/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_BITS_ARRAY_MAP_H
#define LEMON_BITS_ARRAY_MAP_H
#include <lemon/bits/traits.h>
#include <lemon/bits/alteration_notifier.h>
#include <lemon/concept_check.h>
#include <lemon/concepts/maps.h>
/// \brief Graph map based on the array storage.
/// \brief Graph map based on the array storage.
/// The ArrayMap template class is graph map structure what
/// automatically updates the map when a key is added to or erased from
/// the map. This map uses the allocators to implement
/// the container functionality.
/// The template parameters are the Graph the current Item type and
/// the Value type of the map.
template <typename _Graph, typename _Item, typename _Value>
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
/// The graph type of the maps.
/// The item type of the map.
/// The reference map tag.
typedef True ReferenceMapTag;
/// The key type of the maps.
/// The value type of the map.
/// The const reference type of the map.
typedef const _Value& ConstReference;
/// The reference type of the map.
typedef _Value& Reference;
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
/// The MapBase of the Map which imlements the core regisitry function.
typedef typename Notifier::ObserverBase Parent;
typedef std::allocator<Value> Allocator;
/// \brief Graph initialized map constructor.
/// Graph initialized map constructor.
explicit ArrayMap(const Graph& graph) {
Parent::attach(graph.notifier(Item()));
Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
allocator.construct(&(values[id]), Value());
/// \brief Constructor to use default value to initialize the map.
/// It constructs a map and initialize all of the the map.
ArrayMap(const Graph& graph, const Value& value) {
Parent::attach(graph.notifier(Item()));
Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
allocator.construct(&(values[id]), value);
/// \brief Constructor to copy a map of the same map type.
/// Constructor to copy a map of the same map type.
ArrayMap(const ArrayMap& copy) : Parent() {
attach(*copy.notifier());
capacity = copy.capacity;
if (capacity == 0) return;
values = allocator.allocate(capacity);
Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
allocator.construct(&(values[id]), copy.values[id]);
/// \brief Assign operator.
/// This operator assigns for each item in the map the
/// value mapped to the same item in the copied map.
/// The parameter map should be indiced with the same
/// itemset because this assign operator does not change
/// the container of the map.
ArrayMap& operator=(const ArrayMap& cmap) {
return operator=<ArrayMap>(cmap);
/// \brief Template assign operator.
/// The given parameter should be conform to the ReadMap
/// concecpt and could be indiced by the current item set of
/// the NodeMap. In this case the value for each item
/// is assigned by the value of the given ReadMap.
ArrayMap& operator=(const CMap& cmap) {
checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
const typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
/// \brief The destructor of the map.
/// The destructor of the map.
/// \brief The subscript operator.
/// The subscript operator. The map can be subscripted by the
/// actual keys of the graph.
Value& operator[](const Key& key) {
int id = Parent::notifier()->id(key);
/// \brief The const subscript operator.
/// The const subscript operator. The map can be subscripted by the
/// actual keys of the graph.
const Value& operator[](const Key& key) const {
int id = Parent::notifier()->id(key);
/// \brief Setter function of the map.
/// Setter function of the map. Equivalent with map[key] = val.
/// This is a compatibility feature with the not dereferable maps.
void set(const Key& key, const Value& val) {
/// \brief Adds a new key to the map.
/// It adds a new key to the map. It called by the observer notifier
/// and it overrides the add() member function of the observer base.
virtual void add(const Key& key) {
Notifier* nf = Parent::notifier();
int new_capacity = (capacity == 0 ? 1 : capacity);
while (new_capacity <= id) {
Value* new_values = allocator.allocate(new_capacity);
for (nf->first(it); it != INVALID; nf->next(it)) {
allocator.construct(&(new_values[jd]), values[jd]);
allocator.destroy(&(values[jd]));
if (capacity != 0) allocator.deallocate(values, capacity);
allocator.construct(&(values[id]), Value());
/// \brief Adds more new keys to the map.
/// It adds more new keys to the map. It called by the observer notifier
/// and it overrides the add() member function of the observer base.
virtual void add(const std::vector<Key>& keys) {
Notifier* nf = Parent::notifier();
for (int i = 0; i < int(keys.size()); ++i) {
int id = nf->id(keys[i]);
if (max_id >= capacity) {
int new_capacity = (capacity == 0 ? 1 : capacity);
while (new_capacity <= max_id) {
Value* new_values = allocator.allocate(new_capacity);
for (nf->first(it); it != INVALID; nf->next(it)) {
for (int i = 0; i < int(keys.size()); ++i) {
int jd = nf->id(keys[i]);
allocator.construct(&(new_values[id]), values[id]);
allocator.destroy(&(values[id]));
if (capacity != 0) allocator.deallocate(values, capacity);
for (int i = 0; i < int(keys.size()); ++i) {
int id = nf->id(keys[i]);
allocator.construct(&(values[id]), Value());
/// \brief Erase a key from the map.
/// Erase a key from the map. It called by the observer notifier
/// and it overrides the erase() member function of the observer base.
virtual void erase(const Key& key) {
int id = Parent::notifier()->id(key);
allocator.destroy(&(values[id]));
/// \brief Erase more keys from the map.
/// Erase more keys from the map. It called by the observer notifier
/// and it overrides the erase() member function of the observer base.
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
int id = Parent::notifier()->id(keys[i]);
allocator.destroy(&(values[id]));
/// \brief Buildes the map.
/// It buildes the map. It called by the observer notifier
/// and it overrides the build() member function of the observer base.
Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
allocator.construct(&(values[id]), Value());
/// \brief Clear the map.
/// It erase all items from the map. It called by the observer notifier
/// and it overrides the clear() member function of the observer base.
Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
allocator.destroy(&(values[id]));
allocator.deallocate(values, capacity);
int max_id = Parent::notifier()->maxId();
while (capacity <= max_id) {
values = allocator.allocate(capacity);