Location: LEMON/LEMON-official/lemon/hao_orlin.h - annotation
Load file history
Better Win CodeBlock/MinGW support (#418)
- Remove -ansi compilation flag
- Don't include sys/times.h when WIN32 is defined
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 | r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r463:88ed40ad0d4f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r606:c5fd2d996909 r425:b8ce15103485 r606:c5fd2d996909 r425:b8ce15103485 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r644:2ca0cdb5f366 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r463:88ed40ad0d4f r427:01c443515ad2 r628:aa1804409f29 r425:b8ce15103485 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r425:b8ce15103485 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r628:aa1804409f29 r427:01c443515ad2 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r427:01c443515ad2 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r644:2ca0cdb5f366 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r463:88ed40ad0d4f r427:01c443515ad2 r628:aa1804409f29 r425:b8ce15103485 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r425:b8ce15103485 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r427:01c443515ad2 r628:aa1804409f29 r427:01c443515ad2 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r427:01c443515ad2 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r628:aa1804409f29 r628:aa1804409f29 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r606:c5fd2d996909 r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r427:01c443515ad2 r427:01c443515ad2 r425:b8ce15103485 r427:01c443515ad2 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r428:7030149efed2 r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r643:293551ad254f r425:b8ce15103485 r643:293551ad254f r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 r425:b8ce15103485 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_HAO_ORLIN_H
#define LEMON_HAO_ORLIN_H
#include <vector>
#include <list>
#include <limits>
#include <lemon/maps.h>
#include <lemon/core.h>
#include <lemon/tolerance.h>
/// \file
/// \ingroup min_cut
/// \brief Implementation of the Hao-Orlin algorithm.
///
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut
/// in a digraph.
namespace lemon {
/// \ingroup min_cut
///
/// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph.
///
/// This class implements the Hao-Orlin algorithm for finding a minimum
/// value cut in a directed graph \f$D=(V,A)\f$.
/// It takes a fixed node \f$ source \in V \f$ and
/// consists of two phases: in the first phase it determines a
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing
/// capacity) and in the second phase it determines a minimum cut
/// with \f$ source \f$ on the sink-side (i.e. a set
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing
/// capacity). Obviously, the smaller of these two cuts will be a
/// minimum cut of \f$ D \f$. The algorithm is a modified
/// preflow push-relabel algorithm. Our implementation calculates
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
/// purpose of such algorithm is e.g. testing network reliability.
///
/// For an undirected graph you can run just the first phase of the
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki,
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$
/// time. It is implemented in the NagamochiIbaraki algorithm class.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// \tparam CAP The type of the arc map containing the capacities,
/// which can be any numreric type. The default map type is
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam TOL Tolerance class for handling inexact computations. The
/// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>".
#ifdef DOXYGEN
template <typename GR, typename CAP, typename TOL>
#else
template <typename GR,
typename CAP = typename GR::template ArcMap<int>,
typename TOL = Tolerance<typename CAP::Value> >
#endif
class HaoOrlin {
public:
/// The digraph type of the algorithm
typedef GR Digraph;
/// The capacity map type of the algorithm
typedef CAP CapacityMap;
/// The tolerance type of the algorithm
typedef TOL Tolerance;
private:
typedef typename CapacityMap::Value Value;
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
const Digraph& _graph;
const CapacityMap* _capacity;
typedef typename Digraph::template ArcMap<Value> FlowMap;
FlowMap* _flow;
Node _source;
int _node_num;
// Bucketing structure
std::vector<Node> _first, _last;
typename Digraph::template NodeMap<Node>* _next;
typename Digraph::template NodeMap<Node>* _prev;
typename Digraph::template NodeMap<bool>* _active;
typename Digraph::template NodeMap<int>* _bucket;
std::vector<bool> _dormant;
std::list<std::list<int> > _sets;
std::list<int>::iterator _highest;
typedef typename Digraph::template NodeMap<Value> ExcessMap;
ExcessMap* _excess;
typedef typename Digraph::template NodeMap<bool> SourceSetMap;
SourceSetMap* _source_set;
Value _min_cut;
typedef typename Digraph::template NodeMap<bool> MinCutMap;
MinCutMap* _min_cut_map;
Tolerance _tolerance;
public:
/// \brief Constructor
///
/// Constructor of the algorithm class.
HaoOrlin(const Digraph& graph, const CapacityMap& capacity,
const Tolerance& tolerance = Tolerance()) :
_graph(graph), _capacity(&capacity), _flow(0), _source(),
_node_num(), _first(), _last(), _next(0), _prev(0),
_active(0), _bucket(0), _dormant(), _sets(), _highest(),
_excess(0), _source_set(0), _min_cut(), _min_cut_map(0),
_tolerance(tolerance) {}
~HaoOrlin() {
if (_min_cut_map) {
delete _min_cut_map;
}
if (_source_set) {
delete _source_set;
}
if (_excess) {
delete _excess;
}
if (_next) {
delete _next;
}
if (_prev) {
delete _prev;
}
if (_active) {
delete _active;
}
if (_bucket) {
delete _bucket;
}
if (_flow) {
delete _flow;
}
}
private:
void activate(const Node& i) {
(*_active)[i] = true;
int bucket = (*_bucket)[i];
if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;
//unlace
(*_next)[(*_prev)[i]] = (*_next)[i];
if ((*_next)[i] != INVALID) {
(*_prev)[(*_next)[i]] = (*_prev)[i];
} else {
_last[bucket] = (*_prev)[i];
}
//lace
(*_next)[i] = _first[bucket];
(*_prev)[_first[bucket]] = i;
(*_prev)[i] = INVALID;
_first[bucket] = i;
}
void deactivate(const Node& i) {
(*_active)[i] = false;
int bucket = (*_bucket)[i];
if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
//unlace
(*_prev)[(*_next)[i]] = (*_prev)[i];
if ((*_prev)[i] != INVALID) {
(*_next)[(*_prev)[i]] = (*_next)[i];
} else {
_first[bucket] = (*_next)[i];
}
//lace
(*_prev)[i] = _last[bucket];
(*_next)[_last[bucket]] = i;
(*_next)[i] = INVALID;
_last[bucket] = i;
}
void addItem(const Node& i, int bucket) {
(*_bucket)[i] = bucket;
if (_last[bucket] != INVALID) {
(*_prev)[i] = _last[bucket];
(*_next)[_last[bucket]] = i;
(*_next)[i] = INVALID;
_last[bucket] = i;
} else {
(*_prev)[i] = INVALID;
_first[bucket] = i;
(*_next)[i] = INVALID;
_last[bucket] = i;
}
}
void findMinCutOut() {
for (NodeIt n(_graph); n != INVALID; ++n) {
(*_excess)[n] = 0;
(*_source_set)[n] = false;
}
for (ArcIt a(_graph); a != INVALID; ++a) {
(*_flow)[a] = 0;
}
int bucket_num = 0;
std::vector<Node> queue(_node_num);
int qfirst = 0, qlast = 0, qsep = 0;
{
typename Digraph::template NodeMap<bool> reached(_graph, false);
reached[_source] = true;
bool first_set = true;
for (NodeIt t(_graph); t != INVALID; ++t) {
if (reached[t]) continue;
_sets.push_front(std::list<int>());
queue[qlast++] = t;
reached[t] = true;
while (qfirst != qlast) {
if (qsep == qfirst) {
++bucket_num;
_sets.front().push_front(bucket_num);
_dormant[bucket_num] = !first_set;
_first[bucket_num] = _last[bucket_num] = INVALID;
qsep = qlast;
}
Node n = queue[qfirst++];
addItem(n, bucket_num);
for (InArcIt a(_graph, n); a != INVALID; ++a) {
Node u = _graph.source(a);
if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
reached[u] = true;
queue[qlast++] = u;
}
}
}
first_set = false;
}
++bucket_num;
(*_bucket)[_source] = 0;
_dormant[0] = true;
}
(*_source_set)[_source] = true;
Node target = _last[_sets.back().back()];
{
for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
if (_tolerance.positive((*_capacity)[a])) {
Node u = _graph.target(a);
(*_flow)[a] = (*_capacity)[a];
(*_excess)[u] += (*_capacity)[a];
if (!(*_active)[u] && u != _source) {
activate(u);
}
}
}
if ((*_active)[target]) {
deactivate(target);
}
_highest = _sets.back().begin();
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
}
while (true) {
while (_highest != _sets.back().end()) {
Node n = _first[*_highest];
Value excess = (*_excess)[n];
int next_bucket = _node_num;
int under_bucket;
if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
under_bucket = -1;
} else {
under_bucket = *(++std::list<int>::iterator(_highest));
}
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
Node v = _graph.target(a);
if (_dormant[(*_bucket)[v]]) continue;
Value rem = (*_capacity)[a] - (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
if ((*_bucket)[v] == under_bucket) {
if (!(*_active)[v] && v != target) {
activate(v);
}
if (!_tolerance.less(rem, excess)) {
(*_flow)[a] += excess;
(*_excess)[v] += excess;
excess = 0;
goto no_more_push;
} else {
excess -= rem;
(*_excess)[v] += rem;
(*_flow)[a] = (*_capacity)[a];
}
} else if (next_bucket > (*_bucket)[v]) {
next_bucket = (*_bucket)[v];
}
}
for (InArcIt a(_graph, n); a != INVALID; ++a) {
Node v = _graph.source(a);
if (_dormant[(*_bucket)[v]]) continue;
Value rem = (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
if ((*_bucket)[v] == under_bucket) {
if (!(*_active)[v] && v != target) {
activate(v);
}
if (!_tolerance.less(rem, excess)) {
(*_flow)[a] -= excess;
(*_excess)[v] += excess;
excess = 0;
goto no_more_push;
} else {
excess -= rem;
(*_excess)[v] += rem;
(*_flow)[a] = 0;
}
} else if (next_bucket > (*_bucket)[v]) {
next_bucket = (*_bucket)[v];
}
}
no_more_push:
(*_excess)[n] = excess;
if (excess != 0) {
if ((*_next)[n] == INVALID) {
typename std::list<std::list<int> >::iterator new_set =
_sets.insert(--_sets.end(), std::list<int>());
new_set->splice(new_set->end(), _sets.back(),
_sets.back().begin(), ++_highest);
for (std::list<int>::iterator it = new_set->begin();
it != new_set->end(); ++it) {
_dormant[*it] = true;
}
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
} else if (next_bucket == _node_num) {
_first[(*_bucket)[n]] = (*_next)[n];
(*_prev)[(*_next)[n]] = INVALID;
std::list<std::list<int> >::iterator new_set =
_sets.insert(--_sets.end(), std::list<int>());
new_set->push_front(bucket_num);
(*_bucket)[n] = bucket_num;
_first[bucket_num] = _last[bucket_num] = n;
(*_next)[n] = INVALID;
(*_prev)[n] = INVALID;
_dormant[bucket_num] = true;
++bucket_num;
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
} else {
_first[*_highest] = (*_next)[n];
(*_prev)[(*_next)[n]] = INVALID;
while (next_bucket != *_highest) {
--_highest;
}
if (_highest == _sets.back().begin()) {
_sets.back().push_front(bucket_num);
_dormant[bucket_num] = false;
_first[bucket_num] = _last[bucket_num] = INVALID;
++bucket_num;
}
--_highest;
(*_bucket)[n] = *_highest;
(*_next)[n] = _first[*_highest];
if (_first[*_highest] != INVALID) {
(*_prev)[_first[*_highest]] = n;
} else {
_last[*_highest] = n;
}
_first[*_highest] = n;
}
} else {
deactivate(n);
if (!(*_active)[_first[*_highest]]) {
++_highest;
if (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
_highest = _sets.back().end();
}
}
}
}
if ((*_excess)[target] < _min_cut) {
_min_cut = (*_excess)[target];
for (NodeIt i(_graph); i != INVALID; ++i) {
(*_min_cut_map)[i] = true;
}
for (std::list<int>::iterator it = _sets.back().begin();
it != _sets.back().end(); ++it) {
Node n = _first[*it];
while (n != INVALID) {
(*_min_cut_map)[n] = false;
n = (*_next)[n];
}
}
}
{
Node new_target;
if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
if ((*_next)[target] == INVALID) {
_last[(*_bucket)[target]] = (*_prev)[target];
new_target = (*_prev)[target];
} else {
(*_prev)[(*_next)[target]] = (*_prev)[target];
new_target = (*_next)[target];
}
if ((*_prev)[target] == INVALID) {
_first[(*_bucket)[target]] = (*_next)[target];
} else {
(*_next)[(*_prev)[target]] = (*_next)[target];
}
} else {
_sets.back().pop_back();
if (_sets.back().empty()) {
_sets.pop_back();
if (_sets.empty())
break;
for (std::list<int>::iterator it = _sets.back().begin();
it != _sets.back().end(); ++it) {
_dormant[*it] = false;
}
}
new_target = _last[_sets.back().back()];
}
(*_bucket)[target] = 0;
(*_source_set)[target] = true;
for (OutArcIt a(_graph, target); a != INVALID; ++a) {
Value rem = (*_capacity)[a] - (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
Node v = _graph.target(a);
if (!(*_active)[v] && !(*_source_set)[v]) {
activate(v);
}
(*_excess)[v] += rem;
(*_flow)[a] = (*_capacity)[a];
}
for (InArcIt a(_graph, target); a != INVALID; ++a) {
Value rem = (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
Node v = _graph.source(a);
if (!(*_active)[v] && !(*_source_set)[v]) {
activate(v);
}
(*_excess)[v] += rem;
(*_flow)[a] = 0;
}
target = new_target;
if ((*_active)[target]) {
deactivate(target);
}
_highest = _sets.back().begin();
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
}
}
}
void findMinCutIn() {
for (NodeIt n(_graph); n != INVALID; ++n) {
(*_excess)[n] = 0;
(*_source_set)[n] = false;
}
for (ArcIt a(_graph); a != INVALID; ++a) {
(*_flow)[a] = 0;
}
int bucket_num = 0;
std::vector<Node> queue(_node_num);
int qfirst = 0, qlast = 0, qsep = 0;
{
typename Digraph::template NodeMap<bool> reached(_graph, false);
reached[_source] = true;
bool first_set = true;
for (NodeIt t(_graph); t != INVALID; ++t) {
if (reached[t]) continue;
_sets.push_front(std::list<int>());
queue[qlast++] = t;
reached[t] = true;
while (qfirst != qlast) {
if (qsep == qfirst) {
++bucket_num;
_sets.front().push_front(bucket_num);
_dormant[bucket_num] = !first_set;
_first[bucket_num] = _last[bucket_num] = INVALID;
qsep = qlast;
}
Node n = queue[qfirst++];
addItem(n, bucket_num);
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
Node u = _graph.target(a);
if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
reached[u] = true;
queue[qlast++] = u;
}
}
}
first_set = false;
}
++bucket_num;
(*_bucket)[_source] = 0;
_dormant[0] = true;
}
(*_source_set)[_source] = true;
Node target = _last[_sets.back().back()];
{
for (InArcIt a(_graph, _source); a != INVALID; ++a) {
if (_tolerance.positive((*_capacity)[a])) {
Node u = _graph.source(a);
(*_flow)[a] = (*_capacity)[a];
(*_excess)[u] += (*_capacity)[a];
if (!(*_active)[u] && u != _source) {
activate(u);
}
}
}
if ((*_active)[target]) {
deactivate(target);
}
_highest = _sets.back().begin();
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
}
while (true) {
while (_highest != _sets.back().end()) {
Node n = _first[*_highest];
Value excess = (*_excess)[n];
int next_bucket = _node_num;
int under_bucket;
if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
under_bucket = -1;
} else {
under_bucket = *(++std::list<int>::iterator(_highest));
}
for (InArcIt a(_graph, n); a != INVALID; ++a) {
Node v = _graph.source(a);
if (_dormant[(*_bucket)[v]]) continue;
Value rem = (*_capacity)[a] - (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
if ((*_bucket)[v] == under_bucket) {
if (!(*_active)[v] && v != target) {
activate(v);
}
if (!_tolerance.less(rem, excess)) {
(*_flow)[a] += excess;
(*_excess)[v] += excess;
excess = 0;
goto no_more_push;
} else {
excess -= rem;
(*_excess)[v] += rem;
(*_flow)[a] = (*_capacity)[a];
}
} else if (next_bucket > (*_bucket)[v]) {
next_bucket = (*_bucket)[v];
}
}
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
Node v = _graph.target(a);
if (_dormant[(*_bucket)[v]]) continue;
Value rem = (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
if ((*_bucket)[v] == under_bucket) {
if (!(*_active)[v] && v != target) {
activate(v);
}
if (!_tolerance.less(rem, excess)) {
(*_flow)[a] -= excess;
(*_excess)[v] += excess;
excess = 0;
goto no_more_push;
} else {
excess -= rem;
(*_excess)[v] += rem;
(*_flow)[a] = 0;
}
} else if (next_bucket > (*_bucket)[v]) {
next_bucket = (*_bucket)[v];
}
}
no_more_push:
(*_excess)[n] = excess;
if (excess != 0) {
if ((*_next)[n] == INVALID) {
typename std::list<std::list<int> >::iterator new_set =
_sets.insert(--_sets.end(), std::list<int>());
new_set->splice(new_set->end(), _sets.back(),
_sets.back().begin(), ++_highest);
for (std::list<int>::iterator it = new_set->begin();
it != new_set->end(); ++it) {
_dormant[*it] = true;
}
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
} else if (next_bucket == _node_num) {
_first[(*_bucket)[n]] = (*_next)[n];
(*_prev)[(*_next)[n]] = INVALID;
std::list<std::list<int> >::iterator new_set =
_sets.insert(--_sets.end(), std::list<int>());
new_set->push_front(bucket_num);
(*_bucket)[n] = bucket_num;
_first[bucket_num] = _last[bucket_num] = n;
(*_next)[n] = INVALID;
(*_prev)[n] = INVALID;
_dormant[bucket_num] = true;
++bucket_num;
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
} else {
_first[*_highest] = (*_next)[n];
(*_prev)[(*_next)[n]] = INVALID;
while (next_bucket != *_highest) {
--_highest;
}
if (_highest == _sets.back().begin()) {
_sets.back().push_front(bucket_num);
_dormant[bucket_num] = false;
_first[bucket_num] = _last[bucket_num] = INVALID;
++bucket_num;
}
--_highest;
(*_bucket)[n] = *_highest;
(*_next)[n] = _first[*_highest];
if (_first[*_highest] != INVALID) {
(*_prev)[_first[*_highest]] = n;
} else {
_last[*_highest] = n;
}
_first[*_highest] = n;
}
} else {
deactivate(n);
if (!(*_active)[_first[*_highest]]) {
++_highest;
if (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
_highest = _sets.back().end();
}
}
}
}
if ((*_excess)[target] < _min_cut) {
_min_cut = (*_excess)[target];
for (NodeIt i(_graph); i != INVALID; ++i) {
(*_min_cut_map)[i] = false;
}
for (std::list<int>::iterator it = _sets.back().begin();
it != _sets.back().end(); ++it) {
Node n = _first[*it];
while (n != INVALID) {
(*_min_cut_map)[n] = true;
n = (*_next)[n];
}
}
}
{
Node new_target;
if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
if ((*_next)[target] == INVALID) {
_last[(*_bucket)[target]] = (*_prev)[target];
new_target = (*_prev)[target];
} else {
(*_prev)[(*_next)[target]] = (*_prev)[target];
new_target = (*_next)[target];
}
if ((*_prev)[target] == INVALID) {
_first[(*_bucket)[target]] = (*_next)[target];
} else {
(*_next)[(*_prev)[target]] = (*_next)[target];
}
} else {
_sets.back().pop_back();
if (_sets.back().empty()) {
_sets.pop_back();
if (_sets.empty())
break;
for (std::list<int>::iterator it = _sets.back().begin();
it != _sets.back().end(); ++it) {
_dormant[*it] = false;
}
}
new_target = _last[_sets.back().back()];
}
(*_bucket)[target] = 0;
(*_source_set)[target] = true;
for (InArcIt a(_graph, target); a != INVALID; ++a) {
Value rem = (*_capacity)[a] - (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
Node v = _graph.source(a);
if (!(*_active)[v] && !(*_source_set)[v]) {
activate(v);
}
(*_excess)[v] += rem;
(*_flow)[a] = (*_capacity)[a];
}
for (OutArcIt a(_graph, target); a != INVALID; ++a) {
Value rem = (*_flow)[a];
if (!_tolerance.positive(rem)) continue;
Node v = _graph.target(a);
if (!(*_active)[v] && !(*_source_set)[v]) {
activate(v);
}
(*_excess)[v] += rem;
(*_flow)[a] = 0;
}
target = new_target;
if ((*_active)[target]) {
deactivate(target);
}
_highest = _sets.back().begin();
while (_highest != _sets.back().end() &&
!(*_active)[_first[*_highest]]) {
++_highest;
}
}
}
}
public:
/// \name Execution Control
/// The simplest way to execute the algorithm is to use
/// one of the member functions called \ref run().
/// \n
/// If you need better control on the execution,
/// you have to call one of the \ref init() functions first, then
/// \ref calculateOut() and/or \ref calculateIn().
/// @{
/// \brief Initialize the internal data structures.
///
/// This function initializes the internal data structures. It creates
/// the maps and some bucket structures for the algorithm.
/// The first node is used as the source node for the push-relabel
/// algorithm.
void init() {
init(NodeIt(_graph));
}
/// \brief Initialize the internal data structures.
///
/// This function initializes the internal data structures. It creates
/// the maps and some bucket structures for the algorithm.
/// The given node is used as the source node for the push-relabel
/// algorithm.
void init(const Node& source) {
_source = source;
_node_num = countNodes(_graph);
_first.resize(_node_num);
_last.resize(_node_num);
_dormant.resize(_node_num);
if (!_flow) {
_flow = new FlowMap(_graph);
}
if (!_next) {
_next = new typename Digraph::template NodeMap<Node>(_graph);
}
if (!_prev) {
_prev = new typename Digraph::template NodeMap<Node>(_graph);
}
if (!_active) {
_active = new typename Digraph::template NodeMap<bool>(_graph);
}
if (!_bucket) {
_bucket = new typename Digraph::template NodeMap<int>(_graph);
}
if (!_excess) {
_excess = new ExcessMap(_graph);
}
if (!_source_set) {
_source_set = new SourceSetMap(_graph);
}
if (!_min_cut_map) {
_min_cut_map = new MinCutMap(_graph);
}
_min_cut = std::numeric_limits<Value>::max();
}
/// \brief Calculate a minimum cut with \f$ source \f$ on the
/// source-side.
///
/// This function calculates a minimum cut with \f$ source \f$ on the
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with
/// \f$ source \in X \f$ and minimal outgoing capacity).
///
/// \pre \ref init() must be called before using this function.
void calculateOut() {
findMinCutOut();
}
/// \brief Calculate a minimum cut with \f$ source \f$ on the
/// sink-side.
///
/// This function calculates a minimum cut with \f$ source \f$ on the
/// sink-side (i.e. a set \f$ X\subsetneq V \f$ with
/// \f$ source \notin X \f$ and minimal outgoing capacity).
///
/// \pre \ref init() must be called before using this function.
void calculateIn() {
findMinCutIn();
}
/// \brief Run the algorithm.
///
/// This function runs the algorithm. It finds nodes \c source and
/// \c target arbitrarily and then calls \ref init(), \ref calculateOut()
/// and \ref calculateIn().
void run() {
init();
calculateOut();
calculateIn();
}
/// \brief Run the algorithm.
///
/// This function runs the algorithm. It uses the given \c source node,
/// finds a proper \c target node and then calls the \ref init(),
/// \ref calculateOut() and \ref calculateIn().
void run(const Node& s) {
init(s);
calculateOut();
calculateIn();
}
/// @}
/// \name Query Functions
/// The result of the %HaoOrlin algorithm
/// can be obtained using these functions.\n
/// \ref run(), \ref calculateOut() or \ref calculateIn()
/// should be called before using them.
/// @{
/// \brief Return the value of the minimum cut.
///
/// This function returns the value of the minimum cut.
///
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn()
/// must be called before using this function.
Value minCutValue() const {
return _min_cut;
}
/// \brief Return a minimum cut.
///
/// This function sets \c cutMap to the characteristic vector of a
/// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$
/// with minimal outgoing capacity (i.e. \c cutMap will be \c true exactly
/// for the nodes of \f$ X \f$).
///
/// \param cutMap A \ref concepts::WriteMap "writable" node map with
/// \c bool (or convertible) value type.
///
/// \return The value of the minimum cut.
///
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn()
/// must be called before using this function.
template <typename CutMap>
Value minCutMap(CutMap& cutMap) const {
for (NodeIt it(_graph); it != INVALID; ++it) {
cutMap.set(it, (*_min_cut_map)[it]);
}
return _min_cut;
}
/// @}
}; //class HaoOrlin
} //namespace lemon
#endif //LEMON_HAO_ORLIN_H
|