Location: LEMON/LEMON-official/lemon/suurballe.h - annotation
Load file history
Unify the sources (#339)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | r463:88ed40ad0d4f r357:2f64c4a692a8 r463:88ed40ad0d4f r357:2f64c4a692a8 r964:141f9c0db4a3 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r566:c786cd201266 r910:9a7e4e606f83 r566:c786cd201266 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r964:141f9c0db4a3 r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r909:ec0b1b423b8b r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r606:c5fd2d996909 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r908:30c77d1c0cba r357:2f64c4a692a8 r909:ec0b1b423b8b r670:7c1324b35d89 r358:7f26c4b32651 r947:abb95d48e89e r358:7f26c4b32651 r670:7c1324b35d89 r947:abb95d48e89e r947:abb95d48e89e r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r606:c5fd2d996909 r357:2f64c4a692a8 r357:2f64c4a692a8 r606:c5fd2d996909 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r947:abb95d48e89e r947:abb95d48e89e r606:c5fd2d996909 r947:abb95d48e89e r606:c5fd2d996909 r947:abb95d48e89e r947:abb95d48e89e r670:7c1324b35d89 r947:abb95d48e89e r670:7c1324b35d89 r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r670:7c1324b35d89 r947:abb95d48e89e r947:abb95d48e89e r357:2f64c4a692a8 r357:2f64c4a692a8 r463:88ed40ad0d4f r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r964:141f9c0db4a3 r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r964:141f9c0db4a3 r909:ec0b1b423b8b r964:141f9c0db4a3 r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r964:141f9c0db4a3 r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r964:141f9c0db4a3 r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r964:141f9c0db4a3 r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r947:abb95d48e89e r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r463:88ed40ad0d4f r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r964:141f9c0db4a3 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r357:2f64c4a692a8 r955:a93f1a27d831 r955:a93f1a27d831 r955:a93f1a27d831 r955:a93f1a27d831 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r910:9a7e4e606f83 r910:9a7e4e606f83 r908:30c77d1c0cba r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r910:9a7e4e606f83 r910:9a7e4e606f83 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r606:c5fd2d996909 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r606:c5fd2d996909 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r631:33c6b6e755cd r357:2f64c4a692a8 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r357:2f64c4a692a8 r910:9a7e4e606f83 r910:9a7e4e606f83 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r670:7c1324b35d89 r910:9a7e4e606f83 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r910:9a7e4e606f83 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r910:9a7e4e606f83 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r909:ec0b1b423b8b r670:7c1324b35d89 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r964:141f9c0db4a3 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r357:2f64c4a692a8 r358:7f26c4b32651 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r358:7f26c4b32651 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r909:ec0b1b423b8b r909:ec0b1b423b8b r964:141f9c0db4a3 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r964:141f9c0db4a3 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r910:9a7e4e606f83 r670:7c1324b35d89 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r463:88ed40ad0d4f r358:7f26c4b32651 r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r909:ec0b1b423b8b r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r358:7f26c4b32651 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r670:7c1324b35d89 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r358:7f26c4b32651 r358:7f26c4b32651 r670:7c1324b35d89 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r358:7f26c4b32651 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r358:7f26c4b32651 r357:2f64c4a692a8 r670:7c1324b35d89 r357:2f64c4a692a8 r357:2f64c4a692a8 r358:7f26c4b32651 r358:7f26c4b32651 r907:c67e235c832f r909:ec0b1b423b8b r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 r357:2f64c4a692a8 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_SUURBALLE_H
#define LEMON_SUURBALLE_H
///\ingroup shortest_path
///\file
///\brief An algorithm for finding arc-disjoint paths between two
/// nodes having minimum total length.
#include <vector>
#include <limits>
#include <lemon/bin_heap.h>
#include <lemon/path.h>
#include <lemon/list_graph.h>
#include <lemon/dijkstra.h>
#include <lemon/maps.h>
namespace lemon {
/// \brief Default traits class of Suurballe algorithm.
///
/// Default traits class of Suurballe algorithm.
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam LEN The type of the length map.
/// The default value is <tt>GR::ArcMap<int></tt>.
#ifdef DOXYGEN
template <typename GR, typename LEN>
#else
template < typename GR,
typename LEN = typename GR::template ArcMap<int> >
#endif
struct SuurballeDefaultTraits
{
/// The type of the digraph.
typedef GR Digraph;
/// The type of the length map.
typedef LEN LengthMap;
/// The type of the lengths.
typedef typename LEN::Value Length;
/// The type of the flow map.
typedef typename GR::template ArcMap<int> FlowMap;
/// The type of the potential map.
typedef typename GR::template NodeMap<Length> PotentialMap;
/// \brief The path type
///
/// The type used for storing the found arc-disjoint paths.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addBack() function.
typedef lemon::Path<Digraph> Path;
/// The cross reference type used for the heap.
typedef typename GR::template NodeMap<int> HeapCrossRef;
/// \brief The heap type used for internal Dijkstra computations.
///
/// The type of the heap used for internal Dijkstra computations.
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept
/// and its priority type must be \c Length.
typedef BinHeap<Length, HeapCrossRef> Heap;
};
/// \addtogroup shortest_path
/// @{
/// \brief Algorithm for finding arc-disjoint paths between two nodes
/// having minimum total length.
///
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for
/// finding arc-disjoint paths having minimum total length (cost)
/// from a given source node to a given target node in a digraph.
///
/// Note that this problem is a special case of the \ref min_cost_flow
/// "minimum cost flow problem". This implementation is actually an
/// efficient specialized version of the \ref CapacityScaling
/// "successive shortest path" algorithm directly for this problem.
/// Therefore this class provides query functions for flow values and
/// node potentials (the dual solution) just like the minimum cost flow
/// algorithms.
///
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam LEN The type of the length map.
/// The default value is <tt>GR::ArcMap<int></tt>.
///
/// \warning Length values should be \e non-negative.
///
/// \note For finding \e node-disjoint paths, this algorithm can be used
/// along with the \ref SplitNodes adaptor.
#ifdef DOXYGEN
template <typename GR, typename LEN, typename TR>
#else
template < typename GR,
typename LEN = typename GR::template ArcMap<int>,
typename TR = SuurballeDefaultTraits<GR, LEN> >
#endif
class Suurballe
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef ConstMap<Arc, int> ConstArcMap;
typedef typename GR::template NodeMap<Arc> PredMap;
public:
/// The type of the digraph.
typedef typename TR::Digraph Digraph;
/// The type of the length map.
typedef typename TR::LengthMap LengthMap;
/// The type of the lengths.
typedef typename TR::Length Length;
/// The type of the flow map.
typedef typename TR::FlowMap FlowMap;
/// The type of the potential map.
typedef typename TR::PotentialMap PotentialMap;
/// The type of the path structures.
typedef typename TR::Path Path;
/// The cross reference type used for the heap.
typedef typename TR::HeapCrossRef HeapCrossRef;
/// The heap type used for internal Dijkstra computations.
typedef typename TR::Heap Heap;
/// The \ref SuurballeDefaultTraits "traits class" of the algorithm.
typedef TR Traits;
private:
// ResidualDijkstra is a special implementation of the
// Dijkstra algorithm for finding shortest paths in the
// residual network with respect to the reduced arc lengths
// and modifying the node potentials according to the
// distance of the nodes.
class ResidualDijkstra
{
private:
const Digraph &_graph;
const LengthMap &_length;
const FlowMap &_flow;
PotentialMap &_pi;
PredMap &_pred;
Node _s;
Node _t;
PotentialMap _dist;
std::vector<Node> _proc_nodes;
public:
// Constructor
ResidualDijkstra(Suurballe &srb) :
_graph(srb._graph), _length(srb._length),
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred),
_s(srb._s), _t(srb._t), _dist(_graph) {}
// Run the algorithm and return true if a path is found
// from the source node to the target node.
bool run(int cnt) {
return cnt == 0 ? startFirst() : start();
}
private:
// Execute the algorithm for the first time (the flow and potential
// functions have to be identically zero).
bool startFirst() {
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
Heap heap(heap_cross_ref);
heap.push(_s, 0);
_pred[_s] = INVALID;
_proc_nodes.clear();
// Process nodes
while (!heap.empty() && heap.top() != _t) {
Node u = heap.top(), v;
Length d = heap.prio(), dn;
_dist[u] = heap.prio();
_proc_nodes.push_back(u);
heap.pop();
// Traverse outgoing arcs
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
v = _graph.target(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d + _length[e]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
dn = d + _length[e];
if (dn < heap[v]) {
heap.decrease(v, dn);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
if (heap.empty()) return false;
// Update potentials of processed nodes
Length t_dist = heap.prio();
for (int i = 0; i < int(_proc_nodes.size()); ++i)
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist;
return true;
}
// Execute the algorithm.
bool start() {
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
Heap heap(heap_cross_ref);
heap.push(_s, 0);
_pred[_s] = INVALID;
_proc_nodes.clear();
// Process nodes
while (!heap.empty() && heap.top() != _t) {
Node u = heap.top(), v;
Length d = heap.prio() + _pi[u], dn;
_dist[u] = heap.prio();
_proc_nodes.push_back(u);
heap.pop();
// Traverse outgoing arcs
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
if (_flow[e] == 0) {
v = _graph.target(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d + _length[e] - _pi[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
dn = d + _length[e] - _pi[v];
if (dn < heap[v]) {
heap.decrease(v, dn);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
// Traverse incoming arcs
for (InArcIt e(_graph, u); e != INVALID; ++e) {
if (_flow[e] == 1) {
v = _graph.source(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d - _length[e] - _pi[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
dn = d - _length[e] - _pi[v];
if (dn < heap[v]) {
heap.decrease(v, dn);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
}
if (heap.empty()) return false;
// Update potentials of processed nodes
Length t_dist = heap.prio();
for (int i = 0; i < int(_proc_nodes.size()); ++i)
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
return true;
}
}; //class ResidualDijkstra
public:
/// \name Named Template Parameters
/// @{
template <typename T>
struct SetFlowMapTraits : public Traits {
typedef T FlowMap;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c FlowMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c FlowMap type.
template <typename T>
struct SetFlowMap
: public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create;
};
template <typename T>
struct SetPotentialMapTraits : public Traits {
typedef T PotentialMap;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c PotentialMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c PotentialMap type.
template <typename T>
struct SetPotentialMap
: public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create;
};
template <typename T>
struct SetPathTraits : public Traits {
typedef T Path;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c %Path type.
///
/// \ref named-templ-param "Named parameter" for setting \c %Path type.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addBack() function.
template <typename T>
struct SetPath
: public Suurballe<GR, LEN, SetPathTraits<T> > {
typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
};
template <typename H, typename CR>
struct SetHeapTraits : public Traits {
typedef H Heap;
typedef CR HeapCrossRef;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c Heap and \c HeapCrossRef types.
///
/// \ref named-templ-param "Named parameter" for setting \c Heap
/// and \c HeapCrossRef types with automatic allocation.
/// They will be used for internal Dijkstra computations.
/// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
/// concept and its priority type must be \c Length.
template <typename H,
typename CR = typename Digraph::template NodeMap<int> >
struct SetHeap
: public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create;
};
/// @}
private:
// The digraph the algorithm runs on
const Digraph &_graph;
// The length map
const LengthMap &_length;
// Arc map of the current flow
FlowMap *_flow;
bool _local_flow;
// Node map of the current potentials
PotentialMap *_potential;
bool _local_potential;
// The source node
Node _s;
// The target node
Node _t;
// Container to store the found paths
std::vector<Path> _paths;
int _path_num;
// The pred arc map
PredMap _pred;
// Data for full init
PotentialMap *_init_dist;
PredMap *_init_pred;
bool _full_init;
protected:
Suurballe() {}
public:
/// \brief Constructor.
///
/// Constructor.
///
/// \param graph The digraph the algorithm runs on.
/// \param length The length (cost) values of the arcs.
Suurballe( const Digraph &graph,
const LengthMap &length ) :
_graph(graph), _length(length), _flow(0), _local_flow(false),
_potential(0), _local_potential(false), _pred(graph),
_init_dist(0), _init_pred(0)
{}
/// Destructor.
~Suurballe() {
if (_local_flow) delete _flow;
if (_local_potential) delete _potential;
delete _init_dist;
delete _init_pred;
}
/// \brief Set the flow map.
///
/// This function sets the flow map.
/// If it is not used before calling \ref run() or \ref init(),
/// an instance will be allocated automatically. The destructor
/// deallocates this automatically allocated map, of course.
///
/// The found flow contains only 0 and 1 values, since it is the
/// union of the found arc-disjoint paths.
///
/// \return <tt>(*this)</tt>
Suurballe& flowMap(FlowMap &map) {
if (_local_flow) {
delete _flow;
_local_flow = false;
}
_flow = ↦
return *this;
}
/// \brief Set the potential map.
///
/// This function sets the potential map.
/// If it is not used before calling \ref run() or \ref init(),
/// an instance will be allocated automatically. The destructor
/// deallocates this automatically allocated map, of course.
///
/// The node potentials provide the dual solution of the underlying
/// \ref min_cost_flow "minimum cost flow problem".
///
/// \return <tt>(*this)</tt>
Suurballe& potentialMap(PotentialMap &map) {
if (_local_potential) {
delete _potential;
_local_potential = false;
}
_potential = ↦
return *this;
}
/// \name Execution Control
/// The simplest way to execute the algorithm is to call the run()
/// function.\n
/// If you need to execute the algorithm many times using the same
/// source node, then you may call fullInit() once and start()
/// for each target node.\n
/// If you only need the flow that is the union of the found
/// arc-disjoint paths, then you may call findFlow() instead of
/// start().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
///
/// \param s The source node.
/// \param t The target node.
/// \param k The number of paths to be found.
///
/// \return \c k if there are at least \c k arc-disjoint paths from
/// \c s to \c t in the digraph. Otherwise it returns the number of
/// arc-disjoint paths found.
///
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
/// just a shortcut of the following code.
/// \code
/// s.init(s);
/// s.start(t, k);
/// \endcode
int run(const Node& s, const Node& t, int k = 2) {
init(s);
start(t, k);
return _path_num;
}
/// \brief Initialize the algorithm.
///
/// This function initializes the algorithm with the given source node.
///
/// \param s The source node.
void init(const Node& s) {
_s = s;
// Initialize maps
if (!_flow) {
_flow = new FlowMap(_graph);
_local_flow = true;
}
if (!_potential) {
_potential = new PotentialMap(_graph);
_local_potential = true;
}
_full_init = false;
}
/// \brief Initialize the algorithm and perform Dijkstra.
///
/// This function initializes the algorithm and performs a full
/// Dijkstra search from the given source node. It makes consecutive
/// executions of \ref start() "start(t, k)" faster, since they
/// have to perform %Dijkstra only k-1 times.
///
/// This initialization is usually worth using instead of \ref init()
/// if the algorithm is executed many times using the same source node.
///
/// \param s The source node.
void fullInit(const Node& s) {
// Initialize maps
init(s);
if (!_init_dist) {
_init_dist = new PotentialMap(_graph);
}
if (!_init_pred) {
_init_pred = new PredMap(_graph);
}
// Run a full Dijkstra
typename Dijkstra<Digraph, LengthMap>
::template SetStandardHeap<Heap>
::template SetDistMap<PotentialMap>
::template SetPredMap<PredMap>
::Create dijk(_graph, _length);
dijk.distMap(*_init_dist).predMap(*_init_pred);
dijk.run(s);
_full_init = true;
}
/// \brief Execute the algorithm.
///
/// This function executes the algorithm.
///
/// \param t The target node.
/// \param k The number of paths to be found.
///
/// \return \c k if there are at least \c k arc-disjoint paths from
/// \c s to \c t in the digraph. Otherwise it returns the number of
/// arc-disjoint paths found.
///
/// \note Apart from the return value, <tt>s.start(t, k)</tt> is
/// just a shortcut of the following code.
/// \code
/// s.findFlow(t, k);
/// s.findPaths();
/// \endcode
int start(const Node& t, int k = 2) {
findFlow(t, k);
findPaths();
return _path_num;
}
/// \brief Execute the algorithm to find an optimal flow.
///
/// This function executes the successive shortest path algorithm to
/// find a minimum cost flow, which is the union of \c k (or less)
/// arc-disjoint paths.
///
/// \param t The target node.
/// \param k The number of paths to be found.
///
/// \return \c k if there are at least \c k arc-disjoint paths from
/// the source node to the given node \c t in the digraph.
/// Otherwise it returns the number of arc-disjoint paths found.
///
/// \pre \ref init() must be called before using this function.
int findFlow(const Node& t, int k = 2) {
_t = t;
ResidualDijkstra dijkstra(*this);
// Initialization
for (ArcIt e(_graph); e != INVALID; ++e) {
(*_flow)[e] = 0;
}
if (_full_init) {
for (NodeIt n(_graph); n != INVALID; ++n) {
(*_potential)[n] = (*_init_dist)[n];
}
Node u = _t;
Arc e;
while ((e = (*_init_pred)[u]) != INVALID) {
(*_flow)[e] = 1;
u = _graph.source(e);
}
_path_num = 1;
} else {
for (NodeIt n(_graph); n != INVALID; ++n) {
(*_potential)[n] = 0;
}
_path_num = 0;
}
// Find shortest paths
while (_path_num < k) {
// Run Dijkstra
if (!dijkstra.run(_path_num)) break;
++_path_num;
// Set the flow along the found shortest path
Node u = _t;
Arc e;
while ((e = _pred[u]) != INVALID) {
if (u == _graph.target(e)) {
(*_flow)[e] = 1;
u = _graph.source(e);
} else {
(*_flow)[e] = 0;
u = _graph.target(e);
}
}
}
return _path_num;
}
/// \brief Compute the paths from the flow.
///
/// This function computes arc-disjoint paths from the found minimum
/// cost flow, which is the union of them.
///
/// \pre \ref init() and \ref findFlow() must be called before using
/// this function.
void findPaths() {
FlowMap res_flow(_graph);
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
_paths.clear();
_paths.resize(_path_num);
for (int i = 0; i < _path_num; ++i) {
Node n = _s;
while (n != _t) {
OutArcIt e(_graph, n);
for ( ; res_flow[e] == 0; ++e) ;
n = _graph.target(e);
_paths[i].addBack(e);
res_flow[e] = 0;
}
}
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.
/// \n The algorithm should be executed before using them.
/// @{
/// \brief Return the total length of the found paths.
///
/// This function returns the total length of the found paths, i.e.
/// the total cost of the found flow.
/// The complexity of the function is O(e).
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
Length totalLength() const {
Length c = 0;
for (ArcIt e(_graph); e != INVALID; ++e)
c += (*_flow)[e] * _length[e];
return c;
}
/// \brief Return the flow value on the given arc.
///
/// This function returns the flow value on the given arc.
/// It is \c 1 if the arc is involved in one of the found arc-disjoint
/// paths, otherwise it is \c 0.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
int flow(const Arc& arc) const {
return (*_flow)[arc];
}
/// \brief Return a const reference to an arc map storing the
/// found flow.
///
/// This function returns a const reference to an arc map storing
/// the flow that is the union of the found arc-disjoint paths.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
const FlowMap& flowMap() const {
return *_flow;
}
/// \brief Return the potential of the given node.
///
/// This function returns the potential of the given node.
/// The node potentials provide the dual solution of the
/// underlying \ref min_cost_flow "minimum cost flow problem".
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
Length potential(const Node& node) const {
return (*_potential)[node];
}
/// \brief Return a const reference to a node map storing the
/// found potentials (the dual solution).
///
/// This function returns a const reference to a node map storing
/// the found potentials that provide the dual solution of the
/// underlying \ref min_cost_flow "minimum cost flow problem".
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
const PotentialMap& potentialMap() const {
return *_potential;
}
/// \brief Return the number of the found paths.
///
/// This function returns the number of the found paths.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
int pathNum() const {
return _path_num;
}
/// \brief Return a const reference to the specified path.
///
/// This function returns a const reference to the specified path.
///
/// \param i The function returns the <tt>i</tt>-th path.
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
///
/// \pre \ref run() or \ref findPaths() must be called before using
/// this function.
const Path& path(int i) const {
return _paths[i];
}
/// @}
}; //class Suurballe
///@}
} //namespace lemon
#endif //LEMON_SUURBALLE_H
|