/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_COST_SCALING_H
#define LEMON_COST_SCALING_H
/// \ingroup min_cost_flow_algs
/// \brief Cost scaling algorithm for finding a minimum cost flow.
#include <lemon/static_graph.h>
#include <lemon/circulation.h>
#include <lemon/bellman_ford.h>
/// \brief Default traits class of CostScaling algorithm.
/// Default traits class of CostScaling algorithm.
/// \tparam GR Digraph type.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values. By default it is \c int.
/// \tparam C The number type used for costs and potentials.
/// By default it is the same as \c V.
template <typename GR, typename V = int, typename C = V>
template < typename GR, typename V = int, typename C = V,
bool integer = std::numeric_limits<C>::is_integer >
struct CostScalingDefaultTraits
/// The type of the digraph
/// The type of the flow amounts, capacity bounds and supply values
/// The type of the arc costs
/// \brief The large cost type used for internal computations
/// The large cost type used for internal computations.
/// It is \c long \c long if the \c Cost type is integer,
/// otherwise it is \c double.
/// \c Cost must be convertible to \c LargeCost.
typedef double LargeCost;
// Default traits class for integer cost types
template <typename GR, typename V, typename C>
struct CostScalingDefaultTraits<GR, V, C, true>
#ifdef LEMON_HAVE_LONG_LONG
typedef long long LargeCost;
/// \addtogroup min_cost_flow_algs
/// \brief Implementation of the Cost Scaling algorithm for
/// finding a \ref min_cost_flow "minimum cost flow".
/// \ref CostScaling implements a cost scaling algorithm that performs
/// push/augment and relabel operations for finding a \ref min_cost_flow
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
/// \ref goldberg97efficient, \ref bunnagel98efficient.
/// It is a highly efficient primal-dual solution method, which
/// can be viewed as the generalization of the \ref Preflow
/// "preflow push-relabel" algorithm for the maximum flow problem.
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
/// implementations available in LEMON for this problem.
/// Most of the parameters of the problem (except for the digraph)
/// can be given using separate functions, and the algorithm can be
/// executed using the \ref run() function. If some parameters are not
/// specified, then default values will be used.
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values in the algorithm. By default, it is \c int.
/// \tparam C The number type used for costs and potentials in the
/// algorithm. By default, it is the same as \c V.
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref CostScalingDefaultTraits
/// "CostScalingDefaultTraits<GR, V, C>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
/// \warning Both \c V and \c C must be signed number types.
/// \warning All input data (capacities, supply values, and costs) must
/// \warning This algorithm does not support negative costs for
/// arcs having infinite upper bound.
/// \note %CostScaling provides three different internal methods,
/// from which the most efficient one is used by default.
/// For more information, see \ref Method.
template <typename GR, typename V, typename C, typename TR>
template < typename GR, typename V = int, typename C = V,
typename TR = CostScalingDefaultTraits<GR, V, C> >
/// The type of the digraph
typedef typename TR::Digraph Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef typename TR::Value Value;
/// The type of the arc costs
typedef typename TR::Cost Cost;
/// \brief The large cost type
/// The large cost type used for internal computations.
/// By default, it is \c long \c long if the \c Cost type is integer,
/// otherwise it is \c double.
typedef typename TR::LargeCost LargeCost;
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm
/// \brief Problem type constants for the \c run() function.
/// Enum type containing the problem type constants that can be
/// returned by the \ref run() function of the algorithm.
/// The problem has no feasible solution (flow).
/// The problem has optimal solution (i.e. it is feasible and
/// bounded), and the algorithm has found optimal flow and node
/// potentials (primal and dual solutions).
/// The digraph contains an arc of negative cost and infinite
/// upper bound. It means that the objective function is unbounded
/// on that arc, however, note that it could actually be bounded
/// over the feasible flows, but this algroithm cannot handle
/// \brief Constants for selecting the internal method.
/// Enum type containing constants for selecting the internal method
/// for the \ref run() function.
/// \ref CostScaling provides three internal methods that differ mainly
/// in their base operations, which are used in conjunction with the
/// By default, the so called \ref PARTIAL_AUGMENT
/// "Partial Augment-Relabel" method is used, which turned out to be
/// the most efficient and the most robust on various test inputs.
/// However, the other methods can be selected using the \ref run()
/// function with the proper parameter.
/// Local push operations are used, i.e. flow is moved only on one
/// admissible arc at once.
/// Augment operations are used, i.e. flow is moved on admissible
/// paths from a node with excess to a node with deficit.
/// Partial augment operations are used, i.e. flow is moved on
/// admissible paths started from a node with excess, but the
/// lengths of these paths are limited. This method can be viewed
/// as a combined version of the previous two operations.
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<Value> ValueVector;
typedef std::vector<Cost> CostVector;
typedef std::vector<LargeCost> LargeCostVector;
typedef std::vector<char> BoolVector;
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
template <typename KT, typename VT>
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
const Value& operator[](const Key& key) const {
return _v[StaticDigraph::id(key)];
Value& operator[](const Key& key) {
return _v[StaticDigraph::id(key)];
void set(const Key& key, const Value& val) {
_v[StaticDigraph::id(key)] = val;
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
// Data related to the underlying digraph
// Parameters of the problem
// Data structures for storing the digraph
std::deque<int> _active_nodes;
// Data for a StaticDigraph structure
typedef std::pair<int, int> IntPair;
std::vector<IntPair> _arc_vec;
std::vector<LargeCost> _cost_vec;
LargeCostArcMap _cost_map;
LargeCostNodeMap _pi_map;
/// \brief Constant for infinite upper bounds (capacities).
/// Constant for infinite upper bounds (capacities).
/// It is \c std::numeric_limits<Value>::infinity() if available,
/// \c std::numeric_limits<Value>::max() otherwise.
/// \name Named Template Parameters
struct SetLargeCostTraits : public Traits {
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting \c LargeCost
/// type, which is used for internal computations in the algorithm.
/// \c Cost must be convertible to \c LargeCost.
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
/// The constructor of the class.
/// \param graph The digraph the algorithm runs on.
CostScaling(const GR& graph) :
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
_cost_map(_cost_vec), _pi_map(_pi),
INF(std::numeric_limits<Value>::has_infinity ?
std::numeric_limits<Value>::infinity() :
std::numeric_limits<Value>::max())
// Check the number types
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
"The flow type of CostScaling must be signed");
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
"The cost type of CostScaling must be signed");
/// The parameters of the algorithm can be specified using these
/// \brief Set the lower bounds on the arcs.
/// This function sets the lower bounds on the arcs.
/// If it is not used before calling \ref run(), the lower bounds
/// will be set to zero on all arcs.
/// \param map An arc map storing the lower bounds.
/// Its \c Value type must be convertible to the \c Value type
/// \return <tt>(*this)</tt>
template <typename LowerMap>
CostScaling& lowerMap(const LowerMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_lower[_arc_idf[a]] = map[a];
_lower[_arc_idb[a]] = map[a];
/// \brief Set the upper bounds (capacities) on the arcs.
/// This function sets the upper bounds (capacities) on the arcs.
/// If it is not used before calling \ref run(), the upper bounds
/// will be set to \ref INF on all arcs (i.e. the flow value will be
/// unbounded from above).
/// \param map An arc map storing the upper bounds.
/// Its \c Value type must be convertible to the \c Value type
/// \return <tt>(*this)</tt>
template<typename UpperMap>
CostScaling& upperMap(const UpperMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_upper[_arc_idf[a]] = map[a];
/// \brief Set the costs of the arcs.
/// This function sets the costs of the arcs.
/// If it is not used before calling \ref run(), the costs
/// will be set to \c 1 on all arcs.
/// \param map An arc map storing the costs.
/// Its \c Value type must be convertible to the \c Cost type
/// \return <tt>(*this)</tt>
template<typename CostMap>
CostScaling& costMap(const CostMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_scost[_arc_idf[a]] = map[a];
_scost[_arc_idb[a]] = -map[a];
/// \brief Set the supply values of the nodes.
/// This function sets the supply values of the nodes.
/// If neither this function nor \ref stSupply() is used before
/// calling \ref run(), the supply of each node will be set to zero.
/// \param map A node map storing the supply values.
/// Its \c Value type must be convertible to the \c Value type
/// \return <tt>(*this)</tt>
template<typename SupplyMap>
CostScaling& supplyMap(const SupplyMap& map) {
for (NodeIt n(_graph); n != INVALID; ++n) {
_supply[_node_id[n]] = map[n];
/// \brief Set single source and target nodes and a supply value.
/// This function sets a single source node and a single target node
/// and the required flow value.
/// If neither this function nor \ref supplyMap() is used before
/// calling \ref run(), the supply of each node will be set to zero.
/// Using this function has the same effect as using \ref supplyMap()
/// with a map in which \c k is assigned to \c s, \c -k is
/// assigned to \c t and all other nodes have zero supply value.
/// \param s The source node.
/// \param t The target node.
/// \param k The required amount of flow from node \c s to node \c t
/// (i.e. the supply of \c s and the demand of \c t).
/// \return <tt>(*this)</tt>
CostScaling& stSupply(const Node& s, const Node& t, Value k) {
for (int i = 0; i != _res_node_num; ++i) {
_supply[_node_id[s]] = k;
_supply[_node_id[t]] = -k;
/// \name Execution control
/// The algorithm can be executed using \ref run().
/// \brief Run the algorithm.
/// This function runs the algorithm.
/// The paramters can be specified using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
/// CostScaling<ListDigraph> cs(graph);
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// This function can be called more than once. All the given parameters
/// are kept for the next call, unless \ref resetParams() or \ref reset()
/// is used, thus only the modified parameters have to be set again.
/// If the underlying digraph was also modified after the construction
/// of the class (or the last \ref reset() call), then the \ref reset()
/// function must be called.
/// \param method The internal method that will be used in the
/// algorithm. For more information, see \ref Method.
/// \param factor The cost scaling factor. It must be larger than one.
/// \return \c INFEASIBLE if no feasible flow exists,
/// \n \c OPTIMAL if the problem has optimal solution
/// (i.e. it is feasible and bounded), and the algorithm has found
/// optimal flow and node potentials (primal and dual solutions),
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
/// and infinite upper bound. It means that the objective function
/// is unbounded on that arc, however, note that it could actually be
/// bounded over the feasible flows, but this algroithm cannot handle
/// \see ProblemType, Method
/// \see resetParams(), reset()
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
if (pt != OPTIMAL) return pt;
/// \brief Reset all the parameters that have been given before.
/// This function resets all the paramaters that have been given
/// before using functions \ref lowerMap(), \ref upperMap(),
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
/// CostScaling<ListDigraph> cs(graph);
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// // Run again with modified cost map (resetParams() is not called,
/// // so only the cost map have to be set again)
/// cs.costMap(cost).run();
/// // Run again from scratch using resetParams()
/// // (the lower bounds will be set to zero on all arcs)
/// cs.upperMap(capacity).costMap(cost)
/// .supplyMap(sup).run();
/// \return <tt>(*this)</tt>
CostScaling& resetParams() {
for (int i = 0; i != _res_node_num; ++i) {
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
_scost[j] = _forward[j] ? 1 : -1;
for (int j = limit; j != _res_arc_num; ++j) {
/// \brief Reset the internal data structures and all the parameters
/// that have been given before.
/// This function resets the internal data structures and all the
/// paramaters that have been given before using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
/// It is useful for multiple \ref run() calls. By default, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
/// See \ref resetParams() for examples.
/// \return <tt>(*this)</tt>
/// \see resetParams(), run()
_node_num = countNodes(_graph);
_arc_num = countArcs(_graph);
_res_node_num = _node_num + 1;
_res_arc_num = 2 * (_arc_num + _node_num);
_first_out.resize(_res_node_num + 1);
_forward.resize(_res_arc_num);
_source.resize(_res_arc_num);
_target.resize(_res_arc_num);
_reverse.resize(_res_arc_num);
_lower.resize(_res_arc_num);
_upper.resize(_res_arc_num);
_scost.resize(_res_arc_num);
_supply.resize(_res_node_num);
_res_cap.resize(_res_arc_num);
_cost.resize(_res_arc_num);
_pi.resize(_res_node_num);
_excess.resize(_res_node_num);
_next_out.resize(_res_node_num);
_arc_vec.reserve(_res_arc_num);
_cost_vec.reserve(_res_arc_num);
int i = 0, j = 0, k = 2 * _arc_num + _node_num;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_target[j] = _node_id[_graph.runningNode(a)];
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_target[j] = _node_id[_graph.runningNode(a)];
_first_out[_res_node_num] = k;
for (ArcIt a(_graph); a != INVALID; ++a) {
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// The \ref run() function must be called before using them.
/// \brief Return the total cost of the found flow.
/// This function returns the total cost of the found flow.
/// Its complexity is O(e).
/// \note The return type of the function can be specified as a
/// template parameter. For example,
/// cs.totalCost<double>();
/// It is useful if the total cost cannot be stored in the \c Cost
/// type of the algorithm, which is the default return type of the
/// \pre \ref run() must be called before using this function.
template <typename Number>
Number totalCost() const {
for (ArcIt a(_graph); a != INVALID; ++a) {
c += static_cast<Number>(_res_cap[i]) *
(-static_cast<Number>(_scost[i]));
return totalCost<Cost>();
/// \brief Return the flow on the given arc.
/// This function returns the flow on the given arc.
/// \pre \ref run() must be called before using this function.
Value flow(const Arc& a) const {
return _res_cap[_arc_idb[a]];
/// \brief Return the flow map (the primal solution).
/// This function copies the flow value on each arc into the given
/// map. The \c Value type of the algorithm must be convertible to
/// the \c Value type of the map.
/// \pre \ref run() must be called before using this function.
template <typename FlowMap>
void flowMap(FlowMap &map) const {
for (ArcIt a(_graph); a != INVALID; ++a) {
map.set(a, _res_cap[_arc_idb[a]]);
/// \brief Return the potential (dual value) of the given node.
/// This function returns the potential (dual value) of the
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& n) const {
return static_cast<Cost>(_pi[_node_id[n]]);
/// \brief Return the potential map (the dual solution).
/// This function copies the potential (dual value) of each node
/// The \c Cost type of the algorithm must be convertible to the
/// \c Value type of the map.
/// \pre \ref run() must be called before using this function.
template <typename PotentialMap>
void potentialMap(PotentialMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
// Initialize the algorithm
if (_res_node_num <= 1) return INFEASIBLE;
// Check the sum of supply values
for (int i = 0; i != _root; ++i) {
_sum_supply += _supply[i];
if (_sum_supply > 0) return INFEASIBLE;
for (int i = 0; i != _res_node_num; ++i) {
// Remove infinite upper bounds and check negative arcs
const Value MAX = std::numeric_limits<Value>::max();
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
if (c >= MAX) return UNBOUNDED;
_excess[_target[j]] += c;
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_forward[j] && _scost[j] < 0) {
if (c >= MAX) return UNBOUNDED;
_excess[_target[j]] += c;
for (int i = 0; i != _res_node_num; ++i) {
if (ex < 0) max_cap -= ex;
for (int j = 0; j != _res_arc_num; ++j) {
if (_upper[j] >= MAX) _upper[j] = max_cap;
// Initialize the large cost vector and the epsilon parameter
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
if (lc > _epsilon) _epsilon = lc;
// Initialize maps for Circulation and remove non-zero lower bounds
ConstMap<Arc, Value> low(0);
typedef typename Digraph::template ArcMap<Value> ValueArcMap;
typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
ValueArcMap cap(_graph), flow(_graph);
ValueNodeMap sup(_graph);
for (NodeIt n(_graph); n != INVALID; ++n) {
sup[n] = _supply[_node_id[n]];
for (ArcIt a(_graph); a != INVALID; ++a) {
sup[_graph.source(a)] -= c;
sup[_graph.target(a)] += c;
for (ArcIt a(_graph); a != INVALID; ++a) {
cap[a] = _upper[_arc_idf[a]];
for (NodeIt n(_graph); n != INVALID; ++n) {
if (sup[n] > 0) ++_sup_node_num;
// Find a feasible flow using Circulation
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
circ(_graph, low, cap, sup);
if (!circ.flowMap(flow).run()) return INFEASIBLE;
// Set residual capacities and handle GEQ supply type
for (ArcIt a(_graph); a != INVALID; ++a) {
_res_cap[_arc_idf[a]] = cap[a] - fa;
_res_cap[_arc_idb[a]] = fa;
sup[_graph.source(a)] -= fa;
sup[_graph.target(a)] += fa;
for (NodeIt n(_graph); n != INVALID; ++n) {
_excess[_node_id[n]] = sup[n];
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
_res_cap[a] = -_sum_supply + 1;
_res_cap[ra] = -_excess[u];
for (ArcIt a(_graph); a != INVALID; ++a) {
_res_cap[_arc_idf[a]] = cap[a] - fa;
_res_cap[_arc_idb[a]] = fa;
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
// Initialize data structures for buckets
_max_rank = _alpha * _res_node_num;
_buckets.resize(_max_rank);
_bucket_next.resize(_res_node_num + 1);
_bucket_prev.resize(_res_node_num + 1);
_rank.resize(_res_node_num + 1);
// Execute the algorithm and transform the results
void start(Method method) {
const int MAX_PARTIAL_PATH_LENGTH = 4;
startAugment(_res_node_num - 1);
startAugment(MAX_PARTIAL_PATH_LENGTH);
// Compute node potentials for the original costs
for (int j = 0; j != _res_arc_num; ++j) {
_arc_vec.push_back(IntPair(_source[j], _target[j]));
_cost_vec.push_back(_scost[j]);
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
typename BellmanFord<StaticDigraph, LargeCostArcMap>
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
// Handle non-zero lower bounds
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
if (!_forward[j]) _res_cap[j] += _lower[j];
// Initialize a cost scaling phase
// Saturate arcs not satisfying the optimality condition
for (int u = 0; u != _res_node_num; ++u) {
int last_out = _first_out[u+1];
for (int a = _first_out[u]; a != last_out; ++a) {
Value delta = _res_cap[a];
if (_cost[a] + pi_u - _pi[v] < 0) {
_res_cap[_reverse[a]] += delta;
// Find active nodes (i.e. nodes with positive excess)
for (int u = 0; u != _res_node_num; ++u) {
if (_excess[u] > 0) _active_nodes.push_back(u);
// Initialize the next arcs
for (int u = 0; u != _res_node_num; ++u) {
_next_out[u] = _first_out[u];
// Early termination heuristic
bool earlyTermination() {
const double EARLY_TERM_FACTOR = 3.0;
// Build a static residual graph
for (int j = 0; j != _res_arc_num; ++j) {
_arc_vec.push_back(IntPair(_source[j], _target[j]));
_cost_vec.push_back(_cost[j] + 1);
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
// Run Bellman-Ford algorithm to check if the current flow is optimal
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
for (int i = 0; i < K && !done; ++i) {
done = bf.processNextWeakRound();
// Global potential update heuristic
const int bucket_end = _root + 1;
for (int r = 0; r != _max_rank; ++r) {
_buckets[r] = bucket_end;
for (int i = 0; i != _res_node_num; ++i) {
total_excess += _excess[i];
if (total_excess == 0) return;
for ( ; r != _max_rank; ++r) {
while (_buckets[r] != bucket_end) {
// Remove the first node from the current bucket
_buckets[r] = _bucket_next[u];
// Search the incomming arcs of u
int last_out = _first_out[u+1];
for (int a = _first_out[u]; a != last_out; ++a) {
int old_rank_v = _rank[v];
// Compute the new rank of v
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
int new_rank_v = old_rank_v;
if (nrc < LargeCost(_max_rank)) {
new_rank_v = r + 1 + static_cast<int>(nrc);
if (new_rank_v < old_rank_v) {
_next_out[v] = _first_out[v];
// Remove v from its old bucket
if (old_rank_v < _max_rank) {
if (_buckets[old_rank_v] == v) {
_buckets[old_rank_v] = _bucket_next[v];
int pv = _bucket_prev[v], nv = _bucket_next[v];
// Insert v into its new bucket
int nv = _buckets[new_rank_v];
_buckets[new_rank_v] = v;
// Finish search if there are no more active nodes
total_excess -= _excess[u];
if (total_excess <= 0) break;
if (total_excess <= 0) break;
for (int u = 0; u != _res_node_num; ++u) {
int k = std::min(_rank[u], r);
_next_out[u] = _first_out[u];
/// Execute the algorithm performing augment and relabel operations
void startAugment(int max_length) {
// Paramters for heuristics
const int EARLY_TERM_EPSILON_LIMIT = 1000;
const double GLOBAL_UPDATE_FACTOR = 1.0;
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
(_res_node_num + _sup_node_num * _sup_node_num));
int next_global_update_limit = global_update_skip;
// Perform cost scaling phases
BoolVector path_arc(_res_arc_num, false);
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
// Early termination heuristic
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
if (earlyTermination()) break;
// Initialize current phase
// Perform partial augment and relabel operations
// Select an active node (FIFO selection)
while (_active_nodes.size() > 0 &&
_excess[_active_nodes.front()] <= 0) {
_active_nodes.pop_front();
if (_active_nodes.size() == 0) break;
int start = _active_nodes.front();
// Find an augmenting path from the start node
while (int(path.size()) < max_length && _excess[tip] >= 0) {
LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
LargeCost pi_tip = _pi[tip];
int last_out = _first_out[tip+1];
for (int a = _next_out[tip]; a != last_out; ++a) {
rc = _cost[a] + pi_tip - _pi[u];
goto augment; // a cycle is found, stop path search
else if (rc < min_red_cost) {
int ra = _reverse[path.back()];
std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
last_out = _next_out[tip];
for (int a = _first_out[tip]; a != last_out; ++a) {
rc = _cost[a] + pi_tip - _pi[_target[a]];
_pi[tip] -= min_red_cost + _epsilon;
_next_out[tip] = _first_out[tip];
// Augment along the found path (as much flow as possible)
for (int i = 0; i != int(path.size()); ++i) {
delta = std::min(_res_cap[pa], _excess[u]);
_res_cap[_reverse[pa]] += delta;
if (_excess[v] > 0 && _excess[v] <= delta) {
_active_nodes.push_back(v);
// Global update heuristic
if (relabel_cnt >= next_global_update_limit) {
next_global_update_limit += global_update_skip;
/// Execute the algorithm performing push and relabel operations
// Paramters for heuristics
const int EARLY_TERM_EPSILON_LIMIT = 1000;
const double GLOBAL_UPDATE_FACTOR = 2.0;
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
(_res_node_num + _sup_node_num * _sup_node_num));
int next_global_update_limit = global_update_skip;
// Perform cost scaling phases
BoolVector hyper(_res_node_num, false);
LargeCostVector hyper_cost(_res_node_num);
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
// Early termination heuristic
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
if (earlyTermination()) break;
// Initialize current phase
// Perform push and relabel operations
while (_active_nodes.size() > 0) {
LargeCost min_red_cost, rc, pi_n;
int n, t, a, last_out = _res_arc_num;
// Select an active node (FIFO selection)
n = _active_nodes.front();
last_out = _first_out[n+1];
// Perform push operations if there are admissible arcs
for (a = _next_out[n]; a != last_out; ++a) {
_cost[a] + pi_n - _pi[_target[a]] < 0) {
delta = std::min(_res_cap[a], _excess[n]);
// Push-look-ahead heuristic
Value ahead = -_excess[t];
int last_out_t = _first_out[t+1];
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
_cost[ta] + pi_t - _pi[_target[ta]] < 0)
if (ahead >= delta) break;
if (ahead < 0) ahead = 0;
// Push flow along the arc
if (ahead < delta && !hyper[t]) {
_res_cap[_reverse[a]] += ahead;
_active_nodes.push_front(t);
hyper_cost[t] = _cost[a] + pi_n - pi_t;
_res_cap[_reverse[a]] += delta;
if (_excess[t] > 0 && _excess[t] <= delta)
_active_nodes.push_back(t);
// Relabel the node if it is still active (or hyper)
if (_excess[n] > 0 || hyper[n]) {
min_red_cost = hyper[n] ? -hyper_cost[n] :
std::numeric_limits<LargeCost>::max();
for (int a = _first_out[n]; a != last_out; ++a) {
rc = _cost[a] + pi_n - _pi[_target[a]];
_pi[n] -= min_red_cost + _epsilon;
_next_out[n] = _first_out[n];
// Remove nodes that are not active nor hyper
while ( _active_nodes.size() > 0 &&
_excess[_active_nodes.front()] <= 0 &&
!hyper[_active_nodes.front()] ) {
_active_nodes.pop_front();
// Global update heuristic
if (relabel_cnt >= next_global_update_limit) {
for (int u = 0; u != _res_node_num; ++u)
next_global_update_limit += global_update_skip;
#endif //LEMON_COST_SCALING_H