Location: LEMON/LEMON-official/lemon/bellman_ford.h - annotation
Load file history
Port Bellman-Ford algorithm from SVN -r3524 (#51)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 | r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 | /* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BELMANN_FORD_H
#define LEMON_BELMANN_FORD_H
/// \ingroup shortest_path
/// \file
/// \brief Bellman-Ford algorithm.
///
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <limits>
namespace lemon {
/// \brief Default OperationTraits for the BellmanFord algorithm class.
///
/// It defines all computational operations and constants which are
/// used in the Bellman-Ford algorithm. The default implementation
/// is based on the numeric_limits class. If the numeric type does not
/// have infinity value then the maximum value is used as extremal
/// infinity value.
template <
typename Value,
bool has_infinity = std::numeric_limits<Value>::has_infinity>
struct BellmanFordDefaultOperationTraits {
/// \brief Gives back the zero value of the type.
static Value zero() {
return static_cast<Value>(0);
}
/// \brief Gives back the positive infinity value of the type.
static Value infinity() {
return std::numeric_limits<Value>::infinity();
}
/// \brief Gives back the sum of the given two elements.
static Value plus(const Value& left, const Value& right) {
return left + right;
}
/// \brief Gives back true only if the first value less than the second.
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
template <typename Value>
struct BellmanFordDefaultOperationTraits<Value, false> {
static Value zero() {
return static_cast<Value>(0);
}
static Value infinity() {
return std::numeric_limits<Value>::max();
}
static Value plus(const Value& left, const Value& right) {
if (left == infinity() || right == infinity()) return infinity();
return left + right;
}
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
/// \brief Default traits class of BellmanFord class.
///
/// Default traits class of BellmanFord class.
/// \param _Digraph Digraph type.
/// \param _LegthMap Type of length map.
template<class _Digraph, class _LengthMap>
struct BellmanFordDefaultTraits {
/// The digraph type the algorithm runs on.
typedef _Digraph Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef _LengthMap LengthMap;
// The type of the length of the arcs.
typedef typename _LengthMap::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the infinity type on the given Value type
/// and the used operation.
/// \see BellmanFordDefaultOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last arcs of the
/// shortest paths.
///
/// The type of the map that stores the last
/// arcs of the shortest paths.
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
///
typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap;
/// \brief Instantiates a PredMap.
///
/// This function instantiates a \ref PredMap.
/// \param digraph is the digraph, to which we would like to define the PredMap.
static PredMap *createPredMap(const _Digraph& digraph) {
return new PredMap(digraph);
}
/// \brief The type of the map that stores the dists of the nodes.
///
/// The type of the map that stores the dists of the nodes.
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
///
typedef typename Digraph::template NodeMap<typename _LengthMap::Value>
DistMap;
/// \brief Instantiates a DistMap.
///
/// This function instantiates a \ref DistMap.
/// \param digraph is the digraph, to which we would like to define the
/// \ref DistMap
static DistMap *createDistMap(const _Digraph& digraph) {
return new DistMap(digraph);
}
};
/// \brief %BellmanFord algorithm class.
///
/// \ingroup shortest_path
/// This class provides an efficient implementation of \c Bellman-Ford
/// algorithm. The arc lengths are passed to the algorithm using a
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
/// kind of length.
///
/// The Bellman-Ford algorithm solves the shortest path from one node
/// problem when the arcs can have negative length but the digraph should
/// not contain cycles with negative sum of length. If we can assume
/// that all arc is non-negative in the digraph then the dijkstra algorithm
/// should be used rather.
///
/// The maximal time complexity of the algorithm is \f$ O(ne) \f$.
///
/// The type of the length is determined by the
/// \ref concepts::ReadMap::Value "Value" of the length map.
///
/// \param _Digraph The digraph type the algorithm runs on. The default value
/// is \ref ListDigraph. The value of _Digraph is not used directly by
/// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
/// \param _LengthMap This read-only ArcMap determines the lengths of the
/// arcs. The default map type is \ref concepts::Digraph::ArcMap
/// "Digraph::ArcMap<int>". The value of _LengthMap is not used directly
/// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
/// \param _Traits Traits class to set various data types used by the
/// algorithm. The default traits class is \ref BellmanFordDefaultTraits
/// "BellmanFordDefaultTraits<_Digraph,_LengthMap>". See \ref
/// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
/// class.
#ifdef DOXYGEN
template <typename _Digraph, typename _LengthMap, typename _Traits>
#else
template <typename _Digraph,
typename _LengthMap=typename _Digraph::template ArcMap<int>,
typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> >
#endif
class BellmanFord {
public:
typedef _Traits Traits;
///The type of the underlying digraph.
typedef typename _Traits::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
/// \brief The type of the length of the arcs.
typedef typename _Traits::LengthMap::Value Value;
/// \brief The type of the map that stores the arc lengths.
typedef typename _Traits::LengthMap LengthMap;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
typedef typename _Traits::PredMap PredMap;
/// \brief The type of the map that stores the dists of the nodes.
typedef typename _Traits::DistMap DistMap;
/// \brief The operation traits.
typedef typename _Traits::OperationTraits OperationTraits;
private:
/// Pointer to the underlying digraph.
const Digraph *digraph;
/// Pointer to the length map
const LengthMap *length;
///Pointer to the map of predecessors arcs.
PredMap *_pred;
///Indicates if \ref _pred is locally allocated (\c true) or not.
bool local_pred;
///Pointer to the map of distances.
DistMap *_dist;
///Indicates if \ref _dist is locally allocated (\c true) or not.
bool local_dist;
typedef typename Digraph::template NodeMap<bool> MaskMap;
MaskMap *_mask;
std::vector<Node> _process;
/// Creates the maps if necessary.
void create_maps() {
if(!_pred) {
local_pred = true;
_pred = Traits::createPredMap(*digraph);
}
if(!_dist) {
local_dist = true;
_dist = Traits::createDistMap(*digraph);
}
_mask = new MaskMap(*digraph, false);
}
public :
typedef BellmanFord Create;
/// \name Named template parameters
///@{
template <class T>
struct DefPredMapTraits : public Traits {
typedef T PredMap;
static PredMap *createPredMap(const Digraph&) {
LEMON_ASSERT(false, "PredMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting PredMap
/// type
/// \ref named-templ-param "Named parameter" for setting PredMap type
///
template <class T>
struct SetPredMap
: public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create;
};
template <class T>
struct DefDistMapTraits : public Traits {
typedef T DistMap;
static DistMap *createDistMap(const Digraph&) {
LEMON_ASSERT(false, "DistMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting DistMap
/// type
///
/// \ref named-templ-param "Named parameter" for setting DistMap type
///
template <class T>
struct SetDistMap
: public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create;
};
template <class T>
struct DefOperationTraitsTraits : public Traits {
typedef T OperationTraits;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// OperationTraits type
///
/// \ref named-templ-param "Named parameter" for setting OperationTraits
/// type
template <class T>
struct SetOperationTraits
: public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> >
Create;
};
///@}
protected:
BellmanFord() {}
public:
/// \brief Constructor.
///
/// \param _graph the digraph the algorithm will run on.
/// \param _length the length map used by the algorithm.
BellmanFord(const Digraph& _graph, const LengthMap& _length) :
digraph(&_graph), length(&_length),
_pred(0), local_pred(false),
_dist(0), local_dist(false), _mask(0) {}
///Destructor.
~BellmanFord() {
if(local_pred) delete _pred;
if(local_dist) delete _dist;
if(_mask) delete _mask;
}
/// \brief Sets the length map.
///
/// Sets the length map.
/// \return \c (*this)
BellmanFord &lengthMap(const LengthMap &m) {
length = &m;
return *this;
}
/// \brief Sets the map storing the predecessor arcs.
///
/// Sets the map storing the predecessor arcs.
/// If you don't use this function before calling \ref run(),
/// it will allocate one. The destuctor deallocates this
/// automatically allocated map, of course.
/// \return \c (*this)
BellmanFord &predMap(PredMap &m) {
if(local_pred) {
delete _pred;
local_pred=false;
}
_pred = &m;
return *this;
}
/// \brief Sets the map storing the distances calculated by the algorithm.
///
/// Sets the map storing the distances calculated by the algorithm.
/// If you don't use this function before calling \ref run(),
/// it will allocate one. The destuctor deallocates this
/// automatically allocated map, of course.
/// \return \c (*this)
BellmanFord &distMap(DistMap &m) {
if(local_dist) {
delete _dist;
local_dist=false;
}
_dist = &m;
return *this;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to use
/// one of the member functions called \c run(...).
/// \n
/// If you need more control on the execution,
/// first you must call \ref init(), then you can add several source nodes
/// with \ref addSource().
/// Finally \ref start() will perform the actual path
/// computation.
///@{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures.
void init(const Value value = OperationTraits::infinity()) {
create_maps();
for (NodeIt it(*digraph); it != INVALID; ++it) {
_pred->set(it, INVALID);
_dist->set(it, value);
}
_process.clear();
if (OperationTraits::less(value, OperationTraits::infinity())) {
for (NodeIt it(*digraph); it != INVALID; ++it) {
_process.push_back(it);
_mask->set(it, true);
}
}
}
/// \brief Adds a new source node.
///
/// Adds a new source node. The optional second parameter is the
/// initial distance of the node. It just sets the distance of the
/// node to the given value.
void addSource(Node source, Value dst = OperationTraits::zero()) {
_dist->set(source, dst);
if (!(*_mask)[source]) {
_process.push_back(source);
_mask->set(source, true);
}
}
/// \brief Executes one round from the Bellman-Ford algorithm.
///
/// If the algoritm calculated the distances in the previous round
/// exactly for all at most \f$ k \f$ length path lengths then it will
/// calculate the distances exactly for all at most \f$ k + 1 \f$
/// length path lengths. With \f$ k \f$ iteration this function
/// calculates the at most \f$ k \f$ length path lengths.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you
/// need the shortest path and not just the distance you should store
/// after each iteration the \ref predMap() map and manually build
/// the path.
///
/// \return \c true when the algorithm have not found more shorter
/// paths.
bool processNextRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
std::vector<Value> values(_process.size());
for (int i = 0; i < int(_process.size()); ++i) {
values[i] = (*_dist)[_process[i]];
}
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
Node target = digraph->target(it);
Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes one weak round from the Bellman-Ford algorithm.
///
/// If the algorithm calculated the distances in the
/// previous round at least for all at most k length paths then it will
/// calculate the distances at least for all at most k + 1 length paths.
/// This function does not make it possible to calculate strictly the
/// at most k length minimal paths, this is why it is
/// called just weak round.
/// \return \c true when the algorithm have not found more shorter paths.
bool processNextWeakRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
Node target = digraph->target(it);
Value relaxed =
OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes the algorithm.
///
/// \pre init() must be called and at least one node should be added
/// with addSource() before using this function.
///
/// This method runs the %BellmanFord algorithm from the root node(s)
/// in order to compute the shortest path to each node. The algorithm
/// computes
/// - The shortest path tree.
/// - The distance of each node from the root(s).
void start() {
int num = countNodes(*digraph) - 1;
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) break;
}
}
/// \brief Executes the algorithm and checks the negative cycles.
///
/// \pre init() must be called and at least one node should be added
/// with addSource() before using this function.
///
/// This method runs the %BellmanFord algorithm from the root node(s)
/// in order to compute the shortest path to each node. The algorithm
/// computes
/// - The shortest path tree.
/// - The distance of each node from the root(s).
///
/// \return \c false if there is a negative cycle in the digraph.
bool checkedStart() {
int num = countNodes(*digraph);
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) return true;
}
return _process.empty();
}
/// \brief Executes the algorithm with path length limit.
///
/// \pre init() must be called and at least one node should be added
/// with addSource() before using this function.
///
/// This method runs the %BellmanFord algorithm from the root
/// node(s) in order to compute the shortest path lengths with at
/// most \c num arc.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you
/// need the shortest path and not just the distance you should store
/// after each iteration the \ref predMap() map and manually build
/// the path.
///
/// The algorithm computes
/// - The predecessor arc from each node.
/// - The limited distance of each node from the root(s).
void limitedStart(int num) {
for (int i = 0; i < num; ++i) {
if (processNextRound()) break;
}
}
/// \brief Runs %BellmanFord algorithm from node \c s.
///
/// This method runs the %BellmanFord algorithm from a root node \c s
/// in order to compute the shortest path to each node. The algorithm
/// computes
/// - The shortest path tree.
/// - The distance of each node from the root.
///
/// \note d.run(s) is just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start();
///\endcode
void run(Node s) {
init();
addSource(s);
start();
}
/// \brief Runs %BellmanFord algorithm with limited path length
/// from node \c s.
///
/// This method runs the %BellmanFord algorithm from a root node \c s
/// in order to compute the shortest path with at most \c len arcs
/// to each node. The algorithm computes
/// - The shortest path tree.
/// - The distance of each node from the root.
///
/// \note d.run(s, num) is just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.limitedStart(num);
///\endcode
void run(Node s, int num) {
init();
addSource(s);
limitedStart(num);
}
///@}
/// \name Query Functions
/// The result of the %BellmanFord algorithm can be obtained using these
/// functions.\n
/// Before the use of these functions,
/// either run() or start() must be called.
///@{
/// \brief Lemon iterator for get the active nodes.
///
/// Lemon iterator for get the active nodes. This class provides a
/// common style lemon iterator which gives back a subset of the
/// nodes. The iterated nodes are active in the algorithm after
/// the last phase so these should be checked in the next phase to
/// find augmenting arcs from these.
class ActiveIt {
public:
/// \brief Constructor.
///
/// Constructor for get the nodeset of the variable.
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
{
_index = _algorithm->_process.size() - 1;
}
/// \brief Invalid constructor.
///
/// Invalid constructor.
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
/// \brief Conversion to node.
///
/// Conversion to node.
operator Node() const {
return _index >= 0 ? _algorithm->_process[_index] : INVALID;
}
/// \brief Increment operator.
///
/// Increment operator.
ActiveIt& operator++() {
--_index;
return *this;
}
bool operator==(const ActiveIt& it) const {
return static_cast<Node>(*this) == static_cast<Node>(it);
}
bool operator!=(const ActiveIt& it) const {
return static_cast<Node>(*this) != static_cast<Node>(it);
}
bool operator<(const ActiveIt& it) const {
return static_cast<Node>(*this) < static_cast<Node>(it);
}
private:
const BellmanFord* _algorithm;
int _index;
};
typedef PredMapPath<Digraph, PredMap> Path;
/// \brief Gives back the shortest path.
///
/// Gives back the shortest path.
/// \pre The \c t should be reachable from the source.
Path path(Node t)
{
return Path(*digraph, *_pred, t);
}
// TODO : implement negative cycle
// /// \brief Gives back a negative cycle.
// ///
// /// This function gives back a negative cycle.
// /// If the algorithm have not found yet negative cycle it will give back
// /// an empty path.
// Path negativeCycle() {
// typename Digraph::template NodeMap<int> state(*digraph, 0);
// for (ActiveIt it(*this); it != INVALID; ++it) {
// if (state[it] == 0) {
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
// if (state[t] == 0) {
// state[t] = 1;
// } else if (state[t] == 2) {
// break;
// } else {
// p.clear();
// typename Path::Builder b(p);
// b.setStartNode(t);
// b.pushFront(predArc(t));
// for(Node s = predNode(t); s != t; s = predNode(s)) {
// b.pushFront(predArc(s));
// }
// b.commit();
// return true;
// }
// }
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
// if (state[t] == 1) {
// state[t] = 2;
// } else {
// break;
// }
// }
// }
// }
// return false;
// }
/// \brief The distance of a node from the root.
///
/// Returns the distance of a node from the root.
/// \pre \ref run() must be called before using this function.
/// \warning If node \c v in unreachable from the root the return value
/// of this funcion is undefined.
Value dist(Node v) const { return (*_dist)[v]; }
/// \brief Returns the 'previous arc' of the shortest path tree.
///
/// For a node \c v it returns the 'previous arc' of the shortest path
/// tree, i.e. it returns the last arc of a shortest path from the root
/// to \c v. It is \ref INVALID if \c v is unreachable from the root or
/// if \c v=s. The shortest path tree used here is equal to the shortest
/// path tree used in \ref predNode().
/// \pre \ref run() must be called before using
/// this function.
Arc predArc(Node v) const { return (*_pred)[v]; }
/// \brief Returns the 'previous node' of the shortest path tree.
///
/// For a node \c v it returns the 'previous node' of the shortest path
/// tree, i.e. it returns the last but one node from a shortest path from
/// the root to \c /v. It is INVALID if \c v is unreachable from the root
/// or if \c v=s. The shortest path tree used here is equal to the
/// shortest path tree used in \ref predArc(). \pre \ref run() must be
/// called before using this function.
Node predNode(Node v) const {
return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]);
}
/// \brief Returns a reference to the NodeMap of distances.
///
/// Returns a reference to the NodeMap of distances. \pre \ref run() must
/// be called before using this function.
const DistMap &distMap() const { return *_dist;}
/// \brief Returns a reference to the shortest path tree map.
///
/// Returns a reference to the NodeMap of the arcs of the
/// shortest path tree.
/// \pre \ref run() must be called before using this function.
const PredMap &predMap() const { return *_pred; }
/// \brief Checks if a node is reachable from the root.
///
/// Returns \c true if \c v is reachable from the root.
/// \pre \ref run() must be called before using this function.
///
bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
///@}
};
/// \brief Default traits class of BellmanFord function.
///
/// Default traits class of BellmanFord function.
/// \param _Digraph Digraph type.
/// \param _LengthMap Type of length map.
template <typename _Digraph, typename _LengthMap>
struct BellmanFordWizardDefaultTraits {
/// \brief The digraph type the algorithm runs on.
typedef _Digraph Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef _LengthMap LengthMap;
/// \brief The value type of the length map.
typedef typename _LengthMap::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the infinity type on the given Value type
/// and the used operation.
/// \see BellmanFordDefaultOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
///
/// The type of the map that stores the last
/// arcs of the shortest paths.
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap;
/// \brief Instantiates a PredMap.
///
/// This function instantiates a \ref PredMap.
static PredMap *createPredMap(const _Digraph &) {
return new PredMap();
}
/// \brief The type of the map that stores the dists of the nodes.
///
/// The type of the map that stores the dists of the nodes.
/// It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef NullMap<typename Digraph::Node, Value> DistMap;
/// \brief Instantiates a DistMap.
///
/// This function instantiates a \ref DistMap.
static DistMap *createDistMap(const _Digraph &) {
return new DistMap();
}
};
/// \brief Default traits used by \ref BellmanFordWizard
///
/// To make it easier to use BellmanFord algorithm
/// we have created a wizard class.
/// This \ref BellmanFordWizard class needs default traits,
/// as well as the \ref BellmanFord class.
/// The \ref BellmanFordWizardBase is a class to be the default traits of the
/// \ref BellmanFordWizard class.
/// \todo More named parameters are required...
template<class _Digraph,class _LengthMap>
class BellmanFordWizardBase
: public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> {
typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base;
protected:
/// Type of the nodes in the digraph.
typedef typename Base::Digraph::Node Node;
/// Pointer to the underlying digraph.
void *_graph;
/// Pointer to the length map
void *_length;
///Pointer to the map of predecessors arcs.
void *_pred;
///Pointer to the map of distances.
void *_dist;
///Pointer to the source node.
Node _source;
public:
/// Constructor.
/// This constructor does not require parameters, therefore it initiates
/// all of the attributes to default values (0, INVALID).
BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
_dist(0), _source(INVALID) {}
/// Constructor.
/// This constructor requires some parameters,
/// listed in the parameters list.
/// Others are initiated to 0.
/// \param digraph is the initial value of \ref _graph
/// \param length is the initial value of \ref _length
/// \param source is the initial value of \ref _source
BellmanFordWizardBase(const _Digraph& digraph,
const _LengthMap& length,
Node source = INVALID) :
_graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))),
_length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))),
_pred(0), _dist(0), _source(source) {}
};
/// A class to make the usage of BellmanFord algorithm easier
/// This class is created to make it easier to use BellmanFord algorithm.
/// It uses the functions and features of the plain \ref BellmanFord,
/// but it is much simpler to use it.
///
/// Simplicity means that the way to change the types defined
/// in the traits class is based on functions that returns the new class
/// and not on templatable built-in classes.
/// When using the plain \ref BellmanFord
/// the new class with the modified type comes from
/// the original class by using the ::
/// operator. In the case of \ref BellmanFordWizard only
/// a function have to be called and it will
/// return the needed class.
///
/// It does not have own \ref run method. When its \ref run method is called
/// it initiates a plain \ref BellmanFord class, and calls the \ref
/// BellmanFord::run method of it.
template<class _Traits>
class BellmanFordWizard : public _Traits {
typedef _Traits Base;
///The type of the underlying digraph.
typedef typename _Traits::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt ArcIt;
///The type of the map that stores the arc lengths.
typedef typename _Traits::LengthMap LengthMap;
///The type of the length of the arcs.
typedef typename LengthMap::Value Value;
///\brief The type of the map that stores the last
///arcs of the shortest paths.
typedef typename _Traits::PredMap PredMap;
///The type of the map that stores the dists of the nodes.
typedef typename _Traits::DistMap DistMap;
public:
/// Constructor.
BellmanFordWizard() : _Traits() {}
/// \brief Constructor that requires parameters.
///
/// Constructor that requires parameters.
/// These parameters will be the default values for the traits class.
BellmanFordWizard(const Digraph& digraph, const LengthMap& length,
Node src = INVALID)
: _Traits(digraph, length, src) {}
/// \brief Copy constructor
BellmanFordWizard(const _Traits &b) : _Traits(b) {}
~BellmanFordWizard() {}
/// \brief Runs BellmanFord algorithm from a given node.
///
/// Runs BellmanFord algorithm from a given node.
/// The node can be given by the \ref source function.
void run() {
LEMON_ASSERT(Base::_source != INVALID, "Source node is not given");
BellmanFord<Digraph,LengthMap,_Traits>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
bf.run(Base::_source);
}
/// \brief Runs BellmanFord algorithm from the given node.
///
/// Runs BellmanFord algorithm from the given node.
/// \param src is the given source.
void run(Node src) {
Base::_source = src;
run();
}
template<class T>
struct DefPredMapBase : public Base {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &) { return 0; };
DefPredMapBase(const _Traits &b) : _Traits(b) {}
};
///\brief \ref named-templ-param "Named parameter"
///function for setting PredMap type
///
/// \ref named-templ-param "Named parameter"
///function for setting PredMap type
///
template<class T>
BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t)
{
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<DefPredMapBase<T> >(*this);
}
template<class T>
struct DefDistMapBase : public Base {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &) { return 0; };
DefDistMapBase(const _Traits &b) : _Traits(b) {}
};
///\brief \ref named-templ-param "Named parameter"
///function for setting DistMap type
///
/// \ref named-templ-param "Named parameter"
///function for setting DistMap type
///
template<class T>
BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<DefDistMapBase<T> >(*this);
}
template<class T>
struct DefOperationTraitsBase : public Base {
typedef T OperationTraits;
DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
};
///\brief \ref named-templ-param "Named parameter"
///function for setting OperationTraits type
///
/// \ref named-templ-param "Named parameter"
///function for setting OperationTraits type
///
template<class T>
BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
return BellmanFordWizard<DefDistMapBase<T> >(*this);
}
/// \brief Sets the source node, from which the BellmanFord algorithm runs.
///
/// Sets the source node, from which the BellmanFord algorithm runs.
/// \param src is the source node.
BellmanFordWizard<_Traits>& source(Node src) {
Base::_source = src;
return *this;
}
};
/// \brief Function type interface for BellmanFord algorithm.
///
/// \ingroup shortest_path
/// Function type interface for BellmanFord algorithm.
///
/// This function also has several \ref named-templ-func-param
/// "named parameters", they are declared as the members of class
/// \ref BellmanFordWizard.
/// The following
/// example shows how to use these parameters.
///\code
/// bellmanford(g,length,source).predMap(preds).run();
///\endcode
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
/// to the end of the parameter list.
/// \sa BellmanFordWizard
/// \sa BellmanFord
template<class _Digraph, class _LengthMap>
BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
bellmanFord(const _Digraph& digraph,
const _LengthMap& length,
typename _Digraph::Node source = INVALID) {
return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
(digraph, length, source);
}
} //END OF NAMESPACE LEMON
#endif
|