... | ... |
@@ -23,51 +23,51 @@ |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 | 26 |
#include <lemon/bits/utility.h> |
27 | 27 |
// #include <lemon/bits/traits.h> |
28 | 28 |
|
29 | 29 |
///\file |
30 | 30 |
///\ingroup maps |
31 | 31 |
///\brief Miscellaneous property maps |
32 | 32 |
/// |
33 | 33 |
#include <map> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \addtogroup maps |
38 | 38 |
/// @{ |
39 | 39 |
|
40 | 40 |
/// Base class of maps. |
41 | 41 |
|
42 | 42 |
/// Base class of maps. |
43 | 43 |
/// It provides the necessary <tt>typedef</tt>s required by the map concept. |
44 | 44 |
template<typename K, typename T> |
45 | 45 |
class MapBase { |
46 | 46 |
public: |
47 |
/// |
|
47 |
/// The key type of the map. |
|
48 | 48 |
typedef K Key; |
49 |
/// |
|
49 |
/// The value type of the map. (The type of objects associated with the keys). |
|
50 | 50 |
typedef T Value; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
54 | 54 |
|
55 | 55 |
/// This map can be used if you have to provide a map only for |
56 | 56 |
/// its type definitions, or if you have to provide a writable map, |
57 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
58 | 58 |
/// <tt>/dev/null</tt>). |
59 | 59 |
template<typename K, typename T> |
60 | 60 |
class NullMap : public MapBase<K, T> { |
61 | 61 |
public: |
62 | 62 |
typedef MapBase<K, T> Parent; |
63 | 63 |
typedef typename Parent::Key Key; |
64 | 64 |
typedef typename Parent::Value Value; |
65 | 65 |
|
66 | 66 |
/// Gives back a default constructed element. |
67 | 67 |
T operator[](const K&) const { return T(); } |
68 | 68 |
/// Absorbs the value. |
69 | 69 |
void set(const K&, const T&) {} |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///Returns a \c NullMap class |
73 | 73 |
|
... | ... |
@@ -228,51 +228,51 @@ |
228 | 228 |
return _value; |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
/// \e |
232 | 232 |
void set(const Key &k, const T &t) { |
233 | 233 |
typename Map::iterator it = _map.lower_bound(k); |
234 | 234 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
235 | 235 |
it->second = t; |
236 | 236 |
else |
237 | 237 |
_map.insert(it, std::make_pair(k, t)); |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
/// \e |
241 | 241 |
void setAll(const T &t) { |
242 | 242 |
_value = t; |
243 | 243 |
_map.clear(); |
244 | 244 |
} |
245 | 245 |
|
246 | 246 |
template <typename T1, typename C1 = std::less<T1> > |
247 | 247 |
struct rebind { |
248 | 248 |
typedef StdMap<Key, T1, C1> other; |
249 | 249 |
}; |
250 | 250 |
}; |
251 | 251 |
|
252 |
/// \brief Map for storing values for the range |
|
252 |
/// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt> |
|
253 | 253 |
/// |
254 |
/// The current map has the |
|
254 |
/// The current map has the <tt>[0..size-1]</tt> keyset and the values |
|
255 | 255 |
/// are stored in a \c std::vector<T> container. It can be used with |
256 | 256 |
/// some data structures, for example \c UnionFind, \c BinHeap, when |
257 | 257 |
/// the used items are small integer numbers. |
258 | 258 |
/// |
259 | 259 |
/// \todo Revise its name |
260 | 260 |
template <typename T> |
261 | 261 |
class IntegerMap { |
262 | 262 |
|
263 | 263 |
template <typename T1> |
264 | 264 |
friend class IntegerMap; |
265 | 265 |
|
266 | 266 |
public: |
267 | 267 |
|
268 | 268 |
typedef True ReferenceMapTag; |
269 | 269 |
///\e |
270 | 270 |
typedef int Key; |
271 | 271 |
///\e |
272 | 272 |
typedef T Value; |
273 | 273 |
///\e |
274 | 274 |
typedef T& Reference; |
275 | 275 |
///\e |
276 | 276 |
typedef const T& ConstReference; |
277 | 277 |
|
278 | 278 |
private: |
... | ... |
@@ -808,49 +808,49 @@ |
808 | 808 |
template<typename M1, typename M2, typename F, |
809 | 809 |
typename V = typename F::result_type> |
810 | 810 |
class CombineMap : public MapBase<typename M1::Key, V> { |
811 | 811 |
const M1& m1; |
812 | 812 |
const M2& m2; |
813 | 813 |
F f; |
814 | 814 |
public: |
815 | 815 |
typedef MapBase<typename M1::Key, V> Parent; |
816 | 816 |
typedef typename Parent::Key Key; |
817 | 817 |
typedef typename Parent::Value Value; |
818 | 818 |
|
819 | 819 |
///Constructor |
820 | 820 |
CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F()) |
821 | 821 |
: m1(_m1), m2(_m2), f(_f) {}; |
822 | 822 |
/// \e |
823 | 823 |
Value operator[](Key k) const {return f(m1[k],m2[k]);} |
824 | 824 |
}; |
825 | 825 |
|
826 | 826 |
///Returns a \c CombineMap class |
827 | 827 |
|
828 | 828 |
///This function just returns a \c CombineMap class. |
829 | 829 |
/// |
830 | 830 |
///For example if \c m1 and \c m2 are both \c double valued maps, then |
831 | 831 |
///\code |
832 |
///combineMap |
|
832 |
///combineMap(m1,m2,std::plus<double>()) |
|
833 | 833 |
///\endcode |
834 | 834 |
///is equivalent to |
835 | 835 |
///\code |
836 | 836 |
///addMap(m1,m2) |
837 | 837 |
///\endcode |
838 | 838 |
/// |
839 | 839 |
///This function is specialized for adaptable binary function |
840 | 840 |
///classes and C++ functions. |
841 | 841 |
/// |
842 | 842 |
///\relates CombineMap |
843 | 843 |
template<typename M1, typename M2, typename F, typename V> |
844 | 844 |
inline CombineMap<M1, M2, F, V> |
845 | 845 |
combineMap(const M1& m1,const M2& m2, const F& f) { |
846 | 846 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
847 | 847 |
} |
848 | 848 |
|
849 | 849 |
template<typename M1, typename M2, typename F> |
850 | 850 |
inline CombineMap<M1, M2, F, typename F::result_type> |
851 | 851 |
combineMap(const M1& m1, const M2& m2, const F& f) { |
852 | 852 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
853 | 853 |
} |
854 | 854 |
|
855 | 855 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
856 | 856 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
... | ... |
@@ -941,50 +941,51 @@ |
941 | 941 |
AbsMap(const M &_m) : m(_m) {}; |
942 | 942 |
/// \e |
943 | 943 |
Value operator[](Key k) const { |
944 | 944 |
Value tmp = m[k]; |
945 | 945 |
return tmp >= 0 ? tmp : -tmp; |
946 | 946 |
} |
947 | 947 |
|
948 | 948 |
}; |
949 | 949 |
|
950 | 950 |
///Returns an \c AbsMap class |
951 | 951 |
|
952 | 952 |
///This function just returns an \c AbsMap class. |
953 | 953 |
///\relates AbsMap |
954 | 954 |
template<typename M> |
955 | 955 |
inline AbsMap<M> absMap(const M &m) { |
956 | 956 |
return AbsMap<M>(m); |
957 | 957 |
} |
958 | 958 |
|
959 | 959 |
///Converts an STL style functor to a map |
960 | 960 |
|
961 | 961 |
///This \c concepts::ReadMap "read only map" returns the value |
962 | 962 |
///of a given functor. |
963 | 963 |
/// |
964 | 964 |
///Template parameters \c K and \c V will become its |
965 |
///\c Key and \c Value. They must be given explicitly |
|
966 |
///because a functor does not provide such typedefs. |
|
965 |
///\c Key and \c Value. |
|
966 |
///In most cases they have to be given explicitly because a |
|
967 |
///functor typically does not provide such typedefs. |
|
967 | 968 |
/// |
968 | 969 |
///Parameter \c F is the type of the used functor. |
969 | 970 |
/// |
970 | 971 |
///\sa MapFunctor |
971 | 972 |
template<typename F, |
972 | 973 |
typename K = typename F::argument_type, |
973 | 974 |
typename V = typename F::result_type> |
974 | 975 |
class FunctorMap : public MapBase<K, V> { |
975 | 976 |
F f; |
976 | 977 |
public: |
977 | 978 |
typedef MapBase<K, V> Parent; |
978 | 979 |
typedef typename Parent::Key Key; |
979 | 980 |
typedef typename Parent::Value Value; |
980 | 981 |
|
981 | 982 |
///Constructor |
982 | 983 |
FunctorMap(const F &_f = F()) : f(_f) {} |
983 | 984 |
/// \e |
984 | 985 |
Value operator[](Key k) const { return f(k);} |
985 | 986 |
}; |
986 | 987 |
|
987 | 988 |
///Returns a \c FunctorMap class |
988 | 989 |
|
989 | 990 |
///This function just returns a \c FunctorMap class. |
990 | 991 |
/// |
... | ... |
@@ -1219,48 +1220,50 @@ |
1219 | 1220 |
/// |
1220 | 1221 |
/// Writable bool map for logging each \c true assigned element, i.e it |
1221 | 1222 |
/// copies all the keys set to \c true to the given iterator. |
1222 | 1223 |
/// |
1223 | 1224 |
/// \note The container of the iterator should contain space |
1224 | 1225 |
/// for each element. |
1225 | 1226 |
/// |
1226 | 1227 |
/// The following example shows how you can write the edges found by the Prim |
1227 | 1228 |
/// algorithm directly |
1228 | 1229 |
/// to the standard output. |
1229 | 1230 |
///\code |
1230 | 1231 |
/// typedef IdMap<Graph, Edge> EdgeIdMap; |
1231 | 1232 |
/// EdgeIdMap edgeId(graph); |
1232 | 1233 |
/// |
1233 | 1234 |
/// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor; |
1234 | 1235 |
/// EdgeIdFunctor edgeIdFunctor(edgeId); |
1235 | 1236 |
/// |
1236 | 1237 |
/// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> |
1237 | 1238 |
/// writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor); |
1238 | 1239 |
/// |
1239 | 1240 |
/// prim(graph, cost, writerMap); |
1240 | 1241 |
///\endcode |
1241 | 1242 |
/// |
1242 | 1243 |
///\sa BackInserterBoolMap |
1244 |
///\sa FrontInserterBoolMap |
|
1245 |
///\sa InserterBoolMap |
|
1243 | 1246 |
/// |
1244 | 1247 |
///\todo Revise the name of this class and the related ones. |
1245 | 1248 |
template <typename _Iterator, |
1246 | 1249 |
typename _Functor = |
1247 | 1250 |
_maps_bits::Identity<typename _maps_bits:: |
1248 | 1251 |
IteratorTraits<_Iterator>::Value> > |
1249 | 1252 |
class StoreBoolMap { |
1250 | 1253 |
public: |
1251 | 1254 |
typedef _Iterator Iterator; |
1252 | 1255 |
|
1253 | 1256 |
typedef typename _Functor::argument_type Key; |
1254 | 1257 |
typedef bool Value; |
1255 | 1258 |
|
1256 | 1259 |
typedef _Functor Functor; |
1257 | 1260 |
|
1258 | 1261 |
/// Constructor |
1259 | 1262 |
StoreBoolMap(Iterator it, const Functor& functor = Functor()) |
1260 | 1263 |
: _begin(it), _end(it), _functor(functor) {} |
1261 | 1264 |
|
1262 | 1265 |
/// Gives back the given iterator set for the first key |
1263 | 1266 |
Iterator begin() const { |
1264 | 1267 |
return _begin; |
1265 | 1268 |
} |
1266 | 1269 |
|
... | ... |
@@ -1284,84 +1287,84 @@ |
1284 | 1287 |
|
1285 | 1288 |
/// \brief Writable bool map for logging each \c true assigned element in |
1286 | 1289 |
/// a back insertable container. |
1287 | 1290 |
/// |
1288 | 1291 |
/// Writable bool map for logging each \c true assigned element by pushing |
1289 | 1292 |
/// them into a back insertable container. |
1290 | 1293 |
/// It can be used to retrieve the items into a standard |
1291 | 1294 |
/// container. The next example shows how you can store the |
1292 | 1295 |
/// edges found by the Prim algorithm in a vector. |
1293 | 1296 |
/// |
1294 | 1297 |
///\code |
1295 | 1298 |
/// vector<Edge> span_tree_edges; |
1296 | 1299 |
/// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges); |
1297 | 1300 |
/// prim(graph, cost, inserter_map); |
1298 | 1301 |
///\endcode |
1299 | 1302 |
/// |
1300 | 1303 |
///\sa StoreBoolMap |
1301 | 1304 |
///\sa FrontInserterBoolMap |
1302 | 1305 |
///\sa InserterBoolMap |
1303 | 1306 |
template <typename Container, |
1304 | 1307 |
typename Functor = |
1305 | 1308 |
_maps_bits::Identity<typename Container::value_type> > |
1306 | 1309 |
class BackInserterBoolMap { |
1307 | 1310 |
public: |
1308 |
typedef typename |
|
1311 |
typedef typename Functor::argument_type Key; |
|
1309 | 1312 |
typedef bool Value; |
1310 | 1313 |
|
1311 | 1314 |
/// Constructor |
1312 | 1315 |
BackInserterBoolMap(Container& _container, |
1313 | 1316 |
const Functor& _functor = Functor()) |
1314 | 1317 |
: container(_container), functor(_functor) {} |
1315 | 1318 |
|
1316 | 1319 |
/// The \c set function of the map |
1317 | 1320 |
void set(const Key& key, Value value) { |
1318 | 1321 |
if (value) { |
1319 | 1322 |
container.push_back(functor(key)); |
1320 | 1323 |
} |
1321 | 1324 |
} |
1322 | 1325 |
|
1323 | 1326 |
private: |
1324 | 1327 |
Container& container; |
1325 | 1328 |
Functor functor; |
1326 | 1329 |
}; |
1327 | 1330 |
|
1328 | 1331 |
/// \brief Writable bool map for logging each \c true assigned element in |
1329 | 1332 |
/// a front insertable container. |
1330 | 1333 |
/// |
1331 | 1334 |
/// Writable bool map for logging each \c true assigned element by pushing |
1332 | 1335 |
/// them into a front insertable container. |
1333 | 1336 |
/// It can be used to retrieve the items into a standard |
1334 | 1337 |
/// container. For example see \ref BackInserterBoolMap. |
1335 | 1338 |
/// |
1336 | 1339 |
///\sa BackInserterBoolMap |
1337 | 1340 |
///\sa InserterBoolMap |
1338 | 1341 |
template <typename Container, |
1339 | 1342 |
typename Functor = |
1340 | 1343 |
_maps_bits::Identity<typename Container::value_type> > |
1341 | 1344 |
class FrontInserterBoolMap { |
1342 | 1345 |
public: |
1343 |
typedef typename |
|
1346 |
typedef typename Functor::argument_type Key; |
|
1344 | 1347 |
typedef bool Value; |
1345 | 1348 |
|
1346 | 1349 |
/// Constructor |
1347 | 1350 |
FrontInserterBoolMap(Container& _container, |
1348 | 1351 |
const Functor& _functor = Functor()) |
1349 | 1352 |
: container(_container), functor(_functor) {} |
1350 | 1353 |
|
1351 | 1354 |
/// The \c set function of the map |
1352 | 1355 |
void set(const Key& key, Value value) { |
1353 | 1356 |
if (value) { |
1354 | 1357 |
container.push_front(functor(key)); |
1355 | 1358 |
} |
1356 | 1359 |
} |
1357 | 1360 |
|
1358 | 1361 |
private: |
1359 | 1362 |
Container& container; |
1360 | 1363 |
Functor functor; |
1361 | 1364 |
}; |
1362 | 1365 |
|
1363 | 1366 |
/// \brief Writable bool map for storing each \c true assigned element in |
1364 | 1367 |
/// an insertable container. |
1365 | 1368 |
/// |
1366 | 1369 |
/// Writable bool map for storing each \c true assigned element in an |
1367 | 1370 |
/// insertable container. It will insert all the keys set to \c true into |
0 comments (0 inline)