Location: LEMON/LEMON-main/lemon/bin_heap.h

Load file history
gravatar
kpeter (Peter Kovacs)
Support real types + numerical stability fix in NS (#254) - Real types are supported by appropriate inicialization. - A feature of the XTI spanning tree structure is removed to ensure numerical stability (could cause problems using integer types). The node potentials are updated always on the lower subtree, in order to prevent overflow problems. The former method isn't notably faster during to our tests.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BIN_HEAP_H
#define LEMON_BIN_HEAP_H
///\ingroup auxdat
///\file
///\brief Binary Heap implementation.
#include <vector>
#include <utility>
#include <functional>
namespace lemon {
///\ingroup auxdat
///
///\brief A Binary Heap implementation.
///
///This class implements the \e binary \e heap data structure. A \e heap
///is a data structure for storing items with specified values called \e
///priorities in such a way that finding the item with minimum priority is
///efficient. \c Compare specifies the ordering of the priorities. In a heap
///one can change the priority of an item, add or erase an item, etc.
///
///\tparam _Prio Type of the priority of the items.
///\tparam _ItemIntMap A read and writable Item int map, used internally
///to handle the cross references.
///\tparam _Compare A class for the ordering of the priorities. The
///default is \c std::less<_Prio>.
///
///\sa FibHeap
///\sa Dijkstra
template <typename _Prio, typename _ItemIntMap,
typename _Compare = std::less<_Prio> >
class BinHeap {
public:
///\e
typedef _ItemIntMap ItemIntMap;
///\e
typedef _Prio Prio;
///\e
typedef typename ItemIntMap::Key Item;
///\e
typedef std::pair<Item,Prio> Pair;
///\e
typedef _Compare Compare;
/// \brief Type to represent the items states.
///
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
///
/// The ItemIntMap \e should be initialized in such way that it maps
/// PRE_HEAP (-1) to any element to be put in the heap...
enum State {
IN_HEAP = 0,
PRE_HEAP = -1,
POST_HEAP = -2
};
private:
std::vector<Pair> data;
Compare comp;
ItemIntMap &iim;
public:
/// \brief The constructor.
///
/// The constructor.
/// \param _iim should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
/// \brief The constructor.
///
/// The constructor.
/// \param _iim should be given to the constructor, since it is used
/// internally to handle the cross references. The value of the map
/// should be PRE_HEAP (-1) for each element.
///
/// \param _comp The comparator function object.
BinHeap(ItemIntMap &_iim, const Compare &_comp)
: iim(_iim), comp(_comp) {}
/// The number of items stored in the heap.
///
/// \brief Returns the number of items stored in the heap.
int size() const { return data.size(); }
/// \brief Checks if the heap stores no items.
///
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return data.empty(); }
/// \brief Make empty this heap.
///
/// Make empty this heap. It does not change the cross reference map.
/// If you want to reuse what is not surely empty you should first clear
/// the heap and after that you should set the cross reference map for
/// each item to \c PRE_HEAP.
void clear() {
data.clear();
}
private:
static int parent(int i) { return (i-1)/2; }
static int second_child(int i) { return 2*i+2; }
bool less(const Pair &p1, const Pair &p2) const {
return comp(p1.second, p2.second);
}
int bubble_up(int hole, Pair p) {
int par = parent(hole);
while( hole>0 && less(p,data[par]) ) {
move(data[par],hole);
hole = par;
par = parent(hole);
}
move(p, hole);
return hole;
}
int bubble_down(int hole, Pair p, int length) {
int child = second_child(hole);
while(child < length) {
if( less(data[child-1], data[child]) ) {
--child;
}
if( !less(data[child], p) )
goto ok;
move(data[child], hole);
hole = child;
child = second_child(hole);
}
child--;
if( child<length && less(data[child], p) ) {
move(data[child], hole);
hole=child;
}
ok:
move(p, hole);
return hole;
}
void move(const Pair &p, int i) {
data[i] = p;
iim.set(p.first, i);
}
public:
/// \brief Insert a pair of item and priority into the heap.
///
/// Adds \c p.first to the heap with priority \c p.second.
/// \param p The pair to insert.
void push(const Pair &p) {
int n = data.size();
data.resize(n+1);
bubble_up(n, p);
}
/// \brief Insert an item into the heap with the given heap.
///
/// Adds \c i to the heap with priority \c p.
/// \param i The item to insert.
/// \param p The priority of the item.
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
/// \brief Returns the item with minimum priority relative to \c Compare.
///
/// This method returns the item with minimum priority relative to \c
/// Compare.
/// \pre The heap must be nonempty.
Item top() const {
return data[0].first;
}
/// \brief Returns the minimum priority relative to \c Compare.
///
/// It returns the minimum priority relative to \c Compare.
/// \pre The heap must be nonempty.
Prio prio() const {
return data[0].second;
}
/// \brief Deletes the item with minimum priority relative to \c Compare.
///
/// This method deletes the item with minimum priority relative to \c
/// Compare from the heap.
/// \pre The heap must be non-empty.
void pop() {
int n = data.size()-1;
iim.set(data[0].first, POST_HEAP);
if (n > 0) {
bubble_down(0, data[n], n);
}
data.pop_back();
}
/// \brief Deletes \c i from the heap.
///
/// This method deletes item \c i from the heap.
/// \param i The item to erase.
/// \pre The item should be in the heap.
void erase(const Item &i) {
int h = iim[i];
int n = data.size()-1;
iim.set(data[h].first, POST_HEAP);
if( h < n ) {
if ( bubble_up(h, data[n]) == h) {
bubble_down(h, data[n], n);
}
}
data.pop_back();
}
/// \brief Returns the priority of \c i.
///
/// This function returns the priority of item \c i.
/// \pre \c i must be in the heap.
/// \param i The item.
Prio operator[](const Item &i) const {
int idx = iim[i];
return data[idx].second;
}
/// \brief \c i gets to the heap with priority \c p independently
/// if \c i was already there.
///
/// This method calls \ref push(\c i, \c p) if \c i is not stored
/// in the heap and sets the priority of \c i to \c p otherwise.
/// \param i The item.
/// \param p The priority.
void set(const Item &i, const Prio &p) {
int idx = iim[i];
if( idx < 0 ) {
push(i,p);
}
else if( comp(p, data[idx].second) ) {
bubble_up(idx, Pair(i,p));
}
else {
bubble_down(idx, Pair(i,p), data.size());
}
}
/// \brief Decreases the priority of \c i to \c p.
///
/// This method decreases the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at least \c
/// p relative to \c Compare.
/// \param i The item.
/// \param p The priority.
void decrease(const Item &i, const Prio &p) {
int idx = iim[i];
bubble_up(idx, Pair(i,p));
}
/// \brief Increases the priority of \c i to \c p.
///
/// This method sets the priority of item \c i to \c p.
/// \pre \c i must be stored in the heap with priority at most \c
/// p relative to \c Compare.
/// \param i The item.
/// \param p The priority.
void increase(const Item &i, const Prio &p) {
int idx = iim[i];
bubble_down(idx, Pair(i,p), data.size());
}
/// \brief Returns if \c item is in, has already been in, or has
/// never been in the heap.
///
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
/// \param i The item.
State state(const Item &i) const {
int s = iim[i];
if( s>=0 )
s=0;
return State(s);
}
/// \brief Sets the state of the \c item in the heap.
///
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time complexity.
/// \param i The item.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
switch (st) {
case POST_HEAP:
case PRE_HEAP:
if (state(i) == IN_HEAP) {
erase(i);
}
iim[i] = st;
break;
case IN_HEAP:
break;
}
}
/// \brief Replaces an item in the heap.
///
/// The \c i item is replaced with \c j item. The \c i item should
/// be in the heap, while the \c j should be out of the heap. The
/// \c i item will out of the heap and \c j will be in the heap
/// with the same prioriority as prevoiusly the \c i item.
void replace(const Item& i, const Item& j) {
int idx = iim[i];
iim.set(i, iim[j]);
iim.set(j, idx);
data[idx].first = j;
}
}; // class BinHeap
} // namespace lemon
#endif // LEMON_BIN_HEAP_H