/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_NETWORK_SIMPLEX_H
#define LEMON_NETWORK_SIMPLEX_H
/// \ingroup min_cost_flow_algs
/// \brief Network Simplex algorithm for finding a minimum cost flow.
/// \addtogroup min_cost_flow_algs
/// \brief Implementation of the primal Network Simplex algorithm
/// for finding a \ref min_cost_flow "minimum cost flow".
/// \ref NetworkSimplex implements the primal Network Simplex algorithm
/// for finding a \ref min_cost_flow "minimum cost flow"
/// \ref amo93networkflows, \ref dantzig63linearprog,
/// \ref kellyoneill91netsimplex.
/// This algorithm is a highly efficient specialized version of the
/// linear programming simplex method directly for the minimum cost
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
/// implementations available in LEMON for this problem.
/// Furthermore, this class supports both directions of the supply/demand
/// inequality constraints. For more information, see \ref SupplyType.
/// Most of the parameters of the problem (except for the digraph)
/// can be given using separate functions, and the algorithm can be
/// executed using the \ref run() function. If some parameters are not
/// specified, then default values will be used.
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values in the algorithm. By default, it is \c int.
/// \tparam C The number type used for costs and potentials in the
/// algorithm. By default, it is the same as \c V.
/// \warning Both \c V and \c C must be signed number types.
/// \warning All input data (capacities, supply values, and costs) must
/// \note %NetworkSimplex provides five different pivot rule
/// implementations, from which the most efficient one is used
/// by default. For more information, see \ref PivotRule.
template <typename GR, typename V = int, typename C = V>
/// The type of the flow amounts, capacity bounds and supply values
/// The type of the arc costs
/// \brief Problem type constants for the \c run() function.
/// Enum type containing the problem type constants that can be
/// returned by the \ref run() function of the algorithm.
/// The problem has no feasible solution (flow).
/// The problem has optimal solution (i.e. it is feasible and
/// bounded), and the algorithm has found optimal flow and node
/// potentials (primal and dual solutions).
/// The objective function of the problem is unbounded, i.e.
/// there is a directed cycle having negative total cost and
/// infinite upper bound.
/// \brief Constants for selecting the type of the supply constraints.
/// Enum type containing constants for selecting the supply type,
/// i.e. the direction of the inequalities in the supply/demand
/// constraints of the \ref min_cost_flow "minimum cost flow problem".
/// The default supply type is \c GEQ, the \c LEQ type can be
/// selected using \ref supplyType().
/// The equality form is a special case of both supply types.
/// This option means that there are <em>"greater or equal"</em>
/// supply/demand constraints in the definition of the problem.
/// This option means that there are <em>"less or equal"</em>
/// supply/demand constraints in the definition of the problem.
/// \brief Constants for selecting the pivot rule.
/// Enum type containing constants for selecting the pivot rule for
/// the \ref run() function.
/// \ref NetworkSimplex provides five different implementations for
/// the pivot strategy that significantly affects the running time
/// According to experimental tests conducted on various problem
/// instances, \ref BLOCK_SEARCH "Block Search" and
/// \ref ALTERING_LIST "Altering Candidate List" rules turned out
/// to be the most efficient.
/// Since \ref BLOCK_SEARCH "Block Search" is a simpler strategy that
/// seemed to be slightly more robust, it is used by default.
/// However, another pivot rule can easily be selected using the
/// \ref run() function with the proper parameter.
/// The \e First \e Eligible pivot rule.
/// The next eligible arc is selected in a wraparound fashion
/// The \e Best \e Eligible pivot rule.
/// The best eligible arc is selected in every iteration.
/// The \e Block \e Search pivot rule.
/// A specified number of arcs are examined in every iteration
/// in a wraparound fashion and the best eligible arc is selected
/// The \e Candidate \e List pivot rule.
/// In a major iteration a candidate list is built from eligible arcs
/// in a wraparound fashion and in the following minor iterations
/// the best eligible arc is selected from this list.
/// The \e Altering \e Candidate \e List pivot rule.
/// It is a modified version of the Candidate List method.
/// It keeps only a few of the best eligible arcs from the former
/// candidate list and extends this list in every iteration.
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<Value> ValueVector;
typedef std::vector<Cost> CostVector;
typedef std::vector<signed char> CharVector;
// Note: vector<signed char> is used instead of vector<ArcState> and
// vector<ArcDirection> for efficiency reasons
// State constants for arcs
// Direction constants for tree arcs
// Data related to the underlying digraph
// Parameters of the problem
// Data structures for storing the digraph
// Data for storing the spanning tree structure
// Temporary data used in the current pivot iteration
int in_arc, join, u_in, v_in, u_out, v_out;
/// \brief Constant for infinite upper bounds (capacities).
/// Constant for infinite upper bounds (capacities).
/// It is \c std::numeric_limits<Value>::infinity() if available,
/// \c std::numeric_limits<Value>::max() otherwise.
// Implementation of the First Eligible pivot rule
class FirstEligiblePivotRule
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CharVector &_state;
FirstEligiblePivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
// Find next entering arc
for (int e = _next_arc; e != _search_arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
for (int e = 0; e != _next_arc; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
}; //class FirstEligiblePivotRule
// Implementation of the Best Eligible pivot rule
class BestEligiblePivotRule
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CharVector &_state;
BestEligiblePivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
// Find next entering arc
for (int e = 0; e != _search_arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
}; //class BestEligiblePivotRule
// Implementation of the Block Search pivot rule
class BlockSearchPivotRule
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CharVector &_state;
BlockSearchPivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
// The main parameters of the pivot rule
const double BLOCK_SIZE_FACTOR = 1.0;
const int MIN_BLOCK_SIZE = 10;
_block_size = std::max( int(BLOCK_SIZE_FACTOR *
std::sqrt(double(_search_arc_num))),
// Find next entering arc
for (e = _next_arc; e != _search_arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (min < 0) goto search_end;
for (e = 0; e != _next_arc; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (min < 0) goto search_end;
if (min >= 0) return false;
}; //class BlockSearchPivotRule
// Implementation of the Candidate List pivot rule
class CandidateListPivotRule
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CharVector &_state;
int _list_length, _minor_limit;
int _curr_length, _minor_count;
CandidateListPivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
// The main parameters of the pivot rule
const double LIST_LENGTH_FACTOR = 0.25;
const int MIN_LIST_LENGTH = 10;
const double MINOR_LIMIT_FACTOR = 0.1;
const int MIN_MINOR_LIMIT = 3;
_list_length = std::max( int(LIST_LENGTH_FACTOR *
std::sqrt(double(_search_arc_num))),
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
_curr_length = _minor_count = 0;
_candidates.resize(_list_length);
/// Find next entering arc
if (_curr_length > 0 && _minor_count < _minor_limit) {
// Minor iteration: select the best eligible arc from the
// current candidate list
for (int i = 0; i < _curr_length; ++i) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
_candidates[i--] = _candidates[--_curr_length];
if (min < 0) return true;
// Major iteration: build a new candidate list
for (e = _next_arc; e != _search_arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
_candidates[_curr_length++] = e;
if (_curr_length == _list_length) goto search_end;
for (e = 0; e != _next_arc; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
_candidates[_curr_length++] = e;
if (_curr_length == _list_length) goto search_end;
if (_curr_length == 0) return false;
}; //class CandidateListPivotRule
// Implementation of the Altering Candidate List pivot rule
class AlteringListPivotRule
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CharVector &_state;
int _block_size, _head_length, _curr_length;
// Functor class to compare arcs during sort of the candidate list
SortFunc(const CostVector &map) : _map(map) {}
bool operator()(int left, int right) {
return _map[left] < _map[right];
AlteringListPivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
// The main parameters of the pivot rule
const double BLOCK_SIZE_FACTOR = 1.0;
const int MIN_BLOCK_SIZE = 10;
const double HEAD_LENGTH_FACTOR = 0.01;
const int MIN_HEAD_LENGTH = 3;
_block_size = std::max( int(BLOCK_SIZE_FACTOR *
std::sqrt(double(_search_arc_num))),
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
_candidates.resize(_head_length + _block_size);
// Find next entering arc
// Check the current candidate list
for (int i = 0; i != _curr_length; ++i) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
_candidates[i--] = _candidates[--_curr_length];
int limit = _head_length;
for (e = _next_arc; e != _search_arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
_candidates[_curr_length++] = e;
if (_curr_length > limit) goto search_end;
for (e = 0; e != _next_arc; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
_candidates[_curr_length++] = e;
if (_curr_length > limit) goto search_end;
if (_curr_length == 0) return false;
// Perform partial sort operation on the candidate list
int new_length = std::min(_head_length + 1, _curr_length);
std::partial_sort(_candidates.begin(), _candidates.begin() + new_length,
_candidates.begin() + _curr_length, _sort_func);
// Select the entering arc and remove it from the list
_in_arc = _candidates[0];
_candidates[0] = _candidates[new_length - 1];
_curr_length = new_length - 1;
}; //class AlteringListPivotRule
/// The constructor of the class.
/// \param graph The digraph the algorithm runs on.
/// \param arc_mixing Indicate if the arcs will be stored in a
/// mixed order in the internal data structure.
/// In general, it leads to similar performance as using the original
/// arc order, but it makes the algorithm more robust and in special
/// cases, even significantly faster. Therefore, it is enabled by default.
NetworkSimplex(const GR& graph, bool arc_mixing = true) :
_graph(graph), _node_id(graph), _arc_id(graph),
MAX(std::numeric_limits<Value>::max()),
INF(std::numeric_limits<Value>::has_infinity ?
std::numeric_limits<Value>::infinity() : MAX)
// Check the number types
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
"The flow type of NetworkSimplex must be signed");
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
"The cost type of NetworkSimplex must be signed");
/// The parameters of the algorithm can be specified using these
/// \brief Set the lower bounds on the arcs.
/// This function sets the lower bounds on the arcs.
/// If it is not used before calling \ref run(), the lower bounds
/// will be set to zero on all arcs.
/// \param map An arc map storing the lower bounds.
/// Its \c Value type must be convertible to the \c Value type
/// \return <tt>(*this)</tt>
template <typename LowerMap>
NetworkSimplex& lowerMap(const LowerMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_lower[_arc_id[a]] = map[a];
/// \brief Set the upper bounds (capacities) on the arcs.
/// This function sets the upper bounds (capacities) on the arcs.
/// If it is not used before calling \ref run(), the upper bounds
/// will be set to \ref INF on all arcs (i.e. the flow value will be
/// unbounded from above).
/// \param map An arc map storing the upper bounds.
/// Its \c Value type must be convertible to the \c Value type
/// \return <tt>(*this)</tt>
template<typename UpperMap>
NetworkSimplex& upperMap(const UpperMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_upper[_arc_id[a]] = map[a];
/// \brief Set the costs of the arcs.
/// This function sets the costs of the arcs.
/// If it is not used before calling \ref run(), the costs
/// will be set to \c 1 on all arcs.
/// \param map An arc map storing the costs.
/// Its \c Value type must be convertible to the \c Cost type
/// \return <tt>(*this)</tt>
template<typename CostMap>
NetworkSimplex& costMap(const CostMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_cost[_arc_id[a]] = map[a];
/// \brief Set the supply values of the nodes.
/// This function sets the supply values of the nodes.
/// If neither this function nor \ref stSupply() is used before
/// calling \ref run(), the supply of each node will be set to zero.
/// \param map A node map storing the supply values.
/// Its \c Value type must be convertible to the \c Value type
/// \return <tt>(*this)</tt>
template<typename SupplyMap>
NetworkSimplex& supplyMap(const SupplyMap& map) {
for (NodeIt n(_graph); n != INVALID; ++n) {
_supply[_node_id[n]] = map[n];
/// \brief Set single source and target nodes and a supply value.
/// This function sets a single source node and a single target node
/// and the required flow value.
/// If neither this function nor \ref supplyMap() is used before
/// calling \ref run(), the supply of each node will be set to zero.
/// Using this function has the same effect as using \ref supplyMap()
/// with a map in which \c k is assigned to \c s, \c -k is
/// assigned to \c t and all other nodes have zero supply value.
/// \param s The source node.
/// \param t The target node.
/// \param k The required amount of flow from node \c s to node \c t
/// (i.e. the supply of \c s and the demand of \c t).
/// \return <tt>(*this)</tt>
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
for (int i = 0; i != _node_num; ++i) {
_supply[_node_id[s]] = k;
_supply[_node_id[t]] = -k;
/// \brief Set the type of the supply constraints.
/// This function sets the type of the supply/demand constraints.
/// If it is not used before calling \ref run(), the \ref GEQ supply
/// For more information, see \ref SupplyType.
/// \return <tt>(*this)</tt>
NetworkSimplex& supplyType(SupplyType supply_type) {
/// \name Execution Control
/// The algorithm can be executed using \ref run().
/// \brief Run the algorithm.
/// This function runs the algorithm.
/// The paramters can be specified using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
/// NetworkSimplex<ListDigraph> ns(graph);
/// ns.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// This function can be called more than once. All the given parameters
/// are kept for the next call, unless \ref resetParams() or \ref reset()
/// is used, thus only the modified parameters have to be set again.
/// If the underlying digraph was also modified after the construction
/// of the class (or the last \ref reset() call), then the \ref reset()
/// function must be called.
/// \param pivot_rule The pivot rule that will be used during the
/// algorithm. For more information, see \ref PivotRule.
/// \return \c INFEASIBLE if no feasible flow exists,
/// \n \c OPTIMAL if the problem has optimal solution
/// (i.e. it is feasible and bounded), and the algorithm has found
/// optimal flow and node potentials (primal and dual solutions),
/// \n \c UNBOUNDED if the objective function of the problem is
/// unbounded, i.e. there is a directed cycle having negative total
/// cost and infinite upper bound.
/// \see ProblemType, PivotRule
/// \see resetParams(), reset()
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
if (!init()) return INFEASIBLE;
return start(pivot_rule);
/// \brief Reset all the parameters that have been given before.
/// This function resets all the paramaters that have been given
/// before using functions \ref lowerMap(), \ref upperMap(),
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
/// NetworkSimplex<ListDigraph> ns(graph);
/// ns.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// // Run again with modified cost map (resetParams() is not called,
/// // so only the cost map have to be set again)
/// ns.costMap(cost).run();
/// // Run again from scratch using resetParams()
/// // (the lower bounds will be set to zero on all arcs)
/// ns.upperMap(capacity).costMap(cost)
/// .supplyMap(sup).run();
/// \return <tt>(*this)</tt>
NetworkSimplex& resetParams() {
for (int i = 0; i != _node_num; ++i) {
for (int i = 0; i != _arc_num; ++i) {
/// \brief Reset the internal data structures and all the parameters
/// that have been given before.
/// This function resets the internal data structures and all the
/// paramaters that have been given before using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
/// See \ref resetParams() for examples.
/// \return <tt>(*this)</tt>
/// \see resetParams(), run()
NetworkSimplex& reset() {
_node_num = countNodes(_graph);
_arc_num = countArcs(_graph);
int all_node_num = _node_num + 1;
int max_arc_num = _arc_num + 2 * _node_num;
_source.resize(max_arc_num);
_target.resize(max_arc_num);
_cap.resize(max_arc_num);
_cost.resize(max_arc_num);
_supply.resize(all_node_num);
_flow.resize(max_arc_num);
_pi.resize(all_node_num);
_parent.resize(all_node_num);
_pred.resize(all_node_num);
_pred_dir.resize(all_node_num);
_thread.resize(all_node_num);
_rev_thread.resize(all_node_num);
_succ_num.resize(all_node_num);
_last_succ.resize(all_node_num);
_state.resize(max_arc_num);
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
// Store the arcs in a mixed order
const int skip = std::max(_arc_num / _node_num, 3);
for (ArcIt a(_graph); a != INVALID; ++a) {
_source[i] = _node_id[_graph.source(a)];
_target[i] = _node_id[_graph.target(a)];
if ((i += skip) >= _arc_num) i = ++j;
// Store the arcs in the original order
for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
_source[i] = _node_id[_graph.source(a)];
_target[i] = _node_id[_graph.target(a)];
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// The \ref run() function must be called before using them.
/// \brief Return the total cost of the found flow.
/// This function returns the total cost of the found flow.
/// Its complexity is O(e).
/// \note The return type of the function can be specified as a
/// template parameter. For example,
/// ns.totalCost<double>();
/// It is useful if the total cost cannot be stored in the \c Cost
/// type of the algorithm, which is the default return type of the
/// \pre \ref run() must be called before using this function.
template <typename Number>
Number totalCost() const {
for (ArcIt a(_graph); a != INVALID; ++a) {
c += Number(_flow[i]) * Number(_cost[i]);
return totalCost<Cost>();
/// \brief Return the flow on the given arc.
/// This function returns the flow on the given arc.
/// \pre \ref run() must be called before using this function.
Value flow(const Arc& a) const {
return _flow[_arc_id[a]];
/// \brief Return the flow map (the primal solution).
/// This function copies the flow value on each arc into the given
/// map. The \c Value type of the algorithm must be convertible to
/// the \c Value type of the map.
/// \pre \ref run() must be called before using this function.
template <typename FlowMap>
void flowMap(FlowMap &map) const {
for (ArcIt a(_graph); a != INVALID; ++a) {
map.set(a, _flow[_arc_id[a]]);
/// \brief Return the potential (dual value) of the given node.
/// This function returns the potential (dual value) of the
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& n) const {
/// \brief Return the potential map (the dual solution).
/// This function copies the potential (dual value) of each node
/// The \c Cost type of the algorithm must be convertible to the
/// \c Value type of the map.
/// \pre \ref run() must be called before using this function.
template <typename PotentialMap>
void potentialMap(PotentialMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map.set(n, _pi[_node_id[n]]);
// Initialize internal data structures
if (_node_num == 0) return false;
// Check the sum of supply values
for (int i = 0; i != _node_num; ++i) {
_sum_supply += _supply[i];
if ( !((_stype == GEQ && _sum_supply <= 0) ||
(_stype == LEQ && _sum_supply >= 0)) ) return false;
// Remove non-zero lower bounds
for (int i = 0; i != _arc_num; ++i) {
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
_supply[_source[i]] -= c;
_supply[_target[i]] += c;
for (int i = 0; i != _arc_num; ++i) {
// Initialize artifical cost
if (std::numeric_limits<Cost>::is_exact) {
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
for (int i = 0; i != _arc_num; ++i) {
if (_cost[i] > ART_COST) ART_COST = _cost[i];
ART_COST = (ART_COST + 1) * _node_num;
for (int i = 0; i != _arc_num; ++i) {
// Set data for the artificial root node
_succ_num[_root] = _node_num + 1;
_last_succ[_root] = _root - 1;
_supply[_root] = -_sum_supply;
// Add artificial arcs and initialize the spanning tree data structure
_search_arc_num = _arc_num;
_all_arc_num = _arc_num + _node_num;
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
else if (_sum_supply > 0) {
// LEQ supply constraints
_search_arc_num = _arc_num + _node_num;
int f = _arc_num + _node_num;
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
// GEQ supply constraints
_search_arc_num = _arc_num + _node_num;
int f = _arc_num + _node_num;
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
if (_succ_num[u] < _succ_num[v]) {
// Find the leaving arc of the cycle and returns true if the
// leaving arc is not the same as the entering arc
// Initialize first and second nodes according to the direction
if (_state[in_arc] == STATE_LOWER) {
second = _target[in_arc];
second = _source[in_arc];
// Search the cycle form the first node to the join node
for (int u = first; u != join; u = _parent[u]) {
if (_pred_dir[u] == DIR_DOWN) {
d = c >= MAX ? INF : c - d;
// Search the cycle form the second node to the join node
for (int u = second; u != join; u = _parent[u]) {
if (_pred_dir[u] == DIR_UP) {
d = c >= MAX ? INF : c - d;
// Change _flow and _state vectors
void changeFlow(bool change) {
// Augment along the cycle
Value val = _state[in_arc] * delta;
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
_flow[_pred[u]] -= _pred_dir[u] * val;
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
_flow[_pred[u]] += _pred_dir[u] * val;
// Update the state of the entering and leaving arcs
_state[in_arc] = STATE_TREE;
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
_state[in_arc] = -_state[in_arc];
// Update the tree structure
void updateTreeStructure() {
int old_rev_thread = _rev_thread[u_out];
int old_succ_num = _succ_num[u_out];
int old_last_succ = _last_succ[u_out];
// Check if u_in and u_out coincide
// Update _parent, _pred, _pred_dir
_pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
// Update _thread and _rev_thread
if (_thread[v_in] != u_out) {
int after = _thread[old_last_succ];
_thread[old_rev_thread] = after;
_rev_thread[after] = old_rev_thread;
_rev_thread[u_out] = v_in;
_thread[old_last_succ] = after;
_rev_thread[after] = old_last_succ;
// Handle the case when old_rev_thread equals to v_in
// (it also means that join and v_out coincide)
int thread_continue = old_rev_thread == v_in ?
_thread[old_last_succ] : _thread[v_in];
// Update _thread and _parent along the stem nodes (i.e. the nodes
// between u_in and u_out, whose parent have to be changed)
int stem = u_in; // the current stem node
int par_stem = v_in; // the new parent of stem
int next_stem; // the next stem node
int last = _last_succ[u_in]; // the last successor of stem
int before, after = _thread[last];
_dirty_revs.push_back(v_in);
// Insert the next stem node into the thread list
next_stem = _parent[stem];
_thread[last] = next_stem;
_dirty_revs.push_back(last);
// Remove the subtree of stem from the thread list
before = _rev_thread[stem];
_rev_thread[after] = before;
// Change the parent node and shift stem nodes
_parent[stem] = par_stem;
last = _last_succ[stem] == _last_succ[par_stem] ?
_rev_thread[par_stem] : _last_succ[stem];
_parent[u_out] = par_stem;
_thread[last] = thread_continue;
_rev_thread[thread_continue] = last;
_last_succ[u_out] = last;
// Remove the subtree of u_out from the thread list except for
// the case when old_rev_thread equals to v_in
if (old_rev_thread != v_in) {
_thread[old_rev_thread] = after;
_rev_thread[after] = old_rev_thread;
// Update _rev_thread using the new _thread values
for (int i = 0; i != int(_dirty_revs.size()); ++i) {
_rev_thread[_thread[u]] = u;
// Update _pred, _pred_dir, _last_succ and _succ_num for the
// stem nodes from u_out to u_in
int tmp_sc = 0, tmp_ls = _last_succ[u_out];
for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) {
_pred_dir[u] = -_pred_dir[p];
tmp_sc += _succ_num[u] - _succ_num[p];
_pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
_succ_num[u_in] = old_succ_num;
// Update _last_succ from v_in towards the root
int up_limit_out = _last_succ[join] == v_in ? join : -1;
int last_succ_out = _last_succ[u_out];
for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) {
_last_succ[u] = last_succ_out;
// Update _last_succ from v_out towards the root
if (join != old_rev_thread && v_in != old_rev_thread) {
for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
_last_succ[u] = old_rev_thread;
else if (last_succ_out != old_last_succ) {
for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
_last_succ[u] = last_succ_out;
// Update _succ_num from v_in to join
for (int u = v_in; u != join; u = _parent[u]) {
_succ_num[u] += old_succ_num;
// Update _succ_num from v_out to join
for (int u = v_out; u != join; u = _parent[u]) {
_succ_num[u] -= old_succ_num;
// Update potentials in the subtree that has been moved
Cost sigma = _pi[v_in] - _pi[u_in] -
_pred_dir[u_in] * _cost[in_arc];
int end = _thread[_last_succ[u_in]];
for (int u = u_in; u != end; u = _thread[u]) {
// Heuristic initial pivots
std::vector<Node> supply_nodes, demand_nodes;
for (NodeIt u(_graph); u != INVALID; ++u) {
curr = _supply[_node_id[u]];
supply_nodes.push_back(u);
demand_nodes.push_back(u);
if (_sum_supply > 0) total -= _sum_supply;
if (total <= 0) return true;
if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
// Perform a reverse graph search from the sink to the source
typename GR::template NodeMap<bool> reached(_graph, false);
Node s = supply_nodes[0], t = demand_nodes[0];
Node u, v = stack.back();
for (InArcIt a(_graph, v); a != INVALID; ++a) {
if (reached[u = _graph.source(a)]) continue;
// Find the min. cost incomming arc for each demand node
for (int i = 0; i != int(demand_nodes.size()); ++i) {
Node v = demand_nodes[i];
Cost c, min_cost = std::numeric_limits<Cost>::max();
for (InArcIt a(_graph, v); a != INVALID; ++a) {
if (min_arc != INVALID) {
arc_vector.push_back(_arc_id[min_arc]);
// Find the min. cost outgoing arc for each supply node
for (int i = 0; i != int(supply_nodes.size()); ++i) {
Node u = supply_nodes[i];
Cost c, min_cost = std::numeric_limits<Cost>::max();
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
if (min_arc != INVALID) {
arc_vector.push_back(_arc_id[min_arc]);
// Perform heuristic initial pivots
for (int i = 0; i != int(arc_vector.size()); ++i) {
if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
_pi[_target[in_arc]]) >= 0) continue;
bool change = findLeavingArc();
if (delta >= MAX) return false;
ProblemType start(PivotRule pivot_rule) {
// Select the pivot rule implementation
return start<FirstEligiblePivotRule>();
return start<BestEligiblePivotRule>();
return start<BlockSearchPivotRule>();
return start<CandidateListPivotRule>();
return start<AlteringListPivotRule>();
return INFEASIBLE; // avoid warning
template <typename PivotRuleImpl>
PivotRuleImpl pivot(*this);
// Perform heuristic initial pivots
if (!initialPivots()) return UNBOUNDED;
// Execute the Network Simplex algorithm
while (pivot.findEnteringArc()) {
bool change = findLeavingArc();
if (delta >= MAX) return UNBOUNDED;
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
if (_flow[e] != 0) return INFEASIBLE;
// Transform the solution and the supply map to the original form
for (int i = 0; i != _arc_num; ++i) {
_supply[_source[i]] += c;
_supply[_target[i]] -= c;
// Shift potentials to meet the requirements of the GEQ/LEQ type
Cost max_pot = -std::numeric_limits<Cost>::max();
for (int i = 0; i != _node_num; ++i) {
if (_pi[i] > max_pot) max_pot = _pi[i];
for (int i = 0; i != _node_num; ++i)
Cost min_pot = std::numeric_limits<Cost>::max();
for (int i = 0; i != _node_num; ++i) {
if (_pi[i] < min_pot) min_pot = _pi[i];
for (int i = 0; i != _node_num; ++i)
}; //class NetworkSimplex
#endif //LEMON_NETWORK_SIMPLEX_H