/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
///\brief Implementation of the CBC MIP solver interface.
#include <coin/CoinModel.hpp>
#include <coin/CbcModel.hpp>
#include <coin/OsiSolverInterface.hpp>
#include "coin/OsiClpSolverInterface.hpp"
#include "coin/CbcCutGenerator.hpp"
#include "coin/CbcHeuristicLocal.hpp"
#include "coin/CbcHeuristicGreedy.hpp"
#include "coin/CbcHeuristicFPump.hpp"
#include "coin/CbcHeuristicRINS.hpp"
#include "coin/CglGomory.hpp"
#include "coin/CglProbing.hpp"
#include "coin/CglKnapsackCover.hpp"
#include "coin/CglOddHole.hpp"
#include "coin/CglClique.hpp"
#include "coin/CglFlowCover.hpp"
#include "coin/CglMixedIntegerRounding.hpp"
#include "coin/CbcHeuristic.hpp"
_prob->setProblemName("LEMON");
messageLevel(MESSAGE_NOTHING);
CbcMip::CbcMip(const CbcMip& other) {
_prob = new CoinModel(*other._prob);
_prob->setProblemName("LEMON");
messageLevel(MESSAGE_NOTHING);
if (_osi_solver) delete _osi_solver;
if (_cbc_model) delete _cbc_model;
const char* CbcMip::_solverName() const { return "CbcMip"; }
_prob->addColumn(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX, 0.0, 0, false);
return _prob->numberColumns() - 1;
CbcMip* CbcMip::newSolver() const {
CbcMip* newlp = new CbcMip;
CbcMip* CbcMip::cloneSolver() const {
CbcMip* copylp = new CbcMip(*this);
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX);
return _prob->numberRows() - 1;
int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
std::vector<int> indexes;
std::vector<Value> values;
for(ExprIterator it = b; it != e; ++it) {
indexes.push_back(it->first);
values.push_back(it->second);
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u);
return _prob->numberRows() - 1;
void CbcMip::_eraseCol(int i) {
void CbcMip::_eraseRow(int i) {
void CbcMip::_eraseColId(int i) {
void CbcMip::_eraseRowId(int i) {
void CbcMip::_getColName(int c, std::string& name) const {
name = _prob->getColumnName(c);
void CbcMip::_setColName(int c, const std::string& name) {
_prob->setColumnName(c, name.c_str());
int CbcMip::_colByName(const std::string& name) const {
return _prob->column(name.c_str());
void CbcMip::_getRowName(int r, std::string& name) const {
name = _prob->getRowName(r);
void CbcMip::_setRowName(int r, const std::string& name) {
_prob->setRowName(r, name.c_str());
int CbcMip::_rowByName(const std::string& name) const {
return _prob->row(name.c_str());
void CbcMip::_setRowCoeffs(int i, ExprIterator b, ExprIterator e) {
for (ExprIterator it = b; it != e; ++it) {
_prob->setElement(i, it->first, it->second);
void CbcMip::_getRowCoeffs(int ix, InsertIterator b) const {
int length = _prob->numberRows();
std::vector<int> indices(length);
std::vector<Value> values(length);
length = _prob->getRow(ix, &indices[0], &values[0]);
for (int i = 0; i < length; ++i) {
*b = std::make_pair(indices[i], values[i]);
void CbcMip::_setColCoeffs(int ix, ExprIterator b, ExprIterator e) {
for (ExprIterator it = b; it != e; ++it) {
_prob->setElement(it->first, ix, it->second);
void CbcMip::_getColCoeffs(int ix, InsertIterator b) const {
int length = _prob->numberColumns();
std::vector<int> indices(length);
std::vector<Value> values(length);
length = _prob->getColumn(ix, &indices[0], &values[0]);
for (int i = 0; i < length; ++i) {
*b = std::make_pair(indices[i], values[i]);
void CbcMip::_setCoeff(int ix, int jx, Value value) {
_prob->setElement(ix, jx, value);
CbcMip::Value CbcMip::_getCoeff(int ix, int jx) const {
return _prob->getElement(ix, jx);
void CbcMip::_setColLowerBound(int i, Value lo) {
LEMON_ASSERT(lo != INF, "Invalid bound");
_prob->setColumnLower(i, lo == - INF ? - COIN_DBL_MAX : lo);
CbcMip::Value CbcMip::_getColLowerBound(int i) const {
double val = _prob->getColumnLower(i);
return val == - COIN_DBL_MAX ? - INF : val;
void CbcMip::_setColUpperBound(int i, Value up) {
LEMON_ASSERT(up != -INF, "Invalid bound");
_prob->setColumnUpper(i, up == INF ? COIN_DBL_MAX : up);
CbcMip::Value CbcMip::_getColUpperBound(int i) const {
double val = _prob->getColumnUpper(i);
return val == COIN_DBL_MAX ? INF : val;
void CbcMip::_setRowLowerBound(int i, Value lo) {
LEMON_ASSERT(lo != INF, "Invalid bound");
_prob->setRowLower(i, lo == - INF ? - COIN_DBL_MAX : lo);
CbcMip::Value CbcMip::_getRowLowerBound(int i) const {
double val = _prob->getRowLower(i);
return val == - COIN_DBL_MAX ? - INF : val;
void CbcMip::_setRowUpperBound(int i, Value up) {
LEMON_ASSERT(up != -INF, "Invalid bound");
_prob->setRowUpper(i, up == INF ? COIN_DBL_MAX : up);
CbcMip::Value CbcMip::_getRowUpperBound(int i) const {
double val = _prob->getRowUpper(i);
return val == COIN_DBL_MAX ? INF : val;
void CbcMip::_setObjCoeffs(ExprIterator b, ExprIterator e) {
int num = _prob->numberColumns();
for (int i = 0; i < num; ++i) {
_prob->setColumnObjective(i, 0.0);
for (ExprIterator it = b; it != e; ++it) {
_prob->setColumnObjective(it->first, it->second);
void CbcMip::_getObjCoeffs(InsertIterator b) const {
int num = _prob->numberColumns();
for (int i = 0; i < num; ++i) {
Value coef = _prob->getColumnObjective(i);
*b = std::make_pair(i, coef);
void CbcMip::_setObjCoeff(int i, Value obj_coef) {
_prob->setColumnObjective(i, obj_coef);
CbcMip::Value CbcMip::_getObjCoeff(int i) const {
return _prob->getColumnObjective(i);
CbcMip::SolveExitStatus CbcMip::_solve() {
_osi_solver = new OsiClpSolverInterface();
_osi_solver->loadFromCoinModel(*_prob);
_cbc_model= new CbcModel(*_osi_solver);
_osi_solver->messageHandler()->setLogLevel(_message_level);
_cbc_model->setLogLevel(_message_level);
_cbc_model->initialSolve();
_cbc_model->solver()->setHintParam(OsiDoReducePrint, true, OsiHintTry);
if (!_cbc_model->isInitialSolveAbandoned() &&
_cbc_model->isInitialSolveProvenOptimal() &&
!_cbc_model->isInitialSolveProvenPrimalInfeasible() &&
!_cbc_model->isInitialSolveProvenDualInfeasible()) {
generator1.setUsingObjective(true);
generator1.setMaxPass(3);
generator1.setMaxProbe(100);
generator1.setMaxLook(50);
generator1.setRowCuts(3);
_cbc_model->addCutGenerator(&generator1, -1, "Probing");
generator2.setLimit(300);
_cbc_model->addCutGenerator(&generator2, -1, "Gomory");
CglKnapsackCover generator3;
_cbc_model->addCutGenerator(&generator3, -1, "Knapsack");
generator4.setMinimumViolation(0.005);
generator4.setMinimumViolationPer(0.00002);
generator4.setMaximumEntries(200);
_cbc_model->addCutGenerator(&generator4, -1, "OddHole");
generator5.setStarCliqueReport(false);
generator5.setRowCliqueReport(false);
_cbc_model->addCutGenerator(&generator5, -1, "Clique");
CglMixedIntegerRounding mixedGen;
_cbc_model->addCutGenerator(&mixedGen, -1, "MixedIntegerRounding");
_cbc_model->addCutGenerator(&flowGen, -1, "FlowCover");
OsiClpSolverInterface* osiclp =
dynamic_cast<OsiClpSolverInterface*>(_cbc_model->solver());
if (osiclp->getNumRows() < 300 && osiclp->getNumCols() < 500) {
osiclp->setupForRepeatedUse(2, 0);
CbcRounding heuristic1(*_cbc_model);
_cbc_model->addHeuristic(&heuristic1);
CbcHeuristicLocal heuristic2(*_cbc_model);
_cbc_model->addHeuristic(&heuristic2);
CbcHeuristicGreedyCover heuristic3(*_cbc_model);
heuristic3.setAlgorithm(11);
_cbc_model->addHeuristic(&heuristic3);
CbcHeuristicFPump heuristic4(*_cbc_model);
_cbc_model->addHeuristic(&heuristic4);
CbcHeuristicRINS heuristic5(*_cbc_model);
_cbc_model->addHeuristic(&heuristic5);
if (_cbc_model->getNumCols() < 500) {
_cbc_model->setMaximumCutPassesAtRoot(-100);
} else if (_cbc_model->getNumCols() < 5000) {
_cbc_model->setMaximumCutPassesAtRoot(100);
_cbc_model->setMaximumCutPassesAtRoot(20);
if (_cbc_model->getNumCols() < 5000) {
_cbc_model->setNumberStrong(10);
_cbc_model->solver()->setIntParam(OsiMaxNumIterationHotStart, 100);
_cbc_model->branchAndBound();
if (_cbc_model->isAbandoned()) {
CbcMip::Value CbcMip::_getSol(int i) const {
return _cbc_model->getColSolution()[i];
CbcMip::Value CbcMip::_getSolValue() const {
return _cbc_model->getObjValue();
CbcMip::ProblemType CbcMip::_getType() const {
if (_cbc_model->isProvenOptimal()) {
} else if (_cbc_model->isContinuousUnbounded()) {
void CbcMip::_setSense(Sense sense) {
_prob->setOptimizationDirection(1.0);
_prob->setOptimizationDirection(- 1.0);
CbcMip::Sense CbcMip::_getSense() const {
if (_prob->optimizationDirection() > 0.0) {
} else if (_prob->optimizationDirection() < 0.0) {
LEMON_ASSERT(false, "Wrong sense");
void CbcMip::_setColType(int i, CbcMip::ColTypes col_type) {
LEMON_ASSERT(false, "Wrong sense");
CbcMip::ColTypes CbcMip::_getColType(int i) const {
return _prob->getColumnIsInteger(i) ? INTEGER : REAL;
void CbcMip::_messageLevel(MessageLevel level) {
} //END OF NAMESPACE LEMON