Location: LEMON/LEMON-main/lemon/capacity_scaling.h

Load file history
gravatar
kpeter (Peter Kovacs)
Fix the doc in CapacityScaling: cost can be real numbers (#261)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CAPACITY_SCALING_H
#define LEMON_CAPACITY_SCALING_H
/// \ingroup min_cost_flow_algs
///
/// \file
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/bin_heap.h>
namespace lemon {
/// \brief Default traits class of CapacityScaling algorithm.
///
/// Default traits class of CapacityScaling algorithm.
/// \tparam GR Digraph type.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values. By default it is \c int.
/// \tparam C The number type used for costs and potentials.
/// By default it is the same as \c V.
template <typename GR, typename V = int, typename C = V>
struct CapacityScalingDefaultTraits
{
/// The type of the digraph
typedef GR Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef V Value;
/// The type of the arc costs
typedef C Cost;
/// \brief The type of the heap used for internal Dijkstra computations.
///
/// The type of the heap used for internal Dijkstra computations.
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
/// its priority type must be \c Cost and its cross reference type
/// must be \ref RangeMap "RangeMap<int>".
typedef BinHeap<Cost, RangeMap<int> > Heap;
};
/// \addtogroup min_cost_flow_algs
/// @{
/// \brief Implementation of the Capacity Scaling algorithm for
/// finding a \ref min_cost_flow "minimum cost flow".
///
/// \ref CapacityScaling implements the capacity scaling version
/// of the successive shortest path algorithm for finding a
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
/// \ref edmondskarp72theoretical. It is an efficient dual
/// solution method.
///
/// Most of the parameters of the problem (except for the digraph)
/// can be given using separate functions, and the algorithm can be
/// executed using the \ref run() function. If some parameters are not
/// specified, then default values will be used.
///
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values in the algorithm. By default, it is \c int.
/// \tparam C The number type used for costs and potentials in the
/// algorithm. By default, it is the same as \c V.
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits
/// "CapacityScalingDefaultTraits<GR, V, C>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
///
/// \warning Both \c V and \c C must be signed number types.
/// \warning Capacity bounds and supply values must be integer, but
/// arc costs can be arbitrary real numbers.
/// \warning This algorithm does not support negative costs for
/// arcs having infinite upper bound.
#ifdef DOXYGEN
template <typename GR, typename V, typename C, typename TR>
#else
template < typename GR, typename V = int, typename C = V,
typename TR = CapacityScalingDefaultTraits<GR, V, C> >
#endif
class CapacityScaling
{
public:
/// The type of the digraph
typedef typename TR::Digraph Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef typename TR::Value Value;
/// The type of the arc costs
typedef typename TR::Cost Cost;
/// The type of the heap used for internal Dijkstra computations
typedef typename TR::Heap Heap;
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
typedef TR Traits;
public:
/// \brief Problem type constants for the \c run() function.
///
/// Enum type containing the problem type constants that can be
/// returned by the \ref run() function of the algorithm.
enum ProblemType {
/// The problem has no feasible solution (flow).
INFEASIBLE,
/// The problem has optimal solution (i.e. it is feasible and
/// bounded), and the algorithm has found optimal flow and node
/// potentials (primal and dual solutions).
OPTIMAL,
/// The digraph contains an arc of negative cost and infinite
/// upper bound. It means that the objective function is unbounded
/// on that arc, however, note that it could actually be bounded
/// over the feasible flows, but this algroithm cannot handle
/// these cases.
UNBOUNDED
};
private:
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<Value> ValueVector;
typedef std::vector<Cost> CostVector;
typedef std::vector<char> BoolVector;
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
private:
// Data related to the underlying digraph
const GR &_graph;
int _node_num;
int _arc_num;
int _res_arc_num;
int _root;
// Parameters of the problem
bool _have_lower;
Value _sum_supply;
// Data structures for storing the digraph
IntNodeMap _node_id;
IntArcMap _arc_idf;
IntArcMap _arc_idb;
IntVector _first_out;
BoolVector _forward;
IntVector _source;
IntVector _target;
IntVector _reverse;
// Node and arc data
ValueVector _lower;
ValueVector _upper;
CostVector _cost;
ValueVector _supply;
ValueVector _res_cap;
CostVector _pi;
ValueVector _excess;
IntVector _excess_nodes;
IntVector _deficit_nodes;
Value _delta;
int _factor;
IntVector _pred;
public:
/// \brief Constant for infinite upper bounds (capacities).
///
/// Constant for infinite upper bounds (capacities).
/// It is \c std::numeric_limits<Value>::infinity() if available,
/// \c std::numeric_limits<Value>::max() otherwise.
const Value INF;
private:
// Special implementation of the Dijkstra algorithm for finding
// shortest paths in the residual network of the digraph with
// respect to the reduced arc costs and modifying the node
// potentials according to the found distance labels.
class ResidualDijkstra
{
private:
int _node_num;
bool _geq;
const IntVector &_first_out;
const IntVector &_target;
const CostVector &_cost;
const ValueVector &_res_cap;
const ValueVector &_excess;
CostVector &_pi;
IntVector &_pred;
IntVector _proc_nodes;
CostVector _dist;
public:
ResidualDijkstra(CapacityScaling& cs) :
_node_num(cs._node_num), _geq(cs._sum_supply < 0),
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
_pred(cs._pred), _dist(cs._node_num)
{}
int run(int s, Value delta = 1) {
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
Heap heap(heap_cross_ref);
heap.push(s, 0);
_pred[s] = -1;
_proc_nodes.clear();
// Process nodes
while (!heap.empty() && _excess[heap.top()] > -delta) {
int u = heap.top(), v;
Cost d = heap.prio() + _pi[u], dn;
_dist[u] = heap.prio();
_proc_nodes.push_back(u);
heap.pop();
// Traverse outgoing residual arcs
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
for (int a = _first_out[u]; a != last_out; ++a) {
if (_res_cap[a] < delta) continue;
v = _target[a];
switch (heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d + _cost[a] - _pi[v]);
_pred[v] = a;
break;
case Heap::IN_HEAP:
dn = d + _cost[a] - _pi[v];
if (dn < heap[v]) {
heap.decrease(v, dn);
_pred[v] = a;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
if (heap.empty()) return -1;
// Update potentials of processed nodes
int t = heap.top();
Cost dt = heap.prio();
for (int i = 0; i < int(_proc_nodes.size()); ++i) {
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
}
return t;
}
}; //class ResidualDijkstra
public:
/// \name Named Template Parameters
/// @{
template <typename T>
struct SetHeapTraits : public Traits {
typedef T Heap;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c Heap type.
///
/// \ref named-templ-param "Named parameter" for setting \c Heap
/// type, which is used for internal Dijkstra computations.
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
/// its priority type must be \c Cost and its cross reference type
/// must be \ref RangeMap "RangeMap<int>".
template <typename T>
struct SetHeap
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
};
/// @}
protected:
CapacityScaling() {}
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param graph The digraph the algorithm runs on.
CapacityScaling(const GR& graph) :
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
INF(std::numeric_limits<Value>::has_infinity ?
std::numeric_limits<Value>::infinity() :
std::numeric_limits<Value>::max())
{
// Check the number types
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
"The flow type of CapacityScaling must be signed");
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
"The cost type of CapacityScaling must be signed");
// Reset data structures
reset();
}
/// \name Parameters
/// The parameters of the algorithm can be specified using these
/// functions.
/// @{
/// \brief Set the lower bounds on the arcs.
///
/// This function sets the lower bounds on the arcs.
/// If it is not used before calling \ref run(), the lower bounds
/// will be set to zero on all arcs.
///
/// \param map An arc map storing the lower bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template <typename LowerMap>
CapacityScaling& lowerMap(const LowerMap& map) {
_have_lower = true;
for (ArcIt a(_graph); a != INVALID; ++a) {
_lower[_arc_idf[a]] = map[a];
_lower[_arc_idb[a]] = map[a];
}
return *this;
}
/// \brief Set the upper bounds (capacities) on the arcs.
///
/// This function sets the upper bounds (capacities) on the arcs.
/// If it is not used before calling \ref run(), the upper bounds
/// will be set to \ref INF on all arcs (i.e. the flow value will be
/// unbounded from above).
///
/// \param map An arc map storing the upper bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename UpperMap>
CapacityScaling& upperMap(const UpperMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_upper[_arc_idf[a]] = map[a];
}
return *this;
}
/// \brief Set the costs of the arcs.
///
/// This function sets the costs of the arcs.
/// If it is not used before calling \ref run(), the costs
/// will be set to \c 1 on all arcs.
///
/// \param map An arc map storing the costs.
/// Its \c Value type must be convertible to the \c Cost type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename CostMap>
CapacityScaling& costMap(const CostMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_cost[_arc_idf[a]] = map[a];
_cost[_arc_idb[a]] = -map[a];
}
return *this;
}
/// \brief Set the supply values of the nodes.
///
/// This function sets the supply values of the nodes.
/// If neither this function nor \ref stSupply() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// \param map A node map storing the supply values.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename SupplyMap>
CapacityScaling& supplyMap(const SupplyMap& map) {
for (NodeIt n(_graph); n != INVALID; ++n) {
_supply[_node_id[n]] = map[n];
}
return *this;
}
/// \brief Set single source and target nodes and a supply value.
///
/// This function sets a single source node and a single target node
/// and the required flow value.
/// If neither this function nor \ref supplyMap() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// Using this function has the same effect as using \ref supplyMap()
/// with a map in which \c k is assigned to \c s, \c -k is
/// assigned to \c t and all other nodes have zero supply value.
///
/// \param s The source node.
/// \param t The target node.
/// \param k The required amount of flow from node \c s to node \c t
/// (i.e. the supply of \c s and the demand of \c t).
///
/// \return <tt>(*this)</tt>
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
for (int i = 0; i != _node_num; ++i) {
_supply[i] = 0;
}
_supply[_node_id[s]] = k;
_supply[_node_id[t]] = -k;
return *this;
}
/// @}
/// \name Execution control
/// The algorithm can be executed using \ref run().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// The paramters can be specified using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
/// For example,
/// \code
/// CapacityScaling<ListDigraph> cs(graph);
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// This function can be called more than once. All the given parameters
/// are kept for the next call, unless \ref resetParams() or \ref reset()
/// is used, thus only the modified parameters have to be set again.
/// If the underlying digraph was also modified after the construction
/// of the class (or the last \ref reset() call), then the \ref reset()
/// function must be called.
///
/// \param factor The capacity scaling factor. It must be larger than
/// one to use scaling. If it is less or equal to one, then scaling
/// will be disabled.
///
/// \return \c INFEASIBLE if no feasible flow exists,
/// \n \c OPTIMAL if the problem has optimal solution
/// (i.e. it is feasible and bounded), and the algorithm has found
/// optimal flow and node potentials (primal and dual solutions),
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
/// and infinite upper bound. It means that the objective function
/// is unbounded on that arc, however, note that it could actually be
/// bounded over the feasible flows, but this algroithm cannot handle
/// these cases.
///
/// \see ProblemType
/// \see resetParams(), reset()
ProblemType run(int factor = 4) {
_factor = factor;
ProblemType pt = init();
if (pt != OPTIMAL) return pt;
return start();
}
/// \brief Reset all the parameters that have been given before.
///
/// This function resets all the paramaters that have been given
/// before using functions \ref lowerMap(), \ref upperMap(),
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// For example,
/// \code
/// CapacityScaling<ListDigraph> cs(graph);
///
/// // First run
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
///
/// // Run again with modified cost map (resetParams() is not called,
/// // so only the cost map have to be set again)
/// cost[e] += 100;
/// cs.costMap(cost).run();
///
/// // Run again from scratch using resetParams()
/// // (the lower bounds will be set to zero on all arcs)
/// cs.resetParams();
/// cs.upperMap(capacity).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// \return <tt>(*this)</tt>
///
/// \see reset(), run()
CapacityScaling& resetParams() {
for (int i = 0; i != _node_num; ++i) {
_supply[i] = 0;
}
for (int j = 0; j != _res_arc_num; ++j) {
_lower[j] = 0;
_upper[j] = INF;
_cost[j] = _forward[j] ? 1 : -1;
}
_have_lower = false;
return *this;
}
/// \brief Reset the internal data structures and all the parameters
/// that have been given before.
///
/// This function resets the internal data structures and all the
/// paramaters that have been given before using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// See \ref resetParams() for examples.
///
/// \return <tt>(*this)</tt>
///
/// \see resetParams(), run()
CapacityScaling& reset() {
// Resize vectors
_node_num = countNodes(_graph);
_arc_num = countArcs(_graph);
_res_arc_num = 2 * (_arc_num + _node_num);
_root = _node_num;
++_node_num;
_first_out.resize(_node_num + 1);
_forward.resize(_res_arc_num);
_source.resize(_res_arc_num);
_target.resize(_res_arc_num);
_reverse.resize(_res_arc_num);
_lower.resize(_res_arc_num);
_upper.resize(_res_arc_num);
_cost.resize(_res_arc_num);
_supply.resize(_node_num);
_res_cap.resize(_res_arc_num);
_pi.resize(_node_num);
_excess.resize(_node_num);
_pred.resize(_node_num);
// Copy the graph
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_node_id[n] = i;
}
i = 0;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_first_out[i] = j;
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idf[a] = j;
_forward[j] = true;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idb[a] = j;
_forward[j] = false;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
_forward[j] = false;
_source[j] = i;
_target[j] = _root;
_reverse[j] = k;
_forward[k] = true;
_source[k] = _root;
_target[k] = i;
_reverse[k] = j;
++j; ++k;
}
_first_out[i] = j;
_first_out[_node_num] = k;
for (ArcIt a(_graph); a != INVALID; ++a) {
int fi = _arc_idf[a];
int bi = _arc_idb[a];
_reverse[fi] = bi;
_reverse[bi] = fi;
}
// Reset parameters
resetParams();
return *this;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The \ref run() function must be called before using them.
/// @{
/// \brief Return the total cost of the found flow.
///
/// This function returns the total cost of the found flow.
/// Its complexity is O(e).
///
/// \note The return type of the function can be specified as a
/// template parameter. For example,
/// \code
/// cs.totalCost<double>();
/// \endcode
/// It is useful if the total cost cannot be stored in the \c Cost
/// type of the algorithm, which is the default return type of the
/// function.
///
/// \pre \ref run() must be called before using this function.
template <typename Number>
Number totalCost() const {
Number c = 0;
for (ArcIt a(_graph); a != INVALID; ++a) {
int i = _arc_idb[a];
c += static_cast<Number>(_res_cap[i]) *
(-static_cast<Number>(_cost[i]));
}
return c;
}
#ifndef DOXYGEN
Cost totalCost() const {
return totalCost<Cost>();
}
#endif
/// \brief Return the flow on the given arc.
///
/// This function returns the flow on the given arc.
///
/// \pre \ref run() must be called before using this function.
Value flow(const Arc& a) const {
return _res_cap[_arc_idb[a]];
}
/// \brief Return the flow map (the primal solution).
///
/// This function copies the flow value on each arc into the given
/// map. The \c Value type of the algorithm must be convertible to
/// the \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename FlowMap>
void flowMap(FlowMap &map) const {
for (ArcIt a(_graph); a != INVALID; ++a) {
map.set(a, _res_cap[_arc_idb[a]]);
}
}
/// \brief Return the potential (dual value) of the given node.
///
/// This function returns the potential (dual value) of the
/// given node.
///
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& n) const {
return _pi[_node_id[n]];
}
/// \brief Return the potential map (the dual solution).
///
/// This function copies the potential (dual value) of each node
/// into the given map.
/// The \c Cost type of the algorithm must be convertible to the
/// \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename PotentialMap>
void potentialMap(PotentialMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map.set(n, _pi[_node_id[n]]);
}
}
/// @}
private:
// Initialize the algorithm
ProblemType init() {
if (_node_num <= 1) return INFEASIBLE;
// Check the sum of supply values
_sum_supply = 0;
for (int i = 0; i != _root; ++i) {
_sum_supply += _supply[i];
}
if (_sum_supply > 0) return INFEASIBLE;
// Initialize vectors
for (int i = 0; i != _root; ++i) {
_pi[i] = 0;
_excess[i] = _supply[i];
}
// Remove non-zero lower bounds
const Value MAX = std::numeric_limits<Value>::max();
int last_out;
if (_have_lower) {
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_forward[j]) {
Value c = _lower[j];
if (c >= 0) {
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
} else {
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
}
_excess[i] -= c;
_excess[_target[j]] += c;
} else {
_res_cap[j] = 0;
}
}
}
} else {
for (int j = 0; j != _res_arc_num; ++j) {
_res_cap[j] = _forward[j] ? _upper[j] : 0;
}
}
// Handle negative costs
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1] - 1;
for (int j = _first_out[i]; j != last_out; ++j) {
Value rc = _res_cap[j];
if (_cost[j] < 0 && rc > 0) {
if (rc >= MAX) return UNBOUNDED;
_excess[i] -= rc;
_excess[_target[j]] += rc;
_res_cap[j] = 0;
_res_cap[_reverse[j]] += rc;
}
}
}
// Handle GEQ supply type
if (_sum_supply < 0) {
_pi[_root] = 0;
_excess[_root] = -_sum_supply;
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int ra = _reverse[a];
_res_cap[a] = -_sum_supply + 1;
_res_cap[ra] = 0;
_cost[a] = 0;
_cost[ra] = 0;
}
} else {
_pi[_root] = 0;
_excess[_root] = 0;
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int ra = _reverse[a];
_res_cap[a] = 1;
_res_cap[ra] = 0;
_cost[a] = 0;
_cost[ra] = 0;
}
}
// Initialize delta value
if (_factor > 1) {
// With scaling
Value max_sup = 0, max_dem = 0, max_cap = 0;
for (int i = 0; i != _root; ++i) {
Value ex = _excess[i];
if ( ex > max_sup) max_sup = ex;
if (-ex > max_dem) max_dem = -ex;
int last_out = _first_out[i+1] - 1;
for (int j = _first_out[i]; j != last_out; ++j) {
if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
}
}
max_sup = std::min(std::min(max_sup, max_dem), max_cap);
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
} else {
// Without scaling
_delta = 1;
}
return OPTIMAL;
}
ProblemType start() {
// Execute the algorithm
ProblemType pt;
if (_delta > 1)
pt = startWithScaling();
else
pt = startWithoutScaling();
// Handle non-zero lower bounds
if (_have_lower) {
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
if (!_forward[j]) _res_cap[j] += _lower[j];
}
}
// Shift potentials if necessary
Cost pr = _pi[_root];
if (_sum_supply < 0 || pr > 0) {
for (int i = 0; i != _node_num; ++i) {
_pi[i] -= pr;
}
}
return pt;
}
// Execute the capacity scaling algorithm
ProblemType startWithScaling() {
// Perform capacity scaling phases
int s, t;
ResidualDijkstra _dijkstra(*this);
while (true) {
// Saturate all arcs not satisfying the optimality condition
int last_out;
for (int u = 0; u != _node_num; ++u) {
last_out = _sum_supply < 0 ?
_first_out[u+1] : _first_out[u+1] - 1;
for (int a = _first_out[u]; a != last_out; ++a) {
int v = _target[a];
Cost c = _cost[a] + _pi[u] - _pi[v];
Value rc = _res_cap[a];
if (c < 0 && rc >= _delta) {
_excess[u] -= rc;
_excess[v] += rc;
_res_cap[a] = 0;
_res_cap[_reverse[a]] += rc;
}
}
}
// Find excess nodes and deficit nodes
_excess_nodes.clear();
_deficit_nodes.clear();
for (int u = 0; u != _node_num; ++u) {
Value ex = _excess[u];
if (ex >= _delta) _excess_nodes.push_back(u);
if (ex <= -_delta) _deficit_nodes.push_back(u);
}
int next_node = 0, next_def_node = 0;
// Find augmenting shortest paths
while (next_node < int(_excess_nodes.size())) {
// Check deficit nodes
if (_delta > 1) {
bool delta_deficit = false;
for ( ; next_def_node < int(_deficit_nodes.size());
++next_def_node ) {
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
delta_deficit = true;
break;
}
}
if (!delta_deficit) break;
}
// Run Dijkstra in the residual network
s = _excess_nodes[next_node];
if ((t = _dijkstra.run(s, _delta)) == -1) {
if (_delta > 1) {
++next_node;
continue;
}
return INFEASIBLE;
}
// Augment along a shortest path from s to t
Value d = std::min(_excess[s], -_excess[t]);
int u = t;
int a;
if (d > _delta) {
while ((a = _pred[u]) != -1) {
if (_res_cap[a] < d) d = _res_cap[a];
u = _source[a];
}
}
u = t;
while ((a = _pred[u]) != -1) {
_res_cap[a] -= d;
_res_cap[_reverse[a]] += d;
u = _source[a];
}
_excess[s] -= d;
_excess[t] += d;
if (_excess[s] < _delta) ++next_node;
}
if (_delta == 1) break;
_delta = _delta <= _factor ? 1 : _delta / _factor;
}
return OPTIMAL;
}
// Execute the successive shortest path algorithm
ProblemType startWithoutScaling() {
// Find excess nodes
_excess_nodes.clear();
for (int i = 0; i != _node_num; ++i) {
if (_excess[i] > 0) _excess_nodes.push_back(i);
}
if (_excess_nodes.size() == 0) return OPTIMAL;
int next_node = 0;
// Find shortest paths
int s, t;
ResidualDijkstra _dijkstra(*this);
while ( _excess[_excess_nodes[next_node]] > 0 ||
++next_node < int(_excess_nodes.size()) )
{
// Run Dijkstra in the residual network
s = _excess_nodes[next_node];
if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
// Augment along a shortest path from s to t
Value d = std::min(_excess[s], -_excess[t]);
int u = t;
int a;
if (d > 1) {
while ((a = _pred[u]) != -1) {
if (_res_cap[a] < d) d = _res_cap[a];
u = _source[a];
}
}
u = t;
while ((a = _pred[u]) != -1) {
_res_cap[a] -= d;
_res_cap[_reverse[a]] += d;
u = _source[a];
}
_excess[s] -= d;
_excess[t] += d;
}
return OPTIMAL;
}
}; //class CapacityScaling
///@}
} //namespace lemon
#endif //LEMON_CAPACITY_SCALING_H