Location: LEMON/LEMON-official/lemon/capacity_scaling.h - annotation
Load file history
Merge
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 | r964:141f9c0db4a3 r871:d3e32a777d0b r964:141f9c0db4a3 r871:d3e32a777d0b r964:141f9c0db4a3 r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r878:4b1b378823dc r873:78071e00de00 r878:4b1b378823dc r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r879:25804ef35064 r879:25804ef35064 r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r878:4b1b378823dc r891:75e6020b19b1 r878:4b1b378823dc r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r871:d3e32a777d0b r1025:140c953ad5d1 r1025:140c953ad5d1 r872:fa6f37d7a25b r1023:e0cef67fe565 r1023:e0cef67fe565 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r873:78071e00de00 r873:78071e00de00 r872:fa6f37d7a25b r873:78071e00de00 r872:fa6f37d7a25b r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r878:4b1b378823dc r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r964:141f9c0db4a3 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r903:f3bc4e9b5f3a r903:f3bc4e9b5f3a r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r876:3b53491bf643 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r964:141f9c0db4a3 r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r964:141f9c0db4a3 r872:fa6f37d7a25b r872:fa6f37d7a25b r964:141f9c0db4a3 r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r873:78071e00de00 r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r873:78071e00de00 r955:a93f1a27d831 r955:a93f1a27d831 r955:a93f1a27d831 r955:a93f1a27d831 r873:78071e00de00 r873:78071e00de00 r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r878:4b1b378823dc r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r898:75c97c3786d6 r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r878:4b1b378823dc r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r1023:e0cef67fe565 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r964:141f9c0db4a3 r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r873:78071e00de00 r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r871:d3e32a777d0b r876:3b53491bf643 r876:3b53491bf643 r876:3b53491bf643 r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r878:4b1b378823dc r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r898:75c97c3786d6 r876:3b53491bf643 r876:3b53491bf643 r876:3b53491bf643 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r898:75c97c3786d6 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r898:75c97c3786d6 r872:fa6f37d7a25b r898:75c97c3786d6 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r964:141f9c0db4a3 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r964:141f9c0db4a3 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r898:75c97c3786d6 r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r876:3b53491bf643 r887:072ec8120958 r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r964:141f9c0db4a3 r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r964:141f9c0db4a3 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r876:3b53491bf643 r871:d3e32a777d0b r903:f3bc4e9b5f3a r903:f3bc4e9b5f3a r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r903:f3bc4e9b5f3a r903:f3bc4e9b5f3a r903:f3bc4e9b5f3a r903:f3bc4e9b5f3a r871:d3e32a777d0b r871:d3e32a777d0b r876:3b53491bf643 r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r964:141f9c0db4a3 r872:fa6f37d7a25b r964:141f9c0db4a3 r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r873:78071e00de00 r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r877:fe80a8145653 r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r877:fe80a8145653 r877:fe80a8145653 r877:fe80a8145653 r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r876:3b53491bf643 r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r872:fa6f37d7a25b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b r871:d3e32a777d0b | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CAPACITY_SCALING_H
#define LEMON_CAPACITY_SCALING_H
/// \ingroup min_cost_flow_algs
///
/// \file
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/bin_heap.h>
namespace lemon {
/// \brief Default traits class of CapacityScaling algorithm.
///
/// Default traits class of CapacityScaling algorithm.
/// \tparam GR Digraph type.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values. By default it is \c int.
/// \tparam C The number type used for costs and potentials.
/// By default it is the same as \c V.
template <typename GR, typename V = int, typename C = V>
struct CapacityScalingDefaultTraits
{
/// The type of the digraph
typedef GR Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef V Value;
/// The type of the arc costs
typedef C Cost;
/// \brief The type of the heap used for internal Dijkstra computations.
///
/// The type of the heap used for internal Dijkstra computations.
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
/// its priority type must be \c Cost and its cross reference type
/// must be \ref RangeMap "RangeMap<int>".
typedef BinHeap<Cost, RangeMap<int> > Heap;
};
/// \addtogroup min_cost_flow_algs
/// @{
/// \brief Implementation of the Capacity Scaling algorithm for
/// finding a \ref min_cost_flow "minimum cost flow".
///
/// \ref CapacityScaling implements the capacity scaling version
/// of the successive shortest path algorithm for finding a
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
/// \ref edmondskarp72theoretical. It is an efficient dual
/// solution method.
///
/// Most of the parameters of the problem (except for the digraph)
/// can be given using separate functions, and the algorithm can be
/// executed using the \ref run() function. If some parameters are not
/// specified, then default values will be used.
///
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values in the algorithm. By default, it is \c int.
/// \tparam C The number type used for costs and potentials in the
/// algorithm. By default, it is the same as \c V.
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits
/// "CapacityScalingDefaultTraits<GR, V, C>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
///
/// \warning Both \c V and \c C must be signed number types.
/// \warning All input data (capacities, supply values, and costs) must
/// be integer.
/// \warning This algorithm does not support negative costs for
/// arcs having infinite upper bound.
#ifdef DOXYGEN
template <typename GR, typename V, typename C, typename TR>
#else
template < typename GR, typename V = int, typename C = V,
typename TR = CapacityScalingDefaultTraits<GR, V, C> >
#endif
class CapacityScaling
{
public:
/// The type of the digraph
typedef typename TR::Digraph Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef typename TR::Value Value;
/// The type of the arc costs
typedef typename TR::Cost Cost;
/// The type of the heap used for internal Dijkstra computations
typedef typename TR::Heap Heap;
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
typedef TR Traits;
public:
/// \brief Problem type constants for the \c run() function.
///
/// Enum type containing the problem type constants that can be
/// returned by the \ref run() function of the algorithm.
enum ProblemType {
/// The problem has no feasible solution (flow).
INFEASIBLE,
/// The problem has optimal solution (i.e. it is feasible and
/// bounded), and the algorithm has found optimal flow and node
/// potentials (primal and dual solutions).
OPTIMAL,
/// The digraph contains an arc of negative cost and infinite
/// upper bound. It means that the objective function is unbounded
/// on that arc, however, note that it could actually be bounded
/// over the feasible flows, but this algroithm cannot handle
/// these cases.
UNBOUNDED
};
private:
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<Value> ValueVector;
typedef std::vector<Cost> CostVector;
typedef std::vector<char> BoolVector;
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
private:
// Data related to the underlying digraph
const GR &_graph;
int _node_num;
int _arc_num;
int _res_arc_num;
int _root;
// Parameters of the problem
bool _have_lower;
Value _sum_supply;
// Data structures for storing the digraph
IntNodeMap _node_id;
IntArcMap _arc_idf;
IntArcMap _arc_idb;
IntVector _first_out;
BoolVector _forward;
IntVector _source;
IntVector _target;
IntVector _reverse;
// Node and arc data
ValueVector _lower;
ValueVector _upper;
CostVector _cost;
ValueVector _supply;
ValueVector _res_cap;
CostVector _pi;
ValueVector _excess;
IntVector _excess_nodes;
IntVector _deficit_nodes;
Value _delta;
int _factor;
IntVector _pred;
public:
/// \brief Constant for infinite upper bounds (capacities).
///
/// Constant for infinite upper bounds (capacities).
/// It is \c std::numeric_limits<Value>::infinity() if available,
/// \c std::numeric_limits<Value>::max() otherwise.
const Value INF;
private:
// Special implementation of the Dijkstra algorithm for finding
// shortest paths in the residual network of the digraph with
// respect to the reduced arc costs and modifying the node
// potentials according to the found distance labels.
class ResidualDijkstra
{
private:
int _node_num;
bool _geq;
const IntVector &_first_out;
const IntVector &_target;
const CostVector &_cost;
const ValueVector &_res_cap;
const ValueVector &_excess;
CostVector &_pi;
IntVector &_pred;
IntVector _proc_nodes;
CostVector _dist;
public:
ResidualDijkstra(CapacityScaling& cs) :
_node_num(cs._node_num), _geq(cs._sum_supply < 0),
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
_pred(cs._pred), _dist(cs._node_num)
{}
int run(int s, Value delta = 1) {
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
Heap heap(heap_cross_ref);
heap.push(s, 0);
_pred[s] = -1;
_proc_nodes.clear();
// Process nodes
while (!heap.empty() && _excess[heap.top()] > -delta) {
int u = heap.top(), v;
Cost d = heap.prio() + _pi[u], dn;
_dist[u] = heap.prio();
_proc_nodes.push_back(u);
heap.pop();
// Traverse outgoing residual arcs
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
for (int a = _first_out[u]; a != last_out; ++a) {
if (_res_cap[a] < delta) continue;
v = _target[a];
switch (heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d + _cost[a] - _pi[v]);
_pred[v] = a;
break;
case Heap::IN_HEAP:
dn = d + _cost[a] - _pi[v];
if (dn < heap[v]) {
heap.decrease(v, dn);
_pred[v] = a;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
if (heap.empty()) return -1;
// Update potentials of processed nodes
int t = heap.top();
Cost dt = heap.prio();
for (int i = 0; i < int(_proc_nodes.size()); ++i) {
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
}
return t;
}
}; //class ResidualDijkstra
public:
/// \name Named Template Parameters
/// @{
template <typename T>
struct SetHeapTraits : public Traits {
typedef T Heap;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c Heap type.
///
/// \ref named-templ-param "Named parameter" for setting \c Heap
/// type, which is used for internal Dijkstra computations.
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
/// its priority type must be \c Cost and its cross reference type
/// must be \ref RangeMap "RangeMap<int>".
template <typename T>
struct SetHeap
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
};
/// @}
protected:
CapacityScaling() {}
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param graph The digraph the algorithm runs on.
CapacityScaling(const GR& graph) :
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
INF(std::numeric_limits<Value>::has_infinity ?
std::numeric_limits<Value>::infinity() :
std::numeric_limits<Value>::max())
{
// Check the number types
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
"The flow type of CapacityScaling must be signed");
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
"The cost type of CapacityScaling must be signed");
// Reset data structures
reset();
}
/// \name Parameters
/// The parameters of the algorithm can be specified using these
/// functions.
/// @{
/// \brief Set the lower bounds on the arcs.
///
/// This function sets the lower bounds on the arcs.
/// If it is not used before calling \ref run(), the lower bounds
/// will be set to zero on all arcs.
///
/// \param map An arc map storing the lower bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template <typename LowerMap>
CapacityScaling& lowerMap(const LowerMap& map) {
_have_lower = true;
for (ArcIt a(_graph); a != INVALID; ++a) {
_lower[_arc_idf[a]] = map[a];
_lower[_arc_idb[a]] = map[a];
}
return *this;
}
/// \brief Set the upper bounds (capacities) on the arcs.
///
/// This function sets the upper bounds (capacities) on the arcs.
/// If it is not used before calling \ref run(), the upper bounds
/// will be set to \ref INF on all arcs (i.e. the flow value will be
/// unbounded from above).
///
/// \param map An arc map storing the upper bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename UpperMap>
CapacityScaling& upperMap(const UpperMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_upper[_arc_idf[a]] = map[a];
}
return *this;
}
/// \brief Set the costs of the arcs.
///
/// This function sets the costs of the arcs.
/// If it is not used before calling \ref run(), the costs
/// will be set to \c 1 on all arcs.
///
/// \param map An arc map storing the costs.
/// Its \c Value type must be convertible to the \c Cost type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename CostMap>
CapacityScaling& costMap(const CostMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_cost[_arc_idf[a]] = map[a];
_cost[_arc_idb[a]] = -map[a];
}
return *this;
}
/// \brief Set the supply values of the nodes.
///
/// This function sets the supply values of the nodes.
/// If neither this function nor \ref stSupply() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// \param map A node map storing the supply values.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename SupplyMap>
CapacityScaling& supplyMap(const SupplyMap& map) {
for (NodeIt n(_graph); n != INVALID; ++n) {
_supply[_node_id[n]] = map[n];
}
return *this;
}
/// \brief Set single source and target nodes and a supply value.
///
/// This function sets a single source node and a single target node
/// and the required flow value.
/// If neither this function nor \ref supplyMap() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// Using this function has the same effect as using \ref supplyMap()
/// with a map in which \c k is assigned to \c s, \c -k is
/// assigned to \c t and all other nodes have zero supply value.
///
/// \param s The source node.
/// \param t The target node.
/// \param k The required amount of flow from node \c s to node \c t
/// (i.e. the supply of \c s and the demand of \c t).
///
/// \return <tt>(*this)</tt>
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
for (int i = 0; i != _node_num; ++i) {
_supply[i] = 0;
}
_supply[_node_id[s]] = k;
_supply[_node_id[t]] = -k;
return *this;
}
/// @}
/// \name Execution control
/// The algorithm can be executed using \ref run().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// The paramters can be specified using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
/// For example,
/// \code
/// CapacityScaling<ListDigraph> cs(graph);
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// This function can be called more than once. All the given parameters
/// are kept for the next call, unless \ref resetParams() or \ref reset()
/// is used, thus only the modified parameters have to be set again.
/// If the underlying digraph was also modified after the construction
/// of the class (or the last \ref reset() call), then the \ref reset()
/// function must be called.
///
/// \param factor The capacity scaling factor. It must be larger than
/// one to use scaling. If it is less or equal to one, then scaling
/// will be disabled.
///
/// \return \c INFEASIBLE if no feasible flow exists,
/// \n \c OPTIMAL if the problem has optimal solution
/// (i.e. it is feasible and bounded), and the algorithm has found
/// optimal flow and node potentials (primal and dual solutions),
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
/// and infinite upper bound. It means that the objective function
/// is unbounded on that arc, however, note that it could actually be
/// bounded over the feasible flows, but this algroithm cannot handle
/// these cases.
///
/// \see ProblemType
/// \see resetParams(), reset()
ProblemType run(int factor = 4) {
_factor = factor;
ProblemType pt = init();
if (pt != OPTIMAL) return pt;
return start();
}
/// \brief Reset all the parameters that have been given before.
///
/// This function resets all the paramaters that have been given
/// before using functions \ref lowerMap(), \ref upperMap(),
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// For example,
/// \code
/// CapacityScaling<ListDigraph> cs(graph);
///
/// // First run
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
///
/// // Run again with modified cost map (resetParams() is not called,
/// // so only the cost map have to be set again)
/// cost[e] += 100;
/// cs.costMap(cost).run();
///
/// // Run again from scratch using resetParams()
/// // (the lower bounds will be set to zero on all arcs)
/// cs.resetParams();
/// cs.upperMap(capacity).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// \return <tt>(*this)</tt>
///
/// \see reset(), run()
CapacityScaling& resetParams() {
for (int i = 0; i != _node_num; ++i) {
_supply[i] = 0;
}
for (int j = 0; j != _res_arc_num; ++j) {
_lower[j] = 0;
_upper[j] = INF;
_cost[j] = _forward[j] ? 1 : -1;
}
_have_lower = false;
return *this;
}
/// \brief Reset the internal data structures and all the parameters
/// that have been given before.
///
/// This function resets the internal data structures and all the
/// paramaters that have been given before using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// See \ref resetParams() for examples.
///
/// \return <tt>(*this)</tt>
///
/// \see resetParams(), run()
CapacityScaling& reset() {
// Resize vectors
_node_num = countNodes(_graph);
_arc_num = countArcs(_graph);
_res_arc_num = 2 * (_arc_num + _node_num);
_root = _node_num;
++_node_num;
_first_out.resize(_node_num + 1);
_forward.resize(_res_arc_num);
_source.resize(_res_arc_num);
_target.resize(_res_arc_num);
_reverse.resize(_res_arc_num);
_lower.resize(_res_arc_num);
_upper.resize(_res_arc_num);
_cost.resize(_res_arc_num);
_supply.resize(_node_num);
_res_cap.resize(_res_arc_num);
_pi.resize(_node_num);
_excess.resize(_node_num);
_pred.resize(_node_num);
// Copy the graph
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_node_id[n] = i;
}
i = 0;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_first_out[i] = j;
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idf[a] = j;
_forward[j] = true;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idb[a] = j;
_forward[j] = false;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
_forward[j] = false;
_source[j] = i;
_target[j] = _root;
_reverse[j] = k;
_forward[k] = true;
_source[k] = _root;
_target[k] = i;
_reverse[k] = j;
++j; ++k;
}
_first_out[i] = j;
_first_out[_node_num] = k;
for (ArcIt a(_graph); a != INVALID; ++a) {
int fi = _arc_idf[a];
int bi = _arc_idb[a];
_reverse[fi] = bi;
_reverse[bi] = fi;
}
// Reset parameters
resetParams();
return *this;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The \ref run() function must be called before using them.
/// @{
/// \brief Return the total cost of the found flow.
///
/// This function returns the total cost of the found flow.
/// Its complexity is O(e).
///
/// \note The return type of the function can be specified as a
/// template parameter. For example,
/// \code
/// cs.totalCost<double>();
/// \endcode
/// It is useful if the total cost cannot be stored in the \c Cost
/// type of the algorithm, which is the default return type of the
/// function.
///
/// \pre \ref run() must be called before using this function.
template <typename Number>
Number totalCost() const {
Number c = 0;
for (ArcIt a(_graph); a != INVALID; ++a) {
int i = _arc_idb[a];
c += static_cast<Number>(_res_cap[i]) *
(-static_cast<Number>(_cost[i]));
}
return c;
}
#ifndef DOXYGEN
Cost totalCost() const {
return totalCost<Cost>();
}
#endif
/// \brief Return the flow on the given arc.
///
/// This function returns the flow on the given arc.
///
/// \pre \ref run() must be called before using this function.
Value flow(const Arc& a) const {
return _res_cap[_arc_idb[a]];
}
/// \brief Return the flow map (the primal solution).
///
/// This function copies the flow value on each arc into the given
/// map. The \c Value type of the algorithm must be convertible to
/// the \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename FlowMap>
void flowMap(FlowMap &map) const {
for (ArcIt a(_graph); a != INVALID; ++a) {
map.set(a, _res_cap[_arc_idb[a]]);
}
}
/// \brief Return the potential (dual value) of the given node.
///
/// This function returns the potential (dual value) of the
/// given node.
///
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& n) const {
return _pi[_node_id[n]];
}
/// \brief Return the potential map (the dual solution).
///
/// This function copies the potential (dual value) of each node
/// into the given map.
/// The \c Cost type of the algorithm must be convertible to the
/// \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename PotentialMap>
void potentialMap(PotentialMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map.set(n, _pi[_node_id[n]]);
}
}
/// @}
private:
// Initialize the algorithm
ProblemType init() {
if (_node_num <= 1) return INFEASIBLE;
// Check the sum of supply values
_sum_supply = 0;
for (int i = 0; i != _root; ++i) {
_sum_supply += _supply[i];
}
if (_sum_supply > 0) return INFEASIBLE;
// Initialize vectors
for (int i = 0; i != _root; ++i) {
_pi[i] = 0;
_excess[i] = _supply[i];
}
// Remove non-zero lower bounds
const Value MAX = std::numeric_limits<Value>::max();
int last_out;
if (_have_lower) {
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_forward[j]) {
Value c = _lower[j];
if (c >= 0) {
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
} else {
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
}
_excess[i] -= c;
_excess[_target[j]] += c;
} else {
_res_cap[j] = 0;
}
}
}
} else {
for (int j = 0; j != _res_arc_num; ++j) {
_res_cap[j] = _forward[j] ? _upper[j] : 0;
}
}
// Handle negative costs
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1] - 1;
for (int j = _first_out[i]; j != last_out; ++j) {
Value rc = _res_cap[j];
if (_cost[j] < 0 && rc > 0) {
if (rc >= MAX) return UNBOUNDED;
_excess[i] -= rc;
_excess[_target[j]] += rc;
_res_cap[j] = 0;
_res_cap[_reverse[j]] += rc;
}
}
}
// Handle GEQ supply type
if (_sum_supply < 0) {
_pi[_root] = 0;
_excess[_root] = -_sum_supply;
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int ra = _reverse[a];
_res_cap[a] = -_sum_supply + 1;
_res_cap[ra] = 0;
_cost[a] = 0;
_cost[ra] = 0;
}
} else {
_pi[_root] = 0;
_excess[_root] = 0;
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int ra = _reverse[a];
_res_cap[a] = 1;
_res_cap[ra] = 0;
_cost[a] = 0;
_cost[ra] = 0;
}
}
// Initialize delta value
if (_factor > 1) {
// With scaling
Value max_sup = 0, max_dem = 0, max_cap = 0;
for (int i = 0; i != _root; ++i) {
Value ex = _excess[i];
if ( ex > max_sup) max_sup = ex;
if (-ex > max_dem) max_dem = -ex;
int last_out = _first_out[i+1] - 1;
for (int j = _first_out[i]; j != last_out; ++j) {
if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
}
}
max_sup = std::min(std::min(max_sup, max_dem), max_cap);
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
} else {
// Without scaling
_delta = 1;
}
return OPTIMAL;
}
ProblemType start() {
// Execute the algorithm
ProblemType pt;
if (_delta > 1)
pt = startWithScaling();
else
pt = startWithoutScaling();
// Handle non-zero lower bounds
if (_have_lower) {
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
if (!_forward[j]) _res_cap[j] += _lower[j];
}
}
// Shift potentials if necessary
Cost pr = _pi[_root];
if (_sum_supply < 0 || pr > 0) {
for (int i = 0; i != _node_num; ++i) {
_pi[i] -= pr;
}
}
return pt;
}
// Execute the capacity scaling algorithm
ProblemType startWithScaling() {
// Perform capacity scaling phases
int s, t;
ResidualDijkstra _dijkstra(*this);
while (true) {
// Saturate all arcs not satisfying the optimality condition
int last_out;
for (int u = 0; u != _node_num; ++u) {
last_out = _sum_supply < 0 ?
_first_out[u+1] : _first_out[u+1] - 1;
for (int a = _first_out[u]; a != last_out; ++a) {
int v = _target[a];
Cost c = _cost[a] + _pi[u] - _pi[v];
Value rc = _res_cap[a];
if (c < 0 && rc >= _delta) {
_excess[u] -= rc;
_excess[v] += rc;
_res_cap[a] = 0;
_res_cap[_reverse[a]] += rc;
}
}
}
// Find excess nodes and deficit nodes
_excess_nodes.clear();
_deficit_nodes.clear();
for (int u = 0; u != _node_num; ++u) {
Value ex = _excess[u];
if (ex >= _delta) _excess_nodes.push_back(u);
if (ex <= -_delta) _deficit_nodes.push_back(u);
}
int next_node = 0, next_def_node = 0;
// Find augmenting shortest paths
while (next_node < int(_excess_nodes.size())) {
// Check deficit nodes
if (_delta > 1) {
bool delta_deficit = false;
for ( ; next_def_node < int(_deficit_nodes.size());
++next_def_node ) {
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
delta_deficit = true;
break;
}
}
if (!delta_deficit) break;
}
// Run Dijkstra in the residual network
s = _excess_nodes[next_node];
if ((t = _dijkstra.run(s, _delta)) == -1) {
if (_delta > 1) {
++next_node;
continue;
}
return INFEASIBLE;
}
// Augment along a shortest path from s to t
Value d = std::min(_excess[s], -_excess[t]);
int u = t;
int a;
if (d > _delta) {
while ((a = _pred[u]) != -1) {
if (_res_cap[a] < d) d = _res_cap[a];
u = _source[a];
}
}
u = t;
while ((a = _pred[u]) != -1) {
_res_cap[a] -= d;
_res_cap[_reverse[a]] += d;
u = _source[a];
}
_excess[s] -= d;
_excess[t] += d;
if (_excess[s] < _delta) ++next_node;
}
if (_delta == 1) break;
_delta = _delta <= _factor ? 1 : _delta / _factor;
}
return OPTIMAL;
}
// Execute the successive shortest path algorithm
ProblemType startWithoutScaling() {
// Find excess nodes
_excess_nodes.clear();
for (int i = 0; i != _node_num; ++i) {
if (_excess[i] > 0) _excess_nodes.push_back(i);
}
if (_excess_nodes.size() == 0) return OPTIMAL;
int next_node = 0;
// Find shortest paths
int s, t;
ResidualDijkstra _dijkstra(*this);
while ( _excess[_excess_nodes[next_node]] > 0 ||
++next_node < int(_excess_nodes.size()) )
{
// Run Dijkstra in the residual network
s = _excess_nodes[next_node];
if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
// Augment along a shortest path from s to t
Value d = std::min(_excess[s], -_excess[t]);
int u = t;
int a;
if (d > 1) {
while ((a = _pred[u]) != -1) {
if (_res_cap[a] < d) d = _res_cap[a];
u = _source[a];
}
}
u = t;
while ((a = _pred[u]) != -1) {
_res_cap[a] -= d;
_res_cap[_reverse[a]] += d;
u = _source[a];
}
_excess[s] -= d;
_excess[t] += d;
}
return OPTIMAL;
}
}; //class CapacityScaling
///@}
} //namespace lemon
#endif //LEMON_CAPACITY_SCALING_H
|