* This file is a part of LEMON, a generic C++ optimization library
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_TEST_GRAPH_TEST_H
#define LEMON_TEST_GRAPH_TEST_H
#include <lemon/graph_utils.h>
void checkGraphNodeList(const Graph &G, int cnt)
typename Graph::NodeIt n(G);
check(n!=INVALID,"Wrong Node list linking.");
check(n==INVALID,"Wrong Node list linking.");
check(countNodes(G)==cnt,"Wrong Node number.");
void checkGraphArcList(const Graph &G, int cnt)
typename Graph::ArcIt e(G);
check(e!=INVALID,"Wrong Arc list linking.");
check(e==INVALID,"Wrong Arc list linking.");
check(countArcs(G)==cnt,"Wrong Arc number.");
void checkGraphOutArcList(const Graph &G, typename Graph::Node n, int cnt)
typename Graph::OutArcIt e(G,n);
check(e!=INVALID,"Wrong OutArc list linking.");
check(n==G.source(e),"Wrong OutArc list linking.");
check(e==INVALID,"Wrong OutArc list linking.");
check(countOutArcs(G,n)==cnt,"Wrong OutArc number.");
void checkGraphInArcList(const Graph &G, typename Graph::Node n, int cnt)
typename Graph::InArcIt e(G,n);
check(e!=INVALID,"Wrong InArc list linking.");
check(n==G.target(e),"Wrong InArc list linking.");
check(e==INVALID,"Wrong InArc list linking.");
check(countInArcs(G,n)==cnt,"Wrong InArc number.");
void checkGraphEdgeList(const Graph &G, int cnt)
typename Graph::EdgeIt e(G);
check(e!=INVALID,"Wrong Edge list linking.");
check(e==INVALID,"Wrong Edge list linking.");
check(countEdges(G)==cnt,"Wrong Edge number.");
void checkGraphIncEdgeList(const Graph &G, typename Graph::Node n, int cnt)
typename Graph::IncEdgeIt e(G,n);
check(e!=INVALID,"Wrong IncEdge list linking.");
check(n==G.u(e) || n==G.v(e),"Wrong IncEdge list linking.");
check(e==INVALID,"Wrong IncEdge list linking.");
check(countIncEdges(G,n)==cnt,"Wrong IncEdge number.");
void checkDigraphIterators() {
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::ArcIt ArcIt;
typedef typename Digraph::InArcIt InArcIt;
typedef typename Digraph::OutArcIt OutArcIt;
void checkGraphIterators() {
checkDigraphIterators<Graph>();
typedef typename Graph::Edge Edge;
typedef typename Graph::EdgeIt EdgeIt;
typedef typename Graph::IncEdgeIt IncEdgeIt;
// Structure returned by addPetersen()
// Vector containing the outer nodes
std::vector<typename Digraph::Node> outer;
// Vector containing the inner nodes
std::vector<typename Digraph::Node> inner;
// Vector containing the arcs of the inner circle
std::vector<typename Digraph::Arc> incir;
// Vector containing the arcs of the outer circle
std::vector<typename Digraph::Arc> outcir;
// Vector containing the chord arcs
std::vector<typename Digraph::Arc> chords;
// Adds the reverse pair of all arcs to a digraph
void bidirDigraph(Digraph &G)
typedef typename Digraph::Arc Arc;
typedef typename Digraph::ArcIt ArcIt;
for(ArcIt e(G);e!=INVALID;++e) ee.push_back(e);
for(int i=0;i<int(ee.size());++i)
G.addArc(G.target(ee[i]),G.source(ee[i]));
// Adds a Petersen digraph to G.
// Returns the nodes and arcs of the generated digraph.
template<typename Digraph>
PetStruct<Digraph> addPetersen(Digraph &G,int num = 5)
n.outer.push_back(G.addNode());
n.inner.push_back(G.addNode());
n.chords.push_back(G.addArc(n.outer[i],n.inner[i]));
n.outcir.push_back(G.addArc(n.outer[i],n.outer[(i+1) % num]));
n.incir.push_back(G.addArc(n.inner[i],n.inner[(i+2) % num]));
// Checks the bidirectioned Petersen digraph
void checkBidirPetersen(const Digraph &G, int num = 5)
typedef typename Digraph::NodeIt NodeIt;
checkGraphNodeList(G, 2 * num);
checkGraphArcList(G, 6 * num);
for(NodeIt n(G);n!=INVALID;++n) {
checkGraphInArcList(G, n, 3);
checkGraphOutArcList(G, n, 3);
// Structure returned by addUPetersen()
// Vector containing the outer nodes
std::vector<typename Graph::Node> outer;
// Vector containing the inner nodes
std::vector<typename Graph::Node> inner;
// Vector containing the edges of the inner circle
std::vector<typename Graph::Edge> incir;
// Vector containing the edges of the outer circle
std::vector<typename Graph::Edge> outcir;
// Vector containing the chord edges
std::vector<typename Graph::Edge> chords;
// Adds a Petersen graph to \c G.
// Returns the nodes and edges of the generated graph.
UPetStruct<Graph> addUPetersen(Graph &G,int num=5)
n.outer.push_back(G.addNode());
n.inner.push_back(G.addNode());
n.chords.push_back(G.addEdge(n.outer[i],n.inner[i]));
n.outcir.push_back(G.addEdge(n.outer[i],n.outer[(i+1)%num]));
n.incir.push_back(G.addEdge(n.inner[i],n.inner[(i+2)%num]));
// Checks the undirected Petersen graph
void checkUndirPetersen(const Graph &G, int num = 5)
typedef typename Graph::NodeIt NodeIt;
checkGraphNodeList(G, 2 * num);
checkGraphEdgeList(G, 3 * num);
checkGraphArcList(G, 6 * num);
for(NodeIt n(G);n!=INVALID;++n) {
checkGraphIncEdgeList(G, n, 3);
checkGraphNodeList(G, 0);
checkBidirPetersen(G, num);
checkGraphNodeList(G, 0);
checkGraphEdgeList(G, 0);
checkUndirPetersen(G, num);