0
1
2
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_CANCEL_AND_TIGHTEN_H |
|
| 20 |
#define LEMON_CANCEL_AND_TIGHTEN_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Cancel and Tighten algorithm for finding a minimum cost flow. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
|
|
| 29 |
#include <lemon/circulation.h> |
|
| 30 |
#include <lemon/bellman_ford.h> |
|
| 31 |
#include <lemon/howard.h> |
|
| 32 |
#include <lemon/adaptors.h> |
|
| 33 |
#include <lemon/tolerance.h> |
|
| 34 |
#include <lemon/math.h> |
|
| 35 |
|
|
| 36 |
#include <lemon/static_graph.h> |
|
| 37 |
|
|
| 38 |
namespace lemon {
|
|
| 39 |
|
|
| 40 |
/// \addtogroup min_cost_flow |
|
| 41 |
/// @{
|
|
| 42 |
|
|
| 43 |
/// \brief Implementation of the Cancel and Tighten algorithm for |
|
| 44 |
/// finding a minimum cost flow. |
|
| 45 |
/// |
|
| 46 |
/// \ref CancelAndTighten implements the Cancel and Tighten algorithm for |
|
| 47 |
/// finding a minimum cost flow. |
|
| 48 |
/// |
|
| 49 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
| 50 |
/// \tparam LowerMap The type of the lower bound map. |
|
| 51 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
| 52 |
/// \tparam CostMap The type of the cost (length) map. |
|
| 53 |
/// \tparam SupplyMap The type of the supply map. |
|
| 54 |
/// |
|
| 55 |
/// \warning |
|
| 56 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
| 57 |
/// - Supply values should be \e signed \e integers. |
|
| 58 |
/// - The value types of the maps should be convertible to each other. |
|
| 59 |
/// - \c CostMap::Value must be signed type. |
|
| 60 |
/// |
|
| 61 |
/// \author Peter Kovacs |
|
| 62 |
template < typename Digraph, |
|
| 63 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
| 64 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
| 65 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
| 66 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
| 67 |
class CancelAndTighten |
|
| 68 |
{
|
|
| 69 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 70 |
|
|
| 71 |
typedef typename CapacityMap::Value Capacity; |
|
| 72 |
typedef typename CostMap::Value Cost; |
|
| 73 |
typedef typename SupplyMap::Value Supply; |
|
| 74 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
| 75 |
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap; |
|
| 76 |
|
|
| 77 |
typedef ResidualDigraph< const Digraph, |
|
| 78 |
CapacityArcMap, CapacityArcMap > ResDigraph; |
|
| 79 |
|
|
| 80 |
public: |
|
| 81 |
|
|
| 82 |
/// The type of the flow map. |
|
| 83 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
| 84 |
/// The type of the potential map. |
|
| 85 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
| 86 |
|
|
| 87 |
private: |
|
| 88 |
|
|
| 89 |
/// \brief Map adaptor class for handling residual arc costs. |
|
| 90 |
/// |
|
| 91 |
/// Map adaptor class for handling residual arc costs. |
|
| 92 |
class ResidualCostMap : public MapBase<typename ResDigraph::Arc, Cost> |
|
| 93 |
{
|
|
| 94 |
typedef typename ResDigraph::Arc Arc; |
|
| 95 |
|
|
| 96 |
private: |
|
| 97 |
|
|
| 98 |
const CostMap &_cost_map; |
|
| 99 |
|
|
| 100 |
public: |
|
| 101 |
|
|
| 102 |
///\e |
|
| 103 |
ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
|
|
| 104 |
|
|
| 105 |
///\e |
|
| 106 |
Cost operator[](const Arc &e) const {
|
|
| 107 |
return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
|
| 108 |
} |
|
| 109 |
|
|
| 110 |
}; //class ResidualCostMap |
|
| 111 |
|
|
| 112 |
/// \brief Map adaptor class for handling reduced arc costs. |
|
| 113 |
/// |
|
| 114 |
/// Map adaptor class for handling reduced arc costs. |
|
| 115 |
class ReducedCostMap : public MapBase<Arc, Cost> |
|
| 116 |
{
|
|
| 117 |
private: |
|
| 118 |
|
|
| 119 |
const Digraph &_gr; |
|
| 120 |
const CostMap &_cost_map; |
|
| 121 |
const PotentialMap &_pot_map; |
|
| 122 |
|
|
| 123 |
public: |
|
| 124 |
|
|
| 125 |
///\e |
|
| 126 |
ReducedCostMap( const Digraph &gr, |
|
| 127 |
const CostMap &cost_map, |
|
| 128 |
const PotentialMap &pot_map ) : |
|
| 129 |
_gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
|
|
| 130 |
|
|
| 131 |
///\e |
|
| 132 |
inline Cost operator[](const Arc &e) const {
|
|
| 133 |
return _cost_map[e] + _pot_map[_gr.source(e)] |
|
| 134 |
- _pot_map[_gr.target(e)]; |
|
| 135 |
} |
|
| 136 |
|
|
| 137 |
}; //class ReducedCostMap |
|
| 138 |
|
|
| 139 |
struct BFOperationTraits {
|
|
| 140 |
static double zero() { return 0; }
|
|
| 141 |
|
|
| 142 |
static double infinity() {
|
|
| 143 |
return std::numeric_limits<double>::infinity(); |
|
| 144 |
} |
|
| 145 |
|
|
| 146 |
static double plus(const double& left, const double& right) {
|
|
| 147 |
return left + right; |
|
| 148 |
} |
|
| 149 |
|
|
| 150 |
static bool less(const double& left, const double& right) {
|
|
| 151 |
return left + 1e-6 < right; |
|
| 152 |
} |
|
| 153 |
}; // class BFOperationTraits |
|
| 154 |
|
|
| 155 |
private: |
|
| 156 |
|
|
| 157 |
// The digraph the algorithm runs on |
|
| 158 |
const Digraph &_graph; |
|
| 159 |
// The original lower bound map |
|
| 160 |
const LowerMap *_lower; |
|
| 161 |
// The modified capacity map |
|
| 162 |
CapacityArcMap _capacity; |
|
| 163 |
// The original cost map |
|
| 164 |
const CostMap &_cost; |
|
| 165 |
// The modified supply map |
|
| 166 |
SupplyNodeMap _supply; |
|
| 167 |
bool _valid_supply; |
|
| 168 |
|
|
| 169 |
// Arc map of the current flow |
|
| 170 |
FlowMap *_flow; |
|
| 171 |
bool _local_flow; |
|
| 172 |
// Node map of the current potentials |
|
| 173 |
PotentialMap *_potential; |
|
| 174 |
bool _local_potential; |
|
| 175 |
|
|
| 176 |
// The residual digraph |
|
| 177 |
ResDigraph *_res_graph; |
|
| 178 |
// The residual cost map |
|
| 179 |
ResidualCostMap _res_cost; |
|
| 180 |
|
|
| 181 |
public: |
|
| 182 |
|
|
| 183 |
/// \brief General constructor (with lower bounds). |
|
| 184 |
/// |
|
| 185 |
/// General constructor (with lower bounds). |
|
| 186 |
/// |
|
| 187 |
/// \param digraph The digraph the algorithm runs on. |
|
| 188 |
/// \param lower The lower bounds of the arcs. |
|
| 189 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 190 |
/// \param cost The cost (length) values of the arcs. |
|
| 191 |
/// \param supply The supply values of the nodes (signed). |
|
| 192 |
CancelAndTighten( const Digraph &digraph, |
|
| 193 |
const LowerMap &lower, |
|
| 194 |
const CapacityMap &capacity, |
|
| 195 |
const CostMap &cost, |
|
| 196 |
const SupplyMap &supply ) : |
|
| 197 |
_graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost), |
|
| 198 |
_supply(digraph), _flow(NULL), _local_flow(false), |
|
| 199 |
_potential(NULL), _local_potential(false), |
|
| 200 |
_res_graph(NULL), _res_cost(_cost) |
|
| 201 |
{
|
|
| 202 |
// Check the sum of supply values |
|
| 203 |
Supply sum = 0; |
|
| 204 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 205 |
_supply[n] = supply[n]; |
|
| 206 |
sum += _supply[n]; |
|
| 207 |
} |
|
| 208 |
_valid_supply = sum == 0; |
|
| 209 |
|
|
| 210 |
// Remove non-zero lower bounds |
|
| 211 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 212 |
_capacity[e] = capacity[e]; |
|
| 213 |
if (lower[e] != 0) {
|
|
| 214 |
_capacity[e] -= lower[e]; |
|
| 215 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 216 |
_supply[_graph.target(e)] += lower[e]; |
|
| 217 |
} |
|
| 218 |
} |
|
| 219 |
} |
|
| 220 |
/* |
|
| 221 |
/// \brief General constructor (without lower bounds). |
|
| 222 |
/// |
|
| 223 |
/// General constructor (without lower bounds). |
|
| 224 |
/// |
|
| 225 |
/// \param digraph The digraph the algorithm runs on. |
|
| 226 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 227 |
/// \param cost The cost (length) values of the arcs. |
|
| 228 |
/// \param supply The supply values of the nodes (signed). |
|
| 229 |
CancelAndTighten( const Digraph &digraph, |
|
| 230 |
const CapacityMap &capacity, |
|
| 231 |
const CostMap &cost, |
|
| 232 |
const SupplyMap &supply ) : |
|
| 233 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
| 234 |
_supply(supply), _flow(NULL), _local_flow(false), |
|
| 235 |
_potential(NULL), _local_potential(false), |
|
| 236 |
_res_graph(NULL), _res_cost(_cost) |
|
| 237 |
{
|
|
| 238 |
// Check the sum of supply values |
|
| 239 |
Supply sum = 0; |
|
| 240 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
| 241 |
_valid_supply = sum == 0; |
|
| 242 |
} |
|
| 243 |
|
|
| 244 |
/// \brief Simple constructor (with lower bounds). |
|
| 245 |
/// |
|
| 246 |
/// Simple constructor (with lower bounds). |
|
| 247 |
/// |
|
| 248 |
/// \param digraph The digraph the algorithm runs on. |
|
| 249 |
/// \param lower The lower bounds of the arcs. |
|
| 250 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 251 |
/// \param cost The cost (length) values of the arcs. |
|
| 252 |
/// \param s The source node. |
|
| 253 |
/// \param t The target node. |
|
| 254 |
/// \param flow_value The required amount of flow from node \c s |
|
| 255 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 256 |
CancelAndTighten( const Digraph &digraph, |
|
| 257 |
const LowerMap &lower, |
|
| 258 |
const CapacityMap &capacity, |
|
| 259 |
const CostMap &cost, |
|
| 260 |
Node s, Node t, |
|
| 261 |
Supply flow_value ) : |
|
| 262 |
_graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost), |
|
| 263 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 264 |
_potential(NULL), _local_potential(false), |
|
| 265 |
_res_graph(NULL), _res_cost(_cost) |
|
| 266 |
{
|
|
| 267 |
// Remove non-zero lower bounds |
|
| 268 |
_supply[s] = flow_value; |
|
| 269 |
_supply[t] = -flow_value; |
|
| 270 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 271 |
if (lower[e] != 0) {
|
|
| 272 |
_capacity[e] -= lower[e]; |
|
| 273 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 274 |
_supply[_graph.target(e)] += lower[e]; |
|
| 275 |
} |
|
| 276 |
} |
|
| 277 |
_valid_supply = true; |
|
| 278 |
} |
|
| 279 |
|
|
| 280 |
/// \brief Simple constructor (without lower bounds). |
|
| 281 |
/// |
|
| 282 |
/// Simple constructor (without lower bounds). |
|
| 283 |
/// |
|
| 284 |
/// \param digraph The digraph the algorithm runs on. |
|
| 285 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 286 |
/// \param cost The cost (length) values of the arcs. |
|
| 287 |
/// \param s The source node. |
|
| 288 |
/// \param t The target node. |
|
| 289 |
/// \param flow_value The required amount of flow from node \c s |
|
| 290 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 291 |
CancelAndTighten( const Digraph &digraph, |
|
| 292 |
const CapacityMap &capacity, |
|
| 293 |
const CostMap &cost, |
|
| 294 |
Node s, Node t, |
|
| 295 |
Supply flow_value ) : |
|
| 296 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
| 297 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 298 |
_potential(NULL), _local_potential(false), |
|
| 299 |
_res_graph(NULL), _res_cost(_cost) |
|
| 300 |
{
|
|
| 301 |
_supply[s] = flow_value; |
|
| 302 |
_supply[t] = -flow_value; |
|
| 303 |
_valid_supply = true; |
|
| 304 |
} |
|
| 305 |
*/ |
|
| 306 |
/// Destructor. |
|
| 307 |
~CancelAndTighten() {
|
|
| 308 |
if (_local_flow) delete _flow; |
|
| 309 |
if (_local_potential) delete _potential; |
|
| 310 |
delete _res_graph; |
|
| 311 |
} |
|
| 312 |
|
|
| 313 |
/// \brief Set the flow map. |
|
| 314 |
/// |
|
| 315 |
/// Set the flow map. |
|
| 316 |
/// |
|
| 317 |
/// \return \c (*this) |
|
| 318 |
CancelAndTighten& flowMap(FlowMap &map) {
|
|
| 319 |
if (_local_flow) {
|
|
| 320 |
delete _flow; |
|
| 321 |
_local_flow = false; |
|
| 322 |
} |
|
| 323 |
_flow = ↦ |
|
| 324 |
return *this; |
|
| 325 |
} |
|
| 326 |
|
|
| 327 |
/// \brief Set the potential map. |
|
| 328 |
/// |
|
| 329 |
/// Set the potential map. |
|
| 330 |
/// |
|
| 331 |
/// \return \c (*this) |
|
| 332 |
CancelAndTighten& potentialMap(PotentialMap &map) {
|
|
| 333 |
if (_local_potential) {
|
|
| 334 |
delete _potential; |
|
| 335 |
_local_potential = false; |
|
| 336 |
} |
|
| 337 |
_potential = ↦ |
|
| 338 |
return *this; |
|
| 339 |
} |
|
| 340 |
|
|
| 341 |
/// \name Execution control |
|
| 342 |
|
|
| 343 |
/// @{
|
|
| 344 |
|
|
| 345 |
/// \brief Run the algorithm. |
|
| 346 |
/// |
|
| 347 |
/// Run the algorithm. |
|
| 348 |
/// |
|
| 349 |
/// \return \c true if a feasible flow can be found. |
|
| 350 |
bool run() {
|
|
| 351 |
return init() && start(); |
|
| 352 |
} |
|
| 353 |
|
|
| 354 |
/// @} |
|
| 355 |
|
|
| 356 |
/// \name Query Functions |
|
| 357 |
/// The result of the algorithm can be obtained using these |
|
| 358 |
/// functions.\n |
|
| 359 |
/// \ref lemon::CancelAndTighten::run() "run()" must be called before |
|
| 360 |
/// using them. |
|
| 361 |
|
|
| 362 |
/// @{
|
|
| 363 |
|
|
| 364 |
/// \brief Return a const reference to the arc map storing the |
|
| 365 |
/// found flow. |
|
| 366 |
/// |
|
| 367 |
/// Return a const reference to the arc map storing the found flow. |
|
| 368 |
/// |
|
| 369 |
/// \pre \ref run() must be called before using this function. |
|
| 370 |
const FlowMap& flowMap() const {
|
|
| 371 |
return *_flow; |
|
| 372 |
} |
|
| 373 |
|
|
| 374 |
/// \brief Return a const reference to the node map storing the |
|
| 375 |
/// found potentials (the dual solution). |
|
| 376 |
/// |
|
| 377 |
/// Return a const reference to the node map storing the found |
|
| 378 |
/// potentials (the dual solution). |
|
| 379 |
/// |
|
| 380 |
/// \pre \ref run() must be called before using this function. |
|
| 381 |
const PotentialMap& potentialMap() const {
|
|
| 382 |
return *_potential; |
|
| 383 |
} |
|
| 384 |
|
|
| 385 |
/// \brief Return the flow on the given arc. |
|
| 386 |
/// |
|
| 387 |
/// Return the flow on the given arc. |
|
| 388 |
/// |
|
| 389 |
/// \pre \ref run() must be called before using this function. |
|
| 390 |
Capacity flow(const Arc& arc) const {
|
|
| 391 |
return (*_flow)[arc]; |
|
| 392 |
} |
|
| 393 |
|
|
| 394 |
/// \brief Return the potential of the given node. |
|
| 395 |
/// |
|
| 396 |
/// Return the potential of the given node. |
|
| 397 |
/// |
|
| 398 |
/// \pre \ref run() must be called before using this function. |
|
| 399 |
Cost potential(const Node& node) const {
|
|
| 400 |
return (*_potential)[node]; |
|
| 401 |
} |
|
| 402 |
|
|
| 403 |
/// \brief Return the total cost of the found flow. |
|
| 404 |
/// |
|
| 405 |
/// Return the total cost of the found flow. The complexity of the |
|
| 406 |
/// function is \f$ O(e) \f$. |
|
| 407 |
/// |
|
| 408 |
/// \pre \ref run() must be called before using this function. |
|
| 409 |
Cost totalCost() const {
|
|
| 410 |
Cost c = 0; |
|
| 411 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 412 |
c += (*_flow)[e] * _cost[e]; |
|
| 413 |
return c; |
|
| 414 |
} |
|
| 415 |
|
|
| 416 |
/// @} |
|
| 417 |
|
|
| 418 |
private: |
|
| 419 |
|
|
| 420 |
/// Initialize the algorithm. |
|
| 421 |
bool init() {
|
|
| 422 |
if (!_valid_supply) return false; |
|
| 423 |
|
|
| 424 |
// Initialize flow and potential maps |
|
| 425 |
if (!_flow) {
|
|
| 426 |
_flow = new FlowMap(_graph); |
|
| 427 |
_local_flow = true; |
|
| 428 |
} |
|
| 429 |
if (!_potential) {
|
|
| 430 |
_potential = new PotentialMap(_graph); |
|
| 431 |
_local_potential = true; |
|
| 432 |
} |
|
| 433 |
|
|
| 434 |
_res_graph = new ResDigraph(_graph, _capacity, *_flow); |
|
| 435 |
|
|
| 436 |
// Find a feasible flow using Circulation |
|
| 437 |
Circulation< Digraph, ConstMap<Arc, Capacity>, |
|
| 438 |
CapacityArcMap, SupplyMap > |
|
| 439 |
circulation( _graph, constMap<Arc>(Capacity(0)), |
|
| 440 |
_capacity, _supply ); |
|
| 441 |
return circulation.flowMap(*_flow).run(); |
|
| 442 |
} |
|
| 443 |
|
|
| 444 |
bool start() {
|
|
| 445 |
const double LIMIT_FACTOR = 0.01; |
|
| 446 |
const int MIN_LIMIT = 3; |
|
| 447 |
|
|
| 448 |
typedef typename Digraph::template NodeMap<double> FloatPotentialMap; |
|
| 449 |
typedef typename Digraph::template NodeMap<int> LevelMap; |
|
| 450 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; |
|
| 451 |
typedef typename Digraph::template NodeMap<Node> PredNodeMap; |
|
| 452 |
typedef typename Digraph::template NodeMap<Arc> PredArcMap; |
|
| 453 |
typedef typename ResDigraph::template ArcMap<double> ResShiftCostMap; |
|
| 454 |
FloatPotentialMap pi(_graph); |
|
| 455 |
LevelMap level(_graph); |
|
| 456 |
BoolNodeMap reached(_graph); |
|
| 457 |
BoolNodeMap processed(_graph); |
|
| 458 |
PredNodeMap pred_node(_graph); |
|
| 459 |
PredArcMap pred_arc(_graph); |
|
| 460 |
int node_num = countNodes(_graph); |
|
| 461 |
typedef std::pair<Arc, bool> pair; |
|
| 462 |
std::vector<pair> stack(node_num); |
|
| 463 |
std::vector<Node> proc_vector(node_num); |
|
| 464 |
ResShiftCostMap shift_cost(*_res_graph); |
|
| 465 |
|
|
| 466 |
Tolerance<double> tol; |
|
| 467 |
tol.epsilon(1e-6); |
|
| 468 |
|
|
| 469 |
Timer t1, t2, t3; |
|
| 470 |
t1.reset(); |
|
| 471 |
t2.reset(); |
|
| 472 |
t3.reset(); |
|
| 473 |
|
|
| 474 |
// Initialize epsilon and the node potentials |
|
| 475 |
double epsilon = 0; |
|
| 476 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 477 |
if (_capacity[e] - (*_flow)[e] > 0 && _cost[e] < -epsilon) |
|
| 478 |
epsilon = -_cost[e]; |
|
| 479 |
else if ((*_flow)[e] > 0 && _cost[e] > epsilon) |
|
| 480 |
epsilon = _cost[e]; |
|
| 481 |
} |
|
| 482 |
for (NodeIt v(_graph); v != INVALID; ++v) {
|
|
| 483 |
pi[v] = 0; |
|
| 484 |
} |
|
| 485 |
|
|
| 486 |
// Start phases |
|
| 487 |
int limit = int(LIMIT_FACTOR * node_num); |
|
| 488 |
if (limit < MIN_LIMIT) limit = MIN_LIMIT; |
|
| 489 |
int iter = limit; |
|
| 490 |
while (epsilon * node_num >= 1) {
|
|
| 491 |
t1.start(); |
|
| 492 |
// Find and cancel cycles in the admissible digraph using DFS |
|
| 493 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 494 |
reached[n] = false; |
|
| 495 |
processed[n] = false; |
|
| 496 |
} |
|
| 497 |
int stack_head = -1; |
|
| 498 |
int proc_head = -1; |
|
| 499 |
|
|
| 500 |
for (NodeIt start(_graph); start != INVALID; ++start) {
|
|
| 501 |
if (reached[start]) continue; |
|
| 502 |
|
|
| 503 |
// New start node |
|
| 504 |
reached[start] = true; |
|
| 505 |
pred_arc[start] = INVALID; |
|
| 506 |
pred_node[start] = INVALID; |
|
| 507 |
|
|
| 508 |
// Find the first admissible residual outgoing arc |
|
| 509 |
double p = pi[start]; |
|
| 510 |
Arc e; |
|
| 511 |
_graph.firstOut(e, start); |
|
| 512 |
while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
| 513 |
!tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
| 514 |
_graph.nextOut(e); |
|
| 515 |
if (e != INVALID) {
|
|
| 516 |
stack[++stack_head] = pair(e, true); |
|
| 517 |
goto next_step_1; |
|
| 518 |
} |
|
| 519 |
_graph.firstIn(e, start); |
|
| 520 |
while ( e != INVALID && ((*_flow)[e] == 0 || |
|
| 521 |
!tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
| 522 |
_graph.nextIn(e); |
|
| 523 |
if (e != INVALID) {
|
|
| 524 |
stack[++stack_head] = pair(e, false); |
|
| 525 |
goto next_step_1; |
|
| 526 |
} |
|
| 527 |
processed[start] = true; |
|
| 528 |
proc_vector[++proc_head] = start; |
|
| 529 |
continue; |
|
| 530 |
next_step_1: |
|
| 531 |
|
|
| 532 |
while (stack_head >= 0) {
|
|
| 533 |
Arc se = stack[stack_head].first; |
|
| 534 |
bool sf = stack[stack_head].second; |
|
| 535 |
Node u, v; |
|
| 536 |
if (sf) {
|
|
| 537 |
u = _graph.source(se); |
|
| 538 |
v = _graph.target(se); |
|
| 539 |
} else {
|
|
| 540 |
u = _graph.target(se); |
|
| 541 |
v = _graph.source(se); |
|
| 542 |
} |
|
| 543 |
|
|
| 544 |
if (!reached[v]) {
|
|
| 545 |
// A new node is reached |
|
| 546 |
reached[v] = true; |
|
| 547 |
pred_node[v] = u; |
|
| 548 |
pred_arc[v] = se; |
|
| 549 |
// Find the first admissible residual outgoing arc |
|
| 550 |
double p = pi[v]; |
|
| 551 |
Arc e; |
|
| 552 |
_graph.firstOut(e, v); |
|
| 553 |
while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
| 554 |
!tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
| 555 |
_graph.nextOut(e); |
|
| 556 |
if (e != INVALID) {
|
|
| 557 |
stack[++stack_head] = pair(e, true); |
|
| 558 |
goto next_step_2; |
|
| 559 |
} |
|
| 560 |
_graph.firstIn(e, v); |
|
| 561 |
while ( e != INVALID && ((*_flow)[e] == 0 || |
|
| 562 |
!tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
| 563 |
_graph.nextIn(e); |
|
| 564 |
stack[++stack_head] = pair(e, false); |
|
| 565 |
next_step_2: ; |
|
| 566 |
} else {
|
|
| 567 |
if (!processed[v]) {
|
|
| 568 |
// A cycle is found |
|
| 569 |
Node n, w = u; |
|
| 570 |
Capacity d, delta = sf ? _capacity[se] - (*_flow)[se] : |
|
| 571 |
(*_flow)[se]; |
|
| 572 |
for (n = u; n != v; n = pred_node[n]) {
|
|
| 573 |
d = _graph.target(pred_arc[n]) == n ? |
|
| 574 |
_capacity[pred_arc[n]] - (*_flow)[pred_arc[n]] : |
|
| 575 |
(*_flow)[pred_arc[n]]; |
|
| 576 |
if (d <= delta) {
|
|
| 577 |
delta = d; |
|
| 578 |
w = pred_node[n]; |
|
| 579 |
} |
|
| 580 |
} |
|
| 581 |
|
|
| 582 |
/* |
|
| 583 |
std::cout << "CYCLE FOUND: "; |
|
| 584 |
if (sf) |
|
| 585 |
std::cout << _cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]; |
|
| 586 |
else |
|
| 587 |
std::cout << _graph.id(se) << ":" << -(_cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]); |
|
| 588 |
for (n = u; n != v; n = pred_node[n]) {
|
|
| 589 |
if (_graph.target(pred_arc[n]) == n) |
|
| 590 |
std::cout << " " << _cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])]; |
|
| 591 |
else |
|
| 592 |
std::cout << " " << -(_cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])]); |
|
| 593 |
} |
|
| 594 |
std::cout << "\n"; |
|
| 595 |
*/ |
|
| 596 |
// Augment along the cycle |
|
| 597 |
(*_flow)[se] = sf ? (*_flow)[se] + delta : |
|
| 598 |
(*_flow)[se] - delta; |
|
| 599 |
for (n = u; n != v; n = pred_node[n]) {
|
|
| 600 |
if (_graph.target(pred_arc[n]) == n) |
|
| 601 |
(*_flow)[pred_arc[n]] += delta; |
|
| 602 |
else |
|
| 603 |
(*_flow)[pred_arc[n]] -= delta; |
|
| 604 |
} |
|
| 605 |
for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
|
|
| 606 |
--stack_head; |
|
| 607 |
reached[n] = false; |
|
| 608 |
} |
|
| 609 |
u = w; |
|
| 610 |
} |
|
| 611 |
v = u; |
|
| 612 |
|
|
| 613 |
// Find the next admissible residual outgoing arc |
|
| 614 |
double p = pi[v]; |
|
| 615 |
Arc e = stack[stack_head].first; |
|
| 616 |
if (!stack[stack_head].second) {
|
|
| 617 |
_graph.nextIn(e); |
|
| 618 |
goto in_arc_3; |
|
| 619 |
} |
|
| 620 |
_graph.nextOut(e); |
|
| 621 |
while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
| 622 |
!tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
| 623 |
_graph.nextOut(e); |
|
| 624 |
if (e != INVALID) {
|
|
| 625 |
stack[stack_head] = pair(e, true); |
|
| 626 |
goto next_step_3; |
|
| 627 |
} |
|
| 628 |
_graph.firstIn(e, v); |
|
| 629 |
in_arc_3: |
|
| 630 |
while ( e != INVALID && ((*_flow)[e] == 0 || |
|
| 631 |
!tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
| 632 |
_graph.nextIn(e); |
|
| 633 |
stack[stack_head] = pair(e, false); |
|
| 634 |
next_step_3: ; |
|
| 635 |
} |
|
| 636 |
|
|
| 637 |
while (stack_head >= 0 && stack[stack_head].first == INVALID) {
|
|
| 638 |
processed[v] = true; |
|
| 639 |
proc_vector[++proc_head] = v; |
|
| 640 |
if (--stack_head >= 0) {
|
|
| 641 |
v = stack[stack_head].second ? |
|
| 642 |
_graph.source(stack[stack_head].first) : |
|
| 643 |
_graph.target(stack[stack_head].first); |
|
| 644 |
// Find the next admissible residual outgoing arc |
|
| 645 |
double p = pi[v]; |
|
| 646 |
Arc e = stack[stack_head].first; |
|
| 647 |
if (!stack[stack_head].second) {
|
|
| 648 |
_graph.nextIn(e); |
|
| 649 |
goto in_arc_4; |
|
| 650 |
} |
|
| 651 |
_graph.nextOut(e); |
|
| 652 |
while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || |
|
| 653 |
!tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) |
|
| 654 |
_graph.nextOut(e); |
|
| 655 |
if (e != INVALID) {
|
|
| 656 |
stack[stack_head] = pair(e, true); |
|
| 657 |
goto next_step_4; |
|
| 658 |
} |
|
| 659 |
_graph.firstIn(e, v); |
|
| 660 |
in_arc_4: |
|
| 661 |
while ( e != INVALID && ((*_flow)[e] == 0 || |
|
| 662 |
!tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) |
|
| 663 |
_graph.nextIn(e); |
|
| 664 |
stack[stack_head] = pair(e, false); |
|
| 665 |
next_step_4: ; |
|
| 666 |
} |
|
| 667 |
} |
|
| 668 |
} |
|
| 669 |
} |
|
| 670 |
t1.stop(); |
|
| 671 |
|
|
| 672 |
// Tighten potentials and epsilon |
|
| 673 |
if (--iter > 0) {
|
|
| 674 |
// Compute levels |
|
| 675 |
t2.start(); |
|
| 676 |
for (int i = proc_head; i >= 0; --i) {
|
|
| 677 |
Node v = proc_vector[i]; |
|
| 678 |
double p = pi[v]; |
|
| 679 |
int l = 0; |
|
| 680 |
for (InArcIt e(_graph, v); e != INVALID; ++e) {
|
|
| 681 |
Node u = _graph.source(e); |
|
| 682 |
if ( _capacity[e] - (*_flow)[e] > 0 && |
|
| 683 |
tol.negative(_cost[e] + pi[u] - p) && |
|
| 684 |
level[u] + 1 > l ) l = level[u] + 1; |
|
| 685 |
} |
|
| 686 |
for (OutArcIt e(_graph, v); e != INVALID; ++e) {
|
|
| 687 |
Node u = _graph.target(e); |
|
| 688 |
if ( (*_flow)[e] > 0 && |
|
| 689 |
tol.negative(-_cost[e] + pi[u] - p) && |
|
| 690 |
level[u] + 1 > l ) l = level[u] + 1; |
|
| 691 |
} |
|
| 692 |
level[v] = l; |
|
| 693 |
} |
|
| 694 |
|
|
| 695 |
// Modify potentials |
|
| 696 |
double p, q = -1; |
|
| 697 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 698 |
Node u = _graph.source(e); |
|
| 699 |
Node v = _graph.target(e); |
|
| 700 |
if (_capacity[e] - (*_flow)[e] > 0 && level[u] - level[v] > 0) {
|
|
| 701 |
p = (_cost[e] + pi[u] - pi[v] + epsilon) / |
|
| 702 |
(level[u] - level[v] + 1); |
|
| 703 |
if (q < 0 || p < q) q = p; |
|
| 704 |
} |
|
| 705 |
else if ((*_flow)[e] > 0 && level[v] - level[u] > 0) {
|
|
| 706 |
p = (-_cost[e] - pi[u] + pi[v] + epsilon) / |
|
| 707 |
(level[v] - level[u] + 1); |
|
| 708 |
if (q < 0 || p < q) q = p; |
|
| 709 |
} |
|
| 710 |
} |
|
| 711 |
for (NodeIt v(_graph); v != INVALID; ++v) {
|
|
| 712 |
pi[v] -= q * level[v]; |
|
| 713 |
} |
|
| 714 |
|
|
| 715 |
// Modify epsilon |
|
| 716 |
epsilon = 0; |
|
| 717 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 718 |
double curr = _cost[e] + pi[_graph.source(e)] |
|
| 719 |
- pi[_graph.target(e)]; |
|
| 720 |
if (_capacity[e] - (*_flow)[e] > 0 && curr < -epsilon) |
|
| 721 |
epsilon = -curr; |
|
| 722 |
else if ((*_flow)[e] > 0 && curr > epsilon) |
|
| 723 |
epsilon = curr; |
|
| 724 |
} |
|
| 725 |
t2.stop(); |
|
| 726 |
} else {
|
|
| 727 |
// Set epsilon to the minimum cycle mean |
|
| 728 |
t3.start(); |
|
| 729 |
|
|
| 730 |
/**/ |
|
| 731 |
StaticDigraph static_graph; |
|
| 732 |
typename ResDigraph::template NodeMap<typename StaticDigraph::Node> node_ref(*_res_graph); |
|
| 733 |
typename ResDigraph::template ArcMap<typename StaticDigraph::Arc> arc_ref(*_res_graph); |
|
| 734 |
static_graph.build(*_res_graph, node_ref, arc_ref); |
|
| 735 |
typename StaticDigraph::template NodeMap<double> static_pi(static_graph); |
|
| 736 |
typename StaticDigraph::template ArcMap<double> static_cost(static_graph); |
|
| 737 |
|
|
| 738 |
for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e) |
|
| 739 |
static_cost[arc_ref[e]] = _res_cost[e]; |
|
| 740 |
|
|
| 741 |
Howard<StaticDigraph, typename StaticDigraph::template ArcMap<double> > |
|
| 742 |
mmc(static_graph, static_cost); |
|
| 743 |
mmc.findMinMean(); |
|
| 744 |
epsilon = -mmc.cycleMean(); |
|
| 745 |
/**/ |
|
| 746 |
|
|
| 747 |
/* |
|
| 748 |
Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost); |
|
| 749 |
mmc.findMinMean(); |
|
| 750 |
epsilon = -mmc.cycleMean(); |
|
| 751 |
*/ |
|
| 752 |
|
|
| 753 |
// Compute feasible potentials for the current epsilon |
|
| 754 |
for (typename StaticDigraph::ArcIt e(static_graph); e != INVALID; ++e) |
|
| 755 |
static_cost[e] += epsilon; |
|
| 756 |
typename BellmanFord<StaticDigraph, typename StaticDigraph::template ArcMap<double> >:: |
|
| 757 |
template SetDistMap<typename StaticDigraph::template NodeMap<double> >:: |
|
| 758 |
template SetOperationTraits<BFOperationTraits>::Create |
|
| 759 |
bf(static_graph, static_cost); |
|
| 760 |
bf.distMap(static_pi).init(0); |
|
| 761 |
bf.start(); |
|
| 762 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 763 |
pi[n] = static_pi[node_ref[n]]; |
|
| 764 |
|
|
| 765 |
/* |
|
| 766 |
for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e) |
|
| 767 |
shift_cost[e] = _res_cost[e] + epsilon; |
|
| 768 |
typename BellmanFord<ResDigraph, ResShiftCostMap>:: |
|
| 769 |
template SetDistMap<FloatPotentialMap>:: |
|
| 770 |
template SetOperationTraits<BFOperationTraits>::Create |
|
| 771 |
bf(*_res_graph, shift_cost); |
|
| 772 |
bf.distMap(pi).init(0); |
|
| 773 |
bf.start(); |
|
| 774 |
*/ |
|
| 775 |
|
|
| 776 |
iter = limit; |
|
| 777 |
t3.stop(); |
|
| 778 |
} |
|
| 779 |
} |
|
| 780 |
|
|
| 781 |
// std::cout << t1.realTime() << " " << t2.realTime() << " " << t3.realTime() << "\n"; |
|
| 782 |
|
|
| 783 |
// Handle non-zero lower bounds |
|
| 784 |
if (_lower) {
|
|
| 785 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 786 |
(*_flow)[e] += (*_lower)[e]; |
|
| 787 |
} |
|
| 788 |
return true; |
|
| 789 |
} |
|
| 790 |
|
|
| 791 |
}; //class CancelAndTighten |
|
| 792 |
|
|
| 793 |
///@} |
|
| 794 |
|
|
| 795 |
} //namespace lemon |
|
| 796 |
|
|
| 797 |
#endif //LEMON_CANCEL_AND_TIGHTEN_H |
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_CYCLE_CANCELING_H |
|
| 20 |
#define LEMON_CYCLE_CANCELING_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Cycle-canceling algorithm for finding a minimum cost flow. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <lemon/adaptors.h> |
|
| 29 |
#include <lemon/path.h> |
|
| 30 |
|
|
| 31 |
#include <lemon/circulation.h> |
|
| 32 |
#include <lemon/bellman_ford.h> |
|
| 33 |
#include <lemon/howard.h> |
|
| 34 |
|
|
| 35 |
namespace lemon {
|
|
| 36 |
|
|
| 37 |
/// \addtogroup min_cost_flow |
|
| 38 |
/// @{
|
|
| 39 |
|
|
| 40 |
/// \brief Implementation of a cycle-canceling algorithm for |
|
| 41 |
/// finding a minimum cost flow. |
|
| 42 |
/// |
|
| 43 |
/// \ref CycleCanceling implements a cycle-canceling algorithm for |
|
| 44 |
/// finding a minimum cost flow. |
|
| 45 |
/// |
|
| 46 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
| 47 |
/// \tparam LowerMap The type of the lower bound map. |
|
| 48 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
| 49 |
/// \tparam CostMap The type of the cost (length) map. |
|
| 50 |
/// \tparam SupplyMap The type of the supply map. |
|
| 51 |
/// |
|
| 52 |
/// \warning |
|
| 53 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
| 54 |
/// - Supply values should be \e signed \e integers. |
|
| 55 |
/// - The value types of the maps should be convertible to each other. |
|
| 56 |
/// - \c CostMap::Value must be signed type. |
|
| 57 |
/// |
|
| 58 |
/// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is |
|
| 59 |
/// used for negative cycle detection with limited iteration number. |
|
| 60 |
/// However \ref CycleCanceling also provides the "Minimum Mean |
|
| 61 |
/// Cycle-Canceling" algorithm, which is \e strongly \e polynomial, |
|
| 62 |
/// but rather slower in practice. |
|
| 63 |
/// To use this version of the algorithm, call \ref run() with \c true |
|
| 64 |
/// parameter. |
|
| 65 |
/// |
|
| 66 |
/// \author Peter Kovacs |
|
| 67 |
template < typename Digraph, |
|
| 68 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
| 69 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
| 70 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
| 71 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
| 72 |
class CycleCanceling |
|
| 73 |
{
|
|
| 74 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 75 |
|
|
| 76 |
typedef typename CapacityMap::Value Capacity; |
|
| 77 |
typedef typename CostMap::Value Cost; |
|
| 78 |
typedef typename SupplyMap::Value Supply; |
|
| 79 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
| 80 |
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap; |
|
| 81 |
|
|
| 82 |
typedef ResidualDigraph< const Digraph, |
|
| 83 |
CapacityArcMap, CapacityArcMap > ResDigraph; |
|
| 84 |
typedef typename ResDigraph::Node ResNode; |
|
| 85 |
typedef typename ResDigraph::NodeIt ResNodeIt; |
|
| 86 |
typedef typename ResDigraph::Arc ResArc; |
|
| 87 |
typedef typename ResDigraph::ArcIt ResArcIt; |
|
| 88 |
|
|
| 89 |
public: |
|
| 90 |
|
|
| 91 |
/// The type of the flow map. |
|
| 92 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
| 93 |
/// The type of the potential map. |
|
| 94 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
| 95 |
|
|
| 96 |
private: |
|
| 97 |
|
|
| 98 |
/// \brief Map adaptor class for handling residual arc costs. |
|
| 99 |
/// |
|
| 100 |
/// Map adaptor class for handling residual arc costs. |
|
| 101 |
class ResidualCostMap : public MapBase<ResArc, Cost> |
|
| 102 |
{
|
|
| 103 |
private: |
|
| 104 |
|
|
| 105 |
const CostMap &_cost_map; |
|
| 106 |
|
|
| 107 |
public: |
|
| 108 |
|
|
| 109 |
///\e |
|
| 110 |
ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
|
|
| 111 |
|
|
| 112 |
///\e |
|
| 113 |
Cost operator[](const ResArc &e) const {
|
|
| 114 |
return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
|
| 115 |
} |
|
| 116 |
|
|
| 117 |
}; //class ResidualCostMap |
|
| 118 |
|
|
| 119 |
private: |
|
| 120 |
|
|
| 121 |
// The maximum number of iterations for the first execution of the |
|
| 122 |
// Bellman-Ford algorithm. It should be at least 2. |
|
| 123 |
static const int BF_FIRST_LIMIT = 2; |
|
| 124 |
// The iteration limit for the Bellman-Ford algorithm is multiplied |
|
| 125 |
// by BF_LIMIT_FACTOR/100 in every round. |
|
| 126 |
static const int BF_LIMIT_FACTOR = 150; |
|
| 127 |
|
|
| 128 |
private: |
|
| 129 |
|
|
| 130 |
// The digraph the algorithm runs on |
|
| 131 |
const Digraph &_graph; |
|
| 132 |
// The original lower bound map |
|
| 133 |
const LowerMap *_lower; |
|
| 134 |
// The modified capacity map |
|
| 135 |
CapacityArcMap _capacity; |
|
| 136 |
// The original cost map |
|
| 137 |
const CostMap &_cost; |
|
| 138 |
// The modified supply map |
|
| 139 |
SupplyNodeMap _supply; |
|
| 140 |
bool _valid_supply; |
|
| 141 |
|
|
| 142 |
// Arc map of the current flow |
|
| 143 |
FlowMap *_flow; |
|
| 144 |
bool _local_flow; |
|
| 145 |
// Node map of the current potentials |
|
| 146 |
PotentialMap *_potential; |
|
| 147 |
bool _local_potential; |
|
| 148 |
|
|
| 149 |
// The residual digraph |
|
| 150 |
ResDigraph *_res_graph; |
|
| 151 |
// The residual cost map |
|
| 152 |
ResidualCostMap _res_cost; |
|
| 153 |
|
|
| 154 |
public: |
|
| 155 |
|
|
| 156 |
/// \brief General constructor (with lower bounds). |
|
| 157 |
/// |
|
| 158 |
/// General constructor (with lower bounds). |
|
| 159 |
/// |
|
| 160 |
/// \param digraph The digraph the algorithm runs on. |
|
| 161 |
/// \param lower The lower bounds of the arcs. |
|
| 162 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 163 |
/// \param cost The cost (length) values of the arcs. |
|
| 164 |
/// \param supply The supply values of the nodes (signed). |
|
| 165 |
CycleCanceling( const Digraph &digraph, |
|
| 166 |
const LowerMap &lower, |
|
| 167 |
const CapacityMap &capacity, |
|
| 168 |
const CostMap &cost, |
|
| 169 |
const SupplyMap &supply ) : |
|
| 170 |
_graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost), |
|
| 171 |
_supply(digraph), _flow(NULL), _local_flow(false), |
|
| 172 |
_potential(NULL), _local_potential(false), |
|
| 173 |
_res_graph(NULL), _res_cost(_cost) |
|
| 174 |
{
|
|
| 175 |
// Check the sum of supply values |
|
| 176 |
Supply sum = 0; |
|
| 177 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 178 |
_supply[n] = supply[n]; |
|
| 179 |
sum += _supply[n]; |
|
| 180 |
} |
|
| 181 |
_valid_supply = sum == 0; |
|
| 182 |
|
|
| 183 |
// Remove non-zero lower bounds |
|
| 184 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 185 |
_capacity[e] = capacity[e]; |
|
| 186 |
if (lower[e] != 0) {
|
|
| 187 |
_capacity[e] -= lower[e]; |
|
| 188 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 189 |
_supply[_graph.target(e)] += lower[e]; |
|
| 190 |
} |
|
| 191 |
} |
|
| 192 |
} |
|
| 193 |
/* |
|
| 194 |
/// \brief General constructor (without lower bounds). |
|
| 195 |
/// |
|
| 196 |
/// General constructor (without lower bounds). |
|
| 197 |
/// |
|
| 198 |
/// \param digraph The digraph the algorithm runs on. |
|
| 199 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 200 |
/// \param cost The cost (length) values of the arcs. |
|
| 201 |
/// \param supply The supply values of the nodes (signed). |
|
| 202 |
CycleCanceling( const Digraph &digraph, |
|
| 203 |
const CapacityMap &capacity, |
|
| 204 |
const CostMap &cost, |
|
| 205 |
const SupplyMap &supply ) : |
|
| 206 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
| 207 |
_supply(supply), _flow(NULL), _local_flow(false), |
|
| 208 |
_potential(NULL), _local_potential(false), _res_graph(NULL), |
|
| 209 |
_res_cost(_cost) |
|
| 210 |
{
|
|
| 211 |
// Check the sum of supply values |
|
| 212 |
Supply sum = 0; |
|
| 213 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
| 214 |
_valid_supply = sum == 0; |
|
| 215 |
} |
|
| 216 |
|
|
| 217 |
/// \brief Simple constructor (with lower bounds). |
|
| 218 |
/// |
|
| 219 |
/// Simple constructor (with lower bounds). |
|
| 220 |
/// |
|
| 221 |
/// \param digraph The digraph the algorithm runs on. |
|
| 222 |
/// \param lower The lower bounds of the arcs. |
|
| 223 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 224 |
/// \param cost The cost (length) values of the arcs. |
|
| 225 |
/// \param s The source node. |
|
| 226 |
/// \param t The target node. |
|
| 227 |
/// \param flow_value The required amount of flow from node \c s |
|
| 228 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 229 |
CycleCanceling( const Digraph &digraph, |
|
| 230 |
const LowerMap &lower, |
|
| 231 |
const CapacityMap &capacity, |
|
| 232 |
const CostMap &cost, |
|
| 233 |
Node s, Node t, |
|
| 234 |
Supply flow_value ) : |
|
| 235 |
_graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost), |
|
| 236 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 237 |
_potential(NULL), _local_potential(false), _res_graph(NULL), |
|
| 238 |
_res_cost(_cost) |
|
| 239 |
{
|
|
| 240 |
// Remove non-zero lower bounds |
|
| 241 |
_supply[s] = flow_value; |
|
| 242 |
_supply[t] = -flow_value; |
|
| 243 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 244 |
if (lower[e] != 0) {
|
|
| 245 |
_capacity[e] -= lower[e]; |
|
| 246 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 247 |
_supply[_graph.target(e)] += lower[e]; |
|
| 248 |
} |
|
| 249 |
} |
|
| 250 |
_valid_supply = true; |
|
| 251 |
} |
|
| 252 |
|
|
| 253 |
/// \brief Simple constructor (without lower bounds). |
|
| 254 |
/// |
|
| 255 |
/// Simple constructor (without lower bounds). |
|
| 256 |
/// |
|
| 257 |
/// \param digraph The digraph the algorithm runs on. |
|
| 258 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 259 |
/// \param cost The cost (length) values of the arcs. |
|
| 260 |
/// \param s The source node. |
|
| 261 |
/// \param t The target node. |
|
| 262 |
/// \param flow_value The required amount of flow from node \c s |
|
| 263 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 264 |
CycleCanceling( const Digraph &digraph, |
|
| 265 |
const CapacityMap &capacity, |
|
| 266 |
const CostMap &cost, |
|
| 267 |
Node s, Node t, |
|
| 268 |
Supply flow_value ) : |
|
| 269 |
_graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), |
|
| 270 |
_supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 271 |
_potential(NULL), _local_potential(false), _res_graph(NULL), |
|
| 272 |
_res_cost(_cost) |
|
| 273 |
{
|
|
| 274 |
_supply[s] = flow_value; |
|
| 275 |
_supply[t] = -flow_value; |
|
| 276 |
_valid_supply = true; |
|
| 277 |
} |
|
| 278 |
*/ |
|
| 279 |
/// Destructor. |
|
| 280 |
~CycleCanceling() {
|
|
| 281 |
if (_local_flow) delete _flow; |
|
| 282 |
if (_local_potential) delete _potential; |
|
| 283 |
delete _res_graph; |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Set the flow map. |
|
| 287 |
/// |
|
| 288 |
/// Set the flow map. |
|
| 289 |
/// |
|
| 290 |
/// \return \c (*this) |
|
| 291 |
CycleCanceling& flowMap(FlowMap &map) {
|
|
| 292 |
if (_local_flow) {
|
|
| 293 |
delete _flow; |
|
| 294 |
_local_flow = false; |
|
| 295 |
} |
|
| 296 |
_flow = ↦ |
|
| 297 |
return *this; |
|
| 298 |
} |
|
| 299 |
|
|
| 300 |
/// \brief Set the potential map. |
|
| 301 |
/// |
|
| 302 |
/// Set the potential map. |
|
| 303 |
/// |
|
| 304 |
/// \return \c (*this) |
|
| 305 |
CycleCanceling& potentialMap(PotentialMap &map) {
|
|
| 306 |
if (_local_potential) {
|
|
| 307 |
delete _potential; |
|
| 308 |
_local_potential = false; |
|
| 309 |
} |
|
| 310 |
_potential = ↦ |
|
| 311 |
return *this; |
|
| 312 |
} |
|
| 313 |
|
|
| 314 |
/// \name Execution control |
|
| 315 |
|
|
| 316 |
/// @{
|
|
| 317 |
|
|
| 318 |
/// \brief Run the algorithm. |
|
| 319 |
/// |
|
| 320 |
/// Run the algorithm. |
|
| 321 |
/// |
|
| 322 |
/// \param min_mean_cc Set this parameter to \c true to run the |
|
| 323 |
/// "Minimum Mean Cycle-Canceling" algorithm, which is strongly |
|
| 324 |
/// polynomial, but rather slower in practice. |
|
| 325 |
/// |
|
| 326 |
/// \return \c true if a feasible flow can be found. |
|
| 327 |
bool run(bool min_mean_cc = false) {
|
|
| 328 |
return init() && start(min_mean_cc); |
|
| 329 |
} |
|
| 330 |
|
|
| 331 |
/// @} |
|
| 332 |
|
|
| 333 |
/// \name Query Functions |
|
| 334 |
/// The result of the algorithm can be obtained using these |
|
| 335 |
/// functions.\n |
|
| 336 |
/// \ref lemon::CycleCanceling::run() "run()" must be called before |
|
| 337 |
/// using them. |
|
| 338 |
|
|
| 339 |
/// @{
|
|
| 340 |
|
|
| 341 |
/// \brief Return a const reference to the arc map storing the |
|
| 342 |
/// found flow. |
|
| 343 |
/// |
|
| 344 |
/// Return a const reference to the arc map storing the found flow. |
|
| 345 |
/// |
|
| 346 |
/// \pre \ref run() must be called before using this function. |
|
| 347 |
const FlowMap& flowMap() const {
|
|
| 348 |
return *_flow; |
|
| 349 |
} |
|
| 350 |
|
|
| 351 |
/// \brief Return a const reference to the node map storing the |
|
| 352 |
/// found potentials (the dual solution). |
|
| 353 |
/// |
|
| 354 |
/// Return a const reference to the node map storing the found |
|
| 355 |
/// potentials (the dual solution). |
|
| 356 |
/// |
|
| 357 |
/// \pre \ref run() must be called before using this function. |
|
| 358 |
const PotentialMap& potentialMap() const {
|
|
| 359 |
return *_potential; |
|
| 360 |
} |
|
| 361 |
|
|
| 362 |
/// \brief Return the flow on the given arc. |
|
| 363 |
/// |
|
| 364 |
/// Return the flow on the given arc. |
|
| 365 |
/// |
|
| 366 |
/// \pre \ref run() must be called before using this function. |
|
| 367 |
Capacity flow(const Arc& arc) const {
|
|
| 368 |
return (*_flow)[arc]; |
|
| 369 |
} |
|
| 370 |
|
|
| 371 |
/// \brief Return the potential of the given node. |
|
| 372 |
/// |
|
| 373 |
/// Return the potential of the given node. |
|
| 374 |
/// |
|
| 375 |
/// \pre \ref run() must be called before using this function. |
|
| 376 |
Cost potential(const Node& node) const {
|
|
| 377 |
return (*_potential)[node]; |
|
| 378 |
} |
|
| 379 |
|
|
| 380 |
/// \brief Return the total cost of the found flow. |
|
| 381 |
/// |
|
| 382 |
/// Return the total cost of the found flow. The complexity of the |
|
| 383 |
/// function is \f$ O(e) \f$. |
|
| 384 |
/// |
|
| 385 |
/// \pre \ref run() must be called before using this function. |
|
| 386 |
Cost totalCost() const {
|
|
| 387 |
Cost c = 0; |
|
| 388 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 389 |
c += (*_flow)[e] * _cost[e]; |
|
| 390 |
return c; |
|
| 391 |
} |
|
| 392 |
|
|
| 393 |
/// @} |
|
| 394 |
|
|
| 395 |
private: |
|
| 396 |
|
|
| 397 |
/// Initialize the algorithm. |
|
| 398 |
bool init() {
|
|
| 399 |
if (!_valid_supply) return false; |
|
| 400 |
|
|
| 401 |
// Initializing flow and potential maps |
|
| 402 |
if (!_flow) {
|
|
| 403 |
_flow = new FlowMap(_graph); |
|
| 404 |
_local_flow = true; |
|
| 405 |
} |
|
| 406 |
if (!_potential) {
|
|
| 407 |
_potential = new PotentialMap(_graph); |
|
| 408 |
_local_potential = true; |
|
| 409 |
} |
|
| 410 |
|
|
| 411 |
_res_graph = new ResDigraph(_graph, _capacity, *_flow); |
|
| 412 |
|
|
| 413 |
// Finding a feasible flow using Circulation |
|
| 414 |
Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap, |
|
| 415 |
SupplyMap > |
|
| 416 |
circulation( _graph, constMap<Arc>(Capacity(0)), _capacity, |
|
| 417 |
_supply ); |
|
| 418 |
return circulation.flowMap(*_flow).run(); |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
bool start(bool min_mean_cc) {
|
|
| 422 |
if (min_mean_cc) |
|
| 423 |
startMinMean(); |
|
| 424 |
else |
|
| 425 |
start(); |
|
| 426 |
|
|
| 427 |
// Handling non-zero lower bounds |
|
| 428 |
if (_lower) {
|
|
| 429 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 430 |
(*_flow)[e] += (*_lower)[e]; |
|
| 431 |
} |
|
| 432 |
return true; |
|
| 433 |
} |
|
| 434 |
|
|
| 435 |
/// \brief Execute the algorithm using \ref BellmanFord. |
|
| 436 |
/// |
|
| 437 |
/// Execute the algorithm using the \ref BellmanFord |
|
| 438 |
/// "Bellman-Ford" algorithm for negative cycle detection with |
|
| 439 |
/// successively larger limit for the number of iterations. |
|
| 440 |
void start() {
|
|
| 441 |
typename BellmanFord<ResDigraph, ResidualCostMap>::PredMap pred(*_res_graph); |
|
| 442 |
typename ResDigraph::template NodeMap<int> visited(*_res_graph); |
|
| 443 |
std::vector<ResArc> cycle; |
|
| 444 |
int node_num = countNodes(_graph); |
|
| 445 |
|
|
| 446 |
int length_bound = BF_FIRST_LIMIT; |
|
| 447 |
bool optimal = false; |
|
| 448 |
while (!optimal) {
|
|
| 449 |
BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost); |
|
| 450 |
bf.predMap(pred); |
|
| 451 |
bf.init(0); |
|
| 452 |
int iter_num = 0; |
|
| 453 |
bool cycle_found = false; |
|
| 454 |
while (!cycle_found) {
|
|
| 455 |
int curr_iter_num = iter_num + length_bound <= node_num ? |
|
| 456 |
length_bound : node_num - iter_num; |
|
| 457 |
iter_num += curr_iter_num; |
|
| 458 |
int real_iter_num = curr_iter_num; |
|
| 459 |
for (int i = 0; i < curr_iter_num; ++i) {
|
|
| 460 |
if (bf.processNextWeakRound()) {
|
|
| 461 |
real_iter_num = i; |
|
| 462 |
break; |
|
| 463 |
} |
|
| 464 |
} |
|
| 465 |
if (real_iter_num < curr_iter_num) {
|
|
| 466 |
// Optimal flow is found |
|
| 467 |
optimal = true; |
|
| 468 |
// Setting node potentials |
|
| 469 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 470 |
(*_potential)[n] = bf.dist(n); |
|
| 471 |
break; |
|
| 472 |
} else {
|
|
| 473 |
// Searching for node disjoint negative cycles |
|
| 474 |
for (ResNodeIt n(*_res_graph); n != INVALID; ++n) |
|
| 475 |
visited[n] = 0; |
|
| 476 |
int id = 0; |
|
| 477 |
for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
|
|
| 478 |
if (visited[n] > 0) continue; |
|
| 479 |
visited[n] = ++id; |
|
| 480 |
ResNode u = pred[n] == INVALID ? |
|
| 481 |
INVALID : _res_graph->source(pred[n]); |
|
| 482 |
while (u != INVALID && visited[u] == 0) {
|
|
| 483 |
visited[u] = id; |
|
| 484 |
u = pred[u] == INVALID ? |
|
| 485 |
INVALID : _res_graph->source(pred[u]); |
|
| 486 |
} |
|
| 487 |
if (u != INVALID && visited[u] == id) {
|
|
| 488 |
// Finding the negative cycle |
|
| 489 |
cycle_found = true; |
|
| 490 |
cycle.clear(); |
|
| 491 |
ResArc e = pred[u]; |
|
| 492 |
cycle.push_back(e); |
|
| 493 |
Capacity d = _res_graph->residualCapacity(e); |
|
| 494 |
while (_res_graph->source(e) != u) {
|
|
| 495 |
cycle.push_back(e = pred[_res_graph->source(e)]); |
|
| 496 |
if (_res_graph->residualCapacity(e) < d) |
|
| 497 |
d = _res_graph->residualCapacity(e); |
|
| 498 |
} |
|
| 499 |
|
|
| 500 |
// Augmenting along the cycle |
|
| 501 |
for (int i = 0; i < int(cycle.size()); ++i) |
|
| 502 |
_res_graph->augment(cycle[i], d); |
|
| 503 |
} |
|
| 504 |
} |
|
| 505 |
} |
|
| 506 |
|
|
| 507 |
if (!cycle_found) |
|
| 508 |
length_bound = length_bound * BF_LIMIT_FACTOR / 100; |
|
| 509 |
} |
|
| 510 |
} |
|
| 511 |
} |
|
| 512 |
|
|
| 513 |
/// \brief Execute the algorithm using \ref Howard. |
|
| 514 |
/// |
|
| 515 |
/// Execute the algorithm using \ref Howard for negative |
|
| 516 |
/// cycle detection. |
|
| 517 |
void startMinMean() {
|
|
| 518 |
typedef Path<ResDigraph> ResPath; |
|
| 519 |
Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost); |
|
| 520 |
ResPath cycle; |
|
| 521 |
|
|
| 522 |
mmc.cycle(cycle); |
|
| 523 |
if (mmc.findMinMean()) {
|
|
| 524 |
while (mmc.cycleLength() < 0) {
|
|
| 525 |
// Finding the cycle |
|
| 526 |
mmc.findCycle(); |
|
| 527 |
|
|
| 528 |
// Finding the largest flow amount that can be augmented |
|
| 529 |
// along the cycle |
|
| 530 |
Capacity delta = 0; |
|
| 531 |
for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) {
|
|
| 532 |
if (delta == 0 || _res_graph->residualCapacity(e) < delta) |
|
| 533 |
delta = _res_graph->residualCapacity(e); |
|
| 534 |
} |
|
| 535 |
|
|
| 536 |
// Augmenting along the cycle |
|
| 537 |
for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) |
|
| 538 |
_res_graph->augment(e, delta); |
|
| 539 |
|
|
| 540 |
// Finding the minimum cycle mean for the modified residual |
|
| 541 |
// digraph |
|
| 542 |
if (!mmc.findMinMean()) break; |
|
| 543 |
} |
|
| 544 |
} |
|
| 545 |
|
|
| 546 |
// Computing node potentials |
|
| 547 |
BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost); |
|
| 548 |
bf.init(0); bf.start(); |
|
| 549 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 550 |
(*_potential)[n] = bf.dist(n); |
|
| 551 |
} |
|
| 552 |
|
|
| 553 |
}; //class CycleCanceling |
|
| 554 |
|
|
| 555 |
///@} |
|
| 556 |
|
|
| 557 |
} //namespace lemon |
|
| 558 |
|
|
| 559 |
#endif //LEMON_CYCLE_CANCELING_H |
| ... | ... |
@@ -62,6 +62,7 @@ |
| 62 | 62 |
lemon/bin_heap.h \ |
| 63 | 63 |
lemon/binom_heap.h \ |
| 64 | 64 |
lemon/bucket_heap.h \ |
| 65 |
lemon/cancel_and_tighten.h \ |
|
| 65 | 66 |
lemon/capacity_scaling.h \ |
| 66 | 67 |
lemon/cbc.h \ |
| 67 | 68 |
lemon/circulation.h \ |
| ... | ... |
@@ -73,6 +74,7 @@ |
| 73 | 74 |
lemon/cost_scaling.h \ |
| 74 | 75 |
lemon/counter.h \ |
| 75 | 76 |
lemon/cplex.h \ |
| 77 |
lemon/cycle_canceling.h \ |
|
| 76 | 78 |
lemon/dfs.h \ |
| 77 | 79 |
lemon/dijkstra.h \ |
| 78 | 80 |
lemon/dim2.h \ |
0 comments (0 inline)