Location: LEMON/LEMON-main/test/min_cost_flow_test.cc

Load file history
gravatar
alpar (Alpar Juttner)
Unify the sources (#339)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include <fstream>
#include <limits>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/network_simplex.h>
#include <lemon/concepts/digraph.h>
#include <lemon/concept_check.h>
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label sup1 sup2 sup3 sup4 sup5 sup6\n"
" 1 20 27 0 30 20 30\n"
" 2 -4 0 0 0 -8 -3\n"
" 3 0 0 0 0 0 0\n"
" 4 0 0 0 0 0 0\n"
" 5 9 0 0 0 6 11\n"
" 6 -6 0 0 0 -5 -6\n"
" 7 0 0 0 0 0 0\n"
" 8 0 0 0 0 0 3\n"
" 9 3 0 0 0 0 0\n"
" 10 -2 0 0 0 -7 -2\n"
" 11 0 0 0 0 -10 0\n"
" 12 -20 -27 0 -30 -30 -20\n"
"\n"
"@arcs\n"
" cost cap low1 low2 low3\n"
" 1 2 70 11 0 8 8\n"
" 1 3 150 3 0 1 0\n"
" 1 4 80 15 0 2 2\n"
" 2 8 80 12 0 0 0\n"
" 3 5 140 5 0 3 1\n"
" 4 6 60 10 0 1 0\n"
" 4 7 80 2 0 0 0\n"
" 4 8 110 3 0 0 0\n"
" 5 7 60 14 0 0 0\n"
" 5 11 120 12 0 0 0\n"
" 6 3 0 3 0 0 0\n"
" 6 9 140 4 0 0 0\n"
" 6 10 90 8 0 0 0\n"
" 7 1 30 5 0 0 -5\n"
" 8 12 60 16 0 4 3\n"
" 9 12 50 6 0 0 0\n"
"10 12 70 13 0 5 2\n"
"10 2 100 7 0 0 0\n"
"10 7 60 10 0 0 -3\n"
"11 10 20 14 0 6 -20\n"
"12 11 30 10 0 0 -10\n"
"\n"
"@attributes\n"
"source 1\n"
"target 12\n";
enum SupplyType {
EQ,
GEQ,
LEQ
};
// Check the interface of an MCF algorithm
template <typename GR, typename Value, typename Cost>
class McfClassConcept
{
public:
template <typename MCF>
struct Constraints {
void constraints() {
checkConcept<concepts::Digraph, GR>();
const Constraints& me = *this;
MCF mcf(me.g);
const MCF& const_mcf = mcf;
b = mcf.reset()
.lowerMap(me.lower)
.upperMap(me.upper)
.costMap(me.cost)
.supplyMap(me.sup)
.stSupply(me.n, me.n, me.k)
.run();
c = const_mcf.totalCost();
x = const_mcf.template totalCost<double>();
v = const_mcf.flow(me.a);
c = const_mcf.potential(me.n);
const_mcf.flowMap(fm);
const_mcf.potentialMap(pm);
}
typedef typename GR::Node Node;
typedef typename GR::Arc Arc;
typedef concepts::ReadMap<Node, Value> NM;
typedef concepts::ReadMap<Arc, Value> VAM;
typedef concepts::ReadMap<Arc, Cost> CAM;
typedef concepts::WriteMap<Arc, Value> FlowMap;
typedef concepts::WriteMap<Node, Cost> PotMap;
GR g;
VAM lower;
VAM upper;
CAM cost;
NM sup;
Node n;
Arc a;
Value k;
FlowMap fm;
PotMap pm;
bool b;
double x;
typename MCF::Value v;
typename MCF::Cost c;
};
};
// Check the feasibility of the given flow (primal soluiton)
template < typename GR, typename LM, typename UM,
typename SM, typename FM >
bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
const SM& supply, const FM& flow,
SupplyType type = EQ )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
for (ArcIt e(gr); e != INVALID; ++e) {
if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
}
for (NodeIt n(gr); n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
bool b = (type == EQ && sum == supply[n]) ||
(type == GEQ && sum >= supply[n]) ||
(type == LEQ && sum <= supply[n]);
if (!b) return false;
}
return true;
}
// Check the feasibility of the given potentials (dual soluiton)
// using the "Complementary Slackness" optimality condition
template < typename GR, typename LM, typename UM,
typename CM, typename SM, typename FM, typename PM >
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply, const FM& flow,
const PM& pi, SupplyType type )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
bool opt = true;
for (ArcIt e(gr); opt && e != INVALID; ++e) {
typename CM::Value red_cost =
cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
opt = red_cost == 0 ||
(red_cost > 0 && flow[e] == lower[e]) ||
(red_cost < 0 && flow[e] == upper[e]);
}
for (NodeIt n(gr); opt && n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
if (type != LEQ) {
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
} else {
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
}
}
return opt;
}
// Check whether the dual cost is equal to the primal cost
template < typename GR, typename LM, typename UM,
typename CM, typename SM, typename PM >
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply, const PM& pi,
typename CM::Value total )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typename CM::Value dual_cost = 0;
SM red_supply(gr);
for (NodeIt n(gr); n != INVALID; ++n) {
red_supply[n] = supply[n];
}
for (ArcIt a(gr); a != INVALID; ++a) {
if (lower[a] != 0) {
dual_cost += lower[a] * cost[a];
red_supply[gr.source(a)] -= lower[a];
red_supply[gr.target(a)] += lower[a];
}
}
for (NodeIt n(gr); n != INVALID; ++n) {
dual_cost -= red_supply[n] * pi[n];
}
for (ArcIt a(gr); a != INVALID; ++a) {
typename CM::Value red_cost =
cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
}
return dual_cost == total;
}
// Run a minimum cost flow algorithm and check the results
template < typename MCF, typename GR,
typename LM, typename UM,
typename CM, typename SM,
typename PT >
void checkMcf( const MCF& mcf, PT mcf_result,
const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply,
PT result, bool optimal, typename CM::Value total,
const std::string &test_id = "",
SupplyType type = EQ )
{
check(mcf_result == result, "Wrong result " + test_id);
if (optimal) {
typename GR::template ArcMap<typename SM::Value> flow(gr);
typename GR::template NodeMap<typename CM::Value> pi(gr);
mcf.flowMap(flow);
mcf.potentialMap(pi);
check(checkFlow(gr, lower, upper, supply, flow, type),
"The flow is not feasible " + test_id);
check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
"Wrong potentials " + test_id);
check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
"Wrong dual cost " + test_id);
}
}
int main()
{
// Check the interfaces
{
typedef concepts::Digraph GR;
checkConcept< McfClassConcept<GR, int, int>,
NetworkSimplex<GR> >();
checkConcept< McfClassConcept<GR, double, double>,
NetworkSimplex<GR, double> >();
checkConcept< McfClassConcept<GR, int, double>,
NetworkSimplex<GR, int, double> >();
}
// Run various MCF tests
typedef ListDigraph Digraph;
DIGRAPH_TYPEDEFS(ListDigraph);
// Read the test digraph
Digraph gr;
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
Node v, w;
std::istringstream input(test_lgf);
DigraphReader<Digraph>(gr, input)
.arcMap("cost", c)
.arcMap("cap", u)
.arcMap("low1", l1)
.arcMap("low2", l2)
.arcMap("low3", l3)
.nodeMap("sup1", s1)
.nodeMap("sup2", s2)
.nodeMap("sup3", s3)
.nodeMap("sup4", s4)
.nodeMap("sup5", s5)
.nodeMap("sup6", s6)
.node("source", v)
.node("target", w)
.run();
// Build test digraphs with negative costs
Digraph neg_gr;
Node n1 = neg_gr.addNode();
Node n2 = neg_gr.addNode();
Node n3 = neg_gr.addNode();
Node n4 = neg_gr.addNode();
Node n5 = neg_gr.addNode();
Node n6 = neg_gr.addNode();
Node n7 = neg_gr.addNode();
Arc a1 = neg_gr.addArc(n1, n2);
Arc a2 = neg_gr.addArc(n1, n3);
Arc a3 = neg_gr.addArc(n2, n4);
Arc a4 = neg_gr.addArc(n3, n4);
Arc a5 = neg_gr.addArc(n3, n2);
Arc a6 = neg_gr.addArc(n5, n3);
Arc a7 = neg_gr.addArc(n5, n6);
Arc a8 = neg_gr.addArc(n6, n7);
Arc a9 = neg_gr.addArc(n7, n5);
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0);
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000);
Digraph::NodeMap<int> neg_s(neg_gr, 0);
neg_l2[a7] = 1000;
neg_l2[a8] = -1000;
neg_s[n1] = 100;
neg_s[n4] = -100;
neg_c[a1] = 100;
neg_c[a2] = 30;
neg_c[a3] = 20;
neg_c[a4] = 80;
neg_c[a5] = 50;
neg_c[a6] = 10;
neg_c[a7] = 80;
neg_c[a8] = 30;
neg_c[a9] = -120;
Digraph negs_gr;
Digraph::NodeMap<int> negs_s(negs_gr);
Digraph::ArcMap<int> negs_c(negs_gr);
ConstMap<Arc, int> negs_l(0), negs_u(1000);
n1 = negs_gr.addNode();
n2 = negs_gr.addNode();
negs_s[n1] = 100;
negs_s[n2] = -300;
negs_c[negs_gr.addArc(n1, n2)] = -1;
// A. Test NetworkSimplex with the default pivot rule
{
NetworkSimplex<Digraph> mcf(gr);
// Check the equality form
mcf.upperMap(u).costMap(c);
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1");
checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2");
mcf.lowerMap(l2);
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3");
checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4");
mcf.reset();
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5");
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6");
mcf.reset();
checkMcf(mcf, mcf.run(),
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7");
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
checkMcf(mcf, mcf.run(),
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9");
// Check the GEQ form
mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
checkMcf(mcf, mcf.run(),
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ);
mcf.supplyType(mcf.GEQ);
checkMcf(mcf, mcf.lowerMap(l2).run(),
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ);
mcf.supplyMap(s6);
checkMcf(mcf, mcf.run(),
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ);
// Check the LEQ form
mcf.reset().supplyType(mcf.LEQ);
mcf.upperMap(u).costMap(c).supplyMap(s6);
checkMcf(mcf, mcf.run(),
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ);
checkMcf(mcf, mcf.lowerMap(l2).run(),
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ);
mcf.supplyMap(s5);
checkMcf(mcf, mcf.run(),
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ);
// Check negative costs
NetworkSimplex<Digraph> neg_mcf(neg_gr);
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s);
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1,
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16");
neg_mcf.upperMap(neg_u2);
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2,
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17");
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s);
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1,
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18");
NetworkSimplex<Digraph> negs_mcf(negs_gr);
negs_mcf.costMap(negs_c).supplyMap(negs_s);
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u,
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ);
}
// B. Test NetworkSimplex with each pivot rule
{
NetworkSimplex<Digraph> mcf(gr);
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5");
}
return 0;
}