Location: LEMON/LEMON-main/lemon/capacity_scaling.h

Load file history
gravatar
kpeter (Peter Kovacs)
Port CapacityScaling from SVN -r3524 (#180)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CAPACITY_SCALING_H
#define LEMON_CAPACITY_SCALING_H
/// \ingroup min_cost_flow
///
/// \file
/// \brief Capacity scaling algorithm for finding a minimum cost flow.
#include <vector>
#include <lemon/bin_heap.h>
namespace lemon {
/// \addtogroup min_cost_flow
/// @{
/// \brief Implementation of the capacity scaling algorithm for
/// finding a minimum cost flow.
///
/// \ref CapacityScaling implements the capacity scaling version
/// of the successive shortest path algorithm for finding a minimum
/// cost flow.
///
/// \tparam Digraph The digraph type the algorithm runs on.
/// \tparam LowerMap The type of the lower bound map.
/// \tparam CapacityMap The type of the capacity (upper bound) map.
/// \tparam CostMap The type of the cost (length) map.
/// \tparam SupplyMap The type of the supply map.
///
/// \warning
/// - Arc capacities and costs should be \e non-negative \e integers.
/// - Supply values should be \e signed \e integers.
/// - The value types of the maps should be convertible to each other.
/// - \c CostMap::Value must be signed type.
///
/// \author Peter Kovacs
template < typename Digraph,
typename LowerMap = typename Digraph::template ArcMap<int>,
typename CapacityMap = typename Digraph::template ArcMap<int>,
typename CostMap = typename Digraph::template ArcMap<int>,
typename SupplyMap = typename Digraph::template NodeMap<int> >
class CapacityScaling
{
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
typedef typename CapacityMap::Value Capacity;
typedef typename CostMap::Value Cost;
typedef typename SupplyMap::Value Supply;
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
typedef typename Digraph::template NodeMap<Arc> PredMap;
public:
/// The type of the flow map.
typedef typename Digraph::template ArcMap<Capacity> FlowMap;
/// The type of the potential map.
typedef typename Digraph::template NodeMap<Cost> PotentialMap;
private:
/// \brief Special implementation of the \ref Dijkstra algorithm
/// for finding shortest paths in the residual network.
///
/// \ref ResidualDijkstra is a special implementation of the
/// \ref Dijkstra algorithm for finding shortest paths in the
/// residual network of the digraph with respect to the reduced arc
/// costs and modifying the node potentials according to the
/// distance of the nodes.
class ResidualDijkstra
{
typedef typename Digraph::template NodeMap<int> HeapCrossRef;
typedef BinHeap<Cost, HeapCrossRef> Heap;
private:
// The digraph the algorithm runs on
const Digraph &_graph;
// The main maps
const FlowMap &_flow;
const CapacityArcMap &_res_cap;
const CostMap &_cost;
const SupplyNodeMap &_excess;
PotentialMap &_potential;
// The distance map
PotentialMap _dist;
// The pred arc map
PredMap &_pred;
// The processed (i.e. permanently labeled) nodes
std::vector<Node> _proc_nodes;
public:
/// Constructor.
ResidualDijkstra( const Digraph &digraph,
const FlowMap &flow,
const CapacityArcMap &res_cap,
const CostMap &cost,
const SupplyMap &excess,
PotentialMap &potential,
PredMap &pred ) :
_graph(digraph), _flow(flow), _res_cap(res_cap), _cost(cost),
_excess(excess), _potential(potential), _dist(digraph),
_pred(pred)
{}
/// Run the algorithm from the given source node.
Node run(Node s, Capacity delta = 1) {
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
Heap heap(heap_cross_ref);
heap.push(s, 0);
_pred[s] = INVALID;
_proc_nodes.clear();
// Processing nodes
while (!heap.empty() && _excess[heap.top()] > -delta) {
Node u = heap.top(), v;
Cost d = heap.prio() + _potential[u], nd;
_dist[u] = heap.prio();
heap.pop();
_proc_nodes.push_back(u);
// Traversing outgoing arcs
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
if (_res_cap[e] >= delta) {
v = _graph.target(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d + _cost[e] - _potential[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
nd = d + _cost[e] - _potential[v];
if (nd < heap[v]) {
heap.decrease(v, nd);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
// Traversing incoming arcs
for (InArcIt e(_graph, u); e != INVALID; ++e) {
if (_flow[e] >= delta) {
v = _graph.source(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d - _cost[e] - _potential[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
nd = d - _cost[e] - _potential[v];
if (nd < heap[v]) {
heap.decrease(v, nd);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
}
if (heap.empty()) return INVALID;
// Updating potentials of processed nodes
Node t = heap.top();
Cost t_dist = heap.prio();
for (int i = 0; i < int(_proc_nodes.size()); ++i)
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
return t;
}
}; //class ResidualDijkstra
private:
// The digraph the algorithm runs on
const Digraph &_graph;
// The original lower bound map
const LowerMap *_lower;
// The modified capacity map
CapacityArcMap _capacity;
// The original cost map
const CostMap &_cost;
// The modified supply map
SupplyNodeMap _supply;
bool _valid_supply;
// Arc map of the current flow
FlowMap *_flow;
bool _local_flow;
// Node map of the current potentials
PotentialMap *_potential;
bool _local_potential;
// The residual capacity map
CapacityArcMap _res_cap;
// The excess map
SupplyNodeMap _excess;
// The excess nodes (i.e. nodes with positive excess)
std::vector<Node> _excess_nodes;
// The deficit nodes (i.e. nodes with negative excess)
std::vector<Node> _deficit_nodes;
// The delta parameter used for capacity scaling
Capacity _delta;
// The maximum number of phases
int _phase_num;
// The pred arc map
PredMap _pred;
// Implementation of the Dijkstra algorithm for finding augmenting
// shortest paths in the residual network
ResidualDijkstra *_dijkstra;
public:
/// \brief General constructor (with lower bounds).
///
/// General constructor (with lower bounds).
///
/// \param digraph The digraph the algorithm runs on.
/// \param lower The lower bounds of the arcs.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param supply The supply values of the nodes (signed).
CapacityScaling( const Digraph &digraph,
const LowerMap &lower,
const CapacityMap &capacity,
const CostMap &cost,
const SupplyMap &supply ) :
_graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
_supply(digraph), _flow(NULL), _local_flow(false),
_potential(NULL), _local_potential(false),
_res_cap(digraph), _excess(digraph), _pred(digraph), _dijkstra(NULL)
{
Supply sum = 0;
for (NodeIt n(_graph); n != INVALID; ++n) {
_supply[n] = supply[n];
_excess[n] = supply[n];
sum += supply[n];
}
_valid_supply = sum == 0;
for (ArcIt a(_graph); a != INVALID; ++a) {
_capacity[a] = capacity[a];
_res_cap[a] = capacity[a];
}
// Remove non-zero lower bounds
typename LowerMap::Value lcap;
for (ArcIt e(_graph); e != INVALID; ++e) {
if ((lcap = lower[e]) != 0) {
_capacity[e] -= lcap;
_res_cap[e] -= lcap;
_supply[_graph.source(e)] -= lcap;
_supply[_graph.target(e)] += lcap;
_excess[_graph.source(e)] -= lcap;
_excess[_graph.target(e)] += lcap;
}
}
}
/*
/// \brief General constructor (without lower bounds).
///
/// General constructor (without lower bounds).
///
/// \param digraph The digraph the algorithm runs on.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param supply The supply values of the nodes (signed).
CapacityScaling( const Digraph &digraph,
const CapacityMap &capacity,
const CostMap &cost,
const SupplyMap &supply ) :
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
_supply(supply), _flow(NULL), _local_flow(false),
_potential(NULL), _local_potential(false),
_res_cap(capacity), _excess(supply), _pred(digraph), _dijkstra(NULL)
{
// Check the sum of supply values
Supply sum = 0;
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
_valid_supply = sum == 0;
}
/// \brief Simple constructor (with lower bounds).
///
/// Simple constructor (with lower bounds).
///
/// \param digraph The digraph the algorithm runs on.
/// \param lower The lower bounds of the arcs.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param s The source node.
/// \param t The target node.
/// \param flow_value The required amount of flow from node \c s
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
CapacityScaling( const Digraph &digraph,
const LowerMap &lower,
const CapacityMap &capacity,
const CostMap &cost,
Node s, Node t,
Supply flow_value ) :
_graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
_supply(digraph, 0), _flow(NULL), _local_flow(false),
_potential(NULL), _local_potential(false),
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL)
{
// Remove non-zero lower bounds
_supply[s] = _excess[s] = flow_value;
_supply[t] = _excess[t] = -flow_value;
typename LowerMap::Value lcap;
for (ArcIt e(_graph); e != INVALID; ++e) {
if ((lcap = lower[e]) != 0) {
_capacity[e] -= lcap;
_res_cap[e] -= lcap;
_supply[_graph.source(e)] -= lcap;
_supply[_graph.target(e)] += lcap;
_excess[_graph.source(e)] -= lcap;
_excess[_graph.target(e)] += lcap;
}
}
_valid_supply = true;
}
/// \brief Simple constructor (without lower bounds).
///
/// Simple constructor (without lower bounds).
///
/// \param digraph The digraph the algorithm runs on.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param s The source node.
/// \param t The target node.
/// \param flow_value The required amount of flow from node \c s
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
CapacityScaling( const Digraph &digraph,
const CapacityMap &capacity,
const CostMap &cost,
Node s, Node t,
Supply flow_value ) :
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
_supply(digraph, 0), _flow(NULL), _local_flow(false),
_potential(NULL), _local_potential(false),
_res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL)
{
_supply[s] = _excess[s] = flow_value;
_supply[t] = _excess[t] = -flow_value;
_valid_supply = true;
}
*/
/// Destructor.
~CapacityScaling() {
if (_local_flow) delete _flow;
if (_local_potential) delete _potential;
delete _dijkstra;
}
/// \brief Set the flow map.
///
/// Set the flow map.
///
/// \return \c (*this)
CapacityScaling& flowMap(FlowMap &map) {
if (_local_flow) {
delete _flow;
_local_flow = false;
}
_flow = &map;
return *this;
}
/// \brief Set the potential map.
///
/// Set the potential map.
///
/// \return \c (*this)
CapacityScaling& potentialMap(PotentialMap &map) {
if (_local_potential) {
delete _potential;
_local_potential = false;
}
_potential = &map;
return *this;
}
/// \name Execution control
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
///
/// \param scaling Enable or disable capacity scaling.
/// If the maximum arc capacity and/or the amount of total supply
/// is rather small, the algorithm could be slightly faster without
/// scaling.
///
/// \return \c true if a feasible flow can be found.
bool run(bool scaling = true) {
return init(scaling) && start();
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// \ref lemon::CapacityScaling::run() "run()" must be called before
/// using them.
/// @{
/// \brief Return a const reference to the arc map storing the
/// found flow.
///
/// Return a const reference to the arc map storing the found flow.
///
/// \pre \ref run() must be called before using this function.
const FlowMap& flowMap() const {
return *_flow;
}
/// \brief Return a const reference to the node map storing the
/// found potentials (the dual solution).
///
/// Return a const reference to the node map storing the found
/// potentials (the dual solution).
///
/// \pre \ref run() must be called before using this function.
const PotentialMap& potentialMap() const {
return *_potential;
}
/// \brief Return the flow on the given arc.
///
/// Return the flow on the given arc.
///
/// \pre \ref run() must be called before using this function.
Capacity flow(const Arc& arc) const {
return (*_flow)[arc];
}
/// \brief Return the potential of the given node.
///
/// Return the potential of the given node.
///
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& node) const {
return (*_potential)[node];
}
/// \brief Return the total cost of the found flow.
///
/// Return the total cost of the found flow. The complexity of the
/// function is \f$ O(e) \f$.
///
/// \pre \ref run() must be called before using this function.
Cost totalCost() const {
Cost c = 0;
for (ArcIt e(_graph); e != INVALID; ++e)
c += (*_flow)[e] * _cost[e];
return c;
}
/// @}
private:
/// Initialize the algorithm.
bool init(bool scaling) {
if (!_valid_supply) return false;
// Initializing maps
if (!_flow) {
_flow = new FlowMap(_graph);
_local_flow = true;
}
if (!_potential) {
_potential = new PotentialMap(_graph);
_local_potential = true;
}
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
_dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost,
_excess, *_potential, _pred );
// Initializing delta value
if (scaling) {
// With scaling
Supply max_sup = 0, max_dem = 0;
for (NodeIt n(_graph); n != INVALID; ++n) {
if ( _supply[n] > max_sup) max_sup = _supply[n];
if (-_supply[n] > max_dem) max_dem = -_supply[n];
}
Capacity max_cap = 0;
for (ArcIt e(_graph); e != INVALID; ++e) {
if (_capacity[e] > max_cap) max_cap = _capacity[e];
}
max_sup = std::min(std::min(max_sup, max_dem), max_cap);
_phase_num = 0;
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2)
++_phase_num;
} else {
// Without scaling
_delta = 1;
}
return true;
}
bool start() {
if (_delta > 1)
return startWithScaling();
else
return startWithoutScaling();
}
/// Execute the capacity scaling algorithm.
bool startWithScaling() {
// Processing capacity scaling phases
Node s, t;
int phase_cnt = 0;
int factor = 4;
while (true) {
// Saturating all arcs not satisfying the optimality condition
for (ArcIt e(_graph); e != INVALID; ++e) {
Node u = _graph.source(e), v = _graph.target(e);
Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v];
if (c < 0 && _res_cap[e] >= _delta) {
_excess[u] -= _res_cap[e];
_excess[v] += _res_cap[e];
(*_flow)[e] = _capacity[e];
_res_cap[e] = 0;
}
else if (c > 0 && (*_flow)[e] >= _delta) {
_excess[u] += (*_flow)[e];
_excess[v] -= (*_flow)[e];
(*_flow)[e] = 0;
_res_cap[e] = _capacity[e];
}
}
// Finding excess nodes and deficit nodes
_excess_nodes.clear();
_deficit_nodes.clear();
for (NodeIt n(_graph); n != INVALID; ++n) {
if (_excess[n] >= _delta) _excess_nodes.push_back(n);
if (_excess[n] <= -_delta) _deficit_nodes.push_back(n);
}
int next_node = 0, next_def_node = 0;
// Finding augmenting shortest paths
while (next_node < int(_excess_nodes.size())) {
// Checking deficit nodes
if (_delta > 1) {
bool delta_deficit = false;
for ( ; next_def_node < int(_deficit_nodes.size());
++next_def_node ) {
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
delta_deficit = true;
break;
}
}
if (!delta_deficit) break;
}
// Running Dijkstra
s = _excess_nodes[next_node];
if ((t = _dijkstra->run(s, _delta)) == INVALID) {
if (_delta > 1) {
++next_node;
continue;
}
return false;
}
// Augmenting along a shortest path from s to t.
Capacity d = std::min(_excess[s], -_excess[t]);
Node u = t;
Arc e;
if (d > _delta) {
while ((e = _pred[u]) != INVALID) {
Capacity rc;
if (u == _graph.target(e)) {
rc = _res_cap[e];
u = _graph.source(e);
} else {
rc = (*_flow)[e];
u = _graph.target(e);
}
if (rc < d) d = rc;
}
}
u = t;
while ((e = _pred[u]) != INVALID) {
if (u == _graph.target(e)) {
(*_flow)[e] += d;
_res_cap[e] -= d;
u = _graph.source(e);
} else {
(*_flow)[e] -= d;
_res_cap[e] += d;
u = _graph.target(e);
}
}
_excess[s] -= d;
_excess[t] += d;
if (_excess[s] < _delta) ++next_node;
}
if (_delta == 1) break;
if (++phase_cnt > _phase_num / 4) factor = 2;
_delta = _delta <= factor ? 1 : _delta / factor;
}
// Handling non-zero lower bounds
if (_lower) {
for (ArcIt e(_graph); e != INVALID; ++e)
(*_flow)[e] += (*_lower)[e];
}
return true;
}
/// Execute the successive shortest path algorithm.
bool startWithoutScaling() {
// Finding excess nodes
for (NodeIt n(_graph); n != INVALID; ++n)
if (_excess[n] > 0) _excess_nodes.push_back(n);
if (_excess_nodes.size() == 0) return true;
int next_node = 0;
// Finding shortest paths
Node s, t;
while ( _excess[_excess_nodes[next_node]] > 0 ||
++next_node < int(_excess_nodes.size()) )
{
// Running Dijkstra
s = _excess_nodes[next_node];
if ((t = _dijkstra->run(s)) == INVALID) return false;
// Augmenting along a shortest path from s to t
Capacity d = std::min(_excess[s], -_excess[t]);
Node u = t;
Arc e;
if (d > 1) {
while ((e = _pred[u]) != INVALID) {
Capacity rc;
if (u == _graph.target(e)) {
rc = _res_cap[e];
u = _graph.source(e);
} else {
rc = (*_flow)[e];
u = _graph.target(e);
}
if (rc < d) d = rc;
}
}
u = t;
while ((e = _pred[u]) != INVALID) {
if (u == _graph.target(e)) {
(*_flow)[e] += d;
_res_cap[e] -= d;
u = _graph.source(e);
} else {
(*_flow)[e] -= d;
_res_cap[e] += d;
u = _graph.target(e);
}
}
_excess[s] -= d;
_excess[t] += d;
}
// Handling non-zero lower bounds
if (_lower) {
for (ArcIt e(_graph); e != INVALID; ++e)
(*_flow)[e] += (*_lower)[e];
}
return true;
}
}; //class CapacityScaling
///@}
} //namespace lemon
#endif //LEMON_CAPACITY_SCALING_H