Location: LEMON/LEMON-main/lemon/fib_heap.h

Load file history
gravatar
kpeter (Peter Kovacs)
Unify member names in heaps (#299) The following renamings are made. Public members: - UnderFlowPriorityError -> PriorityUnderflowError ("underflow" is only one word) Private members: - bubble_up() -> bubbleUp() - bubble_down() -> bubbleDown() - second_child() -> secondChild() - makeroot() -> makeRoot() - relocate_last() -> relocateLast() - data -> _data - boxes -> _boxes
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_FIB_HEAP_H
#define LEMON_FIB_HEAP_H
///\file
///\ingroup auxdat
///\brief Fibonacci Heap implementation.
#include <vector>
#include <functional>
#include <lemon/math.h>
namespace lemon {
/// \ingroup auxdat
///
///\brief Fibonacci Heap.
///
///This class implements the \e Fibonacci \e heap data structure. A \e heap
///is a data structure for storing items with specified values called \e
///priorities in such a way that finding the item with minimum priority is
///efficient. \c CMP specifies the ordering of the priorities. In a heap
///one can change the priority of an item, add or erase an item, etc.
///
///The methods \ref increase and \ref erase are not efficient in a Fibonacci
///heap. In case of many calls to these operations, it is better to use a
///\ref BinHeap "binary heap".
///
///\param PRIO Type of the priority of the items.
///\param IM A read and writable Item int map, used internally
///to handle the cross references.
///\param CMP A class for the ordering of the priorities. The
///default is \c std::less<PRIO>.
///
///\sa BinHeap
///\sa Dijkstra
#ifdef DOXYGEN
template <typename PRIO, typename IM, typename CMP>
#else
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
#endif
class FibHeap {
public:
///\e
typedef IM ItemIntMap;
///\e
typedef PRIO Prio;
///\e
typedef typename ItemIntMap::Key Item;
///\e
typedef std::pair<Item,Prio> Pair;
///\e
typedef CMP Compare;
private:
class Store;
std::vector<Store> _data;
int _minimum;
ItemIntMap &_iim;
Compare _comp;
int _num;
public:
/// \brief Type to represent the items states.
///
/// Each Item element have a state associated to it. It may be "in heap",
/// "pre heap" or "post heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
///
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
enum State {
IN_HEAP = 0, ///< = 0.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
};
/// \brief The constructor
///
/// \c map should be given to the constructor, since it is
/// used internally to handle the cross references.
explicit FibHeap(ItemIntMap &map)
: _minimum(0), _iim(map), _num() {}
/// \brief The constructor
///
/// \c map should be given to the constructor, since it is used
/// internally to handle the cross references. \c comp is an
/// object for ordering of the priorities.
FibHeap(ItemIntMap &map, const Compare &comp)
: _minimum(0), _iim(map), _comp(comp), _num() {}
/// \brief The number of items stored in the heap.
///
/// Returns the number of items stored in the heap.
int size() const { return _num; }
/// \brief Checks if the heap stores no items.
///
/// Returns \c true if and only if the heap stores no items.
bool empty() const { return _num==0; }
/// \brief Make empty this heap.
///
/// Make empty this heap. It does not change the cross reference
/// map. If you want to reuse a heap what is not surely empty you
/// should first clear the heap and after that you should set the
/// cross reference map for each item to \c PRE_HEAP.
void clear() {
_data.clear(); _minimum = 0; _num = 0;
}
/// \brief \c item gets to the heap with priority \c value independently
/// if \c item was already there.
///
/// This method calls \ref push(\c item, \c value) if \c item is not
/// stored in the heap and it calls \ref decrease(\c item, \c value) or
/// \ref increase(\c item, \c value) otherwise.
void set (const Item& item, const Prio& value) {
int i=_iim[item];
if ( i >= 0 && _data[i].in ) {
if ( _comp(value, _data[i].prio) ) decrease(item, value);
if ( _comp(_data[i].prio, value) ) increase(item, value);
} else push(item, value);
}
/// \brief Adds \c item to the heap with priority \c value.
///
/// Adds \c item to the heap with priority \c value.
/// \pre \c item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
int i=_iim[item];
if ( i < 0 ) {
int s=_data.size();
_iim.set( item, s );
Store st;
st.name=item;
_data.push_back(st);
i=s;
} else {
_data[i].parent=_data[i].child=-1;
_data[i].degree=0;
_data[i].in=true;
_data[i].marked=false;
}
if ( _num ) {
_data[_data[_minimum].right_neighbor].left_neighbor=i;
_data[i].right_neighbor=_data[_minimum].right_neighbor;
_data[_minimum].right_neighbor=i;
_data[i].left_neighbor=_minimum;
if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
} else {
_data[i].right_neighbor=_data[i].left_neighbor=i;
_minimum=i;
}
_data[i].prio=value;
++_num;
}
/// \brief Returns the item with minimum priority relative to \c Compare.
///
/// This method returns the item with minimum priority relative to \c
/// Compare.
/// \pre The heap must be nonempty.
Item top() const { return _data[_minimum].name; }
/// \brief Returns the minimum priority relative to \c Compare.
///
/// It returns the minimum priority relative to \c Compare.
/// \pre The heap must be nonempty.
const Prio& prio() const { return _data[_minimum].prio; }
/// \brief Returns the priority of \c item.
///
/// It returns the priority of \c item.
/// \pre \c item must be in the heap.
const Prio& operator[](const Item& item) const {
return _data[_iim[item]].prio;
}
/// \brief Deletes the item with minimum priority relative to \c Compare.
///
/// This method deletes the item with minimum priority relative to \c
/// Compare from the heap.
/// \pre The heap must be non-empty.
void pop() {
/*The first case is that there are only one root.*/
if ( _data[_minimum].left_neighbor==_minimum ) {
_data[_minimum].in=false;
if ( _data[_minimum].degree!=0 ) {
makeroot(_data[_minimum].child);
_minimum=_data[_minimum].child;
balance();
}
} else {
int right=_data[_minimum].right_neighbor;
unlace(_minimum);
_data[_minimum].in=false;
if ( _data[_minimum].degree > 0 ) {
int left=_data[_minimum].left_neighbor;
int child=_data[_minimum].child;
int last_child=_data[child].left_neighbor;
makeroot(child);
_data[left].right_neighbor=child;
_data[child].left_neighbor=left;
_data[right].left_neighbor=last_child;
_data[last_child].right_neighbor=right;
}
_minimum=right;
balance();
} // the case where there are more roots
--_num;
}
/// \brief Deletes \c item from the heap.
///
/// This method deletes \c item from the heap, if \c item was already
/// stored in the heap. It is quite inefficient in Fibonacci heaps.
void erase (const Item& item) {
int i=_iim[item];
if ( i >= 0 && _data[i].in ) {
if ( _data[i].parent!=-1 ) {
int p=_data[i].parent;
cut(i,p);
cascade(p);
}
_minimum=i; //As if its prio would be -infinity
pop();
}
}
/// \brief Decreases the priority of \c item to \c value.
///
/// This method decreases the priority of \c item to \c value.
/// \pre \c item must be stored in the heap with priority at least \c
/// value relative to \c Compare.
void decrease (Item item, const Prio& value) {
int i=_iim[item];
_data[i].prio=value;
int p=_data[i].parent;
if ( p!=-1 && _comp(value, _data[p].prio) ) {
cut(i,p);
cascade(p);
}
if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
}
/// \brief Increases the priority of \c item to \c value.
///
/// This method sets the priority of \c item to \c value. Though
/// there is no precondition on the priority of \c item, this
/// method should be used only if it is indeed necessary to increase
/// (relative to \c Compare) the priority of \c item, because this
/// method is inefficient.
void increase (Item item, const Prio& value) {
erase(item);
push(item, value);
}
/// \brief Returns if \c item is in, has already been in, or has never
/// been in the heap.
///
/// This method returns PRE_HEAP if \c item has never been in the
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
/// otherwise. In the latter case it is possible that \c item will
/// get back to the heap again.
State state(const Item &item) const {
int i=_iim[item];
if( i>=0 ) {
if ( _data[i].in ) i=0;
else i=-2;
}
return State(i);
}
/// \brief Sets the state of the \c item in the heap.
///
/// Sets the state of the \c item in the heap. It can be used to
/// manually clear the heap when it is important to achive the
/// better time _complexity.
/// \param i The item.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
switch (st) {
case POST_HEAP:
case PRE_HEAP:
if (state(i) == IN_HEAP) {
erase(i);
}
_iim[i] = st;
break;
case IN_HEAP:
break;
}
}
private:
void balance() {
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
std::vector<int> A(maxdeg,-1);
/*
*Recall that now minimum does not point to the minimum prio element.
*We set minimum to this during balance().
*/
int anchor=_data[_minimum].left_neighbor;
int next=_minimum;
bool end=false;
do {
int active=next;
if ( anchor==active ) end=true;
int d=_data[active].degree;
next=_data[active].right_neighbor;
while (A[d]!=-1) {
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
fuse(active,A[d]);
} else {
fuse(A[d],active);
active=A[d];
}
A[d]=-1;
++d;
}
A[d]=active;
} while ( !end );
while ( _data[_minimum].parent >=0 )
_minimum=_data[_minimum].parent;
int s=_minimum;
int m=_minimum;
do {
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
s=_data[s].right_neighbor;
} while ( s != m );
}
void makeroot(int c) {
int s=c;
do {
_data[s].parent=-1;
s=_data[s].right_neighbor;
} while ( s != c );
}
void cut(int a, int b) {
/*
*Replacing a from the children of b.
*/
--_data[b].degree;
if ( _data[b].degree !=0 ) {
int child=_data[b].child;
if ( child==a )
_data[b].child=_data[child].right_neighbor;
unlace(a);
}
/*Lacing a to the roots.*/
int right=_data[_minimum].right_neighbor;
_data[_minimum].right_neighbor=a;
_data[a].left_neighbor=_minimum;
_data[a].right_neighbor=right;
_data[right].left_neighbor=a;
_data[a].parent=-1;
_data[a].marked=false;
}
void cascade(int a) {
if ( _data[a].parent!=-1 ) {
int p=_data[a].parent;
if ( _data[a].marked==false ) _data[a].marked=true;
else {
cut(a,p);
cascade(p);
}
}
}
void fuse(int a, int b) {
unlace(b);
/*Lacing b under a.*/
_data[b].parent=a;
if (_data[a].degree==0) {
_data[b].left_neighbor=b;
_data[b].right_neighbor=b;
_data[a].child=b;
} else {
int child=_data[a].child;
int last_child=_data[child].left_neighbor;
_data[child].left_neighbor=b;
_data[b].right_neighbor=child;
_data[last_child].right_neighbor=b;
_data[b].left_neighbor=last_child;
}
++_data[a].degree;
_data[b].marked=false;
}
/*
*It is invoked only if a has siblings.
*/
void unlace(int a) {
int leftn=_data[a].left_neighbor;
int rightn=_data[a].right_neighbor;
_data[leftn].right_neighbor=rightn;
_data[rightn].left_neighbor=leftn;
}
class Store {
friend class FibHeap;
Item name;
int parent;
int left_neighbor;
int right_neighbor;
int child;
int degree;
bool marked;
bool in;
Prio prio;
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
};
};
} //namespace lemon
#endif //LEMON_FIB_HEAP_H