Location: LEMON/LEMON-main/lemon/time_measure.h

Load file history
gravatar
deba@inf.elte.hu
Port Hao-Orlin algorithm from SVN -r3509 (#58)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_TIME_MEASURE_H
#define LEMON_TIME_MEASURE_H
///\ingroup timecount
///\file
///\brief Tools for measuring cpu usage
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <cmath>
#else
#include <sys/times.h>
#include <sys/time.h>
#endif
#include <string>
#include <fstream>
#include <iostream>
namespace lemon {
/// \addtogroup timecount
/// @{
/// A class to store (cpu)time instances.
/// This class stores five time values.
/// - a real time
/// - a user cpu time
/// - a system cpu time
/// - a user cpu time of children
/// - a system cpu time of children
///
/// TimeStamp's can be added to or substracted from each other and
/// they can be pushed to a stream.
///
/// In most cases, perhaps the \ref Timer or the \ref TimeReport
/// class is what you want to use instead.
class TimeStamp
{
double utime;
double stime;
double cutime;
double cstime;
double rtime;
void _reset() {
utime = stime = cutime = cstime = rtime = 0;
}
public:
///Read the current time values of the process
void stamp()
{
#ifndef WIN32
timeval tv;
gettimeofday(&tv, 0);
rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
tms ts;
double tck=sysconf(_SC_CLK_TCK);
times(&ts);
utime=ts.tms_utime/tck;
stime=ts.tms_stime/tck;
cutime=ts.tms_cutime/tck;
cstime=ts.tms_cstime/tck;
#else
static const double ch = 4294967296.0e-7;
static const double cl = 1.0e-7;
FILETIME system;
GetSystemTimeAsFileTime(&system);
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
FILETIME create, exit, kernel, user;
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
cutime = 0;
cstime = 0;
} else {
rtime = 0;
utime = 0;
stime = 0;
cutime = 0;
cstime = 0;
}
#endif
}
/// Constructor initializing with zero
TimeStamp()
{ _reset(); }
///Constructor initializing with the current time values of the process
TimeStamp(void *) { stamp();}
///Set every time value to zero
TimeStamp &reset() {_reset();return *this;}
///\e
TimeStamp &operator+=(const TimeStamp &b)
{
utime+=b.utime;
stime+=b.stime;
cutime+=b.cutime;
cstime+=b.cstime;
rtime+=b.rtime;
return *this;
}
///\e
TimeStamp operator+(const TimeStamp &b) const
{
TimeStamp t(*this);
return t+=b;
}
///\e
TimeStamp &operator-=(const TimeStamp &b)
{
utime-=b.utime;
stime-=b.stime;
cutime-=b.cutime;
cstime-=b.cstime;
rtime-=b.rtime;
return *this;
}
///\e
TimeStamp operator-(const TimeStamp &b) const
{
TimeStamp t(*this);
return t-=b;
}
///\e
TimeStamp &operator*=(double b)
{
utime*=b;
stime*=b;
cutime*=b;
cstime*=b;
rtime*=b;
return *this;
}
///\e
TimeStamp operator*(double b) const
{
TimeStamp t(*this);
return t*=b;
}
friend TimeStamp operator*(double b,const TimeStamp &t);
///\e
TimeStamp &operator/=(double b)
{
utime/=b;
stime/=b;
cutime/=b;
cstime/=b;
rtime/=b;
return *this;
}
///\e
TimeStamp operator/(double b) const
{
TimeStamp t(*this);
return t/=b;
}
///The time ellapsed since the last call of stamp()
TimeStamp ellapsed() const
{
TimeStamp t(NULL);
return t-*this;
}
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
///Gives back the user time of the process
double userTime() const
{
return utime;
}
///Gives back the system time of the process
double systemTime() const
{
return stime;
}
///Gives back the user time of the process' children
///\note On <tt>WIN32</tt> platform this value is not calculated.
///
double cUserTime() const
{
return cutime;
}
///Gives back the user time of the process' children
///\note On <tt>WIN32</tt> platform this value is not calculated.
///
double cSystemTime() const
{
return cstime;
}
///Gives back the real time
double realTime() const {return rtime;}
};
TimeStamp operator*(double b,const TimeStamp &t)
{
return t*b;
}
///Prints the time counters
///Prints the time counters in the following form:
///
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
///
/// where the values are the
/// \li \c u: user cpu time,
/// \li \c s: system cpu time,
/// \li \c cu: user cpu time of children,
/// \li \c cs: system cpu time of children,
/// \li \c real: real time.
/// \relates TimeStamp
/// \note On <tt>WIN32</tt> platform the cummulative values are not
/// calculated.
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
{
os << "u: " << t.userTime() <<
"s, s: " << t.systemTime() <<
"s, cu: " << t.cUserTime() <<
"s, cs: " << t.cSystemTime() <<
"s, real: " << t.realTime() << "s";
return os;
}
///Class for measuring the cpu time and real time usage of the process
///Class for measuring the cpu time and real time usage of the process.
///It is quite easy-to-use, here is a short example.
///\code
/// #include<lemon/time_measure.h>
/// #include<iostream>
///
/// int main()
/// {
///
/// ...
///
/// Timer t;
/// doSomething();
/// std::cout << t << '\n';
/// t.restart();
/// doSomethingElse();
/// std::cout << t << '\n';
///
/// ...
///
/// }
///\endcode
///
///The \ref Timer can also be \ref stop() "stopped" and
///\ref start() "started" again, so it is possible to compute collected
///running times.
///
///\warning Depending on the operation system and its actual configuration
///the time counters have a certain (10ms on a typical Linux system)
///granularity.
///Therefore this tool is not appropriate to measure very short times.
///Also, if you start and stop the timer very frequently, it could lead to
///distorted results.
///
///\note If you want to measure the running time of the execution of a certain
///function, consider the usage of \ref TimeReport instead.
///
///\sa TimeReport
class Timer
{
int _running; //Timer is running iff _running>0; (_running>=0 always holds)
TimeStamp start_time; //This is the relativ start-time if the timer
//is _running, the collected _running time otherwise.
void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
public:
///Constructor.
///\param run indicates whether or not the timer starts immediately.
///
Timer(bool run=true) :_running(run) {_reset();}
///\name Control the state of the timer
///Basically a Timer can be either running or stopped,
///but it provides a bit finer control on the execution.
///The \ref lemon::Timer "Timer" also counts the number of
///\ref lemon::Timer::start() "start()" executions, and it stops
///only after the same amount (or more) \ref lemon::Timer::stop()
///"stop()"s. This can be useful e.g. to compute the running time
///of recursive functions.
///@{
///Reset and stop the time counters
///This function resets and stops the time counters
///\sa restart()
void reset()
{
_running=0;
_reset();
}
///Start the time counters
///This function starts the time counters.
///
///If the timer is started more than ones, it will remain running
///until the same amount of \ref stop() is called.
///\sa stop()
void start()
{
if(_running) _running++;
else {
_running=1;
TimeStamp t;
t.stamp();
start_time=t-start_time;
}
}
///Stop the time counters
///This function stops the time counters. If start() was executed more than
///once, then the same number of stop() execution is necessary the really
///stop the timer.
///
///\sa halt()
///\sa start()
///\sa restart()
///\sa reset()
void stop()
{
if(_running && !--_running) {
TimeStamp t;
t.stamp();
start_time=t-start_time;
}
}
///Halt (i.e stop immediately) the time counters
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
///is a faster
///equivalent of the following.
///\code
/// while(t.running()) t.stop()
///\endcode
///
///
///\sa stop()
///\sa restart()
///\sa reset()
void halt()
{
if(_running) {
_running=0;
TimeStamp t;
t.stamp();
start_time=t-start_time;
}
}
///Returns the running state of the timer
///This function returns the number of stop() exections that is
///necessary to really stop the timer.
///For example the timer
///is running if and only if the return value is \c true
///(i.e. greater than
///zero).
int running() { return _running; }
///Restart the time counters
///This function is a shorthand for
///a reset() and a start() calls.
///
void restart()
{
reset();
start();
}
///@}
///\name Query Functions for the ellapsed time
///@{
///Gives back the ellapsed user time of the process
double userTime() const
{
return operator TimeStamp().userTime();
}
///Gives back the ellapsed system time of the process
double systemTime() const
{
return operator TimeStamp().systemTime();
}
///Gives back the ellapsed user time of the process' children
///\note On <tt>WIN32</tt> platform this value is not calculated.
///
double cUserTime() const
{
return operator TimeStamp().cUserTime();
}
///Gives back the ellapsed user time of the process' children
///\note On <tt>WIN32</tt> platform this value is not calculated.
///
double cSystemTime() const
{
return operator TimeStamp().cSystemTime();
}
///Gives back the ellapsed real time
double realTime() const
{
return operator TimeStamp().realTime();
}
///Computes the ellapsed time
///This conversion computes the ellapsed time, therefore you can print
///the ellapsed time like this.
///\code
/// Timer t;
/// doSomething();
/// std::cout << t << '\n';
///\endcode
operator TimeStamp () const
{
TimeStamp t;
t.stamp();
return _running?t-start_time:start_time;
}
///@}
};
///Same as Timer but prints a report on destruction.
///Same as \ref Timer but prints a report on destruction.
///This example shows its usage.
///\code
/// void myAlg(ListGraph &g,int n)
/// {
/// TimeReport tr("Running time of myAlg: ");
/// ... //Here comes the algorithm
/// }
///\endcode
///
///\sa Timer
///\sa NoTimeReport
class TimeReport : public Timer
{
std::string _title;
std::ostream &_os;
public:
///Constructor
///Constructor.
///\param title This text will be printed before the ellapsed time.
///\param os The stream to print the report to.
///\param run Sets whether the timer should start immediately.
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
: Timer(run), _title(title), _os(os){}
///Destructor that prints the ellapsed time
~TimeReport()
{
_os << _title << *this << std::endl;
}
};
///'Do nothing' version of TimeReport
///\sa TimeReport
///
class NoTimeReport
{
public:
///\e
NoTimeReport(std::string,std::ostream &,bool) {}
///\e
NoTimeReport(std::string,std::ostream &) {}
///\e
NoTimeReport(std::string) {}
///\e Do nothing.
~NoTimeReport() {}
operator TimeStamp () const { return TimeStamp(); }
void reset() {}
void start() {}
void stop() {}
void halt() {}
int running() { return 0; }
void restart() {}
double userTime() const { return 0; }
double systemTime() const { return 0; }
double cUserTime() const { return 0; }
double cSystemTime() const { return 0; }
double realTime() const { return 0; }
};
///Tool to measure the running time more exactly.
///This function calls \c f several times and returns the average
///running time. The number of the executions will be choosen in such a way
///that the full real running time will be roughly between \c min_time
///and <tt>2*min_time</tt>.
///\param f the function object to be measured.
///\param min_time the minimum total running time.
///\retval num if it is not \c NULL, then the actual
/// number of execution of \c f will be written into <tt>*num</tt>.
///\retval full_time if it is not \c NULL, then the actual
/// total running time will be written into <tt>*full_time</tt>.
///\return The average running time of \c f.
template<class F>
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
TimeStamp *full_time=NULL)
{
TimeStamp full;
unsigned int total=0;
Timer t;
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
for(;total<tn;total++) f();
full=t;
}
if(num) *num=total;
if(full_time) *full_time=full;
return full/total;
}
/// @}
} //namespace lemon
#endif //LEMON_TIME_MEASURE_H