/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_FULL_GRAPH_H
#define LEMON_FULL_GRAPH_H
#include <lemon/bits/graph_extender.h>
///\brief FullGraph and FullDigraph classes.
typedef FullDigraphBase Digraph;
void construct(int n) { _node_num = n; _arc_num = n * n; }
Node operator()(int ix) const { return Node(ix); }
int index(const Node& node) const { return node._id; }
Arc arc(const Node& s, const Node& t) const {
return Arc(s._id * _node_num + t._id);
int nodeNum() const { return _node_num; }
int arcNum() const { return _arc_num; }
int maxNodeId() const { return _node_num - 1; }
int maxArcId() const { return _arc_num - 1; }
Node source(Arc arc) const { return arc._id / _node_num; }
Node target(Arc arc) const { return arc._id % _node_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev == INVALID ? arc(s, t) : INVALID;
friend class FullDigraphBase;
Node(int id) : _id(id) {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
friend class FullDigraphBase;
int _id; // _node_num * source + target;
Arc (Invalid) { _id = -1; }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
void first(Node& node) const {
node._id = _node_num - 1;
static void next(Node& node) {
void first(Arc& arc) const {
static void next(Arc& arc) {
void firstOut(Arc& arc, const Node& node) const {
arc._id = (node._id + 1) * _node_num - 1;
void nextOut(Arc& arc) const {
if (arc._id % _node_num == 0) arc._id = 0;
void firstIn(Arc& arc, const Node& node) const {
arc._id = _arc_num + node._id - _node_num;
void nextIn(Arc& arc) const {
if (arc._id < 0) arc._id = -1;
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
/// \brief A full digraph class.
/// This is a simple and fast directed full graph implementation.
/// From each node go arcs to each node (including the source node),
/// therefore the number of the arcs in the digraph is the square of
/// the node number. This digraph type is completely static, so you
/// can neither add nor delete either arcs or nodes, and it needs
/// constant space in memory.
/// This class fully conforms to the \ref concepts::Digraph
/// The \c FullDigraph and \c FullGraph classes are very similar,
/// but there are two differences. While this class conforms only
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph
/// class conforms to the \ref concepts::Graph "Graph" concept,
/// moreover \c FullGraph does not contain a loop arc for each
/// node as \c FullDigraph does.
class FullDigraph : public ExtendedFullDigraphBase {
typedef ExtendedFullDigraphBase Parent;
FullDigraph() { construct(0); }
/// \param n The number of the nodes.
FullDigraph(int n) { construct(n); }
/// \brief Resizes the digraph
/// Resizes the digraph. The function will fully destroy and
/// rebuild the digraph. This cause that the maps of the digraph will
/// reallocated automatically and the previous values will be lost.
Parent::notifier(Arc()).clear();
Parent::notifier(Node()).clear();
Parent::notifier(Node()).build();
Parent::notifier(Arc()).build();
/// \brief Returns the node with the given index.
/// Returns the node with the given index. Since it is a static
/// digraph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
/// Returns the index of the given node. Since it is a static
/// digraph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
int index(const Node& node) const { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
/// Returns the arc connecting the given nodes.
Arc arc(const Node& u, const Node& v) const {
return Parent::arc(u, v);
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
typedef FullGraphBase Graph;
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
return u < v ? u : _node_num - 2 - u;
return u < v ? v : _node_num - 1 - v;
void _uvid(int e, int& u, int& v) const {
void _stid(int a, int& s, int& t) const {
int _eid(int u, int v) const {
if (u < (_node_num - 1) / 2) {
return u * _node_num + v;
return (_node_num - 1 - u) * _node_num - v - 1;
Node operator()(int ix) const { return Node(ix); }
int index(const Node& node) const { return node._id; }
Edge edge(const Node& u, const Node& v) const {
return Edge(_eid(u._id, v._id));
} else if (u._id != v._id) {
return Edge(_eid(v._id, u._id));
Arc arc(const Node& s, const Node& t) const {
return Arc((_eid(s._id, t._id) << 1) | 1);
} else if (s._id != t._id) {
return Arc(_eid(t._id, s._id) << 1);
int nodeNum() const { return _node_num; }
int arcNum() const { return 2 * _edge_num; }
int edgeNum() const { return _edge_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static int id(Edge edge) { return edge._id; }
int maxNodeId() const { return _node_num-1; }
int maxArcId() const { return 2 * _edge_num-1; }
int maxEdgeId() const { return _edge_num-1; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
Node u(Edge edge) const {
return Node(_uid(edge._id));
Node v(Edge edge) const {
return Node(_vid(edge._id));
Node source(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_uid(arc._id >> 1) : _vid(arc._id >> 1));
Node target(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_vid(arc._id >> 1) : _uid(arc._id >> 1));
typedef True FindEdgeTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
return prev != INVALID ? INVALID : edge(u, v);
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev != INVALID ? INVALID : arc(s, t);
friend class FullGraphBase;
Node(int id) : _id(id) {}
Node (Invalid) { _id = -1; }
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
friend class FullGraphBase;
Edge(int id) : _id(id) {}
Edge (Invalid) { _id = -1; }
bool operator==(const Edge edge) const {return _id == edge._id;}
bool operator!=(const Edge edge) const {return _id != edge._id;}
bool operator<(const Edge edge) const {return _id < edge._id;}
friend class FullGraphBase;
Arc (Invalid) { _id = -1; }
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
static bool direction(Arc arc) {
return (arc._id & 1) == 1;
static Arc direct(Edge edge, bool dir) {
return Arc((edge._id << 1) | (dir ? 1 : 0));
void first(Node& node) const {
node._id = _node_num - 1;
static void next(Node& node) {
void first(Arc& arc) const {
arc._id = (_edge_num << 1) - 1;
static void next(Arc& arc) {
void first(Edge& edge) const {
edge._id = _edge_num - 1;
static void next(Edge& edge) {
void firstOut(Arc& arc, const Node& node) const {
int s = node._id, t = _node_num - 1;
arc._id = (_eid(s, t) << 1) | 1;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
void nextOut(Arc& arc) const {
arc._id = (_eid(s, t) << 1) | 1;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
void firstIn(Arc& arc, const Node& node) const {
int s = _node_num - 1, t = node._id;
arc._id = (_eid(t, s) << 1);
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
void nextIn(Arc& arc) const {
arc._id = (_eid(t, s) << 1);
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
void firstInc(Edge& edge, bool& dir, const Node& node) const {
int u = node._id, v = _node_num - 1;
edge._id = (v != -1 ? _eid(v, u) : -1);
void nextInc(Edge& edge, bool& dir) const {
edge._id = (v != -1 ? _eid(v, u) : -1);
edge._id = (v != -1 ? _eid(v, u) : -1);
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
/// \brief An undirected full graph class.
/// This is a simple and fast undirected full graph
/// implementation. From each node go edge to each other node,
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$.
/// This graph type is completely static, so you can neither
/// add nor delete either edges or nodes, and it needs constant
/// This class fully conforms to the \ref concepts::Graph "Graph concept".
/// The \c FullGraph and \c FullDigraph classes are very similar,
/// but there are two differences. While the \c FullDigraph class
/// conforms only to the \ref concepts::Digraph "Digraph" concept,
/// this class conforms to the \ref concepts::Graph "Graph" concept,
/// moreover \c FullGraph does not contain a loop arc for each
/// node as \c FullDigraph does.
class FullGraph : public ExtendedFullGraphBase {
typedef ExtendedFullGraphBase Parent;
FullGraph() { construct(0); }
/// \param n The number of the nodes.
FullGraph(int n) { construct(n); }
/// \brief Resizes the graph
/// Resizes the graph. The function will fully destroy and
/// rebuild the graph. This cause that the maps of the graph will
/// reallocated automatically and the previous values will be lost.
Parent::notifier(Arc()).clear();
Parent::notifier(Edge()).clear();
Parent::notifier(Node()).clear();
Parent::notifier(Node()).build();
Parent::notifier(Edge()).build();
Parent::notifier(Arc()).build();
/// \brief Returns the node with the given index.
/// Returns the node with the given index. Since it is a static
/// graph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
/// Returns the index of the given node. Since it is a static
/// graph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
int index(const Node& node) const { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
/// Returns the arc connecting the given nodes.
Arc arc(const Node& s, const Node& t) const {
return Parent::arc(s, t);
/// \brief Returns the edge connects the given nodes.
/// Returns the edge connects the given nodes.
Edge edge(const Node& u, const Node& v) const {
return Parent::edge(u, v);
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
#endif //LEMON_FULL_GRAPH_H