/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef HYPERCUBE_GRAPH_H
#define HYPERCUBE_GRAPH_H
#include <lemon/assert.h>
#include <lemon/bits/graph_extender.h>
///\brief HypercubeGraph class.
class HypercubeGraphBase {
typedef HypercubeGraphBase Graph;
void construct(int dim) {
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
_edge_num = dim * (1 << (dim-1));
int nodeNum() const { return _node_num; }
int edgeNum() const { return _edge_num; }
int arcNum() const { return 2 * _edge_num; }
int maxNodeId() const { return _node_num - 1; }
int maxEdgeId() const { return _edge_num - 1; }
int maxArcId() const { return 2 * _edge_num - 1; }
static Node nodeFromId(int id) { return Node(id); }
static Edge edgeFromId(int id) { return Edge(id); }
static Arc arcFromId(int id) { return Arc(id); }
static int id(Node node) { return node._id; }
static int id(Edge edge) { return edge._id; }
static int id(Arc arc) { return arc._id; }
Node u(Edge edge) const {
int base = edge._id & ((1 << (_dim-1)) - 1);
int k = edge._id >> (_dim-1);
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1));
Node v(Edge edge) const {
int base = edge._id & ((1 << (_dim-1)) - 1);
int k = edge._id >> (_dim-1);
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k);
Node source(Arc arc) const {
return (arc._id & 1) == 1 ? u(arc) : v(arc);
Node target(Arc arc) const {
return (arc._id & 1) == 1 ? v(arc) : u(arc);
typedef True FindEdgeTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
if (prev != INVALID) return INVALID;
if (d == 0) return INVALID;
for ( ; (d & 1) == 0; d >>= 1) ++k;
if (d >> 1 != 0) return INVALID;
return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
(u._id & ((1 << k) - 1));
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
Edge edge = findEdge(u, v, prev);
if (edge == INVALID) return INVALID;
int k = edge._id >> (_dim-1);
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
friend class HypercubeGraphBase;
Node(int id) : _id(id) {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
friend class HypercubeGraphBase;
Edge(int id) : _id(id) {}
Edge (Invalid) : _id(-1) {}
bool operator==(const Edge edge) const {return _id == edge._id;}
bool operator!=(const Edge edge) const {return _id != edge._id;}
bool operator<(const Edge edge) const {return _id < edge._id;}
friend class HypercubeGraphBase;
Arc (Invalid) : _id(-1) {}
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
void first(Node& node) const {
node._id = _node_num - 1;
static void next(Node& node) {
void first(Edge& edge) const {
edge._id = _edge_num - 1;
static void next(Edge& edge) {
void first(Arc& arc) const {
arc._id = 2 * _edge_num - 1;
static void next(Arc& arc) {
void firstInc(Edge& edge, bool& dir, const Node& node) const {
edge._id = node._id >> 1;
dir = (node._id & 1) == 0;
void nextInc(Edge& edge, bool& dir) const {
Node n = dir ? u(edge) : v(edge);
int k = (edge._id >> (_dim-1)) + 1;
edge._id = (k << (_dim-1)) |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
dir = ((n._id >> k) & 1) == 0;
void firstOut(Arc& arc, const Node& node) const {
arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
void nextOut(Arc& arc) const {
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
int k = (arc._id >> _dim) + 1;
arc._id = (k << (_dim-1)) |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
void firstIn(Arc& arc, const Node& node) const {
arc._id = ((node._id >> 1) << 1) | (node._id & 1);
void nextIn(Arc& arc) const {
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
int k = (arc._id >> _dim) + 1;
arc._id = (k << (_dim-1)) |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
arc._id = (arc._id << 1) | ((n._id >> k) & 1);
static bool direction(Arc arc) {
return (arc._id & 1) == 1;
static Arc direct(Edge edge, bool dir) {
return Arc((edge._id << 1) | (dir ? 1 : 0));
bool projection(Node node, int n) const {
return static_cast<bool>(node._id & (1 << n));
int dimension(Edge edge) const {
return edge._id >> (_dim-1);
int dimension(Arc arc) const {
int index(Node node) const {
Node operator()(int ix) const {
int _node_num, _edge_num;
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
/// \brief Hypercube graph class
/// This class implements a special graph type. The nodes of the graph
/// are indiced with integers with at most \c dim binary digits.
/// Two nodes are connected in the graph if and only if their indices
/// differ only on one position in the binary form.
/// \note The type of the indices is chosen to \c int for efficiency
/// reasons. Thus the maximum dimension of this implementation is 26
/// (assuming that the size of \c int is 32 bit).
/// This graph type fully conforms to the \ref concepts::Graph
class HypercubeGraph : public ExtendedHypercubeGraphBase {
typedef ExtendedHypercubeGraphBase Parent;
/// \brief Constructs a hypercube graph with \c dim dimensions.
/// Constructs a hypercube graph with \c dim dimensions.
HypercubeGraph(int dim) { construct(dim); }
/// \brief The number of dimensions.
/// Gives back the number of dimensions.
return Parent::dimension();
/// \brief Returns \c true if the n'th bit of the node is one.
/// Returns \c true if the n'th bit of the node is one.
bool projection(Node node, int n) const {
return Parent::projection(node, n);
/// \brief The dimension id of an edge.
/// Gives back the dimension id of the given edge.
/// It is in the [0..dim-1] range.
int dimension(Edge edge) const {
return Parent::dimension(edge);
/// \brief The dimension id of an arc.
/// Gives back the dimension id of the given arc.
/// It is in the [0..dim-1] range.
int dimension(Arc arc) const {
return Parent::dimension(arc);
/// \brief The index of a node.
/// Gives back the index of the given node.
/// The lower bits of the integer describes the node.
int index(Node node) const {
return Parent::index(node);
/// \brief Gives back a node by its index.
/// Gives back a node by its index.
Node operator()(int ix) const {
return Parent::operator()(ix);
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Linear combination map.
/// This map makes possible to give back a linear combination
/// for each node. It works like the \c std::accumulate function,
/// so it accumulates the \c bf binary function with the \c fv first
/// value. The map accumulates only on that positions (dimensions)
/// where the index of the node is one. The values that have to be
/// accumulated should be given by the \c begin and \c end iterators
/// and the length of this range should be equal to the dimension
/// HypercubeGraph graph(DIM);
/// dim2::Point<double> base[DIM];
/// for (int k = 0; k < DIM; ++k) {
/// HypercubeGraph::HyperMap<dim2::Point<double> >
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
template <typename T, typename BF = std::plus<T> >
/// \brief The key type of the map
/// \brief The value type of the map
/// \brief Constructor for HyperMap.
/// Construct a HyperMap for the given graph. The values that have
/// to be accumulated should be given by the \c begin and \c end
/// iterators and the length of this range should be equal to the
/// dimension number of the graph.
/// This map accumulates the \c bf binary function with the \c fv
/// first value on that positions (dimensions) where the index of
HyperMap(const Graph& graph, It begin, It end,
T fv = 0, const BF& bf = BF())
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
LEMON_ASSERT(_values.size() == graph.dimension(),
/// \brief The partial accumulated value.
/// Gives back the partial accumulated value.
Value operator[](const Key& k) const {
Value val = _first_value;
int id = _graph.index(k);
val = _bin_func(val, _values[n]);