Location: LEMON/LEMON-main/lemon/euler.h

Load file history
gravatar
alpar (Alpar Juttner)
Unify the sources (#339)
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_EULER_H
#define LEMON_EULER_H
#include<lemon/core.h>
#include<lemon/adaptors.h>
#include<lemon/connectivity.h>
#include <list>
/// \ingroup graph_properties
/// \file
/// \brief Euler tour iterators and a function for checking the \e Eulerian
/// property.
///
///This file provides Euler tour iterators and a function to check
///if a (di)graph is \e Eulerian.
namespace lemon {
///Euler tour iterator for digraphs.
/// \ingroup graph_prop
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
///graph (if there exists) and it converts to the \c Arc type of the digraph.
///
///For example, if the given digraph has an Euler tour (i.e it has only one
///non-trivial component and the in-degree is equal to the out-degree
///for all nodes), then the following code will put the arcs of \c g
///to the vector \c et according to an Euler tour of \c g.
///\code
/// std::vector<ListDigraph::Arc> et;
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
/// et.push_back(e);
///\endcode
///If \c g has no Euler tour, then the resulted walk will not be closed
///or not contain all arcs.
///\sa EulerIt
template<typename GR>
class DiEulerIt
{
typedef typename GR::Node Node;
typedef typename GR::NodeIt NodeIt;
typedef typename GR::Arc Arc;
typedef typename GR::ArcIt ArcIt;
typedef typename GR::OutArcIt OutArcIt;
typedef typename GR::InArcIt InArcIt;
const GR &g;
typename GR::template NodeMap<OutArcIt> narc;
std::list<Arc> euler;
public:
///Constructor
///Constructor.
///\param gr A digraph.
///\param start The starting point of the tour. If it is not given,
///the tour will start from the first node that has an outgoing arc.
DiEulerIt(const GR &gr, typename GR::Node start = INVALID)
: g(gr), narc(g)
{
if (start==INVALID) {
NodeIt n(g);
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
start=n;
}
if (start!=INVALID) {
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
while (narc[start]!=INVALID) {
euler.push_back(narc[start]);
Node next=g.target(narc[start]);
++narc[start];
start=next;
}
}
}
///Arc conversion
operator Arc() { return euler.empty()?INVALID:euler.front(); }
///Compare with \c INVALID
bool operator==(Invalid) { return euler.empty(); }
///Compare with \c INVALID
bool operator!=(Invalid) { return !euler.empty(); }
///Next arc of the tour
///Next arc of the tour
///
DiEulerIt &operator++() {
Node s=g.target(euler.front());
euler.pop_front();
typename std::list<Arc>::iterator next=euler.begin();
while(narc[s]!=INVALID) {
euler.insert(next,narc[s]);
Node n=g.target(narc[s]);
++narc[s];
s=n;
}
return *this;
}
///Postfix incrementation
/// Postfix incrementation.
///
///\warning This incrementation
///returns an \c Arc, not a \ref DiEulerIt, as one may
///expect.
Arc operator++(int)
{
Arc e=*this;
++(*this);
return e;
}
};
///Euler tour iterator for graphs.
/// \ingroup graph_properties
///This iterator provides an Euler tour (Eulerian circuit) of an
///\e undirected graph (if there exists) and it converts to the \c Arc
///and \c Edge types of the graph.
///
///For example, if the given graph has an Euler tour (i.e it has only one
///non-trivial component and the degree of each node is even),
///the following code will print the arc IDs according to an
///Euler tour of \c g.
///\code
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
/// std::cout << g.id(Edge(e)) << std::eol;
/// }
///\endcode
///Although this iterator is for undirected graphs, it still returns
///arcs in order to indicate the direction of the tour.
///(But arcs convert to edges, of course.)
///
///If \c g has no Euler tour, then the resulted walk will not be closed
///or not contain all edges.
template<typename GR>
class EulerIt
{
typedef typename GR::Node Node;
typedef typename GR::NodeIt NodeIt;
typedef typename GR::Arc Arc;
typedef typename GR::Edge Edge;
typedef typename GR::ArcIt ArcIt;
typedef typename GR::OutArcIt OutArcIt;
typedef typename GR::InArcIt InArcIt;
const GR &g;
typename GR::template NodeMap<OutArcIt> narc;
typename GR::template EdgeMap<bool> visited;
std::list<Arc> euler;
public:
///Constructor
///Constructor.
///\param gr A graph.
///\param start The starting point of the tour. If it is not given,
///the tour will start from the first node that has an incident edge.
EulerIt(const GR &gr, typename GR::Node start = INVALID)
: g(gr), narc(g), visited(g, false)
{
if (start==INVALID) {
NodeIt n(g);
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
start=n;
}
if (start!=INVALID) {
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
while(narc[start]!=INVALID) {
euler.push_back(narc[start]);
visited[narc[start]]=true;
Node next=g.target(narc[start]);
++narc[start];
start=next;
while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start];
}
}
}
///Arc conversion
operator Arc() const { return euler.empty()?INVALID:euler.front(); }
///Edge conversion
operator Edge() const { return euler.empty()?INVALID:euler.front(); }
///Compare with \c INVALID
bool operator==(Invalid) const { return euler.empty(); }
///Compare with \c INVALID
bool operator!=(Invalid) const { return !euler.empty(); }
///Next arc of the tour
///Next arc of the tour
///
EulerIt &operator++() {
Node s=g.target(euler.front());
euler.pop_front();
typename std::list<Arc>::iterator next=euler.begin();
while(narc[s]!=INVALID) {
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s];
if(narc[s]==INVALID) break;
else {
euler.insert(next,narc[s]);
visited[narc[s]]=true;
Node n=g.target(narc[s]);
++narc[s];
s=n;
}
}
return *this;
}
///Postfix incrementation
/// Postfix incrementation.
///
///\warning This incrementation returns an \c Arc (which converts to
///an \c Edge), not an \ref EulerIt, as one may expect.
Arc operator++(int)
{
Arc e=*this;
++(*this);
return e;
}
};
///Check if the given graph is Eulerian
/// \ingroup graph_properties
///This function checks if the given graph is Eulerian.
///It works for both directed and undirected graphs.
///
///By definition, a digraph is called \e Eulerian if
///and only if it is connected and the number of incoming and outgoing
///arcs are the same for each node.
///Similarly, an undirected graph is called \e Eulerian if
///and only if it is connected and the number of incident edges is even
///for each node.
///
///\note There are (di)graphs that are not Eulerian, but still have an
/// Euler tour, since they may contain isolated nodes.
///
///\sa DiEulerIt, EulerIt
template<typename GR>
#ifdef DOXYGEN
bool
#else
typename enable_if<UndirectedTagIndicator<GR>,bool>::type
eulerian(const GR &g)
{
for(typename GR::NodeIt n(g);n!=INVALID;++n)
if(countIncEdges(g,n)%2) return false;
return connected(g);
}
template<class GR>
typename disable_if<UndirectedTagIndicator<GR>,bool>::type
#endif
eulerian(const GR &g)
{
for(typename GR::NodeIt n(g);n!=INVALID;++n)
if(countInArcs(g,n)!=countOutArcs(g,n)) return false;
return connected(undirector(g));
}
}
#endif