/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_PAIRING_HEAP_H
#define LEMON_PAIRING_HEAP_H
///\brief Pairing heap implementation.
/// This class implements the \e pairing \e heap data structure.
/// It fully conforms to the \ref concepts::Heap "heap concept".
/// The methods \ref increase() and \ref erase() are not efficient
/// in a pairing heap. In case of many calls of these operations,
/// it is better to use other heap structure, e.g. \ref BinHeap
/// \tparam PR Type of the priorities of the items.
/// \tparam IM A read-writable item map with \c int values, used
/// internally to handle the cross references.
/// \tparam CMP A functor class for comparing the priorities.
/// The default is \c std::less<PR>.
template <typename PR, typename IM, typename CMP>
template <typename PR, typename IM, typename CMP = std::less<PR> >
/// Type of the item-int map.
/// Type of the priorities.
/// Type of the items stored in the heap.
typedef typename ItemIntMap::Key Item;
/// Functor type for comparing the priorities.
/// \brief Type to represent the states of the items.
/// Each item has a state associated to it. It can be "in heap",
/// "pre-heap" or "post-heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
std::vector<store> _data;
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
explicit PairingHeap(ItemIntMap &map)
: _min(0), _iim(map), _num_items(0) {}
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
/// \param comp The function object used for comparing the priorities.
PairingHeap(ItemIntMap &map, const Compare &comp)
: _min(0), _iim(map), _comp(comp), _num_items(0) {}
/// \brief The number of items stored in the heap.
/// This function returns the number of items stored in the heap.
int size() const { return _num_items; }
/// \brief Check if the heap is empty.
/// This function returns \c true if the heap is empty.
bool empty() const { return _num_items==0; }
/// \brief Make the heap empty.
/// This functon makes the heap empty.
/// It does not change the cross reference map. If you want to reuse
/// a heap that is not surely empty, you should first clear it and
/// then you should set the cross reference map to \c PRE_HEAP
/// \brief Set the priority of an item or insert it, if it is
/// not stored in the heap.
/// This method sets the priority of the given item if it is
/// already stored in the heap. Otherwise it inserts the given
/// item into the heap with the given priority.
/// \param item The item.
/// \param value The priority.
void set (const Item& item, const Prio& value) {
if ( i>=0 && _data[i].in ) {
if ( _comp(value, _data[i].prio) ) decrease(item, value);
if ( _comp(_data[i].prio, value) ) increase(item, value);
} else push(item, value);
/// \brief Insert an item into the heap with the given priority.
/// This function inserts the given item into the heap with the
/// \param item The item to insert.
/// \param value The priority of the item.
/// \pre \e item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
_data[i].parent=_data[i].child=-1;
_data[i].left_child=false;
if ( _comp( value, _data[_min].prio) ) {
/// \brief Return the item having minimum priority.
/// This function returns the item having minimum priority.
/// \pre The heap must be non-empty.
Item top() const { return _data[_min].name; }
/// \brief The minimum priority.
/// This function returns the minimum priority.
/// \pre The heap must be non-empty.
const Prio& prio() const { return _data[_min].prio; }
/// \brief The priority of the given item.
/// This function returns the priority of the given item.
/// \param item The item.
/// \pre \e item must be in the heap.
const Prio& operator[](const Item& item) const {
return _data[_iim[item]].prio;
/// \brief Remove the item having minimum priority.
/// This function removes the item having minimum priority.
/// \pre The heap must be non-empty.
int TreeArray[_num_items];
int i=0, num_child=0, child_right = 0;
if( -1!=_data[_min].child ) {
TreeArray[num_child] = i;
while( _data[i].child!=-1 ) {
if( _data[ch].left_child && i==_data[ch].parent ) {
if( _data[ch].left_child ) {
child_right=_data[ch].parent;
_data[child_right].parent = -1;
TreeArray[num_child] = child_right;
for( i=0; i<num_child-1; i+=2 ) {
if ( !_comp(_data[TreeArray[i]].prio,
_data[TreeArray[i+1]].prio) ) {
TreeArray[i]=TreeArray[i+1];
fuse( TreeArray[i], TreeArray[i+1] );
i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
if ( _comp(_data[TreeArray[i]].prio,
_data[TreeArray[i-2]].prio) ) {
TreeArray[i]=TreeArray[i-2];
fuse( TreeArray[i-2], TreeArray[i] );
_min = _data[_min].child;
if (_min >= 0) _data[_min].left_child = false;
/// \brief Remove the given item from the heap.
/// This function removes the given item from the heap if it is
/// \param item The item to delete.
/// \pre \e item must be in the heap.
void erase (const Item& item) {
if ( i>=0 && _data[i].in ) {
decrease( item, _data[_min].prio-1 );
/// \brief Decrease the priority of an item to the given value.
/// This function decreases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at least \e value.
void decrease (Item item, const Prio& value) {
if( _data[i].left_child && i!=_data[p].child ) {
if ( p!=-1 && _comp(value,_data[p].prio) ) {
if ( _comp(_data[_min].prio,value) ) {
/// \brief Increase the priority of an item to the given value.
/// This function increases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at most \e value.
void increase (Item item, const Prio& value) {
/// \brief Return the state of an item.
/// This method returns \c PRE_HEAP if the given item has never
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
/// and \c POST_HEAP otherwise.
/// In the latter case it is possible that the item will get back
/// \param item The item.
State state(const Item &item) const {
/// \brief Set the state of an item in the heap.
/// This function sets the state of the given item in the heap.
/// It can be used to manually clear the heap when it is important
/// to achive better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) erase(i);
switch (_data[a].degree) {
child_a = _data[_data[a].child].parent;
if( _data[a].left_child ) {
_data[child_a].left_child=true;
_data[child_a].parent=_data[a].parent;
_data[child_a].left_child=false;
_data[_data[b].child].parent=child_a;
_data[_data[a].child].parent=a;
child_a = _data[a].child;
if( !_data[child_a].left_child ) {
if( _data[a].left_child ) {
_data[child_a].left_child=true;
_data[child_a].parent=_data[a].parent;
_data[child_a].left_child=false;
_data[_data[b].child].parent=child_a;
if( _data[a].left_child ) {
(1==_data[b].degree) ? _data[a].parent : -1;
_data[_data[b].child].parent=b;
if( _data[a].left_child ) {
(0!=_data[b].degree) ? _data[a].parent : -1;
_data[_data[b].child].parent=b;
_data[a].left_child=false;
void fuse(int a, int b) {
int child_a = _data[a].child;
int child_b = _data[b].child;
_data[b].left_child=true;
_data[child_a].left_child=false;
_data[child_b].parent=child_a;
else { ++_data[a].degree; }
friend class PairingHeap;
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
#endif //LEMON_PAIRING_HEAP_H