/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_FRACTIONAL_MATCHING_H
#define LEMON_FRACTIONAL_MATCHING_H
#include <lemon/unionfind.h>
#include <lemon/bin_heap.h>
#include <lemon/assert.h>
#include <lemon/elevator.h>
///\brief Fractional matching algorithms in general graphs.
/// \brief Default traits class of MaxFractionalMatching class.
/// Default traits class of MaxFractionalMatching class.
/// \tparam GR Graph type.
struct MaxFractionalMatchingDefaultTraits {
/// \brief The type of the graph the algorithm runs on.
/// \brief The type of the map that stores the matching.
/// The type of the map that stores the matching arcs.
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Graph::template NodeMap<typename GR::Arc> MatchingMap;
/// \brief Instantiates a MatchingMap.
/// This function instantiates a \ref MatchingMap.
/// \param graph The graph for which we would like to define
static MatchingMap* createMatchingMap(const Graph& graph) {
return new MatchingMap(graph);
/// \brief The elevator type used by MaxFractionalMatching algorithm.
/// The elevator type used by MaxFractionalMatching algorithm.
typedef LinkedElevator<Graph, typename Graph::Node> Elevator;
/// \brief Instantiates an Elevator.
/// This function instantiates an \ref Elevator.
/// \param graph The graph for which we would like to define
/// \param max_level The maximum level of the elevator.
static Elevator* createElevator(const Graph& graph, int max_level) {
return new Elevator(graph, max_level);
/// \brief Max cardinality fractional matching
/// This class provides an implementation of fractional matching
/// algorithm based on push-relabel principle.
/// The maximum cardinality fractional matching is a relaxation of the
/// maximum cardinality matching problem where the odd set constraints
/// It can be formulated with the following linear program.
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
/// \f[x_e \ge 0\quad \forall e\in E\f]
/// \f[\max \sum_{e\in E}x_e\f]
/// where \f$\delta(X)\f$ is the set of edges incident to a node in
/// \f$X\f$. The result can be represented as the union of a
/// matching with one value edges and a set of odd length cycles
/// with half value edges.
/// The algorithm calculates an optimal fractional matching and a
/// barrier. The number of adjacents of any node set minus the size
/// of node set is a lower bound on the uncovered nodes in the
/// graph. For maximum matching a barrier is computed which
/// maximizes this difference.
/// The algorithm can be executed with the run() function. After it
/// the matching (the primal solution) and the barrier (the dual
/// solution) can be obtained using the query functions.
/// The primal solution is multiplied by
/// \ref MaxFractionalMatching::primalScale "2".
/// \tparam GR The undirected graph type the algorithm runs on.
template <typename GR, typename TR>
typename TR = MaxFractionalMatchingDefaultTraits<GR> >
class MaxFractionalMatching {
/// \brief The \ref MaxFractionalMatchingDefaultTraits "traits
/// class" of the algorithm.
/// The type of the graph the algorithm runs on.
typedef typename TR::Graph Graph;
/// The type of the matching map.
typedef typename TR::MatchingMap MatchingMap;
/// The type of the elevator.
typedef typename TR::Elevator Elevator;
/// \brief Scaling factor for primal solution
/// Scaling factor for primal solution.
static const int primalScale = 2;
TEMPLATE_GRAPH_TYPEDEFS(Graph);
typedef typename Graph::template NodeMap<int> InDegMap;
void createStructures() {
_node_num = countNodes(_graph);
_matching = Traits::createMatchingMap(_graph);
_level = Traits::createElevator(_graph, _node_num);
_indeg = new InDegMap(_graph);
void destroyStructures() {
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_indeg)[n] != 0) continue;
while ((*_matching)[u] != INVALID) {
Node v = _graph.target((*_matching)[u]);
Arc a = _graph.oppositeArc((*_matching)[u]);
u = _graph.target((*_matching)[v]);
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_indeg)[n] != 1) continue;
Node u = _graph.target((*_matching)[n]);
u = _graph.target((*_matching)[u]);
if (num % 2 == 0 && num > 2) {
Arc prev = _graph.oppositeArc((*_matching)[n]);
Node v = _graph.target((*_matching)[n]);
u = _graph.target((*_matching)[v]);
prev = _graph.oppositeArc((*_matching)[u]);
v = _graph.target((*_matching)[u]);
u = _graph.target((*_matching)[v]);
typedef MaxFractionalMatching Create;
///\name Named Template Parameters
struct SetMatchingMapTraits : public Traits {
static MatchingMap *createMatchingMap(const Graph&) {
LEMON_ASSERT(false, "MatchingMap is not initialized");
return 0; // ignore warnings
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting MatchingMap
: public MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > {
typedef MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > Create;
struct SetElevatorTraits : public Traits {
static Elevator *createElevator(const Graph&, int) {
LEMON_ASSERT(false, "Elevator is not initialized");
return 0; // ignore warnings
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting Elevator
/// type. If this named parameter is used, then an external
/// elevator object must be passed to the algorithm using the
/// \ref elevator(Elevator&) "elevator()" function before calling
/// \ref run() or \ref init().
/// \sa SetStandardElevator
: public MaxFractionalMatching<Graph, SetElevatorTraits<T> > {
typedef MaxFractionalMatching<Graph, SetElevatorTraits<T> > Create;
struct SetStandardElevatorTraits : public Traits {
static Elevator *createElevator(const Graph& graph, int max_level) {
return new Elevator(graph, max_level);
/// \brief \ref named-templ-param "Named parameter" for setting
/// Elevator type with automatic allocation
/// \ref named-templ-param "Named parameter" for setting Elevator
/// type with automatic allocation.
/// The Elevator should have standard constructor interface to be
/// able to automatically created by the algorithm (i.e. the
/// graph and the maximum level should be passed to it).
/// However an external elevator object could also be passed to the
/// algorithm with the \ref elevator(Elevator&) "elevator()" function
/// before calling \ref run() or \ref init().
struct SetStandardElevator
: public MaxFractionalMatching<Graph, SetStandardElevatorTraits<T> > {
typedef MaxFractionalMatching<Graph,
SetStandardElevatorTraits<T> > Create;
MaxFractionalMatching() {}
MaxFractionalMatching(const Graph &graph, bool allow_loops = true)
: _graph(graph), _allow_loops(allow_loops),
_local_matching(false), _matching(0),
_local_level(false), _level(0), _indeg(0)
~MaxFractionalMatching() {
/// \brief Sets the matching map.
/// Sets the matching map.
/// If you don't use this function before calling \ref run() or
/// \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// \return <tt>(*this)</tt>
MaxFractionalMatching& matchingMap(MatchingMap& map) {
/// \brief Sets the elevator used by algorithm.
/// Sets the elevator used by algorithm.
/// If you don't use this function before calling \ref run() or
/// \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated elevator,
/// \return <tt>(*this)</tt>
MaxFractionalMatching& elevator(Elevator& elevator) {
/// \brief Returns a const reference to the elevator.
/// Returns a const reference to the elevator.
/// \pre Either \ref run() or \ref init() must be called before
const Elevator& elevator() const {
/// \name Execution control
/// The simplest way to execute the algorithm is to use one of the
/// member functions called \c run(). \n
/// If you need more control on the execution, first
/// you must call \ref init() and then one variant of the start()
/// \brief Initializes the internal data structures.
/// Initializes the internal data structures and sets the initial
for (NodeIt n(_graph); n != INVALID; ++n) {
_matching->set(n, INVALID);
_empty_level = _node_num;
for (NodeIt n(_graph); n != INVALID; ++n) {
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
if (_graph.target(a) == n && !_allow_loops) continue;
Node v = _graph.target((*_matching)[n]);
_indeg->set(v, (*_indeg)[v] + 1);
for (NodeIt n(_graph); n != INVALID; ++n) {
/// \brief Starts the algorithm and computes a fractional matching
/// The algorithm computes a maximum fractional matching.
/// \param postprocess The algorithm computes first a matching
/// which is a union of a matching with one value edges, cycles
/// with half value edges and even length paths with half value
/// edges. If the parameter is true, then after the push-relabel
/// algorithm it postprocesses the matching to contain only
/// matching edges and half value odd cycles.
void start(bool postprocess = true) {
while ((n = _level->highestActive()) != INVALID) {
int level = _level->highestActiveLevel();
int new_level = _level->maxLevel();
for (InArcIt a(_graph, n); a != INVALID; ++a) {
Node u = _graph.source(a);
if (n == u && !_allow_loops) continue;
Node v = _graph.target((*_matching)[u]);
if ((*_level)[v] < level) {
_indeg->set(v, (*_indeg)[v] - 1);
_indeg->set(n, (*_indeg)[n] + 1);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
if (new_level + 1 < _level->maxLevel()) {
_level->liftHighestActive(new_level + 1);
_level->liftHighestActiveToTop();
if (_level->emptyLevel(level)) {
_level->liftToTop(level);
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_matching)[n] == INVALID) continue;
Node u = _graph.target((*_matching)[n]);
_indeg->set(u, (*_indeg)[u] - 1);
_matching->set(n, INVALID);
/// \brief Starts the algorithm and computes a perfect fractional
/// The algorithm computes a perfect fractional matching. If it
/// does not exists, then the algorithm returns false and the
/// matching is undefined and the barrier.
/// \param postprocess The algorithm computes first a matching
/// which is a union of a matching with one value edges, cycles
/// with half value edges and even length paths with half value
/// edges. If the parameter is true, then after the push-relabel
/// algorithm it postprocesses the matching to contain only
/// matching edges and half value odd cycles.
bool startPerfect(bool postprocess = true) {
while ((n = _level->highestActive()) != INVALID) {
int level = _level->highestActiveLevel();
int new_level = _level->maxLevel();
for (InArcIt a(_graph, n); a != INVALID; ++a) {
Node u = _graph.source(a);
if (n == u && !_allow_loops) continue;
Node v = _graph.target((*_matching)[u]);
if ((*_level)[v] < level) {
_indeg->set(v, (*_indeg)[v] - 1);
_indeg->set(n, (*_indeg)[n] + 1);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
if (new_level + 1 < _level->maxLevel()) {
_level->liftHighestActive(new_level + 1);
_level->liftHighestActiveToTop();
_empty_level = _level->maxLevel() - 1;
if (_level->emptyLevel(level)) {
_level->liftToTop(level);
/// \brief Runs the algorithm
/// Just a shortcut for the next code:
void run(bool postprocess = true) {
/// \brief Runs the algorithm to find a perfect fractional matching
/// Just a shortcut for the next code:
bool runPerfect(bool postprocess = true) {
return startPerfect(postprocess);
/// \name Query Functions
/// The result of the %Matching algorithm can be obtained using these
/// Before the use of these functions,
/// either run() or start() must be called.
/// \brief Return the number of covered nodes in the matching.
/// This function returns the number of covered nodes in the matching.
/// \pre Either run() or start() must be called before using this function.
int matchingSize() const {
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_matching)[n] != INVALID) {
/// \brief Returns a const reference to the matching map.
/// Returns a const reference to the node map storing the found
/// fractional matching. This method can be called after
/// running the algorithm.
/// \pre Either \ref run() or \ref init() must be called before
const MatchingMap& matchingMap() const {
/// \brief Return \c true if the given edge is in the matching.
/// This function returns \c true if the given edge is in the
/// found matching. The result is scaled by \ref primalScale
/// \pre Either run() or start() must be called before using this function.
int matching(const Edge& edge) const {
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) +
(edge == (*_matching)[_graph.v(edge)] ? 1 : 0);
/// \brief Return the fractional matching arc (or edge) incident
/// This function returns one of the fractional matching arc (or
/// edge) incident to the given node in the found matching or \c
/// INVALID if the node is not covered by the matching or if the
/// node is on an odd length cycle then it is the successor edge
/// \pre Either run() or start() must be called before using this function.
Arc matching(const Node& node) const {
return (*_matching)[node];
/// \brief Returns true if the node is in the barrier
/// The barrier is a subset of the nodes. If the nodes in the
/// barrier have less adjacent nodes than the size of the barrier,
/// then at least as much nodes cannot be covered as the
/// difference of the two subsets.
bool barrier(const Node& node) const {
return (*_level)[node] >= _empty_level;
/// \brief Weighted fractional matching in general graphs
/// This class provides an efficient implementation of fractional
/// matching algorithm. The implementation uses priority queues and
/// provides \f$O(nm\log n)\f$ time complexity.
/// The maximum weighted fractional matching is a relaxation of the
/// maximum weighted matching problem where the odd set constraints
/// It can be formulated with the following linear program.
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
/// \f[x_e \ge 0\quad \forall e\in E\f]
/// \f[\max \sum_{e\in E}x_ew_e\f]
/// where \f$\delta(X)\f$ is the set of edges incident to a node in
/// \f$X\f$. The result must be the union of a matching with one
/// value edges and a set of odd length cycles with half value edges.
/// The algorithm calculates an optimal fractional matching and a
/// proof of the optimality. The solution of the dual problem can be
/// used to check the result of the algorithm. The dual linear
/// problem is the following.
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
/// \f[y_u \ge 0 \quad \forall u \in V\f]
/// \f[\min \sum_{u \in V}y_u \f]
/// The algorithm can be executed with the run() function.
/// After it the matching (the primal solution) and the dual solution
/// can be obtained using the query functions.
/// The primal solution is multiplied by
/// \ref MaxWeightedFractionalMatching::primalScale "2".
/// If the value type is integer, then the dual
/// solution is scaled by
/// \ref MaxWeightedFractionalMatching::dualScale "4".
/// \tparam GR The undirected graph type the algorithm runs on.
/// \tparam WM The type edge weight map. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
template <typename GR, typename WM>
typename WM = typename GR::template EdgeMap<int> >
class MaxWeightedFractionalMatching {
/// The graph type of the algorithm
/// The type of the edge weight map
/// The value type of the edge weights
typedef typename WeightMap::Value Value;
/// The type of the matching map
typedef typename Graph::template NodeMap<typename Graph::Arc>
/// \brief Scaling factor for primal solution
/// Scaling factor for primal solution.
static const int primalScale = 2;
/// \brief Scaling factor for dual solution
/// Scaling factor for dual solution. It is equal to 4 or 1
/// according to the value type.
static const int dualScale =
std::numeric_limits<Value>::is_integer ? 4 : 1;
TEMPLATE_GRAPH_TYPEDEFS(Graph);
typedef typename Graph::template NodeMap<Value> NodePotential;
const WeightMap& _weight;
NodePotential* _node_potential;
EVEN = -1, MATCHED = 0, ODD = 1
typedef typename Graph::template NodeMap<Status> StatusMap;
typedef typename Graph::template NodeMap<Arc> PredMap;
typedef ExtendFindEnum<IntNodeMap> TreeSet;
IntNodeMap *_tree_set_index;
IntNodeMap *_delta1_index;
BinHeap<Value, IntNodeMap> *_delta1;
IntNodeMap *_delta2_index;
BinHeap<Value, IntNodeMap> *_delta2;
IntEdgeMap *_delta3_index;
BinHeap<Value, IntEdgeMap> *_delta3;
void createStructures() {
_node_num = countNodes(_graph);
_matching = new MatchingMap(_graph);
_node_potential = new NodePotential(_graph);
_status = new StatusMap(_graph);
_pred = new PredMap(_graph);
_tree_set_index = new IntNodeMap(_graph);
_tree_set = new TreeSet(*_tree_set_index);
_delta1_index = new IntNodeMap(_graph);
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
_delta2_index = new IntNodeMap(_graph);
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index);
_delta3_index = new IntEdgeMap(_graph);
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
void destroyStructures() {
void matchedToEven(Node node, int tree) {
_tree_set->insert(node, tree);
_node_potential->set(node, (*_node_potential)[node] + _delta_sum);
_delta1->push(node, (*_node_potential)[node]);
if (_delta2->state(node) == _delta2->IN_HEAP) {
for (InArcIt a(_graph, node); a != INVALID; ++a) {
Node v = _graph.source(a);
Value rw = (*_node_potential)[node] + (*_node_potential)[v] -
if (_allow_loops && _graph.direction(a)) {
_delta3->push(a, rw / 2);
} else if ((*_status)[v] == EVEN) {
_delta3->push(a, rw / 2);
} else if ((*_status)[v] == MATCHED) {
if (_delta2->state(v) != _delta2->IN_HEAP) {
} else if ((*_delta2)[v] > rw) {
_delta2->decrease(v, rw);
void matchedToOdd(Node node, int tree) {
_tree_set->insert(node, tree);
_node_potential->set(node, (*_node_potential)[node] - _delta_sum);
if (_delta2->state(node) == _delta2->IN_HEAP) {
void evenToMatched(Node node, int tree) {
_node_potential->set(node, (*_node_potential)[node] - _delta_sum);
Value minrw = std::numeric_limits<Value>::max();
for (InArcIt a(_graph, node); a != INVALID; ++a) {
Node v = _graph.source(a);
Value rw = (*_node_potential)[node] + (*_node_potential)[v] -
if (_allow_loops && _graph.direction(a)) {
} else if ((*_status)[v] == EVEN) {
min = _graph.oppositeArc(a);
} else if ((*_status)[v] == MATCHED) {
Value minrwa = std::numeric_limits<Value>::max();
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) {
Node va = _graph.target(aa);
if ((*_status)[va] != EVEN ||
_tree_set->find(va) == tree) continue;
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] -
_delta2->increase(v, minrwa);
_delta2->push(node, minrw);
_pred->set(node, INVALID);
void oddToMatched(Node node) {
_node_potential->set(node, (*_node_potential)[node] + _delta_sum);
Value minrw = std::numeric_limits<Value>::max();
for (InArcIt a(_graph, node); a != INVALID; ++a) {
Node v = _graph.source(a);
if ((*_status)[v] != EVEN) continue;
Value rw = (*_node_potential)[node] + (*_node_potential)[v] -
min = _graph.oppositeArc(a);
_delta2->push(node, minrw);
_pred->set(node, INVALID);
void alternatePath(Node even, int tree) {
_status->set(even, MATCHED);
evenToMatched(even, tree);
Arc prev = (*_matching)[even];
while (prev != INVALID) {
odd = _graph.target(prev);
even = _graph.target((*_pred)[odd]);
_matching->set(odd, (*_pred)[odd]);
_status->set(odd, MATCHED);
prev = (*_matching)[even];
_status->set(even, MATCHED);
_matching->set(even, _graph.oppositeArc((*_matching)[odd]));
evenToMatched(even, tree);
void destroyTree(int tree) {
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) {
if ((*_status)[n] == EVEN) {
_status->set(n, MATCHED);
} else if ((*_status)[n] == ODD) {
_status->set(n, MATCHED);
_tree_set->eraseClass(tree);
void unmatchNode(const Node& node) {
int tree = _tree_set->find(node);
alternatePath(node, tree);
_matching->set(node, INVALID);
void augmentOnEdge(const Edge& edge) {
Node left = _graph.u(edge);
int left_tree = _tree_set->find(left);
alternatePath(left, left_tree);
_matching->set(left, _graph.direct(edge, true));
Node right = _graph.v(edge);
int right_tree = _tree_set->find(right);
alternatePath(right, right_tree);
_matching->set(right, _graph.direct(edge, false));
void augmentOnArc(const Arc& arc) {
Node left = _graph.source(arc);
_status->set(left, MATCHED);
_matching->set(left, arc);
Node right = _graph.target(arc);
int right_tree = _tree_set->find(right);
alternatePath(right, right_tree);
_matching->set(right, _graph.oppositeArc(arc));
void extendOnArc(const Arc& arc) {
Node base = _graph.target(arc);
int tree = _tree_set->find(base);
Node odd = _graph.source(arc);
_tree_set->insert(odd, tree);
Node even = _graph.target((*_matching)[odd]);
_tree_set->insert(even, tree);
_status->set(even, EVEN);
matchedToEven(even, tree);
void cycleOnEdge(const Edge& edge, int tree) {
std::vector<Node> left_path, right_path;
std::set<Node> left_set, right_set;
Node left = _graph.u(edge);
left_path.push_back(left);
Node right = _graph.v(edge);
right_path.push_back(right);
if (left_set.find(right) != left_set.end()) {
if ((*_matching)[left] == INVALID) break;
left = _graph.target((*_matching)[left]);
left_path.push_back(left);
left = _graph.target((*_pred)[left]);
left_path.push_back(left);
if (right_set.find(left) != right_set.end()) {
if ((*_matching)[right] == INVALID) break;
right = _graph.target((*_matching)[right]);
right_path.push_back(right);
right = _graph.target((*_pred)[right]);
right_path.push_back(right);
if ((*_matching)[left] == INVALID) {
while (left_set.find(nca) == left_set.end()) {
nca = _graph.target((*_matching)[nca]);
right_path.push_back(nca);
nca = _graph.target((*_pred)[nca]);
right_path.push_back(nca);
while (right_set.find(nca) == right_set.end()) {
nca = _graph.target((*_matching)[nca]);
left_path.push_back(nca);
nca = _graph.target((*_pred)[nca]);
left_path.push_back(nca);
alternatePath(nca, tree);
prev = _graph.direct(edge, true);
for (int i = 0; left_path[i] != nca; i += 2) {
_matching->set(left_path[i], prev);
_status->set(left_path[i], MATCHED);
evenToMatched(left_path[i], tree);
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]);
_status->set(left_path[i + 1], MATCHED);
oddToMatched(left_path[i + 1]);
_matching->set(nca, prev);
for (int i = 0; right_path[i] != nca; i += 2) {
_status->set(right_path[i], MATCHED);
evenToMatched(right_path[i], tree);
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]);
_status->set(right_path[i + 1], MATCHED);
oddToMatched(right_path[i + 1]);
void extractCycle(const Arc &arc) {
Node left = _graph.source(arc);
Node odd = _graph.target((*_matching)[left]);
Node even = _graph.target((*_matching)[odd]);
prev = (*_matching)[odd];
odd = _graph.target((*_matching)[even]);
_matching->set(even, _graph.oppositeArc(prev));
_matching->set(left, arc);
Node right = _graph.target(arc);
int right_tree = _tree_set->find(right);
alternatePath(right, right_tree);
_matching->set(right, _graph.oppositeArc(arc));
MaxWeightedFractionalMatching(const Graph& graph, const WeightMap& weight,
: _graph(graph), _weight(weight), _matching(0),
_node_potential(0), _node_num(0), _allow_loops(allow_loops),
_tree_set_index(0), _tree_set(0),
_delta1_index(0), _delta1(0),
_delta2_index(0), _delta2(0),
_delta3_index(0), _delta3(0),
~MaxWeightedFractionalMatching() {
/// \name Execution Control
/// The simplest way to execute the algorithm is to use the
/// \ref run() member function.
/// \brief Initialize the algorithm
/// This function initializes the algorithm.
for (NodeIt n(_graph); n != INVALID; ++n) {
(*_delta1_index)[n] = _delta1->PRE_HEAP;
(*_delta2_index)[n] = _delta2->PRE_HEAP;
for (EdgeIt e(_graph); e != INVALID; ++e) {
(*_delta3_index)[e] = _delta3->PRE_HEAP;
for (NodeIt n(_graph); n != INVALID; ++n) {
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
if (_graph.target(e) == n && !_allow_loops) continue;
if ((dualScale * _weight[e]) / 2 > max) {
max = (dualScale * _weight[e]) / 2;
_node_potential->set(n, max);
_matching->set(n, INVALID);
for (EdgeIt e(_graph); e != INVALID; ++e) {
Node right = _graph.v(e);
if (left == right && !_allow_loops) continue;
_delta3->push(e, ((*_node_potential)[left] +
(*_node_potential)[right] -
dualScale * _weight[e]) / 2);
/// \brief Start the algorithm
/// This function starts the algorithm.
/// \pre \ref init() must be called before using this function.
int unmatched = _node_num;
Value d1 = !_delta1->empty() ?
_delta1->prio() : std::numeric_limits<Value>::max();
Value d2 = !_delta2->empty() ?
_delta2->prio() : std::numeric_limits<Value>::max();
Value d3 = !_delta3->empty() ?
_delta3->prio() : std::numeric_limits<Value>::max();
_delta_sum = d3; OpType ot = D3;
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
if ((*_matching)[n] == INVALID) {
Node v = _graph.target((*_matching)[n]);
_graph.oppositeArc((*_matching)[v])) {
Node right = _graph.v(e);
int left_tree = _tree_set->find(left);
int right_tree = _tree_set->find(right);
if (left_tree == right_tree) {
cycleOnEdge(e, left_tree);
/// \brief Run the algorithm.
/// This method runs the \c %MaxWeightedFractionalMatching algorithm.
/// \note mwfm.run() is just a shortcut of the following code.
/// \name Primal Solution
/// Functions to get the primal solution, i.e. the maximum weighted
/// Either \ref run() or \ref start() function should be called before
/// \brief Return the weight of the matching.
/// This function returns the weight of the found matching. This
/// value is scaled by \ref primalScale "primal scale".
/// \pre Either run() or start() must be called before using this function.
Value matchingWeight() const {
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_matching)[n] != INVALID) {
sum += _weight[(*_matching)[n]];
return sum * primalScale / 2;
/// \brief Return the number of covered nodes in the matching.
/// This function returns the number of covered nodes in the matching.
/// \pre Either run() or start() must be called before using this function.
int matchingSize() const {
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_matching)[n] != INVALID) {
/// \brief Return \c true if the given edge is in the matching.
/// This function returns \c true if the given edge is in the
/// found matching. The result is scaled by \ref primalScale
/// \pre Either run() or start() must be called before using this function.
int matching(const Edge& edge) const {
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0);
/// \brief Return the fractional matching arc (or edge) incident
/// This function returns one of the fractional matching arc (or
/// edge) incident to the given node in the found matching or \c
/// INVALID if the node is not covered by the matching or if the
/// node is on an odd length cycle then it is the successor edge
/// \pre Either run() or start() must be called before using this function.
Arc matching(const Node& node) const {
return (*_matching)[node];
/// \brief Return a const reference to the matching map.
/// This function returns a const reference to a node map that stores
/// the matching arc (or edge) incident to each node.
const MatchingMap& matchingMap() const {
/// Functions to get the dual solution.\n
/// Either \ref run() or \ref start() function should be called before
/// \brief Return the value of the dual solution.
/// This function returns the value of the dual solution.
/// It should be equal to the primal value scaled by \ref dualScale
/// \pre Either run() or start() must be called before using this function.
Value dualValue() const {
for (NodeIt n(_graph); n != INVALID; ++n) {
/// \brief Return the dual value (potential) of the given node.
/// This function returns the dual value (potential) of the given node.
/// \pre Either run() or start() must be called before using this function.
Value nodeValue(const Node& n) const {
return (*_node_potential)[n];
/// \brief Weighted fractional perfect matching in general graphs
/// This class provides an efficient implementation of fractional
/// matching algorithm. The implementation uses priority queues and
/// provides \f$O(nm\log n)\f$ time complexity.
/// The maximum weighted fractional perfect matching is a relaxation
/// of the maximum weighted perfect matching problem where the odd
/// set constraints are omitted.
/// It can be formulated with the following linear program.
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
/// \f[x_e \ge 0\quad \forall e\in E\f]
/// \f[\max \sum_{e\in E}x_ew_e\f]
/// where \f$\delta(X)\f$ is the set of edges incident to a node in
/// \f$X\f$. The result must be the union of a matching with one
/// value edges and a set of odd length cycles with half value edges.
/// The algorithm calculates an optimal fractional matching and a
/// proof of the optimality. The solution of the dual problem can be
/// used to check the result of the algorithm. The dual linear
/// problem is the following.
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
/// \f[\min \sum_{u \in V}y_u \f]
/// The algorithm can be executed with the run() function.
/// After it the matching (the primal solution) and the dual solution
/// can be obtained using the query functions.
/// The primal solution is multiplied by
/// \ref MaxWeightedPerfectFractionalMatching::primalScale "2".
/// If the value type is integer, then the dual
/// solution is scaled by
/// \ref MaxWeightedPerfectFractionalMatching::dualScale "4".
/// \tparam GR The undirected graph type the algorithm runs on.
/// \tparam WM The type edge weight map. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
template <typename GR, typename WM>
typename WM = typename GR::template EdgeMap<int> >
class MaxWeightedPerfectFractionalMatching {
/// The graph type of the algorithm
/// The type of the edge weight map
/// The value type of the edge weights
typedef typename WeightMap::Value Value;
/// The type of the matching map
typedef typename Graph::template NodeMap<typename Graph::Arc>
/// \brief Scaling factor for primal solution
/// Scaling factor for primal solution.
static const int primalScale = 2;
/// \brief Scaling factor for dual solution
/// Scaling factor for dual solution. It is equal to 4 or 1
/// according to the value type.
static const int dualScale =
std::numeric_limits<Value>::is_integer ? 4 : 1;
TEMPLATE_GRAPH_TYPEDEFS(Graph);
typedef typename Graph::template NodeMap<Value> NodePotential;
const WeightMap& _weight;
NodePotential* _node_potential;
EVEN = -1, MATCHED = 0, ODD = 1
typedef typename Graph::template NodeMap<Status> StatusMap;
typedef typename Graph::template NodeMap<Arc> PredMap;
typedef ExtendFindEnum<IntNodeMap> TreeSet;
IntNodeMap *_tree_set_index;
IntNodeMap *_delta2_index;
BinHeap<Value, IntNodeMap> *_delta2;
IntEdgeMap *_delta3_index;
BinHeap<Value, IntEdgeMap> *_delta3;
void createStructures() {
_node_num = countNodes(_graph);
_matching = new MatchingMap(_graph);
_node_potential = new NodePotential(_graph);
_status = new StatusMap(_graph);
_pred = new PredMap(_graph);
_tree_set_index = new IntNodeMap(_graph);
_tree_set = new TreeSet(*_tree_set_index);
_delta2_index = new IntNodeMap(_graph);
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index);
_delta3_index = new IntEdgeMap(_graph);
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
void destroyStructures() {
void matchedToEven(Node node, int tree) {
_tree_set->insert(node, tree);
_node_potential->set(node, (*_node_potential)[node] + _delta_sum);
if (_delta2->state(node) == _delta2->IN_HEAP) {
for (InArcIt a(_graph, node); a != INVALID; ++a) {
Node v = _graph.source(a);
Value rw = (*_node_potential)[node] + (*_node_potential)[v] -
if (_allow_loops && _graph.direction(a)) {
_delta3->push(a, rw / 2);
} else if ((*_status)[v] == EVEN) {
_delta3->push(a, rw / 2);
} else if ((*_status)[v] == MATCHED) {
if (_delta2->state(v) != _delta2->IN_HEAP) {
} else if ((*_delta2)[v] > rw) {
_delta2->decrease(v, rw);
void matchedToOdd(Node node, int tree) {
_tree_set->insert(node, tree);
_node_potential->set(node, (*_node_potential)[node] - _delta_sum);
if (_delta2->state(node) == _delta2->IN_HEAP) {
void evenToMatched(Node node, int tree) {
_node_potential->set(node, (*_node_potential)[node] - _delta_sum);
Value minrw = std::numeric_limits<Value>::max();
for (InArcIt a(_graph, node); a != INVALID; ++a) {
Node v = _graph.source(a);
Value rw = (*_node_potential)[node] + (*_node_potential)[v] -
if (_allow_loops && _graph.direction(a)) {
} else if ((*_status)[v] == EVEN) {
min = _graph.oppositeArc(a);
} else if ((*_status)[v] == MATCHED) {
Value minrwa = std::numeric_limits<Value>::max();
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) {
Node va = _graph.target(aa);
if ((*_status)[va] != EVEN ||
_tree_set->find(va) == tree) continue;
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] -
_delta2->increase(v, minrwa);
_delta2->push(node, minrw);
_pred->set(node, INVALID);
void oddToMatched(Node node) {
_node_potential->set(node, (*_node_potential)[node] + _delta_sum);
Value minrw = std::numeric_limits<Value>::max();
for (InArcIt a(_graph, node); a != INVALID; ++a) {
Node v = _graph.source(a);
if ((*_status)[v] != EVEN) continue;
Value rw = (*_node_potential)[node] + (*_node_potential)[v] -
min = _graph.oppositeArc(a);
_delta2->push(node, minrw);
_pred->set(node, INVALID);
void alternatePath(Node even, int tree) {
_status->set(even, MATCHED);
evenToMatched(even, tree);
Arc prev = (*_matching)[even];
while (prev != INVALID) {
odd = _graph.target(prev);
even = _graph.target((*_pred)[odd]);
_matching->set(odd, (*_pred)[odd]);
_status->set(odd, MATCHED);
prev = (*_matching)[even];
_status->set(even, MATCHED);
_matching->set(even, _graph.oppositeArc((*_matching)[odd]));
evenToMatched(even, tree);
void destroyTree(int tree) {
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) {
if ((*_status)[n] == EVEN) {
_status->set(n, MATCHED);
} else if ((*_status)[n] == ODD) {
_status->set(n, MATCHED);
_tree_set->eraseClass(tree);
void augmentOnEdge(const Edge& edge) {
Node left = _graph.u(edge);
int left_tree = _tree_set->find(left);
alternatePath(left, left_tree);
_matching->set(left, _graph.direct(edge, true));
Node right = _graph.v(edge);
int right_tree = _tree_set->find(right);
alternatePath(right, right_tree);
_matching->set(right, _graph.direct(edge, false));
void augmentOnArc(const Arc& arc) {
Node left = _graph.source(arc);
_status->set(left, MATCHED);
_matching->set(left, arc);
Node right = _graph.target(arc);
int right_tree = _tree_set->find(right);
alternatePath(right, right_tree);
_matching->set(right, _graph.oppositeArc(arc));
void extendOnArc(const Arc& arc) {
Node base = _graph.target(arc);
int tree = _tree_set->find(base);
Node odd = _graph.source(arc);
_tree_set->insert(odd, tree);
Node even = _graph.target((*_matching)[odd]);
_tree_set->insert(even, tree);
_status->set(even, EVEN);
matchedToEven(even, tree);
void cycleOnEdge(const Edge& edge, int tree) {
std::vector<Node> left_path, right_path;
std::set<Node> left_set, right_set;
Node left = _graph.u(edge);
left_path.push_back(left);
Node right = _graph.v(edge);
right_path.push_back(right);
if (left_set.find(right) != left_set.end()) {
if ((*_matching)[left] == INVALID) break;
left = _graph.target((*_matching)[left]);
left_path.push_back(left);
left = _graph.target((*_pred)[left]);
left_path.push_back(left);
if (right_set.find(left) != right_set.end()) {
if ((*_matching)[right] == INVALID) break;
right = _graph.target((*_matching)[right]);
right_path.push_back(right);
right = _graph.target((*_pred)[right]);
right_path.push_back(right);
if ((*_matching)[left] == INVALID) {
while (left_set.find(nca) == left_set.end()) {
nca = _graph.target((*_matching)[nca]);
right_path.push_back(nca);
nca = _graph.target((*_pred)[nca]);
right_path.push_back(nca);
while (right_set.find(nca) == right_set.end()) {
nca = _graph.target((*_matching)[nca]);
left_path.push_back(nca);
nca = _graph.target((*_pred)[nca]);
left_path.push_back(nca);
alternatePath(nca, tree);
prev = _graph.direct(edge, true);
for (int i = 0; left_path[i] != nca; i += 2) {
_matching->set(left_path[i], prev);
_status->set(left_path[i], MATCHED);
evenToMatched(left_path[i], tree);
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]);
_status->set(left_path[i + 1], MATCHED);
oddToMatched(left_path[i + 1]);
_matching->set(nca, prev);
for (int i = 0; right_path[i] != nca; i += 2) {
_status->set(right_path[i], MATCHED);
evenToMatched(right_path[i], tree);
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]);
_status->set(right_path[i + 1], MATCHED);
oddToMatched(right_path[i + 1]);
void extractCycle(const Arc &arc) {
Node left = _graph.source(arc);
Node odd = _graph.target((*_matching)[left]);
Node even = _graph.target((*_matching)[odd]);
prev = (*_matching)[odd];
odd = _graph.target((*_matching)[even]);
_matching->set(even, _graph.oppositeArc(prev));
_matching->set(left, arc);
Node right = _graph.target(arc);
int right_tree = _tree_set->find(right);
alternatePath(right, right_tree);
_matching->set(right, _graph.oppositeArc(arc));
MaxWeightedPerfectFractionalMatching(const Graph& graph,
: _graph(graph), _weight(weight), _matching(0),
_node_potential(0), _node_num(0), _allow_loops(allow_loops),
_tree_set_index(0), _tree_set(0),
_delta2_index(0), _delta2(0),
_delta3_index(0), _delta3(0),
~MaxWeightedPerfectFractionalMatching() {
/// \name Execution Control
/// The simplest way to execute the algorithm is to use the
/// \ref run() member function.
/// \brief Initialize the algorithm
/// This function initializes the algorithm.
for (NodeIt n(_graph); n != INVALID; ++n) {
(*_delta2_index)[n] = _delta2->PRE_HEAP;
for (EdgeIt e(_graph); e != INVALID; ++e) {
(*_delta3_index)[e] = _delta3->PRE_HEAP;
for (NodeIt n(_graph); n != INVALID; ++n) {
Value max = - std::numeric_limits<Value>::max();
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
if (_graph.target(e) == n && !_allow_loops) continue;
if ((dualScale * _weight[e]) / 2 > max) {
max = (dualScale * _weight[e]) / 2;
_node_potential->set(n, max);
_matching->set(n, INVALID);
for (EdgeIt e(_graph); e != INVALID; ++e) {
Node right = _graph.v(e);
if (left == right && !_allow_loops) continue;
_delta3->push(e, ((*_node_potential)[left] +
(*_node_potential)[right] -
dualScale * _weight[e]) / 2);
/// \brief Start the algorithm
/// This function starts the algorithm.
/// \pre \ref init() must be called before using this function.
int unmatched = _node_num;
Value d2 = !_delta2->empty() ?
_delta2->prio() : std::numeric_limits<Value>::max();
Value d3 = !_delta3->empty() ?
_delta3->prio() : std::numeric_limits<Value>::max();
_delta_sum = d3; OpType ot = D3;
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
if (_delta_sum == std::numeric_limits<Value>::max()) {
if ((*_matching)[n] == INVALID) {
Node v = _graph.target((*_matching)[n]);
_graph.oppositeArc((*_matching)[v])) {
Node right = _graph.v(e);
int left_tree = _tree_set->find(left);
int right_tree = _tree_set->find(right);
if (left_tree == right_tree) {
cycleOnEdge(e, left_tree);
/// \brief Run the algorithm.
/// This method runs the \c %MaxWeightedPerfectFractionalMatching
/// \note mwfm.run() is just a shortcut of the following code.
/// \name Primal Solution
/// Functions to get the primal solution, i.e. the maximum weighted
/// Either \ref run() or \ref start() function should be called before
/// \brief Return the weight of the matching.
/// This function returns the weight of the found matching. This
/// value is scaled by \ref primalScale "primal scale".
/// \pre Either run() or start() must be called before using this function.
Value matchingWeight() const {
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_matching)[n] != INVALID) {
sum += _weight[(*_matching)[n]];
return sum * primalScale / 2;
/// \brief Return the number of covered nodes in the matching.
/// This function returns the number of covered nodes in the matching.
/// \pre Either run() or start() must be called before using this function.
int matchingSize() const {
for (NodeIt n(_graph); n != INVALID; ++n) {
if ((*_matching)[n] != INVALID) {
/// \brief Return \c true if the given edge is in the matching.
/// This function returns \c true if the given edge is in the
/// found matching. The result is scaled by \ref primalScale
/// \pre Either run() or start() must be called before using this function.
int matching(const Edge& edge) const {
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0);
/// \brief Return the fractional matching arc (or edge) incident
/// This function returns one of the fractional matching arc (or
/// edge) incident to the given node in the found matching or \c
/// INVALID if the node is not covered by the matching or if the
/// node is on an odd length cycle then it is the successor edge
/// \pre Either run() or start() must be called before using this function.
Arc matching(const Node& node) const {
return (*_matching)[node];
/// \brief Return a const reference to the matching map.
/// This function returns a const reference to a node map that stores
/// the matching arc (or edge) incident to each node.
const MatchingMap& matchingMap() const {
/// Functions to get the dual solution.\n
/// Either \ref run() or \ref start() function should be called before
/// \brief Return the value of the dual solution.
/// This function returns the value of the dual solution.
/// It should be equal to the primal value scaled by \ref dualScale
/// \pre Either run() or start() must be called before using this function.
Value dualValue() const {
for (NodeIt n(_graph); n != INVALID; ++n) {
/// \brief Return the dual value (potential) of the given node.
/// This function returns the dual value (potential) of the given node.
/// \pre Either run() or start() must be called before using this function.
Value nodeValue(const Node& n) const {
return (*_node_potential)[n];
} //END OF NAMESPACE LEMON
#endif //LEMON_FRACTIONAL_MATCHING_H