0
1
1
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BELMANN_FORD_H |
|
20 |
#define LEMON_BELMANN_FORD_H |
|
21 |
|
|
22 |
/// \ingroup shortest_path |
|
23 |
/// \file |
|
24 |
/// \brief Bellman-Ford algorithm. |
|
25 |
/// |
|
26 |
|
|
27 |
#include <lemon/bits/path_dump.h> |
|
28 |
#include <lemon/core.h> |
|
29 |
#include <lemon/error.h> |
|
30 |
#include <lemon/maps.h> |
|
31 |
|
|
32 |
#include <limits> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
37 |
/// |
|
38 |
/// It defines all computational operations and constants which are |
|
39 |
/// used in the Bellman-Ford algorithm. The default implementation |
|
40 |
/// is based on the numeric_limits class. If the numeric type does not |
|
41 |
/// have infinity value then the maximum value is used as extremal |
|
42 |
/// infinity value. |
|
43 |
template < |
|
44 |
typename Value, |
|
45 |
bool has_infinity = std::numeric_limits<Value>::has_infinity> |
|
46 |
struct BellmanFordDefaultOperationTraits { |
|
47 |
/// \brief Gives back the zero value of the type. |
|
48 |
static Value zero() { |
|
49 |
return static_cast<Value>(0); |
|
50 |
} |
|
51 |
/// \brief Gives back the positive infinity value of the type. |
|
52 |
static Value infinity() { |
|
53 |
return std::numeric_limits<Value>::infinity(); |
|
54 |
} |
|
55 |
/// \brief Gives back the sum of the given two elements. |
|
56 |
static Value plus(const Value& left, const Value& right) { |
|
57 |
return left + right; |
|
58 |
} |
|
59 |
/// \brief Gives back true only if the first value less than the second. |
|
60 |
static bool less(const Value& left, const Value& right) { |
|
61 |
return left < right; |
|
62 |
} |
|
63 |
}; |
|
64 |
|
|
65 |
template <typename Value> |
|
66 |
struct BellmanFordDefaultOperationTraits<Value, false> { |
|
67 |
static Value zero() { |
|
68 |
return static_cast<Value>(0); |
|
69 |
} |
|
70 |
static Value infinity() { |
|
71 |
return std::numeric_limits<Value>::max(); |
|
72 |
} |
|
73 |
static Value plus(const Value& left, const Value& right) { |
|
74 |
if (left == infinity() || right == infinity()) return infinity(); |
|
75 |
return left + right; |
|
76 |
} |
|
77 |
static bool less(const Value& left, const Value& right) { |
|
78 |
return left < right; |
|
79 |
} |
|
80 |
}; |
|
81 |
|
|
82 |
/// \brief Default traits class of BellmanFord class. |
|
83 |
/// |
|
84 |
/// Default traits class of BellmanFord class. |
|
85 |
/// \param _Digraph Digraph type. |
|
86 |
/// \param _LegthMap Type of length map. |
|
87 |
template<class _Digraph, class _LengthMap> |
|
88 |
struct BellmanFordDefaultTraits { |
|
89 |
/// The digraph type the algorithm runs on. |
|
90 |
typedef _Digraph Digraph; |
|
91 |
|
|
92 |
/// \brief The type of the map that stores the arc lengths. |
|
93 |
/// |
|
94 |
/// The type of the map that stores the arc lengths. |
|
95 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
96 |
typedef _LengthMap LengthMap; |
|
97 |
|
|
98 |
// The type of the length of the arcs. |
|
99 |
typedef typename _LengthMap::Value Value; |
|
100 |
|
|
101 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
102 |
/// |
|
103 |
/// It defines the infinity type on the given Value type |
|
104 |
/// and the used operation. |
|
105 |
/// \see BellmanFordDefaultOperationTraits |
|
106 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
107 |
|
|
108 |
/// \brief The type of the map that stores the last arcs of the |
|
109 |
/// shortest paths. |
|
110 |
/// |
|
111 |
/// The type of the map that stores the last |
|
112 |
/// arcs of the shortest paths. |
|
113 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
114 |
/// |
|
115 |
typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap; |
|
116 |
|
|
117 |
/// \brief Instantiates a PredMap. |
|
118 |
/// |
|
119 |
/// This function instantiates a \ref PredMap. |
|
120 |
/// \param digraph is the digraph, to which we would like to define the PredMap. |
|
121 |
static PredMap *createPredMap(const _Digraph& digraph) { |
|
122 |
return new PredMap(digraph); |
|
123 |
} |
|
124 |
|
|
125 |
/// \brief The type of the map that stores the dists of the nodes. |
|
126 |
/// |
|
127 |
/// The type of the map that stores the dists of the nodes. |
|
128 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
129 |
/// |
|
130 |
typedef typename Digraph::template NodeMap<typename _LengthMap::Value> |
|
131 |
DistMap; |
|
132 |
|
|
133 |
/// \brief Instantiates a DistMap. |
|
134 |
/// |
|
135 |
/// This function instantiates a \ref DistMap. |
|
136 |
/// \param digraph is the digraph, to which we would like to define the |
|
137 |
/// \ref DistMap |
|
138 |
static DistMap *createDistMap(const _Digraph& digraph) { |
|
139 |
return new DistMap(digraph); |
|
140 |
} |
|
141 |
|
|
142 |
}; |
|
143 |
|
|
144 |
/// \brief %BellmanFord algorithm class. |
|
145 |
/// |
|
146 |
/// \ingroup shortest_path |
|
147 |
/// This class provides an efficient implementation of \c Bellman-Ford |
|
148 |
/// algorithm. The arc lengths are passed to the algorithm using a |
|
149 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
150 |
/// kind of length. |
|
151 |
/// |
|
152 |
/// The Bellman-Ford algorithm solves the shortest path from one node |
|
153 |
/// problem when the arcs can have negative length but the digraph should |
|
154 |
/// not contain cycles with negative sum of length. If we can assume |
|
155 |
/// that all arc is non-negative in the digraph then the dijkstra algorithm |
|
156 |
/// should be used rather. |
|
157 |
/// |
|
158 |
/// The maximal time complexity of the algorithm is \f$ O(ne) \f$. |
|
159 |
/// |
|
160 |
/// The type of the length is determined by the |
|
161 |
/// \ref concepts::ReadMap::Value "Value" of the length map. |
|
162 |
/// |
|
163 |
/// \param _Digraph The digraph type the algorithm runs on. The default value |
|
164 |
/// is \ref ListDigraph. The value of _Digraph is not used directly by |
|
165 |
/// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
166 |
/// \param _LengthMap This read-only ArcMap determines the lengths of the |
|
167 |
/// arcs. The default map type is \ref concepts::Digraph::ArcMap |
|
168 |
/// "Digraph::ArcMap<int>". The value of _LengthMap is not used directly |
|
169 |
/// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. |
|
170 |
/// \param _Traits Traits class to set various data types used by the |
|
171 |
/// algorithm. The default traits class is \ref BellmanFordDefaultTraits |
|
172 |
/// "BellmanFordDefaultTraits<_Digraph,_LengthMap>". See \ref |
|
173 |
/// BellmanFordDefaultTraits for the documentation of a BellmanFord traits |
|
174 |
/// class. |
|
175 |
#ifdef DOXYGEN |
|
176 |
template <typename _Digraph, typename _LengthMap, typename _Traits> |
|
177 |
#else |
|
178 |
template <typename _Digraph, |
|
179 |
typename _LengthMap=typename _Digraph::template ArcMap<int>, |
|
180 |
typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> > |
|
181 |
#endif |
|
182 |
class BellmanFord { |
|
183 |
public: |
|
184 |
|
|
185 |
typedef _Traits Traits; |
|
186 |
///The type of the underlying digraph. |
|
187 |
typedef typename _Traits::Digraph Digraph; |
|
188 |
|
|
189 |
typedef typename Digraph::Node Node; |
|
190 |
typedef typename Digraph::NodeIt NodeIt; |
|
191 |
typedef typename Digraph::Arc Arc; |
|
192 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
193 |
|
|
194 |
/// \brief The type of the length of the arcs. |
|
195 |
typedef typename _Traits::LengthMap::Value Value; |
|
196 |
/// \brief The type of the map that stores the arc lengths. |
|
197 |
typedef typename _Traits::LengthMap LengthMap; |
|
198 |
/// \brief The type of the map that stores the last |
|
199 |
/// arcs of the shortest paths. |
|
200 |
typedef typename _Traits::PredMap PredMap; |
|
201 |
/// \brief The type of the map that stores the dists of the nodes. |
|
202 |
typedef typename _Traits::DistMap DistMap; |
|
203 |
/// \brief The operation traits. |
|
204 |
typedef typename _Traits::OperationTraits OperationTraits; |
|
205 |
private: |
|
206 |
/// Pointer to the underlying digraph. |
|
207 |
const Digraph *digraph; |
|
208 |
/// Pointer to the length map |
|
209 |
const LengthMap *length; |
|
210 |
///Pointer to the map of predecessors arcs. |
|
211 |
PredMap *_pred; |
|
212 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
|
213 |
bool local_pred; |
|
214 |
///Pointer to the map of distances. |
|
215 |
DistMap *_dist; |
|
216 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
|
217 |
bool local_dist; |
|
218 |
|
|
219 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
220 |
MaskMap *_mask; |
|
221 |
|
|
222 |
std::vector<Node> _process; |
|
223 |
|
|
224 |
/// Creates the maps if necessary. |
|
225 |
void create_maps() { |
|
226 |
if(!_pred) { |
|
227 |
local_pred = true; |
|
228 |
_pred = Traits::createPredMap(*digraph); |
|
229 |
} |
|
230 |
if(!_dist) { |
|
231 |
local_dist = true; |
|
232 |
_dist = Traits::createDistMap(*digraph); |
|
233 |
} |
|
234 |
_mask = new MaskMap(*digraph, false); |
|
235 |
} |
|
236 |
|
|
237 |
public : |
|
238 |
|
|
239 |
typedef BellmanFord Create; |
|
240 |
|
|
241 |
/// \name Named template parameters |
|
242 |
|
|
243 |
///@{ |
|
244 |
|
|
245 |
template <class T> |
|
246 |
struct DefPredMapTraits : public Traits { |
|
247 |
typedef T PredMap; |
|
248 |
static PredMap *createPredMap(const Digraph&) { |
|
249 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
250 |
return 0; // ignore warnings |
|
251 |
} |
|
252 |
}; |
|
253 |
|
|
254 |
/// \brief \ref named-templ-param "Named parameter" for setting PredMap |
|
255 |
/// type |
|
256 |
/// \ref named-templ-param "Named parameter" for setting PredMap type |
|
257 |
/// |
|
258 |
template <class T> |
|
259 |
struct SetPredMap |
|
260 |
: public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > { |
|
261 |
typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
|
262 |
}; |
|
263 |
|
|
264 |
template <class T> |
|
265 |
struct DefDistMapTraits : public Traits { |
|
266 |
typedef T DistMap; |
|
267 |
static DistMap *createDistMap(const Digraph&) { |
|
268 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
269 |
return 0; // ignore warnings |
|
270 |
} |
|
271 |
}; |
|
272 |
|
|
273 |
/// \brief \ref named-templ-param "Named parameter" for setting DistMap |
|
274 |
/// type |
|
275 |
/// |
|
276 |
/// \ref named-templ-param "Named parameter" for setting DistMap type |
|
277 |
/// |
|
278 |
template <class T> |
|
279 |
struct SetDistMap |
|
280 |
: public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > { |
|
281 |
typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
|
282 |
}; |
|
283 |
|
|
284 |
template <class T> |
|
285 |
struct DefOperationTraitsTraits : public Traits { |
|
286 |
typedef T OperationTraits; |
|
287 |
}; |
|
288 |
|
|
289 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
290 |
/// OperationTraits type |
|
291 |
/// |
|
292 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits |
|
293 |
/// type |
|
294 |
template <class T> |
|
295 |
struct SetOperationTraits |
|
296 |
: public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
|
297 |
typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > |
|
298 |
Create; |
|
299 |
}; |
|
300 |
|
|
301 |
///@} |
|
302 |
|
|
303 |
protected: |
|
304 |
|
|
305 |
BellmanFord() {} |
|
306 |
|
|
307 |
public: |
|
308 |
|
|
309 |
/// \brief Constructor. |
|
310 |
/// |
|
311 |
/// \param _graph the digraph the algorithm will run on. |
|
312 |
/// \param _length the length map used by the algorithm. |
|
313 |
BellmanFord(const Digraph& _graph, const LengthMap& _length) : |
|
314 |
digraph(&_graph), length(&_length), |
|
315 |
_pred(0), local_pred(false), |
|
316 |
_dist(0), local_dist(false), _mask(0) {} |
|
317 |
|
|
318 |
///Destructor. |
|
319 |
~BellmanFord() { |
|
320 |
if(local_pred) delete _pred; |
|
321 |
if(local_dist) delete _dist; |
|
322 |
if(_mask) delete _mask; |
|
323 |
} |
|
324 |
|
|
325 |
/// \brief Sets the length map. |
|
326 |
/// |
|
327 |
/// Sets the length map. |
|
328 |
/// \return \c (*this) |
|
329 |
BellmanFord &lengthMap(const LengthMap &m) { |
|
330 |
length = &m; |
|
331 |
return *this; |
|
332 |
} |
|
333 |
|
|
334 |
/// \brief Sets the map storing the predecessor arcs. |
|
335 |
/// |
|
336 |
/// Sets the map storing the predecessor arcs. |
|
337 |
/// If you don't use this function before calling \ref run(), |
|
338 |
/// it will allocate one. The destuctor deallocates this |
|
339 |
/// automatically allocated map, of course. |
|
340 |
/// \return \c (*this) |
|
341 |
BellmanFord &predMap(PredMap &m) { |
|
342 |
if(local_pred) { |
|
343 |
delete _pred; |
|
344 |
local_pred=false; |
|
345 |
} |
|
346 |
_pred = &m; |
|
347 |
return *this; |
|
348 |
} |
|
349 |
|
|
350 |
/// \brief Sets the map storing the distances calculated by the algorithm. |
|
351 |
/// |
|
352 |
/// Sets the map storing the distances calculated by the algorithm. |
|
353 |
/// If you don't use this function before calling \ref run(), |
|
354 |
/// it will allocate one. The destuctor deallocates this |
|
355 |
/// automatically allocated map, of course. |
|
356 |
/// \return \c (*this) |
|
357 |
BellmanFord &distMap(DistMap &m) { |
|
358 |
if(local_dist) { |
|
359 |
delete _dist; |
|
360 |
local_dist=false; |
|
361 |
} |
|
362 |
_dist = &m; |
|
363 |
return *this; |
|
364 |
} |
|
365 |
|
|
366 |
/// \name Execution control |
|
367 |
/// The simplest way to execute the algorithm is to use |
|
368 |
/// one of the member functions called \c run(...). |
|
369 |
/// \n |
|
370 |
/// If you need more control on the execution, |
|
371 |
/// first you must call \ref init(), then you can add several source nodes |
|
372 |
/// with \ref addSource(). |
|
373 |
/// Finally \ref start() will perform the actual path |
|
374 |
/// computation. |
|
375 |
|
|
376 |
///@{ |
|
377 |
|
|
378 |
/// \brief Initializes the internal data structures. |
|
379 |
/// |
|
380 |
/// Initializes the internal data structures. |
|
381 |
void init(const Value value = OperationTraits::infinity()) { |
|
382 |
create_maps(); |
|
383 |
for (NodeIt it(*digraph); it != INVALID; ++it) { |
|
384 |
_pred->set(it, INVALID); |
|
385 |
_dist->set(it, value); |
|
386 |
} |
|
387 |
_process.clear(); |
|
388 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
|
389 |
for (NodeIt it(*digraph); it != INVALID; ++it) { |
|
390 |
_process.push_back(it); |
|
391 |
_mask->set(it, true); |
|
392 |
} |
|
393 |
} |
|
394 |
} |
|
395 |
|
|
396 |
/// \brief Adds a new source node. |
|
397 |
/// |
|
398 |
/// Adds a new source node. The optional second parameter is the |
|
399 |
/// initial distance of the node. It just sets the distance of the |
|
400 |
/// node to the given value. |
|
401 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
|
402 |
_dist->set(source, dst); |
|
403 |
if (!(*_mask)[source]) { |
|
404 |
_process.push_back(source); |
|
405 |
_mask->set(source, true); |
|
406 |
} |
|
407 |
} |
|
408 |
|
|
409 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
410 |
/// |
|
411 |
/// If the algoritm calculated the distances in the previous round |
|
412 |
/// exactly for all at most \f$ k \f$ length path lengths then it will |
|
413 |
/// calculate the distances exactly for all at most \f$ k + 1 \f$ |
|
414 |
/// length path lengths. With \f$ k \f$ iteration this function |
|
415 |
/// calculates the at most \f$ k \f$ length path lengths. |
|
416 |
/// |
|
417 |
/// \warning The paths with limited arc number cannot be retrieved |
|
418 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
419 |
/// need the shortest path and not just the distance you should store |
|
420 |
/// after each iteration the \ref predMap() map and manually build |
|
421 |
/// the path. |
|
422 |
/// |
|
423 |
/// \return \c true when the algorithm have not found more shorter |
|
424 |
/// paths. |
|
425 |
bool processNextRound() { |
|
426 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
427 |
_mask->set(_process[i], false); |
|
428 |
} |
|
429 |
std::vector<Node> nextProcess; |
|
430 |
std::vector<Value> values(_process.size()); |
|
431 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
432 |
values[i] = (*_dist)[_process[i]]; |
|
433 |
} |
|
434 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
435 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
|
436 |
Node target = digraph->target(it); |
|
437 |
Value relaxed = OperationTraits::plus(values[i], (*length)[it]); |
|
438 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
439 |
_pred->set(target, it); |
|
440 |
_dist->set(target, relaxed); |
|
441 |
if (!(*_mask)[target]) { |
|
442 |
_mask->set(target, true); |
|
443 |
nextProcess.push_back(target); |
|
444 |
} |
|
445 |
} |
|
446 |
} |
|
447 |
} |
|
448 |
_process.swap(nextProcess); |
|
449 |
return _process.empty(); |
|
450 |
} |
|
451 |
|
|
452 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
453 |
/// |
|
454 |
/// If the algorithm calculated the distances in the |
|
455 |
/// previous round at least for all at most k length paths then it will |
|
456 |
/// calculate the distances at least for all at most k + 1 length paths. |
|
457 |
/// This function does not make it possible to calculate strictly the |
|
458 |
/// at most k length minimal paths, this is why it is |
|
459 |
/// called just weak round. |
|
460 |
/// \return \c true when the algorithm have not found more shorter paths. |
|
461 |
bool processNextWeakRound() { |
|
462 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
463 |
_mask->set(_process[i], false); |
|
464 |
} |
|
465 |
std::vector<Node> nextProcess; |
|
466 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
467 |
for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) { |
|
468 |
Node target = digraph->target(it); |
|
469 |
Value relaxed = |
|
470 |
OperationTraits::plus((*_dist)[_process[i]], (*length)[it]); |
|
471 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
472 |
_pred->set(target, it); |
|
473 |
_dist->set(target, relaxed); |
|
474 |
if (!(*_mask)[target]) { |
|
475 |
_mask->set(target, true); |
|
476 |
nextProcess.push_back(target); |
|
477 |
} |
|
478 |
} |
|
479 |
} |
|
480 |
} |
|
481 |
_process.swap(nextProcess); |
|
482 |
return _process.empty(); |
|
483 |
} |
|
484 |
|
|
485 |
/// \brief Executes the algorithm. |
|
486 |
/// |
|
487 |
/// \pre init() must be called and at least one node should be added |
|
488 |
/// with addSource() before using this function. |
|
489 |
/// |
|
490 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
491 |
/// in order to compute the shortest path to each node. The algorithm |
|
492 |
/// computes |
|
493 |
/// - The shortest path tree. |
|
494 |
/// - The distance of each node from the root(s). |
|
495 |
void start() { |
|
496 |
int num = countNodes(*digraph) - 1; |
|
497 |
for (int i = 0; i < num; ++i) { |
|
498 |
if (processNextWeakRound()) break; |
|
499 |
} |
|
500 |
} |
|
501 |
|
|
502 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
503 |
/// |
|
504 |
/// \pre init() must be called and at least one node should be added |
|
505 |
/// with addSource() before using this function. |
|
506 |
/// |
|
507 |
/// This method runs the %BellmanFord algorithm from the root node(s) |
|
508 |
/// in order to compute the shortest path to each node. The algorithm |
|
509 |
/// computes |
|
510 |
/// - The shortest path tree. |
|
511 |
/// - The distance of each node from the root(s). |
|
512 |
/// |
|
513 |
/// \return \c false if there is a negative cycle in the digraph. |
|
514 |
bool checkedStart() { |
|
515 |
int num = countNodes(*digraph); |
|
516 |
for (int i = 0; i < num; ++i) { |
|
517 |
if (processNextWeakRound()) return true; |
|
518 |
} |
|
519 |
return _process.empty(); |
|
520 |
} |
|
521 |
|
|
522 |
/// \brief Executes the algorithm with path length limit. |
|
523 |
/// |
|
524 |
/// \pre init() must be called and at least one node should be added |
|
525 |
/// with addSource() before using this function. |
|
526 |
/// |
|
527 |
/// This method runs the %BellmanFord algorithm from the root |
|
528 |
/// node(s) in order to compute the shortest path lengths with at |
|
529 |
/// most \c num arc. |
|
530 |
/// |
|
531 |
/// \warning The paths with limited arc number cannot be retrieved |
|
532 |
/// easily with \ref path() or \ref predArc() functions. If you |
|
533 |
/// need the shortest path and not just the distance you should store |
|
534 |
/// after each iteration the \ref predMap() map and manually build |
|
535 |
/// the path. |
|
536 |
/// |
|
537 |
/// The algorithm computes |
|
538 |
/// - The predecessor arc from each node. |
|
539 |
/// - The limited distance of each node from the root(s). |
|
540 |
void limitedStart(int num) { |
|
541 |
for (int i = 0; i < num; ++i) { |
|
542 |
if (processNextRound()) break; |
|
543 |
} |
|
544 |
} |
|
545 |
|
|
546 |
/// \brief Runs %BellmanFord algorithm from node \c s. |
|
547 |
/// |
|
548 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
549 |
/// in order to compute the shortest path to each node. The algorithm |
|
550 |
/// computes |
|
551 |
/// - The shortest path tree. |
|
552 |
/// - The distance of each node from the root. |
|
553 |
/// |
|
554 |
/// \note d.run(s) is just a shortcut of the following code. |
|
555 |
///\code |
|
556 |
/// d.init(); |
|
557 |
/// d.addSource(s); |
|
558 |
/// d.start(); |
|
559 |
///\endcode |
|
560 |
void run(Node s) { |
|
561 |
init(); |
|
562 |
addSource(s); |
|
563 |
start(); |
|
564 |
} |
|
565 |
|
|
566 |
/// \brief Runs %BellmanFord algorithm with limited path length |
|
567 |
/// from node \c s. |
|
568 |
/// |
|
569 |
/// This method runs the %BellmanFord algorithm from a root node \c s |
|
570 |
/// in order to compute the shortest path with at most \c len arcs |
|
571 |
/// to each node. The algorithm computes |
|
572 |
/// - The shortest path tree. |
|
573 |
/// - The distance of each node from the root. |
|
574 |
/// |
|
575 |
/// \note d.run(s, num) is just a shortcut of the following code. |
|
576 |
///\code |
|
577 |
/// d.init(); |
|
578 |
/// d.addSource(s); |
|
579 |
/// d.limitedStart(num); |
|
580 |
///\endcode |
|
581 |
void run(Node s, int num) { |
|
582 |
init(); |
|
583 |
addSource(s); |
|
584 |
limitedStart(num); |
|
585 |
} |
|
586 |
|
|
587 |
///@} |
|
588 |
|
|
589 |
/// \name Query Functions |
|
590 |
/// The result of the %BellmanFord algorithm can be obtained using these |
|
591 |
/// functions.\n |
|
592 |
/// Before the use of these functions, |
|
593 |
/// either run() or start() must be called. |
|
594 |
|
|
595 |
///@{ |
|
596 |
|
|
597 |
/// \brief Lemon iterator for get the active nodes. |
|
598 |
/// |
|
599 |
/// Lemon iterator for get the active nodes. This class provides a |
|
600 |
/// common style lemon iterator which gives back a subset of the |
|
601 |
/// nodes. The iterated nodes are active in the algorithm after |
|
602 |
/// the last phase so these should be checked in the next phase to |
|
603 |
/// find augmenting arcs from these. |
|
604 |
class ActiveIt { |
|
605 |
public: |
|
606 |
|
|
607 |
/// \brief Constructor. |
|
608 |
/// |
|
609 |
/// Constructor for get the nodeset of the variable. |
|
610 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
611 |
{ |
|
612 |
_index = _algorithm->_process.size() - 1; |
|
613 |
} |
|
614 |
|
|
615 |
/// \brief Invalid constructor. |
|
616 |
/// |
|
617 |
/// Invalid constructor. |
|
618 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
|
619 |
|
|
620 |
/// \brief Conversion to node. |
|
621 |
/// |
|
622 |
/// Conversion to node. |
|
623 |
operator Node() const { |
|
624 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
625 |
} |
|
626 |
|
|
627 |
/// \brief Increment operator. |
|
628 |
/// |
|
629 |
/// Increment operator. |
|
630 |
ActiveIt& operator++() { |
|
631 |
--_index; |
|
632 |
return *this; |
|
633 |
} |
|
634 |
|
|
635 |
bool operator==(const ActiveIt& it) const { |
|
636 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
637 |
} |
|
638 |
bool operator!=(const ActiveIt& it) const { |
|
639 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
640 |
} |
|
641 |
bool operator<(const ActiveIt& it) const { |
|
642 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
643 |
} |
|
644 |
|
|
645 |
private: |
|
646 |
const BellmanFord* _algorithm; |
|
647 |
int _index; |
|
648 |
}; |
|
649 |
|
|
650 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
651 |
|
|
652 |
/// \brief Gives back the shortest path. |
|
653 |
/// |
|
654 |
/// Gives back the shortest path. |
|
655 |
/// \pre The \c t should be reachable from the source. |
|
656 |
Path path(Node t) |
|
657 |
{ |
|
658 |
return Path(*digraph, *_pred, t); |
|
659 |
} |
|
660 |
|
|
661 |
|
|
662 |
// TODO : implement negative cycle |
|
663 |
// /// \brief Gives back a negative cycle. |
|
664 |
// /// |
|
665 |
// /// This function gives back a negative cycle. |
|
666 |
// /// If the algorithm have not found yet negative cycle it will give back |
|
667 |
// /// an empty path. |
|
668 |
// Path negativeCycle() { |
|
669 |
// typename Digraph::template NodeMap<int> state(*digraph, 0); |
|
670 |
// for (ActiveIt it(*this); it != INVALID; ++it) { |
|
671 |
// if (state[it] == 0) { |
|
672 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
|
673 |
// if (state[t] == 0) { |
|
674 |
// state[t] = 1; |
|
675 |
// } else if (state[t] == 2) { |
|
676 |
// break; |
|
677 |
// } else { |
|
678 |
// p.clear(); |
|
679 |
// typename Path::Builder b(p); |
|
680 |
// b.setStartNode(t); |
|
681 |
// b.pushFront(predArc(t)); |
|
682 |
// for(Node s = predNode(t); s != t; s = predNode(s)) { |
|
683 |
// b.pushFront(predArc(s)); |
|
684 |
// } |
|
685 |
// b.commit(); |
|
686 |
// return true; |
|
687 |
// } |
|
688 |
// } |
|
689 |
// for (Node t = it; predArc(t) != INVALID; t = predNode(t)) { |
|
690 |
// if (state[t] == 1) { |
|
691 |
// state[t] = 2; |
|
692 |
// } else { |
|
693 |
// break; |
|
694 |
// } |
|
695 |
// } |
|
696 |
// } |
|
697 |
// } |
|
698 |
// return false; |
|
699 |
// } |
|
700 |
|
|
701 |
/// \brief The distance of a node from the root. |
|
702 |
/// |
|
703 |
/// Returns the distance of a node from the root. |
|
704 |
/// \pre \ref run() must be called before using this function. |
|
705 |
/// \warning If node \c v in unreachable from the root the return value |
|
706 |
/// of this funcion is undefined. |
|
707 |
Value dist(Node v) const { return (*_dist)[v]; } |
|
708 |
|
|
709 |
/// \brief Returns the 'previous arc' of the shortest path tree. |
|
710 |
/// |
|
711 |
/// For a node \c v it returns the 'previous arc' of the shortest path |
|
712 |
/// tree, i.e. it returns the last arc of a shortest path from the root |
|
713 |
/// to \c v. It is \ref INVALID if \c v is unreachable from the root or |
|
714 |
/// if \c v=s. The shortest path tree used here is equal to the shortest |
|
715 |
/// path tree used in \ref predNode(). |
|
716 |
/// \pre \ref run() must be called before using |
|
717 |
/// this function. |
|
718 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
|
719 |
|
|
720 |
/// \brief Returns the 'previous node' of the shortest path tree. |
|
721 |
/// |
|
722 |
/// For a node \c v it returns the 'previous node' of the shortest path |
|
723 |
/// tree, i.e. it returns the last but one node from a shortest path from |
|
724 |
/// the root to \c /v. It is INVALID if \c v is unreachable from the root |
|
725 |
/// or if \c v=s. The shortest path tree used here is equal to the |
|
726 |
/// shortest path tree used in \ref predArc(). \pre \ref run() must be |
|
727 |
/// called before using this function. |
|
728 |
Node predNode(Node v) const { |
|
729 |
return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); |
|
730 |
} |
|
731 |
|
|
732 |
/// \brief Returns a reference to the NodeMap of distances. |
|
733 |
/// |
|
734 |
/// Returns a reference to the NodeMap of distances. \pre \ref run() must |
|
735 |
/// be called before using this function. |
|
736 |
const DistMap &distMap() const { return *_dist;} |
|
737 |
|
|
738 |
/// \brief Returns a reference to the shortest path tree map. |
|
739 |
/// |
|
740 |
/// Returns a reference to the NodeMap of the arcs of the |
|
741 |
/// shortest path tree. |
|
742 |
/// \pre \ref run() must be called before using this function. |
|
743 |
const PredMap &predMap() const { return *_pred; } |
|
744 |
|
|
745 |
/// \brief Checks if a node is reachable from the root. |
|
746 |
/// |
|
747 |
/// Returns \c true if \c v is reachable from the root. |
|
748 |
/// \pre \ref run() must be called before using this function. |
|
749 |
/// |
|
750 |
bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); } |
|
751 |
|
|
752 |
///@} |
|
753 |
}; |
|
754 |
|
|
755 |
/// \brief Default traits class of BellmanFord function. |
|
756 |
/// |
|
757 |
/// Default traits class of BellmanFord function. |
|
758 |
/// \param _Digraph Digraph type. |
|
759 |
/// \param _LengthMap Type of length map. |
|
760 |
template <typename _Digraph, typename _LengthMap> |
|
761 |
struct BellmanFordWizardDefaultTraits { |
|
762 |
/// \brief The digraph type the algorithm runs on. |
|
763 |
typedef _Digraph Digraph; |
|
764 |
|
|
765 |
/// \brief The type of the map that stores the arc lengths. |
|
766 |
/// |
|
767 |
/// The type of the map that stores the arc lengths. |
|
768 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
769 |
typedef _LengthMap LengthMap; |
|
770 |
|
|
771 |
/// \brief The value type of the length map. |
|
772 |
typedef typename _LengthMap::Value Value; |
|
773 |
|
|
774 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
775 |
/// |
|
776 |
/// It defines the infinity type on the given Value type |
|
777 |
/// and the used operation. |
|
778 |
/// \see BellmanFordDefaultOperationTraits |
|
779 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
780 |
|
|
781 |
/// \brief The type of the map that stores the last |
|
782 |
/// arcs of the shortest paths. |
|
783 |
/// |
|
784 |
/// The type of the map that stores the last |
|
785 |
/// arcs of the shortest paths. |
|
786 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
787 |
typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap; |
|
788 |
|
|
789 |
/// \brief Instantiates a PredMap. |
|
790 |
/// |
|
791 |
/// This function instantiates a \ref PredMap. |
|
792 |
static PredMap *createPredMap(const _Digraph &) { |
|
793 |
return new PredMap(); |
|
794 |
} |
|
795 |
/// \brief The type of the map that stores the dists of the nodes. |
|
796 |
/// |
|
797 |
/// The type of the map that stores the dists of the nodes. |
|
798 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
799 |
typedef NullMap<typename Digraph::Node, Value> DistMap; |
|
800 |
/// \brief Instantiates a DistMap. |
|
801 |
/// |
|
802 |
/// This function instantiates a \ref DistMap. |
|
803 |
static DistMap *createDistMap(const _Digraph &) { |
|
804 |
return new DistMap(); |
|
805 |
} |
|
806 |
}; |
|
807 |
|
|
808 |
/// \brief Default traits used by \ref BellmanFordWizard |
|
809 |
/// |
|
810 |
/// To make it easier to use BellmanFord algorithm |
|
811 |
/// we have created a wizard class. |
|
812 |
/// This \ref BellmanFordWizard class needs default traits, |
|
813 |
/// as well as the \ref BellmanFord class. |
|
814 |
/// The \ref BellmanFordWizardBase is a class to be the default traits of the |
|
815 |
/// \ref BellmanFordWizard class. |
|
816 |
/// \todo More named parameters are required... |
|
817 |
template<class _Digraph,class _LengthMap> |
|
818 |
class BellmanFordWizardBase |
|
819 |
: public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> { |
|
820 |
|
|
821 |
typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base; |
|
822 |
protected: |
|
823 |
/// Type of the nodes in the digraph. |
|
824 |
typedef typename Base::Digraph::Node Node; |
|
825 |
|
|
826 |
/// Pointer to the underlying digraph. |
|
827 |
void *_graph; |
|
828 |
/// Pointer to the length map |
|
829 |
void *_length; |
|
830 |
///Pointer to the map of predecessors arcs. |
|
831 |
void *_pred; |
|
832 |
///Pointer to the map of distances. |
|
833 |
void *_dist; |
|
834 |
///Pointer to the source node. |
|
835 |
Node _source; |
|
836 |
|
|
837 |
public: |
|
838 |
/// Constructor. |
|
839 |
|
|
840 |
/// This constructor does not require parameters, therefore it initiates |
|
841 |
/// all of the attributes to default values (0, INVALID). |
|
842 |
BellmanFordWizardBase() : _graph(0), _length(0), _pred(0), |
|
843 |
_dist(0), _source(INVALID) {} |
|
844 |
|
|
845 |
/// Constructor. |
|
846 |
|
|
847 |
/// This constructor requires some parameters, |
|
848 |
/// listed in the parameters list. |
|
849 |
/// Others are initiated to 0. |
|
850 |
/// \param digraph is the initial value of \ref _graph |
|
851 |
/// \param length is the initial value of \ref _length |
|
852 |
/// \param source is the initial value of \ref _source |
|
853 |
BellmanFordWizardBase(const _Digraph& digraph, |
|
854 |
const _LengthMap& length, |
|
855 |
Node source = INVALID) : |
|
856 |
_graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), |
|
857 |
_length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), |
|
858 |
_pred(0), _dist(0), _source(source) {} |
|
859 |
|
|
860 |
}; |
|
861 |
|
|
862 |
/// A class to make the usage of BellmanFord algorithm easier |
|
863 |
|
|
864 |
/// This class is created to make it easier to use BellmanFord algorithm. |
|
865 |
/// It uses the functions and features of the plain \ref BellmanFord, |
|
866 |
/// but it is much simpler to use it. |
|
867 |
/// |
|
868 |
/// Simplicity means that the way to change the types defined |
|
869 |
/// in the traits class is based on functions that returns the new class |
|
870 |
/// and not on templatable built-in classes. |
|
871 |
/// When using the plain \ref BellmanFord |
|
872 |
/// the new class with the modified type comes from |
|
873 |
/// the original class by using the :: |
|
874 |
/// operator. In the case of \ref BellmanFordWizard only |
|
875 |
/// a function have to be called and it will |
|
876 |
/// return the needed class. |
|
877 |
/// |
|
878 |
/// It does not have own \ref run method. When its \ref run method is called |
|
879 |
/// it initiates a plain \ref BellmanFord class, and calls the \ref |
|
880 |
/// BellmanFord::run method of it. |
|
881 |
template<class _Traits> |
|
882 |
class BellmanFordWizard : public _Traits { |
|
883 |
typedef _Traits Base; |
|
884 |
|
|
885 |
///The type of the underlying digraph. |
|
886 |
typedef typename _Traits::Digraph Digraph; |
|
887 |
|
|
888 |
typedef typename Digraph::Node Node; |
|
889 |
typedef typename Digraph::NodeIt NodeIt; |
|
890 |
typedef typename Digraph::Arc Arc; |
|
891 |
typedef typename Digraph::OutArcIt ArcIt; |
|
892 |
|
|
893 |
///The type of the map that stores the arc lengths. |
|
894 |
typedef typename _Traits::LengthMap LengthMap; |
|
895 |
|
|
896 |
///The type of the length of the arcs. |
|
897 |
typedef typename LengthMap::Value Value; |
|
898 |
|
|
899 |
///\brief The type of the map that stores the last |
|
900 |
///arcs of the shortest paths. |
|
901 |
typedef typename _Traits::PredMap PredMap; |
|
902 |
|
|
903 |
///The type of the map that stores the dists of the nodes. |
|
904 |
typedef typename _Traits::DistMap DistMap; |
|
905 |
|
|
906 |
public: |
|
907 |
/// Constructor. |
|
908 |
BellmanFordWizard() : _Traits() {} |
|
909 |
|
|
910 |
/// \brief Constructor that requires parameters. |
|
911 |
/// |
|
912 |
/// Constructor that requires parameters. |
|
913 |
/// These parameters will be the default values for the traits class. |
|
914 |
BellmanFordWizard(const Digraph& digraph, const LengthMap& length, |
|
915 |
Node src = INVALID) |
|
916 |
: _Traits(digraph, length, src) {} |
|
917 |
|
|
918 |
/// \brief Copy constructor |
|
919 |
BellmanFordWizard(const _Traits &b) : _Traits(b) {} |
|
920 |
|
|
921 |
~BellmanFordWizard() {} |
|
922 |
|
|
923 |
/// \brief Runs BellmanFord algorithm from a given node. |
|
924 |
/// |
|
925 |
/// Runs BellmanFord algorithm from a given node. |
|
926 |
/// The node can be given by the \ref source function. |
|
927 |
void run() { |
|
928 |
LEMON_ASSERT(Base::_source != INVALID, "Source node is not given"); |
|
929 |
BellmanFord<Digraph,LengthMap,_Traits> |
|
930 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
931 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
932 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
933 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
934 |
bf.run(Base::_source); |
|
935 |
} |
|
936 |
|
|
937 |
/// \brief Runs BellmanFord algorithm from the given node. |
|
938 |
/// |
|
939 |
/// Runs BellmanFord algorithm from the given node. |
|
940 |
/// \param src is the given source. |
|
941 |
void run(Node src) { |
|
942 |
Base::_source = src; |
|
943 |
run(); |
|
944 |
} |
|
945 |
|
|
946 |
template<class T> |
|
947 |
struct DefPredMapBase : public Base { |
|
948 |
typedef T PredMap; |
|
949 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
|
950 |
DefPredMapBase(const _Traits &b) : _Traits(b) {} |
|
951 |
}; |
|
952 |
|
|
953 |
///\brief \ref named-templ-param "Named parameter" |
|
954 |
///function for setting PredMap type |
|
955 |
/// |
|
956 |
/// \ref named-templ-param "Named parameter" |
|
957 |
///function for setting PredMap type |
|
958 |
/// |
|
959 |
template<class T> |
|
960 |
BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) |
|
961 |
{ |
|
962 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
963 |
return BellmanFordWizard<DefPredMapBase<T> >(*this); |
|
964 |
} |
|
965 |
|
|
966 |
template<class T> |
|
967 |
struct DefDistMapBase : public Base { |
|
968 |
typedef T DistMap; |
|
969 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
|
970 |
DefDistMapBase(const _Traits &b) : _Traits(b) {} |
|
971 |
}; |
|
972 |
|
|
973 |
///\brief \ref named-templ-param "Named parameter" |
|
974 |
///function for setting DistMap type |
|
975 |
/// |
|
976 |
/// \ref named-templ-param "Named parameter" |
|
977 |
///function for setting DistMap type |
|
978 |
/// |
|
979 |
template<class T> |
|
980 |
BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) { |
|
981 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
982 |
return BellmanFordWizard<DefDistMapBase<T> >(*this); |
|
983 |
} |
|
984 |
|
|
985 |
template<class T> |
|
986 |
struct DefOperationTraitsBase : public Base { |
|
987 |
typedef T OperationTraits; |
|
988 |
DefOperationTraitsBase(const _Traits &b) : _Traits(b) {} |
|
989 |
}; |
|
990 |
|
|
991 |
///\brief \ref named-templ-param "Named parameter" |
|
992 |
///function for setting OperationTraits type |
|
993 |
/// |
|
994 |
/// \ref named-templ-param "Named parameter" |
|
995 |
///function for setting OperationTraits type |
|
996 |
/// |
|
997 |
template<class T> |
|
998 |
BellmanFordWizard<DefOperationTraitsBase<T> > distMap() { |
|
999 |
return BellmanFordWizard<DefDistMapBase<T> >(*this); |
|
1000 |
} |
|
1001 |
|
|
1002 |
/// \brief Sets the source node, from which the BellmanFord algorithm runs. |
|
1003 |
/// |
|
1004 |
/// Sets the source node, from which the BellmanFord algorithm runs. |
|
1005 |
/// \param src is the source node. |
|
1006 |
BellmanFordWizard<_Traits>& source(Node src) { |
|
1007 |
Base::_source = src; |
|
1008 |
return *this; |
|
1009 |
} |
|
1010 |
|
|
1011 |
}; |
|
1012 |
|
|
1013 |
/// \brief Function type interface for BellmanFord algorithm. |
|
1014 |
/// |
|
1015 |
/// \ingroup shortest_path |
|
1016 |
/// Function type interface for BellmanFord algorithm. |
|
1017 |
/// |
|
1018 |
/// This function also has several \ref named-templ-func-param |
|
1019 |
/// "named parameters", they are declared as the members of class |
|
1020 |
/// \ref BellmanFordWizard. |
|
1021 |
/// The following |
|
1022 |
/// example shows how to use these parameters. |
|
1023 |
///\code |
|
1024 |
/// bellmanford(g,length,source).predMap(preds).run(); |
|
1025 |
///\endcode |
|
1026 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
1027 |
/// to the end of the parameter list. |
|
1028 |
/// \sa BellmanFordWizard |
|
1029 |
/// \sa BellmanFord |
|
1030 |
template<class _Digraph, class _LengthMap> |
|
1031 |
BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
1032 |
bellmanFord(const _Digraph& digraph, |
|
1033 |
const _LengthMap& length, |
|
1034 |
typename _Digraph::Node source = INVALID) { |
|
1035 |
return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> > |
|
1036 |
(digraph, length, source); |
|
1037 |
} |
|
1038 |
|
|
1039 |
} //END OF NAMESPACE LEMON |
|
1040 |
|
|
1041 |
#endif |
|
1042 |
|
0 comments (0 inline)