/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_BINOM_HEAP_H
#define LEMON_BINOM_HEAP_H
///\brief Binomial Heap implementation.
#include <lemon/counter.h>
///\brief Binomial heap data structure.
/// This class implements the \e binomial \e heap data structure.
/// It fully conforms to the \ref concepts::Heap "heap concept".
/// The methods \ref increase() and \ref erase() are not efficient
/// in a binomial heap. In case of many calls of these operations,
/// it is better to use other heap structure, e.g. \ref BinHeap
/// \tparam PR Type of the priorities of the items.
/// \tparam IM A read-writable item map with \c int values, used
/// internally to handle the cross references.
/// \tparam CMP A functor class for comparing the priorities.
/// The default is \c std::less<PR>.
template <typename PR, typename IM, typename CMP>
template <typename PR, typename IM, typename CMP = std::less<PR> >
/// Type of the item-int map.
/// Type of the priorities.
/// Type of the items stored in the heap.
typedef typename ItemIntMap::Key Item;
/// Functor type for comparing the priorities.
/// \brief Type to represent the states of the items.
/// Each item has a state associated to it. It can be "in heap",
/// "pre-heap" or "post-heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
std::vector<Store> _data;
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
explicit BinomHeap(ItemIntMap &map)
: _min(0), _head(-1), _iim(map), _num_items(0) {}
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
/// \param comp The function object used for comparing the priorities.
BinomHeap(ItemIntMap &map, const Compare &comp)
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
/// \brief The number of items stored in the heap.
/// This function returns the number of items stored in the heap.
int size() const { return _num_items; }
/// \brief Check if the heap is empty.
/// This function returns \c true if the heap is empty.
bool empty() const { return _num_items==0; }
/// \brief Make the heap empty.
/// This functon makes the heap empty.
/// It does not change the cross reference map. If you want to reuse
/// a heap that is not surely empty, you should first clear it and
/// then you should set the cross reference map to \c PRE_HEAP
_data.clear(); _min=0; _num_items=0; _head=-1;
/// \brief Set the priority of an item or insert it, if it is
/// not stored in the heap.
/// This method sets the priority of the given item if it is
/// already stored in the heap. Otherwise it inserts the given
/// item into the heap with the given priority.
/// \param item The item.
/// \param value The priority.
void set (const Item& item, const Prio& value) {
if ( i >= 0 && _data[i].in ) {
if ( _comp(value, _data[i].prio) ) decrease(item, value);
if ( _comp(_data[i].prio, value) ) increase(item, value);
} else push(item, value);
/// \brief Insert an item into the heap with the given priority.
/// This function inserts the given item into the heap with the
/// \param item The item to insert.
/// \param value The priority of the item.
/// \pre \e item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
/// \brief Return the item having minimum priority.
/// This function returns the item having minimum priority.
/// \pre The heap must be non-empty.
Item top() const { return _data[_min].name; }
/// \brief The minimum priority.
/// This function returns the minimum priority.
/// \pre The heap must be non-empty.
Prio prio() const { return _data[_min].prio; }
/// \brief The priority of the given item.
/// This function returns the priority of the given item.
/// \param item The item.
/// \pre \e item must be in the heap.
const Prio& operator[](const Item& item) const {
return _data[_iim[item]].prio;
/// \brief Remove the item having minimum priority.
/// This function removes the item having minimum priority.
/// \pre The heap must be non-empty.
if ( _data[_min].child!=-1 ) {
int child=_data[_min].child;
neighb=_data[child].right_neighbor;
_data[child].right_neighbor=head_child;
if ( _data[_head].right_neighbor==-1 ) {
// there was only one root
if( _head!=_min ) { unlace(_min); }
else { _head=_data[_head].right_neighbor; }
/// \brief Remove the given item from the heap.
/// This function removes the given item from the heap if it is
/// \param item The item to delete.
/// \pre \e item must be in the heap.
void erase (const Item& item) {
if ( i >= 0 && _data[i].in ) {
decrease( item, _data[_min].prio-1 );
/// \brief Decrease the priority of an item to the given value.
/// This function decreases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at least \e value.
void decrease (Item item, const Prio& value) {
while( p!=-1 && _comp(value, _data[p].prio) ) {
_data[i].name=_data[p].name;
_data[i].prio=_data[p].prio;
if ( _comp(value, _data[_min].prio) ) _min=i;
/// \brief Increase the priority of an item to the given value.
/// This function increases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at most \e value.
void increase (Item item, const Prio& value) {
/// \brief Return the state of an item.
/// This method returns \c PRE_HEAP if the given item has never
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
/// and \c POST_HEAP otherwise.
/// In the latter case it is possible that the item will get back
/// \param item The item.
State state(const Item &item) const {
/// \brief Set the state of an item in the heap.
/// This function sets the state of the given item in the heap.
/// It can be used to manually clear the heap when it is important
/// to achive better time complexity.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
if (state(i) == IN_HEAP) {
// Find the minimum of the roots
int min_loc=_head, min_val=_data[_head].prio;
for( int x=_data[_head].right_neighbor; x!=-1;
x=_data[x].right_neighbor ) {
if( _comp( _data[x].prio,min_val ) ) {
// Merge the heap with another heap starting at the given position
if( _head==-1 || a==-1 ) return;
if( _data[a].right_neighbor==-1 &&
_data[a].degree<=_data[_head].degree ) {
_data[a].right_neighbor=_head;
if( _data[_head].right_neighbor==-1 ) return;
int x_prev=-1, x_next=_data[x].right_neighbor;
if( _data[x].degree!=_data[x_next].degree ||
( _data[x_next].right_neighbor!=-1 &&
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
if( _comp(_data[x_next].prio,_data[x].prio) ) {
_data[x_prev].right_neighbor=x_next;
_data[x].right_neighbor=_data[x_next].right_neighbor;
x_next=_data[x].right_neighbor;
// Interleave the elements of the given list into the list of the roots
_data.push_back(Store());
while( p!=-1 || q!=-1 ) {
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
_data[curr].right_neighbor=p;
p=_data[p].right_neighbor;
_data[curr].right_neighbor=q;
q=_data[q].right_neighbor;
_head=_data.back().right_neighbor;
// Lace node a under node b
void fuse(int a, int b) {
_data[a].right_neighbor=_data[b].child;
// Unlace node a (if it has siblings)
int neighb=_data[a].right_neighbor;
while( _data[other].right_neighbor!=a )
other=_data[other].right_neighbor;
_data[other].right_neighbor=neighb;
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
#endif //LEMON_BINOM_HEAP_H