0
3
0
... | ... |
@@ -64,15 +64,15 @@ |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 |
/// \brief The type of the flow values. |
|
68 |
typedef typename SupplyMap::Value Flow; |
|
67 |
/// \brief The type of the flow and supply values. |
|
68 |
typedef typename SupplyMap::Value Value; |
|
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
typedef typename Digraph::template ArcMap< |
|
75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
76 | 76 |
|
77 | 77 |
/// \brief Instantiates a FlowMap. |
78 | 78 |
/// |
... | ... |
@@ -104,7 +104,7 @@ |
104 | 104 |
/// \brief The tolerance used by the algorithm |
105 | 105 |
/// |
106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 |
typedef lemon::Tolerance< |
|
107 |
typedef lemon::Tolerance<Value> Tolerance; |
|
108 | 108 |
|
109 | 109 |
}; |
110 | 110 |
|
... | ... |
@@ -187,8 +187,8 @@ |
187 | 187 |
typedef TR Traits; |
188 | 188 |
///The type of the digraph the algorithm runs on. |
189 | 189 |
typedef typename Traits::Digraph Digraph; |
190 |
///The type of the flow values. |
|
191 |
typedef typename Traits::Flow Flow; |
|
190 |
///The type of the flow and supply values. |
|
191 |
typedef typename Traits::Value Value; |
|
192 | 192 |
|
193 | 193 |
///The type of the lower bound map. |
194 | 194 |
typedef typename Traits::LowerMap LowerMap; |
... | ... |
@@ -221,7 +221,7 @@ |
221 | 221 |
Elevator* _level; |
222 | 222 |
bool _local_level; |
223 | 223 |
|
224 |
typedef typename Digraph::template NodeMap< |
|
224 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
225 | 225 |
ExcessMap* _excess; |
226 | 226 |
|
227 | 227 |
Tolerance _tol; |
... | ... |
@@ -530,7 +530,7 @@ |
530 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
531 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
532 | 532 |
} else { |
533 |
|
|
533 |
Value fc = -(*_excess)[_g.target(e)]; |
|
534 | 534 |
_flow->set(e, fc); |
535 | 535 |
(*_excess)[_g.target(e)] = 0; |
536 | 536 |
(*_excess)[_g.source(e)] -= fc; |
... | ... |
@@ -563,11 +563,11 @@ |
563 | 563 |
while((act=_level->highestActive())!=INVALID) { |
564 | 564 |
int actlevel=(*_level)[act]; |
565 | 565 |
int mlevel=_node_num; |
566 |
|
|
566 |
Value exc=(*_excess)[act]; |
|
567 | 567 |
|
568 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
569 | 569 |
Node v = _g.target(e); |
570 |
|
|
570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
571 | 571 |
if(!_tol.positive(fc)) continue; |
572 | 572 |
if((*_level)[v]<actlevel) { |
573 | 573 |
if(!_tol.less(fc, exc)) { |
... | ... |
@@ -591,7 +591,7 @@ |
591 | 591 |
} |
592 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
593 | 593 |
Node v = _g.source(e); |
594 |
|
|
594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
595 | 595 |
if(!_tol.positive(fc)) continue; |
596 | 596 |
if((*_level)[v]<actlevel) { |
597 | 597 |
if(!_tol.less(fc, exc)) { |
... | ... |
@@ -661,13 +661,13 @@ |
661 | 661 |
|
662 | 662 |
///@{ |
663 | 663 |
|
664 |
/// \brief Returns the flow on the given arc. |
|
664 |
/// \brief Returns the flow value on the given arc. |
|
665 | 665 |
/// |
666 |
/// Returns the flow on the given arc. |
|
666 |
/// Returns the flow value on the given arc. |
|
667 | 667 |
/// |
668 | 668 |
/// \pre Either \ref run() or \ref init() must be called before |
669 | 669 |
/// using this function. |
670 |
|
|
670 |
Value flow(const Arc& arc) const { |
|
671 | 671 |
return (*_flow)[arc]; |
672 | 672 |
} |
673 | 673 |
|
... | ... |
@@ -750,7 +750,7 @@ |
750 | 750 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
751 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
752 | 752 |
{ |
753 |
|
|
753 |
Value dif=-(*_supply)[n]; |
|
754 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
755 | 755 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
756 | 756 |
if(_tol.negative(dif)) return false; |
... | ... |
@@ -765,10 +765,10 @@ |
765 | 765 |
///\sa barrierMap() |
766 | 766 |
bool checkBarrier() const |
767 | 767 |
{ |
768 |
Flow delta=0; |
|
769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
770 |
std::numeric_limits<Flow>::infinity() : |
|
771 |
std::numeric_limits<Flow>::max(); |
|
768 |
Value delta=0; |
|
769 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
|
770 |
std::numeric_limits<Value>::infinity() : |
|
771 |
std::numeric_limits<Value>::max(); |
|
772 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
773 | 773 |
if(barrier(n)) |
774 | 774 |
delta-=(*_supply)[n]; |
... | ... |
@@ -56,10 +56,10 @@ |
56 | 56 |
/// specified, then default values will be used. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
59 |
/// \tparam |
|
59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
60 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
62 |
/// algorithm. By default it is the same as \c |
|
62 |
/// algorithm. By default it is the same as \c V. |
|
63 | 63 |
/// |
64 | 64 |
/// \warning Both value types must be signed and all input data must |
65 | 65 |
/// be integer. |
... | ... |
@@ -67,23 +67,23 @@ |
67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
68 | 68 |
/// implementations, from which the most efficient one is used |
69 | 69 |
/// by default. For more information see \ref PivotRule. |
70 |
template <typename GR, typename |
|
70 |
template <typename GR, typename V = int, typename C = V> |
|
71 | 71 |
class NetworkSimplex |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
|
75 | 75 |
/// The flow type of the algorithm |
76 |
typedef |
|
76 |
typedef V Value; |
|
77 | 77 |
/// The cost type of the algorithm |
78 | 78 |
typedef C Cost; |
79 | 79 |
#ifdef DOXYGEN |
80 | 80 |
/// The type of the flow map |
81 |
typedef GR::ArcMap< |
|
81 |
typedef GR::ArcMap<Value> FlowMap; |
|
82 | 82 |
/// The type of the potential map |
83 | 83 |
typedef GR::NodeMap<Cost> PotentialMap; |
84 | 84 |
#else |
85 | 85 |
/// The type of the flow map |
86 |
typedef typename GR::template ArcMap< |
|
86 |
typedef typename GR::template ArcMap<Value> FlowMap; |
|
87 | 87 |
/// The type of the potential map |
88 | 88 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
89 | 89 |
#endif |
... | ... |
@@ -206,15 +206,15 @@ |
206 | 206 |
|
207 | 207 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
208 | 208 |
|
209 |
typedef typename GR::template ArcMap< |
|
209 |
typedef typename GR::template ArcMap<Value> ValueArcMap; |
|
210 | 210 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
211 |
typedef typename GR::template NodeMap< |
|
211 |
typedef typename GR::template NodeMap<Value> ValueNodeMap; |
|
212 | 212 |
|
213 | 213 |
typedef std::vector<Arc> ArcVector; |
214 | 214 |
typedef std::vector<Node> NodeVector; |
215 | 215 |
typedef std::vector<int> IntVector; |
216 | 216 |
typedef std::vector<bool> BoolVector; |
217 |
typedef std::vector< |
|
217 |
typedef std::vector<Value> FlowVector; |
|
218 | 218 |
typedef std::vector<Cost> CostVector; |
219 | 219 |
|
220 | 220 |
// State constants for arcs |
... | ... |
@@ -232,16 +232,16 @@ |
232 | 232 |
int _arc_num; |
233 | 233 |
|
234 | 234 |
// Parameters of the problem |
235 |
FlowArcMap *_plower; |
|
236 |
FlowArcMap *_pupper; |
|
235 |
ValueArcMap *_plower; |
|
236 |
ValueArcMap *_pupper; |
|
237 | 237 |
CostArcMap *_pcost; |
238 |
|
|
238 |
ValueNodeMap *_psupply; |
|
239 | 239 |
bool _pstsup; |
240 | 240 |
Node _psource, _ptarget; |
241 |
|
|
241 |
Value _pstflow; |
|
242 | 242 |
SupplyType _stype; |
243 | 243 |
|
244 |
|
|
244 |
Value _sum_supply; |
|
245 | 245 |
|
246 | 246 |
// Result maps |
247 | 247 |
FlowMap *_flow_map; |
... | ... |
@@ -278,16 +278,16 @@ |
278 | 278 |
int in_arc, join, u_in, v_in, u_out, v_out; |
279 | 279 |
int first, second, right, last; |
280 | 280 |
int stem, par_stem, new_stem; |
281 |
|
|
281 |
Value delta; |
|
282 | 282 |
|
283 | 283 |
public: |
284 | 284 |
|
285 | 285 |
/// \brief Constant for infinite upper bounds (capacities). |
286 | 286 |
/// |
287 | 287 |
/// Constant for infinite upper bounds (capacities). |
288 |
/// It is \c std::numeric_limits<Flow>::infinity() if available, |
|
289 |
/// \c std::numeric_limits<Flow>::max() otherwise. |
|
290 |
|
|
288 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
289 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
290 |
const Value INF; |
|
291 | 291 |
|
292 | 292 |
private: |
293 | 293 |
|
... | ... |
@@ -695,12 +695,12 @@ |
695 | 695 |
_flow_map(NULL), _potential_map(NULL), |
696 | 696 |
_local_flow(false), _local_potential(false), |
697 | 697 |
_node_id(graph), |
698 |
INF(std::numeric_limits<Flow>::has_infinity ? |
|
699 |
std::numeric_limits<Flow>::infinity() : |
|
700 |
|
|
698 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
699 |
std::numeric_limits<Value>::infinity() : |
|
700 |
std::numeric_limits<Value>::max()) |
|
701 | 701 |
{ |
702 | 702 |
// Check the value types |
703 |
LEMON_ASSERT(std::numeric_limits< |
|
703 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
704 | 704 |
"The flow type of NetworkSimplex must be signed"); |
705 | 705 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
706 | 706 |
"The cost type of NetworkSimplex must be signed"); |
... | ... |
@@ -725,14 +725,14 @@ |
725 | 725 |
/// will be set to zero on all arcs. |
726 | 726 |
/// |
727 | 727 |
/// \param map An arc map storing the lower bounds. |
728 |
/// Its \c Value type must be convertible to the \c |
|
728 |
/// Its \c Value type must be convertible to the \c Value type |
|
729 | 729 |
/// of the algorithm. |
730 | 730 |
/// |
731 | 731 |
/// \return <tt>(*this)</tt> |
732 | 732 |
template <typename LowerMap> |
733 | 733 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
734 | 734 |
delete _plower; |
735 |
_plower = new |
|
735 |
_plower = new ValueArcMap(_graph); |
|
736 | 736 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
737 | 737 |
(*_plower)[a] = map[a]; |
738 | 738 |
} |
... | ... |
@@ -747,14 +747,14 @@ |
747 | 747 |
/// unbounded from above on each arc). |
748 | 748 |
/// |
749 | 749 |
/// \param map An arc map storing the upper bounds. |
750 |
/// Its \c Value type must be convertible to the \c |
|
750 |
/// Its \c Value type must be convertible to the \c Value type |
|
751 | 751 |
/// of the algorithm. |
752 | 752 |
/// |
753 | 753 |
/// \return <tt>(*this)</tt> |
754 | 754 |
template<typename UpperMap> |
755 | 755 |
NetworkSimplex& upperMap(const UpperMap& map) { |
756 | 756 |
delete _pupper; |
757 |
_pupper = new |
|
757 |
_pupper = new ValueArcMap(_graph); |
|
758 | 758 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
759 | 759 |
(*_pupper)[a] = map[a]; |
760 | 760 |
} |
... | ... |
@@ -790,7 +790,7 @@ |
790 | 790 |
/// (It makes sense only if non-zero lower bounds are given.) |
791 | 791 |
/// |
792 | 792 |
/// \param map A node map storing the supply values. |
793 |
/// Its \c Value type must be convertible to the \c |
|
793 |
/// Its \c Value type must be convertible to the \c Value type |
|
794 | 794 |
/// of the algorithm. |
795 | 795 |
/// |
796 | 796 |
/// \return <tt>(*this)</tt> |
... | ... |
@@ -798,7 +798,7 @@ |
798 | 798 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
799 | 799 |
delete _psupply; |
800 | 800 |
_pstsup = false; |
801 |
_psupply = new |
|
801 |
_psupply = new ValueNodeMap(_graph); |
|
802 | 802 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
803 | 803 |
(*_psupply)[n] = map[n]; |
804 | 804 |
} |
... | ... |
@@ -823,7 +823,7 @@ |
823 | 823 |
/// (i.e. the supply of \c s and the demand of \c t). |
824 | 824 |
/// |
825 | 825 |
/// \return <tt>(*this)</tt> |
826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, |
|
826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
|
827 | 827 |
delete _psupply; |
828 | 828 |
_psupply = NULL; |
829 | 829 |
_pstsup = true; |
... | ... |
@@ -1025,7 +1025,7 @@ |
1025 | 1025 |
/// This function returns the flow on the given arc. |
1026 | 1026 |
/// |
1027 | 1027 |
/// \pre \ref run() must be called before using this function. |
1028 |
|
|
1028 |
Value flow(const Arc& a) const { |
|
1029 | 1029 |
return (*_flow_map)[a]; |
1030 | 1030 |
} |
1031 | 1031 |
|
... | ... |
@@ -1204,7 +1204,7 @@ |
1204 | 1204 |
// Remove non-zero lower bounds |
1205 | 1205 |
if (_plower) { |
1206 | 1206 |
for (int i = 0; i != _arc_num; ++i) { |
1207 |
|
|
1207 |
Value c = (*_plower)[_arc_ref[i]]; |
|
1208 | 1208 |
if (c > 0) { |
1209 | 1209 |
if (_cap[i] < INF) _cap[i] -= c; |
1210 | 1210 |
_supply[_source[i]] -= c; |
... | ... |
@@ -1275,7 +1275,7 @@ |
1275 | 1275 |
} |
1276 | 1276 |
delta = _cap[in_arc]; |
1277 | 1277 |
int result = 0; |
1278 |
|
|
1278 |
Value d; |
|
1279 | 1279 |
int e; |
1280 | 1280 |
|
1281 | 1281 |
// Search the cycle along the path form the first node to the root |
... | ... |
@@ -1315,7 +1315,7 @@ |
1315 | 1315 |
void changeFlow(bool change) { |
1316 | 1316 |
// Augment along the cycle |
1317 | 1317 |
if (delta > 0) { |
1318 |
|
|
1318 |
Value val = _state[in_arc] * delta; |
|
1319 | 1319 |
_flow[in_arc] += val; |
1320 | 1320 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1321 | 1321 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
... | ... |
@@ -46,13 +46,13 @@ |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 |
typedef typename CapacityMap::Value |
|
49 |
typedef typename CapacityMap::Value Value; |
|
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
typedef typename Digraph::template ArcMap< |
|
55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
56 | 56 |
|
57 | 57 |
/// \brief Instantiates a FlowMap. |
58 | 58 |
/// |
... | ... |
@@ -84,7 +84,7 @@ |
84 | 84 |
/// \brief The tolerance used by the algorithm |
85 | 85 |
/// |
86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 |
typedef lemon::Tolerance< |
|
87 |
typedef lemon::Tolerance<Value> Tolerance; |
|
88 | 88 |
|
89 | 89 |
}; |
90 | 90 |
|
... | ... |
@@ -125,7 +125,7 @@ |
125 | 125 |
///The type of the capacity map. |
126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 127 |
///The type of the flow values. |
128 |
typedef typename Traits:: |
|
128 |
typedef typename Traits::Value Value; |
|
129 | 129 |
|
130 | 130 |
///The type of the flow map. |
131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
... | ... |
@@ -151,7 +151,7 @@ |
151 | 151 |
Elevator* _level; |
152 | 152 |
bool _local_level; |
153 | 153 |
|
154 |
typedef typename Digraph::template NodeMap< |
|
154 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
155 | 155 |
ExcessMap* _excess; |
156 | 156 |
|
157 | 157 |
Tolerance _tolerance; |
... | ... |
@@ -470,7 +470,7 @@ |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 |
|
|
473 |
Value excess = 0; |
|
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 475 |
excess += (*_flow)[e]; |
476 | 476 |
} |
... | ... |
@@ -519,7 +519,7 @@ |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 |
|
|
522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
... | ... |
@@ -531,7 +531,7 @@ |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 |
|
|
534 |
Value rem = (*_flow)[e]; |
|
535 | 535 |
if (_tolerance.positive(rem)) { |
536 | 536 |
Node v = _graph.source(e); |
537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
... | ... |
@@ -564,11 +564,11 @@ |
564 | 564 |
int num = _node_num; |
565 | 565 |
|
566 | 566 |
while (num > 0 && n != INVALID) { |
567 |
|
|
567 |
Value excess = (*_excess)[n]; |
|
568 | 568 |
int new_level = _level->maxLevel(); |
569 | 569 |
|
570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 |
|
|
571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
572 | 572 |
if (!_tolerance.positive(rem)) continue; |
573 | 573 |
Node v = _graph.target(e); |
574 | 574 |
if ((*_level)[v] < level) { |
... | ... |
@@ -591,7 +591,7 @@ |
591 | 591 |
} |
592 | 592 |
|
593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 |
|
|
594 |
Value rem = (*_flow)[e]; |
|
595 | 595 |
if (!_tolerance.positive(rem)) continue; |
596 | 596 |
Node v = _graph.source(e); |
597 | 597 |
if ((*_level)[v] < level) { |
... | ... |
@@ -637,11 +637,11 @@ |
637 | 637 |
|
638 | 638 |
num = _node_num * 20; |
639 | 639 |
while (num > 0 && n != INVALID) { |
640 |
|
|
640 |
Value excess = (*_excess)[n]; |
|
641 | 641 |
int new_level = _level->maxLevel(); |
642 | 642 |
|
643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 |
|
|
644 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
645 | 645 |
if (!_tolerance.positive(rem)) continue; |
646 | 646 |
Node v = _graph.target(e); |
647 | 647 |
if ((*_level)[v] < level) { |
... | ... |
@@ -664,7 +664,7 @@ |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
667 |
|
|
667 |
Value rem = (*_flow)[e]; |
|
668 | 668 |
if (!_tolerance.positive(rem)) continue; |
669 | 669 |
Node v = _graph.source(e); |
670 | 670 |
if ((*_level)[v] < level) { |
... | ... |
@@ -778,12 +778,12 @@ |
778 | 778 |
|
779 | 779 |
Node n; |
780 | 780 |
while ((n = _level->highestActive()) != INVALID) { |
781 |
|
|
781 |
Value excess = (*_excess)[n]; |
|
782 | 782 |
int level = _level->highestActiveLevel(); |
783 | 783 |
int new_level = _level->maxLevel(); |
784 | 784 |
|
785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
786 |
|
|
786 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
787 | 787 |
if (!_tolerance.positive(rem)) continue; |
788 | 788 |
Node v = _graph.target(e); |
789 | 789 |
if ((*_level)[v] < level) { |
... | ... |
@@ -806,7 +806,7 @@ |
806 | 806 |
} |
807 | 807 |
|
808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
809 |
|
|
809 |
Value rem = (*_flow)[e]; |
|
810 | 810 |
if (!_tolerance.positive(rem)) continue; |
811 | 811 |
Node v = _graph.source(e); |
812 | 812 |
if ((*_level)[v] < level) { |
... | ... |
@@ -897,18 +897,18 @@ |
897 | 897 |
/// |
898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
899 | 899 |
/// using this function. |
900 |
|
|
900 |
Value flowValue() const { |
|
901 | 901 |
return (*_excess)[_target]; |
902 | 902 |
} |
903 | 903 |
|
904 |
/// \brief Returns the flow on the given arc. |
|
904 |
/// \brief Returns the flow value on the given arc. |
|
905 | 905 |
/// |
906 |
/// Returns the flow on the given arc. This method can |
|
906 |
/// Returns the flow value on the given arc. This method can |
|
907 | 907 |
/// be called after the second phase of the algorithm. |
908 | 908 |
/// |
909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
910 | 910 |
/// using this function. |
911 |
|
|
911 |
Value flow(const Arc& arc) const { |
|
912 | 912 |
return (*_flow)[arc]; |
913 | 913 |
} |
914 | 914 |
|
0 comments (0 inline)