0
1
1
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_CAPACITY_SCALING_H |
|
20 |
#define LEMON_CAPACITY_SCALING_H |
|
21 |
|
|
22 |
/// \ingroup min_cost_flow |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Capacity scaling algorithm for finding a minimum cost flow. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <lemon/bin_heap.h> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \addtogroup min_cost_flow |
|
33 |
/// @{ |
|
34 |
|
|
35 |
/// \brief Implementation of the capacity scaling algorithm for |
|
36 |
/// finding a minimum cost flow. |
|
37 |
/// |
|
38 |
/// \ref CapacityScaling implements the capacity scaling version |
|
39 |
/// of the successive shortest path algorithm for finding a minimum |
|
40 |
/// cost flow. |
|
41 |
/// |
|
42 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
43 |
/// \tparam LowerMap The type of the lower bound map. |
|
44 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
45 |
/// \tparam CostMap The type of the cost (length) map. |
|
46 |
/// \tparam SupplyMap The type of the supply map. |
|
47 |
/// |
|
48 |
/// \warning |
|
49 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
50 |
/// - Supply values should be \e signed \e integers. |
|
51 |
/// - The value types of the maps should be convertible to each other. |
|
52 |
/// - \c CostMap::Value must be signed type. |
|
53 |
/// |
|
54 |
/// \author Peter Kovacs |
|
55 |
template < typename Digraph, |
|
56 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
57 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
58 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
59 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
60 |
class CapacityScaling |
|
61 |
{ |
|
62 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
63 |
|
|
64 |
typedef typename CapacityMap::Value Capacity; |
|
65 |
typedef typename CostMap::Value Cost; |
|
66 |
typedef typename SupplyMap::Value Supply; |
|
67 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
68 |
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap; |
|
69 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
|
70 |
|
|
71 |
public: |
|
72 |
|
|
73 |
/// The type of the flow map. |
|
74 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
75 |
/// The type of the potential map. |
|
76 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
77 |
|
|
78 |
private: |
|
79 |
|
|
80 |
/// \brief Special implementation of the \ref Dijkstra algorithm |
|
81 |
/// for finding shortest paths in the residual network. |
|
82 |
/// |
|
83 |
/// \ref ResidualDijkstra is a special implementation of the |
|
84 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
|
85 |
/// residual network of the digraph with respect to the reduced arc |
|
86 |
/// costs and modifying the node potentials according to the |
|
87 |
/// distance of the nodes. |
|
88 |
class ResidualDijkstra |
|
89 |
{ |
|
90 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
91 |
typedef BinHeap<Cost, HeapCrossRef> Heap; |
|
92 |
|
|
93 |
private: |
|
94 |
|
|
95 |
// The digraph the algorithm runs on |
|
96 |
const Digraph &_graph; |
|
97 |
|
|
98 |
// The main maps |
|
99 |
const FlowMap &_flow; |
|
100 |
const CapacityArcMap &_res_cap; |
|
101 |
const CostMap &_cost; |
|
102 |
const SupplyNodeMap &_excess; |
|
103 |
PotentialMap &_potential; |
|
104 |
|
|
105 |
// The distance map |
|
106 |
PotentialMap _dist; |
|
107 |
// The pred arc map |
|
108 |
PredMap &_pred; |
|
109 |
// The processed (i.e. permanently labeled) nodes |
|
110 |
std::vector<Node> _proc_nodes; |
|
111 |
|
|
112 |
public: |
|
113 |
|
|
114 |
/// Constructor. |
|
115 |
ResidualDijkstra( const Digraph &digraph, |
|
116 |
const FlowMap &flow, |
|
117 |
const CapacityArcMap &res_cap, |
|
118 |
const CostMap &cost, |
|
119 |
const SupplyMap &excess, |
|
120 |
PotentialMap &potential, |
|
121 |
PredMap &pred ) : |
|
122 |
_graph(digraph), _flow(flow), _res_cap(res_cap), _cost(cost), |
|
123 |
_excess(excess), _potential(potential), _dist(digraph), |
|
124 |
_pred(pred) |
|
125 |
{} |
|
126 |
|
|
127 |
/// Run the algorithm from the given source node. |
|
128 |
Node run(Node s, Capacity delta = 1) { |
|
129 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
|
130 |
Heap heap(heap_cross_ref); |
|
131 |
heap.push(s, 0); |
|
132 |
_pred[s] = INVALID; |
|
133 |
_proc_nodes.clear(); |
|
134 |
|
|
135 |
// Processing nodes |
|
136 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
|
137 |
Node u = heap.top(), v; |
|
138 |
Cost d = heap.prio() + _potential[u], nd; |
|
139 |
_dist[u] = heap.prio(); |
|
140 |
heap.pop(); |
|
141 |
_proc_nodes.push_back(u); |
|
142 |
|
|
143 |
// Traversing outgoing arcs |
|
144 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
|
145 |
if (_res_cap[e] >= delta) { |
|
146 |
v = _graph.target(e); |
|
147 |
switch(heap.state(v)) { |
|
148 |
case Heap::PRE_HEAP: |
|
149 |
heap.push(v, d + _cost[e] - _potential[v]); |
|
150 |
_pred[v] = e; |
|
151 |
break; |
|
152 |
case Heap::IN_HEAP: |
|
153 |
nd = d + _cost[e] - _potential[v]; |
|
154 |
if (nd < heap[v]) { |
|
155 |
heap.decrease(v, nd); |
|
156 |
_pred[v] = e; |
|
157 |
} |
|
158 |
break; |
|
159 |
case Heap::POST_HEAP: |
|
160 |
break; |
|
161 |
} |
|
162 |
} |
|
163 |
} |
|
164 |
|
|
165 |
// Traversing incoming arcs |
|
166 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
|
167 |
if (_flow[e] >= delta) { |
|
168 |
v = _graph.source(e); |
|
169 |
switch(heap.state(v)) { |
|
170 |
case Heap::PRE_HEAP: |
|
171 |
heap.push(v, d - _cost[e] - _potential[v]); |
|
172 |
_pred[v] = e; |
|
173 |
break; |
|
174 |
case Heap::IN_HEAP: |
|
175 |
nd = d - _cost[e] - _potential[v]; |
|
176 |
if (nd < heap[v]) { |
|
177 |
heap.decrease(v, nd); |
|
178 |
_pred[v] = e; |
|
179 |
} |
|
180 |
break; |
|
181 |
case Heap::POST_HEAP: |
|
182 |
break; |
|
183 |
} |
|
184 |
} |
|
185 |
} |
|
186 |
} |
|
187 |
if (heap.empty()) return INVALID; |
|
188 |
|
|
189 |
// Updating potentials of processed nodes |
|
190 |
Node t = heap.top(); |
|
191 |
Cost t_dist = heap.prio(); |
|
192 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
|
193 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
|
194 |
|
|
195 |
return t; |
|
196 |
} |
|
197 |
|
|
198 |
}; //class ResidualDijkstra |
|
199 |
|
|
200 |
private: |
|
201 |
|
|
202 |
// The digraph the algorithm runs on |
|
203 |
const Digraph &_graph; |
|
204 |
// The original lower bound map |
|
205 |
const LowerMap *_lower; |
|
206 |
// The modified capacity map |
|
207 |
CapacityArcMap _capacity; |
|
208 |
// The original cost map |
|
209 |
const CostMap &_cost; |
|
210 |
// The modified supply map |
|
211 |
SupplyNodeMap _supply; |
|
212 |
bool _valid_supply; |
|
213 |
|
|
214 |
// Arc map of the current flow |
|
215 |
FlowMap *_flow; |
|
216 |
bool _local_flow; |
|
217 |
// Node map of the current potentials |
|
218 |
PotentialMap *_potential; |
|
219 |
bool _local_potential; |
|
220 |
|
|
221 |
// The residual capacity map |
|
222 |
CapacityArcMap _res_cap; |
|
223 |
// The excess map |
|
224 |
SupplyNodeMap _excess; |
|
225 |
// The excess nodes (i.e. nodes with positive excess) |
|
226 |
std::vector<Node> _excess_nodes; |
|
227 |
// The deficit nodes (i.e. nodes with negative excess) |
|
228 |
std::vector<Node> _deficit_nodes; |
|
229 |
|
|
230 |
// The delta parameter used for capacity scaling |
|
231 |
Capacity _delta; |
|
232 |
// The maximum number of phases |
|
233 |
int _phase_num; |
|
234 |
|
|
235 |
// The pred arc map |
|
236 |
PredMap _pred; |
|
237 |
// Implementation of the Dijkstra algorithm for finding augmenting |
|
238 |
// shortest paths in the residual network |
|
239 |
ResidualDijkstra *_dijkstra; |
|
240 |
|
|
241 |
public: |
|
242 |
|
|
243 |
/// \brief General constructor (with lower bounds). |
|
244 |
/// |
|
245 |
/// General constructor (with lower bounds). |
|
246 |
/// |
|
247 |
/// \param digraph The digraph the algorithm runs on. |
|
248 |
/// \param lower The lower bounds of the arcs. |
|
249 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
250 |
/// \param cost The cost (length) values of the arcs. |
|
251 |
/// \param supply The supply values of the nodes (signed). |
|
252 |
CapacityScaling( const Digraph &digraph, |
|
253 |
const LowerMap &lower, |
|
254 |
const CapacityMap &capacity, |
|
255 |
const CostMap &cost, |
|
256 |
const SupplyMap &supply ) : |
|
257 |
_graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost), |
|
258 |
_supply(digraph), _flow(NULL), _local_flow(false), |
|
259 |
_potential(NULL), _local_potential(false), |
|
260 |
_res_cap(digraph), _excess(digraph), _pred(digraph), _dijkstra(NULL) |
|
261 |
{ |
|
262 |
Supply sum = 0; |
|
263 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
264 |
_supply[n] = supply[n]; |
|
265 |
_excess[n] = supply[n]; |
|
266 |
sum += supply[n]; |
|
267 |
} |
|
268 |
_valid_supply = sum == 0; |
|
269 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
270 |
_capacity[a] = capacity[a]; |
|
271 |
_res_cap[a] = capacity[a]; |
|
272 |
} |
|
273 |
|
|
274 |
// Remove non-zero lower bounds |
|
275 |
typename LowerMap::Value lcap; |
|
276 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
277 |
if ((lcap = lower[e]) != 0) { |
|
278 |
_capacity[e] -= lcap; |
|
279 |
_res_cap[e] -= lcap; |
|
280 |
_supply[_graph.source(e)] -= lcap; |
|
281 |
_supply[_graph.target(e)] += lcap; |
|
282 |
_excess[_graph.source(e)] -= lcap; |
|
283 |
_excess[_graph.target(e)] += lcap; |
|
284 |
} |
|
285 |
} |
|
286 |
} |
|
287 |
/* |
|
288 |
/// \brief General constructor (without lower bounds). |
|
289 |
/// |
|
290 |
/// General constructor (without lower bounds). |
|
291 |
/// |
|
292 |
/// \param digraph The digraph the algorithm runs on. |
|
293 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
294 |
/// \param cost The cost (length) values of the arcs. |
|
295 |
/// \param supply The supply values of the nodes (signed). |
|
296 |
CapacityScaling( const Digraph &digraph, |
|
297 |
const CapacityMap &capacity, |
|
298 |
const CostMap &cost, |
|
299 |
const SupplyMap &supply ) : |
|
300 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
301 |
_supply(supply), _flow(NULL), _local_flow(false), |
|
302 |
_potential(NULL), _local_potential(false), |
|
303 |
_res_cap(capacity), _excess(supply), _pred(digraph), _dijkstra(NULL) |
|
304 |
{ |
|
305 |
// Check the sum of supply values |
|
306 |
Supply sum = 0; |
|
307 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
308 |
_valid_supply = sum == 0; |
|
309 |
} |
|
310 |
|
|
311 |
/// \brief Simple constructor (with lower bounds). |
|
312 |
/// |
|
313 |
/// Simple constructor (with lower bounds). |
|
314 |
/// |
|
315 |
/// \param digraph The digraph the algorithm runs on. |
|
316 |
/// \param lower The lower bounds of the arcs. |
|
317 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
318 |
/// \param cost The cost (length) values of the arcs. |
|
319 |
/// \param s The source node. |
|
320 |
/// \param t The target node. |
|
321 |
/// \param flow_value The required amount of flow from node \c s |
|
322 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
323 |
CapacityScaling( const Digraph &digraph, |
|
324 |
const LowerMap &lower, |
|
325 |
const CapacityMap &capacity, |
|
326 |
const CostMap &cost, |
|
327 |
Node s, Node t, |
|
328 |
Supply flow_value ) : |
|
329 |
_graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost), |
|
330 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
331 |
_potential(NULL), _local_potential(false), |
|
332 |
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL) |
|
333 |
{ |
|
334 |
// Remove non-zero lower bounds |
|
335 |
_supply[s] = _excess[s] = flow_value; |
|
336 |
_supply[t] = _excess[t] = -flow_value; |
|
337 |
typename LowerMap::Value lcap; |
|
338 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
339 |
if ((lcap = lower[e]) != 0) { |
|
340 |
_capacity[e] -= lcap; |
|
341 |
_res_cap[e] -= lcap; |
|
342 |
_supply[_graph.source(e)] -= lcap; |
|
343 |
_supply[_graph.target(e)] += lcap; |
|
344 |
_excess[_graph.source(e)] -= lcap; |
|
345 |
_excess[_graph.target(e)] += lcap; |
|
346 |
} |
|
347 |
} |
|
348 |
_valid_supply = true; |
|
349 |
} |
|
350 |
|
|
351 |
/// \brief Simple constructor (without lower bounds). |
|
352 |
/// |
|
353 |
/// Simple constructor (without lower bounds). |
|
354 |
/// |
|
355 |
/// \param digraph The digraph the algorithm runs on. |
|
356 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
357 |
/// \param cost The cost (length) values of the arcs. |
|
358 |
/// \param s The source node. |
|
359 |
/// \param t The target node. |
|
360 |
/// \param flow_value The required amount of flow from node \c s |
|
361 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
362 |
CapacityScaling( const Digraph &digraph, |
|
363 |
const CapacityMap &capacity, |
|
364 |
const CostMap &cost, |
|
365 |
Node s, Node t, |
|
366 |
Supply flow_value ) : |
|
367 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
368 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
369 |
_potential(NULL), _local_potential(false), |
|
370 |
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL) |
|
371 |
{ |
|
372 |
_supply[s] = _excess[s] = flow_value; |
|
373 |
_supply[t] = _excess[t] = -flow_value; |
|
374 |
_valid_supply = true; |
|
375 |
} |
|
376 |
*/ |
|
377 |
/// Destructor. |
|
378 |
~CapacityScaling() { |
|
379 |
if (_local_flow) delete _flow; |
|
380 |
if (_local_potential) delete _potential; |
|
381 |
delete _dijkstra; |
|
382 |
} |
|
383 |
|
|
384 |
/// \brief Set the flow map. |
|
385 |
/// |
|
386 |
/// Set the flow map. |
|
387 |
/// |
|
388 |
/// \return \c (*this) |
|
389 |
CapacityScaling& flowMap(FlowMap &map) { |
|
390 |
if (_local_flow) { |
|
391 |
delete _flow; |
|
392 |
_local_flow = false; |
|
393 |
} |
|
394 |
_flow = ↦ |
|
395 |
return *this; |
|
396 |
} |
|
397 |
|
|
398 |
/// \brief Set the potential map. |
|
399 |
/// |
|
400 |
/// Set the potential map. |
|
401 |
/// |
|
402 |
/// \return \c (*this) |
|
403 |
CapacityScaling& potentialMap(PotentialMap &map) { |
|
404 |
if (_local_potential) { |
|
405 |
delete _potential; |
|
406 |
_local_potential = false; |
|
407 |
} |
|
408 |
_potential = ↦ |
|
409 |
return *this; |
|
410 |
} |
|
411 |
|
|
412 |
/// \name Execution control |
|
413 |
|
|
414 |
/// @{ |
|
415 |
|
|
416 |
/// \brief Run the algorithm. |
|
417 |
/// |
|
418 |
/// This function runs the algorithm. |
|
419 |
/// |
|
420 |
/// \param scaling Enable or disable capacity scaling. |
|
421 |
/// If the maximum arc capacity and/or the amount of total supply |
|
422 |
/// is rather small, the algorithm could be slightly faster without |
|
423 |
/// scaling. |
|
424 |
/// |
|
425 |
/// \return \c true if a feasible flow can be found. |
|
426 |
bool run(bool scaling = true) { |
|
427 |
return init(scaling) && start(); |
|
428 |
} |
|
429 |
|
|
430 |
/// @} |
|
431 |
|
|
432 |
/// \name Query Functions |
|
433 |
/// The results of the algorithm can be obtained using these |
|
434 |
/// functions.\n |
|
435 |
/// \ref lemon::CapacityScaling::run() "run()" must be called before |
|
436 |
/// using them. |
|
437 |
|
|
438 |
/// @{ |
|
439 |
|
|
440 |
/// \brief Return a const reference to the arc map storing the |
|
441 |
/// found flow. |
|
442 |
/// |
|
443 |
/// Return a const reference to the arc map storing the found flow. |
|
444 |
/// |
|
445 |
/// \pre \ref run() must be called before using this function. |
|
446 |
const FlowMap& flowMap() const { |
|
447 |
return *_flow; |
|
448 |
} |
|
449 |
|
|
450 |
/// \brief Return a const reference to the node map storing the |
|
451 |
/// found potentials (the dual solution). |
|
452 |
/// |
|
453 |
/// Return a const reference to the node map storing the found |
|
454 |
/// potentials (the dual solution). |
|
455 |
/// |
|
456 |
/// \pre \ref run() must be called before using this function. |
|
457 |
const PotentialMap& potentialMap() const { |
|
458 |
return *_potential; |
|
459 |
} |
|
460 |
|
|
461 |
/// \brief Return the flow on the given arc. |
|
462 |
/// |
|
463 |
/// Return the flow on the given arc. |
|
464 |
/// |
|
465 |
/// \pre \ref run() must be called before using this function. |
|
466 |
Capacity flow(const Arc& arc) const { |
|
467 |
return (*_flow)[arc]; |
|
468 |
} |
|
469 |
|
|
470 |
/// \brief Return the potential of the given node. |
|
471 |
/// |
|
472 |
/// Return the potential of the given node. |
|
473 |
/// |
|
474 |
/// \pre \ref run() must be called before using this function. |
|
475 |
Cost potential(const Node& node) const { |
|
476 |
return (*_potential)[node]; |
|
477 |
} |
|
478 |
|
|
479 |
/// \brief Return the total cost of the found flow. |
|
480 |
/// |
|
481 |
/// Return the total cost of the found flow. The complexity of the |
|
482 |
/// function is \f$ O(e) \f$. |
|
483 |
/// |
|
484 |
/// \pre \ref run() must be called before using this function. |
|
485 |
Cost totalCost() const { |
|
486 |
Cost c = 0; |
|
487 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
488 |
c += (*_flow)[e] * _cost[e]; |
|
489 |
return c; |
|
490 |
} |
|
491 |
|
|
492 |
/// @} |
|
493 |
|
|
494 |
private: |
|
495 |
|
|
496 |
/// Initialize the algorithm. |
|
497 |
bool init(bool scaling) { |
|
498 |
if (!_valid_supply) return false; |
|
499 |
|
|
500 |
// Initializing maps |
|
501 |
if (!_flow) { |
|
502 |
_flow = new FlowMap(_graph); |
|
503 |
_local_flow = true; |
|
504 |
} |
|
505 |
if (!_potential) { |
|
506 |
_potential = new PotentialMap(_graph); |
|
507 |
_local_potential = true; |
|
508 |
} |
|
509 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
|
510 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
|
511 |
|
|
512 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost, |
|
513 |
_excess, *_potential, _pred ); |
|
514 |
|
|
515 |
// Initializing delta value |
|
516 |
if (scaling) { |
|
517 |
// With scaling |
|
518 |
Supply max_sup = 0, max_dem = 0; |
|
519 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
520 |
if ( _supply[n] > max_sup) max_sup = _supply[n]; |
|
521 |
if (-_supply[n] > max_dem) max_dem = -_supply[n]; |
|
522 |
} |
|
523 |
Capacity max_cap = 0; |
|
524 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
525 |
if (_capacity[e] > max_cap) max_cap = _capacity[e]; |
|
526 |
} |
|
527 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
|
528 |
_phase_num = 0; |
|
529 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) |
|
530 |
++_phase_num; |
|
531 |
} else { |
|
532 |
// Without scaling |
|
533 |
_delta = 1; |
|
534 |
} |
|
535 |
|
|
536 |
return true; |
|
537 |
} |
|
538 |
|
|
539 |
bool start() { |
|
540 |
if (_delta > 1) |
|
541 |
return startWithScaling(); |
|
542 |
else |
|
543 |
return startWithoutScaling(); |
|
544 |
} |
|
545 |
|
|
546 |
/// Execute the capacity scaling algorithm. |
|
547 |
bool startWithScaling() { |
|
548 |
// Processing capacity scaling phases |
|
549 |
Node s, t; |
|
550 |
int phase_cnt = 0; |
|
551 |
int factor = 4; |
|
552 |
while (true) { |
|
553 |
// Saturating all arcs not satisfying the optimality condition |
|
554 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
555 |
Node u = _graph.source(e), v = _graph.target(e); |
|
556 |
Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v]; |
|
557 |
if (c < 0 && _res_cap[e] >= _delta) { |
|
558 |
_excess[u] -= _res_cap[e]; |
|
559 |
_excess[v] += _res_cap[e]; |
|
560 |
(*_flow)[e] = _capacity[e]; |
|
561 |
_res_cap[e] = 0; |
|
562 |
} |
|
563 |
else if (c > 0 && (*_flow)[e] >= _delta) { |
|
564 |
_excess[u] += (*_flow)[e]; |
|
565 |
_excess[v] -= (*_flow)[e]; |
|
566 |
(*_flow)[e] = 0; |
|
567 |
_res_cap[e] = _capacity[e]; |
|
568 |
} |
|
569 |
} |
|
570 |
|
|
571 |
// Finding excess nodes and deficit nodes |
|
572 |
_excess_nodes.clear(); |
|
573 |
_deficit_nodes.clear(); |
|
574 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
575 |
if (_excess[n] >= _delta) _excess_nodes.push_back(n); |
|
576 |
if (_excess[n] <= -_delta) _deficit_nodes.push_back(n); |
|
577 |
} |
|
578 |
int next_node = 0, next_def_node = 0; |
|
579 |
|
|
580 |
// Finding augmenting shortest paths |
|
581 |
while (next_node < int(_excess_nodes.size())) { |
|
582 |
// Checking deficit nodes |
|
583 |
if (_delta > 1) { |
|
584 |
bool delta_deficit = false; |
|
585 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
|
586 |
++next_def_node ) { |
|
587 |
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) { |
|
588 |
delta_deficit = true; |
|
589 |
break; |
|
590 |
} |
|
591 |
} |
|
592 |
if (!delta_deficit) break; |
|
593 |
} |
|
594 |
|
|
595 |
// Running Dijkstra |
|
596 |
s = _excess_nodes[next_node]; |
|
597 |
if ((t = _dijkstra->run(s, _delta)) == INVALID) { |
|
598 |
if (_delta > 1) { |
|
599 |
++next_node; |
|
600 |
continue; |
|
601 |
} |
|
602 |
return false; |
|
603 |
} |
|
604 |
|
|
605 |
// Augmenting along a shortest path from s to t. |
|
606 |
Capacity d = std::min(_excess[s], -_excess[t]); |
|
607 |
Node u = t; |
|
608 |
Arc e; |
|
609 |
if (d > _delta) { |
|
610 |
while ((e = _pred[u]) != INVALID) { |
|
611 |
Capacity rc; |
|
612 |
if (u == _graph.target(e)) { |
|
613 |
rc = _res_cap[e]; |
|
614 |
u = _graph.source(e); |
|
615 |
} else { |
|
616 |
rc = (*_flow)[e]; |
|
617 |
u = _graph.target(e); |
|
618 |
} |
|
619 |
if (rc < d) d = rc; |
|
620 |
} |
|
621 |
} |
|
622 |
u = t; |
|
623 |
while ((e = _pred[u]) != INVALID) { |
|
624 |
if (u == _graph.target(e)) { |
|
625 |
(*_flow)[e] += d; |
|
626 |
_res_cap[e] -= d; |
|
627 |
u = _graph.source(e); |
|
628 |
} else { |
|
629 |
(*_flow)[e] -= d; |
|
630 |
_res_cap[e] += d; |
|
631 |
u = _graph.target(e); |
|
632 |
} |
|
633 |
} |
|
634 |
_excess[s] -= d; |
|
635 |
_excess[t] += d; |
|
636 |
|
|
637 |
if (_excess[s] < _delta) ++next_node; |
|
638 |
} |
|
639 |
|
|
640 |
if (_delta == 1) break; |
|
641 |
if (++phase_cnt > _phase_num / 4) factor = 2; |
|
642 |
_delta = _delta <= factor ? 1 : _delta / factor; |
|
643 |
} |
|
644 |
|
|
645 |
// Handling non-zero lower bounds |
|
646 |
if (_lower) { |
|
647 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
648 |
(*_flow)[e] += (*_lower)[e]; |
|
649 |
} |
|
650 |
return true; |
|
651 |
} |
|
652 |
|
|
653 |
/// Execute the successive shortest path algorithm. |
|
654 |
bool startWithoutScaling() { |
|
655 |
// Finding excess nodes |
|
656 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
657 |
if (_excess[n] > 0) _excess_nodes.push_back(n); |
|
658 |
if (_excess_nodes.size() == 0) return true; |
|
659 |
int next_node = 0; |
|
660 |
|
|
661 |
// Finding shortest paths |
|
662 |
Node s, t; |
|
663 |
while ( _excess[_excess_nodes[next_node]] > 0 || |
|
664 |
++next_node < int(_excess_nodes.size()) ) |
|
665 |
{ |
|
666 |
// Running Dijkstra |
|
667 |
s = _excess_nodes[next_node]; |
|
668 |
if ((t = _dijkstra->run(s)) == INVALID) return false; |
|
669 |
|
|
670 |
// Augmenting along a shortest path from s to t |
|
671 |
Capacity d = std::min(_excess[s], -_excess[t]); |
|
672 |
Node u = t; |
|
673 |
Arc e; |
|
674 |
if (d > 1) { |
|
675 |
while ((e = _pred[u]) != INVALID) { |
|
676 |
Capacity rc; |
|
677 |
if (u == _graph.target(e)) { |
|
678 |
rc = _res_cap[e]; |
|
679 |
u = _graph.source(e); |
|
680 |
} else { |
|
681 |
rc = (*_flow)[e]; |
|
682 |
u = _graph.target(e); |
|
683 |
} |
|
684 |
if (rc < d) d = rc; |
|
685 |
} |
|
686 |
} |
|
687 |
u = t; |
|
688 |
while ((e = _pred[u]) != INVALID) { |
|
689 |
if (u == _graph.target(e)) { |
|
690 |
(*_flow)[e] += d; |
|
691 |
_res_cap[e] -= d; |
|
692 |
u = _graph.source(e); |
|
693 |
} else { |
|
694 |
(*_flow)[e] -= d; |
|
695 |
_res_cap[e] += d; |
|
696 |
u = _graph.target(e); |
|
697 |
} |
|
698 |
} |
|
699 |
_excess[s] -= d; |
|
700 |
_excess[t] += d; |
|
701 |
} |
|
702 |
|
|
703 |
// Handling non-zero lower bounds |
|
704 |
if (_lower) { |
|
705 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
706 |
(*_flow)[e] += (*_lower)[e]; |
|
707 |
} |
|
708 |
return true; |
|
709 |
} |
|
710 |
|
|
711 |
}; //class CapacityScaling |
|
712 |
|
|
713 |
///@} |
|
714 |
|
|
715 |
} //namespace lemon |
|
716 |
|
|
717 |
#endif //LEMON_CAPACITY_SCALING_H |
... | ... |
@@ -53,24 +53,25 @@ |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 | 60 |
lemon/bellman_ford.h \ |
61 | 61 |
lemon/bfs.h \ |
62 | 62 |
lemon/bin_heap.h \ |
63 | 63 |
lemon/binom_heap.h \ |
64 | 64 |
lemon/bucket_heap.h \ |
65 |
lemon/capacity_scaling.h \ |
|
65 | 66 |
lemon/cbc.h \ |
66 | 67 |
lemon/circulation.h \ |
67 | 68 |
lemon/clp.h \ |
68 | 69 |
lemon/color.h \ |
69 | 70 |
lemon/concept_check.h \ |
70 | 71 |
lemon/connectivity.h \ |
71 | 72 |
lemon/counter.h \ |
72 | 73 |
lemon/core.h \ |
73 | 74 |
lemon/cplex.h \ |
74 | 75 |
lemon/dfs.h \ |
75 | 76 |
lemon/dijkstra.h \ |
76 | 77 |
lemon/dim2.h \ |
0 comments (0 inline)