| ... | ... |
@@ -814,370 +814,370 @@ |
| 814 | 814 |
_cost[j] = lc; |
| 815 | 815 |
if (lc > _epsilon) _epsilon = lc; |
| 816 | 816 |
} |
| 817 | 817 |
} |
| 818 | 818 |
_epsilon /= _alpha; |
| 819 | 819 |
|
| 820 | 820 |
// Initialize maps for Circulation and remove non-zero lower bounds |
| 821 | 821 |
ConstMap<Arc, Value> low(0); |
| 822 | 822 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
| 823 | 823 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
| 824 | 824 |
ValueArcMap cap(_graph), flow(_graph); |
| 825 | 825 |
ValueNodeMap sup(_graph); |
| 826 | 826 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 827 | 827 |
sup[n] = _supply[_node_id[n]]; |
| 828 | 828 |
} |
| 829 | 829 |
if (_have_lower) {
|
| 830 | 830 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 831 | 831 |
int j = _arc_idf[a]; |
| 832 | 832 |
Value c = _lower[j]; |
| 833 | 833 |
cap[a] = _upper[j] - c; |
| 834 | 834 |
sup[_graph.source(a)] -= c; |
| 835 | 835 |
sup[_graph.target(a)] += c; |
| 836 | 836 |
} |
| 837 | 837 |
} else {
|
| 838 | 838 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 839 | 839 |
cap[a] = _upper[_arc_idf[a]]; |
| 840 | 840 |
} |
| 841 | 841 |
} |
| 842 | 842 |
|
| 843 | 843 |
_sup_node_num = 0; |
| 844 | 844 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 845 | 845 |
if (sup[n] > 0) ++_sup_node_num; |
| 846 | 846 |
} |
| 847 | 847 |
|
| 848 | 848 |
// Find a feasible flow using Circulation |
| 849 | 849 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
| 850 | 850 |
circ(_graph, low, cap, sup); |
| 851 | 851 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
| 852 | 852 |
|
| 853 | 853 |
// Set residual capacities and handle GEQ supply type |
| 854 | 854 |
if (_sum_supply < 0) {
|
| 855 | 855 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 856 | 856 |
Value fa = flow[a]; |
| 857 | 857 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 858 | 858 |
_res_cap[_arc_idb[a]] = fa; |
| 859 | 859 |
sup[_graph.source(a)] -= fa; |
| 860 | 860 |
sup[_graph.target(a)] += fa; |
| 861 | 861 |
} |
| 862 | 862 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 863 | 863 |
_excess[_node_id[n]] = sup[n]; |
| 864 | 864 |
} |
| 865 | 865 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 866 | 866 |
int u = _target[a]; |
| 867 | 867 |
int ra = _reverse[a]; |
| 868 | 868 |
_res_cap[a] = -_sum_supply + 1; |
| 869 | 869 |
_res_cap[ra] = -_excess[u]; |
| 870 | 870 |
_cost[a] = 0; |
| 871 | 871 |
_cost[ra] = 0; |
| 872 | 872 |
_excess[u] = 0; |
| 873 | 873 |
} |
| 874 | 874 |
} else {
|
| 875 | 875 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 876 | 876 |
Value fa = flow[a]; |
| 877 | 877 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 878 | 878 |
_res_cap[_arc_idb[a]] = fa; |
| 879 | 879 |
} |
| 880 | 880 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 881 | 881 |
int ra = _reverse[a]; |
| 882 | 882 |
_res_cap[a] = 0; |
| 883 | 883 |
_res_cap[ra] = 0; |
| 884 | 884 |
_cost[a] = 0; |
| 885 | 885 |
_cost[ra] = 0; |
| 886 | 886 |
} |
| 887 | 887 |
} |
| 888 | 888 |
|
| 889 | 889 |
return OPTIMAL; |
| 890 | 890 |
} |
| 891 | 891 |
|
| 892 | 892 |
// Execute the algorithm and transform the results |
| 893 | 893 |
void start(Method method) {
|
| 894 | 894 |
// Maximum path length for partial augment |
| 895 | 895 |
const int MAX_PATH_LENGTH = 4; |
| 896 | 896 |
|
| 897 | 897 |
// Initialize data structures for buckets |
| 898 | 898 |
_max_rank = _alpha * _res_node_num; |
| 899 | 899 |
_buckets.resize(_max_rank); |
| 900 | 900 |
_bucket_next.resize(_res_node_num + 1); |
| 901 | 901 |
_bucket_prev.resize(_res_node_num + 1); |
| 902 | 902 |
_rank.resize(_res_node_num + 1); |
| 903 | 903 |
|
| 904 | 904 |
// Execute the algorithm |
| 905 | 905 |
switch (method) {
|
| 906 | 906 |
case PUSH: |
| 907 | 907 |
startPush(); |
| 908 | 908 |
break; |
| 909 | 909 |
case AUGMENT: |
| 910 |
startAugment(); |
|
| 910 |
startAugment(_res_node_num - 1); |
|
| 911 | 911 |
break; |
| 912 | 912 |
case PARTIAL_AUGMENT: |
| 913 | 913 |
startAugment(MAX_PATH_LENGTH); |
| 914 | 914 |
break; |
| 915 | 915 |
} |
| 916 | 916 |
|
| 917 | 917 |
// Compute node potentials for the original costs |
| 918 | 918 |
_arc_vec.clear(); |
| 919 | 919 |
_cost_vec.clear(); |
| 920 | 920 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 921 | 921 |
if (_res_cap[j] > 0) {
|
| 922 | 922 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
| 923 | 923 |
_cost_vec.push_back(_scost[j]); |
| 924 | 924 |
} |
| 925 | 925 |
} |
| 926 | 926 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
| 927 | 927 |
|
| 928 | 928 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
| 929 | 929 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
| 930 | 930 |
bf.distMap(_pi_map); |
| 931 | 931 |
bf.init(0); |
| 932 | 932 |
bf.start(); |
| 933 | 933 |
|
| 934 | 934 |
// Handle non-zero lower bounds |
| 935 | 935 |
if (_have_lower) {
|
| 936 | 936 |
int limit = _first_out[_root]; |
| 937 | 937 |
for (int j = 0; j != limit; ++j) {
|
| 938 | 938 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 939 | 939 |
} |
| 940 | 940 |
} |
| 941 | 941 |
} |
| 942 | 942 |
|
| 943 | 943 |
// Initialize a cost scaling phase |
| 944 | 944 |
void initPhase() {
|
| 945 | 945 |
// Saturate arcs not satisfying the optimality condition |
| 946 | 946 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 947 | 947 |
int last_out = _first_out[u+1]; |
| 948 | 948 |
LargeCost pi_u = _pi[u]; |
| 949 | 949 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 950 | 950 |
int v = _target[a]; |
| 951 | 951 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
|
| 952 | 952 |
Value delta = _res_cap[a]; |
| 953 | 953 |
_excess[u] -= delta; |
| 954 | 954 |
_excess[v] += delta; |
| 955 | 955 |
_res_cap[a] = 0; |
| 956 | 956 |
_res_cap[_reverse[a]] += delta; |
| 957 | 957 |
} |
| 958 | 958 |
} |
| 959 | 959 |
} |
| 960 | 960 |
|
| 961 | 961 |
// Find active nodes (i.e. nodes with positive excess) |
| 962 | 962 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 963 | 963 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
| 964 | 964 |
} |
| 965 | 965 |
|
| 966 | 966 |
// Initialize the next arcs |
| 967 | 967 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 968 | 968 |
_next_out[u] = _first_out[u]; |
| 969 | 969 |
} |
| 970 | 970 |
} |
| 971 | 971 |
|
| 972 | 972 |
// Early termination heuristic |
| 973 | 973 |
bool earlyTermination() {
|
| 974 | 974 |
const double EARLY_TERM_FACTOR = 3.0; |
| 975 | 975 |
|
| 976 | 976 |
// Build a static residual graph |
| 977 | 977 |
_arc_vec.clear(); |
| 978 | 978 |
_cost_vec.clear(); |
| 979 | 979 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 980 | 980 |
if (_res_cap[j] > 0) {
|
| 981 | 981 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
| 982 | 982 |
_cost_vec.push_back(_cost[j] + 1); |
| 983 | 983 |
} |
| 984 | 984 |
} |
| 985 | 985 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
| 986 | 986 |
|
| 987 | 987 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
| 988 | 988 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
| 989 | 989 |
bf.init(0); |
| 990 | 990 |
bool done = false; |
| 991 | 991 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
| 992 | 992 |
for (int i = 0; i < K && !done; ++i) {
|
| 993 | 993 |
done = bf.processNextWeakRound(); |
| 994 | 994 |
} |
| 995 | 995 |
return done; |
| 996 | 996 |
} |
| 997 | 997 |
|
| 998 | 998 |
// Global potential update heuristic |
| 999 | 999 |
void globalUpdate() {
|
| 1000 | 1000 |
int bucket_end = _root + 1; |
| 1001 | 1001 |
|
| 1002 | 1002 |
// Initialize buckets |
| 1003 | 1003 |
for (int r = 0; r != _max_rank; ++r) {
|
| 1004 | 1004 |
_buckets[r] = bucket_end; |
| 1005 | 1005 |
} |
| 1006 | 1006 |
Value total_excess = 0; |
| 1007 | 1007 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 1008 | 1008 |
if (_excess[i] < 0) {
|
| 1009 | 1009 |
_rank[i] = 0; |
| 1010 | 1010 |
_bucket_next[i] = _buckets[0]; |
| 1011 | 1011 |
_bucket_prev[_buckets[0]] = i; |
| 1012 | 1012 |
_buckets[0] = i; |
| 1013 | 1013 |
} else {
|
| 1014 | 1014 |
total_excess += _excess[i]; |
| 1015 | 1015 |
_rank[i] = _max_rank; |
| 1016 | 1016 |
} |
| 1017 | 1017 |
} |
| 1018 | 1018 |
if (total_excess == 0) return; |
| 1019 | 1019 |
|
| 1020 | 1020 |
// Search the buckets |
| 1021 | 1021 |
int r = 0; |
| 1022 | 1022 |
for ( ; r != _max_rank; ++r) {
|
| 1023 | 1023 |
while (_buckets[r] != bucket_end) {
|
| 1024 | 1024 |
// Remove the first node from the current bucket |
| 1025 | 1025 |
int u = _buckets[r]; |
| 1026 | 1026 |
_buckets[r] = _bucket_next[u]; |
| 1027 | 1027 |
|
| 1028 | 1028 |
// Search the incomming arcs of u |
| 1029 | 1029 |
LargeCost pi_u = _pi[u]; |
| 1030 | 1030 |
int last_out = _first_out[u+1]; |
| 1031 | 1031 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 1032 | 1032 |
int ra = _reverse[a]; |
| 1033 | 1033 |
if (_res_cap[ra] > 0) {
|
| 1034 | 1034 |
int v = _source[ra]; |
| 1035 | 1035 |
int old_rank_v = _rank[v]; |
| 1036 | 1036 |
if (r < old_rank_v) {
|
| 1037 | 1037 |
// Compute the new rank of v |
| 1038 | 1038 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
| 1039 | 1039 |
int new_rank_v = old_rank_v; |
| 1040 | 1040 |
if (nrc < LargeCost(_max_rank)) |
| 1041 | 1041 |
new_rank_v = r + 1 + int(nrc); |
| 1042 | 1042 |
|
| 1043 | 1043 |
// Change the rank of v |
| 1044 | 1044 |
if (new_rank_v < old_rank_v) {
|
| 1045 | 1045 |
_rank[v] = new_rank_v; |
| 1046 | 1046 |
_next_out[v] = _first_out[v]; |
| 1047 | 1047 |
|
| 1048 | 1048 |
// Remove v from its old bucket |
| 1049 | 1049 |
if (old_rank_v < _max_rank) {
|
| 1050 | 1050 |
if (_buckets[old_rank_v] == v) {
|
| 1051 | 1051 |
_buckets[old_rank_v] = _bucket_next[v]; |
| 1052 | 1052 |
} else {
|
| 1053 | 1053 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
| 1054 | 1054 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
| 1055 | 1055 |
} |
| 1056 | 1056 |
} |
| 1057 | 1057 |
|
| 1058 | 1058 |
// Insert v to its new bucket |
| 1059 | 1059 |
_bucket_next[v] = _buckets[new_rank_v]; |
| 1060 | 1060 |
_bucket_prev[_buckets[new_rank_v]] = v; |
| 1061 | 1061 |
_buckets[new_rank_v] = v; |
| 1062 | 1062 |
} |
| 1063 | 1063 |
} |
| 1064 | 1064 |
} |
| 1065 | 1065 |
} |
| 1066 | 1066 |
|
| 1067 | 1067 |
// Finish search if there are no more active nodes |
| 1068 | 1068 |
if (_excess[u] > 0) {
|
| 1069 | 1069 |
total_excess -= _excess[u]; |
| 1070 | 1070 |
if (total_excess <= 0) break; |
| 1071 | 1071 |
} |
| 1072 | 1072 |
} |
| 1073 | 1073 |
if (total_excess <= 0) break; |
| 1074 | 1074 |
} |
| 1075 | 1075 |
|
| 1076 | 1076 |
// Relabel nodes |
| 1077 | 1077 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 1078 | 1078 |
int k = std::min(_rank[u], r); |
| 1079 | 1079 |
if (k > 0) {
|
| 1080 | 1080 |
_pi[u] -= _epsilon * k; |
| 1081 | 1081 |
_next_out[u] = _first_out[u]; |
| 1082 | 1082 |
} |
| 1083 | 1083 |
} |
| 1084 | 1084 |
} |
| 1085 | 1085 |
|
| 1086 | 1086 |
/// Execute the algorithm performing augment and relabel operations |
| 1087 |
void startAugment(int max_length |
|
| 1087 |
void startAugment(int max_length) {
|
|
| 1088 | 1088 |
// Paramters for heuristics |
| 1089 | 1089 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
| 1090 | 1090 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
| 1091 | 1091 |
|
| 1092 | 1092 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
| 1093 | 1093 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
| 1094 | 1094 |
int next_update_limit = global_update_freq; |
| 1095 | 1095 |
|
| 1096 | 1096 |
int relabel_cnt = 0; |
| 1097 | 1097 |
|
| 1098 | 1098 |
// Perform cost scaling phases |
| 1099 | 1099 |
std::vector<int> path; |
| 1100 | 1100 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 1101 | 1101 |
1 : _epsilon / _alpha ) |
| 1102 | 1102 |
{
|
| 1103 | 1103 |
// Early termination heuristic |
| 1104 | 1104 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
| 1105 | 1105 |
if (earlyTermination()) break; |
| 1106 | 1106 |
} |
| 1107 | 1107 |
|
| 1108 | 1108 |
// Initialize current phase |
| 1109 | 1109 |
initPhase(); |
| 1110 | 1110 |
|
| 1111 | 1111 |
// Perform partial augment and relabel operations |
| 1112 | 1112 |
while (true) {
|
| 1113 | 1113 |
// Select an active node (FIFO selection) |
| 1114 | 1114 |
while (_active_nodes.size() > 0 && |
| 1115 | 1115 |
_excess[_active_nodes.front()] <= 0) {
|
| 1116 | 1116 |
_active_nodes.pop_front(); |
| 1117 | 1117 |
} |
| 1118 | 1118 |
if (_active_nodes.size() == 0) break; |
| 1119 | 1119 |
int start = _active_nodes.front(); |
| 1120 | 1120 |
|
| 1121 | 1121 |
// Find an augmenting path from the start node |
| 1122 | 1122 |
path.clear(); |
| 1123 | 1123 |
int tip = start; |
| 1124 | 1124 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) {
|
| 1125 | 1125 |
int u; |
| 1126 | 1126 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
| 1127 | 1127 |
int last_out = _first_out[tip+1]; |
| 1128 | 1128 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
| 1129 | 1129 |
u = _target[a]; |
| 1130 | 1130 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
|
| 1131 | 1131 |
path.push_back(a); |
| 1132 | 1132 |
_next_out[tip] = a; |
| 1133 | 1133 |
tip = u; |
| 1134 | 1134 |
goto next_step; |
| 1135 | 1135 |
} |
| 1136 | 1136 |
} |
| 1137 | 1137 |
|
| 1138 | 1138 |
// Relabel tip node |
| 1139 | 1139 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
| 1140 | 1140 |
if (tip != start) {
|
| 1141 | 1141 |
int ra = _reverse[path.back()]; |
| 1142 | 1142 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
| 1143 | 1143 |
} |
| 1144 | 1144 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
| 1145 | 1145 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
| 1146 | 1146 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
| 1147 | 1147 |
min_red_cost = rc; |
| 1148 | 1148 |
} |
| 1149 | 1149 |
} |
| 1150 | 1150 |
_pi[tip] -= min_red_cost + _epsilon; |
| 1151 | 1151 |
_next_out[tip] = _first_out[tip]; |
| 1152 | 1152 |
++relabel_cnt; |
| 1153 | 1153 |
|
| 1154 | 1154 |
// Step back |
| 1155 | 1155 |
if (tip != start) {
|
| 1156 | 1156 |
tip = _source[path.back()]; |
| 1157 | 1157 |
path.pop_back(); |
| 1158 | 1158 |
} |
| 1159 | 1159 |
|
| 1160 | 1160 |
next_step: ; |
| 1161 | 1161 |
} |
| 1162 | 1162 |
|
| 1163 | 1163 |
// Augment along the found path (as much flow as possible) |
| 1164 | 1164 |
Value delta; |
| 1165 | 1165 |
int pa, u, v = start; |
| 1166 | 1166 |
for (int i = 0; i != int(path.size()); ++i) {
|
| 1167 | 1167 |
pa = path[i]; |
| 1168 | 1168 |
u = v; |
| 1169 | 1169 |
v = _target[pa]; |
| 1170 | 1170 |
delta = std::min(_res_cap[pa], _excess[u]); |
| 1171 | 1171 |
_res_cap[pa] -= delta; |
| 1172 | 1172 |
_res_cap[_reverse[pa]] += delta; |
| 1173 | 1173 |
_excess[u] -= delta; |
| 1174 | 1174 |
_excess[v] += delta; |
| 1175 | 1175 |
if (_excess[v] > 0 && _excess[v] <= delta) |
| 1176 | 1176 |
_active_nodes.push_back(v); |
| 1177 | 1177 |
} |
| 1178 | 1178 |
|
| 1179 | 1179 |
// Global update heuristic |
| 1180 | 1180 |
if (relabel_cnt >= next_update_limit) {
|
| 1181 | 1181 |
globalUpdate(); |
| 1182 | 1182 |
next_update_limit += global_update_freq; |
| 1183 | 1183 |
} |
0 comments (0 inline)