/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_BUCKET_HEAP_H
#define LEMON_BUCKET_HEAP_H
///\brief Bucket Heap implementation.
/// \brief A Bucket Heap implementation.
/// This class implements the \e bucket \e heap data structure. A \e heap
/// is a data structure for storing items with specified values called \e
/// priorities in such a way that finding the item with minimum priority is
/// efficient. The bucket heap is very simple implementation, it can store
/// only integer priorities and it stores for each priority in the
/// \f$ [0..C) \f$ range a list of items. So it should be used only when
/// the priorities are small. It is not intended to use as dijkstra heap.
/// \param _ItemIntMap A read and writable Item int map, used internally
/// to handle the cross references.
/// \param minimize If the given parameter is true then the heap gives back
template <typename _ItemIntMap, bool minimize = true >
typedef typename _ItemIntMap::Key Item;
typedef std::pair<Item, Prio> Pair;
typedef _ItemIntMap ItemIntMap;
/// \brief Type to represent the items states.
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The ItemIntMap \e should be initialized in such way that it maps
/// PRE_HEAP (-1) to any element to be put in the heap...
/// \brief The constructor.
/// \param _index should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
/// The number of items stored in the heap.
/// \brief Returns the number of items stored in the heap.
int size() const { return data.size(); }
/// \brief Checks if the heap stores no items.
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return data.empty(); }
/// \brief Make empty this heap.
/// Make empty this heap. It does not change the cross reference
/// map. If you want to reuse a heap what is not surely empty you
/// should first clear the heap and after that you should set the
/// cross reference map for each item to \c PRE_HEAP.
data.clear(); first.clear(); minimal = 0;
void relocate_last(int idx) {
if (idx + 1 < int(data.size())) {
if (data[idx].prev != -1) {
data[data[idx].prev].next = idx;
first[data[idx].value] = idx;
if (data[idx].next != -1) {
data[data[idx].next].prev = idx;
index[data[idx].item] = idx;
if (data[idx].prev != -1) {
data[data[idx].prev].next = data[idx].next;
first[data[idx].value] = data[idx].next;
if (data[idx].next != -1) {
data[data[idx].next].prev = data[idx].prev;
if (int(first.size()) <= data[idx].value) {
first.resize(data[idx].value + 1, -1);
data[idx].next = first[data[idx].value];
if (data[idx].next != -1) {
data[data[idx].next].prev = idx;
first[data[idx].value] = idx;
/// \brief Insert a pair of item and priority into the heap.
/// Adds \c p.first to the heap with priority \c p.second.
/// \param p The pair to insert.
void push(const Pair& p) {
/// \brief Insert an item into the heap with the given priority.
/// Adds \c i to the heap with priority \c p.
/// \param i The item to insert.
/// \param p The priority of the item.
void push(const Item &i, const Prio &p) {
data.push_back(BucketItem(i, p));
/// \brief Returns the item with minimum priority.
/// This method returns the item with minimum priority.
/// \pre The heap must be nonempty.
while (first[minimal] == -1) {
return data[first[minimal]].item;
/// \brief Returns the minimum priority.
/// It returns the minimum priority.
/// \pre The heap must be nonempty.
while (first[minimal] == -1) {
/// \brief Deletes the item with minimum priority.
/// This method deletes the item with minimum priority from the heap.
/// \pre The heap must be non-empty.
while (first[minimal] == -1) {
int idx = first[minimal];
index[data[idx].item] = -2;
/// \brief Deletes \c i from the heap.
/// This method deletes item \c i from the heap, if \c i was
/// already stored in the heap.
/// \param i The item to erase.
void erase(const Item &i) {
index[data[idx].item] = -2;
/// \brief Returns the priority of \c i.
/// This function returns the priority of item \c i.
/// \pre \c i must be in the heap.
Prio operator[](const Item &i) const {
/// \brief \c i gets to the heap with priority \c p independently
/// if \c i was already there.
/// This method calls \ref push(\c i, \c p) if \c i is not stored
/// in the heap and sets the priority of \c i to \c p otherwise.
/// \param p The priority.
void set(const Item &i, const Prio &p) {
} else if (p > data[idx].value) {
/// \brief Decreases the priority of \c i to \c p.
/// This method decreases the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at least \c
/// p relative to \c Compare.
/// \param p The priority.
void decrease(const Item &i, const Prio &p) {
/// \brief Increases the priority of \c i to \c p.
/// This method sets the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at most \c
/// p relative to \c Compare.
/// \param p The priority.
void increase(const Item &i, const Prio &p) {
/// \brief Returns if \c item is in, has already been in, or has
/// never been in the heap.
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &i) const {
/// \brief Sets the state of the \c item in the heap.
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
BucketItem(const Item& _item, int _value)
: item(_item), value(_value) {}
std::vector<BucketItem> data;
template <typename _ItemIntMap>
class BucketHeap<_ItemIntMap, false> {
typedef typename _ItemIntMap::Key Item;
typedef std::pair<Item, Prio> Pair;
typedef _ItemIntMap ItemIntMap;
explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
int size() const { return data.size(); }
bool empty() const { return data.empty(); }
data.clear(); first.clear(); maximal = -1;
void relocate_last(int idx) {
if (idx + 1 != int(data.size())) {
if (data[idx].prev != -1) {
data[data[idx].prev].next = idx;
first[data[idx].value] = idx;
if (data[idx].next != -1) {
data[data[idx].next].prev = idx;
index[data[idx].item] = idx;
if (data[idx].prev != -1) {
data[data[idx].prev].next = data[idx].next;
first[data[idx].value] = data[idx].next;
if (data[idx].next != -1) {
data[data[idx].next].prev = data[idx].prev;
if (int(first.size()) <= data[idx].value) {
first.resize(data[idx].value + 1, -1);
data[idx].next = first[data[idx].value];
if (data[idx].next != -1) {
data[data[idx].next].prev = idx;
first[data[idx].value] = idx;
void push(const Pair& p) {
void push(const Item &i, const Prio &p) {
data.push_back(BucketItem(i, p));
if (data[idx].value > maximal) {
maximal = data[idx].value;
while (first[maximal] == -1) {
return data[first[maximal]].item;
while (first[maximal] == -1) {
while (first[maximal] == -1) {
int idx = first[maximal];
index[data[idx].item] = -2;
void erase(const Item &i) {
index[data[idx].item] = -2;
Prio operator[](const Item &i) const {
void set(const Item &i, const Prio &p) {
} else if (p > data[idx].value) {
void decrease(const Item &i, const Prio &p) {
void increase(const Item &i, const Prio &p) {
State state(const Item &i) const {
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
BucketItem(const Item& _item, int _value)
: item(_item), value(_value) {}
std::vector<BucketItem> data;
/// \brief A Simplified Bucket Heap implementation.
/// This class implements a simplified \e bucket \e heap data
/// structure. It does not provide some functionality but it faster
/// and simplier data structure than the BucketHeap. The main
/// difference is that the BucketHeap stores for every key a double
/// linked list while this class stores just simple lists. In the
/// other way it does not supports erasing each elements just the
/// minimal and it does not supports key increasing, decreasing.
/// \param _ItemIntMap A read and writable Item int map, used internally
/// to handle the cross references.
/// \param minimize If the given parameter is true then the heap gives back
template <typename _ItemIntMap, bool minimize = true >
typedef typename _ItemIntMap::Key Item;
typedef std::pair<Item, Prio> Pair;
typedef _ItemIntMap ItemIntMap;
/// \brief Type to represent the items states.
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The ItemIntMap \e should be initialized in such way that it maps
/// PRE_HEAP (-1) to any element to be put in the heap...
/// \brief The constructor.
/// \param _index should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
explicit SimpleBucketHeap(ItemIntMap &_index)
: index(_index), free(-1), num(0), minimal(0) {}
/// \brief Returns the number of items stored in the heap.
/// The number of items stored in the heap.
int size() const { return num; }
/// \brief Checks if the heap stores no items.
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return num == 0; }
/// \brief Make empty this heap.
/// Make empty this heap. It does not change the cross reference
/// map. If you want to reuse a heap what is not surely empty you
/// should first clear the heap and after that you should set the
/// cross reference map for each item to \c PRE_HEAP.
data.clear(); first.clear(); free = -1; num = 0; minimal = 0;
/// \brief Insert a pair of item and priority into the heap.
/// Adds \c p.first to the heap with priority \c p.second.
/// \param p The pair to insert.
void push(const Pair& p) {
/// \brief Insert an item into the heap with the given priority.
/// Adds \c i to the heap with priority \c p.
/// \param i The item to insert.
/// \param p The priority of the item.
void push(const Item &i, const Prio &p) {
data.push_back(BucketItem(i));
if (p >= int(first.size())) first.resize(p + 1, -1);
data[idx].next = first[p];
/// \brief Returns the item with minimum priority.
/// This method returns the item with minimum priority.
/// \pre The heap must be nonempty.
while (first[minimal] == -1) {
return data[first[minimal]].item;
/// \brief Returns the minimum priority.
/// It returns the minimum priority.
/// \pre The heap must be nonempty.
while (first[minimal] == -1) {
/// \brief Deletes the item with minimum priority.
/// This method deletes the item with minimum priority from the heap.
/// \pre The heap must be non-empty.
while (first[minimal] == -1) {
int idx = first[minimal];
index[data[idx].item] = -2;
first[minimal] = data[idx].next;
/// \brief Returns the priority of \c i.
/// This function returns the priority of item \c i.
/// \warning This operator is not a constant time function
/// because it scans the whole data structure to find the proper
/// \pre \c i must be in the heap.
Prio operator[](const Item &i) const {
for (int k = 0; k < first.size(); ++k) {
if (data[idx].item == i) {
/// \brief Returns if \c item is in, has already been in, or has
/// never been in the heap.
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &i) const {
BucketItem(const Item& _item)
std::vector<BucketItem> data;
}; // class SimpleBucketHeap
template <typename _ItemIntMap>
class SimpleBucketHeap<_ItemIntMap, false> {
typedef typename _ItemIntMap::Key Item;
typedef std::pair<Item, Prio> Pair;
typedef _ItemIntMap ItemIntMap;
explicit SimpleBucketHeap(ItemIntMap &_index)
: index(_index), free(-1), num(0), maximal(0) {}
int size() const { return num; }
bool empty() const { return num == 0; }
data.clear(); first.clear(); free = -1; num = 0; maximal = 0;
void push(const Pair& p) {
void push(const Item &i, const Prio &p) {
data.push_back(BucketItem(i));
if (p >= int(first.size())) first.resize(p + 1, -1);
data[idx].next = first[p];
while (first[maximal] == -1) {
return data[first[maximal]].item;
while (first[maximal] == -1) {
while (first[maximal] == -1) {
int idx = first[maximal];
index[data[idx].item] = -2;
first[maximal] = data[idx].next;
Prio operator[](const Item &i) const {
for (int k = 0; k < first.size(); ++k) {
if (data[idx].item == i) {
State state(const Item &i) const {
BucketItem(const Item& _item) : item(_item) {}
std::vector<BucketItem> data;