082 | 1085 |
NodesImplBase* _nodes; |
| 1083 | 1086 |
|
| 1084 | 1087 |
struct ArcT {
|
| 1085 | 1088 |
Node target; |
| 1086 | 1089 |
int next_out; |
| 1087 | 1090 |
ArcT() {}
|
| 1088 | 1091 |
}; |
| 1089 | 1092 |
|
| 1090 | 1093 |
std::vector<ArcT> arcs; |
| 1091 | 1094 |
|
| 1092 | 1095 |
const GR* _graph; |
| 1093 | 1096 |
|
| 1094 | 1097 |
void initalize(const GR& graph, NodesImplBase& nodes) {
|
| 1095 | 1098 |
_graph = &graph; |
| 1096 | 1099 |
_nodes = &nodes; |
| 1097 | 1100 |
} |
| 1098 | 1101 |
|
| 1099 | 1102 |
public: |
| 1100 | 1103 |
|
| 1101 | 1104 |
class Edge {
|
| 1102 | 1105 |
friend class SmartEdgeSetBase; |
| 1103 | 1106 |
protected: |
| 1104 | 1107 |
|
| 1105 | 1108 |
int id; |
| 1106 | 1109 |
explicit Edge(int _id) { id = _id;}
|
| 1107 | 1110 |
|
| 1108 | 1111 |
public: |
| 1109 | 1112 |
Edge() {}
|
| 1110 | 1113 |
Edge (Invalid) { id = -1; }
|
| 1111 | 1114 |
bool operator==(const Edge& arc) const {return id == arc.id;}
|
| 1112 | 1115 |
bool operator!=(const Edge& arc) const {return id != arc.id;}
|
| 1113 | 1116 |
bool operator<(const Edge& arc) const {return id < arc.id;}
|
| 1114 | 1117 |
}; |
| 1115 | 1118 |
|
| 1116 | 1119 |
class Arc {
|
| 1117 | 1120 |
friend class SmartEdgeSetBase; |
| 1118 | 1121 |
protected: |
| 1119 | 1122 |
Arc(int _id) : id(_id) {}
|
| 1120 | 1123 |
int id; |
| 1121 | 1124 |
public: |
| 1122 | 1125 |
operator Edge() const { return edgeFromId(id / 2); }
|
| 1123 | 1126 |
|
| 1124 | 1127 |
Arc() {}
|
| 1125 | 1128 |
Arc(Invalid) : id(-1) {}
|
| 1126 | 1129 |
bool operator==(const Arc& arc) const { return id == arc.id; }
|
| 1127 | 1130 |
bool operator!=(const Arc& arc) const { return id != arc.id; }
|
| 1128 | 1131 |
bool operator<(const Arc& arc) const { return id < arc.id; }
|
| 1129 | 1132 |
}; |
| 1130 | 1133 |
|
| 1131 | 1134 |
SmartEdgeSetBase() {}
|
| 1132 | 1135 |
|
| 1133 | 1136 |
Node addNode() {
|
| 1134 | 1137 |
LEMON_ASSERT(false, |
| 1135 | 1138 |
"This graph structure does not support node insertion"); |
| 1136 | 1139 |
return INVALID; // avoid warning |
| 1137 | 1140 |
} |
| 1138 | 1141 |
|
| 1139 | 1142 |
Edge addEdge(const Node& u, const Node& v) {
|
| 1140 | 1143 |
int n = arcs.size(); |
| 1141 | 1144 |
arcs.push_back(ArcT()); |
| 1142 | 1145 |
arcs.push_back(ArcT()); |
| 1143 | 1146 |
|
| 1144 | 1147 |
arcs[n].target = u; |
| 1145 | 1148 |
arcs[n | 1].target = v; |
| 1146 | 1149 |
|
| 1147 | 1150 |
arcs[n].next_out = (*_nodes)[v].first_out; |
| 1148 | 1151 |
(*_nodes)[v].first_out = n; |
| 1149 | 1152 |
|
| 1150 | 1153 |
arcs[n | 1].next_out = (*_nodes)[u].first_out; |
| 1151 | 1154 |
(*_nodes)[u].first_out = (n | 1); |
| 1152 | 1155 |
|
| 1153 | 1156 |
return Edge(n / 2); |
| 1154 | 1157 |
} |
| 1155 | 1158 |
|
| 1156 | 1159 |
void clear() {
|
| 1157 | 1160 |
Node node; |
| 1158 | 1161 |
for (first(node); node != INVALID; next(node)) {
|
| 1159 | 1162 |
(*_nodes)[node].first_out = -1; |
| 1160 | 1163 |
} |
| 1161 | 1164 |
arcs.clear(); |
| 1162 | 1165 |
} |
| 1163 | 1166 |
|
| 1164 | 1167 |
void first(Node& node) const {
|
| 1165 | 1168 |
_graph->first(node); |
| 1166 | 1169 |
} |
| 1167 | 1170 |
|
| 1168 | 1171 |
void next(Node& node) const {
|
| 1169 | 1172 |
_graph->next(node); |
| 1170 | 1173 |
} |
| 1171 | 1174 |
|
| 1172 | 1175 |
void first(Arc& arc) const {
|
| 1173 | 1176 |
arc.id = arcs.size() - 1; |
| 1174 | 1177 |
} |
| 1175 | 1178 |
|
| 1176 | 1179 |
static void next(Arc& arc) {
|
| 1177 | 1180 |
--arc.id; |
| 1178 | 1181 |
} |
| 1179 | 1182 |
|
| 1180 | 1183 |
void first(Edge& arc) const {
|
| 1181 | 1184 |
arc.id = arcs.size() / 2 - 1; |
| 1182 | 1185 |
} |
| 1183 | 1186 |
|
| 1184 | 1187 |
static void next(Edge& arc) {
|
| 1185 | 1188 |
--arc.id; |
| 1186 | 1189 |
} |
| 1187 | 1190 |
|
| 1188 | 1191 |
void firstOut(Arc& arc, const Node& node) const {
|
| 1189 | 1192 |
arc.id = (*_nodes)[node].first_out; |
| 1190 | 1193 |
} |
| 1191 | 1194 |
|
| 1192 | 1195 |
void nextOut(Arc& arc) const {
|
| 1193 | 1196 |
arc.id = arcs[arc.id].next_out; |
| 1194 | 1197 |
} |
| 1195 | 1198 |
|
| 1196 | 1199 |
void firstIn(Arc& arc, const Node& node) const {
|
| 1197 | 1200 |
arc.id = (((*_nodes)[node].first_out) ^ 1); |
| 1198 | 1201 |
if (arc.id == -2) arc.id = -1; |
| 1199 | 1202 |
} |
| 1200 | 1203 |
|
| 1201 | 1204 |
void nextIn(Arc& arc) const {
|
| 1202 | 1205 |
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); |
| 1203 | 1206 |
if (arc.id == -2) arc.id = -1; |
| 1204 | 1207 |
} |
| 1205 | 1208 |
|
| 1206 | 1209 |
void firstInc(Edge &arc, bool& dir, const Node& node) const {
|
| 1207 | 1210 |
int de = (*_nodes)[node].first_out; |
| 1208 | 1211 |
if (de != -1 ) {
|
| 1209 | 1212 |
arc.id = de / 2; |
| 1210 | 1213 |
dir = ((de & 1) == 1); |
| 1211 | 1214 |
} else {
|
| 1212 | 1215 |
arc.id = -1; |
| 1213 | 1216 |
dir = true; |
| 1214 | 1217 |
} |
| 1215 | 1218 |
} |
| 1216 | 1219 |
void nextInc(Edge &arc, bool& dir) const {
|
| 1217 | 1220 |
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); |
| 1218 | 1221 |
if (de != -1 ) {
|
| 1219 | 1222 |
arc.id = de / 2; |
| 1220 | 1223 |
dir = ((de & 1) == 1); |
| 1221 | 1224 |
} else {
|
| 1222 | 1225 |
arc.id = -1; |
| 1223 | 1226 |
dir = true; |
| 1224 | 1227 |
} |
| 1225 | 1228 |
} |
| 1226 | 1229 |
|
| 1227 | 1230 |
static bool direction(Arc arc) {
|
| 1228 | 1231 |
return (arc.id & 1) == 1; |
| 1229 | 1232 |
} |
| 1230 | 1233 |
|
| 1231 | 1234 |
static Arc direct(Edge edge, bool dir) {
|
| 1232 | 1235 |
return Arc(edge.id * 2 + (dir ? 1 : 0)); |
| 1233 | 1236 |
} |
| 1234 | 1237 |
|
| 1235 | 1238 |
int id(Node node) const { return _graph->id(node); }
|
| 1236 | 1239 |
static int id(Arc arc) { return arc.id; }
|
| 1237 | 1240 |
static int id(Edge arc) { return arc.id; }
|
| 1238 | 1241 |
|
| 1239 | 1242 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
|
| 1240 | 1243 |
static Arc arcFromId(int id) { return Arc(id); }
|
| 1241 | 1244 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 1242 | 1245 |
|
| 1243 | 1246 |
int maxNodeId() const { return _graph->maxNodeId(); };
|
| 1244 | 1247 |
int maxArcId() const { return arcs.size() - 1; }
|
| 1245 | 1248 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 1246 | 1249 |
|
| 1247 | 1250 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; }
|
| 1248 | 1251 |
Node target(Arc e) const { return arcs[e.id].target; }
|
| 1249 | 1252 |
|
| 1250 | 1253 |
Node u(Edge e) const { return arcs[2 * e.id].target; }
|
| 1251 | 1254 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
|
| 1252 | 1255 |
|
| 1253 | 1256 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 1254 | 1257 |
|
| 1255 | 1258 |
NodeNotifier& notifier(Node) const {
|
| 1256 | 1259 |
return _graph->notifier(Node()); |
| 1257 | 1260 |
} |
| 1258 | 1261 |
|
| 1259 | 1262 |
template <typename V> |
| 1260 | 1263 |
class NodeMap : public GR::template NodeMap<V> {
|
| 1261 | 1264 |
typedef typename GR::template NodeMap<V> Parent; |
| 1262 | 1265 |
|
| 1263 | 1266 |
public: |
| 1264 | 1267 |
|
| 1265 | 1268 |
explicit NodeMap(const SmartEdgeSetBase<GR>& arcset) |
| 1266 | 1269 |
: Parent(*arcset._graph) { }
|
| 1267 | 1270 |
|
| 1268 | 1271 |
NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value) |
| 1269 | 1272 |
: Parent(*arcset._graph, value) { }
|
| 1270 | 1273 |
|
| 1271 | 1274 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 1272 | 1275 |
return operator=<NodeMap>(cmap); |
| 1273 | 1276 |
} |
| 1274 | 1277 |
|
| 1275 | 1278 |
template <typename CMap> |
| 1276 | 1279 |
NodeMap& operator=(const CMap& cmap) {
|
| 1277 | 1280 |
Parent::operator=(cmap); |
| 1278 | 1281 |
return *this; |
| 1279 | 1282 |
} |
| 1280 | 1283 |
}; |
| 1281 | 1284 |
|
| 1282 | 1285 |
}; |
| 1283 | 1286 |
|
| 1284 | 1287 |
/// \ingroup graphs |
| 1285 | 1288 |
/// |
| 1286 | 1289 |
/// \brief Graph using a node set of another digraph or graph and an |
| 1287 | 1290 |
/// own edge set. |
| 1288 | 1291 |
/// |
| 1289 | 1292 |
/// This structure can be used to establish another graph over a |
| 1290 | 1293 |
/// node set of an existing one. This class uses the same Node type |
| 1291 | 1294 |
/// as the underlying graph, and each valid node of the original |
| 1292 | 1295 |
/// graph is valid in this arc set, therefore the node objects of |
| 1293 | 1296 |
/// the original graph can be used directly with this class. The |
| 1294 | 1297 |
/// node handling functions (id handling, observing, and iterators) |
| 1295 | 1298 |
/// works equivalently as in the original graph. |
| 1296 | 1299 |
/// |
| 1297 | 1300 |
/// \param GR The type of the graph which shares its node set |
| 1298 | 1301 |
/// with this class. Its interface must conform to the |
| 1299 | 1302 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 1300 | 1303 |
/// concept. |
| 1301 | 1304 |
/// |
| 1302 | 1305 |
/// This implementation is slightly faster than the \c ListEdgeSet, |
| 1303 | 1306 |
/// because it uses continuous storage for edges and it uses just |
| 1304 | 1307 |
/// single-linked lists for enumerate incident edges. Therefore the |
| 1305 | 1308 |
/// edges cannot be erased from the edge sets. |
| 1306 | 1309 |
/// |
| 1310 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 1311 |
/// concept. |
|
| 1312 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
| 1313 |
/// |
|
| 1307 | 1314 |
/// \warning If a node is erased from the underlying graph and this |
| 1308 | 1315 |
/// node is incident to one edge in the edge set, then the edge set |
| 1309 | 1316 |
/// is invalidated, and it cannot be used anymore. The validity can |
| 1310 | 1317 |
/// be checked with the \c valid() member function. |
| 1311 |
/// |
|
| 1312 |
/// This class fully conforms to the \ref concepts::Graph |
|
| 1313 |
/// "Graph" concept. |
|
| 1314 | 1318 |
template <typename GR> |
| 1315 | 1319 |
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > {
|
| 1316 | 1320 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
| 1317 | 1321 |
|
| 1318 | 1322 |
public: |
| 1319 | 1323 |
|
| 1320 | 1324 |
typedef typename Parent::Node Node; |
| 1321 | 1325 |
typedef typename Parent::Arc Arc; |
| 1322 | 1326 |
typedef typename Parent::Edge Edge; |
| 1323 | 1327 |
|
| 1324 | 1328 |
protected: |
| 1325 | 1329 |
|
| 1326 | 1330 |
typedef typename Parent::NodesImplBase NodesImplBase; |
| 1327 | 1331 |
|
| 1328 | 1332 |
void eraseNode(const Node& node) {
|
| 1329 | 1333 |
if (typename Parent::IncEdgeIt(*this, node) == INVALID) {
|
| 1330 | 1334 |
return; |
| 1331 | 1335 |
} |
| 1332 | 1336 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
| 1333 | 1337 |
} |
| 1334 | 1338 |
|
| 1335 | 1339 |
void clearNodes() {
|
| 1336 | 1340 |
Parent::clear(); |
| 1337 | 1341 |
} |
| 1338 | 1342 |
|
| 1339 | 1343 |
class NodesImpl : public NodesImplBase {
|
| 1340 | 1344 |
typedef NodesImplBase Parent; |
| 1341 | 1345 |
|
| 1342 | 1346 |
public: |
| 1343 | 1347 |
NodesImpl(const GR& graph, SmartEdgeSet& arcset) |
| 1344 | 1348 |
: Parent(graph), _arcset(arcset) {}
|
| 1345 | 1349 |
|
| 1346 | 1350 |
virtual ~NodesImpl() {}
|
| 1347 | 1351 |
|
| 1348 | 1352 |
bool attached() const {
|
| 1349 | 1353 |
return Parent::attached(); |
| 1350 | 1354 |
} |
| 1351 | 1355 |
|
| 1352 | 1356 |
protected: |
| 1353 | 1357 |
|
| 1354 | 1358 |
virtual void erase(const Node& node) {
|
| 1355 | 1359 |
try {
|
| 1356 | 1360 |
_arcset.eraseNode(node); |
| 1357 | 1361 |
Parent::erase(node); |
| 1358 | 1362 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
|
| 1359 | 1363 |
Parent::clear(); |
| 1360 | 1364 |
throw; |
| 1361 | 1365 |
} |
| 1362 | 1366 |
} |
| 1363 | 1367 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 1364 | 1368 |
try {
|
| 1365 | 1369 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 1366 | 1370 |
_arcset.eraseNode(nodes[i]); |
| 1367 | 1371 |
} |
| 1368 | 1372 |
Parent::erase(nodes); |
| 1369 | 1373 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) {
|
| 1370 | 1374 |
Parent::clear(); |
| 1371 | 1375 |
throw; |
| 1372 | 1376 |
} |
| 1373 | 1377 |
} |
| 1374 | 1378 |
virtual void clear() {
|
| 1375 | 1379 |
_arcset.clearNodes(); |
| 1376 | 1380 |
Parent::clear(); |
| 1377 | 1381 |
} |
| 1378 | 1382 |
|
| 1379 | 1383 |
private: |
| 1380 | 1384 |
SmartEdgeSet& _arcset; |
| 1381 | 1385 |
}; |
| 1382 | 1386 |
|
| 1383 | 1387 |
NodesImpl _nodes; |
| 1384 | 1388 |
|
| 1385 | 1389 |
public: |
| 1386 | 1390 |
|
| 1387 | 1391 |
/// \brief Constructor of the EdgeSet. |
| 1388 | 1392 |
/// |
| 1389 | 1393 |
/// Constructor of the EdgeSet. |
| 1390 | 1394 |
SmartEdgeSet(const GR& graph) : _nodes(graph, *this) {
|
| 1391 | 1395 |
Parent::initalize(graph, _nodes); |
| 1392 | 1396 |
} |
| 1393 | 1397 |
|
| 1394 | 1398 |
/// \brief Add a new edge to the graph. |
| 1395 | 1399 |
/// |
| 1396 | 1400 |
/// Add a new edge to the graph with node \c u |
| 1397 | 1401 |
/// and node \c v endpoints. |
| 1398 | 1402 |
/// \return The new edge. |
| 1399 | 1403 |
Edge addEdge(const Node& u, const Node& v) {
|
| 1400 | 1404 |
return Parent::addEdge(u, v); |
| 1401 | 1405 |
} |
| 1402 | 1406 |
|
| 1403 | 1407 |
/// \brief Validity check |
| 1404 | 1408 |
/// |
| 1405 | 1409 |
/// This functions gives back false if the EdgeSet is |
| 1406 | 1410 |
/// invalidated. It occurs when a node in the underlying graph is |
| 1407 | 1411 |
/// erased and it is not isolated in the EdgeSet. |
| 1408 | 1412 |
bool valid() const {
|
| 1409 | 1413 |
return _nodes.attached(); |
| 1410 | 1414 |
} |
| 1411 | 1415 |
|
| 1412 | 1416 |
}; |
| 1413 | 1417 |
|
| 1414 | 1418 |
} |
| 1415 | 1419 |
|
| 1416 | 1420 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_FULL_GRAPH_H |
| 20 | 20 |
#define LEMON_FULL_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/graph_extender.h> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup graphs |
| 26 | 26 |
///\file |
| 27 | 27 |
///\brief FullDigraph and FullGraph classes. |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
class FullDigraphBase {
|
| 32 | 32 |
public: |
| 33 | 33 |
|
| 34 | 34 |
typedef FullDigraphBase Digraph; |
| 35 | 35 |
|
| 36 | 36 |
class Node; |
| 37 | 37 |
class Arc; |
| 38 | 38 |
|
| 39 | 39 |
protected: |
| 40 | 40 |
|
| 41 | 41 |
int _node_num; |
| 42 | 42 |
int _arc_num; |
| 43 | 43 |
|
| 44 | 44 |
FullDigraphBase() {}
|
| 45 | 45 |
|
| 46 | 46 |
void construct(int n) { _node_num = n; _arc_num = n * n; }
|
| 47 | 47 |
|
| 48 | 48 |
public: |
| 49 | 49 |
|
| 50 | 50 |
typedef True NodeNumTag; |
| 51 | 51 |
typedef True ArcNumTag; |
| 52 | 52 |
|
| 53 | 53 |
Node operator()(int ix) const { return Node(ix); }
|
| 54 | 54 |
static int index(const Node& node) { return node._id; }
|
| 55 | 55 |
|
| 56 | 56 |
Arc arc(const Node& s, const Node& t) const {
|
| 57 | 57 |
return Arc(s._id * _node_num + t._id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
int nodeNum() const { return _node_num; }
|
| 61 | 61 |
int arcNum() const { return _arc_num; }
|
| 62 | 62 |
|
| 63 | 63 |
int maxNodeId() const { return _node_num - 1; }
|
| 64 | 64 |
int maxArcId() const { return _arc_num - 1; }
|
| 65 | 65 |
|
| 66 | 66 |
Node source(Arc arc) const { return arc._id / _node_num; }
|
| 67 | 67 |
Node target(Arc arc) const { return arc._id % _node_num; }
|
| 68 | 68 |
|
| 69 | 69 |
static int id(Node node) { return node._id; }
|
| 70 | 70 |
static int id(Arc arc) { return arc._id; }
|
| 71 | 71 |
|
| 72 | 72 |
static Node nodeFromId(int id) { return Node(id);}
|
| 73 | 73 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 74 | 74 |
|
| 75 | 75 |
typedef True FindArcTag; |
| 76 | 76 |
|
| 77 | 77 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
|
| 78 | 78 |
return prev == INVALID ? arc(s, t) : INVALID; |
| 79 | 79 |
} |
| 80 | 80 |
|
| 81 | 81 |
class Node {
|
| 82 | 82 |
friend class FullDigraphBase; |
| 83 | 83 |
|
| 84 | 84 |
protected: |
| 85 | 85 |
int _id; |
| 86 | 86 |
Node(int id) : _id(id) {}
|
| 87 | 87 |
public: |
| 88 | 88 |
Node() {}
|
| 89 | 89 |
Node (Invalid) : _id(-1) {}
|
| 90 | 90 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 91 | 91 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 92 | 92 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 93 | 93 |
}; |
| 94 | 94 |
|
| 95 | 95 |
class Arc {
|
| 96 | 96 |
friend class FullDigraphBase; |
| 97 | 97 |
|
| 98 | 98 |
protected: |
| 99 | 99 |
int _id; // _node_num * source + target; |
| 100 | 100 |
|
| 101 | 101 |
Arc(int id) : _id(id) {}
|
| 102 | 102 |
|
| 103 | 103 |
public: |
| 104 | 104 |
Arc() { }
|
| 105 | 105 |
Arc (Invalid) { _id = -1; }
|
| 106 | 106 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 107 | 107 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 108 | 108 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 109 | 109 |
}; |
| 110 | 110 |
|
| 111 | 111 |
void first(Node& node) const {
|
| 112 | 112 |
node._id = _node_num - 1; |
| 113 | 113 |
} |
| 114 | 114 |
|
| 115 | 115 |
static void next(Node& node) {
|
| 116 | 116 |
--node._id; |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
void first(Arc& arc) const {
|
| 120 | 120 |
arc._id = _arc_num - 1; |
| 121 | 121 |
} |
| 122 | 122 |
|
| 123 | 123 |
static void next(Arc& arc) {
|
| 124 | 124 |
--arc._id; |
| 125 | 125 |
} |
| 126 | 126 |
|
| 127 | 127 |
void firstOut(Arc& arc, const Node& node) const {
|
| 128 | 128 |
arc._id = (node._id + 1) * _node_num - 1; |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
void nextOut(Arc& arc) const {
|
| 132 | 132 |
if (arc._id % _node_num == 0) arc._id = 0; |
| 133 | 133 |
--arc._id; |
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
void firstIn(Arc& arc, const Node& node) const {
|
| 137 | 137 |
arc._id = _arc_num + node._id - _node_num; |
| 138 | 138 |
} |
| 139 | 139 |
|
| 140 | 140 |
void nextIn(Arc& arc) const {
|
| 141 | 141 |
arc._id -= _node_num; |
| 142 | 142 |
if (arc._id < 0) arc._id = -1; |
| 143 | 143 |
} |
| 144 | 144 |
|
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
| 148 | 148 |
|
| 149 | 149 |
/// \ingroup graphs |
| 150 | 150 |
/// |
| 151 | 151 |
/// \brief A directed full graph class. |
| 152 | 152 |
/// |
| 153 | 153 |
/// FullDigraph is a simple and fast implmenetation of directed full |
| 154 | 154 |
/// (complete) graphs. It contains an arc from each node to each node |
| 155 | 155 |
/// (including a loop for each node), therefore the number of arcs |
| 156 | 156 |
/// is the square of the number of nodes. |
| 157 | 157 |
/// This class is completely static and it needs constant memory space. |
| 158 | 158 |
/// Thus you can neither add nor delete nodes or arcs, however |
| 159 | 159 |
/// the structure can be resized using resize(). |
| 160 | 160 |
/// |
| 161 | 161 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
| 162 | 162 |
/// Most of its member functions and nested classes are documented |
| 163 | 163 |
/// only in the concept class. |
| 164 | 164 |
/// |
| 165 |
/// This class provides constant time counting for nodes and arcs. |
|
| 166 |
/// |
|
| 165 | 167 |
/// \note FullDigraph and FullGraph classes are very similar, |
| 166 | 168 |
/// but there are two differences. While this class conforms only |
| 167 | 169 |
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
| 168 | 170 |
/// conforms to the \ref concepts::Graph "Graph" concept, |
| 169 | 171 |
/// moreover FullGraph does not contain a loop for each |
| 170 | 172 |
/// node as this class does. |
| 171 | 173 |
/// |
| 172 | 174 |
/// \sa FullGraph |
| 173 | 175 |
class FullDigraph : public ExtendedFullDigraphBase {
|
| 174 | 176 |
typedef ExtendedFullDigraphBase Parent; |
| 175 | 177 |
|
| 176 | 178 |
public: |
| 177 | 179 |
|
| 178 | 180 |
/// \brief Default constructor. |
| 179 | 181 |
/// |
| 180 | 182 |
/// Default constructor. The number of nodes and arcs will be zero. |
| 181 | 183 |
FullDigraph() { construct(0); }
|
| 182 | 184 |
|
| 183 | 185 |
/// \brief Constructor |
| 184 | 186 |
/// |
| 185 | 187 |
/// Constructor. |
| 186 | 188 |
/// \param n The number of the nodes. |
| 187 | 189 |
FullDigraph(int n) { construct(n); }
|
| 188 | 190 |
|
| 189 | 191 |
/// \brief Resizes the digraph |
| 190 | 192 |
/// |
| 191 | 193 |
/// This function resizes the digraph. It fully destroys and |
| 192 | 194 |
/// rebuilds the structure, therefore the maps of the digraph will be |
| 193 | 195 |
/// reallocated automatically and the previous values will be lost. |
| 194 | 196 |
void resize(int n) {
|
| 195 | 197 |
Parent::notifier(Arc()).clear(); |
| 196 | 198 |
Parent::notifier(Node()).clear(); |
| 197 | 199 |
construct(n); |
| 198 | 200 |
Parent::notifier(Node()).build(); |
| 199 | 201 |
Parent::notifier(Arc()).build(); |
| 200 | 202 |
} |
| 201 | 203 |
|
| 202 | 204 |
/// \brief Returns the node with the given index. |
| 203 | 205 |
/// |
| 204 | 206 |
/// Returns the node with the given index. Since this structure is |
| 205 | 207 |
/// completely static, the nodes can be indexed with integers from |
| 206 | 208 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
| 209 |
/// The index of a node is the same as its ID. |
|
| 207 | 210 |
/// \sa index() |
| 208 | 211 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 209 | 212 |
|
| 210 | 213 |
/// \brief Returns the index of the given node. |
| 211 | 214 |
/// |
| 212 | 215 |
/// Returns the index of the given node. Since this structure is |
| 213 | 216 |
/// completely static, the nodes can be indexed with integers from |
| 214 | 217 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
| 218 |
/// The index of a node is the same as its ID. |
|
| 215 | 219 |
/// \sa operator()() |
| 216 | 220 |
static int index(const Node& node) { return Parent::index(node); }
|
| 217 | 221 |
|
| 218 | 222 |
/// \brief Returns the arc connecting the given nodes. |
| 219 | 223 |
/// |
| 220 | 224 |
/// Returns the arc connecting the given nodes. |
| 221 | 225 |
Arc arc(Node u, Node v) const {
|
| 222 | 226 |
return Parent::arc(u, v); |
| 223 | 227 |
} |
| 224 | 228 |
|
| 225 | 229 |
/// \brief Number of nodes. |
| 226 | 230 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 227 | 231 |
/// \brief Number of arcs. |
| 228 | 232 |
int arcNum() const { return Parent::arcNum(); }
|
| 229 | 233 |
}; |
| 230 | 234 |
|
| 231 | 235 |
|
| 232 | 236 |
class FullGraphBase {
|
| 233 | 237 |
public: |
| 234 | 238 |
|
| 235 | 239 |
typedef FullGraphBase Graph; |
| 236 | 240 |
|
| 237 | 241 |
class Node; |
| 238 | 242 |
class Arc; |
| 239 | 243 |
class Edge; |
| 240 | 244 |
|
| 241 | 245 |
protected: |
| 242 | 246 |
|
| 243 | 247 |
int _node_num; |
| 244 | 248 |
int _edge_num; |
| 245 | 249 |
|
| 246 | 250 |
FullGraphBase() {}
|
| 247 | 251 |
|
| 248 | 252 |
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
|
| 249 | 253 |
|
| 250 | 254 |
int _uid(int e) const {
|
| 251 | 255 |
int u = e / _node_num; |
| 252 | 256 |
int v = e % _node_num; |
| 253 | 257 |
return u < v ? u : _node_num - 2 - u; |
| 254 | 258 |
} |
| 255 | 259 |
|
| 256 | 260 |
int _vid(int e) const {
|
| 257 | 261 |
int u = e / _node_num; |
| 258 | 262 |
int v = e % _node_num; |
| 259 | 263 |
return u < v ? v : _node_num - 1 - v; |
| 260 | 264 |
} |
| 261 | 265 |
|
| 262 | 266 |
void _uvid(int e, int& u, int& v) const {
|
| 263 | 267 |
u = e / _node_num; |
| 264 | 268 |
v = e % _node_num; |
| 265 | 269 |
if (u >= v) {
|
| 266 | 270 |
u = _node_num - 2 - u; |
| 267 | 271 |
v = _node_num - 1 - v; |
| 268 | 272 |
} |
| 269 | 273 |
} |
| 270 | 274 |
|
| 271 | 275 |
void _stid(int a, int& s, int& t) const {
|
| 272 | 276 |
if ((a & 1) == 1) {
|
| 273 | 277 |
_uvid(a >> 1, s, t); |
| 274 | 278 |
} else {
|
| 275 | 279 |
_uvid(a >> 1, t, s); |
| 276 | 280 |
} |
| 277 | 281 |
} |
| 278 | 282 |
|
| 279 | 283 |
int _eid(int u, int v) const {
|
| 280 | 284 |
if (u < (_node_num - 1) / 2) {
|
| 281 | 285 |
return u * _node_num + v; |
| 282 | 286 |
} else {
|
| 283 | 287 |
return (_node_num - 1 - u) * _node_num - v - 1; |
| 284 | 288 |
} |
| 285 | 289 |
} |
| 286 | 290 |
|
| 287 | 291 |
public: |
| 288 | 292 |
|
| 289 | 293 |
Node operator()(int ix) const { return Node(ix); }
|
| 290 | 294 |
static int index(const Node& node) { return node._id; }
|
| 291 | 295 |
|
| 292 | 296 |
Edge edge(const Node& u, const Node& v) const {
|
| 293 | 297 |
if (u._id < v._id) {
|
| 294 | 298 |
return Edge(_eid(u._id, v._id)); |
| 295 | 299 |
} else if (u._id != v._id) {
|
| 296 | 300 |
return Edge(_eid(v._id, u._id)); |
| 297 | 301 |
} else {
|
| 298 | 302 |
return INVALID; |
| 299 | 303 |
} |
| 300 | 304 |
} |
| 301 | 305 |
|
| 302 | 306 |
Arc arc(const Node& s, const Node& t) const {
|
| 303 | 307 |
if (s._id < t._id) {
|
| 304 | 308 |
return Arc((_eid(s._id, t._id) << 1) | 1); |
| 305 | 309 |
} else if (s._id != t._id) {
|
| 306 | 310 |
return Arc(_eid(t._id, s._id) << 1); |
| 307 | 311 |
} else {
|
| 308 | 312 |
return INVALID; |
| 309 | 313 |
} |
| 310 | 314 |
} |
| 311 | 315 |
|
| 312 | 316 |
typedef True NodeNumTag; |
| 313 | 317 |
typedef True ArcNumTag; |
| 314 | 318 |
typedef True EdgeNumTag; |
| 315 | 319 |
|
| 316 | 320 |
int nodeNum() const { return _node_num; }
|
| 317 | 321 |
int arcNum() const { return 2 * _edge_num; }
|
| 318 | 322 |
int edgeNum() const { return _edge_num; }
|
| 319 | 323 |
|
| 320 | 324 |
static int id(Node node) { return node._id; }
|
| 321 | 325 |
static int id(Arc arc) { return arc._id; }
|
| 322 | 326 |
static int id(Edge edge) { return edge._id; }
|
| 323 | 327 |
|
| 324 | 328 |
int maxNodeId() const { return _node_num-1; }
|
| 325 | 329 |
int maxArcId() const { return 2 * _edge_num-1; }
|
| 326 | 330 |
int maxEdgeId() const { return _edge_num-1; }
|
| 327 | 331 |
|
| 328 | 332 |
static Node nodeFromId(int id) { return Node(id);}
|
| 329 | 333 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 330 | 334 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 331 | 335 |
|
| 332 | 336 |
Node u(Edge edge) const {
|
| 333 | 337 |
return Node(_uid(edge._id)); |
| 334 | 338 |
} |
| 335 | 339 |
|
| 336 | 340 |
Node v(Edge edge) const {
|
| 337 | 341 |
return Node(_vid(edge._id)); |
| 338 | 342 |
} |
| 339 | 343 |
|
| 340 | 344 |
Node source(Arc arc) const {
|
| 341 | 345 |
return Node((arc._id & 1) == 1 ? |
| 342 | 346 |
_uid(arc._id >> 1) : _vid(arc._id >> 1)); |
| 343 | 347 |
} |
| 344 | 348 |
|
| 345 | 349 |
Node target(Arc arc) const {
|
| 346 | 350 |
return Node((arc._id & 1) == 1 ? |
| 347 | 351 |
_vid(arc._id >> 1) : _uid(arc._id >> 1)); |
| 348 | 352 |
} |
| 349 | 353 |
|
| 350 | 354 |
typedef True FindEdgeTag; |
| 351 | 355 |
typedef True FindArcTag; |
| 352 | 356 |
|
| 353 | 357 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
| 354 | 358 |
return prev != INVALID ? INVALID : edge(u, v); |
| 355 | 359 |
} |
| 356 | 360 |
|
| 357 | 361 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
|
| 358 | 362 |
return prev != INVALID ? INVALID : arc(s, t); |
| 359 | 363 |
} |
| 360 | 364 |
|
| 361 | 365 |
class Node {
|
| 362 | 366 |
friend class FullGraphBase; |
| 363 | 367 |
|
| 364 | 368 |
protected: |
| 365 | 369 |
int _id; |
| 366 | 370 |
Node(int id) : _id(id) {}
|
| 367 | 371 |
public: |
| 368 | 372 |
Node() {}
|
| 369 | 373 |
Node (Invalid) { _id = -1; }
|
| 370 | 374 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 371 | 375 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 372 | 376 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 373 | 377 |
}; |
| 374 | 378 |
|
| 375 | 379 |
class Edge {
|
| 376 | 380 |
friend class FullGraphBase; |
| 377 | 381 |
friend class Arc; |
| 378 | 382 |
|
| 379 | 383 |
protected: |
| 380 | 384 |
int _id; |
| 381 | 385 |
|
| 382 | 386 |
Edge(int id) : _id(id) {}
|
| 383 | 387 |
|
| 384 | 388 |
public: |
| 385 | 389 |
Edge() { }
|
| 386 | 390 |
Edge (Invalid) { _id = -1; }
|
| 387 | 391 |
|
| 388 | 392 |
bool operator==(const Edge edge) const {return _id == edge._id;}
|
| 389 | 393 |
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
| 390 | 394 |
bool operator<(const Edge edge) const {return _id < edge._id;}
|
| 391 | 395 |
}; |
| 392 | 396 |
|
| 393 | 397 |
class Arc {
|
| 394 | 398 |
friend class FullGraphBase; |
| 395 | 399 |
|
| 396 | 400 |
protected: |
| 397 | 401 |
int _id; |
| 398 | 402 |
|
| 399 | 403 |
Arc(int id) : _id(id) {}
|
| 400 | 404 |
|
| 401 | 405 |
public: |
| 402 | 406 |
Arc() { }
|
| 403 | 407 |
Arc (Invalid) { _id = -1; }
|
| 404 | 408 |
|
| 405 | 409 |
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
|
| 406 | 410 |
|
| 407 | 411 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 408 | 412 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 409 | 413 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 410 | 414 |
}; |
| 411 | 415 |
|
| 412 | 416 |
static bool direction(Arc arc) {
|
| 413 | 417 |
return (arc._id & 1) == 1; |
| 414 | 418 |
} |
| 415 | 419 |
|
| 416 | 420 |
static Arc direct(Edge edge, bool dir) {
|
| 417 | 421 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
| 418 | 422 |
} |
| 419 | 423 |
|
| 420 | 424 |
void first(Node& node) const {
|
| 421 | 425 |
node._id = _node_num - 1; |
| 422 | 426 |
} |
| 423 | 427 |
|
| 424 | 428 |
static void next(Node& node) {
|
| 425 | 429 |
--node._id; |
| 426 | 430 |
} |
| 427 | 431 |
|
| 428 | 432 |
void first(Arc& arc) const {
|
| 429 | 433 |
arc._id = (_edge_num << 1) - 1; |
| 430 | 434 |
} |
| 431 | 435 |
|
| 432 | 436 |
static void next(Arc& arc) {
|
| 433 | 437 |
--arc._id; |
| 434 | 438 |
} |
| 435 | 439 |
|
| 436 | 440 |
void first(Edge& edge) const {
|
| 437 | 441 |
edge._id = _edge_num - 1; |
| 438 | 442 |
} |
| 439 | 443 |
|
| 440 | 444 |
static void next(Edge& edge) {
|
| 441 | 445 |
--edge._id; |
| 442 | 446 |
} |
| 443 | 447 |
|
| 444 | 448 |
void firstOut(Arc& arc, const Node& node) const {
|
| 445 | 449 |
int s = node._id, t = _node_num - 1; |
| 446 | 450 |
if (s < t) {
|
| 447 | 451 |
arc._id = (_eid(s, t) << 1) | 1; |
| 448 | 452 |
} else {
|
| 449 | 453 |
--t; |
| 450 | 454 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
| 451 | 455 |
} |
| 452 | 456 |
} |
| 453 | 457 |
|
| 454 | 458 |
void nextOut(Arc& arc) const {
|
| 455 | 459 |
int s, t; |
| 456 | 460 |
_stid(arc._id, s, t); |
| 457 | 461 |
--t; |
| 458 | 462 |
if (s < t) {
|
| 459 | 463 |
arc._id = (_eid(s, t) << 1) | 1; |
| 460 | 464 |
} else {
|
| 461 | 465 |
if (s == t) --t; |
| 462 | 466 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
| 463 | 467 |
} |
| 464 | 468 |
} |
| 465 | 469 |
|
| 466 | 470 |
void firstIn(Arc& arc, const Node& node) const {
|
| 467 | 471 |
int s = _node_num - 1, t = node._id; |
| 468 | 472 |
if (s > t) {
|
| 469 | 473 |
arc._id = (_eid(t, s) << 1); |
| 470 | 474 |
} else {
|
| 471 | 475 |
--s; |
| 472 | 476 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
| 473 | 477 |
} |
| 474 | 478 |
} |
| 475 | 479 |
|
| 476 | 480 |
void nextIn(Arc& arc) const {
|
| 477 | 481 |
int s, t; |
| 478 | 482 |
_stid(arc._id, s, t); |
| 479 | 483 |
--s; |
| 480 | 484 |
if (s > t) {
|
| 481 | 485 |
arc._id = (_eid(t, s) << 1); |
| 482 | 486 |
} else {
|
| 483 | 487 |
if (s == t) --s; |
| 484 | 488 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
| 485 | 489 |
} |
| 486 | 490 |
} |
| 487 | 491 |
|
| 488 | 492 |
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
| 489 | 493 |
int u = node._id, v = _node_num - 1; |
| 490 | 494 |
if (u < v) {
|
| 491 | 495 |
edge._id = _eid(u, v); |
| 492 | 496 |
dir = true; |
| 493 | 497 |
} else {
|
| 494 | 498 |
--v; |
| 495 | 499 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 496 | 500 |
dir = false; |
| 497 | 501 |
} |
| 498 | 502 |
} |
| 499 | 503 |
|
| 500 | 504 |
void nextInc(Edge& edge, bool& dir) const {
|
| 501 | 505 |
int u, v; |
| 502 | 506 |
if (dir) {
|
| 503 | 507 |
_uvid(edge._id, u, v); |
| 504 | 508 |
--v; |
| 505 | 509 |
if (u < v) {
|
| 506 | 510 |
edge._id = _eid(u, v); |
| 507 | 511 |
} else {
|
| 508 | 512 |
--v; |
| 509 | 513 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 510 | 514 |
dir = false; |
| 511 | 515 |
} |
| 512 | 516 |
} else {
|
| 513 | 517 |
_uvid(edge._id, v, u); |
| 514 | 518 |
--v; |
| 515 | 519 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 516 | 520 |
} |
| 517 | 521 |
} |
| 518 | 522 |
|
| 519 | 523 |
}; |
| 520 | 524 |
|
| 521 | 525 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
| 522 | 526 |
|
| 523 | 527 |
/// \ingroup graphs |
| 524 | 528 |
/// |
| 525 | 529 |
/// \brief An undirected full graph class. |
| 526 | 530 |
/// |
| 527 | 531 |
/// FullGraph is a simple and fast implmenetation of undirected full |
| 528 | 532 |
/// (complete) graphs. It contains an edge between every distinct pair |
| 529 | 533 |
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
| 530 | 534 |
/// This class is completely static and it needs constant memory space. |
| 531 | 535 |
/// Thus you can neither add nor delete nodes or edges, however |
| 532 | 536 |
/// the structure can be resized using resize(). |
| 533 | 537 |
/// |
| 534 | 538 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
| 535 | 539 |
/// Most of its member functions and nested classes are documented |
| 536 | 540 |
/// only in the concept class. |
| 537 | 541 |
/// |
| 542 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 543 |
/// |
|
| 538 | 544 |
/// \note FullDigraph and FullGraph classes are very similar, |
| 539 | 545 |
/// but there are two differences. While FullDigraph |
| 540 | 546 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
| 541 | 547 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
| 542 | 548 |
/// moreover this class does not contain a loop for each |
| 543 | 549 |
/// node as FullDigraph does. |
| 544 | 550 |
/// |
| 545 | 551 |
/// \sa FullDigraph |
| 546 | 552 |
class FullGraph : public ExtendedFullGraphBase {
|
| 547 | 553 |
typedef ExtendedFullGraphBase Parent; |
| 548 | 554 |
|
| 549 | 555 |
public: |
| 550 | 556 |
|
| 551 | 557 |
/// \brief Default constructor. |
| 552 | 558 |
/// |
| 553 | 559 |
/// Default constructor. The number of nodes and edges will be zero. |
| 554 | 560 |
FullGraph() { construct(0); }
|
| 555 | 561 |
|
| 556 | 562 |
/// \brief Constructor |
| 557 | 563 |
/// |
| 558 | 564 |
/// Constructor. |
| 559 | 565 |
/// \param n The number of the nodes. |
| 560 | 566 |
FullGraph(int n) { construct(n); }
|
| 561 | 567 |
|
| 562 | 568 |
/// \brief Resizes the graph |
| 563 | 569 |
/// |
| 564 | 570 |
/// This function resizes the graph. It fully destroys and |
| 565 | 571 |
/// rebuilds the structure, therefore the maps of the graph will be |
| 566 | 572 |
/// reallocated automatically and the previous values will be lost. |
| 567 | 573 |
void resize(int n) {
|
| 568 | 574 |
Parent::notifier(Arc()).clear(); |
| 569 | 575 |
Parent::notifier(Edge()).clear(); |
| 570 | 576 |
Parent::notifier(Node()).clear(); |
| 571 | 577 |
construct(n); |
| 572 | 578 |
Parent::notifier(Node()).build(); |
| 573 | 579 |
Parent::notifier(Edge()).build(); |
| 574 | 580 |
Parent::notifier(Arc()).build(); |
| 575 | 581 |
} |
| 576 | 582 |
|
| 577 | 583 |
/// \brief Returns the node with the given index. |
| 578 | 584 |
/// |
| 579 | 585 |
/// Returns the node with the given index. Since this structure is |
| 580 | 586 |
/// completely static, the nodes can be indexed with integers from |
| 581 | 587 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
| 588 |
/// The index of a node is the same as its ID. |
|
| 582 | 589 |
/// \sa index() |
| 583 | 590 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 584 | 591 |
|
| 585 | 592 |
/// \brief Returns the index of the given node. |
| 586 | 593 |
/// |
| 587 | 594 |
/// Returns the index of the given node. Since this structure is |
| 588 | 595 |
/// completely static, the nodes can be indexed with integers from |
| 589 | 596 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
| 597 |
/// The index of a node is the same as its ID. |
|
| 590 | 598 |
/// \sa operator()() |
| 591 | 599 |
static int index(const Node& node) { return Parent::index(node); }
|
| 592 | 600 |
|
| 593 | 601 |
/// \brief Returns the arc connecting the given nodes. |
| 594 | 602 |
/// |
| 595 | 603 |
/// Returns the arc connecting the given nodes. |
| 596 | 604 |
Arc arc(Node s, Node t) const {
|
| 597 | 605 |
return Parent::arc(s, t); |
| 598 | 606 |
} |
| 599 | 607 |
|
| 600 | 608 |
/// \brief Returns the edge connecting the given nodes. |
| 601 | 609 |
/// |
| 602 | 610 |
/// Returns the edge connecting the given nodes. |
| 603 | 611 |
Edge edge(Node u, Node v) const {
|
| 604 | 612 |
return Parent::edge(u, v); |
| 605 | 613 |
} |
| 606 | 614 |
|
| 607 | 615 |
/// \brief Number of nodes. |
| 608 | 616 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 609 | 617 |
/// \brief Number of arcs. |
| 610 | 618 |
int arcNum() const { return Parent::arcNum(); }
|
| 611 | 619 |
/// \brief Number of edges. |
| 612 | 620 |
int edgeNum() const { return Parent::edgeNum(); }
|
| 613 | 621 |
|
| 614 | 622 |
}; |
| 615 | 623 |
|
| 616 | 624 |
|
| 617 | 625 |
} //namespace lemon |
| 618 | 626 |
|
| 619 | 627 |
|
| 620 | 628 |
#endif //LEMON_FULL_GRAPH_H |
| ... | ... |
@@ -122,576 +122,578 @@ |
| 122 | 122 |
int maxNodeId() const { return _node_num - 1; }
|
| 123 | 123 |
int maxEdgeId() const { return _edge_num - 1; }
|
| 124 | 124 |
int maxArcId() const { return 2 * _edge_num - 1; }
|
| 125 | 125 |
|
| 126 | 126 |
static Node nodeFromId(int id) { return Node(id);}
|
| 127 | 127 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 128 | 128 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 129 | 129 |
|
| 130 | 130 |
typedef True FindEdgeTag; |
| 131 | 131 |
typedef True FindArcTag; |
| 132 | 132 |
|
| 133 | 133 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
| 134 | 134 |
if (prev != INVALID) return INVALID; |
| 135 | 135 |
if (v._id > u._id) {
|
| 136 | 136 |
if (v._id - u._id == _width) |
| 137 | 137 |
return Edge(u._id); |
| 138 | 138 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) {
|
| 139 | 139 |
return Edge(u._id / _width * (_width - 1) + |
| 140 | 140 |
u._id % _width + _edge_limit); |
| 141 | 141 |
} |
| 142 | 142 |
} else {
|
| 143 | 143 |
if (u._id - v._id == _width) |
| 144 | 144 |
return Edge(v._id); |
| 145 | 145 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) {
|
| 146 | 146 |
return Edge(v._id / _width * (_width - 1) + |
| 147 | 147 |
v._id % _width + _edge_limit); |
| 148 | 148 |
} |
| 149 | 149 |
} |
| 150 | 150 |
return INVALID; |
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 | 153 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
|
| 154 | 154 |
if (prev != INVALID) return INVALID; |
| 155 | 155 |
if (v._id > u._id) {
|
| 156 | 156 |
if (v._id - u._id == _width) |
| 157 | 157 |
return Arc((u._id << 1) | 1); |
| 158 | 158 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) {
|
| 159 | 159 |
return Arc(((u._id / _width * (_width - 1) + |
| 160 | 160 |
u._id % _width + _edge_limit) << 1) | 1); |
| 161 | 161 |
} |
| 162 | 162 |
} else {
|
| 163 | 163 |
if (u._id - v._id == _width) |
| 164 | 164 |
return Arc(v._id << 1); |
| 165 | 165 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) {
|
| 166 | 166 |
return Arc((v._id / _width * (_width - 1) + |
| 167 | 167 |
v._id % _width + _edge_limit) << 1); |
| 168 | 168 |
} |
| 169 | 169 |
} |
| 170 | 170 |
return INVALID; |
| 171 | 171 |
} |
| 172 | 172 |
|
| 173 | 173 |
class Node {
|
| 174 | 174 |
friend class GridGraphBase; |
| 175 | 175 |
|
| 176 | 176 |
protected: |
| 177 | 177 |
int _id; |
| 178 | 178 |
Node(int id) : _id(id) {}
|
| 179 | 179 |
public: |
| 180 | 180 |
Node() {}
|
| 181 | 181 |
Node (Invalid) : _id(-1) {}
|
| 182 | 182 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 183 | 183 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 184 | 184 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
class Edge {
|
| 188 | 188 |
friend class GridGraphBase; |
| 189 | 189 |
friend class Arc; |
| 190 | 190 |
|
| 191 | 191 |
protected: |
| 192 | 192 |
int _id; |
| 193 | 193 |
|
| 194 | 194 |
Edge(int id) : _id(id) {}
|
| 195 | 195 |
|
| 196 | 196 |
public: |
| 197 | 197 |
Edge() {}
|
| 198 | 198 |
Edge (Invalid) : _id(-1) {}
|
| 199 | 199 |
bool operator==(const Edge edge) const {return _id == edge._id;}
|
| 200 | 200 |
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
| 201 | 201 |
bool operator<(const Edge edge) const {return _id < edge._id;}
|
| 202 | 202 |
}; |
| 203 | 203 |
|
| 204 | 204 |
class Arc {
|
| 205 | 205 |
friend class GridGraphBase; |
| 206 | 206 |
|
| 207 | 207 |
protected: |
| 208 | 208 |
int _id; |
| 209 | 209 |
|
| 210 | 210 |
Arc(int id) : _id(id) {}
|
| 211 | 211 |
|
| 212 | 212 |
public: |
| 213 | 213 |
Arc() {}
|
| 214 | 214 |
Arc (Invalid) : _id(-1) {}
|
| 215 | 215 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
|
| 216 | 216 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 217 | 217 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 218 | 218 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 219 | 219 |
}; |
| 220 | 220 |
|
| 221 | 221 |
static bool direction(Arc arc) {
|
| 222 | 222 |
return (arc._id & 1) == 1; |
| 223 | 223 |
} |
| 224 | 224 |
|
| 225 | 225 |
static Arc direct(Edge edge, bool dir) {
|
| 226 | 226 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
| 227 | 227 |
} |
| 228 | 228 |
|
| 229 | 229 |
void first(Node& node) const {
|
| 230 | 230 |
node._id = _node_num - 1; |
| 231 | 231 |
} |
| 232 | 232 |
|
| 233 | 233 |
static void next(Node& node) {
|
| 234 | 234 |
--node._id; |
| 235 | 235 |
} |
| 236 | 236 |
|
| 237 | 237 |
void first(Edge& edge) const {
|
| 238 | 238 |
edge._id = _edge_num - 1; |
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
static void next(Edge& edge) {
|
| 242 | 242 |
--edge._id; |
| 243 | 243 |
} |
| 244 | 244 |
|
| 245 | 245 |
void first(Arc& arc) const {
|
| 246 | 246 |
arc._id = 2 * _edge_num - 1; |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
static void next(Arc& arc) {
|
| 250 | 250 |
--arc._id; |
| 251 | 251 |
} |
| 252 | 252 |
|
| 253 | 253 |
void firstOut(Arc& arc, const Node& node) const {
|
| 254 | 254 |
if (node._id % _width < _width - 1) {
|
| 255 | 255 |
arc._id = (_edge_limit + node._id % _width + |
| 256 | 256 |
(node._id / _width) * (_width - 1)) << 1 | 1; |
| 257 | 257 |
return; |
| 258 | 258 |
} |
| 259 | 259 |
if (node._id < _node_num - _width) {
|
| 260 | 260 |
arc._id = node._id << 1 | 1; |
| 261 | 261 |
return; |
| 262 | 262 |
} |
| 263 | 263 |
if (node._id % _width > 0) {
|
| 264 | 264 |
arc._id = (_edge_limit + node._id % _width + |
| 265 | 265 |
(node._id / _width) * (_width - 1) - 1) << 1; |
| 266 | 266 |
return; |
| 267 | 267 |
} |
| 268 | 268 |
if (node._id >= _width) {
|
| 269 | 269 |
arc._id = (node._id - _width) << 1; |
| 270 | 270 |
return; |
| 271 | 271 |
} |
| 272 | 272 |
arc._id = -1; |
| 273 | 273 |
} |
| 274 | 274 |
|
| 275 | 275 |
void nextOut(Arc& arc) const {
|
| 276 | 276 |
int nid = arc._id >> 1; |
| 277 | 277 |
if ((arc._id & 1) == 1) {
|
| 278 | 278 |
if (nid >= _edge_limit) {
|
| 279 | 279 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 280 | 280 |
(nid - _edge_limit) / (_width - 1) * _width; |
| 281 | 281 |
if (nid < _node_num - _width) {
|
| 282 | 282 |
arc._id = nid << 1 | 1; |
| 283 | 283 |
return; |
| 284 | 284 |
} |
| 285 | 285 |
} |
| 286 | 286 |
if (nid % _width > 0) {
|
| 287 | 287 |
arc._id = (_edge_limit + nid % _width + |
| 288 | 288 |
(nid / _width) * (_width - 1) - 1) << 1; |
| 289 | 289 |
return; |
| 290 | 290 |
} |
| 291 | 291 |
if (nid >= _width) {
|
| 292 | 292 |
arc._id = (nid - _width) << 1; |
| 293 | 293 |
return; |
| 294 | 294 |
} |
| 295 | 295 |
} else {
|
| 296 | 296 |
if (nid >= _edge_limit) {
|
| 297 | 297 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 298 | 298 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
| 299 | 299 |
if (nid >= _width) {
|
| 300 | 300 |
arc._id = (nid - _width) << 1; |
| 301 | 301 |
return; |
| 302 | 302 |
} |
| 303 | 303 |
} |
| 304 | 304 |
} |
| 305 | 305 |
arc._id = -1; |
| 306 | 306 |
} |
| 307 | 307 |
|
| 308 | 308 |
void firstIn(Arc& arc, const Node& node) const {
|
| 309 | 309 |
if (node._id % _width < _width - 1) {
|
| 310 | 310 |
arc._id = (_edge_limit + node._id % _width + |
| 311 | 311 |
(node._id / _width) * (_width - 1)) << 1; |
| 312 | 312 |
return; |
| 313 | 313 |
} |
| 314 | 314 |
if (node._id < _node_num - _width) {
|
| 315 | 315 |
arc._id = node._id << 1; |
| 316 | 316 |
return; |
| 317 | 317 |
} |
| 318 | 318 |
if (node._id % _width > 0) {
|
| 319 | 319 |
arc._id = (_edge_limit + node._id % _width + |
| 320 | 320 |
(node._id / _width) * (_width - 1) - 1) << 1 | 1; |
| 321 | 321 |
return; |
| 322 | 322 |
} |
| 323 | 323 |
if (node._id >= _width) {
|
| 324 | 324 |
arc._id = (node._id - _width) << 1 | 1; |
| 325 | 325 |
return; |
| 326 | 326 |
} |
| 327 | 327 |
arc._id = -1; |
| 328 | 328 |
} |
| 329 | 329 |
|
| 330 | 330 |
void nextIn(Arc& arc) const {
|
| 331 | 331 |
int nid = arc._id >> 1; |
| 332 | 332 |
if ((arc._id & 1) == 0) {
|
| 333 | 333 |
if (nid >= _edge_limit) {
|
| 334 | 334 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 335 | 335 |
(nid - _edge_limit) / (_width - 1) * _width; |
| 336 | 336 |
if (nid < _node_num - _width) {
|
| 337 | 337 |
arc._id = nid << 1; |
| 338 | 338 |
return; |
| 339 | 339 |
} |
| 340 | 340 |
} |
| 341 | 341 |
if (nid % _width > 0) {
|
| 342 | 342 |
arc._id = (_edge_limit + nid % _width + |
| 343 | 343 |
(nid / _width) * (_width - 1) - 1) << 1 | 1; |
| 344 | 344 |
return; |
| 345 | 345 |
} |
| 346 | 346 |
if (nid >= _width) {
|
| 347 | 347 |
arc._id = (nid - _width) << 1 | 1; |
| 348 | 348 |
return; |
| 349 | 349 |
} |
| 350 | 350 |
} else {
|
| 351 | 351 |
if (nid >= _edge_limit) {
|
| 352 | 352 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 353 | 353 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
| 354 | 354 |
if (nid >= _width) {
|
| 355 | 355 |
arc._id = (nid - _width) << 1 | 1; |
| 356 | 356 |
return; |
| 357 | 357 |
} |
| 358 | 358 |
} |
| 359 | 359 |
} |
| 360 | 360 |
arc._id = -1; |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
| 364 | 364 |
if (node._id % _width < _width - 1) {
|
| 365 | 365 |
edge._id = _edge_limit + node._id % _width + |
| 366 | 366 |
(node._id / _width) * (_width - 1); |
| 367 | 367 |
dir = true; |
| 368 | 368 |
return; |
| 369 | 369 |
} |
| 370 | 370 |
if (node._id < _node_num - _width) {
|
| 371 | 371 |
edge._id = node._id; |
| 372 | 372 |
dir = true; |
| 373 | 373 |
return; |
| 374 | 374 |
} |
| 375 | 375 |
if (node._id % _width > 0) {
|
| 376 | 376 |
edge._id = _edge_limit + node._id % _width + |
| 377 | 377 |
(node._id / _width) * (_width - 1) - 1; |
| 378 | 378 |
dir = false; |
| 379 | 379 |
return; |
| 380 | 380 |
} |
| 381 | 381 |
if (node._id >= _width) {
|
| 382 | 382 |
edge._id = node._id - _width; |
| 383 | 383 |
dir = false; |
| 384 | 384 |
return; |
| 385 | 385 |
} |
| 386 | 386 |
edge._id = -1; |
| 387 | 387 |
dir = true; |
| 388 | 388 |
} |
| 389 | 389 |
|
| 390 | 390 |
void nextInc(Edge& edge, bool& dir) const {
|
| 391 | 391 |
int nid = edge._id; |
| 392 | 392 |
if (dir) {
|
| 393 | 393 |
if (nid >= _edge_limit) {
|
| 394 | 394 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 395 | 395 |
(nid - _edge_limit) / (_width - 1) * _width; |
| 396 | 396 |
if (nid < _node_num - _width) {
|
| 397 | 397 |
edge._id = nid; |
| 398 | 398 |
return; |
| 399 | 399 |
} |
| 400 | 400 |
} |
| 401 | 401 |
if (nid % _width > 0) {
|
| 402 | 402 |
edge._id = _edge_limit + nid % _width + |
| 403 | 403 |
(nid / _width) * (_width - 1) - 1; |
| 404 | 404 |
dir = false; |
| 405 | 405 |
return; |
| 406 | 406 |
} |
| 407 | 407 |
if (nid >= _width) {
|
| 408 | 408 |
edge._id = nid - _width; |
| 409 | 409 |
dir = false; |
| 410 | 410 |
return; |
| 411 | 411 |
} |
| 412 | 412 |
} else {
|
| 413 | 413 |
if (nid >= _edge_limit) {
|
| 414 | 414 |
nid = (nid - _edge_limit) % (_width - 1) + |
| 415 | 415 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
| 416 | 416 |
if (nid >= _width) {
|
| 417 | 417 |
edge._id = nid - _width; |
| 418 | 418 |
return; |
| 419 | 419 |
} |
| 420 | 420 |
} |
| 421 | 421 |
} |
| 422 | 422 |
edge._id = -1; |
| 423 | 423 |
dir = true; |
| 424 | 424 |
} |
| 425 | 425 |
|
| 426 | 426 |
Arc right(Node n) const {
|
| 427 | 427 |
if (n._id % _width < _width - 1) {
|
| 428 | 428 |
return Arc(((_edge_limit + n._id % _width + |
| 429 | 429 |
(n._id / _width) * (_width - 1)) << 1) | 1); |
| 430 | 430 |
} else {
|
| 431 | 431 |
return INVALID; |
| 432 | 432 |
} |
| 433 | 433 |
} |
| 434 | 434 |
|
| 435 | 435 |
Arc left(Node n) const {
|
| 436 | 436 |
if (n._id % _width > 0) {
|
| 437 | 437 |
return Arc((_edge_limit + n._id % _width + |
| 438 | 438 |
(n._id / _width) * (_width - 1) - 1) << 1); |
| 439 | 439 |
} else {
|
| 440 | 440 |
return INVALID; |
| 441 | 441 |
} |
| 442 | 442 |
} |
| 443 | 443 |
|
| 444 | 444 |
Arc up(Node n) const {
|
| 445 | 445 |
if (n._id < _edge_limit) {
|
| 446 | 446 |
return Arc((n._id << 1) | 1); |
| 447 | 447 |
} else {
|
| 448 | 448 |
return INVALID; |
| 449 | 449 |
} |
| 450 | 450 |
} |
| 451 | 451 |
|
| 452 | 452 |
Arc down(Node n) const {
|
| 453 | 453 |
if (n._id >= _width) {
|
| 454 | 454 |
return Arc((n._id - _width) << 1); |
| 455 | 455 |
} else {
|
| 456 | 456 |
return INVALID; |
| 457 | 457 |
} |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
private: |
| 461 | 461 |
int _width, _height; |
| 462 | 462 |
int _node_num, _edge_num; |
| 463 | 463 |
int _edge_limit; |
| 464 | 464 |
}; |
| 465 | 465 |
|
| 466 | 466 |
|
| 467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
| 468 | 468 |
|
| 469 | 469 |
/// \ingroup graphs |
| 470 | 470 |
/// |
| 471 | 471 |
/// \brief Grid graph class |
| 472 | 472 |
/// |
| 473 | 473 |
/// GridGraph implements a special graph type. The nodes of the |
| 474 | 474 |
/// graph can be indexed by two integer values \c (i,j) where \c i is |
| 475 | 475 |
/// in the range <tt>[0..width()-1]</tt> and j is in the range |
| 476 | 476 |
/// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if |
| 477 | 477 |
/// the indices differ exactly on one position and the difference is |
| 478 | 478 |
/// also exactly one. The nodes of the graph can be obtained by position |
| 479 | 479 |
/// using the \c operator()() function and the indices of the nodes can |
| 480 | 480 |
/// be obtained using \c pos(), \c col() and \c row() members. The outgoing |
| 481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
| 482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
| 483 | 483 |
/// origin. |
| 484 | 484 |
/// |
| 485 | 485 |
/// This class is completely static and it needs constant memory space. |
| 486 | 486 |
/// Thus you can neither add nor delete nodes or edges, however |
| 487 | 487 |
/// the structure can be resized using resize(). |
| 488 | 488 |
/// |
| 489 | 489 |
/// \image html grid_graph.png |
| 490 | 490 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
| 491 | 491 |
/// |
| 492 | 492 |
/// A short example about the basic usage: |
| 493 | 493 |
///\code |
| 494 | 494 |
/// GridGraph graph(rows, cols); |
| 495 | 495 |
/// GridGraph::NodeMap<int> val(graph); |
| 496 | 496 |
/// for (int i = 0; i < graph.width(); ++i) {
|
| 497 | 497 |
/// for (int j = 0; j < graph.height(); ++j) {
|
| 498 | 498 |
/// val[graph(i, j)] = i + j; |
| 499 | 499 |
/// } |
| 500 | 500 |
/// } |
| 501 | 501 |
///\endcode |
| 502 | 502 |
/// |
| 503 | 503 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
| 504 | 504 |
/// Most of its member functions and nested classes are documented |
| 505 | 505 |
/// only in the concept class. |
| 506 |
/// |
|
| 507 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 506 | 508 |
class GridGraph : public ExtendedGridGraphBase {
|
| 507 | 509 |
typedef ExtendedGridGraphBase Parent; |
| 508 | 510 |
|
| 509 | 511 |
public: |
| 510 | 512 |
|
| 511 | 513 |
/// \brief Map to get the indices of the nodes as \ref dim2::Point |
| 512 | 514 |
/// "dim2::Point<int>". |
| 513 | 515 |
/// |
| 514 | 516 |
/// Map to get the indices of the nodes as \ref dim2::Point |
| 515 | 517 |
/// "dim2::Point<int>". |
| 516 | 518 |
class IndexMap {
|
| 517 | 519 |
public: |
| 518 | 520 |
/// \brief The key type of the map |
| 519 | 521 |
typedef GridGraph::Node Key; |
| 520 | 522 |
/// \brief The value type of the map |
| 521 | 523 |
typedef dim2::Point<int> Value; |
| 522 | 524 |
|
| 523 | 525 |
/// \brief Constructor |
| 524 | 526 |
IndexMap(const GridGraph& graph) : _graph(graph) {}
|
| 525 | 527 |
|
| 526 | 528 |
/// \brief The subscript operator |
| 527 | 529 |
Value operator[](Key key) const {
|
| 528 | 530 |
return _graph.pos(key); |
| 529 | 531 |
} |
| 530 | 532 |
|
| 531 | 533 |
private: |
| 532 | 534 |
const GridGraph& _graph; |
| 533 | 535 |
}; |
| 534 | 536 |
|
| 535 | 537 |
/// \brief Map to get the column of the nodes. |
| 536 | 538 |
/// |
| 537 | 539 |
/// Map to get the column of the nodes. |
| 538 | 540 |
class ColMap {
|
| 539 | 541 |
public: |
| 540 | 542 |
/// \brief The key type of the map |
| 541 | 543 |
typedef GridGraph::Node Key; |
| 542 | 544 |
/// \brief The value type of the map |
| 543 | 545 |
typedef int Value; |
| 544 | 546 |
|
| 545 | 547 |
/// \brief Constructor |
| 546 | 548 |
ColMap(const GridGraph& graph) : _graph(graph) {}
|
| 547 | 549 |
|
| 548 | 550 |
/// \brief The subscript operator |
| 549 | 551 |
Value operator[](Key key) const {
|
| 550 | 552 |
return _graph.col(key); |
| 551 | 553 |
} |
| 552 | 554 |
|
| 553 | 555 |
private: |
| 554 | 556 |
const GridGraph& _graph; |
| 555 | 557 |
}; |
| 556 | 558 |
|
| 557 | 559 |
/// \brief Map to get the row of the nodes. |
| 558 | 560 |
/// |
| 559 | 561 |
/// Map to get the row of the nodes. |
| 560 | 562 |
class RowMap {
|
| 561 | 563 |
public: |
| 562 | 564 |
/// \brief The key type of the map |
| 563 | 565 |
typedef GridGraph::Node Key; |
| 564 | 566 |
/// \brief The value type of the map |
| 565 | 567 |
typedef int Value; |
| 566 | 568 |
|
| 567 | 569 |
/// \brief Constructor |
| 568 | 570 |
RowMap(const GridGraph& graph) : _graph(graph) {}
|
| 569 | 571 |
|
| 570 | 572 |
/// \brief The subscript operator |
| 571 | 573 |
Value operator[](Key key) const {
|
| 572 | 574 |
return _graph.row(key); |
| 573 | 575 |
} |
| 574 | 576 |
|
| 575 | 577 |
private: |
| 576 | 578 |
const GridGraph& _graph; |
| 577 | 579 |
}; |
| 578 | 580 |
|
| 579 | 581 |
/// \brief Constructor |
| 580 | 582 |
/// |
| 581 | 583 |
/// Construct a grid graph with the given size. |
| 582 | 584 |
GridGraph(int width, int height) { construct(width, height); }
|
| 583 | 585 |
|
| 584 | 586 |
/// \brief Resizes the graph |
| 585 | 587 |
/// |
| 586 | 588 |
/// This function resizes the graph. It fully destroys and |
| 587 | 589 |
/// rebuilds the structure, therefore the maps of the graph will be |
| 588 | 590 |
/// reallocated automatically and the previous values will be lost. |
| 589 | 591 |
void resize(int width, int height) {
|
| 590 | 592 |
Parent::notifier(Arc()).clear(); |
| 591 | 593 |
Parent::notifier(Edge()).clear(); |
| 592 | 594 |
Parent::notifier(Node()).clear(); |
| 593 | 595 |
construct(width, height); |
| 594 | 596 |
Parent::notifier(Node()).build(); |
| 595 | 597 |
Parent::notifier(Edge()).build(); |
| 596 | 598 |
Parent::notifier(Arc()).build(); |
| 597 | 599 |
} |
| 598 | 600 |
|
| 599 | 601 |
/// \brief The node on the given position. |
| 600 | 602 |
/// |
| 601 | 603 |
/// Gives back the node on the given position. |
| 602 | 604 |
Node operator()(int i, int j) const {
|
| 603 | 605 |
return Parent::operator()(i, j); |
| 604 | 606 |
} |
| 605 | 607 |
|
| 606 | 608 |
/// \brief The column index of the node. |
| 607 | 609 |
/// |
| 608 | 610 |
/// Gives back the column index of the node. |
| 609 | 611 |
int col(Node n) const {
|
| 610 | 612 |
return Parent::col(n); |
| 611 | 613 |
} |
| 612 | 614 |
|
| 613 | 615 |
/// \brief The row index of the node. |
| 614 | 616 |
/// |
| 615 | 617 |
/// Gives back the row index of the node. |
| 616 | 618 |
int row(Node n) const {
|
| 617 | 619 |
return Parent::row(n); |
| 618 | 620 |
} |
| 619 | 621 |
|
| 620 | 622 |
/// \brief The position of the node. |
| 621 | 623 |
/// |
| 622 | 624 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
| 623 | 625 |
dim2::Point<int> pos(Node n) const {
|
| 624 | 626 |
return Parent::pos(n); |
| 625 | 627 |
} |
| 626 | 628 |
|
| 627 | 629 |
/// \brief The number of the columns. |
| 628 | 630 |
/// |
| 629 | 631 |
/// Gives back the number of the columns. |
| 630 | 632 |
int width() const {
|
| 631 | 633 |
return Parent::width(); |
| 632 | 634 |
} |
| 633 | 635 |
|
| 634 | 636 |
/// \brief The number of the rows. |
| 635 | 637 |
/// |
| 636 | 638 |
/// Gives back the number of the rows. |
| 637 | 639 |
int height() const {
|
| 638 | 640 |
return Parent::height(); |
| 639 | 641 |
} |
| 640 | 642 |
|
| 641 | 643 |
/// \brief The arc goes right from the node. |
| 642 | 644 |
/// |
| 643 | 645 |
/// Gives back the arc goes right from the node. If there is not |
| 644 | 646 |
/// outgoing arc then it gives back INVALID. |
| 645 | 647 |
Arc right(Node n) const {
|
| 646 | 648 |
return Parent::right(n); |
| 647 | 649 |
} |
| 648 | 650 |
|
| 649 | 651 |
/// \brief The arc goes left from the node. |
| 650 | 652 |
/// |
| 651 | 653 |
/// Gives back the arc goes left from the node. If there is not |
| 652 | 654 |
/// outgoing arc then it gives back INVALID. |
| 653 | 655 |
Arc left(Node n) const {
|
| 654 | 656 |
return Parent::left(n); |
| 655 | 657 |
} |
| 656 | 658 |
|
| 657 | 659 |
/// \brief The arc goes up from the node. |
| 658 | 660 |
/// |
| 659 | 661 |
/// Gives back the arc goes up from the node. If there is not |
| 660 | 662 |
/// outgoing arc then it gives back INVALID. |
| 661 | 663 |
Arc up(Node n) const {
|
| 662 | 664 |
return Parent::up(n); |
| 663 | 665 |
} |
| 664 | 666 |
|
| 665 | 667 |
/// \brief The arc goes down from the node. |
| 666 | 668 |
/// |
| 667 | 669 |
/// Gives back the arc goes down from the node. If there is not |
| 668 | 670 |
/// outgoing arc then it gives back INVALID. |
| 669 | 671 |
Arc down(Node n) const {
|
| 670 | 672 |
return Parent::down(n); |
| 671 | 673 |
} |
| 672 | 674 |
|
| 673 | 675 |
/// \brief Index map of the grid graph |
| 674 | 676 |
/// |
| 675 | 677 |
/// Just returns an IndexMap for the grid graph. |
| 676 | 678 |
IndexMap indexMap() const {
|
| 677 | 679 |
return IndexMap(*this); |
| 678 | 680 |
} |
| 679 | 681 |
|
| 680 | 682 |
/// \brief Row map of the grid graph |
| 681 | 683 |
/// |
| 682 | 684 |
/// Just returns a RowMap for the grid graph. |
| 683 | 685 |
RowMap rowMap() const {
|
| 684 | 686 |
return RowMap(*this); |
| 685 | 687 |
} |
| 686 | 688 |
|
| 687 | 689 |
/// \brief Column map of the grid graph |
| 688 | 690 |
/// |
| 689 | 691 |
/// Just returns a ColMap for the grid graph. |
| 690 | 692 |
ColMap colMap() const {
|
| 691 | 693 |
return ColMap(*this); |
| 692 | 694 |
} |
| 693 | 695 |
|
| 694 | 696 |
}; |
| 695 | 697 |
|
| 696 | 698 |
} |
| 697 | 699 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef HYPERCUBE_GRAPH_H |
| 20 | 20 |
#define HYPERCUBE_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <lemon/core.h> |
| 24 | 24 |
#include <lemon/assert.h> |
| 25 | 25 |
#include <lemon/bits/graph_extender.h> |
| 26 | 26 |
|
| 27 | 27 |
///\ingroup graphs |
| 28 | 28 |
///\file |
| 29 | 29 |
///\brief HypercubeGraph class. |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
class HypercubeGraphBase {
|
| 34 | 34 |
|
| 35 | 35 |
public: |
| 36 | 36 |
|
| 37 | 37 |
typedef HypercubeGraphBase Graph; |
| 38 | 38 |
|
| 39 | 39 |
class Node; |
| 40 | 40 |
class Edge; |
| 41 | 41 |
class Arc; |
| 42 | 42 |
|
| 43 | 43 |
public: |
| 44 | 44 |
|
| 45 | 45 |
HypercubeGraphBase() {}
|
| 46 | 46 |
|
| 47 | 47 |
protected: |
| 48 | 48 |
|
| 49 | 49 |
void construct(int dim) {
|
| 50 | 50 |
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1."); |
| 51 | 51 |
_dim = dim; |
| 52 | 52 |
_node_num = 1 << dim; |
| 53 | 53 |
_edge_num = dim * (1 << (dim-1)); |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
public: |
| 57 | 57 |
|
| 58 | 58 |
typedef True NodeNumTag; |
| 59 | 59 |
typedef True EdgeNumTag; |
| 60 | 60 |
typedef True ArcNumTag; |
| 61 | 61 |
|
| 62 | 62 |
int nodeNum() const { return _node_num; }
|
| 63 | 63 |
int edgeNum() const { return _edge_num; }
|
| 64 | 64 |
int arcNum() const { return 2 * _edge_num; }
|
| 65 | 65 |
|
| 66 | 66 |
int maxNodeId() const { return _node_num - 1; }
|
| 67 | 67 |
int maxEdgeId() const { return _edge_num - 1; }
|
| 68 | 68 |
int maxArcId() const { return 2 * _edge_num - 1; }
|
| 69 | 69 |
|
| 70 | 70 |
static Node nodeFromId(int id) { return Node(id); }
|
| 71 | 71 |
static Edge edgeFromId(int id) { return Edge(id); }
|
| 72 | 72 |
static Arc arcFromId(int id) { return Arc(id); }
|
| 73 | 73 |
|
| 74 | 74 |
static int id(Node node) { return node._id; }
|
| 75 | 75 |
static int id(Edge edge) { return edge._id; }
|
| 76 | 76 |
static int id(Arc arc) { return arc._id; }
|
| 77 | 77 |
|
| 78 | 78 |
Node u(Edge edge) const {
|
| 79 | 79 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
| 80 | 80 |
int k = edge._id >> (_dim-1); |
| 81 | 81 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)); |
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
Node v(Edge edge) const {
|
| 85 | 85 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
| 86 | 86 |
int k = edge._id >> (_dim-1); |
| 87 | 87 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k); |
| 88 | 88 |
} |
| 89 | 89 |
|
| 90 | 90 |
Node source(Arc arc) const {
|
| 91 | 91 |
return (arc._id & 1) == 1 ? u(arc) : v(arc); |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 | 94 |
Node target(Arc arc) const {
|
| 95 | 95 |
return (arc._id & 1) == 1 ? v(arc) : u(arc); |
| 96 | 96 |
} |
| 97 | 97 |
|
| 98 | 98 |
typedef True FindEdgeTag; |
| 99 | 99 |
typedef True FindArcTag; |
| 100 | 100 |
|
| 101 | 101 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
| 102 | 102 |
if (prev != INVALID) return INVALID; |
| 103 | 103 |
int d = u._id ^ v._id; |
| 104 | 104 |
int k = 0; |
| 105 | 105 |
if (d == 0) return INVALID; |
| 106 | 106 |
for ( ; (d & 1) == 0; d >>= 1) ++k; |
| 107 | 107 |
if (d >> 1 != 0) return INVALID; |
| 108 | 108 |
return (k << (_dim-1)) | ((u._id >> (k+1)) << k) | |
| 109 | 109 |
(u._id & ((1 << k) - 1)); |
| 110 | 110 |
} |
| 111 | 111 |
|
| 112 | 112 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
|
| 113 | 113 |
Edge edge = findEdge(u, v, prev); |
| 114 | 114 |
if (edge == INVALID) return INVALID; |
| 115 | 115 |
int k = edge._id >> (_dim-1); |
| 116 | 116 |
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1; |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
class Node {
|
| 120 | 120 |
friend class HypercubeGraphBase; |
| 121 | 121 |
|
| 122 | 122 |
protected: |
| 123 | 123 |
int _id; |
| 124 | 124 |
Node(int id) : _id(id) {}
|
| 125 | 125 |
public: |
| 126 | 126 |
Node() {}
|
| 127 | 127 |
Node (Invalid) : _id(-1) {}
|
| 128 | 128 |
bool operator==(const Node node) const {return _id == node._id;}
|
| 129 | 129 |
bool operator!=(const Node node) const {return _id != node._id;}
|
| 130 | 130 |
bool operator<(const Node node) const {return _id < node._id;}
|
| 131 | 131 |
}; |
| 132 | 132 |
|
| 133 | 133 |
class Edge {
|
| 134 | 134 |
friend class HypercubeGraphBase; |
| 135 | 135 |
friend class Arc; |
| 136 | 136 |
|
| 137 | 137 |
protected: |
| 138 | 138 |
int _id; |
| 139 | 139 |
|
| 140 | 140 |
Edge(int id) : _id(id) {}
|
| 141 | 141 |
|
| 142 | 142 |
public: |
| 143 | 143 |
Edge() {}
|
| 144 | 144 |
Edge (Invalid) : _id(-1) {}
|
| 145 | 145 |
bool operator==(const Edge edge) const {return _id == edge._id;}
|
| 146 | 146 |
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
| 147 | 147 |
bool operator<(const Edge edge) const {return _id < edge._id;}
|
| 148 | 148 |
}; |
| 149 | 149 |
|
| 150 | 150 |
class Arc {
|
| 151 | 151 |
friend class HypercubeGraphBase; |
| 152 | 152 |
|
| 153 | 153 |
protected: |
| 154 | 154 |
int _id; |
| 155 | 155 |
|
| 156 | 156 |
Arc(int id) : _id(id) {}
|
| 157 | 157 |
|
| 158 | 158 |
public: |
| 159 | 159 |
Arc() {}
|
| 160 | 160 |
Arc (Invalid) : _id(-1) {}
|
| 161 | 161 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
|
| 162 | 162 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
| 163 | 163 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
| 164 | 164 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
void first(Node& node) const {
|
| 168 | 168 |
node._id = _node_num - 1; |
| 169 | 169 |
} |
| 170 | 170 |
|
| 171 | 171 |
static void next(Node& node) {
|
| 172 | 172 |
--node._id; |
| 173 | 173 |
} |
| 174 | 174 |
|
| 175 | 175 |
void first(Edge& edge) const {
|
| 176 | 176 |
edge._id = _edge_num - 1; |
| 177 | 177 |
} |
| 178 | 178 |
|
| 179 | 179 |
static void next(Edge& edge) {
|
| 180 | 180 |
--edge._id; |
| 181 | 181 |
} |
| 182 | 182 |
|
| 183 | 183 |
void first(Arc& arc) const {
|
| 184 | 184 |
arc._id = 2 * _edge_num - 1; |
| 185 | 185 |
} |
| 186 | 186 |
|
| 187 | 187 |
static void next(Arc& arc) {
|
| 188 | 188 |
--arc._id; |
| 189 | 189 |
} |
| 190 | 190 |
|
| 191 | 191 |
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
| 192 | 192 |
edge._id = node._id >> 1; |
| 193 | 193 |
dir = (node._id & 1) == 0; |
| 194 | 194 |
} |
| 195 | 195 |
|
| 196 | 196 |
void nextInc(Edge& edge, bool& dir) const {
|
| 197 | 197 |
Node n = dir ? u(edge) : v(edge); |
| 198 | 198 |
int k = (edge._id >> (_dim-1)) + 1; |
| 199 | 199 |
if (k < _dim) {
|
| 200 | 200 |
edge._id = (k << (_dim-1)) | |
| 201 | 201 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
| 202 | 202 |
dir = ((n._id >> k) & 1) == 0; |
| 203 | 203 |
} else {
|
| 204 | 204 |
edge._id = -1; |
| 205 | 205 |
dir = true; |
| 206 | 206 |
} |
| 207 | 207 |
} |
| 208 | 208 |
|
| 209 | 209 |
void firstOut(Arc& arc, const Node& node) const {
|
| 210 | 210 |
arc._id = ((node._id >> 1) << 1) | (~node._id & 1); |
| 211 | 211 |
} |
| 212 | 212 |
|
| 213 | 213 |
void nextOut(Arc& arc) const {
|
| 214 | 214 |
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc); |
| 215 | 215 |
int k = (arc._id >> _dim) + 1; |
| 216 | 216 |
if (k < _dim) {
|
| 217 | 217 |
arc._id = (k << (_dim-1)) | |
| 218 | 218 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
| 219 | 219 |
arc._id = (arc._id << 1) | (~(n._id >> k) & 1); |
| 220 | 220 |
} else {
|
| 221 | 221 |
arc._id = -1; |
| 222 | 222 |
} |
| 223 | 223 |
} |
| 224 | 224 |
|
| 225 | 225 |
void firstIn(Arc& arc, const Node& node) const {
|
| 226 | 226 |
arc._id = ((node._id >> 1) << 1) | (node._id & 1); |
| 227 | 227 |
} |
| 228 | 228 |
|
| 229 | 229 |
void nextIn(Arc& arc) const {
|
| 230 | 230 |
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc); |
| 231 | 231 |
int k = (arc._id >> _dim) + 1; |
| 232 | 232 |
if (k < _dim) {
|
| 233 | 233 |
arc._id = (k << (_dim-1)) | |
| 234 | 234 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
| 235 | 235 |
arc._id = (arc._id << 1) | ((n._id >> k) & 1); |
| 236 | 236 |
} else {
|
| 237 | 237 |
arc._id = -1; |
| 238 | 238 |
} |
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
static bool direction(Arc arc) {
|
| 242 | 242 |
return (arc._id & 1) == 1; |
| 243 | 243 |
} |
| 244 | 244 |
|
| 245 | 245 |
static Arc direct(Edge edge, bool dir) {
|
| 246 | 246 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
int dimension() const {
|
| 250 | 250 |
return _dim; |
| 251 | 251 |
} |
| 252 | 252 |
|
| 253 | 253 |
bool projection(Node node, int n) const {
|
| 254 | 254 |
return static_cast<bool>(node._id & (1 << n)); |
| 255 | 255 |
} |
| 256 | 256 |
|
| 257 | 257 |
int dimension(Edge edge) const {
|
| 258 | 258 |
return edge._id >> (_dim-1); |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
int dimension(Arc arc) const {
|
| 262 | 262 |
return arc._id >> _dim; |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 | 265 |
static int index(Node node) {
|
| 266 | 266 |
return node._id; |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
Node operator()(int ix) const {
|
| 270 | 270 |
return Node(ix); |
| 271 | 271 |
} |
| 272 | 272 |
|
| 273 | 273 |
private: |
| 274 | 274 |
int _dim; |
| 275 | 275 |
int _node_num, _edge_num; |
| 276 | 276 |
}; |
| 277 | 277 |
|
| 278 | 278 |
|
| 279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
| 280 | 280 |
|
| 281 | 281 |
/// \ingroup graphs |
| 282 | 282 |
/// |
| 283 | 283 |
/// \brief Hypercube graph class |
| 284 | 284 |
/// |
| 285 | 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
| 286 | 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
| 287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
| 288 | 288 |
/// differ only on one position in the binary form. |
| 289 | 289 |
/// This class is completely static and it needs constant memory space. |
| 290 | 290 |
/// Thus you can neither add nor delete nodes or edges, however |
| 291 | 291 |
/// the structure can be resized using resize(). |
| 292 | 292 |
/// |
| 293 | 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
| 294 | 294 |
/// Most of its member functions and nested classes are documented |
| 295 | 295 |
/// only in the concept class. |
| 296 | 296 |
/// |
| 297 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 298 |
/// |
|
| 297 | 299 |
/// \note The type of the indices is chosen to \c int for efficiency |
| 298 | 300 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
| 299 | 301 |
/// (assuming that the size of \c int is 32 bit). |
| 300 | 302 |
class HypercubeGraph : public ExtendedHypercubeGraphBase {
|
| 301 | 303 |
typedef ExtendedHypercubeGraphBase Parent; |
| 302 | 304 |
|
| 303 | 305 |
public: |
| 304 | 306 |
|
| 305 | 307 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
| 306 | 308 |
/// |
| 307 | 309 |
/// Constructs a hypercube graph with \c dim dimensions. |
| 308 | 310 |
HypercubeGraph(int dim) { construct(dim); }
|
| 309 | 311 |
|
| 310 | 312 |
/// \brief Resizes the graph |
| 311 | 313 |
/// |
| 312 | 314 |
/// This function resizes the graph. It fully destroys and |
| 313 | 315 |
/// rebuilds the structure, therefore the maps of the graph will be |
| 314 | 316 |
/// reallocated automatically and the previous values will be lost. |
| 315 | 317 |
void resize(int dim) {
|
| 316 | 318 |
Parent::notifier(Arc()).clear(); |
| 317 | 319 |
Parent::notifier(Edge()).clear(); |
| 318 | 320 |
Parent::notifier(Node()).clear(); |
| 319 | 321 |
construct(dim); |
| 320 | 322 |
Parent::notifier(Node()).build(); |
| 321 | 323 |
Parent::notifier(Edge()).build(); |
| 322 | 324 |
Parent::notifier(Arc()).build(); |
| 323 | 325 |
} |
| 324 | 326 |
|
| 325 | 327 |
/// \brief The number of dimensions. |
| 326 | 328 |
/// |
| 327 | 329 |
/// Gives back the number of dimensions. |
| 328 | 330 |
int dimension() const {
|
| 329 | 331 |
return Parent::dimension(); |
| 330 | 332 |
} |
| 331 | 333 |
|
| 332 | 334 |
/// \brief Returns \c true if the n'th bit of the node is one. |
| 333 | 335 |
/// |
| 334 | 336 |
/// Returns \c true if the n'th bit of the node is one. |
| 335 | 337 |
bool projection(Node node, int n) const {
|
| 336 | 338 |
return Parent::projection(node, n); |
| 337 | 339 |
} |
| 338 | 340 |
|
| 339 | 341 |
/// \brief The dimension id of an edge. |
| 340 | 342 |
/// |
| 341 | 343 |
/// Gives back the dimension id of the given edge. |
| 342 | 344 |
/// It is in the range <tt>[0..dim-1]</tt>. |
| 343 | 345 |
int dimension(Edge edge) const {
|
| 344 | 346 |
return Parent::dimension(edge); |
| 345 | 347 |
} |
| 346 | 348 |
|
| 347 | 349 |
/// \brief The dimension id of an arc. |
| 348 | 350 |
/// |
| 349 | 351 |
/// Gives back the dimension id of the given arc. |
| 350 | 352 |
/// It is in the range <tt>[0..dim-1]</tt>. |
| 351 | 353 |
int dimension(Arc arc) const {
|
| 352 | 354 |
return Parent::dimension(arc); |
| 353 | 355 |
} |
| 354 | 356 |
|
| 355 | 357 |
/// \brief The index of a node. |
| 356 | 358 |
/// |
| 357 | 359 |
/// Gives back the index of the given node. |
| 358 | 360 |
/// The lower bits of the integer describes the node. |
| 359 | 361 |
static int index(Node node) {
|
| 360 | 362 |
return Parent::index(node); |
| 361 | 363 |
} |
| 362 | 364 |
|
| 363 | 365 |
/// \brief Gives back a node by its index. |
| 364 | 366 |
/// |
| 365 | 367 |
/// Gives back a node by its index. |
| 366 | 368 |
Node operator()(int ix) const {
|
| 367 | 369 |
return Parent::operator()(ix); |
| 368 | 370 |
} |
| 369 | 371 |
|
| 370 | 372 |
/// \brief Number of nodes. |
| 371 | 373 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 372 | 374 |
/// \brief Number of edges. |
| 373 | 375 |
int edgeNum() const { return Parent::edgeNum(); }
|
| 374 | 376 |
/// \brief Number of arcs. |
| 375 | 377 |
int arcNum() const { return Parent::arcNum(); }
|
| 376 | 378 |
|
| 377 | 379 |
/// \brief Linear combination map. |
| 378 | 380 |
/// |
| 379 | 381 |
/// This map makes possible to give back a linear combination |
| 380 | 382 |
/// for each node. It works like the \c std::accumulate function, |
| 381 | 383 |
/// so it accumulates the \c bf binary function with the \c fv first |
| 382 | 384 |
/// value. The map accumulates only on that positions (dimensions) |
| 383 | 385 |
/// where the index of the node is one. The values that have to be |
| 384 | 386 |
/// accumulated should be given by the \c begin and \c end iterators |
| 385 | 387 |
/// and the length of this range should be equal to the dimension |
| 386 | 388 |
/// number of the graph. |
| 387 | 389 |
/// |
| 388 | 390 |
///\code |
| 389 | 391 |
/// const int DIM = 3; |
| 390 | 392 |
/// HypercubeGraph graph(DIM); |
| 391 | 393 |
/// dim2::Point<double> base[DIM]; |
| 392 | 394 |
/// for (int k = 0; k < DIM; ++k) {
|
| 393 | 395 |
/// base[k].x = rnd(); |
| 394 | 396 |
/// base[k].y = rnd(); |
| 395 | 397 |
/// } |
| 396 | 398 |
/// HypercubeGraph::HyperMap<dim2::Point<double> > |
| 397 | 399 |
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0)); |
| 398 | 400 |
///\endcode |
| 399 | 401 |
/// |
| 400 | 402 |
/// \see HypercubeGraph |
| 401 | 403 |
template <typename T, typename BF = std::plus<T> > |
| 402 | 404 |
class HyperMap {
|
| 403 | 405 |
public: |
| 404 | 406 |
|
| 405 | 407 |
/// \brief The key type of the map |
| 406 | 408 |
typedef Node Key; |
| 407 | 409 |
/// \brief The value type of the map |
| 408 | 410 |
typedef T Value; |
| 409 | 411 |
|
| 410 | 412 |
/// \brief Constructor for HyperMap. |
| 411 | 413 |
/// |
| 412 | 414 |
/// Construct a HyperMap for the given graph. The values that have |
| 413 | 415 |
/// to be accumulated should be given by the \c begin and \c end |
| 414 | 416 |
/// iterators and the length of this range should be equal to the |
| 415 | 417 |
/// dimension number of the graph. |
| 416 | 418 |
/// |
| 417 | 419 |
/// This map accumulates the \c bf binary function with the \c fv |
| 418 | 420 |
/// first value on that positions (dimensions) where the index of |
| 419 | 421 |
/// the node is one. |
| 420 | 422 |
template <typename It> |
| 421 | 423 |
HyperMap(const Graph& graph, It begin, It end, |
| 422 | 424 |
T fv = 0, const BF& bf = BF()) |
| 423 | 425 |
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) |
| 424 | 426 |
{
|
| 425 | 427 |
LEMON_ASSERT(_values.size() == graph.dimension(), |
| 426 | 428 |
"Wrong size of range"); |
| 427 | 429 |
} |
| 428 | 430 |
|
| 429 | 431 |
/// \brief The partial accumulated value. |
| 430 | 432 |
/// |
| 431 | 433 |
/// Gives back the partial accumulated value. |
| 432 | 434 |
Value operator[](const Key& k) const {
|
| 433 | 435 |
Value val = _first_value; |
| 434 | 436 |
int id = _graph.index(k); |
| 435 | 437 |
int n = 0; |
| 436 | 438 |
while (id != 0) {
|
| 437 | 439 |
if (id & 1) {
|
| 438 | 440 |
val = _bin_func(val, _values[n]); |
| 439 | 441 |
} |
| 440 | 442 |
id >>= 1; |
| 441 | 443 |
++n; |
| 442 | 444 |
} |
| 443 | 445 |
return val; |
| 444 | 446 |
} |
| 445 | 447 |
|
| 446 | 448 |
private: |
| 447 | 449 |
const Graph& _graph; |
| 448 | 450 |
std::vector<T> _values; |
| 449 | 451 |
T _first_value; |
| 450 | 452 |
BF _bin_func; |
| 451 | 453 |
}; |
| 452 | 454 |
|
| 453 | 455 |
}; |
| 454 | 456 |
|
| 455 | 457 |
} |
| 456 | 458 |
|
| 457 | 459 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
| 20 | 20 |
#define LEMON_LIST_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graphs |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief ListDigraph and ListGraph classes. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
#include <lemon/bits/graph_extender.h> |
| 29 | 29 |
|
| 30 | 30 |
#include <vector> |
| 31 | 31 |
#include <list> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
class ListDigraph; |
| 36 | 36 |
|
| 37 | 37 |
class ListDigraphBase {
|
| 38 | 38 |
|
| 39 | 39 |
protected: |
| 40 | 40 |
struct NodeT {
|
| 41 | 41 |
int first_in, first_out; |
| 42 | 42 |
int prev, next; |
| 43 | 43 |
}; |
| 44 | 44 |
|
| 45 | 45 |
struct ArcT {
|
| 46 | 46 |
int target, source; |
| 47 | 47 |
int prev_in, prev_out; |
| 48 | 48 |
int next_in, next_out; |
| 49 | 49 |
}; |
| 50 | 50 |
|
| 51 | 51 |
std::vector<NodeT> nodes; |
| 52 | 52 |
|
| 53 | 53 |
int first_node; |
| 54 | 54 |
|
| 55 | 55 |
int first_free_node; |
| 56 | 56 |
|
| 57 | 57 |
std::vector<ArcT> arcs; |
| 58 | 58 |
|
| 59 | 59 |
int first_free_arc; |
| 60 | 60 |
|
| 61 | 61 |
public: |
| 62 | 62 |
|
| 63 | 63 |
typedef ListDigraphBase Digraph; |
| 64 | 64 |
|
| 65 | 65 |
class Node {
|
| 66 | 66 |
friend class ListDigraphBase; |
| 67 | 67 |
friend class ListDigraph; |
| 68 | 68 |
protected: |
| 69 | 69 |
|
| 70 | 70 |
int id; |
| 71 | 71 |
explicit Node(int pid) { id = pid;}
|
| 72 | 72 |
|
| 73 | 73 |
public: |
| 74 | 74 |
Node() {}
|
| 75 | 75 |
Node (Invalid) { id = -1; }
|
| 76 | 76 |
bool operator==(const Node& node) const {return id == node.id;}
|
| 77 | 77 |
bool operator!=(const Node& node) const {return id != node.id;}
|
| 78 | 78 |
bool operator<(const Node& node) const {return id < node.id;}
|
| 79 | 79 |
}; |
| 80 | 80 |
|
| 81 | 81 |
class Arc {
|
| 82 | 82 |
friend class ListDigraphBase; |
| 83 | 83 |
friend class ListDigraph; |
| 84 | 84 |
protected: |
| 85 | 85 |
|
| 86 | 86 |
int id; |
| 87 | 87 |
explicit Arc(int pid) { id = pid;}
|
| 88 | 88 |
|
| 89 | 89 |
public: |
| 90 | 90 |
Arc() {}
|
| 91 | 91 |
Arc (Invalid) { id = -1; }
|
| 92 | 92 |
bool operator==(const Arc& arc) const {return id == arc.id;}
|
| 93 | 93 |
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
| 94 | 94 |
bool operator<(const Arc& arc) const {return id < arc.id;}
|
| 95 | 95 |
}; |
| 96 | 96 |
|
| 97 | 97 |
|
| 98 | 98 |
|
| 99 | 99 |
ListDigraphBase() |
| 100 | 100 |
: nodes(), first_node(-1), |
| 101 | 101 |
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
| 102 | 102 |
|
| 103 | 103 |
|
| 104 | 104 |
int maxNodeId() const { return nodes.size()-1; }
|
| 105 | 105 |
int maxArcId() const { return arcs.size()-1; }
|
| 106 | 106 |
|
| 107 | 107 |
Node source(Arc e) const { return Node(arcs[e.id].source); }
|
| 108 | 108 |
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
| 109 | 109 |
|
| 110 | 110 |
|
| 111 | 111 |
void first(Node& node) const {
|
| 112 | 112 |
node.id = first_node; |
| 113 | 113 |
} |
| 114 | 114 |
|
| 115 | 115 |
void next(Node& node) const {
|
| 116 | 116 |
node.id = nodes[node.id].next; |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
|
| 120 | 120 |
void first(Arc& arc) const {
|
| 121 | 121 |
int n; |
| 122 | 122 |
for(n = first_node; |
| 123 | 123 |
n != -1 && nodes[n].first_out == -1; |
| 124 | 124 |
n = nodes[n].next) {}
|
| 125 | 125 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
| 126 | 126 |
} |
| 127 | 127 |
|
| 128 | 128 |
void next(Arc& arc) const {
|
| 129 | 129 |
if (arcs[arc.id].next_out != -1) {
|
| 130 | 130 |
arc.id = arcs[arc.id].next_out; |
| 131 | 131 |
} else {
|
| 132 | 132 |
int n; |
| 133 | 133 |
for(n = nodes[arcs[arc.id].source].next; |
| 134 | 134 |
n != -1 && nodes[n].first_out == -1; |
| 135 | 135 |
n = nodes[n].next) {}
|
| 136 | 136 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
| 137 | 137 |
} |
| 138 | 138 |
} |
| 139 | 139 |
|
| 140 | 140 |
void firstOut(Arc &e, const Node& v) const {
|
| 141 | 141 |
e.id = nodes[v.id].first_out; |
| 142 | 142 |
} |
| 143 | 143 |
void nextOut(Arc &e) const {
|
| 144 | 144 |
e.id=arcs[e.id].next_out; |
| 145 | 145 |
} |
| 146 | 146 |
|
| 147 | 147 |
void firstIn(Arc &e, const Node& v) const {
|
| 148 | 148 |
e.id = nodes[v.id].first_in; |
| 149 | 149 |
} |
| 150 | 150 |
void nextIn(Arc &e) const {
|
| 151 | 151 |
e.id=arcs[e.id].next_in; |
| 152 | 152 |
} |
| 153 | 153 |
|
| 154 | 154 |
|
| 155 | 155 |
static int id(Node v) { return v.id; }
|
| 156 | 156 |
static int id(Arc e) { return e.id; }
|
| 157 | 157 |
|
| 158 | 158 |
static Node nodeFromId(int id) { return Node(id);}
|
| 159 | 159 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 160 | 160 |
|
| 161 | 161 |
bool valid(Node n) const {
|
| 162 | 162 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
| 163 | 163 |
nodes[n.id].prev != -2; |
| 164 | 164 |
} |
| 165 | 165 |
|
| 166 | 166 |
bool valid(Arc a) const {
|
| 167 | 167 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
| 168 | 168 |
arcs[a.id].prev_in != -2; |
| 169 | 169 |
} |
| 170 | 170 |
|
| 171 | 171 |
Node addNode() {
|
| 172 | 172 |
int n; |
| 173 | 173 |
|
| 174 | 174 |
if(first_free_node==-1) {
|
| 175 | 175 |
n = nodes.size(); |
| 176 | 176 |
nodes.push_back(NodeT()); |
| 177 | 177 |
} else {
|
| 178 | 178 |
n = first_free_node; |
| 179 | 179 |
first_free_node = nodes[n].next; |
| 180 | 180 |
} |
| 181 | 181 |
|
| 182 | 182 |
nodes[n].next = first_node; |
| 183 | 183 |
if(first_node != -1) nodes[first_node].prev = n; |
| 184 | 184 |
first_node = n; |
| 185 | 185 |
nodes[n].prev = -1; |
| 186 | 186 |
|
| 187 | 187 |
nodes[n].first_in = nodes[n].first_out = -1; |
| 188 | 188 |
|
| 189 | 189 |
return Node(n); |
| 190 | 190 |
} |
| 191 | 191 |
|
| 192 | 192 |
Arc addArc(Node u, Node v) {
|
| 193 | 193 |
int n; |
| 194 | 194 |
|
| 195 | 195 |
if (first_free_arc == -1) {
|
| 196 | 196 |
n = arcs.size(); |
| 197 | 197 |
arcs.push_back(ArcT()); |
| 198 | 198 |
} else {
|
| 199 | 199 |
n = first_free_arc; |
| 200 | 200 |
first_free_arc = arcs[n].next_in; |
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
arcs[n].source = u.id; |
| 204 | 204 |
arcs[n].target = v.id; |
| 205 | 205 |
|
| 206 | 206 |
arcs[n].next_out = nodes[u.id].first_out; |
| 207 | 207 |
if(nodes[u.id].first_out != -1) {
|
| 208 | 208 |
arcs[nodes[u.id].first_out].prev_out = n; |
| 209 | 209 |
} |
| 210 | 210 |
|
| 211 | 211 |
arcs[n].next_in = nodes[v.id].first_in; |
| 212 | 212 |
if(nodes[v.id].first_in != -1) {
|
| 213 | 213 |
arcs[nodes[v.id].first_in].prev_in = n; |
| 214 | 214 |
} |
| 215 | 215 |
|
| 216 | 216 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
| 217 | 217 |
|
| 218 | 218 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
| 219 | 219 |
|
| 220 | 220 |
return Arc(n); |
| 221 | 221 |
} |
| 222 | 222 |
|
| 223 | 223 |
void erase(const Node& node) {
|
| 224 | 224 |
int n = node.id; |
| 225 | 225 |
|
| 226 | 226 |
if(nodes[n].next != -1) {
|
| 227 | 227 |
nodes[nodes[n].next].prev = nodes[n].prev; |
| 228 | 228 |
} |
| 229 | 229 |
|
| 230 | 230 |
if(nodes[n].prev != -1) {
|
| 231 | 231 |
nodes[nodes[n].prev].next = nodes[n].next; |
| 232 | 232 |
} else {
|
| 233 | 233 |
first_node = nodes[n].next; |
| 234 | 234 |
} |
| 235 | 235 |
|
| 236 | 236 |
nodes[n].next = first_free_node; |
| 237 | 237 |
first_free_node = n; |
| 238 | 238 |
nodes[n].prev = -2; |
| 239 | 239 |
|
| 240 | 240 |
} |
| 241 | 241 |
|
| 242 | 242 |
void erase(const Arc& arc) {
|
| 243 | 243 |
int n = arc.id; |
| 244 | 244 |
|
| 245 | 245 |
if(arcs[n].next_in!=-1) {
|
| 246 | 246 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
if(arcs[n].prev_in!=-1) {
|
| 250 | 250 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
| 251 | 251 |
} else {
|
| 252 | 252 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
| 253 | 253 |
} |
| 254 | 254 |
|
| 255 | 255 |
|
| 256 | 256 |
if(arcs[n].next_out!=-1) {
|
| 257 | 257 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
| 258 | 258 |
} |
| 259 | 259 |
|
| 260 | 260 |
if(arcs[n].prev_out!=-1) {
|
| 261 | 261 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
| 262 | 262 |
} else {
|
| 263 | 263 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
| 264 | 264 |
} |
| 265 | 265 |
|
| 266 | 266 |
arcs[n].next_in = first_free_arc; |
| 267 | 267 |
first_free_arc = n; |
| 268 | 268 |
arcs[n].prev_in = -2; |
| 269 | 269 |
} |
| 270 | 270 |
|
| 271 | 271 |
void clear() {
|
| 272 | 272 |
arcs.clear(); |
| 273 | 273 |
nodes.clear(); |
| 274 | 274 |
first_node = first_free_node = first_free_arc = -1; |
| 275 | 275 |
} |
| 276 | 276 |
|
| 277 | 277 |
protected: |
| 278 | 278 |
void changeTarget(Arc e, Node n) |
| 279 | 279 |
{
|
| 280 | 280 |
if(arcs[e.id].next_in != -1) |
| 281 | 281 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
| 282 | 282 |
if(arcs[e.id].prev_in != -1) |
| 283 | 283 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
| 284 | 284 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
| 285 | 285 |
if (nodes[n.id].first_in != -1) {
|
| 286 | 286 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
| 287 | 287 |
} |
| 288 | 288 |
arcs[e.id].target = n.id; |
| 289 | 289 |
arcs[e.id].prev_in = -1; |
| 290 | 290 |
arcs[e.id].next_in = nodes[n.id].first_in; |
| 291 | 291 |
nodes[n.id].first_in = e.id; |
| 292 | 292 |
} |
| 293 | 293 |
void changeSource(Arc e, Node n) |
| 294 | 294 |
{
|
| 295 | 295 |
if(arcs[e.id].next_out != -1) |
| 296 | 296 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
| 297 | 297 |
if(arcs[e.id].prev_out != -1) |
| 298 | 298 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
| 299 | 299 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
| 300 | 300 |
if (nodes[n.id].first_out != -1) {
|
| 301 | 301 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
| 302 | 302 |
} |
| 303 | 303 |
arcs[e.id].source = n.id; |
| 304 | 304 |
arcs[e.id].prev_out = -1; |
| 305 | 305 |
arcs[e.id].next_out = nodes[n.id].first_out; |
| 306 | 306 |
nodes[n.id].first_out = e.id; |
| 307 | 307 |
} |
| 308 | 308 |
|
| 309 | 309 |
}; |
| 310 | 310 |
|
| 311 | 311 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
| 312 | 312 |
|
| 313 | 313 |
/// \addtogroup graphs |
| 314 | 314 |
/// @{
|
| 315 | 315 |
|
| 316 | 316 |
///A general directed graph structure. |
| 317 | 317 |
|
| 318 | 318 |
///\ref ListDigraph is a versatile and fast directed graph |
| 319 | 319 |
///implementation based on linked lists that are stored in |
| 320 | 320 |
///\c std::vector structures. |
| 321 | 321 |
/// |
| 322 | 322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
| 323 | 323 |
///and it also provides several useful additional functionalities. |
| 324 | 324 |
///Most of its member functions and nested classes are documented |
| 325 | 325 |
///only in the concept class. |
| 326 | 326 |
/// |
| 327 |
///This class provides only linear time counting for nodes and arcs. |
|
| 328 |
/// |
|
| 327 | 329 |
///\sa concepts::Digraph |
| 328 | 330 |
///\sa ListGraph |
| 329 | 331 |
class ListDigraph : public ExtendedListDigraphBase {
|
| 330 | 332 |
typedef ExtendedListDigraphBase Parent; |
| 331 | 333 |
|
| 332 | 334 |
private: |
| 333 | 335 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
| 334 | 336 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
|
| 335 | 337 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
| 336 | 338 |
/// Use DigraphCopy instead. |
| 337 | 339 |
void operator=(const ListDigraph &) {}
|
| 338 | 340 |
public: |
| 339 | 341 |
|
| 340 | 342 |
/// Constructor |
| 341 | 343 |
|
| 342 | 344 |
/// Constructor. |
| 343 | 345 |
/// |
| 344 | 346 |
ListDigraph() {}
|
| 345 | 347 |
|
| 346 | 348 |
///Add a new node to the digraph. |
| 347 | 349 |
|
| 348 | 350 |
///This function adds a new node to the digraph. |
| 349 | 351 |
///\return The new node. |
| 350 | 352 |
Node addNode() { return Parent::addNode(); }
|
| 351 | 353 |
|
| 352 | 354 |
///Add a new arc to the digraph. |
| 353 | 355 |
|
| 354 | 356 |
///This function adds a new arc to the digraph with source node \c s |
| 355 | 357 |
///and target node \c t. |
| 356 | 358 |
///\return The new arc. |
| 357 | 359 |
Arc addArc(Node s, Node t) {
|
| 358 | 360 |
return Parent::addArc(s, t); |
| 359 | 361 |
} |
| 360 | 362 |
|
| 361 | 363 |
///\brief Erase a node from the digraph. |
| 362 | 364 |
/// |
| 363 |
///This function erases the given node |
|
| 365 |
///This function erases the given node along with its outgoing and |
|
| 366 |
///incoming arcs from the digraph. |
|
| 367 |
/// |
|
| 368 |
///\note All iterators referencing the removed node or the connected |
|
| 369 |
///arcs are invalidated, of course. |
|
| 364 | 370 |
void erase(Node n) { Parent::erase(n); }
|
| 365 | 371 |
|
| 366 | 372 |
///\brief Erase an arc from the digraph. |
| 367 | 373 |
/// |
| 368 | 374 |
///This function erases the given arc from the digraph. |
| 375 |
/// |
|
| 376 |
///\note All iterators referencing the removed arc are invalidated, |
|
| 377 |
///of course. |
|
| 369 | 378 |
void erase(Arc a) { Parent::erase(a); }
|
| 370 | 379 |
|
| 371 | 380 |
/// Node validity check |
| 372 | 381 |
|
| 373 | 382 |
/// This function gives back \c true if the given node is valid, |
| 374 | 383 |
/// i.e. it is a real node of the digraph. |
| 375 | 384 |
/// |
| 376 | 385 |
/// \warning A removed node could become valid again if new nodes are |
| 377 | 386 |
/// added to the digraph. |
| 378 | 387 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 379 | 388 |
|
| 380 | 389 |
/// Arc validity check |
| 381 | 390 |
|
| 382 | 391 |
/// This function gives back \c true if the given arc is valid, |
| 383 | 392 |
/// i.e. it is a real arc of the digraph. |
| 384 | 393 |
/// |
| 385 | 394 |
/// \warning A removed arc could become valid again if new arcs are |
| 386 | 395 |
/// added to the digraph. |
| 387 | 396 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 388 | 397 |
|
| 389 | 398 |
/// Change the target node of an arc |
| 390 | 399 |
|
| 391 | 400 |
/// This function changes the target node of the given arc \c a to \c n. |
| 392 | 401 |
/// |
| 393 | 402 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
| 394 | 403 |
///arc remain valid, however \c InArcIt iterators are invalidated. |
| 395 | 404 |
/// |
| 396 | 405 |
///\warning This functionality cannot be used together with the Snapshot |
| 397 | 406 |
///feature. |
| 398 | 407 |
void changeTarget(Arc a, Node n) {
|
| 399 | 408 |
Parent::changeTarget(a,n); |
| 400 | 409 |
} |
| 401 | 410 |
/// Change the source node of an arc |
| 402 | 411 |
|
| 403 | 412 |
/// This function changes the source node of the given arc \c a to \c n. |
| 404 | 413 |
/// |
| 405 | 414 |
///\note \c InArcIt iterators referencing the changed arc remain |
| 406 | 415 |
///valid, however \c ArcIt and \c OutArcIt iterators are invalidated. |
| 407 | 416 |
/// |
| 408 | 417 |
///\warning This functionality cannot be used together with the Snapshot |
| 409 | 418 |
///feature. |
| 410 | 419 |
void changeSource(Arc a, Node n) {
|
| 411 | 420 |
Parent::changeSource(a,n); |
| 412 | 421 |
} |
| 413 | 422 |
|
| 414 | 423 |
/// Reverse the direction of an arc. |
| 415 | 424 |
|
| 416 | 425 |
/// This function reverses the direction of the given arc. |
| 417 | 426 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
| 418 | 427 |
///the changed arc are invalidated. |
| 419 | 428 |
/// |
| 420 | 429 |
///\warning This functionality cannot be used together with the Snapshot |
| 421 | 430 |
///feature. |
| 422 | 431 |
void reverseArc(Arc a) {
|
| 423 | 432 |
Node t=target(a); |
| 424 | 433 |
changeTarget(a,source(a)); |
| 425 | 434 |
changeSource(a,t); |
| 426 | 435 |
} |
| 427 | 436 |
|
| 428 | 437 |
///Contract two nodes. |
| 429 | 438 |
|
| 430 | 439 |
///This function contracts the given two nodes. |
| 431 | 440 |
///Node \c v is removed, but instead of deleting its |
| 432 | 441 |
///incident arcs, they are joined to node \c u. |
| 433 | 442 |
///If the last parameter \c r is \c true (this is the default value), |
| 434 | 443 |
///then the newly created loops are removed. |
| 435 | 444 |
/// |
| 436 | 445 |
///\note The moved arcs are joined to node \c u using changeSource() |
| 437 | 446 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
| 438 | 447 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
| 439 | 448 |
///iterators are invalidated for the incomming arcs of \c v. |
| 440 | 449 |
///Moreover all iterators referencing node \c v or the removed |
| 441 | 450 |
///loops are also invalidated. Other iterators remain valid. |
| 442 | 451 |
/// |
| 443 | 452 |
///\warning This functionality cannot be used together with the Snapshot |
| 444 | 453 |
///feature. |
| 445 | 454 |
void contract(Node u, Node v, bool r = true) |
| 446 | 455 |
{
|
| 447 | 456 |
for(OutArcIt e(*this,v);e!=INVALID;) {
|
| 448 | 457 |
OutArcIt f=e; |
| 449 | 458 |
++f; |
| 450 | 459 |
if(r && target(e)==u) erase(e); |
| 451 | 460 |
else changeSource(e,u); |
| 452 | 461 |
e=f; |
| 453 | 462 |
} |
| 454 | 463 |
for(InArcIt e(*this,v);e!=INVALID;) {
|
| 455 | 464 |
InArcIt f=e; |
| 456 | 465 |
++f; |
| 457 | 466 |
if(r && source(e)==u) erase(e); |
| 458 | 467 |
else changeTarget(e,u); |
| 459 | 468 |
e=f; |
| 460 | 469 |
} |
| 461 | 470 |
erase(v); |
| 462 | 471 |
} |
| 463 | 472 |
|
| 464 | 473 |
///Split a node. |
| 465 | 474 |
|
| 466 | 475 |
///This function splits the given node. First, a new node is added |
| 467 | 476 |
///to the digraph, then the source of each outgoing arc of node \c n |
| 468 | 477 |
///is moved to this new node. |
| 469 | 478 |
///If the second parameter \c connect is \c true (this is the default |
| 470 | 479 |
///value), then a new arc from node \c n to the newly created node |
| 471 | 480 |
///is also added. |
| 472 | 481 |
///\return The newly created node. |
| 473 | 482 |
/// |
| 474 | 483 |
///\note All iterators remain valid. |
| 475 | 484 |
/// |
| 476 | 485 |
///\warning This functionality cannot be used together with the |
| 477 | 486 |
///Snapshot feature. |
| 478 | 487 |
Node split(Node n, bool connect = true) {
|
| 479 | 488 |
Node b = addNode(); |
| 480 | 489 |
nodes[b.id].first_out=nodes[n.id].first_out; |
| 481 | 490 |
nodes[n.id].first_out=-1; |
| 482 | 491 |
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
|
| 483 | 492 |
arcs[i].source=b.id; |
| 484 | 493 |
} |
| 485 | 494 |
if (connect) addArc(n,b); |
| 486 | 495 |
return b; |
| 487 | 496 |
} |
| 488 | 497 |
|
| 489 | 498 |
///Split an arc. |
| 490 | 499 |
|
| 491 | 500 |
///This function splits the given arc. First, a new node \c v is |
| 492 | 501 |
///added to the digraph, then the target node of the original arc |
| 493 | 502 |
///is set to \c v. Finally, an arc from \c v to the original target |
| 494 | 503 |
///is added. |
| 495 | 504 |
///\return The newly created node. |
| 496 | 505 |
/// |
| 497 | 506 |
///\note \c InArcIt iterators referencing the original arc are |
| 498 | 507 |
///invalidated. Other iterators remain valid. |
| 499 | 508 |
/// |
| 500 | 509 |
///\warning This functionality cannot be used together with the |
| 501 | 510 |
///Snapshot feature. |
| 502 | 511 |
Node split(Arc a) {
|
| 503 | 512 |
Node v = addNode(); |
| 504 | 513 |
addArc(v,target(a)); |
| 505 | 514 |
changeTarget(a,v); |
| 506 | 515 |
return v; |
| 507 | 516 |
} |
| 508 | 517 |
|
| 509 | 518 |
///Clear the digraph. |
| 510 | 519 |
|
| 511 | 520 |
///This function erases all nodes and arcs from the digraph. |
| 512 | 521 |
/// |
| 522 |
///\note All iterators of the digraph are invalidated, of course. |
|
| 513 | 523 |
void clear() {
|
| 514 | 524 |
Parent::clear(); |
| 515 | 525 |
} |
| 516 | 526 |
|
| 517 | 527 |
/// Reserve memory for nodes. |
| 518 | 528 |
|
| 519 | 529 |
/// Using this function, it is possible to avoid superfluous memory |
| 520 | 530 |
/// allocation: if you know that the digraph you want to build will |
| 521 | 531 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
| 522 | 532 |
/// then it is worth reserving space for this amount before starting |
| 523 | 533 |
/// to build the digraph. |
| 524 | 534 |
/// \sa reserveArc() |
| 525 | 535 |
void reserveNode(int n) { nodes.reserve(n); };
|
| 526 | 536 |
|
| 527 | 537 |
/// Reserve memory for arcs. |
| 528 | 538 |
|
| 529 | 539 |
/// Using this function, it is possible to avoid superfluous memory |
| 530 | 540 |
/// allocation: if you know that the digraph you want to build will |
| 531 | 541 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
| 532 | 542 |
/// then it is worth reserving space for this amount before starting |
| 533 | 543 |
/// to build the digraph. |
| 534 | 544 |
/// \sa reserveNode() |
| 535 | 545 |
void reserveArc(int m) { arcs.reserve(m); };
|
| 536 | 546 |
|
| 537 | 547 |
/// \brief Class to make a snapshot of the digraph and restore |
| 538 | 548 |
/// it later. |
| 539 | 549 |
/// |
| 540 | 550 |
/// Class to make a snapshot of the digraph and restore it later. |
| 541 | 551 |
/// |
| 542 | 552 |
/// The newly added nodes and arcs can be removed using the |
| 543 | 553 |
/// restore() function. |
| 544 | 554 |
/// |
| 545 | 555 |
/// \note After a state is restored, you cannot restore a later state, |
| 546 | 556 |
/// i.e. you cannot add the removed nodes and arcs again using |
| 547 | 557 |
/// another Snapshot instance. |
| 548 | 558 |
/// |
| 549 | 559 |
/// \warning Node and arc deletions and other modifications (e.g. |
| 550 | 560 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
| 551 | 561 |
/// restored. These events invalidate the snapshot. |
| 552 | 562 |
/// However the arcs and nodes that were added to the digraph after |
| 553 | 563 |
/// making the current snapshot can be removed without invalidating it. |
| 554 | 564 |
class Snapshot {
|
| 555 | 565 |
protected: |
| 556 | 566 |
|
| 557 | 567 |
typedef Parent::NodeNotifier NodeNotifier; |
| 558 | 568 |
|
| 559 | 569 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| 560 | 570 |
public: |
| 561 | 571 |
|
| 562 | 572 |
NodeObserverProxy(Snapshot& _snapshot) |
| 563 | 573 |
: snapshot(_snapshot) {}
|
| 564 | 574 |
|
| 565 | 575 |
using NodeNotifier::ObserverBase::attach; |
| 566 | 576 |
using NodeNotifier::ObserverBase::detach; |
| 567 | 577 |
using NodeNotifier::ObserverBase::attached; |
| 568 | 578 |
|
| 569 | 579 |
protected: |
| 570 | 580 |
|
| 571 | 581 |
virtual void add(const Node& node) {
|
| 572 | 582 |
snapshot.addNode(node); |
| 573 | 583 |
} |
| 574 | 584 |
virtual void add(const std::vector<Node>& nodes) {
|
| 575 | 585 |
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
| 576 | 586 |
snapshot.addNode(nodes[i]); |
| 577 | 587 |
} |
| 578 | 588 |
} |
| 579 | 589 |
virtual void erase(const Node& node) {
|
| 580 | 590 |
snapshot.eraseNode(node); |
| 581 | 591 |
} |
| 582 | 592 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 583 | 593 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 584 | 594 |
snapshot.eraseNode(nodes[i]); |
| 585 | 595 |
} |
| 586 | 596 |
} |
| 587 | 597 |
virtual void build() {
|
| 588 | 598 |
Node node; |
| 589 | 599 |
std::vector<Node> nodes; |
| 590 | 600 |
for (notifier()->first(node); node != INVALID; |
| 591 | 601 |
notifier()->next(node)) {
|
| 592 | 602 |
nodes.push_back(node); |
| 593 | 603 |
} |
| 594 | 604 |
for (int i = nodes.size() - 1; i >= 0; --i) {
|
| 595 | 605 |
snapshot.addNode(nodes[i]); |
| 596 | 606 |
} |
| 597 | 607 |
} |
| 598 | 608 |
virtual void clear() {
|
| 599 | 609 |
Node node; |
| 600 | 610 |
for (notifier()->first(node); node != INVALID; |
| 601 | 611 |
notifier()->next(node)) {
|
| 602 | 612 |
snapshot.eraseNode(node); |
| 603 | 613 |
} |
| 604 | 614 |
} |
| 605 | 615 |
|
| 606 | 616 |
Snapshot& snapshot; |
| 607 | 617 |
}; |
| 608 | 618 |
|
| 609 | 619 |
class ArcObserverProxy : public ArcNotifier::ObserverBase {
|
| 610 | 620 |
public: |
| 611 | 621 |
|
| 612 | 622 |
ArcObserverProxy(Snapshot& _snapshot) |
| 613 | 623 |
: snapshot(_snapshot) {}
|
| 614 | 624 |
|
| 615 | 625 |
using ArcNotifier::ObserverBase::attach; |
| 616 | 626 |
using ArcNotifier::ObserverBase::detach; |
| 617 | 627 |
using ArcNotifier::ObserverBase::attached; |
| 618 | 628 |
|
| 619 | 629 |
protected: |
| 620 | 630 |
|
| 621 | 631 |
virtual void add(const Arc& arc) {
|
| 622 | 632 |
snapshot.addArc(arc); |
| 623 | 633 |
} |
| 624 | 634 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 625 | 635 |
for (int i = arcs.size() - 1; i >= 0; ++i) {
|
| 626 | 636 |
snapshot.addArc(arcs[i]); |
| 627 | 637 |
} |
| 628 | 638 |
} |
| 629 | 639 |
virtual void erase(const Arc& arc) {
|
| 630 | 640 |
snapshot.eraseArc(arc); |
| 631 | 641 |
} |
| 632 | 642 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 633 | 643 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 634 | 644 |
snapshot.eraseArc(arcs[i]); |
| 635 | 645 |
} |
| 636 | 646 |
} |
| 637 | 647 |
virtual void build() {
|
| 638 | 648 |
Arc arc; |
| 639 | 649 |
std::vector<Arc> arcs; |
| 640 | 650 |
for (notifier()->first(arc); arc != INVALID; |
| 641 | 651 |
notifier()->next(arc)) {
|
| 642 | 652 |
arcs.push_back(arc); |
| 643 | 653 |
} |
| 644 | 654 |
for (int i = arcs.size() - 1; i >= 0; --i) {
|
| 645 | 655 |
snapshot.addArc(arcs[i]); |
| 646 | 656 |
} |
| 647 | 657 |
} |
| 648 | 658 |
virtual void clear() {
|
| 649 | 659 |
Arc arc; |
| 650 | 660 |
for (notifier()->first(arc); arc != INVALID; |
| 651 | 661 |
notifier()->next(arc)) {
|
| 652 | 662 |
snapshot.eraseArc(arc); |
| 653 | 663 |
} |
| 654 | 664 |
} |
| 655 | 665 |
|
| 656 | 666 |
Snapshot& snapshot; |
| 657 | 667 |
}; |
| 658 | 668 |
|
| 659 | 669 |
ListDigraph *digraph; |
| 660 | 670 |
|
| 661 | 671 |
NodeObserverProxy node_observer_proxy; |
| 662 | 672 |
ArcObserverProxy arc_observer_proxy; |
| 663 | 673 |
|
| 664 | 674 |
std::list<Node> added_nodes; |
| 665 | 675 |
std::list<Arc> added_arcs; |
| 666 | 676 |
|
| 667 | 677 |
|
| 668 | 678 |
void addNode(const Node& node) {
|
| 669 | 679 |
added_nodes.push_front(node); |
| 670 | 680 |
} |
| 671 | 681 |
void eraseNode(const Node& node) {
|
| 672 | 682 |
std::list<Node>::iterator it = |
| 673 | 683 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
| 674 | 684 |
if (it == added_nodes.end()) {
|
| 675 | 685 |
clear(); |
| 676 | 686 |
arc_observer_proxy.detach(); |
| 677 | 687 |
throw NodeNotifier::ImmediateDetach(); |
| 678 | 688 |
} else {
|
| 679 | 689 |
added_nodes.erase(it); |
| 680 | 690 |
} |
| 681 | 691 |
} |
| 682 | 692 |
|
| 683 | 693 |
void addArc(const Arc& arc) {
|
| 684 | 694 |
added_arcs.push_front(arc); |
| 685 | 695 |
} |
| 686 | 696 |
void eraseArc(const Arc& arc) {
|
| 687 | 697 |
std::list<Arc>::iterator it = |
| 688 | 698 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
| 689 | 699 |
if (it == added_arcs.end()) {
|
| 690 | 700 |
clear(); |
| 691 | 701 |
node_observer_proxy.detach(); |
| 692 | 702 |
throw ArcNotifier::ImmediateDetach(); |
| 693 | 703 |
} else {
|
| 694 | 704 |
added_arcs.erase(it); |
| 695 | 705 |
} |
| 696 | 706 |
} |
| 697 | 707 |
|
| 698 | 708 |
void attach(ListDigraph &_digraph) {
|
| 699 | 709 |
digraph = &_digraph; |
| 700 | 710 |
node_observer_proxy.attach(digraph->notifier(Node())); |
| 701 | 711 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
| 702 | 712 |
} |
| 703 | 713 |
|
| 704 | 714 |
void detach() {
|
| 705 | 715 |
node_observer_proxy.detach(); |
| 706 | 716 |
arc_observer_proxy.detach(); |
| 707 | 717 |
} |
| 708 | 718 |
|
| 709 | 719 |
bool attached() const {
|
| 710 | 720 |
return node_observer_proxy.attached(); |
| 711 | 721 |
} |
| 712 | 722 |
|
| 713 | 723 |
void clear() {
|
| 714 | 724 |
added_nodes.clear(); |
| 715 | 725 |
added_arcs.clear(); |
| 716 | 726 |
} |
| 717 | 727 |
|
| 718 | 728 |
public: |
| 719 | 729 |
|
| 720 | 730 |
/// \brief Default constructor. |
| 721 | 731 |
/// |
| 722 | 732 |
/// Default constructor. |
| 723 | 733 |
/// You have to call save() to actually make a snapshot. |
| 724 | 734 |
Snapshot() |
| 725 | 735 |
: digraph(0), node_observer_proxy(*this), |
| 726 | 736 |
arc_observer_proxy(*this) {}
|
| 727 | 737 |
|
| 728 | 738 |
/// \brief Constructor that immediately makes a snapshot. |
| 729 | 739 |
/// |
| 730 | 740 |
/// This constructor immediately makes a snapshot of the given digraph. |
| 731 | 741 |
Snapshot(ListDigraph &gr) |
| 732 | 742 |
: node_observer_proxy(*this), |
| 733 | 743 |
arc_observer_proxy(*this) {
|
| 734 | 744 |
attach(gr); |
| 735 | 745 |
} |
| 736 | 746 |
|
| 737 | 747 |
/// \brief Make a snapshot. |
| 738 | 748 |
/// |
| 739 | 749 |
/// This function makes a snapshot of the given digraph. |
| 740 | 750 |
/// It can be called more than once. In case of a repeated |
| 741 | 751 |
/// call, the previous snapshot gets lost. |
| 742 | 752 |
void save(ListDigraph &gr) {
|
| 743 | 753 |
if (attached()) {
|
| 744 | 754 |
detach(); |
| 745 | 755 |
clear(); |
| 746 | 756 |
} |
| 747 | 757 |
attach(gr); |
| 748 | 758 |
} |
| 749 | 759 |
|
| 750 | 760 |
/// \brief Undo the changes until the last snapshot. |
| 751 | 761 |
/// |
| 752 | 762 |
/// This function undos the changes until the last snapshot |
| 753 | 763 |
/// created by save() or Snapshot(ListDigraph&). |
| 754 | 764 |
/// |
| 755 | 765 |
/// \warning This method invalidates the snapshot, i.e. repeated |
| 756 | 766 |
/// restoring is not supported unless you call save() again. |
| 757 | 767 |
void restore() {
|
| 758 | 768 |
detach(); |
| 759 | 769 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
| 760 | 770 |
it != added_arcs.end(); ++it) {
|
| 761 | 771 |
digraph->erase(*it); |
| 762 | 772 |
} |
| 763 | 773 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
| 764 | 774 |
it != added_nodes.end(); ++it) {
|
| 765 | 775 |
digraph->erase(*it); |
| 766 | 776 |
} |
| 767 | 777 |
clear(); |
| 768 | 778 |
} |
| 769 | 779 |
|
| 770 | 780 |
/// \brief Returns \c true if the snapshot is valid. |
| 771 | 781 |
/// |
| 772 | 782 |
/// This function returns \c true if the snapshot is valid. |
| 773 | 783 |
bool valid() const {
|
| 774 | 784 |
return attached(); |
| 775 | 785 |
} |
| 776 | 786 |
}; |
| 777 | 787 |
|
| 778 | 788 |
}; |
| 779 | 789 |
|
| 780 | 790 |
///@} |
| 781 | 791 |
|
| 782 | 792 |
class ListGraphBase {
|
| 783 | 793 |
|
| 784 | 794 |
protected: |
| 785 | 795 |
|
| 786 | 796 |
struct NodeT {
|
| 787 | 797 |
int first_out; |
| 788 | 798 |
int prev, next; |
| 789 | 799 |
}; |
| 790 | 800 |
|
| 791 | 801 |
struct ArcT {
|
| 792 | 802 |
int target; |
| 793 | 803 |
int prev_out, next_out; |
| 794 | 804 |
}; |
| 795 | 805 |
|
| 796 | 806 |
std::vector<NodeT> nodes; |
| 797 | 807 |
|
| 798 | 808 |
int first_node; |
| 799 | 809 |
|
| 800 | 810 |
int first_free_node; |
| 801 | 811 |
|
| 802 | 812 |
std::vector<ArcT> arcs; |
| 803 | 813 |
|
| 804 | 814 |
int first_free_arc; |
| 805 | 815 |
|
| 806 | 816 |
public: |
| 807 | 817 |
|
| 808 | 818 |
typedef ListGraphBase Graph; |
| 809 | 819 |
|
| 810 | 820 |
class Node {
|
| 811 | 821 |
friend class ListGraphBase; |
| 812 | 822 |
protected: |
| 813 | 823 |
|
| 814 | 824 |
int id; |
| 815 | 825 |
explicit Node(int pid) { id = pid;}
|
| 816 | 826 |
|
| 817 | 827 |
public: |
| 818 | 828 |
Node() {}
|
| 819 | 829 |
Node (Invalid) { id = -1; }
|
| 820 | 830 |
bool operator==(const Node& node) const {return id == node.id;}
|
| 821 | 831 |
bool operator!=(const Node& node) const {return id != node.id;}
|
| 822 | 832 |
bool operator<(const Node& node) const {return id < node.id;}
|
| 823 | 833 |
}; |
| 824 | 834 |
|
| 825 | 835 |
class Edge {
|
| 826 | 836 |
friend class ListGraphBase; |
| 827 | 837 |
protected: |
| 828 | 838 |
|
| 829 | 839 |
int id; |
| 830 | 840 |
explicit Edge(int pid) { id = pid;}
|
| 831 | 841 |
|
| 832 | 842 |
public: |
| 833 | 843 |
Edge() {}
|
| 834 | 844 |
Edge (Invalid) { id = -1; }
|
| 835 | 845 |
bool operator==(const Edge& edge) const {return id == edge.id;}
|
| 836 | 846 |
bool operator!=(const Edge& edge) const {return id != edge.id;}
|
| 837 | 847 |
bool operator<(const Edge& edge) const {return id < edge.id;}
|
| 838 | 848 |
}; |
| 839 | 849 |
|
| 840 | 850 |
class Arc {
|
| 841 | 851 |
friend class ListGraphBase; |
| 842 | 852 |
protected: |
| 843 | 853 |
|
| 844 | 854 |
int id; |
| 845 | 855 |
explicit Arc(int pid) { id = pid;}
|
| 846 | 856 |
|
| 847 | 857 |
public: |
| 848 | 858 |
operator Edge() const {
|
| 849 | 859 |
return id != -1 ? edgeFromId(id / 2) : INVALID; |
| 850 | 860 |
} |
| 851 | 861 |
|
| 852 | 862 |
Arc() {}
|
| 853 | 863 |
Arc (Invalid) { id = -1; }
|
| 854 | 864 |
bool operator==(const Arc& arc) const {return id == arc.id;}
|
| 855 | 865 |
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
| 856 | 866 |
bool operator<(const Arc& arc) const {return id < arc.id;}
|
| 857 | 867 |
}; |
| 858 | 868 |
|
| 859 | 869 |
ListGraphBase() |
| 860 | 870 |
: nodes(), first_node(-1), |
| 861 | 871 |
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
| 862 | 872 |
|
| 863 | 873 |
|
| 864 | 874 |
int maxNodeId() const { return nodes.size()-1; }
|
| 865 | 875 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 866 | 876 |
int maxArcId() const { return arcs.size()-1; }
|
| 867 | 877 |
|
| 868 | 878 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
|
| 869 | 879 |
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
| 870 | 880 |
|
| 871 | 881 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
|
| 872 | 882 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
|
| 873 | 883 |
|
| 874 | 884 |
static bool direction(Arc e) {
|
| 875 | 885 |
return (e.id & 1) == 1; |
| 876 | 886 |
} |
| 877 | 887 |
|
| 878 | 888 |
static Arc direct(Edge e, bool d) {
|
| 879 | 889 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
| 880 | 890 |
} |
| 881 | 891 |
|
| 882 | 892 |
void first(Node& node) const {
|
| 883 | 893 |
node.id = first_node; |
| 884 | 894 |
} |
| 885 | 895 |
|
| 886 | 896 |
void next(Node& node) const {
|
| 887 | 897 |
node.id = nodes[node.id].next; |
| 888 | 898 |
} |
| 889 | 899 |
|
| 890 | 900 |
void first(Arc& e) const {
|
| 891 | 901 |
int n = first_node; |
| 892 | 902 |
while (n != -1 && nodes[n].first_out == -1) {
|
| 893 | 903 |
n = nodes[n].next; |
| 894 | 904 |
} |
| 895 | 905 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
| 896 | 906 |
} |
| 897 | 907 |
|
| 898 | 908 |
void next(Arc& e) const {
|
| 899 | 909 |
if (arcs[e.id].next_out != -1) {
|
| 900 | 910 |
e.id = arcs[e.id].next_out; |
| 901 | 911 |
} else {
|
| 902 | 912 |
int n = nodes[arcs[e.id ^ 1].target].next; |
| 903 | 913 |
while(n != -1 && nodes[n].first_out == -1) {
|
| 904 | 914 |
n = nodes[n].next; |
| 905 | 915 |
} |
| 906 | 916 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
| 907 | 917 |
} |
| 908 | 918 |
} |
| 909 | 919 |
|
| 910 | 920 |
void first(Edge& e) const {
|
| 911 | 921 |
int n = first_node; |
| 912 | 922 |
while (n != -1) {
|
| 913 | 923 |
e.id = nodes[n].first_out; |
| 914 | 924 |
while ((e.id & 1) != 1) {
|
| 915 | 925 |
e.id = arcs[e.id].next_out; |
| 916 | 926 |
} |
| 917 | 927 |
if (e.id != -1) {
|
| 918 | 928 |
e.id /= 2; |
| 919 | 929 |
return; |
| 920 | 930 |
} |
| 921 | 931 |
n = nodes[n].next; |
| 922 | 932 |
} |
| 923 | 933 |
e.id = -1; |
| 924 | 934 |
} |
| 925 | 935 |
|
| 926 | 936 |
void next(Edge& e) const {
|
| 927 | 937 |
int n = arcs[e.id * 2].target; |
| 928 | 938 |
e.id = arcs[(e.id * 2) | 1].next_out; |
| 929 | 939 |
while ((e.id & 1) != 1) {
|
| 930 | 940 |
e.id = arcs[e.id].next_out; |
| 931 | 941 |
} |
| 932 | 942 |
if (e.id != -1) {
|
| 933 | 943 |
e.id /= 2; |
| 934 | 944 |
return; |
| 935 | 945 |
} |
| 936 | 946 |
n = nodes[n].next; |
| 937 | 947 |
while (n != -1) {
|
| 938 | 948 |
e.id = nodes[n].first_out; |
| 939 | 949 |
while ((e.id & 1) != 1) {
|
| 940 | 950 |
e.id = arcs[e.id].next_out; |
| 941 | 951 |
} |
| 942 | 952 |
if (e.id != -1) {
|
| 943 | 953 |
e.id /= 2; |
| 944 | 954 |
return; |
| 945 | 955 |
} |
| 946 | 956 |
n = nodes[n].next; |
| 947 | 957 |
} |
| 948 | 958 |
e.id = -1; |
| 949 | 959 |
} |
| 950 | 960 |
|
| 951 | 961 |
void firstOut(Arc &e, const Node& v) const {
|
| 952 | 962 |
e.id = nodes[v.id].first_out; |
| 953 | 963 |
} |
| 954 | 964 |
void nextOut(Arc &e) const {
|
| 955 | 965 |
e.id = arcs[e.id].next_out; |
| 956 | 966 |
} |
| 957 | 967 |
|
| 958 | 968 |
void firstIn(Arc &e, const Node& v) const {
|
| 959 | 969 |
e.id = ((nodes[v.id].first_out) ^ 1); |
| 960 | 970 |
if (e.id == -2) e.id = -1; |
| 961 | 971 |
} |
| 962 | 972 |
void nextIn(Arc &e) const {
|
| 963 | 973 |
e.id = ((arcs[e.id ^ 1].next_out) ^ 1); |
| 964 | 974 |
if (e.id == -2) e.id = -1; |
| 965 | 975 |
} |
| 966 | 976 |
|
| 967 | 977 |
void firstInc(Edge &e, bool& d, const Node& v) const {
|
| 968 | 978 |
int a = nodes[v.id].first_out; |
| 969 | 979 |
if (a != -1 ) {
|
| 970 | 980 |
e.id = a / 2; |
| 971 | 981 |
d = ((a & 1) == 1); |
| 972 | 982 |
} else {
|
| 973 | 983 |
e.id = -1; |
| 974 | 984 |
d = true; |
| 975 | 985 |
} |
| 976 | 986 |
} |
| 977 | 987 |
void nextInc(Edge &e, bool& d) const {
|
| 978 | 988 |
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); |
| 979 | 989 |
if (a != -1 ) {
|
| 980 | 990 |
e.id = a / 2; |
| 981 | 991 |
d = ((a & 1) == 1); |
| 982 | 992 |
} else {
|
| 983 | 993 |
e.id = -1; |
| 984 | 994 |
d = true; |
| 985 | 995 |
} |
| 986 | 996 |
} |
| 987 | 997 |
|
| 988 | 998 |
static int id(Node v) { return v.id; }
|
| 989 | 999 |
static int id(Arc e) { return e.id; }
|
| 990 | 1000 |
static int id(Edge e) { return e.id; }
|
| 991 | 1001 |
|
| 992 | 1002 |
static Node nodeFromId(int id) { return Node(id);}
|
| 993 | 1003 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 994 | 1004 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 995 | 1005 |
|
| 996 | 1006 |
bool valid(Node n) const {
|
| 997 | 1007 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
| 998 | 1008 |
nodes[n.id].prev != -2; |
| 999 | 1009 |
} |
| 1000 | 1010 |
|
| 1001 | 1011 |
bool valid(Arc a) const {
|
| 1002 | 1012 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
| 1003 | 1013 |
arcs[a.id].prev_out != -2; |
| 1004 | 1014 |
} |
| 1005 | 1015 |
|
| 1006 | 1016 |
bool valid(Edge e) const {
|
| 1007 | 1017 |
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) && |
| 1008 | 1018 |
arcs[2 * e.id].prev_out != -2; |
| 1009 | 1019 |
} |
| 1010 | 1020 |
|
| 1011 | 1021 |
Node addNode() {
|
| 1012 | 1022 |
int n; |
| 1013 | 1023 |
|
| 1014 | 1024 |
if(first_free_node==-1) {
|
| 1015 | 1025 |
n = nodes.size(); |
| 1016 | 1026 |
nodes.push_back(NodeT()); |
| 1017 | 1027 |
} else {
|
| 1018 | 1028 |
n = first_free_node; |
| 1019 | 1029 |
first_free_node = nodes[n].next; |
| 1020 | 1030 |
} |
| 1021 | 1031 |
|
| 1022 | 1032 |
nodes[n].next = first_node; |
| 1023 | 1033 |
if (first_node != -1) nodes[first_node].prev = n; |
| 1024 | 1034 |
first_node = n; |
| 1025 | 1035 |
nodes[n].prev = -1; |
| 1026 | 1036 |
|
| 1027 | 1037 |
nodes[n].first_out = -1; |
| 1028 | 1038 |
|
| 1029 | 1039 |
return Node(n); |
| 1030 | 1040 |
} |
| 1031 | 1041 |
|
| 1032 | 1042 |
Edge addEdge(Node u, Node v) {
|
| 1033 | 1043 |
int n; |
| 1034 | 1044 |
|
| 1035 | 1045 |
if (first_free_arc == -1) {
|
| 1036 | 1046 |
n = arcs.size(); |
| 1037 | 1047 |
arcs.push_back(ArcT()); |
| 1038 | 1048 |
arcs.push_back(ArcT()); |
| 1039 | 1049 |
} else {
|
| 1040 | 1050 |
n = first_free_arc; |
| 1041 | 1051 |
first_free_arc = arcs[n].next_out; |
| 1042 | 1052 |
} |
| 1043 | 1053 |
|
| 1044 | 1054 |
arcs[n].target = u.id; |
| 1045 | 1055 |
arcs[n | 1].target = v.id; |
| 1046 | 1056 |
|
| 1047 | 1057 |
arcs[n].next_out = nodes[v.id].first_out; |
| 1048 | 1058 |
if (nodes[v.id].first_out != -1) {
|
| 1049 | 1059 |
arcs[nodes[v.id].first_out].prev_out = n; |
| 1050 | 1060 |
} |
| 1051 | 1061 |
arcs[n].prev_out = -1; |
| 1052 | 1062 |
nodes[v.id].first_out = n; |
| 1053 | 1063 |
|
| 1054 | 1064 |
arcs[n | 1].next_out = nodes[u.id].first_out; |
| 1055 | 1065 |
if (nodes[u.id].first_out != -1) {
|
| 1056 | 1066 |
arcs[nodes[u.id].first_out].prev_out = (n | 1); |
| 1057 | 1067 |
} |
| 1058 | 1068 |
arcs[n | 1].prev_out = -1; |
| 1059 | 1069 |
nodes[u.id].first_out = (n | 1); |
| 1060 | 1070 |
|
| 1061 | 1071 |
return Edge(n / 2); |
| 1062 | 1072 |
} |
| 1063 | 1073 |
|
| 1064 | 1074 |
void erase(const Node& node) {
|
| 1065 | 1075 |
int n = node.id; |
| 1066 | 1076 |
|
| 1067 | 1077 |
if(nodes[n].next != -1) {
|
| 1068 | 1078 |
nodes[nodes[n].next].prev = nodes[n].prev; |
| 1069 | 1079 |
} |
| 1070 | 1080 |
|
| 1071 | 1081 |
if(nodes[n].prev != -1) {
|
| 1072 | 1082 |
nodes[nodes[n].prev].next = nodes[n].next; |
| 1073 | 1083 |
} else {
|
| 1074 | 1084 |
first_node = nodes[n].next; |
| 1075 | 1085 |
} |
| 1076 | 1086 |
|
| 1077 | 1087 |
nodes[n].next = first_free_node; |
| 1078 | 1088 |
first_free_node = n; |
| 1079 | 1089 |
nodes[n].prev = -2; |
| 1080 | 1090 |
} |
| 1081 | 1091 |
|
| 1082 | 1092 |
void erase(const Edge& edge) {
|
| 1083 | 1093 |
int n = edge.id * 2; |
| 1084 | 1094 |
|
| 1085 | 1095 |
if (arcs[n].next_out != -1) {
|
| 1086 | 1096 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
| 1087 | 1097 |
} |
| 1088 | 1098 |
|
| 1089 | 1099 |
if (arcs[n].prev_out != -1) {
|
| 1090 | 1100 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
| 1091 | 1101 |
} else {
|
| 1092 | 1102 |
nodes[arcs[n | 1].target].first_out = arcs[n].next_out; |
| 1093 | 1103 |
} |
| 1094 | 1104 |
|
| 1095 | 1105 |
if (arcs[n | 1].next_out != -1) {
|
| 1096 | 1106 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
| 1097 | 1107 |
} |
| 1098 | 1108 |
|
| 1099 | 1109 |
if (arcs[n | 1].prev_out != -1) {
|
| 1100 | 1110 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
| 1101 | 1111 |
} else {
|
| 1102 | 1112 |
nodes[arcs[n].target].first_out = arcs[n | 1].next_out; |
| 1103 | 1113 |
} |
| 1104 | 1114 |
|
| 1105 | 1115 |
arcs[n].next_out = first_free_arc; |
| 1106 | 1116 |
first_free_arc = n; |
| 1107 | 1117 |
arcs[n].prev_out = -2; |
| 1108 | 1118 |
arcs[n | 1].prev_out = -2; |
| 1109 | 1119 |
|
| 1110 | 1120 |
} |
| 1111 | 1121 |
|
| 1112 | 1122 |
void clear() {
|
| 1113 | 1123 |
arcs.clear(); |
| 1114 | 1124 |
nodes.clear(); |
| 1115 | 1125 |
first_node = first_free_node = first_free_arc = -1; |
| 1116 | 1126 |
} |
| 1117 | 1127 |
|
| 1118 | 1128 |
protected: |
| 1119 | 1129 |
|
| 1120 | 1130 |
void changeV(Edge e, Node n) {
|
| 1121 | 1131 |
if(arcs[2 * e.id].next_out != -1) {
|
| 1122 | 1132 |
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; |
| 1123 | 1133 |
} |
| 1124 | 1134 |
if(arcs[2 * e.id].prev_out != -1) {
|
| 1125 | 1135 |
arcs[arcs[2 * e.id].prev_out].next_out = |
| 1126 | 1136 |
arcs[2 * e.id].next_out; |
| 1127 | 1137 |
} else {
|
| 1128 | 1138 |
nodes[arcs[(2 * e.id) | 1].target].first_out = |
| 1129 | 1139 |
arcs[2 * e.id].next_out; |
| 1130 | 1140 |
} |
| 1131 | 1141 |
|
| 1132 | 1142 |
if (nodes[n.id].first_out != -1) {
|
| 1133 | 1143 |
arcs[nodes[n.id].first_out].prev_out = 2 * e.id; |
| 1134 | 1144 |
} |
| 1135 | 1145 |
arcs[(2 * e.id) | 1].target = n.id; |
| 1136 | 1146 |
arcs[2 * e.id].prev_out = -1; |
| 1137 | 1147 |
arcs[2 * e.id].next_out = nodes[n.id].first_out; |
| 1138 | 1148 |
nodes[n.id].first_out = 2 * e.id; |
| 1139 | 1149 |
} |
| 1140 | 1150 |
|
| 1141 | 1151 |
void changeU(Edge e, Node n) {
|
| 1142 | 1152 |
if(arcs[(2 * e.id) | 1].next_out != -1) {
|
| 1143 | 1153 |
arcs[arcs[(2 * e.id) | 1].next_out].prev_out = |
| 1144 | 1154 |
arcs[(2 * e.id) | 1].prev_out; |
| 1145 | 1155 |
} |
| 1146 | 1156 |
if(arcs[(2 * e.id) | 1].prev_out != -1) {
|
| 1147 | 1157 |
arcs[arcs[(2 * e.id) | 1].prev_out].next_out = |
| 1148 | 1158 |
arcs[(2 * e.id) | 1].next_out; |
| 1149 | 1159 |
} else {
|
| 1150 | 1160 |
nodes[arcs[2 * e.id].target].first_out = |
| 1151 | 1161 |
arcs[(2 * e.id) | 1].next_out; |
| 1152 | 1162 |
} |
| 1153 | 1163 |
|
| 1154 | 1164 |
if (nodes[n.id].first_out != -1) {
|
| 1155 | 1165 |
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); |
| 1156 | 1166 |
} |
| 1157 | 1167 |
arcs[2 * e.id].target = n.id; |
| 1158 | 1168 |
arcs[(2 * e.id) | 1].prev_out = -1; |
| 1159 | 1169 |
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; |
| 1160 | 1170 |
nodes[n.id].first_out = ((2 * e.id) | 1); |
| 1161 | 1171 |
} |
| 1162 | 1172 |
|
| 1163 | 1173 |
}; |
| 1164 | 1174 |
|
| 1165 | 1175 |
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase; |
| 1166 | 1176 |
|
| 1167 | 1177 |
|
| 1168 | 1178 |
/// \addtogroup graphs |
| 1169 | 1179 |
/// @{
|
| 1170 | 1180 |
|
| 1171 | 1181 |
///A general undirected graph structure. |
| 1172 | 1182 |
|
| 1173 | 1183 |
///\ref ListGraph is a versatile and fast undirected graph |
| 1174 | 1184 |
///implementation based on linked lists that are stored in |
| 1175 | 1185 |
///\c std::vector structures. |
| 1176 | 1186 |
/// |
| 1177 | 1187 |
///This type fully conforms to the \ref concepts::Graph "Graph concept" |
| 1178 | 1188 |
///and it also provides several useful additional functionalities. |
| 1179 | 1189 |
///Most of its member functions and nested classes are documented |
| 1180 | 1190 |
///only in the concept class. |
| 1181 | 1191 |
/// |
| 1192 |
///This class provides only linear time counting for nodes, edges and arcs. |
|
| 1193 |
/// |
|
| 1182 | 1194 |
///\sa concepts::Graph |
| 1183 | 1195 |
///\sa ListDigraph |
| 1184 | 1196 |
class ListGraph : public ExtendedListGraphBase {
|
| 1185 | 1197 |
typedef ExtendedListGraphBase Parent; |
| 1186 | 1198 |
|
| 1187 | 1199 |
private: |
| 1188 | 1200 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
| 1189 | 1201 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
|
| 1190 | 1202 |
/// \brief Assignment of a graph to another one is \e not allowed. |
| 1191 | 1203 |
/// Use GraphCopy instead. |
| 1192 | 1204 |
void operator=(const ListGraph &) {}
|
| 1193 | 1205 |
public: |
| 1194 | 1206 |
/// Constructor |
| 1195 | 1207 |
|
| 1196 | 1208 |
/// Constructor. |
| 1197 | 1209 |
/// |
| 1198 | 1210 |
ListGraph() {}
|
| 1199 | 1211 |
|
| 1200 | 1212 |
typedef Parent::OutArcIt IncEdgeIt; |
| 1201 | 1213 |
|
| 1202 | 1214 |
/// \brief Add a new node to the graph. |
| 1203 | 1215 |
/// |
| 1204 | 1216 |
/// This function adds a new node to the graph. |
| 1205 | 1217 |
/// \return The new node. |
| 1206 | 1218 |
Node addNode() { return Parent::addNode(); }
|
| 1207 | 1219 |
|
| 1208 | 1220 |
/// \brief Add a new edge to the graph. |
| 1209 | 1221 |
/// |
| 1210 | 1222 |
/// This function adds a new edge to the graph between nodes |
| 1211 | 1223 |
/// \c u and \c v with inherent orientation from node \c u to |
| 1212 | 1224 |
/// node \c v. |
| 1213 | 1225 |
/// \return The new edge. |
| 1214 | 1226 |
Edge addEdge(Node u, Node v) {
|
| 1215 | 1227 |
return Parent::addEdge(u, v); |
| 1216 | 1228 |
} |
| 1217 | 1229 |
|
| 1218 | 1230 |
///\brief Erase a node from the graph. |
| 1219 | 1231 |
/// |
| 1220 |
/// This function erases the given node |
|
| 1232 |
/// This function erases the given node along with its incident arcs |
|
| 1233 |
/// from the graph. |
|
| 1234 |
/// |
|
| 1235 |
/// \note All iterators referencing the removed node or the incident |
|
| 1236 |
/// edges are invalidated, of course. |
|
| 1221 | 1237 |
void erase(Node n) { Parent::erase(n); }
|
| 1222 | 1238 |
|
| 1223 | 1239 |
///\brief Erase an edge from the graph. |
| 1224 | 1240 |
/// |
| 1225 | 1241 |
/// This function erases the given edge from the graph. |
| 1242 |
/// |
|
| 1243 |
/// \note All iterators referencing the removed edge are invalidated, |
|
| 1244 |
/// of course. |
|
| 1226 | 1245 |
void erase(Edge e) { Parent::erase(e); }
|
| 1227 | 1246 |
/// Node validity check |
| 1228 | 1247 |
|
| 1229 | 1248 |
/// This function gives back \c true if the given node is valid, |
| 1230 | 1249 |
/// i.e. it is a real node of the graph. |
| 1231 | 1250 |
/// |
| 1232 | 1251 |
/// \warning A removed node could become valid again if new nodes are |
| 1233 | 1252 |
/// added to the graph. |
| 1234 | 1253 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 1235 | 1254 |
/// Edge validity check |
| 1236 | 1255 |
|
| 1237 | 1256 |
/// This function gives back \c true if the given edge is valid, |
| 1238 | 1257 |
/// i.e. it is a real edge of the graph. |
| 1239 | 1258 |
/// |
| 1240 | 1259 |
/// \warning A removed edge could become valid again if new edges are |
| 1241 | 1260 |
/// added to the graph. |
| 1242 | 1261 |
bool valid(Edge e) const { return Parent::valid(e); }
|
| 1243 | 1262 |
/// Arc validity check |
| 1244 | 1263 |
|
| 1245 | 1264 |
/// This function gives back \c true if the given arc is valid, |
| 1246 | 1265 |
/// i.e. it is a real arc of the graph. |
| 1247 | 1266 |
/// |
| 1248 | 1267 |
/// \warning A removed arc could become valid again if new edges are |
| 1249 | 1268 |
/// added to the graph. |
| 1250 | 1269 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 1251 | 1270 |
|
| 1252 | 1271 |
/// \brief Change the first node of an edge. |
| 1253 | 1272 |
/// |
| 1254 | 1273 |
/// This function changes the first node of the given edge \c e to \c n. |
| 1255 | 1274 |
/// |
| 1256 | 1275 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
| 1257 | 1276 |
///changed edge are invalidated and all other iterators whose |
| 1258 | 1277 |
///base node is the changed node are also invalidated. |
| 1259 | 1278 |
/// |
| 1260 | 1279 |
///\warning This functionality cannot be used together with the |
| 1261 | 1280 |
///Snapshot feature. |
| 1262 | 1281 |
void changeU(Edge e, Node n) {
|
| 1263 | 1282 |
Parent::changeU(e,n); |
| 1264 | 1283 |
} |
| 1265 | 1284 |
/// \brief Change the second node of an edge. |
| 1266 | 1285 |
/// |
| 1267 | 1286 |
/// This function changes the second node of the given edge \c e to \c n. |
| 1268 | 1287 |
/// |
| 1269 | 1288 |
///\note \c EdgeIt iterators referencing the changed edge remain |
| 1270 | 1289 |
///valid, however \c ArcIt iterators referencing the changed edge and |
| 1271 | 1290 |
///all other iterators whose base node is the changed node are also |
| 1272 | 1291 |
///invalidated. |
| 1273 | 1292 |
/// |
| 1274 | 1293 |
///\warning This functionality cannot be used together with the |
| 1275 | 1294 |
///Snapshot feature. |
| 1276 | 1295 |
void changeV(Edge e, Node n) {
|
| 1277 | 1296 |
Parent::changeV(e,n); |
| 1278 | 1297 |
} |
| 1279 | 1298 |
|
| 1280 | 1299 |
/// \brief Contract two nodes. |
| 1281 | 1300 |
/// |
| 1282 | 1301 |
/// This function contracts the given two nodes. |
| 1283 | 1302 |
/// Node \c b is removed, but instead of deleting |
| 1284 | 1303 |
/// its incident edges, they are joined to node \c a. |
| 1285 | 1304 |
/// If the last parameter \c r is \c true (this is the default value), |
| 1286 | 1305 |
/// then the newly created loops are removed. |
| 1287 | 1306 |
/// |
| 1288 | 1307 |
/// \note The moved edges are joined to node \c a using changeU() |
| 1289 | 1308 |
/// or changeV(), thus all edge and arc iterators whose base node is |
| 1290 | 1309 |
/// \c b are invalidated. |
| 1291 | 1310 |
/// Moreover all iterators referencing node \c b or the removed |
| 1292 | 1311 |
/// loops are also invalidated. Other iterators remain valid. |
| 1293 | 1312 |
/// |
| 1294 | 1313 |
///\warning This functionality cannot be used together with the |
| 1295 | 1314 |
///Snapshot feature. |
| 1296 | 1315 |
void contract(Node a, Node b, bool r = true) {
|
| 1297 | 1316 |
for(IncEdgeIt e(*this, b); e!=INVALID;) {
|
| 1298 | 1317 |
IncEdgeIt f = e; ++f; |
| 1299 | 1318 |
if (r && runningNode(e) == a) {
|
| 1300 | 1319 |
erase(e); |
| 1301 | 1320 |
} else if (u(e) == b) {
|
| 1302 | 1321 |
changeU(e, a); |
| 1303 | 1322 |
} else {
|
| 1304 | 1323 |
changeV(e, a); |
| 1305 | 1324 |
} |
| 1306 | 1325 |
e = f; |
| 1307 | 1326 |
} |
| 1308 | 1327 |
erase(b); |
| 1309 | 1328 |
} |
| 1310 | 1329 |
|
| 1311 | 1330 |
///Clear the graph. |
| 1312 | 1331 |
|
| 1313 | 1332 |
///This function erases all nodes and arcs from the graph. |
| 1314 | 1333 |
/// |
| 1334 |
///\note All iterators of the graph are invalidated, of course. |
|
| 1315 | 1335 |
void clear() {
|
| 1316 | 1336 |
Parent::clear(); |
| 1317 | 1337 |
} |
| 1318 | 1338 |
|
| 1319 | 1339 |
/// Reserve memory for nodes. |
| 1320 | 1340 |
|
| 1321 | 1341 |
/// Using this function, it is possible to avoid superfluous memory |
| 1322 | 1342 |
/// allocation: if you know that the graph you want to build will |
| 1323 | 1343 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
| 1324 | 1344 |
/// then it is worth reserving space for this amount before starting |
| 1325 | 1345 |
/// to build the graph. |
| 1326 | 1346 |
/// \sa reserveEdge() |
| 1327 | 1347 |
void reserveNode(int n) { nodes.reserve(n); };
|
| 1328 | 1348 |
|
| 1329 | 1349 |
/// Reserve memory for edges. |
| 1330 | 1350 |
|
| 1331 | 1351 |
/// Using this function, it is possible to avoid superfluous memory |
| 1332 | 1352 |
/// allocation: if you know that the graph you want to build will |
| 1333 | 1353 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
| 1334 | 1354 |
/// then it is worth reserving space for this amount before starting |
| 1335 | 1355 |
/// to build the graph. |
| 1336 | 1356 |
/// \sa reserveNode() |
| 1337 | 1357 |
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
| 1338 | 1358 |
|
| 1339 | 1359 |
/// \brief Class to make a snapshot of the graph and restore |
| 1340 | 1360 |
/// it later. |
| 1341 | 1361 |
/// |
| 1342 | 1362 |
/// Class to make a snapshot of the graph and restore it later. |
| 1343 | 1363 |
/// |
| 1344 | 1364 |
/// The newly added nodes and edges can be removed |
| 1345 | 1365 |
/// using the restore() function. |
| 1346 | 1366 |
/// |
| 1347 | 1367 |
/// \note After a state is restored, you cannot restore a later state, |
| 1348 | 1368 |
/// i.e. you cannot add the removed nodes and edges again using |
| 1349 | 1369 |
/// another Snapshot instance. |
| 1350 | 1370 |
/// |
| 1351 | 1371 |
/// \warning Node and edge deletions and other modifications |
| 1352 | 1372 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
| 1353 | 1373 |
/// cannot be restored. These events invalidate the snapshot. |
| 1354 | 1374 |
/// However the edges and nodes that were added to the graph after |
| 1355 | 1375 |
/// making the current snapshot can be removed without invalidating it. |
| 1356 | 1376 |
class Snapshot {
|
| 1357 | 1377 |
protected: |
| 1358 | 1378 |
|
| 1359 | 1379 |
typedef Parent::NodeNotifier NodeNotifier; |
| 1360 | 1380 |
|
| 1361 | 1381 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| 1362 | 1382 |
public: |
| 1363 | 1383 |
|
| 1364 | 1384 |
NodeObserverProxy(Snapshot& _snapshot) |
| 1365 | 1385 |
: snapshot(_snapshot) {}
|
| 1366 | 1386 |
|
| 1367 | 1387 |
using NodeNotifier::ObserverBase::attach; |
| 1368 | 1388 |
using NodeNotifier::ObserverBase::detach; |
| 1369 | 1389 |
using NodeNotifier::ObserverBase::attached; |
| 1370 | 1390 |
|
| 1371 | 1391 |
protected: |
| 1372 | 1392 |
|
| 1373 | 1393 |
virtual void add(const Node& node) {
|
| 1374 | 1394 |
snapshot.addNode(node); |
| 1375 | 1395 |
} |
| 1376 | 1396 |
virtual void add(const std::vector<Node>& nodes) {
|
| 1377 | 1397 |
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
| 1378 | 1398 |
snapshot.addNode(nodes[i]); |
| 1379 | 1399 |
} |
| 1380 | 1400 |
} |
| 1381 | 1401 |
virtual void erase(const Node& node) {
|
| 1382 | 1402 |
snapshot.eraseNode(node); |
| 1383 | 1403 |
} |
| 1384 | 1404 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 1385 | 1405 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 1386 | 1406 |
snapshot.eraseNode(nodes[i]); |
| 1387 | 1407 |
} |
| 1388 | 1408 |
} |
| 1389 | 1409 |
virtual void build() {
|
| 1390 | 1410 |
Node node; |
| 1391 | 1411 |
std::vector<Node> nodes; |
| 1392 | 1412 |
for (notifier()->first(node); node != INVALID; |
| 1393 | 1413 |
notifier()->next(node)) {
|
| 1394 | 1414 |
nodes.push_back(node); |
| 1395 | 1415 |
} |
| 1396 | 1416 |
for (int i = nodes.size() - 1; i >= 0; --i) {
|
| 1397 | 1417 |
snapshot.addNode(nodes[i]); |
| 1398 | 1418 |
} |
| 1399 | 1419 |
} |
| 1400 | 1420 |
virtual void clear() {
|
| 1401 | 1421 |
Node node; |
| 1402 | 1422 |
for (notifier()->first(node); node != INVALID; |
| 1403 | 1423 |
notifier()->next(node)) {
|
| 1404 | 1424 |
snapshot.eraseNode(node); |
| 1405 | 1425 |
} |
| 1406 | 1426 |
} |
| 1407 | 1427 |
|
| 1408 | 1428 |
Snapshot& snapshot; |
| 1409 | 1429 |
}; |
| 1410 | 1430 |
|
| 1411 | 1431 |
class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
|
| 1412 | 1432 |
public: |
| 1413 | 1433 |
|
| 1414 | 1434 |
EdgeObserverProxy(Snapshot& _snapshot) |
| 1415 | 1435 |
: snapshot(_snapshot) {}
|
| 1416 | 1436 |
|
| 1417 | 1437 |
using EdgeNotifier::ObserverBase::attach; |
| 1418 | 1438 |
using EdgeNotifier::ObserverBase::detach; |
| 1419 | 1439 |
using EdgeNotifier::ObserverBase::attached; |
| 1420 | 1440 |
|
| 1421 | 1441 |
protected: |
| 1422 | 1442 |
|
| 1423 | 1443 |
virtual void add(const Edge& edge) {
|
| 1424 | 1444 |
snapshot.addEdge(edge); |
| 1425 | 1445 |
} |
| 1426 | 1446 |
virtual void add(const std::vector<Edge>& edges) {
|
| 1427 | 1447 |
for (int i = edges.size() - 1; i >= 0; ++i) {
|
| 1428 | 1448 |
snapshot.addEdge(edges[i]); |
| 1429 | 1449 |
} |
| 1430 | 1450 |
} |
| 1431 | 1451 |
virtual void erase(const Edge& edge) {
|
| 1432 | 1452 |
snapshot.eraseEdge(edge); |
| 1433 | 1453 |
} |
| 1434 | 1454 |
virtual void erase(const std::vector<Edge>& edges) {
|
| 1435 | 1455 |
for (int i = 0; i < int(edges.size()); ++i) {
|
| 1436 | 1456 |
snapshot.eraseEdge(edges[i]); |
| 1437 | 1457 |
} |
| 1438 | 1458 |
} |
| 1439 | 1459 |
virtual void build() {
|
| 1440 | 1460 |
Edge edge; |
| 1441 | 1461 |
std::vector<Edge> edges; |
| 1442 | 1462 |
for (notifier()->first(edge); edge != INVALID; |
| 1443 | 1463 |
notifier()->next(edge)) {
|
| 1444 | 1464 |
edges.push_back(edge); |
| 1445 | 1465 |
} |
| 1446 | 1466 |
for (int i = edges.size() - 1; i >= 0; --i) {
|
| 1447 | 1467 |
snapshot.addEdge(edges[i]); |
| 1448 | 1468 |
} |
| 1449 | 1469 |
} |
| 1450 | 1470 |
virtual void clear() {
|
| 1451 | 1471 |
Edge edge; |
| 1452 | 1472 |
for (notifier()->first(edge); edge != INVALID; |
| 1453 | 1473 |
notifier()->next(edge)) {
|
| 1454 | 1474 |
snapshot.eraseEdge(edge); |
| 1455 | 1475 |
} |
| 1456 | 1476 |
} |
| 1457 | 1477 |
|
| 1458 | 1478 |
Snapshot& snapshot; |
| 1459 | 1479 |
}; |
| 1460 | 1480 |
|
| 1461 | 1481 |
ListGraph *graph; |
| 1462 | 1482 |
|
| 1463 | 1483 |
NodeObserverProxy node_observer_proxy; |
| 1464 | 1484 |
EdgeObserverProxy edge_observer_proxy; |
| 1465 | 1485 |
|
| 1466 | 1486 |
std::list<Node> added_nodes; |
| 1467 | 1487 |
std::list<Edge> added_edges; |
| 1468 | 1488 |
|
| 1469 | 1489 |
|
| 1470 | 1490 |
void addNode(const Node& node) {
|
| 1471 | 1491 |
added_nodes.push_front(node); |
| 1472 | 1492 |
} |
| 1473 | 1493 |
void eraseNode(const Node& node) {
|
| 1474 | 1494 |
std::list<Node>::iterator it = |
| 1475 | 1495 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
| 1476 | 1496 |
if (it == added_nodes.end()) {
|
| 1477 | 1497 |
clear(); |
| 1478 | 1498 |
edge_observer_proxy.detach(); |
| 1479 | 1499 |
throw NodeNotifier::ImmediateDetach(); |
| 1480 | 1500 |
} else {
|
| 1481 | 1501 |
added_nodes.erase(it); |
| 1482 | 1502 |
} |
| 1483 | 1503 |
} |
| 1484 | 1504 |
|
| 1485 | 1505 |
void addEdge(const Edge& edge) {
|
| 1486 | 1506 |
added_edges.push_front(edge); |
| 1487 | 1507 |
} |
| 1488 | 1508 |
void eraseEdge(const Edge& edge) {
|
| 1489 | 1509 |
std::list<Edge>::iterator it = |
| 1490 | 1510 |
std::find(added_edges.begin(), added_edges.end(), edge); |
| 1491 | 1511 |
if (it == added_edges.end()) {
|
| 1492 | 1512 |
clear(); |
| 1493 | 1513 |
node_observer_proxy.detach(); |
| 1494 | 1514 |
throw EdgeNotifier::ImmediateDetach(); |
| 1495 | 1515 |
} else {
|
| 1496 | 1516 |
added_edges.erase(it); |
| 1497 | 1517 |
} |
| 1498 | 1518 |
} |
| 1499 | 1519 |
|
| 1500 | 1520 |
void attach(ListGraph &_graph) {
|
| 1501 | 1521 |
graph = &_graph; |
| 1502 | 1522 |
node_observer_proxy.attach(graph->notifier(Node())); |
| 1503 | 1523 |
edge_observer_proxy.attach(graph->notifier(Edge())); |
| 1504 | 1524 |
} |
| 1505 | 1525 |
|
| 1506 | 1526 |
void detach() {
|
| 1507 | 1527 |
node_observer_proxy.detach(); |
| 1508 | 1528 |
edge_observer_proxy.detach(); |
| 1509 | 1529 |
} |
| 1510 | 1530 |
|
| 1511 | 1531 |
bool attached() const {
|
| 1512 | 1532 |
return node_observer_proxy.attached(); |
| 1513 | 1533 |
} |
| 1514 | 1534 |
|
| 1515 | 1535 |
void clear() {
|
| 1516 | 1536 |
added_nodes.clear(); |
| 1517 | 1537 |
added_edges.clear(); |
| 1518 | 1538 |
} |
| 1519 | 1539 |
|
| 1520 | 1540 |
public: |
| 1521 | 1541 |
|
| 1522 | 1542 |
/// \brief Default constructor. |
| 1523 | 1543 |
/// |
| 1524 | 1544 |
/// Default constructor. |
| 1525 | 1545 |
/// You have to call save() to actually make a snapshot. |
| 1526 | 1546 |
Snapshot() |
| 1527 | 1547 |
: graph(0), node_observer_proxy(*this), |
| 1528 | 1548 |
edge_observer_proxy(*this) {}
|
| 1529 | 1549 |
|
| 1530 | 1550 |
/// \brief Constructor that immediately makes a snapshot. |
| 1531 | 1551 |
/// |
| 1532 | 1552 |
/// This constructor immediately makes a snapshot of the given graph. |
| 1533 | 1553 |
Snapshot(ListGraph &gr) |
| 1534 | 1554 |
: node_observer_proxy(*this), |
| 1535 | 1555 |
edge_observer_proxy(*this) {
|
| 1536 | 1556 |
attach(gr); |
| 1537 | 1557 |
} |
| 1538 | 1558 |
|
| 1539 | 1559 |
/// \brief Make a snapshot. |
| 1540 | 1560 |
/// |
| 1541 | 1561 |
/// This function makes a snapshot of the given graph. |
| 1542 | 1562 |
/// It can be called more than once. In case of a repeated |
| 1543 | 1563 |
/// call, the previous snapshot gets lost. |
| 1544 | 1564 |
void save(ListGraph &gr) {
|
| 1545 | 1565 |
if (attached()) {
|
| 1546 | 1566 |
detach(); |
| 1547 | 1567 |
clear(); |
| 1548 | 1568 |
} |
| 1549 | 1569 |
attach(gr); |
| 1550 | 1570 |
} |
| 1551 | 1571 |
|
| 1552 | 1572 |
/// \brief Undo the changes until the last snapshot. |
| 1553 | 1573 |
/// |
| 1554 | 1574 |
/// This function undos the changes until the last snapshot |
| 1555 | 1575 |
/// created by save() or Snapshot(ListGraph&). |
| 1556 | 1576 |
/// |
| 1557 | 1577 |
/// \warning This method invalidates the snapshot, i.e. repeated |
| 1558 | 1578 |
/// restoring is not supported unless you call save() again. |
| 1559 | 1579 |
void restore() {
|
| 1560 | 1580 |
detach(); |
| 1561 | 1581 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
| 1562 | 1582 |
it != added_edges.end(); ++it) {
|
| 1563 | 1583 |
graph->erase(*it); |
| 1564 | 1584 |
} |
| 1565 | 1585 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
| 1566 | 1586 |
it != added_nodes.end(); ++it) {
|
| 1567 | 1587 |
graph->erase(*it); |
| 1568 | 1588 |
} |
| 1569 | 1589 |
clear(); |
| 1570 | 1590 |
} |
| 1571 | 1591 |
|
| 1572 | 1592 |
/// \brief Returns \c true if the snapshot is valid. |
| 1573 | 1593 |
/// |
| 1574 | 1594 |
/// This function returns \c true if the snapshot is valid. |
| 1575 | 1595 |
bool valid() const {
|
| 1576 | 1596 |
return attached(); |
| 1577 | 1597 |
} |
| 1578 | 1598 |
}; |
| 1579 | 1599 |
}; |
| 1580 | 1600 |
|
| 1581 | 1601 |
/// @} |
| 1582 | 1602 |
} //namespace lemon |
| 1583 | 1603 |
|
| 1584 | 1604 |
|
| 1585 | 1605 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_SMART_GRAPH_H |
| 20 | 20 |
#define LEMON_SMART_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graphs |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief SmartDigraph and SmartGraph classes. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/bits/graph_extender.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
class SmartDigraph; |
| 35 | 35 |
|
| 36 | 36 |
class SmartDigraphBase {
|
| 37 | 37 |
protected: |
| 38 | 38 |
|
| 39 | 39 |
struct NodeT |
| 40 | 40 |
{
|
| 41 | 41 |
int first_in, first_out; |
| 42 | 42 |
NodeT() {}
|
| 43 | 43 |
}; |
| 44 | 44 |
struct ArcT |
| 45 | 45 |
{
|
| 46 | 46 |
int target, source, next_in, next_out; |
| 47 | 47 |
ArcT() {}
|
| 48 | 48 |
}; |
| 49 | 49 |
|
| 50 | 50 |
std::vector<NodeT> nodes; |
| 51 | 51 |
std::vector<ArcT> arcs; |
| 52 | 52 |
|
| 53 | 53 |
public: |
| 54 | 54 |
|
| 55 | 55 |
typedef SmartDigraphBase Digraph; |
| 56 | 56 |
|
| 57 | 57 |
class Node; |
| 58 | 58 |
class Arc; |
| 59 | 59 |
|
| 60 | 60 |
public: |
| 61 | 61 |
|
| 62 | 62 |
SmartDigraphBase() : nodes(), arcs() { }
|
| 63 | 63 |
SmartDigraphBase(const SmartDigraphBase &_g) |
| 64 | 64 |
: nodes(_g.nodes), arcs(_g.arcs) { }
|
| 65 | 65 |
|
| 66 | 66 |
typedef True NodeNumTag; |
| 67 | 67 |
typedef True ArcNumTag; |
| 68 | 68 |
|
| 69 | 69 |
int nodeNum() const { return nodes.size(); }
|
| 70 | 70 |
int arcNum() const { return arcs.size(); }
|
| 71 | 71 |
|
| 72 | 72 |
int maxNodeId() const { return nodes.size()-1; }
|
| 73 | 73 |
int maxArcId() const { return arcs.size()-1; }
|
| 74 | 74 |
|
| 75 | 75 |
Node addNode() {
|
| 76 | 76 |
int n = nodes.size(); |
| 77 | 77 |
nodes.push_back(NodeT()); |
| 78 | 78 |
nodes[n].first_in = -1; |
| 79 | 79 |
nodes[n].first_out = -1; |
| 80 | 80 |
return Node(n); |
| 81 | 81 |
} |
| 82 | 82 |
|
| 83 | 83 |
Arc addArc(Node u, Node v) {
|
| 84 | 84 |
int n = arcs.size(); |
| 85 | 85 |
arcs.push_back(ArcT()); |
| 86 | 86 |
arcs[n].source = u._id; |
| 87 | 87 |
arcs[n].target = v._id; |
| 88 | 88 |
arcs[n].next_out = nodes[u._id].first_out; |
| 89 | 89 |
arcs[n].next_in = nodes[v._id].first_in; |
| 90 | 90 |
nodes[u._id].first_out = nodes[v._id].first_in = n; |
| 91 | 91 |
|
| 92 | 92 |
return Arc(n); |
| 93 | 93 |
} |
| 94 | 94 |
|
| 95 | 95 |
void clear() {
|
| 96 | 96 |
arcs.clear(); |
| 97 | 97 |
nodes.clear(); |
| 98 | 98 |
} |
| 99 | 99 |
|
| 100 | 100 |
Node source(Arc a) const { return Node(arcs[a._id].source); }
|
| 101 | 101 |
Node target(Arc a) const { return Node(arcs[a._id].target); }
|
| 102 | 102 |
|
| 103 | 103 |
static int id(Node v) { return v._id; }
|
| 104 | 104 |
static int id(Arc a) { return a._id; }
|
| 105 | 105 |
|
| 106 | 106 |
static Node nodeFromId(int id) { return Node(id);}
|
| 107 | 107 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 108 | 108 |
|
| 109 | 109 |
bool valid(Node n) const {
|
| 110 | 110 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
| 111 | 111 |
} |
| 112 | 112 |
bool valid(Arc a) const {
|
| 113 | 113 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
| 114 | 114 |
} |
| 115 | 115 |
|
| 116 | 116 |
class Node {
|
| 117 | 117 |
friend class SmartDigraphBase; |
| 118 | 118 |
friend class SmartDigraph; |
| 119 | 119 |
|
| 120 | 120 |
protected: |
| 121 | 121 |
int _id; |
| 122 | 122 |
explicit Node(int id) : _id(id) {}
|
| 123 | 123 |
public: |
| 124 | 124 |
Node() {}
|
| 125 | 125 |
Node (Invalid) : _id(-1) {}
|
| 126 | 126 |
bool operator==(const Node i) const {return _id == i._id;}
|
| 127 | 127 |
bool operator!=(const Node i) const {return _id != i._id;}
|
| 128 | 128 |
bool operator<(const Node i) const {return _id < i._id;}
|
| 129 | 129 |
}; |
| 130 | 130 |
|
| 131 | 131 |
|
| 132 | 132 |
class Arc {
|
| 133 | 133 |
friend class SmartDigraphBase; |
| 134 | 134 |
friend class SmartDigraph; |
| 135 | 135 |
|
| 136 | 136 |
protected: |
| 137 | 137 |
int _id; |
| 138 | 138 |
explicit Arc(int id) : _id(id) {}
|
| 139 | 139 |
public: |
| 140 | 140 |
Arc() { }
|
| 141 | 141 |
Arc (Invalid) : _id(-1) {}
|
| 142 | 142 |
bool operator==(const Arc i) const {return _id == i._id;}
|
| 143 | 143 |
bool operator!=(const Arc i) const {return _id != i._id;}
|
| 144 | 144 |
bool operator<(const Arc i) const {return _id < i._id;}
|
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
void first(Node& node) const {
|
| 148 | 148 |
node._id = nodes.size() - 1; |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
static void next(Node& node) {
|
| 152 | 152 |
--node._id; |
| 153 | 153 |
} |
| 154 | 154 |
|
| 155 | 155 |
void first(Arc& arc) const {
|
| 156 | 156 |
arc._id = arcs.size() - 1; |
| 157 | 157 |
} |
| 158 | 158 |
|
| 159 | 159 |
static void next(Arc& arc) {
|
| 160 | 160 |
--arc._id; |
| 161 | 161 |
} |
| 162 | 162 |
|
| 163 | 163 |
void firstOut(Arc& arc, const Node& node) const {
|
| 164 | 164 |
arc._id = nodes[node._id].first_out; |
| 165 | 165 |
} |
| 166 | 166 |
|
| 167 | 167 |
void nextOut(Arc& arc) const {
|
| 168 | 168 |
arc._id = arcs[arc._id].next_out; |
| 169 | 169 |
} |
| 170 | 170 |
|
| 171 | 171 |
void firstIn(Arc& arc, const Node& node) const {
|
| 172 | 172 |
arc._id = nodes[node._id].first_in; |
| 173 | 173 |
} |
| 174 | 174 |
|
| 175 | 175 |
void nextIn(Arc& arc) const {
|
| 176 | 176 |
arc._id = arcs[arc._id].next_in; |
| 177 | 177 |
} |
| 178 | 178 |
|
| 179 | 179 |
}; |
| 180 | 180 |
|
| 181 | 181 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
| 182 | 182 |
|
| 183 | 183 |
///\ingroup graphs |
| 184 | 184 |
/// |
| 185 | 185 |
///\brief A smart directed graph class. |
| 186 | 186 |
/// |
| 187 | 187 |
///\ref SmartDigraph is a simple and fast digraph implementation. |
| 188 | 188 |
///It is also quite memory efficient but at the price |
| 189 | 189 |
///that it does not support node and arc deletion |
| 190 | 190 |
///(except for the Snapshot feature). |
| 191 | 191 |
/// |
| 192 | 192 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
| 193 | 193 |
///and it also provides some additional functionalities. |
| 194 | 194 |
///Most of its member functions and nested classes are documented |
| 195 | 195 |
///only in the concept class. |
| 196 | 196 |
/// |
| 197 |
///This class provides constant time counting for nodes and arcs. |
|
| 198 |
/// |
|
| 197 | 199 |
///\sa concepts::Digraph |
| 198 | 200 |
///\sa SmartGraph |
| 199 | 201 |
class SmartDigraph : public ExtendedSmartDigraphBase {
|
| 200 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
| 201 | 203 |
|
| 202 | 204 |
private: |
| 203 | 205 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
| 204 | 206 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
|
| 205 | 207 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
| 206 | 208 |
/// Use DigraphCopy instead. |
| 207 | 209 |
void operator=(const SmartDigraph &) {}
|
| 208 | 210 |
|
| 209 | 211 |
public: |
| 210 | 212 |
|
| 211 | 213 |
/// Constructor |
| 212 | 214 |
|
| 213 | 215 |
/// Constructor. |
| 214 | 216 |
/// |
| 215 | 217 |
SmartDigraph() {};
|
| 216 | 218 |
|
| 217 | 219 |
///Add a new node to the digraph. |
| 218 | 220 |
|
| 219 | 221 |
///This function adds a new node to the digraph. |
| 220 | 222 |
///\return The new node. |
| 221 | 223 |
Node addNode() { return Parent::addNode(); }
|
| 222 | 224 |
|
| 223 | 225 |
///Add a new arc to the digraph. |
| 224 | 226 |
|
| 225 | 227 |
///This function adds a new arc to the digraph with source node \c s |
| 226 | 228 |
///and target node \c t. |
| 227 | 229 |
///\return The new arc. |
| 228 | 230 |
Arc addArc(Node s, Node t) {
|
| 229 | 231 |
return Parent::addArc(s, t); |
| 230 | 232 |
} |
| 231 | 233 |
|
| 232 | 234 |
/// \brief Node validity check |
| 233 | 235 |
/// |
| 234 | 236 |
/// This function gives back \c true if the given node is valid, |
| 235 | 237 |
/// i.e. it is a real node of the digraph. |
| 236 | 238 |
/// |
| 237 | 239 |
/// \warning A removed node (using Snapshot) could become valid again |
| 238 | 240 |
/// if new nodes are added to the digraph. |
| 239 | 241 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 240 | 242 |
|
| 241 | 243 |
/// \brief Arc validity check |
| 242 | 244 |
/// |
| 243 | 245 |
/// This function gives back \c true if the given arc is valid, |
| 244 | 246 |
/// i.e. it is a real arc of the digraph. |
| 245 | 247 |
/// |
| 246 | 248 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 247 | 249 |
/// if new arcs are added to the graph. |
| 248 | 250 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 249 | 251 |
|
| 250 | 252 |
///Split a node. |
| 251 | 253 |
|
| 252 | 254 |
///This function splits the given node. First, a new node is added |
| 253 | 255 |
///to the digraph, then the source of each outgoing arc of node \c n |
| 254 | 256 |
///is moved to this new node. |
| 255 | 257 |
///If the second parameter \c connect is \c true (this is the default |
| 256 | 258 |
///value), then a new arc from node \c n to the newly created node |
| 257 | 259 |
///is also added. |
| 258 | 260 |
///\return The newly created node. |
| 259 | 261 |
/// |
| 260 | 262 |
///\note All iterators remain valid. |
| 261 | 263 |
/// |
| 262 | 264 |
///\warning This functionality cannot be used together with the Snapshot |
| 263 | 265 |
///feature. |
| 264 | 266 |
Node split(Node n, bool connect = true) |
| 265 | 267 |
{
|
| 266 | 268 |
Node b = addNode(); |
| 267 | 269 |
nodes[b._id].first_out=nodes[n._id].first_out; |
| 268 | 270 |
nodes[n._id].first_out=-1; |
| 269 | 271 |
for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) {
|
| 270 | 272 |
arcs[i].source=b._id; |
| 271 | 273 |
} |
| 272 | 274 |
if(connect) addArc(n,b); |
| 273 | 275 |
return b; |
| 274 | 276 |
} |
| 275 | 277 |
|
| 276 | 278 |
///Clear the digraph. |
| 277 | 279 |
|
| 278 | 280 |
///This function erases all nodes and arcs from the digraph. |
| 279 | 281 |
/// |
| 280 | 282 |
void clear() {
|
| 281 | 283 |
Parent::clear(); |
| 282 | 284 |
} |
| 283 | 285 |
|
| 284 | 286 |
/// Reserve memory for nodes. |
| 285 | 287 |
|
| 286 | 288 |
/// Using this function, it is possible to avoid superfluous memory |
| 287 | 289 |
/// allocation: if you know that the digraph you want to build will |
| 288 | 290 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
| 289 | 291 |
/// then it is worth reserving space for this amount before starting |
| 290 | 292 |
/// to build the digraph. |
| 291 | 293 |
/// \sa reserveArc() |
| 292 | 294 |
void reserveNode(int n) { nodes.reserve(n); };
|
| 293 | 295 |
|
| 294 | 296 |
/// Reserve memory for arcs. |
| 295 | 297 |
|
| 296 | 298 |
/// Using this function, it is possible to avoid superfluous memory |
| 297 | 299 |
/// allocation: if you know that the digraph you want to build will |
| 298 | 300 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
| 299 | 301 |
/// then it is worth reserving space for this amount before starting |
| 300 | 302 |
/// to build the digraph. |
| 301 | 303 |
/// \sa reserveNode() |
| 302 | 304 |
void reserveArc(int m) { arcs.reserve(m); };
|
| 303 | 305 |
|
| 304 | 306 |
public: |
| 305 | 307 |
|
| 306 | 308 |
class Snapshot; |
| 307 | 309 |
|
| 308 | 310 |
protected: |
| 309 | 311 |
|
| 310 | 312 |
void restoreSnapshot(const Snapshot &s) |
| 311 | 313 |
{
|
| 312 | 314 |
while(s.arc_num<arcs.size()) {
|
| 313 | 315 |
Arc arc = arcFromId(arcs.size()-1); |
| 314 | 316 |
Parent::notifier(Arc()).erase(arc); |
| 315 | 317 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
| 316 | 318 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
| 317 | 319 |
arcs.pop_back(); |
| 318 | 320 |
} |
| 319 | 321 |
while(s.node_num<nodes.size()) {
|
| 320 | 322 |
Node node = nodeFromId(nodes.size()-1); |
| 321 | 323 |
Parent::notifier(Node()).erase(node); |
| 322 | 324 |
nodes.pop_back(); |
| 323 | 325 |
} |
| 324 | 326 |
} |
| 325 | 327 |
|
| 326 | 328 |
public: |
| 327 | 329 |
|
| 328 | 330 |
///Class to make a snapshot of the digraph and to restore it later. |
| 329 | 331 |
|
| 330 | 332 |
///Class to make a snapshot of the digraph and to restore it later. |
| 331 | 333 |
/// |
| 332 | 334 |
///The newly added nodes and arcs can be removed using the |
| 333 | 335 |
///restore() function. This is the only way for deleting nodes and/or |
| 334 | 336 |
///arcs from a SmartDigraph structure. |
| 335 | 337 |
/// |
| 336 | 338 |
///\note After a state is restored, you cannot restore a later state, |
| 337 | 339 |
///i.e. you cannot add the removed nodes and arcs again using |
| 338 | 340 |
///another Snapshot instance. |
| 339 | 341 |
/// |
| 340 | 342 |
///\warning Node splitting cannot be restored. |
| 341 | 343 |
///\warning The validity of the snapshot is not stored due to |
| 342 | 344 |
///performance reasons. If you do not use the snapshot correctly, |
| 343 | 345 |
///it can cause broken program, invalid or not restored state of |
| 344 | 346 |
///the digraph or no change. |
| 345 | 347 |
class Snapshot |
| 346 | 348 |
{
|
| 347 | 349 |
SmartDigraph *_graph; |
| 348 | 350 |
protected: |
| 349 | 351 |
friend class SmartDigraph; |
| 350 | 352 |
unsigned int node_num; |
| 351 | 353 |
unsigned int arc_num; |
| 352 | 354 |
public: |
| 353 | 355 |
///Default constructor. |
| 354 | 356 |
|
| 355 | 357 |
///Default constructor. |
| 356 | 358 |
///You have to call save() to actually make a snapshot. |
| 357 | 359 |
Snapshot() : _graph(0) {}
|
| 358 | 360 |
///Constructor that immediately makes a snapshot |
| 359 | 361 |
|
| 360 | 362 |
///This constructor immediately makes a snapshot of the given digraph. |
| 361 | 363 |
/// |
| 362 | 364 |
Snapshot(SmartDigraph &gr) : _graph(&gr) {
|
| 363 | 365 |
node_num=_graph->nodes.size(); |
| 364 | 366 |
arc_num=_graph->arcs.size(); |
| 365 | 367 |
} |
| 366 | 368 |
|
| 367 | 369 |
///Make a snapshot. |
| 368 | 370 |
|
| 369 | 371 |
///This function makes a snapshot of the given digraph. |
| 370 | 372 |
///It can be called more than once. In case of a repeated |
| 371 | 373 |
///call, the previous snapshot gets lost. |
| 372 | 374 |
void save(SmartDigraph &gr) {
|
| 373 | 375 |
_graph=&gr; |
| 374 | 376 |
node_num=_graph->nodes.size(); |
| 375 | 377 |
arc_num=_graph->arcs.size(); |
| 376 | 378 |
} |
| 377 | 379 |
|
| 378 | 380 |
///Undo the changes until a snapshot. |
| 379 | 381 |
|
| 380 | 382 |
///This function undos the changes until the last snapshot |
| 381 | 383 |
///created by save() or Snapshot(SmartDigraph&). |
| 382 | 384 |
void restore() |
| 383 | 385 |
{
|
| 384 | 386 |
_graph->restoreSnapshot(*this); |
| 385 | 387 |
} |
| 386 | 388 |
}; |
| 387 | 389 |
}; |
| 388 | 390 |
|
| 389 | 391 |
|
| 390 | 392 |
class SmartGraphBase {
|
| 391 | 393 |
|
| 392 | 394 |
protected: |
| 393 | 395 |
|
| 394 | 396 |
struct NodeT {
|
| 395 | 397 |
int first_out; |
| 396 | 398 |
}; |
| 397 | 399 |
|
| 398 | 400 |
struct ArcT {
|
| 399 | 401 |
int target; |
| 400 | 402 |
int next_out; |
| 401 | 403 |
}; |
| 402 | 404 |
|
| 403 | 405 |
std::vector<NodeT> nodes; |
| 404 | 406 |
std::vector<ArcT> arcs; |
| 405 | 407 |
|
| 406 | 408 |
int first_free_arc; |
| 407 | 409 |
|
| 408 | 410 |
public: |
| 409 | 411 |
|
| 410 | 412 |
typedef SmartGraphBase Graph; |
| 411 | 413 |
|
| 412 | 414 |
class Node; |
| 413 | 415 |
class Arc; |
| 414 | 416 |
class Edge; |
| 415 | 417 |
|
| 416 | 418 |
class Node {
|
| 417 | 419 |
friend class SmartGraphBase; |
| 418 | 420 |
protected: |
| 419 | 421 |
|
| 420 | 422 |
int _id; |
| 421 | 423 |
explicit Node(int id) { _id = id;}
|
| 422 | 424 |
|
| 423 | 425 |
public: |
| 424 | 426 |
Node() {}
|
| 425 | 427 |
Node (Invalid) { _id = -1; }
|
| 426 | 428 |
bool operator==(const Node& node) const {return _id == node._id;}
|
| 427 | 429 |
bool operator!=(const Node& node) const {return _id != node._id;}
|
| 428 | 430 |
bool operator<(const Node& node) const {return _id < node._id;}
|
| 429 | 431 |
}; |
| 430 | 432 |
|
| 431 | 433 |
class Edge {
|
| 432 | 434 |
friend class SmartGraphBase; |
| 433 | 435 |
protected: |
| 434 | 436 |
|
| 435 | 437 |
int _id; |
| 436 | 438 |
explicit Edge(int id) { _id = id;}
|
| 437 | 439 |
|
| 438 | 440 |
public: |
| 439 | 441 |
Edge() {}
|
| 440 | 442 |
Edge (Invalid) { _id = -1; }
|
| 441 | 443 |
bool operator==(const Edge& arc) const {return _id == arc._id;}
|
| 442 | 444 |
bool operator!=(const Edge& arc) const {return _id != arc._id;}
|
| 443 | 445 |
bool operator<(const Edge& arc) const {return _id < arc._id;}
|
| 444 | 446 |
}; |
| 445 | 447 |
|
| 446 | 448 |
class Arc {
|
| 447 | 449 |
friend class SmartGraphBase; |
| 448 | 450 |
protected: |
| 449 | 451 |
|
| 450 | 452 |
int _id; |
| 451 | 453 |
explicit Arc(int id) { _id = id;}
|
| 452 | 454 |
|
| 453 | 455 |
public: |
| 454 | 456 |
operator Edge() const {
|
| 455 | 457 |
return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
| 456 | 458 |
} |
| 457 | 459 |
|
| 458 | 460 |
Arc() {}
|
| 459 | 461 |
Arc (Invalid) { _id = -1; }
|
| 460 | 462 |
bool operator==(const Arc& arc) const {return _id == arc._id;}
|
| 461 | 463 |
bool operator!=(const Arc& arc) const {return _id != arc._id;}
|
| 462 | 464 |
bool operator<(const Arc& arc) const {return _id < arc._id;}
|
| 463 | 465 |
}; |
| 464 | 466 |
|
| 465 | 467 |
|
| 466 | 468 |
|
| 467 | 469 |
SmartGraphBase() |
| 468 | 470 |
: nodes(), arcs() {}
|
| 469 | 471 |
|
| 470 | 472 |
typedef True NodeNumTag; |
| 471 | 473 |
typedef True EdgeNumTag; |
| 472 | 474 |
typedef True ArcNumTag; |
| 473 | 475 |
|
| 474 | 476 |
int nodeNum() const { return nodes.size(); }
|
| 475 | 477 |
int edgeNum() const { return arcs.size() / 2; }
|
| 476 | 478 |
int arcNum() const { return arcs.size(); }
|
| 477 | 479 |
|
| 478 | 480 |
int maxNodeId() const { return nodes.size()-1; }
|
| 479 | 481 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 480 | 482 |
int maxArcId() const { return arcs.size()-1; }
|
| 481 | 483 |
|
| 482 | 484 |
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); }
|
| 483 | 485 |
Node target(Arc e) const { return Node(arcs[e._id].target); }
|
| 484 | 486 |
|
| 485 | 487 |
Node u(Edge e) const { return Node(arcs[2 * e._id].target); }
|
| 486 | 488 |
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
|
| 487 | 489 |
|
| 488 | 490 |
static bool direction(Arc e) {
|
| 489 | 491 |
return (e._id & 1) == 1; |
| 490 | 492 |
} |
| 491 | 493 |
|
| 492 | 494 |
static Arc direct(Edge e, bool d) {
|
| 493 | 495 |
return Arc(e._id * 2 + (d ? 1 : 0)); |
| 494 | 496 |
} |
| 495 | 497 |
|
| 496 | 498 |
void first(Node& node) const {
|
| 497 | 499 |
node._id = nodes.size() - 1; |
| 498 | 500 |
} |
| 499 | 501 |
|
| 500 | 502 |
static void next(Node& node) {
|
| 501 | 503 |
--node._id; |
| 502 | 504 |
} |
| 503 | 505 |
|
| 504 | 506 |
void first(Arc& arc) const {
|
| 505 | 507 |
arc._id = arcs.size() - 1; |
| 506 | 508 |
} |
| 507 | 509 |
|
| 508 | 510 |
static void next(Arc& arc) {
|
| 509 | 511 |
--arc._id; |
| 510 | 512 |
} |
| 511 | 513 |
|
| 512 | 514 |
void first(Edge& arc) const {
|
| 513 | 515 |
arc._id = arcs.size() / 2 - 1; |
| 514 | 516 |
} |
| 515 | 517 |
|
| 516 | 518 |
static void next(Edge& arc) {
|
| 517 | 519 |
--arc._id; |
| 518 | 520 |
} |
| 519 | 521 |
|
| 520 | 522 |
void firstOut(Arc &arc, const Node& v) const {
|
| 521 | 523 |
arc._id = nodes[v._id].first_out; |
| 522 | 524 |
} |
| 523 | 525 |
void nextOut(Arc &arc) const {
|
| 524 | 526 |
arc._id = arcs[arc._id].next_out; |
| 525 | 527 |
} |
| 526 | 528 |
|
| 527 | 529 |
void firstIn(Arc &arc, const Node& v) const {
|
| 528 | 530 |
arc._id = ((nodes[v._id].first_out) ^ 1); |
| 529 | 531 |
if (arc._id == -2) arc._id = -1; |
| 530 | 532 |
} |
| 531 | 533 |
void nextIn(Arc &arc) const {
|
| 532 | 534 |
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1); |
| 533 | 535 |
if (arc._id == -2) arc._id = -1; |
| 534 | 536 |
} |
| 535 | 537 |
|
| 536 | 538 |
void firstInc(Edge &arc, bool& d, const Node& v) const {
|
| 537 | 539 |
int de = nodes[v._id].first_out; |
| 538 | 540 |
if (de != -1) {
|
| 539 | 541 |
arc._id = de / 2; |
| 540 | 542 |
d = ((de & 1) == 1); |
| 541 | 543 |
} else {
|
| 542 | 544 |
arc._id = -1; |
| 543 | 545 |
d = true; |
| 544 | 546 |
} |
| 545 | 547 |
} |
| 546 | 548 |
void nextInc(Edge &arc, bool& d) const {
|
| 547 | 549 |
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out); |
| 548 | 550 |
if (de != -1) {
|
| 549 | 551 |
arc._id = de / 2; |
| 550 | 552 |
d = ((de & 1) == 1); |
| 551 | 553 |
} else {
|
| 552 | 554 |
arc._id = -1; |
| 553 | 555 |
d = true; |
| 554 | 556 |
} |
| 555 | 557 |
} |
| 556 | 558 |
|
| 557 | 559 |
static int id(Node v) { return v._id; }
|
| 558 | 560 |
static int id(Arc e) { return e._id; }
|
| 559 | 561 |
static int id(Edge e) { return e._id; }
|
| 560 | 562 |
|
| 561 | 563 |
static Node nodeFromId(int id) { return Node(id);}
|
| 562 | 564 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 563 | 565 |
static Edge edgeFromId(int id) { return Edge(id);}
|
| 564 | 566 |
|
| 565 | 567 |
bool valid(Node n) const {
|
| 566 | 568 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
| 567 | 569 |
} |
| 568 | 570 |
bool valid(Arc a) const {
|
| 569 | 571 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
| 570 | 572 |
} |
| 571 | 573 |
bool valid(Edge e) const {
|
| 572 | 574 |
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size()); |
| 573 | 575 |
} |
| 574 | 576 |
|
| 575 | 577 |
Node addNode() {
|
| 576 | 578 |
int n = nodes.size(); |
| 577 | 579 |
nodes.push_back(NodeT()); |
| 578 | 580 |
nodes[n].first_out = -1; |
| 579 | 581 |
|
| 580 | 582 |
return Node(n); |
| 581 | 583 |
} |
| 582 | 584 |
|
| 583 | 585 |
Edge addEdge(Node u, Node v) {
|
| 584 | 586 |
int n = arcs.size(); |
| 585 | 587 |
arcs.push_back(ArcT()); |
| 586 | 588 |
arcs.push_back(ArcT()); |
| 587 | 589 |
|
| 588 | 590 |
arcs[n].target = u._id; |
| 589 | 591 |
arcs[n | 1].target = v._id; |
| 590 | 592 |
|
| 591 | 593 |
arcs[n].next_out = nodes[v._id].first_out; |
| 592 | 594 |
nodes[v._id].first_out = n; |
| 593 | 595 |
|
| 594 | 596 |
arcs[n | 1].next_out = nodes[u._id].first_out; |
| 595 | 597 |
nodes[u._id].first_out = (n | 1); |
| 596 | 598 |
|
| 597 | 599 |
return Edge(n / 2); |
| 598 | 600 |
} |
| 599 | 601 |
|
| 600 | 602 |
void clear() {
|
| 601 | 603 |
arcs.clear(); |
| 602 | 604 |
nodes.clear(); |
| 603 | 605 |
} |
| 604 | 606 |
|
| 605 | 607 |
}; |
| 606 | 608 |
|
| 607 | 609 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
| 608 | 610 |
|
| 609 | 611 |
/// \ingroup graphs |
| 610 | 612 |
/// |
| 611 | 613 |
/// \brief A smart undirected graph class. |
| 612 | 614 |
/// |
| 613 | 615 |
/// \ref SmartGraph is a simple and fast graph implementation. |
| 614 | 616 |
/// It is also quite memory efficient but at the price |
| 615 | 617 |
/// that it does not support node and edge deletion |
| 616 | 618 |
/// (except for the Snapshot feature). |
| 617 | 619 |
/// |
| 618 | 620 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept" |
| 619 | 621 |
/// and it also provides some additional functionalities. |
| 620 | 622 |
/// Most of its member functions and nested classes are documented |
| 621 | 623 |
/// only in the concept class. |
| 622 | 624 |
/// |
| 625 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 626 |
/// |
|
| 623 | 627 |
/// \sa concepts::Graph |
| 624 | 628 |
/// \sa SmartDigraph |
| 625 | 629 |
class SmartGraph : public ExtendedSmartGraphBase {
|
| 626 | 630 |
typedef ExtendedSmartGraphBase Parent; |
| 627 | 631 |
|
| 628 | 632 |
private: |
| 629 | 633 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
| 630 | 634 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
|
| 631 | 635 |
/// \brief Assignment of a graph to another one is \e not allowed. |
| 632 | 636 |
/// Use GraphCopy instead. |
| 633 | 637 |
void operator=(const SmartGraph &) {}
|
| 634 | 638 |
|
| 635 | 639 |
public: |
| 636 | 640 |
|
| 637 | 641 |
/// Constructor |
| 638 | 642 |
|
| 639 | 643 |
/// Constructor. |
| 640 | 644 |
/// |
| 641 | 645 |
SmartGraph() {}
|
| 642 | 646 |
|
| 643 | 647 |
/// \brief Add a new node to the graph. |
| 644 | 648 |
/// |
| 645 | 649 |
/// This function adds a new node to the graph. |
| 646 | 650 |
/// \return The new node. |
| 647 | 651 |
Node addNode() { return Parent::addNode(); }
|
| 648 | 652 |
|
| 649 | 653 |
/// \brief Add a new edge to the graph. |
| 650 | 654 |
/// |
| 651 | 655 |
/// This function adds a new edge to the graph between nodes |
| 652 | 656 |
/// \c u and \c v with inherent orientation from node \c u to |
| 653 | 657 |
/// node \c v. |
| 654 | 658 |
/// \return The new edge. |
| 655 | 659 |
Edge addEdge(Node u, Node v) {
|
| 656 | 660 |
return Parent::addEdge(u, v); |
| 657 | 661 |
} |
| 658 | 662 |
|
| 659 | 663 |
/// \brief Node validity check |
| 660 | 664 |
/// |
| 661 | 665 |
/// This function gives back \c true if the given node is valid, |
| 662 | 666 |
/// i.e. it is a real node of the graph. |
| 663 | 667 |
/// |
| 664 | 668 |
/// \warning A removed node (using Snapshot) could become valid again |
| 665 | 669 |
/// if new nodes are added to the graph. |
| 666 | 670 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 667 | 671 |
|
| 668 | 672 |
/// \brief Edge validity check |
| 669 | 673 |
/// |
| 670 | 674 |
/// This function gives back \c true if the given edge is valid, |
| 671 | 675 |
/// i.e. it is a real edge of the graph. |
| 672 | 676 |
/// |
| 673 | 677 |
/// \warning A removed edge (using Snapshot) could become valid again |
| 674 | 678 |
/// if new edges are added to the graph. |
| 675 | 679 |
bool valid(Edge e) const { return Parent::valid(e); }
|
| 676 | 680 |
|
| 677 | 681 |
/// \brief Arc validity check |
| 678 | 682 |
/// |
| 679 | 683 |
/// This function gives back \c true if the given arc is valid, |
| 680 | 684 |
/// i.e. it is a real arc of the graph. |
| 681 | 685 |
/// |
| 682 | 686 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 683 | 687 |
/// if new edges are added to the graph. |
| 684 | 688 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 685 | 689 |
|
| 686 | 690 |
///Clear the graph. |
| 687 | 691 |
|
| 688 | 692 |
///This function erases all nodes and arcs from the graph. |
| 689 | 693 |
/// |
| 690 | 694 |
void clear() {
|
| 691 | 695 |
Parent::clear(); |
| 692 | 696 |
} |
| 693 | 697 |
|
| 694 | 698 |
/// Reserve memory for nodes. |
| 695 | 699 |
|
| 696 | 700 |
/// Using this function, it is possible to avoid superfluous memory |
| 697 | 701 |
/// allocation: if you know that the graph you want to build will |
| 698 | 702 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
| 699 | 703 |
/// then it is worth reserving space for this amount before starting |
| 700 | 704 |
/// to build the graph. |
| 701 | 705 |
/// \sa reserveEdge() |
| 702 | 706 |
void reserveNode(int n) { nodes.reserve(n); };
|
| 703 | 707 |
|
| 704 | 708 |
/// Reserve memory for edges. |
| 705 | 709 |
|
| 706 | 710 |
/// Using this function, it is possible to avoid superfluous memory |
| 707 | 711 |
/// allocation: if you know that the graph you want to build will |
| 708 | 712 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
| 709 | 713 |
/// then it is worth reserving space for this amount before starting |
| 710 | 714 |
/// to build the graph. |
| 711 | 715 |
/// \sa reserveNode() |
| 712 | 716 |
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
| 713 | 717 |
|
| 714 | 718 |
public: |
| 715 | 719 |
|
| 716 | 720 |
class Snapshot; |
| 717 | 721 |
|
| 718 | 722 |
protected: |
| 719 | 723 |
|
| 720 | 724 |
void saveSnapshot(Snapshot &s) |
| 721 | 725 |
{
|
| 722 | 726 |
s._graph = this; |
| 723 | 727 |
s.node_num = nodes.size(); |
| 724 | 728 |
s.arc_num = arcs.size(); |
| 725 | 729 |
} |
| 726 | 730 |
|
| 727 | 731 |
void restoreSnapshot(const Snapshot &s) |
| 728 | 732 |
{
|
| 729 | 733 |
while(s.arc_num<arcs.size()) {
|
| 730 | 734 |
int n=arcs.size()-1; |
| 731 | 735 |
Edge arc=edgeFromId(n/2); |
| 732 | 736 |
Parent::notifier(Edge()).erase(arc); |
| 733 | 737 |
std::vector<Arc> dir; |
| 734 | 738 |
dir.push_back(arcFromId(n)); |
| 735 | 739 |
dir.push_back(arcFromId(n-1)); |
| 736 | 740 |
Parent::notifier(Arc()).erase(dir); |
| 737 | 741 |
nodes[arcs[n-1].target].first_out=arcs[n].next_out; |
| 738 | 742 |
nodes[arcs[n].target].first_out=arcs[n-1].next_out; |
| 739 | 743 |
arcs.pop_back(); |
| 740 | 744 |
arcs.pop_back(); |
| 741 | 745 |
} |
| 742 | 746 |
while(s.node_num<nodes.size()) {
|
| 743 | 747 |
int n=nodes.size()-1; |
| 744 | 748 |
Node node = nodeFromId(n); |
| 745 | 749 |
Parent::notifier(Node()).erase(node); |
| 746 | 750 |
nodes.pop_back(); |
| 747 | 751 |
} |
| 748 | 752 |
} |
| 749 | 753 |
|
| 750 | 754 |
public: |
| 751 | 755 |
|
| 752 | 756 |
///Class to make a snapshot of the graph and to restore it later. |
| 753 | 757 |
|
| 754 | 758 |
///Class to make a snapshot of the graph and to restore it later. |
| 755 | 759 |
/// |
| 756 | 760 |
///The newly added nodes and edges can be removed using the |
| 757 | 761 |
///restore() function. This is the only way for deleting nodes and/or |
| 758 | 762 |
///edges from a SmartGraph structure. |
| 759 | 763 |
/// |
| 760 | 764 |
///\note After a state is restored, you cannot restore a later state, |
| 761 | 765 |
///i.e. you cannot add the removed nodes and edges again using |
| 762 | 766 |
///another Snapshot instance. |
| 763 | 767 |
/// |
| 764 | 768 |
///\warning The validity of the snapshot is not stored due to |
| 765 | 769 |
///performance reasons. If you do not use the snapshot correctly, |
| 766 | 770 |
///it can cause broken program, invalid or not restored state of |
| 767 | 771 |
///the graph or no change. |
| 768 | 772 |
class Snapshot |
| 769 | 773 |
{
|
| 770 | 774 |
SmartGraph *_graph; |
| 771 | 775 |
protected: |
| 772 | 776 |
friend class SmartGraph; |
| 773 | 777 |
unsigned int node_num; |
| 774 | 778 |
unsigned int arc_num; |
| 775 | 779 |
public: |
| 776 | 780 |
///Default constructor. |
| 777 | 781 |
|
| 778 | 782 |
///Default constructor. |
| 779 | 783 |
///You have to call save() to actually make a snapshot. |
| 780 | 784 |
Snapshot() : _graph(0) {}
|
| 781 | 785 |
///Constructor that immediately makes a snapshot |
| 782 | 786 |
|
| 783 | 787 |
/// This constructor immediately makes a snapshot of the given graph. |
| 784 | 788 |
/// |
| 785 | 789 |
Snapshot(SmartGraph &gr) {
|
| 786 | 790 |
gr.saveSnapshot(*this); |
| 787 | 791 |
} |
| 788 | 792 |
|
| 789 | 793 |
///Make a snapshot. |
| 790 | 794 |
|
| 791 | 795 |
///This function makes a snapshot of the given graph. |
| 792 | 796 |
///It can be called more than once. In case of a repeated |
| 793 | 797 |
///call, the previous snapshot gets lost. |
| 794 | 798 |
void save(SmartGraph &gr) |
| 795 | 799 |
{
|
| 796 | 800 |
gr.saveSnapshot(*this); |
| 797 | 801 |
} |
| 798 | 802 |
|
| 799 | 803 |
///Undo the changes until the last snapshot. |
| 800 | 804 |
|
| 801 | 805 |
///This function undos the changes until the last snapshot |
| 802 | 806 |
///created by save() or Snapshot(SmartGraph&). |
| 803 | 807 |
void restore() |
| 804 | 808 |
{
|
| 805 | 809 |
_graph->restoreSnapshot(*this); |
| 806 | 810 |
} |
| 807 | 811 |
}; |
| 808 | 812 |
}; |
| 809 | 813 |
|
| 810 | 814 |
} //namespace lemon |
| 811 | 815 |
|
| 812 | 816 |
|
| 813 | 817 |
#endif //LEMON_SMART_GRAPH_H |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_STATIC_GRAPH_H |
| 20 | 20 |
#define LEMON_STATIC_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graphs |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief StaticDigraph class. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/bits/graph_extender.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
class StaticDigraphBase {
|
| 32 | 32 |
public: |
| 33 | 33 |
|
| 34 | 34 |
StaticDigraphBase() |
| 35 | 35 |
: built(false), node_num(0), arc_num(0), |
| 36 | 36 |
node_first_out(NULL), node_first_in(NULL), |
| 37 | 37 |
arc_source(NULL), arc_target(NULL), |
| 38 | 38 |
arc_next_in(NULL), arc_next_out(NULL) {}
|
| 39 | 39 |
|
| 40 | 40 |
~StaticDigraphBase() {
|
| 41 | 41 |
if (built) {
|
| 42 | 42 |
delete[] node_first_out; |
| 43 | 43 |
delete[] node_first_in; |
| 44 | 44 |
delete[] arc_source; |
| 45 | 45 |
delete[] arc_target; |
| 46 | 46 |
delete[] arc_next_out; |
| 47 | 47 |
delete[] arc_next_in; |
| 48 | 48 |
} |
| 49 | 49 |
} |
| 50 | 50 |
|
| 51 | 51 |
class Node {
|
| 52 | 52 |
friend class StaticDigraphBase; |
| 53 | 53 |
protected: |
| 54 | 54 |
int id; |
| 55 | 55 |
Node(int _id) : id(_id) {}
|
| 56 | 56 |
public: |
| 57 | 57 |
Node() {}
|
| 58 | 58 |
Node (Invalid) : id(-1) {}
|
| 59 | 59 |
bool operator==(const Node& node) const { return id == node.id; }
|
| 60 | 60 |
bool operator!=(const Node& node) const { return id != node.id; }
|
| 61 | 61 |
bool operator<(const Node& node) const { return id < node.id; }
|
| 62 | 62 |
}; |
| 63 | 63 |
|
| 64 | 64 |
class Arc {
|
| 65 | 65 |
friend class StaticDigraphBase; |
| 66 | 66 |
protected: |
| 67 | 67 |
int id; |
| 68 | 68 |
Arc(int _id) : id(_id) {}
|
| 69 | 69 |
public: |
| 70 | 70 |
Arc() { }
|
| 71 | 71 |
Arc (Invalid) : id(-1) {}
|
| 72 | 72 |
bool operator==(const Arc& arc) const { return id == arc.id; }
|
| 73 | 73 |
bool operator!=(const Arc& arc) const { return id != arc.id; }
|
| 74 | 74 |
bool operator<(const Arc& arc) const { return id < arc.id; }
|
| 75 | 75 |
}; |
| 76 | 76 |
|
| 77 | 77 |
Node source(const Arc& e) const { return Node(arc_source[e.id]); }
|
| 78 | 78 |
Node target(const Arc& e) const { return Node(arc_target[e.id]); }
|
| 79 | 79 |
|
| 80 | 80 |
void first(Node& n) const { n.id = node_num - 1; }
|
| 81 | 81 |
static void next(Node& n) { --n.id; }
|
| 82 | 82 |
|
| 83 | 83 |
void first(Arc& e) const { e.id = arc_num - 1; }
|
| 84 | 84 |
static void next(Arc& e) { --e.id; }
|
| 85 | 85 |
|
| 86 | 86 |
void firstOut(Arc& e, const Node& n) const {
|
| 87 | 87 |
e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? |
| 88 | 88 |
node_first_out[n.id] : -1; |
| 89 | 89 |
} |
| 90 | 90 |
void nextOut(Arc& e) const { e.id = arc_next_out[e.id]; }
|
| 91 | 91 |
|
| 92 | 92 |
void firstIn(Arc& e, const Node& n) const { e.id = node_first_in[n.id]; }
|
| 93 | 93 |
void nextIn(Arc& e) const { e.id = arc_next_in[e.id]; }
|
| 94 | 94 |
|
| 95 | 95 |
static int id(const Node& n) { return n.id; }
|
| 96 | 96 |
static Node nodeFromId(int id) { return Node(id); }
|
| 97 | 97 |
int maxNodeId() const { return node_num - 1; }
|
| 98 | 98 |
|
| 99 | 99 |
static int id(const Arc& e) { return e.id; }
|
| 100 | 100 |
static Arc arcFromId(int id) { return Arc(id); }
|
| 101 | 101 |
int maxArcId() const { return arc_num - 1; }
|
| 102 | 102 |
|
| 103 | 103 |
typedef True NodeNumTag; |
| 104 | 104 |
typedef True ArcNumTag; |
| 105 | 105 |
|
| 106 | 106 |
int nodeNum() const { return node_num; }
|
| 107 | 107 |
int arcNum() const { return arc_num; }
|
| 108 | 108 |
|
| 109 | 109 |
private: |
| 110 | 110 |
|
| 111 | 111 |
template <typename Digraph, typename NodeRefMap> |
| 112 | 112 |
class ArcLess {
|
| 113 | 113 |
public: |
| 114 | 114 |
typedef typename Digraph::Arc Arc; |
| 115 | 115 |
|
| 116 | 116 |
ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) |
| 117 | 117 |
: digraph(_graph), nodeRef(_nodeRef) {}
|
| 118 | 118 |
|
| 119 | 119 |
bool operator()(const Arc& left, const Arc& right) const {
|
| 120 | 120 |
return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)]; |
| 121 | 121 |
} |
| 122 | 122 |
private: |
| 123 | 123 |
const Digraph& digraph; |
| 124 | 124 |
const NodeRefMap& nodeRef; |
| 125 | 125 |
}; |
| 126 | 126 |
|
| 127 | 127 |
public: |
| 128 | 128 |
|
| 129 | 129 |
typedef True BuildTag; |
| 130 | 130 |
|
| 131 | 131 |
void clear() {
|
| 132 | 132 |
if (built) {
|
| 133 | 133 |
delete[] node_first_out; |
| 134 | 134 |
delete[] node_first_in; |
| 135 | 135 |
delete[] arc_source; |
| 136 | 136 |
delete[] arc_target; |
| 137 | 137 |
delete[] arc_next_out; |
| 138 | 138 |
delete[] arc_next_in; |
| 139 | 139 |
} |
| 140 | 140 |
built = false; |
| 141 | 141 |
node_num = 0; |
| 142 | 142 |
arc_num = 0; |
| 143 | 143 |
} |
| 144 | 144 |
|
| 145 | 145 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
| 146 | 146 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
|
| 147 | 147 |
typedef typename Digraph::Node GNode; |
| 148 | 148 |
typedef typename Digraph::Arc GArc; |
| 149 | 149 |
|
| 150 | 150 |
built = true; |
| 151 | 151 |
|
| 152 | 152 |
node_num = countNodes(digraph); |
| 153 | 153 |
arc_num = countArcs(digraph); |
| 154 | 154 |
|
| 155 | 155 |
node_first_out = new int[node_num + 1]; |
| 156 | 156 |
node_first_in = new int[node_num]; |
| 157 | 157 |
|
| 158 | 158 |
arc_source = new int[arc_num]; |
| 159 | 159 |
arc_target = new int[arc_num]; |
| 160 | 160 |
arc_next_out = new int[arc_num]; |
| 161 | 161 |
arc_next_in = new int[arc_num]; |
| 162 | 162 |
|
| 163 | 163 |
int node_index = 0; |
| 164 | 164 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
| 165 | 165 |
nodeRef[n] = Node(node_index); |
| 166 | 166 |
node_first_in[node_index] = -1; |
| 167 | 167 |
++node_index; |
| 168 | 168 |
} |
| 169 | 169 |
|
| 170 | 170 |
ArcLess<Digraph, NodeRefMap> arcLess(digraph, nodeRef); |
| 171 | 171 |
|
| 172 | 172 |
int arc_index = 0; |
| 173 | 173 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
| 174 | 174 |
int source = nodeRef[n].id; |
| 175 | 175 |
std::vector<GArc> arcs; |
| 176 | 176 |
for (typename Digraph::OutArcIt e(digraph, n); e != INVALID; ++e) {
|
| 177 | 177 |
arcs.push_back(e); |
| 178 | 178 |
} |
| 179 | 179 |
if (!arcs.empty()) {
|
| 180 | 180 |
node_first_out[source] = arc_index; |
| 181 | 181 |
std::sort(arcs.begin(), arcs.end(), arcLess); |
| 182 | 182 |
for (typename std::vector<GArc>::iterator it = arcs.begin(); |
| 183 | 183 |
it != arcs.end(); ++it) {
|
| 184 | 184 |
int target = nodeRef[digraph.target(*it)].id; |
| 185 | 185 |
arcRef[*it] = Arc(arc_index); |
| 186 | 186 |
arc_source[arc_index] = source; |
| 187 | 187 |
arc_target[arc_index] = target; |
| 188 | 188 |
arc_next_in[arc_index] = node_first_in[target]; |
| 189 | 189 |
node_first_in[target] = arc_index; |
| 190 | 190 |
arc_next_out[arc_index] = arc_index + 1; |
| 191 | 191 |
++arc_index; |
| 192 | 192 |
} |
| 193 | 193 |
arc_next_out[arc_index - 1] = -1; |
| 194 | 194 |
} else {
|
| 195 | 195 |
node_first_out[source] = arc_index; |
| 196 | 196 |
} |
| 197 | 197 |
} |
| 198 | 198 |
node_first_out[node_num] = arc_num; |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
template <typename ArcListIterator> |
| 202 | 202 |
void build(int n, ArcListIterator first, ArcListIterator last) {
|
| 203 | 203 |
built = true; |
| 204 | 204 |
|
| 205 | 205 |
node_num = n; |
| 206 | 206 |
arc_num = std::distance(first, last); |
| 207 | 207 |
|
| 208 | 208 |
node_first_out = new int[node_num + 1]; |
| 209 | 209 |
node_first_in = new int[node_num]; |
| 210 | 210 |
|
| 211 | 211 |
arc_source = new int[arc_num]; |
| 212 | 212 |
arc_target = new int[arc_num]; |
| 213 | 213 |
arc_next_out = new int[arc_num]; |
| 214 | 214 |
arc_next_in = new int[arc_num]; |
| 215 | 215 |
|
| 216 | 216 |
for (int i = 0; i != node_num; ++i) {
|
| 217 | 217 |
node_first_in[i] = -1; |
| 218 | 218 |
} |
| 219 | 219 |
|
| 220 | 220 |
int arc_index = 0; |
| 221 | 221 |
for (int i = 0; i != node_num; ++i) {
|
| 222 | 222 |
node_first_out[i] = arc_index; |
| 223 | 223 |
for ( ; first != last && (*first).first == i; ++first) {
|
| 224 | 224 |
int j = (*first).second; |
| 225 | 225 |
LEMON_ASSERT(j >= 0 && j < node_num, |
| 226 | 226 |
"Wrong arc list for StaticDigraph::build()"); |
| 227 | 227 |
arc_source[arc_index] = i; |
| 228 | 228 |
arc_target[arc_index] = j; |
| 229 | 229 |
arc_next_in[arc_index] = node_first_in[j]; |
| 230 | 230 |
node_first_in[j] = arc_index; |
| 231 | 231 |
arc_next_out[arc_index] = arc_index + 1; |
| 232 | 232 |
++arc_index; |
| 233 | 233 |
} |
| 234 | 234 |
if (arc_index > node_first_out[i]) |
| 235 | 235 |
arc_next_out[arc_index - 1] = -1; |
| 236 | 236 |
} |
| 237 | 237 |
LEMON_ASSERT(first == last, |
| 238 | 238 |
"Wrong arc list for StaticDigraph::build()"); |
| 239 | 239 |
node_first_out[node_num] = arc_num; |
| 240 | 240 |
} |
| 241 | 241 |
|
| 242 | 242 |
protected: |
| 243 | 243 |
|
| 244 | 244 |
void fastFirstOut(Arc& e, const Node& n) const {
|
| 245 | 245 |
e.id = node_first_out[n.id]; |
| 246 | 246 |
} |
| 247 | 247 |
|
| 248 | 248 |
static void fastNextOut(Arc& e) {
|
| 249 | 249 |
++e.id; |
| 250 | 250 |
} |
| 251 | 251 |
void fastLastOut(Arc& e, const Node& n) const {
|
| 252 | 252 |
e.id = node_first_out[n.id + 1]; |
| 253 | 253 |
} |
| 254 | 254 |
|
| 255 | 255 |
protected: |
| 256 | 256 |
bool built; |
| 257 | 257 |
int node_num; |
| 258 | 258 |
int arc_num; |
| 259 | 259 |
int *node_first_out; |
| 260 | 260 |
int *node_first_in; |
| 261 | 261 |
int *arc_source; |
| 262 | 262 |
int *arc_target; |
| 263 | 263 |
int *arc_next_in; |
| 264 | 264 |
int *arc_next_out; |
| 265 | 265 |
}; |
| 266 | 266 |
|
| 267 | 267 |
typedef DigraphExtender<StaticDigraphBase> ExtendedStaticDigraphBase; |
| 268 | 268 |
|
| 269 | 269 |
|
| 270 | 270 |
/// \ingroup graphs |
| 271 | 271 |
/// |
| 272 | 272 |
/// \brief A static directed graph class. |
| 273 | 273 |
/// |
| 274 | 274 |
/// \ref StaticDigraph is a highly efficient digraph implementation, |
| 275 | 275 |
/// but it is fully static. |
| 276 | 276 |
/// It stores only two \c int values for each node and only four \c int |
| 277 | 277 |
/// values for each arc. Moreover it provides faster item iteration than |
| 278 | 278 |
/// \ref ListDigraph and \ref SmartDigraph, especially using \c OutArcIt |
| 279 | 279 |
/// iterators, since its arcs are stored in an appropriate order. |
| 280 | 280 |
/// However it only provides build() and clear() functions and does not |
| 281 | 281 |
/// support any other modification of the digraph. |
| 282 | 282 |
/// |
| 283 | 283 |
/// Since this digraph structure is completely static, its nodes and arcs |
| 284 | 284 |
/// can be indexed with integers from the ranges <tt>[0..nodeNum()-1]</tt> |
| 285 | 285 |
/// and <tt>[0..arcNum()-1]</tt>, respectively. |
| 286 | 286 |
/// The index of an item is the same as its ID, it can be obtained |
| 287 | 287 |
/// using the corresponding \ref index() or \ref concepts::Digraph::id() |
| 288 | 288 |
/// "id()" function. A node or arc with a certain index can be obtained |
| 289 | 289 |
/// using node() or arc(). |
| 290 | 290 |
/// |
| 291 | 291 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
| 292 | 292 |
/// Most of its member functions and nested classes are documented |
| 293 | 293 |
/// only in the concept class. |
| 294 | 294 |
/// |
| 295 |
/// This class provides constant time counting for nodes and arcs. |
|
| 296 |
/// |
|
| 295 | 297 |
/// \sa concepts::Digraph |
| 296 | 298 |
class StaticDigraph : public ExtendedStaticDigraphBase {
|
| 297 | 299 |
public: |
| 298 | 300 |
|
| 299 | 301 |
typedef ExtendedStaticDigraphBase Parent; |
| 300 | 302 |
|
| 301 | 303 |
public: |
| 302 | 304 |
|
| 303 | 305 |
/// \brief Constructor |
| 304 | 306 |
/// |
| 305 | 307 |
/// Default constructor. |
| 306 | 308 |
StaticDigraph() : Parent() {}
|
| 307 | 309 |
|
| 308 | 310 |
/// \brief The node with the given index. |
| 309 | 311 |
/// |
| 310 | 312 |
/// This function returns the node with the given index. |
| 311 | 313 |
/// \sa index() |
| 312 | 314 |
static Node node(int ix) { return Parent::nodeFromId(ix); }
|
| 313 | 315 |
|
| 314 | 316 |
/// \brief The arc with the given index. |
| 315 | 317 |
/// |
| 316 | 318 |
/// This function returns the arc with the given index. |
| 317 | 319 |
/// \sa index() |
| 318 | 320 |
static Arc arc(int ix) { return Parent::arcFromId(ix); }
|
| 319 | 321 |
|
| 320 | 322 |
/// \brief The index of the given node. |
| 321 | 323 |
/// |
| 322 | 324 |
/// This function returns the index of the the given node. |
| 323 | 325 |
/// \sa node() |
| 324 | 326 |
static int index(Node node) { return Parent::id(node); }
|
| 325 | 327 |
|
| 326 | 328 |
/// \brief The index of the given arc. |
| 327 | 329 |
/// |
| 328 | 330 |
/// This function returns the index of the the given arc. |
| 329 | 331 |
/// \sa arc() |
| 330 | 332 |
static int index(Arc arc) { return Parent::id(arc); }
|
| 331 | 333 |
|
| 332 | 334 |
/// \brief Number of nodes. |
| 333 | 335 |
/// |
| 334 | 336 |
/// This function returns the number of nodes. |
| 335 | 337 |
int nodeNum() const { return node_num; }
|
| 336 | 338 |
|
| 337 | 339 |
/// \brief Number of arcs. |
| 338 | 340 |
/// |
| 339 | 341 |
/// This function returns the number of arcs. |
| 340 | 342 |
int arcNum() const { return arc_num; }
|
| 341 | 343 |
|
| 342 | 344 |
/// \brief Build the digraph copying another digraph. |
| 343 | 345 |
/// |
| 344 | 346 |
/// This function builds the digraph copying another digraph of any |
| 345 | 347 |
/// kind. It can be called more than once, but in such case, the whole |
| 346 | 348 |
/// structure and all maps will be cleared and rebuilt. |
| 347 | 349 |
/// |
| 348 | 350 |
/// This method also makes possible to copy a digraph to a StaticDigraph |
| 349 | 351 |
/// structure using \ref DigraphCopy. |
| 350 | 352 |
/// |
| 351 | 353 |
/// \param digraph An existing digraph to be copied. |
| 352 | 354 |
/// \param nodeRef The node references will be copied into this map. |
| 353 | 355 |
/// Its key type must be \c Digraph::Node and its value type must be |
| 354 | 356 |
/// \c StaticDigraph::Node. |
| 355 | 357 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 356 | 358 |
/// concept. |
| 357 | 359 |
/// \param arcRef The arc references will be copied into this map. |
| 358 | 360 |
/// Its key type must be \c Digraph::Arc and its value type must be |
| 359 | 361 |
/// \c StaticDigraph::Arc. |
| 360 | 362 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 361 | 363 |
/// |
| 362 | 364 |
/// \note If you do not need the arc references, then you could use |
| 363 | 365 |
/// \ref NullMap for the last parameter. However the node references |
| 364 | 366 |
/// are required by the function itself, thus they must be readable |
| 365 | 367 |
/// from the map. |
| 366 | 368 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
| 367 | 369 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
|
| 368 | 370 |
if (built) Parent::clear(); |
| 369 | 371 |
Parent::build(digraph, nodeRef, arcRef); |
| 370 | 372 |
} |
| 371 | 373 |
|
| 372 | 374 |
/// \brief Build the digraph from an arc list. |
| 373 | 375 |
/// |
| 374 | 376 |
/// This function builds the digraph from the given arc list. |
| 375 | 377 |
/// It can be called more than once, but in such case, the whole |
| 376 | 378 |
/// structure and all maps will be cleared and rebuilt. |
| 377 | 379 |
/// |
| 378 | 380 |
/// The list of the arcs must be given in the range <tt>[begin, end)</tt> |
| 379 | 381 |
/// specified by STL compatible itartors whose \c value_type must be |
| 380 | 382 |
/// <tt>std::pair<int,int></tt>. |
| 381 | 383 |
/// Each arc must be specified by a pair of integer indices |
| 382 | 384 |
/// from the range <tt>[0..n-1]</tt>. <i>The pairs must be in a |
| 383 | 385 |
/// non-decreasing order with respect to their first values.</i> |
| 384 | 386 |
/// If the k-th pair in the list is <tt>(i,j)</tt>, then |
| 385 | 387 |
/// <tt>arc(k-1)</tt> will connect <tt>node(i)</tt> to <tt>node(j)</tt>. |
| 386 | 388 |
/// |
| 387 | 389 |
/// \param n The number of nodes. |
| 388 | 390 |
/// \param begin An iterator pointing to the beginning of the arc list. |
| 389 | 391 |
/// \param end An iterator pointing to the end of the arc list. |
| 390 | 392 |
/// |
| 391 | 393 |
/// For example, a simple digraph can be constructed like this. |
| 392 | 394 |
/// \code |
| 393 | 395 |
/// std::vector<std::pair<int,int> > arcs; |
| 394 | 396 |
/// arcs.push_back(std::make_pair(0,1)); |
| 395 | 397 |
/// arcs.push_back(std::make_pair(0,2)); |
| 396 | 398 |
/// arcs.push_back(std::make_pair(1,3)); |
| 397 | 399 |
/// arcs.push_back(std::make_pair(1,2)); |
| 398 | 400 |
/// arcs.push_back(std::make_pair(3,0)); |
| 399 | 401 |
/// StaticDigraph gr; |
| 400 | 402 |
/// gr.build(4, arcs.begin(), arcs.end()); |
| 401 | 403 |
/// \endcode |
| 402 | 404 |
template <typename ArcListIterator> |
| 403 | 405 |
void build(int n, ArcListIterator begin, ArcListIterator end) {
|
| 404 | 406 |
if (built) Parent::clear(); |
| 405 | 407 |
StaticDigraphBase::build(n, begin, end); |
| 406 | 408 |
notifier(Node()).build(); |
| 407 | 409 |
notifier(Arc()).build(); |
| 408 | 410 |
} |
| 409 | 411 |
|
| 410 | 412 |
/// \brief Clear the digraph. |
| 411 | 413 |
/// |
| 412 | 414 |
/// This function erases all nodes and arcs from the digraph. |
| 413 | 415 |
void clear() {
|
| 414 | 416 |
Parent::clear(); |
| 415 | 417 |
} |
| 416 | 418 |
|
| 417 | 419 |
protected: |
| 418 | 420 |
|
| 419 | 421 |
using Parent::fastFirstOut; |
| 420 | 422 |
using Parent::fastNextOut; |
| 421 | 423 |
using Parent::fastLastOut; |
| 422 | 424 |
|
| 423 | 425 |
public: |
| 424 | 426 |
|
| 425 | 427 |
class OutArcIt : public Arc {
|
| 426 | 428 |
public: |
| 427 | 429 |
|
| 428 | 430 |
OutArcIt() { }
|
| 429 | 431 |
|
| 430 | 432 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 431 | 433 |
|
| 432 | 434 |
OutArcIt(const StaticDigraph& digraph, const Node& node) {
|
| 433 | 435 |
digraph.fastFirstOut(*this, node); |
| 434 | 436 |
digraph.fastLastOut(last, node); |
| 435 | 437 |
if (last == *this) *this = INVALID; |
| 436 | 438 |
} |
| 437 | 439 |
|
| 438 | 440 |
OutArcIt(const StaticDigraph& digraph, const Arc& arc) : Arc(arc) {
|
| 439 | 441 |
if (arc != INVALID) {
|
| 440 | 442 |
digraph.fastLastOut(last, digraph.source(arc)); |
| 441 | 443 |
} |
| 442 | 444 |
} |
| 443 | 445 |
|
| 444 | 446 |
OutArcIt& operator++() {
|
| 445 | 447 |
StaticDigraph::fastNextOut(*this); |
| 446 | 448 |
if (last == *this) *this = INVALID; |
| 447 | 449 |
return *this; |
| 448 | 450 |
} |
| 449 | 451 |
|
| 450 | 452 |
private: |
| 451 | 453 |
Arc last; |
| 452 | 454 |
}; |
| 453 | 455 |
|
| 454 | 456 |
Node baseNode(const OutArcIt &arc) const {
|
| 455 | 457 |
return Parent::source(static_cast<const Arc&>(arc)); |
| 456 | 458 |
} |
| 457 | 459 |
|
| 458 | 460 |
Node runningNode(const OutArcIt &arc) const {
|
| 459 | 461 |
return Parent::target(static_cast<const Arc&>(arc)); |
| 460 | 462 |
} |
| 461 | 463 |
|
| 462 | 464 |
Node baseNode(const InArcIt &arc) const {
|
| 463 | 465 |
return Parent::target(static_cast<const Arc&>(arc)); |
| 464 | 466 |
} |
| 465 | 467 |
|
| 466 | 468 |
Node runningNode(const InArcIt &arc) const {
|
| 467 | 469 |
return Parent::source(static_cast<const Arc&>(arc)); |
| 468 | 470 |
} |
| 469 | 471 |
|
| 470 | 472 |
}; |
| 471 | 473 |
|
| 472 | 474 |
} |
| 473 | 475 |
|
| 474 | 476 |
#endif |
0 comments (0 inline)