0
2
0
155
286
| ... | ... |
@@ -27,111 +27,100 @@ |
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup min_cost_flow |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 44 | 44 |
/// This algorithm is a specialized version of the linear programming |
| 45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
| 46 | 46 |
/// It is one of the most efficient solution methods. |
| 47 | 47 |
/// |
| 48 | 48 |
/// In general this class is the fastest implementation available |
| 49 | 49 |
/// in LEMON for the minimum cost flow problem. |
| 50 | 50 |
/// Moreover it supports both directions of the supply/demand inequality |
| 51 | 51 |
/// constraints. For more information see \ref SupplyType. |
| 52 | 52 |
/// |
| 53 | 53 |
/// Most of the parameters of the problem (except for the digraph) |
| 54 | 54 |
/// can be given using separate functions, and the algorithm can be |
| 55 | 55 |
/// executed using the \ref run() function. If some parameters are not |
| 56 | 56 |
/// specified, then default values will be used. |
| 57 | 57 |
/// |
| 58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
| 59 | 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
| 60 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
| 61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
| 62 | 62 |
/// algorithm. By default it is the same as \c V. |
| 63 | 63 |
/// |
| 64 | 64 |
/// \warning Both value types must be signed and all input data must |
| 65 | 65 |
/// be integer. |
| 66 | 66 |
/// |
| 67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
| 68 | 68 |
/// implementations, from which the most efficient one is used |
| 69 | 69 |
/// by default. For more information see \ref PivotRule. |
| 70 | 70 |
template <typename GR, typename V = int, typename C = V> |
| 71 | 71 |
class NetworkSimplex |
| 72 | 72 |
{
|
| 73 | 73 |
public: |
| 74 | 74 |
|
| 75 |
/// The |
|
| 75 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 76 | 76 |
typedef V Value; |
| 77 |
/// The |
|
| 77 |
/// The type of the arc costs |
|
| 78 | 78 |
typedef C Cost; |
| 79 |
#ifdef DOXYGEN |
|
| 80 |
/// The type of the flow map |
|
| 81 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 82 |
/// The type of the potential map |
|
| 83 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
| 84 |
#else |
|
| 85 |
/// The type of the flow map |
|
| 86 |
typedef typename GR::template ArcMap<Value> FlowMap; |
|
| 87 |
/// The type of the potential map |
|
| 88 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
|
| 89 |
#endif |
|
| 90 | 79 |
|
| 91 | 80 |
public: |
| 92 | 81 |
|
| 93 | 82 |
/// \brief Problem type constants for the \c run() function. |
| 94 | 83 |
/// |
| 95 | 84 |
/// Enum type containing the problem type constants that can be |
| 96 | 85 |
/// returned by the \ref run() function of the algorithm. |
| 97 | 86 |
enum ProblemType {
|
| 98 | 87 |
/// The problem has no feasible solution (flow). |
| 99 | 88 |
INFEASIBLE, |
| 100 | 89 |
/// The problem has optimal solution (i.e. it is feasible and |
| 101 | 90 |
/// bounded), and the algorithm has found optimal flow and node |
| 102 | 91 |
/// potentials (primal and dual solutions). |
| 103 | 92 |
OPTIMAL, |
| 104 | 93 |
/// The objective function of the problem is unbounded, i.e. |
| 105 | 94 |
/// there is a directed cycle having negative total cost and |
| 106 | 95 |
/// infinite upper bound. |
| 107 | 96 |
UNBOUNDED |
| 108 | 97 |
}; |
| 109 | 98 |
|
| 110 | 99 |
/// \brief Constants for selecting the type of the supply constraints. |
| 111 | 100 |
/// |
| 112 | 101 |
/// Enum type containing constants for selecting the supply type, |
| 113 | 102 |
/// i.e. the direction of the inequalities in the supply/demand |
| 114 | 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 115 | 104 |
/// |
| 116 | 105 |
/// The default supply type is \c GEQ, since this form is supported |
| 117 | 106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
| 118 | 107 |
/// algorithm, as well. |
| 119 | 108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
| 120 | 109 |
/// function. |
| 121 | 110 |
/// |
| 122 | 111 |
/// Note that the equality form is a special case of both supply types. |
| 123 | 112 |
enum SupplyType {
|
| 124 | 113 |
|
| 125 | 114 |
/// This option means that there are <em>"greater or equal"</em> |
| 126 | 115 |
/// supply/demand constraints in the definition, i.e. the exact |
| 127 | 116 |
/// formulation of the problem is the following. |
| 128 | 117 |
/** |
| 129 | 118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 130 | 119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
| 131 | 120 |
sup(u) \quad \forall u\in V \f] |
| 132 | 121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 133 | 122 |
*/ |
| 134 | 123 |
/// It means that the total demand must be greater or equal to the |
| 135 | 124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
| 136 | 125 |
/// negative) and all the supplies have to be carried out from |
| 137 | 126 |
/// the supply nodes, but there could be demands that are not |
| ... | ... |
@@ -161,150 +150,135 @@ |
| 161 | 150 |
|
| 162 | 151 |
/// \brief Constants for selecting the pivot rule. |
| 163 | 152 |
/// |
| 164 | 153 |
/// Enum type containing constants for selecting the pivot rule for |
| 165 | 154 |
/// the \ref run() function. |
| 166 | 155 |
/// |
| 167 | 156 |
/// \ref NetworkSimplex provides five different pivot rule |
| 168 | 157 |
/// implementations that significantly affect the running time |
| 169 | 158 |
/// of the algorithm. |
| 170 | 159 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
| 171 | 160 |
/// proved to be the most efficient and the most robust on various |
| 172 | 161 |
/// test inputs according to our benchmark tests. |
| 173 | 162 |
/// However another pivot rule can be selected using the \ref run() |
| 174 | 163 |
/// function with the proper parameter. |
| 175 | 164 |
enum PivotRule {
|
| 176 | 165 |
|
| 177 | 166 |
/// The First Eligible pivot rule. |
| 178 | 167 |
/// The next eligible arc is selected in a wraparound fashion |
| 179 | 168 |
/// in every iteration. |
| 180 | 169 |
FIRST_ELIGIBLE, |
| 181 | 170 |
|
| 182 | 171 |
/// The Best Eligible pivot rule. |
| 183 | 172 |
/// The best eligible arc is selected in every iteration. |
| 184 | 173 |
BEST_ELIGIBLE, |
| 185 | 174 |
|
| 186 | 175 |
/// The Block Search pivot rule. |
| 187 | 176 |
/// A specified number of arcs are examined in every iteration |
| 188 | 177 |
/// in a wraparound fashion and the best eligible arc is selected |
| 189 | 178 |
/// from this block. |
| 190 | 179 |
BLOCK_SEARCH, |
| 191 | 180 |
|
| 192 | 181 |
/// The Candidate List pivot rule. |
| 193 | 182 |
/// In a major iteration a candidate list is built from eligible arcs |
| 194 | 183 |
/// in a wraparound fashion and in the following minor iterations |
| 195 | 184 |
/// the best eligible arc is selected from this list. |
| 196 | 185 |
CANDIDATE_LIST, |
| 197 | 186 |
|
| 198 | 187 |
/// The Altering Candidate List pivot rule. |
| 199 | 188 |
/// It is a modified version of the Candidate List method. |
| 200 | 189 |
/// It keeps only the several best eligible arcs from the former |
| 201 | 190 |
/// candidate list and extends this list in every iteration. |
| 202 | 191 |
ALTERING_LIST |
| 203 | 192 |
}; |
| 204 | 193 |
|
| 205 | 194 |
private: |
| 206 | 195 |
|
| 207 | 196 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 208 | 197 |
|
| 209 |
typedef typename GR::template ArcMap<Value> ValueArcMap; |
|
| 210 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
|
| 211 |
typedef typename GR::template NodeMap<Value> ValueNodeMap; |
|
| 212 |
|
|
| 213 | 198 |
typedef std::vector<Arc> ArcVector; |
| 214 | 199 |
typedef std::vector<Node> NodeVector; |
| 215 | 200 |
typedef std::vector<int> IntVector; |
| 216 | 201 |
typedef std::vector<bool> BoolVector; |
| 217 |
typedef std::vector<Value> |
|
| 202 |
typedef std::vector<Value> ValueVector; |
|
| 218 | 203 |
typedef std::vector<Cost> CostVector; |
| 219 | 204 |
|
| 220 | 205 |
// State constants for arcs |
| 221 | 206 |
enum ArcStateEnum {
|
| 222 | 207 |
STATE_UPPER = -1, |
| 223 | 208 |
STATE_TREE = 0, |
| 224 | 209 |
STATE_LOWER = 1 |
| 225 | 210 |
}; |
| 226 | 211 |
|
| 227 | 212 |
private: |
| 228 | 213 |
|
| 229 | 214 |
// Data related to the underlying digraph |
| 230 | 215 |
const GR &_graph; |
| 231 | 216 |
int _node_num; |
| 232 | 217 |
int _arc_num; |
| 233 | 218 |
|
| 234 | 219 |
// Parameters of the problem |
| 235 |
ValueArcMap *_plower; |
|
| 236 |
ValueArcMap *_pupper; |
|
| 237 |
CostArcMap *_pcost; |
|
| 238 |
ValueNodeMap *_psupply; |
|
| 239 |
bool _pstsup; |
|
| 240 |
Node _psource, _ptarget; |
|
| 241 |
|
|
| 220 |
bool _have_lower; |
|
| 242 | 221 |
SupplyType _stype; |
| 243 |
|
|
| 244 | 222 |
Value _sum_supply; |
| 245 | 223 |
|
| 246 |
// Result maps |
|
| 247 |
FlowMap *_flow_map; |
|
| 248 |
PotentialMap *_potential_map; |
|
| 249 |
bool _local_flow; |
|
| 250 |
bool _local_potential; |
|
| 251 |
|
|
| 252 | 224 |
// Data structures for storing the digraph |
| 253 | 225 |
IntNodeMap _node_id; |
| 254 |
|
|
| 226 |
IntArcMap _arc_id; |
|
| 255 | 227 |
IntVector _source; |
| 256 | 228 |
IntVector _target; |
| 257 | 229 |
|
| 258 | 230 |
// Node and arc data |
| 259 |
|
|
| 231 |
ValueVector _lower; |
|
| 232 |
ValueVector _upper; |
|
| 233 |
ValueVector _cap; |
|
| 260 | 234 |
CostVector _cost; |
| 261 |
FlowVector _supply; |
|
| 262 |
FlowVector _flow; |
|
| 235 |
ValueVector _supply; |
|
| 236 |
ValueVector _flow; |
|
| 263 | 237 |
CostVector _pi; |
| 264 | 238 |
|
| 265 | 239 |
// Data for storing the spanning tree structure |
| 266 | 240 |
IntVector _parent; |
| 267 | 241 |
IntVector _pred; |
| 268 | 242 |
IntVector _thread; |
| 269 | 243 |
IntVector _rev_thread; |
| 270 | 244 |
IntVector _succ_num; |
| 271 | 245 |
IntVector _last_succ; |
| 272 | 246 |
IntVector _dirty_revs; |
| 273 | 247 |
BoolVector _forward; |
| 274 | 248 |
IntVector _state; |
| 275 | 249 |
int _root; |
| 276 | 250 |
|
| 277 | 251 |
// Temporary data used in the current pivot iteration |
| 278 | 252 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 279 | 253 |
int first, second, right, last; |
| 280 | 254 |
int stem, par_stem, new_stem; |
| 281 | 255 |
Value delta; |
| 282 | 256 |
|
| 283 | 257 |
public: |
| 284 | 258 |
|
| 285 | 259 |
/// \brief Constant for infinite upper bounds (capacities). |
| 286 | 260 |
/// |
| 287 | 261 |
/// Constant for infinite upper bounds (capacities). |
| 288 | 262 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 289 | 263 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 290 | 264 |
const Value INF; |
| 291 | 265 |
|
| 292 | 266 |
private: |
| 293 | 267 |
|
| 294 | 268 |
// Implementation of the First Eligible pivot rule |
| 295 | 269 |
class FirstEligiblePivotRule |
| 296 | 270 |
{
|
| 297 | 271 |
private: |
| 298 | 272 |
|
| 299 | 273 |
// References to the NetworkSimplex class |
| 300 | 274 |
const IntVector &_source; |
| 301 | 275 |
const IntVector &_target; |
| 302 | 276 |
const CostVector &_cost; |
| 303 | 277 |
const IntVector &_state; |
| 304 | 278 |
const CostVector &_pi; |
| 305 | 279 |
int &_in_arc; |
| 306 | 280 |
int _arc_num; |
| 307 | 281 |
|
| 308 | 282 |
// Pivot rule data |
| 309 | 283 |
int _next_arc; |
| 310 | 284 |
|
| ... | ... |
@@ -644,637 +618,536 @@ |
| 644 | 618 |
last_arc = e; |
| 645 | 619 |
} |
| 646 | 620 |
if (--cnt == 0) {
|
| 647 | 621 |
if (_curr_length > limit) break; |
| 648 | 622 |
limit = 0; |
| 649 | 623 |
cnt = _block_size; |
| 650 | 624 |
} |
| 651 | 625 |
} |
| 652 | 626 |
if (_curr_length <= limit) {
|
| 653 | 627 |
for (int e = 0; e < _next_arc; ++e) {
|
| 654 | 628 |
_cand_cost[e] = _state[e] * |
| 655 | 629 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 656 | 630 |
if (_cand_cost[e] < 0) {
|
| 657 | 631 |
_candidates[_curr_length++] = e; |
| 658 | 632 |
last_arc = e; |
| 659 | 633 |
} |
| 660 | 634 |
if (--cnt == 0) {
|
| 661 | 635 |
if (_curr_length > limit) break; |
| 662 | 636 |
limit = 0; |
| 663 | 637 |
cnt = _block_size; |
| 664 | 638 |
} |
| 665 | 639 |
} |
| 666 | 640 |
} |
| 667 | 641 |
if (_curr_length == 0) return false; |
| 668 | 642 |
_next_arc = last_arc + 1; |
| 669 | 643 |
|
| 670 | 644 |
// Make heap of the candidate list (approximating a partial sort) |
| 671 | 645 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 672 | 646 |
_sort_func ); |
| 673 | 647 |
|
| 674 | 648 |
// Pop the first element of the heap |
| 675 | 649 |
_in_arc = _candidates[0]; |
| 676 | 650 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 677 | 651 |
_sort_func ); |
| 678 | 652 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 679 | 653 |
return true; |
| 680 | 654 |
} |
| 681 | 655 |
|
| 682 | 656 |
}; //class AlteringListPivotRule |
| 683 | 657 |
|
| 684 | 658 |
public: |
| 685 | 659 |
|
| 686 | 660 |
/// \brief Constructor. |
| 687 | 661 |
/// |
| 688 | 662 |
/// The constructor of the class. |
| 689 | 663 |
/// |
| 690 | 664 |
/// \param graph The digraph the algorithm runs on. |
| 691 | 665 |
NetworkSimplex(const GR& graph) : |
| 692 |
_graph(graph), |
|
| 693 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
| 694 |
_psupply(NULL), _pstsup(false), _stype(GEQ), |
|
| 695 |
_flow_map(NULL), _potential_map(NULL), |
|
| 696 |
_local_flow(false), _local_potential(false), |
|
| 697 |
_node_id(graph), |
|
| 666 |
_graph(graph), _node_id(graph), _arc_id(graph), |
|
| 698 | 667 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 699 | 668 |
std::numeric_limits<Value>::infinity() : |
| 700 | 669 |
std::numeric_limits<Value>::max()) |
| 701 | 670 |
{
|
| 702 | 671 |
// Check the value types |
| 703 | 672 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 704 | 673 |
"The flow type of NetworkSimplex must be signed"); |
| 705 | 674 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 706 | 675 |
"The cost type of NetworkSimplex must be signed"); |
| 707 |
|
|
| 676 |
|
|
| 677 |
// Resize vectors |
|
| 678 |
_node_num = countNodes(_graph); |
|
| 679 |
_arc_num = countArcs(_graph); |
|
| 680 |
int all_node_num = _node_num + 1; |
|
| 681 |
int all_arc_num = _arc_num + _node_num; |
|
| 708 | 682 |
|
| 709 |
/// Destructor. |
|
| 710 |
~NetworkSimplex() {
|
|
| 711 |
if (_local_flow) delete _flow_map; |
|
| 712 |
if (_local_potential) delete _potential_map; |
|
| 683 |
_source.resize(all_arc_num); |
|
| 684 |
_target.resize(all_arc_num); |
|
| 685 |
|
|
| 686 |
_lower.resize(all_arc_num); |
|
| 687 |
_upper.resize(all_arc_num); |
|
| 688 |
_cap.resize(all_arc_num); |
|
| 689 |
_cost.resize(all_arc_num); |
|
| 690 |
_supply.resize(all_node_num); |
|
| 691 |
_flow.resize(all_arc_num); |
|
| 692 |
_pi.resize(all_node_num); |
|
| 693 |
|
|
| 694 |
_parent.resize(all_node_num); |
|
| 695 |
_pred.resize(all_node_num); |
|
| 696 |
_forward.resize(all_node_num); |
|
| 697 |
_thread.resize(all_node_num); |
|
| 698 |
_rev_thread.resize(all_node_num); |
|
| 699 |
_succ_num.resize(all_node_num); |
|
| 700 |
_last_succ.resize(all_node_num); |
|
| 701 |
_state.resize(all_arc_num); |
|
| 702 |
|
|
| 703 |
// Copy the graph (store the arcs in a mixed order) |
|
| 704 |
int i = 0; |
|
| 705 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 706 |
_node_id[n] = i; |
|
| 707 |
} |
|
| 708 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 709 |
i = 0; |
|
| 710 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 711 |
_arc_id[a] = i; |
|
| 712 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 713 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 714 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 715 |
} |
|
| 716 |
|
|
| 717 |
// Initialize maps |
|
| 718 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 719 |
_supply[i] = 0; |
|
| 720 |
} |
|
| 721 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 722 |
_lower[i] = 0; |
|
| 723 |
_upper[i] = INF; |
|
| 724 |
_cost[i] = 1; |
|
| 725 |
} |
|
| 726 |
_have_lower = false; |
|
| 727 |
_stype = GEQ; |
|
| 713 | 728 |
} |
| 714 | 729 |
|
| 715 | 730 |
/// \name Parameters |
| 716 | 731 |
/// The parameters of the algorithm can be specified using these |
| 717 | 732 |
/// functions. |
| 718 | 733 |
|
| 719 | 734 |
/// @{
|
| 720 | 735 |
|
| 721 | 736 |
/// \brief Set the lower bounds on the arcs. |
| 722 | 737 |
/// |
| 723 | 738 |
/// This function sets the lower bounds on the arcs. |
| 724 | 739 |
/// If it is not used before calling \ref run(), the lower bounds |
| 725 | 740 |
/// will be set to zero on all arcs. |
| 726 | 741 |
/// |
| 727 | 742 |
/// \param map An arc map storing the lower bounds. |
| 728 | 743 |
/// Its \c Value type must be convertible to the \c Value type |
| 729 | 744 |
/// of the algorithm. |
| 730 | 745 |
/// |
| 731 | 746 |
/// \return <tt>(*this)</tt> |
| 732 | 747 |
template <typename LowerMap> |
| 733 | 748 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
| 734 |
delete _plower; |
|
| 735 |
_plower = new ValueArcMap(_graph); |
|
| 749 |
_have_lower = true; |
|
| 736 | 750 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 737 |
|
|
| 751 |
_lower[_arc_id[a]] = map[a]; |
|
| 738 | 752 |
} |
| 739 | 753 |
return *this; |
| 740 | 754 |
} |
| 741 | 755 |
|
| 742 | 756 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 743 | 757 |
/// |
| 744 | 758 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 745 | 759 |
/// If it is not used before calling \ref run(), the upper bounds |
| 746 | 760 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 747 | 761 |
/// unbounded from above on each arc). |
| 748 | 762 |
/// |
| 749 | 763 |
/// \param map An arc map storing the upper bounds. |
| 750 | 764 |
/// Its \c Value type must be convertible to the \c Value type |
| 751 | 765 |
/// of the algorithm. |
| 752 | 766 |
/// |
| 753 | 767 |
/// \return <tt>(*this)</tt> |
| 754 | 768 |
template<typename UpperMap> |
| 755 | 769 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
| 756 |
delete _pupper; |
|
| 757 |
_pupper = new ValueArcMap(_graph); |
|
| 758 | 770 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 759 |
|
|
| 771 |
_upper[_arc_id[a]] = map[a]; |
|
| 760 | 772 |
} |
| 761 | 773 |
return *this; |
| 762 | 774 |
} |
| 763 | 775 |
|
| 764 | 776 |
/// \brief Set the costs of the arcs. |
| 765 | 777 |
/// |
| 766 | 778 |
/// This function sets the costs of the arcs. |
| 767 | 779 |
/// If it is not used before calling \ref run(), the costs |
| 768 | 780 |
/// will be set to \c 1 on all arcs. |
| 769 | 781 |
/// |
| 770 | 782 |
/// \param map An arc map storing the costs. |
| 771 | 783 |
/// Its \c Value type must be convertible to the \c Cost type |
| 772 | 784 |
/// of the algorithm. |
| 773 | 785 |
/// |
| 774 | 786 |
/// \return <tt>(*this)</tt> |
| 775 | 787 |
template<typename CostMap> |
| 776 | 788 |
NetworkSimplex& costMap(const CostMap& map) {
|
| 777 |
delete _pcost; |
|
| 778 |
_pcost = new CostArcMap(_graph); |
|
| 779 | 789 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 780 |
|
|
| 790 |
_cost[_arc_id[a]] = map[a]; |
|
| 781 | 791 |
} |
| 782 | 792 |
return *this; |
| 783 | 793 |
} |
| 784 | 794 |
|
| 785 | 795 |
/// \brief Set the supply values of the nodes. |
| 786 | 796 |
/// |
| 787 | 797 |
/// This function sets the supply values of the nodes. |
| 788 | 798 |
/// If neither this function nor \ref stSupply() is used before |
| 789 | 799 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 790 | 800 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 791 | 801 |
/// |
| 792 | 802 |
/// \param map A node map storing the supply values. |
| 793 | 803 |
/// Its \c Value type must be convertible to the \c Value type |
| 794 | 804 |
/// of the algorithm. |
| 795 | 805 |
/// |
| 796 | 806 |
/// \return <tt>(*this)</tt> |
| 797 | 807 |
template<typename SupplyMap> |
| 798 | 808 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
| 799 |
delete _psupply; |
|
| 800 |
_pstsup = false; |
|
| 801 |
_psupply = new ValueNodeMap(_graph); |
|
| 802 | 809 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 803 |
|
|
| 810 |
_supply[_node_id[n]] = map[n]; |
|
| 804 | 811 |
} |
| 805 | 812 |
return *this; |
| 806 | 813 |
} |
| 807 | 814 |
|
| 808 | 815 |
/// \brief Set single source and target nodes and a supply value. |
| 809 | 816 |
/// |
| 810 | 817 |
/// This function sets a single source node and a single target node |
| 811 | 818 |
/// and the required flow value. |
| 812 | 819 |
/// If neither this function nor \ref supplyMap() is used before |
| 813 | 820 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 814 | 821 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 815 | 822 |
/// |
| 816 | 823 |
/// Using this function has the same effect as using \ref supplyMap() |
| 817 | 824 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 818 | 825 |
/// assigned to \c t and all other nodes have zero supply value. |
| 819 | 826 |
/// |
| 820 | 827 |
/// \param s The source node. |
| 821 | 828 |
/// \param t The target node. |
| 822 | 829 |
/// \param k The required amount of flow from node \c s to node \c t |
| 823 | 830 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 824 | 831 |
/// |
| 825 | 832 |
/// \return <tt>(*this)</tt> |
| 826 | 833 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
| 827 |
delete _psupply; |
|
| 828 |
_psupply = NULL; |
|
| 829 |
_pstsup = true; |
|
| 830 |
_psource = s; |
|
| 831 |
_ptarget = t; |
|
| 832 |
_pstflow = k; |
|
| 834 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 835 |
_supply[i] = 0; |
|
| 836 |
} |
|
| 837 |
_supply[_node_id[s]] = k; |
|
| 838 |
_supply[_node_id[t]] = -k; |
|
| 833 | 839 |
return *this; |
| 834 | 840 |
} |
| 835 | 841 |
|
| 836 | 842 |
/// \brief Set the type of the supply constraints. |
| 837 | 843 |
/// |
| 838 | 844 |
/// This function sets the type of the supply/demand constraints. |
| 839 | 845 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
| 840 | 846 |
/// type will be used. |
| 841 | 847 |
/// |
| 842 | 848 |
/// For more information see \ref SupplyType. |
| 843 | 849 |
/// |
| 844 | 850 |
/// \return <tt>(*this)</tt> |
| 845 | 851 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
| 846 | 852 |
_stype = supply_type; |
| 847 | 853 |
return *this; |
| 848 | 854 |
} |
| 849 | 855 |
|
| 850 |
/// \brief Set the flow map. |
|
| 851 |
/// |
|
| 852 |
/// This function sets the flow map. |
|
| 853 |
/// If it is not used before calling \ref run(), an instance will |
|
| 854 |
/// be allocated automatically. The destructor deallocates this |
|
| 855 |
/// automatically allocated map, of course. |
|
| 856 |
/// |
|
| 857 |
/// \return <tt>(*this)</tt> |
|
| 858 |
NetworkSimplex& flowMap(FlowMap& map) {
|
|
| 859 |
if (_local_flow) {
|
|
| 860 |
delete _flow_map; |
|
| 861 |
_local_flow = false; |
|
| 862 |
} |
|
| 863 |
_flow_map = ↦ |
|
| 864 |
return *this; |
|
| 865 |
} |
|
| 866 |
|
|
| 867 |
/// \brief Set the potential map. |
|
| 868 |
/// |
|
| 869 |
/// This function sets the potential map, which is used for storing |
|
| 870 |
/// the dual solution. |
|
| 871 |
/// If it is not used before calling \ref run(), an instance will |
|
| 872 |
/// be allocated automatically. The destructor deallocates this |
|
| 873 |
/// automatically allocated map, of course. |
|
| 874 |
/// |
|
| 875 |
/// \return <tt>(*this)</tt> |
|
| 876 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
|
| 877 |
if (_local_potential) {
|
|
| 878 |
delete _potential_map; |
|
| 879 |
_local_potential = false; |
|
| 880 |
} |
|
| 881 |
_potential_map = ↦ |
|
| 882 |
return *this; |
|
| 883 |
} |
|
| 884 |
|
|
| 885 | 856 |
/// @} |
| 886 | 857 |
|
| 887 | 858 |
/// \name Execution Control |
| 888 | 859 |
/// The algorithm can be executed using \ref run(). |
| 889 | 860 |
|
| 890 | 861 |
/// @{
|
| 891 | 862 |
|
| 892 | 863 |
/// \brief Run the algorithm. |
| 893 | 864 |
/// |
| 894 | 865 |
/// This function runs the algorithm. |
| 895 | 866 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 896 | 867 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
| 897 |
/// \ref supplyType() |
|
| 868 |
/// \ref supplyType(). |
|
| 898 | 869 |
/// For example, |
| 899 | 870 |
/// \code |
| 900 | 871 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 901 | 872 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 902 | 873 |
/// .supplyMap(sup).run(); |
| 903 | 874 |
/// \endcode |
| 904 | 875 |
/// |
| 905 | 876 |
/// This function can be called more than once. All the parameters |
| 906 | 877 |
/// that have been given are kept for the next call, unless |
| 907 | 878 |
/// \ref reset() is called, thus only the modified parameters |
| 908 | 879 |
/// have to be set again. See \ref reset() for examples. |
| 880 |
/// However the underlying digraph must not be modified after this |
|
| 881 |
/// class have been constructed, since it copies and extends the graph. |
|
| 909 | 882 |
/// |
| 910 | 883 |
/// \param pivot_rule The pivot rule that will be used during the |
| 911 | 884 |
/// algorithm. For more information see \ref PivotRule. |
| 912 | 885 |
/// |
| 913 | 886 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 914 | 887 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 915 | 888 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 916 | 889 |
/// optimal flow and node potentials (primal and dual solutions), |
| 917 | 890 |
/// \n \c UNBOUNDED if the objective function of the problem is |
| 918 | 891 |
/// unbounded, i.e. there is a directed cycle having negative total |
| 919 | 892 |
/// cost and infinite upper bound. |
| 920 | 893 |
/// |
| 921 | 894 |
/// \see ProblemType, PivotRule |
| 922 | 895 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 923 | 896 |
if (!init()) return INFEASIBLE; |
| 924 | 897 |
return start(pivot_rule); |
| 925 | 898 |
} |
| 926 | 899 |
|
| 927 | 900 |
/// \brief Reset all the parameters that have been given before. |
| 928 | 901 |
/// |
| 929 | 902 |
/// This function resets all the paramaters that have been given |
| 930 | 903 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 931 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(), |
|
| 932 |
/// \ref flowMap() and \ref potentialMap(). |
|
| 904 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
|
| 933 | 905 |
/// |
| 934 | 906 |
/// It is useful for multiple run() calls. If this function is not |
| 935 | 907 |
/// used, all the parameters given before are kept for the next |
| 936 | 908 |
/// \ref run() call. |
| 909 |
/// However the underlying digraph must not be modified after this |
|
| 910 |
/// class have been constructed, since it copies and extends the graph. |
|
| 937 | 911 |
/// |
| 938 | 912 |
/// For example, |
| 939 | 913 |
/// \code |
| 940 | 914 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 941 | 915 |
/// |
| 942 | 916 |
/// // First run |
| 943 | 917 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 944 | 918 |
/// .supplyMap(sup).run(); |
| 945 | 919 |
/// |
| 946 | 920 |
/// // Run again with modified cost map (reset() is not called, |
| 947 | 921 |
/// // so only the cost map have to be set again) |
| 948 | 922 |
/// cost[e] += 100; |
| 949 | 923 |
/// ns.costMap(cost).run(); |
| 950 | 924 |
/// |
| 951 | 925 |
/// // Run again from scratch using reset() |
| 952 | 926 |
/// // (the lower bounds will be set to zero on all arcs) |
| 953 | 927 |
/// ns.reset(); |
| 954 | 928 |
/// ns.upperMap(capacity).costMap(cost) |
| 955 | 929 |
/// .supplyMap(sup).run(); |
| 956 | 930 |
/// \endcode |
| 957 | 931 |
/// |
| 958 | 932 |
/// \return <tt>(*this)</tt> |
| 959 | 933 |
NetworkSimplex& reset() {
|
| 960 |
delete _plower; |
|
| 961 |
delete _pupper; |
|
| 962 |
delete _pcost; |
|
| 963 |
delete _psupply; |
|
| 964 |
_plower = NULL; |
|
| 965 |
_pupper = NULL; |
|
| 966 |
_pcost = NULL; |
|
| 967 |
_psupply = NULL; |
|
| 968 |
|
|
| 934 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 935 |
_supply[i] = 0; |
|
| 936 |
} |
|
| 937 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 938 |
_lower[i] = 0; |
|
| 939 |
_upper[i] = INF; |
|
| 940 |
_cost[i] = 1; |
|
| 941 |
} |
|
| 942 |
_have_lower = false; |
|
| 969 | 943 |
_stype = GEQ; |
| 970 |
if (_local_flow) delete _flow_map; |
|
| 971 |
if (_local_potential) delete _potential_map; |
|
| 972 |
_flow_map = NULL; |
|
| 973 |
_potential_map = NULL; |
|
| 974 |
_local_flow = false; |
|
| 975 |
_local_potential = false; |
|
| 976 |
|
|
| 977 | 944 |
return *this; |
| 978 | 945 |
} |
| 979 | 946 |
|
| 980 | 947 |
/// @} |
| 981 | 948 |
|
| 982 | 949 |
/// \name Query Functions |
| 983 | 950 |
/// The results of the algorithm can be obtained using these |
| 984 | 951 |
/// functions.\n |
| 985 | 952 |
/// The \ref run() function must be called before using them. |
| 986 | 953 |
|
| 987 | 954 |
/// @{
|
| 988 | 955 |
|
| 989 | 956 |
/// \brief Return the total cost of the found flow. |
| 990 | 957 |
/// |
| 991 | 958 |
/// This function returns the total cost of the found flow. |
| 992 | 959 |
/// Its complexity is O(e). |
| 993 | 960 |
/// |
| 994 | 961 |
/// \note The return type of the function can be specified as a |
| 995 | 962 |
/// template parameter. For example, |
| 996 | 963 |
/// \code |
| 997 | 964 |
/// ns.totalCost<double>(); |
| 998 | 965 |
/// \endcode |
| 999 | 966 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 1000 | 967 |
/// type of the algorithm, which is the default return type of the |
| 1001 | 968 |
/// function. |
| 1002 | 969 |
/// |
| 1003 | 970 |
/// \pre \ref run() must be called before using this function. |
| 1004 |
template <typename Value> |
|
| 1005 |
Value totalCost() const {
|
|
| 1006 |
Value c = 0; |
|
| 1007 |
if (_pcost) {
|
|
| 1008 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 1009 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
| 1010 |
} else {
|
|
| 1011 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 1012 |
|
|
| 971 |
template <typename Number> |
|
| 972 |
Number totalCost() const {
|
|
| 973 |
Number c = 0; |
|
| 974 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 975 |
int i = _arc_id[a]; |
|
| 976 |
c += Number(_flow[i]) * Number(_cost[i]); |
|
| 1013 | 977 |
} |
| 1014 | 978 |
return c; |
| 1015 | 979 |
} |
| 1016 | 980 |
|
| 1017 | 981 |
#ifndef DOXYGEN |
| 1018 | 982 |
Cost totalCost() const {
|
| 1019 | 983 |
return totalCost<Cost>(); |
| 1020 | 984 |
} |
| 1021 | 985 |
#endif |
| 1022 | 986 |
|
| 1023 | 987 |
/// \brief Return the flow on the given arc. |
| 1024 | 988 |
/// |
| 1025 | 989 |
/// This function returns the flow on the given arc. |
| 1026 | 990 |
/// |
| 1027 | 991 |
/// \pre \ref run() must be called before using this function. |
| 1028 | 992 |
Value flow(const Arc& a) const {
|
| 1029 |
return |
|
| 993 |
return _flow[_arc_id[a]]; |
|
| 1030 | 994 |
} |
| 1031 | 995 |
|
| 1032 |
/// \brief Return |
|
| 996 |
/// \brief Return the flow map (the primal solution). |
|
| 1033 | 997 |
/// |
| 1034 |
/// This function returns a const reference to an arc map storing |
|
| 1035 |
/// the found flow. |
|
| 998 |
/// This function copies the flow value on each arc into the given |
|
| 999 |
/// map. The \c Value type of the algorithm must be convertible to |
|
| 1000 |
/// the \c Value type of the map. |
|
| 1036 | 1001 |
/// |
| 1037 | 1002 |
/// \pre \ref run() must be called before using this function. |
| 1038 |
const FlowMap& flowMap() const {
|
|
| 1039 |
return *_flow_map; |
|
| 1003 |
template <typename FlowMap> |
|
| 1004 |
void flowMap(FlowMap &map) const {
|
|
| 1005 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 1006 |
map.set(a, _flow[_arc_id[a]]); |
|
| 1007 |
} |
|
| 1040 | 1008 |
} |
| 1041 | 1009 |
|
| 1042 | 1010 |
/// \brief Return the potential (dual value) of the given node. |
| 1043 | 1011 |
/// |
| 1044 | 1012 |
/// This function returns the potential (dual value) of the |
| 1045 | 1013 |
/// given node. |
| 1046 | 1014 |
/// |
| 1047 | 1015 |
/// \pre \ref run() must be called before using this function. |
| 1048 | 1016 |
Cost potential(const Node& n) const {
|
| 1049 |
return |
|
| 1017 |
return _pi[_node_id[n]]; |
|
| 1050 | 1018 |
} |
| 1051 | 1019 |
|
| 1052 |
/// \brief Return a const reference to the potential map |
|
| 1053 |
/// (the dual solution). |
|
| 1020 |
/// \brief Return the potential map (the dual solution). |
|
| 1054 | 1021 |
/// |
| 1055 |
/// This function returns a const reference to a node map storing |
|
| 1056 |
/// the found potentials, which form the dual solution of the |
|
| 1057 |
/// |
|
| 1022 |
/// This function copies the potential (dual value) of each node |
|
| 1023 |
/// into the given map. |
|
| 1024 |
/// The \c Cost type of the algorithm must be convertible to the |
|
| 1025 |
/// \c Value type of the map. |
|
| 1058 | 1026 |
/// |
| 1059 | 1027 |
/// \pre \ref run() must be called before using this function. |
| 1060 |
const PotentialMap& potentialMap() const {
|
|
| 1061 |
return *_potential_map; |
|
| 1028 |
template <typename PotentialMap> |
|
| 1029 |
void potentialMap(PotentialMap &map) const {
|
|
| 1030 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1031 |
map.set(n, _pi[_node_id[n]]); |
|
| 1032 |
} |
|
| 1062 | 1033 |
} |
| 1063 | 1034 |
|
| 1064 | 1035 |
/// @} |
| 1065 | 1036 |
|
| 1066 | 1037 |
private: |
| 1067 | 1038 |
|
| 1068 | 1039 |
// Initialize internal data structures |
| 1069 | 1040 |
bool init() {
|
| 1070 |
// Initialize result maps |
|
| 1071 |
if (!_flow_map) {
|
|
| 1072 |
_flow_map = new FlowMap(_graph); |
|
| 1073 |
_local_flow = true; |
|
| 1074 |
} |
|
| 1075 |
if (!_potential_map) {
|
|
| 1076 |
_potential_map = new PotentialMap(_graph); |
|
| 1077 |
_local_potential = true; |
|
| 1078 |
} |
|
| 1079 |
|
|
| 1080 |
// Initialize vectors |
|
| 1081 |
_node_num = countNodes(_graph); |
|
| 1082 |
_arc_num = countArcs(_graph); |
|
| 1083 |
int all_node_num = _node_num + 1; |
|
| 1084 |
int all_arc_num = _arc_num + _node_num; |
|
| 1085 | 1041 |
if (_node_num == 0) return false; |
| 1086 | 1042 |
|
| 1087 |
_arc_ref.resize(_arc_num); |
|
| 1088 |
_source.resize(all_arc_num); |
|
| 1089 |
|
|
| 1043 |
// Check the sum of supply values |
|
| 1044 |
_sum_supply = 0; |
|
| 1045 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 1046 |
_sum_supply += _supply[i]; |
|
| 1047 |
} |
|
| 1048 |
if ( !(_stype == GEQ && _sum_supply <= 0 || |
|
| 1049 |
_stype == LEQ && _sum_supply >= 0) ) return false; |
|
| 1090 | 1050 |
|
| 1091 |
_cap.resize(all_arc_num); |
|
| 1092 |
_cost.resize(all_arc_num); |
|
| 1093 |
_supply.resize(all_node_num); |
|
| 1094 |
_flow.resize(all_arc_num); |
|
| 1095 |
_pi.resize(all_node_num); |
|
| 1096 |
|
|
| 1097 |
_parent.resize(all_node_num); |
|
| 1098 |
_pred.resize(all_node_num); |
|
| 1099 |
_forward.resize(all_node_num); |
|
| 1100 |
_thread.resize(all_node_num); |
|
| 1101 |
_rev_thread.resize(all_node_num); |
|
| 1102 |
_succ_num.resize(all_node_num); |
|
| 1103 |
_last_succ.resize(all_node_num); |
|
| 1104 |
_state.resize(all_arc_num); |
|
| 1105 |
|
|
| 1106 |
// Initialize node related data |
|
| 1107 |
bool valid_supply = true; |
|
| 1108 |
_sum_supply = 0; |
|
| 1109 |
if (!_pstsup && !_psupply) {
|
|
| 1110 |
_pstsup = true; |
|
| 1111 |
_psource = _ptarget = NodeIt(_graph); |
|
| 1112 |
_pstflow = 0; |
|
| 1051 |
// Remove non-zero lower bounds |
|
| 1052 |
if (_have_lower) {
|
|
| 1053 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1054 |
Value c = _lower[i]; |
|
| 1055 |
if (c >= 0) {
|
|
| 1056 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
|
| 1057 |
} else {
|
|
| 1058 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
|
| 1059 |
} |
|
| 1060 |
_supply[_source[i]] -= c; |
|
| 1061 |
_supply[_target[i]] += c; |
|
| 1062 |
} |
|
| 1063 |
} else {
|
|
| 1064 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1065 |
_cap[i] = _upper[i]; |
|
| 1066 |
} |
|
| 1113 | 1067 |
} |
| 1114 |
if (_psupply) {
|
|
| 1115 |
int i = 0; |
|
| 1116 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 1117 |
_node_id[n] = i; |
|
| 1118 |
_supply[i] = (*_psupply)[n]; |
|
| 1119 |
_sum_supply += _supply[i]; |
|
| 1120 |
} |
|
| 1121 |
valid_supply = (_stype == GEQ && _sum_supply <= 0) || |
|
| 1122 |
(_stype == LEQ && _sum_supply >= 0); |
|
| 1123 |
} else {
|
|
| 1124 |
int i = 0; |
|
| 1125 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 1126 |
_node_id[n] = i; |
|
| 1127 |
_supply[i] = 0; |
|
| 1128 |
} |
|
| 1129 |
_supply[_node_id[_psource]] = _pstflow; |
|
| 1130 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
| 1131 |
} |
|
| 1132 |
if (!valid_supply) return false; |
|
| 1133 | 1068 |
|
| 1134 | 1069 |
// Initialize artifical cost |
| 1135 | 1070 |
Cost ART_COST; |
| 1136 | 1071 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1137 | 1072 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
| 1138 | 1073 |
} else {
|
| 1139 | 1074 |
ART_COST = std::numeric_limits<Cost>::min(); |
| 1140 | 1075 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1141 | 1076 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
| 1142 | 1077 |
} |
| 1143 | 1078 |
ART_COST = (ART_COST + 1) * _node_num; |
| 1144 | 1079 |
} |
| 1145 | 1080 |
|
| 1081 |
// Initialize arc maps |
|
| 1082 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1083 |
_flow[i] = 0; |
|
| 1084 |
_state[i] = STATE_LOWER; |
|
| 1085 |
} |
|
| 1086 |
|
|
| 1146 | 1087 |
// Set data for the artificial root node |
| 1147 | 1088 |
_root = _node_num; |
| 1148 | 1089 |
_parent[_root] = -1; |
| 1149 | 1090 |
_pred[_root] = -1; |
| 1150 | 1091 |
_thread[_root] = 0; |
| 1151 | 1092 |
_rev_thread[0] = _root; |
| 1152 |
_succ_num[_root] = |
|
| 1093 |
_succ_num[_root] = _node_num + 1; |
|
| 1153 | 1094 |
_last_succ[_root] = _root - 1; |
| 1154 | 1095 |
_supply[_root] = -_sum_supply; |
| 1155 |
if (_sum_supply < 0) {
|
|
| 1156 |
_pi[_root] = -ART_COST; |
|
| 1157 |
} else {
|
|
| 1158 |
_pi[_root] = ART_COST; |
|
| 1159 |
} |
|
| 1160 |
|
|
| 1161 |
// Store the arcs in a mixed order |
|
| 1162 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 1163 |
int i = 0; |
|
| 1164 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 1165 |
_arc_ref[i] = e; |
|
| 1166 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 1167 |
} |
|
| 1168 |
|
|
| 1169 |
// Initialize arc maps |
|
| 1170 |
if (_pupper && _pcost) {
|
|
| 1171 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1172 |
Arc e = _arc_ref[i]; |
|
| 1173 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 1174 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 1175 |
_cap[i] = (*_pupper)[e]; |
|
| 1176 |
_cost[i] = (*_pcost)[e]; |
|
| 1177 |
_flow[i] = 0; |
|
| 1178 |
_state[i] = STATE_LOWER; |
|
| 1179 |
} |
|
| 1180 |
} else {
|
|
| 1181 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1182 |
Arc e = _arc_ref[i]; |
|
| 1183 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 1184 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 1185 |
_flow[i] = 0; |
|
| 1186 |
_state[i] = STATE_LOWER; |
|
| 1187 |
} |
|
| 1188 |
if (_pupper) {
|
|
| 1189 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1190 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
| 1191 |
} else {
|
|
| 1192 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1193 |
_cap[i] = INF; |
|
| 1194 |
} |
|
| 1195 |
if (_pcost) {
|
|
| 1196 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1197 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
| 1198 |
} else {
|
|
| 1199 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1200 |
_cost[i] = 1; |
|
| 1201 |
} |
|
| 1202 |
} |
|
| 1203 |
|
|
| 1204 |
// Remove non-zero lower bounds |
|
| 1205 |
if (_plower) {
|
|
| 1206 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1207 |
Value c = (*_plower)[_arc_ref[i]]; |
|
| 1208 |
if (c > 0) {
|
|
| 1209 |
if (_cap[i] < INF) _cap[i] -= c; |
|
| 1210 |
_supply[_source[i]] -= c; |
|
| 1211 |
_supply[_target[i]] += c; |
|
| 1212 |
} |
|
| 1213 |
else if (c < 0) {
|
|
| 1214 |
if (_cap[i] < INF + c) {
|
|
| 1215 |
_cap[i] -= c; |
|
| 1216 |
} else {
|
|
| 1217 |
_cap[i] = INF; |
|
| 1218 |
} |
|
| 1219 |
_supply[_source[i]] -= c; |
|
| 1220 |
_supply[_target[i]] += c; |
|
| 1221 |
} |
|
| 1222 |
} |
|
| 1223 |
|
|
| 1096 |
_pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST; |
|
| 1224 | 1097 |
|
| 1225 | 1098 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1226 | 1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1100 |
_parent[u] = _root; |
|
| 1101 |
_pred[u] = e; |
|
| 1227 | 1102 |
_thread[u] = u + 1; |
| 1228 | 1103 |
_rev_thread[u + 1] = u; |
| 1229 | 1104 |
_succ_num[u] = 1; |
| 1230 | 1105 |
_last_succ[u] = u; |
| 1231 |
_parent[u] = _root; |
|
| 1232 |
_pred[u] = e; |
|
| 1233 | 1106 |
_cost[e] = ART_COST; |
| 1234 | 1107 |
_cap[e] = INF; |
| 1235 | 1108 |
_state[e] = STATE_TREE; |
| 1236 | 1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
|
| 1237 | 1110 |
_flow[e] = _supply[u]; |
| 1238 | 1111 |
_forward[u] = true; |
| 1239 | 1112 |
_pi[u] = -ART_COST + _pi[_root]; |
| 1240 | 1113 |
} else {
|
| 1241 | 1114 |
_flow[e] = -_supply[u]; |
| 1242 | 1115 |
_forward[u] = false; |
| 1243 | 1116 |
_pi[u] = ART_COST + _pi[_root]; |
| 1244 | 1117 |
} |
| 1245 | 1118 |
} |
| 1246 | 1119 |
|
| 1247 | 1120 |
return true; |
| 1248 | 1121 |
} |
| 1249 | 1122 |
|
| 1250 | 1123 |
// Find the join node |
| 1251 | 1124 |
void findJoinNode() {
|
| 1252 | 1125 |
int u = _source[in_arc]; |
| 1253 | 1126 |
int v = _target[in_arc]; |
| 1254 | 1127 |
while (u != v) {
|
| 1255 | 1128 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1256 | 1129 |
u = _parent[u]; |
| 1257 | 1130 |
} else {
|
| 1258 | 1131 |
v = _parent[v]; |
| 1259 | 1132 |
} |
| 1260 | 1133 |
} |
| 1261 | 1134 |
join = u; |
| 1262 | 1135 |
} |
| 1263 | 1136 |
|
| 1264 | 1137 |
// Find the leaving arc of the cycle and returns true if the |
| 1265 | 1138 |
// leaving arc is not the same as the entering arc |
| 1266 | 1139 |
bool findLeavingArc() {
|
| 1267 | 1140 |
// Initialize first and second nodes according to the direction |
| 1268 | 1141 |
// of the cycle |
| 1269 | 1142 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1270 | 1143 |
first = _source[in_arc]; |
| 1271 | 1144 |
second = _target[in_arc]; |
| 1272 | 1145 |
} else {
|
| 1273 | 1146 |
first = _target[in_arc]; |
| 1274 | 1147 |
second = _source[in_arc]; |
| 1275 | 1148 |
} |
| 1276 | 1149 |
delta = _cap[in_arc]; |
| 1277 | 1150 |
int result = 0; |
| 1278 | 1151 |
Value d; |
| 1279 | 1152 |
int e; |
| 1280 | 1153 |
|
| ... | ... |
@@ -1472,74 +1345,70 @@ |
| 1472 | 1345 |
switch (pivot_rule) {
|
| 1473 | 1346 |
case FIRST_ELIGIBLE: |
| 1474 | 1347 |
return start<FirstEligiblePivotRule>(); |
| 1475 | 1348 |
case BEST_ELIGIBLE: |
| 1476 | 1349 |
return start<BestEligiblePivotRule>(); |
| 1477 | 1350 |
case BLOCK_SEARCH: |
| 1478 | 1351 |
return start<BlockSearchPivotRule>(); |
| 1479 | 1352 |
case CANDIDATE_LIST: |
| 1480 | 1353 |
return start<CandidateListPivotRule>(); |
| 1481 | 1354 |
case ALTERING_LIST: |
| 1482 | 1355 |
return start<AlteringListPivotRule>(); |
| 1483 | 1356 |
} |
| 1484 | 1357 |
return INFEASIBLE; // avoid warning |
| 1485 | 1358 |
} |
| 1486 | 1359 |
|
| 1487 | 1360 |
template <typename PivotRuleImpl> |
| 1488 | 1361 |
ProblemType start() {
|
| 1489 | 1362 |
PivotRuleImpl pivot(*this); |
| 1490 | 1363 |
|
| 1491 | 1364 |
// Execute the Network Simplex algorithm |
| 1492 | 1365 |
while (pivot.findEnteringArc()) {
|
| 1493 | 1366 |
findJoinNode(); |
| 1494 | 1367 |
bool change = findLeavingArc(); |
| 1495 | 1368 |
if (delta >= INF) return UNBOUNDED; |
| 1496 | 1369 |
changeFlow(change); |
| 1497 | 1370 |
if (change) {
|
| 1498 | 1371 |
updateTreeStructure(); |
| 1499 | 1372 |
updatePotential(); |
| 1500 | 1373 |
} |
| 1501 | 1374 |
} |
| 1502 | 1375 |
|
| 1503 | 1376 |
// Check feasibility |
| 1504 | 1377 |
if (_sum_supply < 0) {
|
| 1505 | 1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1506 | 1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
| 1507 | 1380 |
} |
| 1508 | 1381 |
} |
| 1509 | 1382 |
else if (_sum_supply > 0) {
|
| 1510 | 1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1511 | 1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
| 1512 | 1385 |
} |
| 1513 | 1386 |
} |
| 1514 | 1387 |
else {
|
| 1515 | 1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1516 | 1389 |
if (_flow[e] != 0) return INFEASIBLE; |
| 1517 | 1390 |
} |
| 1518 | 1391 |
} |
| 1519 | 1392 |
|
| 1520 |
// Copy flow values to _flow_map |
|
| 1521 |
if (_plower) {
|
|
| 1393 |
// Transform the solution and the supply map to the original form |
|
| 1394 |
if (_have_lower) {
|
|
| 1522 | 1395 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1523 |
Arc e = _arc_ref[i]; |
|
| 1524 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
| 1396 |
Value c = _lower[i]; |
|
| 1397 |
if (c != 0) {
|
|
| 1398 |
_flow[i] += c; |
|
| 1399 |
_supply[_source[i]] += c; |
|
| 1400 |
_supply[_target[i]] -= c; |
|
| 1401 |
} |
|
| 1525 | 1402 |
} |
| 1526 |
} else {
|
|
| 1527 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1528 |
_flow_map->set(_arc_ref[i], _flow[i]); |
|
| 1529 |
} |
|
| 1530 |
} |
|
| 1531 |
// Copy potential values to _potential_map |
|
| 1532 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1533 |
_potential_map->set(n, _pi[_node_id[n]]); |
|
| 1534 | 1403 |
} |
| 1535 | 1404 |
|
| 1536 | 1405 |
return OPTIMAL; |
| 1537 | 1406 |
} |
| 1538 | 1407 |
|
| 1539 | 1408 |
}; //class NetworkSimplex |
| 1540 | 1409 |
|
| 1541 | 1410 |
///@} |
| 1542 | 1411 |
|
| 1543 | 1412 |
} //namespace lemon |
| 1544 | 1413 |
|
| 1545 | 1414 |
#endif //LEMON_NETWORK_SIMPLEX_H |
| ... | ... |
@@ -39,251 +39,248 @@ |
| 39 | 39 |
" 2 -4 0 0 0 -8 -3\n" |
| 40 | 40 |
" 3 0 0 0 0 0 0\n" |
| 41 | 41 |
" 4 0 0 0 0 0 0\n" |
| 42 | 42 |
" 5 9 0 0 0 6 11\n" |
| 43 | 43 |
" 6 -6 0 0 0 -5 -6\n" |
| 44 | 44 |
" 7 0 0 0 0 0 0\n" |
| 45 | 45 |
" 8 0 0 0 0 0 3\n" |
| 46 | 46 |
" 9 3 0 0 0 0 0\n" |
| 47 | 47 |
" 10 -2 0 0 0 -7 -2\n" |
| 48 | 48 |
" 11 0 0 0 0 -10 0\n" |
| 49 | 49 |
" 12 -20 -27 0 -30 -30 -20\n" |
| 50 | 50 |
"\n" |
| 51 | 51 |
"@arcs\n" |
| 52 | 52 |
" cost cap low1 low2 low3\n" |
| 53 | 53 |
" 1 2 70 11 0 8 8\n" |
| 54 | 54 |
" 1 3 150 3 0 1 0\n" |
| 55 | 55 |
" 1 4 80 15 0 2 2\n" |
| 56 | 56 |
" 2 8 80 12 0 0 0\n" |
| 57 | 57 |
" 3 5 140 5 0 3 1\n" |
| 58 | 58 |
" 4 6 60 10 0 1 0\n" |
| 59 | 59 |
" 4 7 80 2 0 0 0\n" |
| 60 | 60 |
" 4 8 110 3 0 0 0\n" |
| 61 | 61 |
" 5 7 60 14 0 0 0\n" |
| 62 | 62 |
" 5 11 120 12 0 0 0\n" |
| 63 | 63 |
" 6 3 0 3 0 0 0\n" |
| 64 | 64 |
" 6 9 140 4 0 0 0\n" |
| 65 | 65 |
" 6 10 90 8 0 0 0\n" |
| 66 | 66 |
" 7 1 30 5 0 0 -5\n" |
| 67 | 67 |
" 8 12 60 16 0 4 3\n" |
| 68 | 68 |
" 9 12 50 6 0 0 0\n" |
| 69 | 69 |
"10 12 70 13 0 5 2\n" |
| 70 | 70 |
"10 2 100 7 0 0 0\n" |
| 71 | 71 |
"10 7 60 10 0 0 -3\n" |
| 72 | 72 |
"11 10 20 14 0 6 -20\n" |
| 73 | 73 |
"12 11 30 10 0 0 -10\n" |
| 74 | 74 |
"\n" |
| 75 | 75 |
"@attributes\n" |
| 76 | 76 |
"source 1\n" |
| 77 | 77 |
"target 12\n"; |
| 78 | 78 |
|
| 79 | 79 |
|
| 80 | 80 |
enum SupplyType {
|
| 81 | 81 |
EQ, |
| 82 | 82 |
GEQ, |
| 83 | 83 |
LEQ |
| 84 | 84 |
}; |
| 85 | 85 |
|
| 86 | 86 |
// Check the interface of an MCF algorithm |
| 87 |
template <typename GR, typename |
|
| 87 |
template <typename GR, typename Value, typename Cost> |
|
| 88 | 88 |
class McfClassConcept |
| 89 | 89 |
{
|
| 90 | 90 |
public: |
| 91 | 91 |
|
| 92 | 92 |
template <typename MCF> |
| 93 | 93 |
struct Constraints {
|
| 94 | 94 |
void constraints() {
|
| 95 | 95 |
checkConcept<concepts::Digraph, GR>(); |
| 96 | 96 |
|
| 97 | 97 |
MCF mcf(g); |
| 98 |
const MCF& const_mcf = mcf; |
|
| 98 | 99 |
|
| 99 | 100 |
b = mcf.reset() |
| 100 | 101 |
.lowerMap(lower) |
| 101 | 102 |
.upperMap(upper) |
| 102 | 103 |
.costMap(cost) |
| 103 | 104 |
.supplyMap(sup) |
| 104 | 105 |
.stSupply(n, n, k) |
| 105 |
.flowMap(flow) |
|
| 106 |
.potentialMap(pot) |
|
| 107 | 106 |
.run(); |
| 108 |
|
|
| 109 |
const MCF& const_mcf = mcf; |
|
| 110 |
|
|
| 111 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
| 112 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
| 113 | 107 |
|
| 114 | 108 |
c = const_mcf.totalCost(); |
| 115 |
|
|
| 109 |
x = const_mcf.template totalCost<double>(); |
|
| 116 | 110 |
v = const_mcf.flow(a); |
| 117 | 111 |
c = const_mcf.potential(n); |
| 118 |
|
|
| 119 |
v = const_mcf.INF; |
|
| 120 |
|
|
| 121 |
ignore_unused_variable_warning(fm); |
|
| 122 |
ignore_unused_variable_warning(pm); |
|
| 123 |
ignore_unused_variable_warning(x); |
|
| 112 |
const_mcf.flowMap(fm); |
|
| 113 |
const_mcf.potentialMap(pm); |
|
| 124 | 114 |
} |
| 125 | 115 |
|
| 126 | 116 |
typedef typename GR::Node Node; |
| 127 | 117 |
typedef typename GR::Arc Arc; |
| 128 |
typedef concepts::ReadMap<Node, Flow> NM; |
|
| 129 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
|
| 118 |
typedef concepts::ReadMap<Node, Value> NM; |
|
| 119 |
typedef concepts::ReadMap<Arc, Value> VAM; |
|
| 130 | 120 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
| 121 |
typedef concepts::WriteMap<Arc, Value> FlowMap; |
|
| 122 |
typedef concepts::WriteMap<Node, Cost> PotMap; |
|
| 131 | 123 |
|
| 132 | 124 |
const GR &g; |
| 133 |
const FAM &lower; |
|
| 134 |
const FAM &upper; |
|
| 125 |
const VAM &lower; |
|
| 126 |
const VAM &upper; |
|
| 135 | 127 |
const CAM &cost; |
| 136 | 128 |
const NM ⊃ |
| 137 | 129 |
const Node &n; |
| 138 | 130 |
const Arc &a; |
| 139 |
const Flow &k; |
|
| 140 |
Flow v; |
|
| 141 |
|
|
| 131 |
const Value &k; |
|
| 132 |
FlowMap fm; |
|
| 133 |
PotMap pm; |
|
| 142 | 134 |
bool b; |
| 143 |
|
|
| 144 |
typename MCF::FlowMap &flow; |
|
| 145 |
|
|
| 135 |
double x; |
|
| 136 |
typename MCF::Value v; |
|
| 137 |
typename MCF::Cost c; |
|
| 146 | 138 |
}; |
| 147 | 139 |
|
| 148 | 140 |
}; |
| 149 | 141 |
|
| 150 | 142 |
|
| 151 | 143 |
// Check the feasibility of the given flow (primal soluiton) |
| 152 | 144 |
template < typename GR, typename LM, typename UM, |
| 153 | 145 |
typename SM, typename FM > |
| 154 | 146 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 155 | 147 |
const SM& supply, const FM& flow, |
| 156 | 148 |
SupplyType type = EQ ) |
| 157 | 149 |
{
|
| 158 | 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 159 | 151 |
|
| 160 | 152 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
| 161 | 153 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
| 162 | 154 |
} |
| 163 | 155 |
|
| 164 | 156 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
| 165 | 157 |
typename SM::Value sum = 0; |
| 166 | 158 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 167 | 159 |
sum += flow[e]; |
| 168 | 160 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 169 | 161 |
sum -= flow[e]; |
| 170 | 162 |
bool b = (type == EQ && sum == supply[n]) || |
| 171 | 163 |
(type == GEQ && sum >= supply[n]) || |
| 172 | 164 |
(type == LEQ && sum <= supply[n]); |
| 173 | 165 |
if (!b) return false; |
| 174 | 166 |
} |
| 175 | 167 |
|
| 176 | 168 |
return true; |
| 177 | 169 |
} |
| 178 | 170 |
|
| 179 | 171 |
// Check the feasibility of the given potentials (dual soluiton) |
| 180 | 172 |
// using the "Complementary Slackness" optimality condition |
| 181 | 173 |
template < typename GR, typename LM, typename UM, |
| 182 | 174 |
typename CM, typename SM, typename FM, typename PM > |
| 183 | 175 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 184 | 176 |
const CM& cost, const SM& supply, const FM& flow, |
| 185 | 177 |
const PM& pi ) |
| 186 | 178 |
{
|
| 187 | 179 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 188 | 180 |
|
| 189 | 181 |
bool opt = true; |
| 190 | 182 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
| 191 | 183 |
typename CM::Value red_cost = |
| 192 | 184 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
| 193 | 185 |
opt = red_cost == 0 || |
| 194 | 186 |
(red_cost > 0 && flow[e] == lower[e]) || |
| 195 | 187 |
(red_cost < 0 && flow[e] == upper[e]); |
| 196 | 188 |
} |
| 197 | 189 |
|
| 198 | 190 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
| 199 | 191 |
typename SM::Value sum = 0; |
| 200 | 192 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 201 | 193 |
sum += flow[e]; |
| 202 | 194 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 203 | 195 |
sum -= flow[e]; |
| 204 | 196 |
opt = (sum == supply[n]) || (pi[n] == 0); |
| 205 | 197 |
} |
| 206 | 198 |
|
| 207 | 199 |
return opt; |
| 208 | 200 |
} |
| 209 | 201 |
|
| 210 | 202 |
// Run a minimum cost flow algorithm and check the results |
| 211 | 203 |
template < typename MCF, typename GR, |
| 212 | 204 |
typename LM, typename UM, |
| 213 | 205 |
typename CM, typename SM, |
| 214 | 206 |
typename PT > |
| 215 | 207 |
void checkMcf( const MCF& mcf, PT mcf_result, |
| 216 | 208 |
const GR& gr, const LM& lower, const UM& upper, |
| 217 | 209 |
const CM& cost, const SM& supply, |
| 218 | 210 |
PT result, bool optimal, typename CM::Value total, |
| 219 | 211 |
const std::string &test_id = "", |
| 220 | 212 |
SupplyType type = EQ ) |
| 221 | 213 |
{
|
| 222 | 214 |
check(mcf_result == result, "Wrong result " + test_id); |
| 223 | 215 |
if (optimal) {
|
| 224 |
|
|
| 216 |
typename GR::template ArcMap<typename SM::Value> flow(gr); |
|
| 217 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
|
| 218 |
mcf.flowMap(flow); |
|
| 219 |
mcf.potentialMap(pi); |
|
| 220 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
|
| 225 | 221 |
"The flow is not feasible " + test_id); |
| 226 | 222 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 227 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
| 228 |
mcf.potentialMap()), |
|
| 223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
| 229 | 224 |
"Wrong potentials " + test_id); |
| 230 | 225 |
} |
| 231 | 226 |
} |
| 232 | 227 |
|
| 233 | 228 |
int main() |
| 234 | 229 |
{
|
| 235 | 230 |
// Check the interfaces |
| 236 | 231 |
{
|
| 237 |
typedef int Flow; |
|
| 238 |
typedef int Cost; |
|
| 239 | 232 |
typedef concepts::Digraph GR; |
| 240 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
|
| 241 |
NetworkSimplex<GR, Flow, Cost> >(); |
|
| 233 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 234 |
NetworkSimplex<GR> >(); |
|
| 235 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 236 |
NetworkSimplex<GR, double> >(); |
|
| 237 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 238 |
NetworkSimplex<GR, int, double> >(); |
|
| 242 | 239 |
} |
| 243 | 240 |
|
| 244 | 241 |
// Run various MCF tests |
| 245 | 242 |
typedef ListDigraph Digraph; |
| 246 | 243 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 247 | 244 |
|
| 248 | 245 |
// Read the test digraph |
| 249 | 246 |
Digraph gr; |
| 250 | 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
| 251 | 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
| 252 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 253 | 250 |
Node v, w; |
| 254 | 251 |
|
| 255 | 252 |
std::istringstream input(test_lgf); |
| 256 | 253 |
DigraphReader<Digraph>(gr, input) |
| 257 | 254 |
.arcMap("cost", c)
|
| 258 | 255 |
.arcMap("cap", u)
|
| 259 | 256 |
.arcMap("low1", l1)
|
| 260 | 257 |
.arcMap("low2", l2)
|
| 261 | 258 |
.arcMap("low3", l3)
|
| 262 | 259 |
.nodeMap("sup1", s1)
|
| 263 | 260 |
.nodeMap("sup2", s2)
|
| 264 | 261 |
.nodeMap("sup3", s3)
|
| 265 | 262 |
.nodeMap("sup4", s4)
|
| 266 | 263 |
.nodeMap("sup5", s5)
|
| 267 | 264 |
.nodeMap("sup6", s6)
|
| 268 | 265 |
.node("source", v)
|
| 269 | 266 |
.node("target", w)
|
| 270 | 267 |
.run(); |
| 271 | 268 |
|
| 272 | 269 |
// Build a test digraph for testing negative costs |
| 273 | 270 |
Digraph ngr; |
| 274 | 271 |
Node n1 = ngr.addNode(); |
| 275 | 272 |
Node n2 = ngr.addNode(); |
| 276 | 273 |
Node n3 = ngr.addNode(); |
| 277 | 274 |
Node n4 = ngr.addNode(); |
| 278 | 275 |
Node n5 = ngr.addNode(); |
| 279 | 276 |
Node n6 = ngr.addNode(); |
| 280 | 277 |
Node n7 = ngr.addNode(); |
| 281 | 278 |
|
| 282 | 279 |
Arc a1 = ngr.addArc(n1, n2); |
| 283 | 280 |
Arc a2 = ngr.addArc(n1, n3); |
| 284 | 281 |
Arc a3 = ngr.addArc(n2, n4); |
| 285 | 282 |
Arc a4 = ngr.addArc(n3, n4); |
| 286 | 283 |
Arc a5 = ngr.addArc(n3, n2); |
| 287 | 284 |
Arc a6 = ngr.addArc(n5, n3); |
| 288 | 285 |
Arc a7 = ngr.addArc(n5, n6); |
| 289 | 286 |
Arc a8 = ngr.addArc(n6, n7); |
0 comments (0 inline)