Location: LEMON/LEMON-main/lemon/circulation.h

Load file history
gravatar
ladanyi@tmit.bme.hu
Put the version string into config.h Also make it possible to set the version using the LEMON_VERSION environment variable, and use the hg revision as version string in case this variable is unset.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CIRCULATION_H
#define LEMON_CIRCULATION_H
#include <lemon/tolerance.h>
#include <lemon/elevator.h>
#include <limits>
///\ingroup max_flow
///\file
///\brief Push-relabel algorithm for finding a feasible circulation.
///
namespace lemon {
/// \brief Default traits class of Circulation class.
///
/// Default traits class of Circulation class.
///
/// \tparam GR Type of the digraph the algorithm runs on.
/// \tparam LM The type of the lower bound map.
/// \tparam UM The type of the upper bound (capacity) map.
/// \tparam SM The type of the supply map.
template <typename GR, typename LM,
typename UM, typename SM>
struct CirculationDefaultTraits {
/// \brief The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the lower bound map.
///
/// The type of the map that stores the lower bounds on the arcs.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
typedef LM LowerMap;
/// \brief The type of the upper bound (capacity) map.
///
/// The type of the map that stores the upper bounds (capacities)
/// on the arcs.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
typedef UM UpperMap;
/// \brief The type of supply map.
///
/// The type of the map that stores the signed supply values of the
/// nodes.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
typedef SM SupplyMap;
/// \brief The type of the flow and supply values.
typedef typename SupplyMap::Value Value;
/// \brief The type of the map that stores the flow values.
///
/// The type of the map that stores the flow values.
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept.
typedef typename Digraph::template ArcMap<Value> FlowMap;
/// \brief Instantiates a FlowMap.
///
/// This function instantiates a \ref FlowMap.
/// \param digraph The digraph for which we would like to define
/// the flow map.
static FlowMap* createFlowMap(const Digraph& digraph) {
return new FlowMap(digraph);
}
/// \brief The elevator type used by the algorithm.
///
/// The elevator type used by the algorithm.
///
/// \sa Elevator
/// \sa LinkedElevator
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
/// \brief Instantiates an Elevator.
///
/// This function instantiates an \ref Elevator.
/// \param digraph The digraph for which we would like to define
/// the elevator.
/// \param max_level The maximum level of the elevator.
static Elevator* createElevator(const Digraph& digraph, int max_level) {
return new Elevator(digraph, max_level);
}
/// \brief The tolerance used by the algorithm
///
/// The tolerance used by the algorithm to handle inexact computation.
typedef lemon::Tolerance<Value> Tolerance;
};
/**
\brief Push-relabel algorithm for the network circulation problem.
\ingroup max_flow
This class implements a push-relabel algorithm for the \e network
\e circulation problem.
It is to find a feasible circulation when lower and upper bounds
are given for the flow values on the arcs and lower bounds are
given for the difference between the outgoing and incoming flow
at the nodes.
The exact formulation of this problem is the following.
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
denotes the signed supply values of the nodes.
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
\f$-sup(u)\f$ demand.
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
solution of the following problem.
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
\geq sup(u) \quad \forall u\in V, \f]
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
zero or negative in order to have a feasible solution (since the sum
of the expressions on the left-hand side of the inequalities is zero).
It means that the total demand must be greater or equal to the total
supply and all the supplies have to be carried out from the supply nodes,
but there could be demands that are not satisfied.
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
constraints have to be satisfied with equality, i.e. all demands
have to be satisfied and all supplies have to be used.
If you need the opposite inequalities in the supply/demand constraints
(i.e. the total demand is less than the total supply and all the demands
have to be satisfied while there could be supplies that are not used),
then you could easily transform the problem to the above form by reversing
the direction of the arcs and taking the negative of the supply values
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
This algorithm either calculates a feasible circulation, or provides
a \ref barrier() "barrier", which prooves that a feasible soultion
cannot exist.
Note that this algorithm also provides a feasible solution for the
\ref min_cost_flow "minimum cost flow problem".
\tparam GR The type of the digraph the algorithm runs on.
\tparam LM The type of the lower bound map. The default
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
\tparam UM The type of the upper bound (capacity) map.
The default map type is \c LM.
\tparam SM The type of the supply map. The default map type is
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
*/
#ifdef DOXYGEN
template< typename GR,
typename LM,
typename UM,
typename SM,
typename TR >
#else
template< typename GR,
typename LM = typename GR::template ArcMap<int>,
typename UM = LM,
typename SM = typename GR::template NodeMap<typename UM::Value>,
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
#endif
class Circulation {
public:
///The \ref CirculationDefaultTraits "traits class" of the algorithm.
typedef TR Traits;
///The type of the digraph the algorithm runs on.
typedef typename Traits::Digraph Digraph;
///The type of the flow and supply values.
typedef typename Traits::Value Value;
///The type of the lower bound map.
typedef typename Traits::LowerMap LowerMap;
///The type of the upper bound (capacity) map.
typedef typename Traits::UpperMap UpperMap;
///The type of the supply map.
typedef typename Traits::SupplyMap SupplyMap;
///The type of the flow map.
typedef typename Traits::FlowMap FlowMap;
///The type of the elevator.
typedef typename Traits::Elevator Elevator;
///The type of the tolerance.
typedef typename Traits::Tolerance Tolerance;
private:
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
const Digraph &_g;
int _node_num;
const LowerMap *_lo;
const UpperMap *_up;
const SupplyMap *_supply;
FlowMap *_flow;
bool _local_flow;
Elevator* _level;
bool _local_level;
typedef typename Digraph::template NodeMap<Value> ExcessMap;
ExcessMap* _excess;
Tolerance _tol;
int _el;
public:
typedef Circulation Create;
///\name Named Template Parameters
///@{
template <typename T>
struct SetFlowMapTraits : public Traits {
typedef T FlowMap;
static FlowMap *createFlowMap(const Digraph&) {
LEMON_ASSERT(false, "FlowMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// FlowMap type
///
/// \ref named-templ-param "Named parameter" for setting FlowMap
/// type.
template <typename T>
struct SetFlowMap
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
SetFlowMapTraits<T> > {
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
SetFlowMapTraits<T> > Create;
};
template <typename T>
struct SetElevatorTraits : public Traits {
typedef T Elevator;
static Elevator *createElevator(const Digraph&, int) {
LEMON_ASSERT(false, "Elevator is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// Elevator type
///
/// \ref named-templ-param "Named parameter" for setting Elevator
/// type. If this named parameter is used, then an external
/// elevator object must be passed to the algorithm using the
/// \ref elevator(Elevator&) "elevator()" function before calling
/// \ref run() or \ref init().
/// \sa SetStandardElevator
template <typename T>
struct SetElevator
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
SetElevatorTraits<T> > {
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
SetElevatorTraits<T> > Create;
};
template <typename T>
struct SetStandardElevatorTraits : public Traits {
typedef T Elevator;
static Elevator *createElevator(const Digraph& digraph, int max_level) {
return new Elevator(digraph, max_level);
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// Elevator type with automatic allocation
///
/// \ref named-templ-param "Named parameter" for setting Elevator
/// type with automatic allocation.
/// The Elevator should have standard constructor interface to be
/// able to automatically created by the algorithm (i.e. the
/// digraph and the maximum level should be passed to it).
/// However an external elevator object could also be passed to the
/// algorithm with the \ref elevator(Elevator&) "elevator()" function
/// before calling \ref run() or \ref init().
/// \sa SetElevator
template <typename T>
struct SetStandardElevator
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
SetStandardElevatorTraits<T> > {
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
SetStandardElevatorTraits<T> > Create;
};
/// @}
protected:
Circulation() {}
public:
/// Constructor.
/// The constructor of the class.
///
/// \param graph The digraph the algorithm runs on.
/// \param lower The lower bounds for the flow values on the arcs.
/// \param upper The upper bounds (capacities) for the flow values
/// on the arcs.
/// \param supply The signed supply values of the nodes.
Circulation(const Digraph &graph, const LowerMap &lower,
const UpperMap &upper, const SupplyMap &supply)
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
_excess(NULL) {}
/// Destructor.
~Circulation() {
destroyStructures();
}
private:
bool checkBoundMaps() {
for (ArcIt e(_g);e!=INVALID;++e) {
if (_tol.less((*_up)[e], (*_lo)[e])) return false;
}
return true;
}
void createStructures() {
_node_num = _el = countNodes(_g);
if (!_flow) {
_flow = Traits::createFlowMap(_g);
_local_flow = true;
}
if (!_level) {
_level = Traits::createElevator(_g, _node_num);
_local_level = true;
}
if (!_excess) {
_excess = new ExcessMap(_g);
}
}
void destroyStructures() {
if (_local_flow) {
delete _flow;
}
if (_local_level) {
delete _level;
}
if (_excess) {
delete _excess;
}
}
public:
/// Sets the lower bound map.
/// Sets the lower bound map.
/// \return <tt>(*this)</tt>
Circulation& lowerMap(const LowerMap& map) {
_lo = &map;
return *this;
}
/// Sets the upper bound (capacity) map.
/// Sets the upper bound (capacity) map.
/// \return <tt>(*this)</tt>
Circulation& upperMap(const UpperMap& map) {
_up = &map;
return *this;
}
/// Sets the supply map.
/// Sets the supply map.
/// \return <tt>(*this)</tt>
Circulation& supplyMap(const SupplyMap& map) {
_supply = &map;
return *this;
}
/// \brief Sets the flow map.
///
/// Sets the flow map.
/// If you don't use this function before calling \ref run() or
/// \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
Circulation& flowMap(FlowMap& map) {
if (_local_flow) {
delete _flow;
_local_flow = false;
}
_flow = &map;
return *this;
}
/// \brief Sets the elevator used by algorithm.
///
/// Sets the elevator used by algorithm.
/// If you don't use this function before calling \ref run() or
/// \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated elevator,
/// of course.
/// \return <tt>(*this)</tt>
Circulation& elevator(Elevator& elevator) {
if (_local_level) {
delete _level;
_local_level = false;
}
_level = &elevator;
return *this;
}
/// \brief Returns a const reference to the elevator.
///
/// Returns a const reference to the elevator.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const Elevator& elevator() const {
return *_level;
}
/// \brief Sets the tolerance used by algorithm.
///
/// Sets the tolerance used by algorithm.
Circulation& tolerance(const Tolerance& tolerance) const {
_tol = tolerance;
return *this;
}
/// \brief Returns a const reference to the tolerance.
///
/// Returns a const reference to the tolerance.
const Tolerance& tolerance() const {
return tolerance;
}
/// \name Execution Control
/// The simplest way to execute the algorithm is to call \ref run().\n
/// If you need more control on the initial solution or the execution,
/// first you have to call one of the \ref init() functions, then
/// the \ref start() function.
///@{
/// Initializes the internal data structures.
/// Initializes the internal data structures and sets all flow values
/// to the lower bound.
void init()
{
LEMON_DEBUG(checkBoundMaps(),
"Upper bounds must be greater or equal to the lower bounds");
createStructures();
for(NodeIt n(_g);n!=INVALID;++n) {
(*_excess)[n] = (*_supply)[n];
}
for (ArcIt e(_g);e!=INVALID;++e) {
_flow->set(e, (*_lo)[e]);
(*_excess)[_g.target(e)] += (*_flow)[e];
(*_excess)[_g.source(e)] -= (*_flow)[e];
}
// global relabeling tested, but in general case it provides
// worse performance for random digraphs
_level->initStart();
for(NodeIt n(_g);n!=INVALID;++n)
_level->initAddItem(n);
_level->initFinish();
for(NodeIt n(_g);n!=INVALID;++n)
if(_tol.positive((*_excess)[n]))
_level->activate(n);
}
/// Initializes the internal data structures using a greedy approach.
/// Initializes the internal data structures using a greedy approach
/// to construct the initial solution.
void greedyInit()
{
LEMON_DEBUG(checkBoundMaps(),
"Upper bounds must be greater or equal to the lower bounds");
createStructures();
for(NodeIt n(_g);n!=INVALID;++n) {
(*_excess)[n] = (*_supply)[n];
}
for (ArcIt e(_g);e!=INVALID;++e) {
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
_flow->set(e, (*_up)[e]);
(*_excess)[_g.target(e)] += (*_up)[e];
(*_excess)[_g.source(e)] -= (*_up)[e];
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
_flow->set(e, (*_lo)[e]);
(*_excess)[_g.target(e)] += (*_lo)[e];
(*_excess)[_g.source(e)] -= (*_lo)[e];
} else {
Value fc = -(*_excess)[_g.target(e)];
_flow->set(e, fc);
(*_excess)[_g.target(e)] = 0;
(*_excess)[_g.source(e)] -= fc;
}
}
_level->initStart();
for(NodeIt n(_g);n!=INVALID;++n)
_level->initAddItem(n);
_level->initFinish();
for(NodeIt n(_g);n!=INVALID;++n)
if(_tol.positive((*_excess)[n]))
_level->activate(n);
}
///Executes the algorithm
///This function executes the algorithm.
///
///\return \c true if a feasible circulation is found.
///
///\sa barrier()
///\sa barrierMap()
bool start()
{
Node act;
Node bact=INVALID;
Node last_activated=INVALID;
while((act=_level->highestActive())!=INVALID) {
int actlevel=(*_level)[act];
int mlevel=_node_num;
Value exc=(*_excess)[act];
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
Node v = _g.target(e);
Value fc=(*_up)[e]-(*_flow)[e];
if(!_tol.positive(fc)) continue;
if((*_level)[v]<actlevel) {
if(!_tol.less(fc, exc)) {
_flow->set(e, (*_flow)[e] + exc);
(*_excess)[v] += exc;
if(!_level->active(v) && _tol.positive((*_excess)[v]))
_level->activate(v);
(*_excess)[act] = 0;
_level->deactivate(act);
goto next_l;
}
else {
_flow->set(e, (*_up)[e]);
(*_excess)[v] += fc;
if(!_level->active(v) && _tol.positive((*_excess)[v]))
_level->activate(v);
exc-=fc;
}
}
else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
}
for(InArcIt e(_g,act);e!=INVALID; ++e) {
Node v = _g.source(e);
Value fc=(*_flow)[e]-(*_lo)[e];
if(!_tol.positive(fc)) continue;
if((*_level)[v]<actlevel) {
if(!_tol.less(fc, exc)) {
_flow->set(e, (*_flow)[e] - exc);
(*_excess)[v] += exc;
if(!_level->active(v) && _tol.positive((*_excess)[v]))
_level->activate(v);
(*_excess)[act] = 0;
_level->deactivate(act);
goto next_l;
}
else {
_flow->set(e, (*_lo)[e]);
(*_excess)[v] += fc;
if(!_level->active(v) && _tol.positive((*_excess)[v]))
_level->activate(v);
exc-=fc;
}
}
else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
}
(*_excess)[act] = exc;
if(!_tol.positive(exc)) _level->deactivate(act);
else if(mlevel==_node_num) {
_level->liftHighestActiveToTop();
_el = _node_num;
return false;
}
else {
_level->liftHighestActive(mlevel+1);
if(_level->onLevel(actlevel)==0) {
_el = actlevel;
return false;
}
}
next_l:
;
}
return true;
}
/// Runs the algorithm.
/// This function runs the algorithm.
///
/// \return \c true if a feasible circulation is found.
///
/// \note Apart from the return value, c.run() is just a shortcut of
/// the following code.
/// \code
/// c.greedyInit();
/// c.start();
/// \endcode
bool run() {
greedyInit();
return start();
}
/// @}
/// \name Query Functions
/// The results of the circulation algorithm can be obtained using
/// these functions.\n
/// Either \ref run() or \ref start() should be called before
/// using them.
///@{
/// \brief Returns the flow value on the given arc.
///
/// Returns the flow value on the given arc.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Value flow(const Arc& arc) const {
return (*_flow)[arc];
}
/// \brief Returns a const reference to the flow map.
///
/// Returns a const reference to the arc map storing the found flow.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const FlowMap& flowMap() const {
return *_flow;
}
/**
\brief Returns \c true if the given node is in a barrier.
Barrier is a set \e B of nodes for which
\f[ \sum_{uv\in A: u\in B} upper(uv) -
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
holds. The existence of a set with this property prooves that a
feasible circualtion cannot exist.
This function returns \c true if the given node is in the found
barrier. If a feasible circulation is found, the function
gives back \c false for every node.
\pre Either \ref run() or \ref init() must be called before
using this function.
\sa barrierMap()
\sa checkBarrier()
*/
bool barrier(const Node& node) const
{
return (*_level)[node] >= _el;
}
/// \brief Gives back a barrier.
///
/// This function sets \c bar to the characteristic vector of the
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
/// node map with \c bool (or convertible) value type.
///
/// If a feasible circulation is found, the function gives back an
/// empty set, so \c bar[v] will be \c false for all nodes \c v.
///
/// \note This function calls \ref barrier() for each node,
/// so it runs in O(n) time.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
///
/// \sa barrier()
/// \sa checkBarrier()
template<class BarrierMap>
void barrierMap(BarrierMap &bar) const
{
for(NodeIt n(_g);n!=INVALID;++n)
bar.set(n, (*_level)[n] >= _el);
}
/// @}
/// \name Checker Functions
/// The feasibility of the results can be checked using
/// these functions.\n
/// Either \ref run() or \ref start() should be called before
/// using them.
///@{
///Check if the found flow is a feasible circulation
///Check if the found flow is a feasible circulation,
///
bool checkFlow() const {
for(ArcIt e(_g);e!=INVALID;++e)
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
for(NodeIt n(_g);n!=INVALID;++n)
{
Value dif=-(*_supply)[n];
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
if(_tol.negative(dif)) return false;
}
return true;
}
///Check whether or not the last execution provides a barrier
///Check whether or not the last execution provides a barrier.
///\sa barrier()
///\sa barrierMap()
bool checkBarrier() const
{
Value delta=0;
Value inf_cap = std::numeric_limits<Value>::has_infinity ?
std::numeric_limits<Value>::infinity() :
std::numeric_limits<Value>::max();
for(NodeIt n(_g);n!=INVALID;++n)
if(barrier(n))
delta-=(*_supply)[n];
for(ArcIt e(_g);e!=INVALID;++e)
{
Node s=_g.source(e);
Node t=_g.target(e);
if(barrier(s)&&!barrier(t)) {
if (_tol.less(inf_cap - (*_up)[e], delta)) return false;
delta+=(*_up)[e];
}
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
}
return _tol.negative(delta);
}
/// @}
};
}
#endif