0
9
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_BITS_PRED_MAP_PATH_H |
|
20 |
#define LEMON_BITS_PRED_MAP_PATH_H |
|
19 |
#ifndef LEMON_BITS_PATH_DUMP_H |
|
20 |
#define LEMON_BITS_PATH_DUMP_H |
|
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
namespace lemon { |
26 | 26 |
|
27 | 27 |
template <typename _Digraph, typename _PredMap> |
28 | 28 |
class PredMapPath { |
29 | 29 |
public: |
30 | 30 |
typedef True RevPathTag; |
31 | 31 |
|
32 | 32 |
typedef _Digraph Digraph; |
33 | 33 |
typedef typename Digraph::Arc Arc; |
34 | 34 |
typedef _PredMap PredMap; |
35 | 35 |
|
36 | 36 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
37 | 37 |
typename Digraph::Node _target) |
38 | 38 |
: digraph(_digraph), predMap(_predMap), target(_target) {} |
39 | 39 |
|
40 | 40 |
int length() const { |
41 | 41 |
int len = 0; |
42 | 42 |
typename Digraph::Node node = target; |
43 | 43 |
typename Digraph::Arc arc; |
44 | 44 |
while ((arc = predMap[node]) != INVALID) { |
45 | 45 |
node = digraph.source(arc); |
46 | 46 |
++len; |
47 | 47 |
} |
48 | 48 |
return len; |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
bool empty() const { |
52 | 52 |
return predMap[target] != INVALID; |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
class RevArcIt { |
56 | 56 |
public: |
57 | 57 |
RevArcIt() {} |
58 | 58 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
59 | 59 |
RevArcIt(const PredMapPath& _path) |
60 | 60 |
: path(&_path), current(_path.target) { |
61 | 61 |
if (path->predMap[current] == INVALID) current = INVALID; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
operator const typename Digraph::Arc() const { |
65 | 65 |
return path->predMap[current]; |
66 | 66 |
} |
67 | 67 |
|
68 | 68 |
RevArcIt& operator++() { |
69 | 69 |
current = path->digraph.source(path->predMap[current]); |
70 | 70 |
if (path->predMap[current] == INVALID) current = INVALID; |
71 | 71 |
return *this; |
72 | 72 |
} |
73 | 73 |
|
74 | 74 |
bool operator==(const RevArcIt& e) const { |
75 | 75 |
return current == e.current; |
76 | 76 |
} |
77 | 77 |
|
78 | 78 |
bool operator!=(const RevArcIt& e) const { |
79 | 79 |
return current != e.current; |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
bool operator<(const RevArcIt& e) const { |
83 | 83 |
return current < e.current; |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
private: |
87 | 87 |
const PredMapPath* path; |
88 | 88 |
typename Digraph::Node current; |
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
private: |
92 | 92 |
const Digraph& digraph; |
93 | 93 |
const PredMap& predMap; |
94 | 94 |
typename Digraph::Node target; |
95 | 95 |
}; |
96 | 96 |
|
97 | 97 |
|
98 | 98 |
template <typename _Digraph, typename _PredMatrixMap> |
99 | 99 |
class PredMatrixMapPath { |
100 | 100 |
public: |
101 | 101 |
typedef True RevPathTag; |
102 | 102 |
|
103 | 103 |
typedef _Digraph Digraph; |
104 | 104 |
typedef typename Digraph::Arc Arc; |
105 | 105 |
typedef _PredMatrixMap PredMatrixMap; |
106 | 106 |
|
107 | 107 |
PredMatrixMapPath(const Digraph& _digraph, |
108 | 108 |
const PredMatrixMap& _predMatrixMap, |
109 | 109 |
typename Digraph::Node _source, |
110 | 110 |
typename Digraph::Node _target) |
111 | 111 |
: digraph(_digraph), predMatrixMap(_predMatrixMap), |
112 | 112 |
source(_source), target(_target) {} |
113 | 113 |
|
114 | 114 |
int length() const { |
115 | 115 |
int len = 0; |
116 | 116 |
typename Digraph::Node node = target; |
117 | 117 |
typename Digraph::Arc arc; |
118 | 118 |
while ((arc = predMatrixMap(source, node)) != INVALID) { |
119 | 119 |
node = digraph.source(arc); |
120 | 120 |
++len; |
121 | 121 |
} |
122 | 122 |
return len; |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
bool empty() const { |
126 | 126 |
return source != target; |
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
class RevArcIt { |
130 | 130 |
public: |
131 | 131 |
RevArcIt() {} |
132 | 132 |
RevArcIt(Invalid) : path(0), current(INVALID) {} |
133 | 133 |
RevArcIt(const PredMatrixMapPath& _path) |
134 | 134 |
: path(&_path), current(_path.target) { |
135 | 135 |
if (path->predMatrixMap(path->source, current) == INVALID) |
136 | 136 |
current = INVALID; |
137 | 137 |
} |
138 | 138 |
|
139 | 139 |
operator const typename Digraph::Arc() const { |
140 | 140 |
return path->predMatrixMap(path->source, current); |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
RevArcIt& operator++() { |
144 | 144 |
current = |
145 | 145 |
path->digraph.source(path->predMatrixMap(path->source, current)); |
146 | 146 |
if (path->predMatrixMap(path->source, current) == INVALID) |
147 | 147 |
current = INVALID; |
148 | 148 |
return *this; |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
bool operator==(const RevArcIt& e) const { |
152 | 152 |
return current == e.current; |
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
bool operator!=(const RevArcIt& e) const { |
156 | 156 |
return current != e.current; |
157 | 157 |
} |
158 | 158 |
|
159 | 159 |
bool operator<(const RevArcIt& e) const { |
160 | 160 |
return current < e.current; |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
private: |
164 | 164 |
const PredMatrixMapPath* path; |
165 | 165 |
typename Digraph::Node current; |
166 | 166 |
}; |
167 | 167 |
|
168 | 168 |
private: |
169 | 169 |
const Digraph& digraph; |
170 | 170 |
const PredMatrixMap& predMatrixMap; |
171 | 171 |
typename Digraph::Node source; |
172 | 172 |
typename Digraph::Node target; |
173 | 173 |
}; |
174 | 174 |
|
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_WINDOWS_H |
|
20 |
#define LEMON_WINDOWS_H |
|
19 |
#ifndef LEMON_BITS_WINDOWS_H |
|
20 |
#define LEMON_BITS_WINDOWS_H |
|
21 | 21 |
|
22 | 22 |
#include <string> |
23 | 23 |
|
24 | 24 |
namespace lemon { |
25 | 25 |
namespace bits { |
26 | 26 |
void getWinProcTimes(double &rtime, |
27 | 27 |
double &utime, double &stime, |
28 | 28 |
double &cutime, double &cstime); |
29 | 29 |
std::string getWinFormattedDate(); |
30 | 30 |
int getWinRndSeed(); |
31 | 31 |
} |
32 | 32 |
} |
33 | 33 |
|
34 | 34 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_CONCEPT_DIGRAPH_H |
|
20 |
#define LEMON_CONCEPT_DIGRAPH_H |
|
19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
|
20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
|
21 | 21 |
|
22 | 22 |
///\ingroup graph_concepts |
23 | 23 |
///\file |
24 | 24 |
///\brief The concept of directed graphs. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/graph_components.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \ingroup graph_concepts |
35 | 35 |
/// |
36 | 36 |
/// \brief Class describing the concept of directed graphs. |
37 | 37 |
/// |
38 | 38 |
/// This class describes the \ref concept "concept" of the |
39 | 39 |
/// immutable directed digraphs. |
40 | 40 |
/// |
41 | 41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
42 | 42 |
/// @ref SmartDigraph may have several additional functionality. |
43 | 43 |
/// |
44 | 44 |
/// \sa concept |
45 | 45 |
class Digraph { |
46 | 46 |
private: |
47 | 47 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
48 | 48 |
|
49 | 49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
50 | 50 |
/// |
51 | 51 |
Digraph(const Digraph &) {}; |
52 | 52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
53 | 53 |
///\e not allowed. Use DigraphCopy() instead. |
54 | 54 |
|
55 | 55 |
///Assignment of \ref Digraph "Digraph"s to another ones are |
56 | 56 |
///\e not allowed. Use DigraphCopy() instead. |
57 | 57 |
|
58 | 58 |
void operator=(const Digraph &) {} |
59 | 59 |
public: |
60 | 60 |
///\e |
61 | 61 |
|
62 | 62 |
/// Defalult constructor. |
63 | 63 |
|
64 | 64 |
/// Defalult constructor. |
65 | 65 |
/// |
66 | 66 |
Digraph() { } |
67 | 67 |
/// Class for identifying a node of the digraph |
68 | 68 |
|
69 | 69 |
/// This class identifies a node of the digraph. It also serves |
70 | 70 |
/// as a base class of the node iterators, |
71 | 71 |
/// thus they will convert to this type. |
72 | 72 |
class Node { |
73 | 73 |
public: |
74 | 74 |
/// Default constructor |
75 | 75 |
|
76 | 76 |
/// @warning The default constructor sets the iterator |
77 | 77 |
/// to an undefined value. |
78 | 78 |
Node() { } |
79 | 79 |
/// Copy constructor. |
80 | 80 |
|
81 | 81 |
/// Copy constructor. |
82 | 82 |
/// |
83 | 83 |
Node(const Node&) { } |
84 | 84 |
|
85 | 85 |
/// Invalid constructor \& conversion. |
86 | 86 |
|
87 | 87 |
/// This constructor initializes the iterator to be invalid. |
88 | 88 |
/// \sa Invalid for more details. |
89 | 89 |
Node(Invalid) { } |
90 | 90 |
/// Equality operator |
91 | 91 |
|
92 | 92 |
/// Two iterators are equal if and only if they point to the |
93 | 93 |
/// same object or both are invalid. |
94 | 94 |
bool operator==(Node) const { return true; } |
95 | 95 |
|
96 | 96 |
/// Inequality operator |
97 | 97 |
|
98 | 98 |
/// \sa operator==(Node n) |
99 | 99 |
/// |
100 | 100 |
bool operator!=(Node) const { return true; } |
101 | 101 |
|
102 | 102 |
/// Artificial ordering operator. |
103 | 103 |
|
104 | 104 |
/// To allow the use of digraph descriptors as key type in std::map or |
105 | 105 |
/// similar associative container we require this. |
106 | 106 |
/// |
107 | 107 |
/// \note This operator only have to define some strict ordering of |
108 | 108 |
/// the items; this order has nothing to do with the iteration |
109 | 109 |
/// ordering of the items. |
110 | 110 |
bool operator<(Node) const { return false; } |
111 | 111 |
|
112 | 112 |
}; |
113 | 113 |
|
114 | 114 |
/// This iterator goes through each node. |
115 | 115 |
|
116 | 116 |
/// This iterator goes through each node. |
117 | 117 |
/// Its usage is quite simple, for example you can count the number |
118 | 118 |
/// of nodes in digraph \c g of type \c Digraph like this: |
119 | 119 |
///\code |
120 | 120 |
/// int count=0; |
121 | 121 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
122 | 122 |
///\endcode |
123 | 123 |
class NodeIt : public Node { |
124 | 124 |
public: |
125 | 125 |
/// Default constructor |
126 | 126 |
|
127 | 127 |
/// @warning The default constructor sets the iterator |
128 | 128 |
/// to an undefined value. |
129 | 129 |
NodeIt() { } |
130 | 130 |
/// Copy constructor. |
131 | 131 |
|
132 | 132 |
/// Copy constructor. |
133 | 133 |
/// |
134 | 134 |
NodeIt(const NodeIt& n) : Node(n) { } |
135 | 135 |
/// Invalid constructor \& conversion. |
136 | 136 |
|
137 | 137 |
/// Initialize the iterator to be invalid. |
138 | 138 |
/// \sa Invalid for more details. |
139 | 139 |
NodeIt(Invalid) { } |
140 | 140 |
/// Sets the iterator to the first node. |
141 | 141 |
|
142 | 142 |
/// Sets the iterator to the first node of \c g. |
143 | 143 |
/// |
144 | 144 |
NodeIt(const Digraph&) { } |
145 | 145 |
/// Node -> NodeIt conversion. |
146 | 146 |
|
147 | 147 |
/// Sets the iterator to the node of \c the digraph pointed by |
148 | 148 |
/// the trivial iterator. |
149 | 149 |
/// This feature necessitates that each time we |
150 | 150 |
/// iterate the arc-set, the iteration order is the same. |
151 | 151 |
NodeIt(const Digraph&, const Node&) { } |
152 | 152 |
/// Next node. |
153 | 153 |
|
154 | 154 |
/// Assign the iterator to the next node. |
155 | 155 |
/// |
156 | 156 |
NodeIt& operator++() { return *this; } |
157 | 157 |
}; |
158 | 158 |
|
159 | 159 |
|
160 | 160 |
/// Class for identifying an arc of the digraph |
161 | 161 |
|
162 | 162 |
/// This class identifies an arc of the digraph. It also serves |
163 | 163 |
/// as a base class of the arc iterators, |
164 | 164 |
/// thus they will convert to this type. |
165 | 165 |
class Arc { |
166 | 166 |
public: |
167 | 167 |
/// Default constructor |
168 | 168 |
|
169 | 169 |
/// @warning The default constructor sets the iterator |
170 | 170 |
/// to an undefined value. |
171 | 171 |
Arc() { } |
172 | 172 |
/// Copy constructor. |
173 | 173 |
|
174 | 174 |
/// Copy constructor. |
175 | 175 |
/// |
176 | 176 |
Arc(const Arc&) { } |
177 | 177 |
/// Initialize the iterator to be invalid. |
178 | 178 |
|
179 | 179 |
/// Initialize the iterator to be invalid. |
180 | 180 |
/// |
181 | 181 |
Arc(Invalid) { } |
182 | 182 |
/// Equality operator |
183 | 183 |
|
184 | 184 |
/// Two iterators are equal if and only if they point to the |
185 | 185 |
/// same object or both are invalid. |
186 | 186 |
bool operator==(Arc) const { return true; } |
187 | 187 |
/// Inequality operator |
188 | 188 |
|
189 | 189 |
/// \sa operator==(Arc n) |
190 | 190 |
/// |
191 | 191 |
bool operator!=(Arc) const { return true; } |
192 | 192 |
|
193 | 193 |
/// Artificial ordering operator. |
194 | 194 |
|
195 | 195 |
/// To allow the use of digraph descriptors as key type in std::map or |
196 | 196 |
/// similar associative container we require this. |
197 | 197 |
/// |
198 | 198 |
/// \note This operator only have to define some strict ordering of |
199 | 199 |
/// the items; this order has nothing to do with the iteration |
200 | 200 |
/// ordering of the items. |
201 | 201 |
bool operator<(Arc) const { return false; } |
202 | 202 |
}; |
203 | 203 |
|
204 | 204 |
/// This iterator goes trough the outgoing arcs of a node. |
205 | 205 |
|
206 | 206 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
207 | 207 |
/// of a digraph. |
208 | 208 |
/// Its usage is quite simple, for example you can count the number |
209 | 209 |
/// of outgoing arcs of a node \c n |
210 | 210 |
/// in digraph \c g of type \c Digraph as follows. |
211 | 211 |
///\code |
212 | 212 |
/// int count=0; |
213 | 213 |
/// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count; |
214 | 214 |
///\endcode |
215 | 215 |
|
216 | 216 |
class OutArcIt : public Arc { |
217 | 217 |
public: |
218 | 218 |
/// Default constructor |
219 | 219 |
|
220 | 220 |
/// @warning The default constructor sets the iterator |
221 | 221 |
/// to an undefined value. |
222 | 222 |
OutArcIt() { } |
223 | 223 |
/// Copy constructor. |
224 | 224 |
|
225 | 225 |
/// Copy constructor. |
226 | 226 |
/// |
227 | 227 |
OutArcIt(const OutArcIt& e) : Arc(e) { } |
228 | 228 |
/// Initialize the iterator to be invalid. |
229 | 229 |
|
230 | 230 |
/// Initialize the iterator to be invalid. |
231 | 231 |
/// |
232 | 232 |
OutArcIt(Invalid) { } |
233 | 233 |
/// This constructor sets the iterator to the first outgoing arc. |
234 | 234 |
|
235 | 235 |
/// This constructor sets the iterator to the first outgoing arc of |
236 | 236 |
/// the node. |
237 | 237 |
OutArcIt(const Digraph&, const Node&) { } |
238 | 238 |
/// Arc -> OutArcIt conversion |
239 | 239 |
|
240 | 240 |
/// Sets the iterator to the value of the trivial iterator. |
241 | 241 |
/// This feature necessitates that each time we |
242 | 242 |
/// iterate the arc-set, the iteration order is the same. |
243 | 243 |
OutArcIt(const Digraph&, const Arc&) { } |
244 | 244 |
///Next outgoing arc |
245 | 245 |
|
246 | 246 |
/// Assign the iterator to the next |
247 | 247 |
/// outgoing arc of the corresponding node. |
248 | 248 |
OutArcIt& operator++() { return *this; } |
249 | 249 |
}; |
250 | 250 |
|
251 | 251 |
/// This iterator goes trough the incoming arcs of a node. |
252 | 252 |
|
253 | 253 |
/// This iterator goes trough the \e incoming arcs of a certain node |
254 | 254 |
/// of a digraph. |
255 | 255 |
/// Its usage is quite simple, for example you can count the number |
256 | 256 |
/// of outgoing arcs of a node \c n |
257 | 257 |
/// in digraph \c g of type \c Digraph as follows. |
258 | 258 |
///\code |
259 | 259 |
/// int count=0; |
260 | 260 |
/// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count; |
261 | 261 |
///\endcode |
262 | 262 |
|
263 | 263 |
class InArcIt : public Arc { |
264 | 264 |
public: |
265 | 265 |
/// Default constructor |
266 | 266 |
|
267 | 267 |
/// @warning The default constructor sets the iterator |
268 | 268 |
/// to an undefined value. |
269 | 269 |
InArcIt() { } |
270 | 270 |
/// Copy constructor. |
271 | 271 |
|
272 | 272 |
/// Copy constructor. |
273 | 273 |
/// |
274 | 274 |
InArcIt(const InArcIt& e) : Arc(e) { } |
275 | 275 |
/// Initialize the iterator to be invalid. |
276 | 276 |
|
277 | 277 |
/// Initialize the iterator to be invalid. |
278 | 278 |
/// |
279 | 279 |
InArcIt(Invalid) { } |
280 | 280 |
/// This constructor sets the iterator to first incoming arc. |
281 | 281 |
|
282 | 282 |
/// This constructor set the iterator to the first incoming arc of |
283 | 283 |
/// the node. |
284 | 284 |
InArcIt(const Digraph&, const Node&) { } |
285 | 285 |
/// Arc -> InArcIt conversion |
286 | 286 |
|
287 | 287 |
/// Sets the iterator to the value of the trivial iterator \c e. |
288 | 288 |
/// This feature necessitates that each time we |
289 | 289 |
/// iterate the arc-set, the iteration order is the same. |
290 | 290 |
InArcIt(const Digraph&, const Arc&) { } |
291 | 291 |
/// Next incoming arc |
292 | 292 |
|
293 | 293 |
/// Assign the iterator to the next inarc of the corresponding node. |
294 | 294 |
/// |
295 | 295 |
InArcIt& operator++() { return *this; } |
296 | 296 |
}; |
297 | 297 |
/// This iterator goes through each arc. |
298 | 298 |
|
299 | 299 |
/// This iterator goes through each arc of a digraph. |
300 | 300 |
/// Its usage is quite simple, for example you can count the number |
301 | 301 |
/// of arcs in a digraph \c g of type \c Digraph as follows: |
302 | 302 |
///\code |
303 | 303 |
/// int count=0; |
304 | 304 |
/// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count; |
305 | 305 |
///\endcode |
306 | 306 |
class ArcIt : public Arc { |
307 | 307 |
public: |
308 | 308 |
/// Default constructor |
309 | 309 |
|
310 | 310 |
/// @warning The default constructor sets the iterator |
311 | 311 |
/// to an undefined value. |
312 | 312 |
ArcIt() { } |
313 | 313 |
/// Copy constructor. |
314 | 314 |
|
315 | 315 |
/// Copy constructor. |
316 | 316 |
/// |
317 | 317 |
ArcIt(const ArcIt& e) : Arc(e) { } |
318 | 318 |
/// Initialize the iterator to be invalid. |
319 | 319 |
|
320 | 320 |
/// Initialize the iterator to be invalid. |
321 | 321 |
/// |
322 | 322 |
ArcIt(Invalid) { } |
323 | 323 |
/// This constructor sets the iterator to the first arc. |
324 | 324 |
|
325 | 325 |
/// This constructor sets the iterator to the first arc of \c g. |
326 | 326 |
///@param g the digraph |
327 | 327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); } |
328 | 328 |
/// Arc -> ArcIt conversion |
329 | 329 |
|
330 | 330 |
/// Sets the iterator to the value of the trivial iterator \c e. |
331 | 331 |
/// This feature necessitates that each time we |
332 | 332 |
/// iterate the arc-set, the iteration order is the same. |
333 | 333 |
ArcIt(const Digraph&, const Arc&) { } |
334 | 334 |
///Next arc |
335 | 335 |
|
336 | 336 |
/// Assign the iterator to the next arc. |
337 | 337 |
ArcIt& operator++() { return *this; } |
338 | 338 |
}; |
339 | 339 |
///Gives back the target node of an arc. |
340 | 340 |
|
341 | 341 |
///Gives back the target node of an arc. |
342 | 342 |
/// |
343 | 343 |
Node target(Arc) const { return INVALID; } |
344 | 344 |
///Gives back the source node of an arc. |
345 | 345 |
|
346 | 346 |
///Gives back the source node of an arc. |
347 | 347 |
/// |
348 | 348 |
Node source(Arc) const { return INVALID; } |
349 | 349 |
|
350 | 350 |
/// \brief Returns the ID of the node. |
351 | 351 |
int id(Node) const { return -1; } |
352 | 352 |
|
353 | 353 |
/// \brief Returns the ID of the arc. |
354 | 354 |
int id(Arc) const { return -1; } |
355 | 355 |
|
356 | 356 |
/// \brief Returns the node with the given ID. |
357 | 357 |
/// |
358 | 358 |
/// \pre The argument should be a valid node ID in the graph. |
359 | 359 |
Node nodeFromId(int) const { return INVALID; } |
360 | 360 |
|
361 | 361 |
/// \brief Returns the arc with the given ID. |
362 | 362 |
/// |
363 | 363 |
/// \pre The argument should be a valid arc ID in the graph. |
364 | 364 |
Arc arcFromId(int) const { return INVALID; } |
365 | 365 |
|
366 | 366 |
/// \brief Returns an upper bound on the node IDs. |
367 | 367 |
int maxNodeId() const { return -1; } |
368 | 368 |
|
369 | 369 |
/// \brief Returns an upper bound on the arc IDs. |
370 | 370 |
int maxArcId() const { return -1; } |
371 | 371 |
|
372 | 372 |
void first(Node&) const {} |
373 | 373 |
void next(Node&) const {} |
374 | 374 |
|
375 | 375 |
void first(Arc&) const {} |
376 | 376 |
void next(Arc&) const {} |
377 | 377 |
|
378 | 378 |
|
379 | 379 |
void firstIn(Arc&, const Node&) const {} |
380 | 380 |
void nextIn(Arc&) const {} |
381 | 381 |
|
382 | 382 |
void firstOut(Arc&, const Node&) const {} |
383 | 383 |
void nextOut(Arc&) const {} |
384 | 384 |
|
385 | 385 |
// The second parameter is dummy. |
386 | 386 |
Node fromId(int, Node) const { return INVALID; } |
387 | 387 |
// The second parameter is dummy. |
388 | 388 |
Arc fromId(int, Arc) const { return INVALID; } |
389 | 389 |
|
390 | 390 |
// Dummy parameter. |
391 | 391 |
int maxId(Node) const { return -1; } |
392 | 392 |
// Dummy parameter. |
393 | 393 |
int maxId(Arc) const { return -1; } |
394 | 394 |
|
395 | 395 |
/// \brief The base node of the iterator. |
396 | 396 |
/// |
397 | 397 |
/// Gives back the base node of the iterator. |
398 | 398 |
/// It is always the target of the pointed arc. |
399 | 399 |
Node baseNode(const InArcIt&) const { return INVALID; } |
400 | 400 |
|
401 | 401 |
/// \brief The running node of the iterator. |
402 | 402 |
/// |
403 | 403 |
/// Gives back the running node of the iterator. |
404 | 404 |
/// It is always the source of the pointed arc. |
405 | 405 |
Node runningNode(const InArcIt&) const { return INVALID; } |
406 | 406 |
|
407 | 407 |
/// \brief The base node of the iterator. |
408 | 408 |
/// |
409 | 409 |
/// Gives back the base node of the iterator. |
410 | 410 |
/// It is always the source of the pointed arc. |
411 | 411 |
Node baseNode(const OutArcIt&) const { return INVALID; } |
412 | 412 |
|
413 | 413 |
/// \brief The running node of the iterator. |
414 | 414 |
/// |
415 | 415 |
/// Gives back the running node of the iterator. |
416 | 416 |
/// It is always the target of the pointed arc. |
417 | 417 |
Node runningNode(const OutArcIt&) const { return INVALID; } |
418 | 418 |
|
419 | 419 |
/// \brief The opposite node on the given arc. |
420 | 420 |
/// |
421 | 421 |
/// Gives back the opposite node on the given arc. |
422 | 422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; } |
423 | 423 |
|
424 | 424 |
/// \brief Read write map of the nodes to type \c T. |
425 | 425 |
/// |
426 | 426 |
/// ReadWrite map of the nodes to type \c T. |
427 | 427 |
/// \sa Reference |
428 | 428 |
template<class T> |
429 | 429 |
class NodeMap : public ReadWriteMap< Node, T > { |
430 | 430 |
public: |
431 | 431 |
|
432 | 432 |
///\e |
433 | 433 |
NodeMap(const Digraph&) { } |
434 | 434 |
///\e |
435 | 435 |
NodeMap(const Digraph&, T) { } |
436 | 436 |
|
437 | 437 |
private: |
438 | 438 |
///Copy constructor |
439 | 439 |
NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } |
440 | 440 |
///Assignment operator |
441 | 441 |
template <typename CMap> |
442 | 442 |
NodeMap& operator=(const CMap&) { |
443 | 443 |
checkConcept<ReadMap<Node, T>, CMap>(); |
444 | 444 |
return *this; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
/// \brief Read write map of the arcs to type \c T. |
449 | 449 |
/// |
450 | 450 |
/// Reference map of the arcs to type \c T. |
451 | 451 |
/// \sa Reference |
452 | 452 |
template<class T> |
453 | 453 |
class ArcMap : public ReadWriteMap<Arc,T> { |
454 | 454 |
public: |
455 | 455 |
|
456 | 456 |
///\e |
457 | 457 |
ArcMap(const Digraph&) { } |
458 | 458 |
///\e |
459 | 459 |
ArcMap(const Digraph&, T) { } |
460 | 460 |
private: |
461 | 461 |
///Copy constructor |
462 | 462 |
ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { } |
463 | 463 |
///Assignment operator |
464 | 464 |
template <typename CMap> |
465 | 465 |
ArcMap& operator=(const CMap&) { |
466 | 466 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
467 | 467 |
return *this; |
468 | 468 |
} |
469 | 469 |
}; |
470 | 470 |
|
471 | 471 |
template <typename _Digraph> |
472 | 472 |
struct Constraints { |
473 | 473 |
void constraints() { |
474 | 474 |
checkConcept<IterableDigraphComponent<>, _Digraph>(); |
475 | 475 |
checkConcept<IDableDigraphComponent<>, _Digraph>(); |
476 | 476 |
checkConcept<MappableDigraphComponent<>, _Digraph>(); |
477 | 477 |
} |
478 | 478 |
}; |
479 | 479 |
|
480 | 480 |
}; |
481 | 481 |
|
482 | 482 |
} //namespace concepts |
483 | 483 |
} //namespace lemon |
484 | 484 |
|
485 | 485 |
|
486 | 486 |
|
487 |
#endif |
|
487 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of Undirected Graphs. |
22 | 22 |
|
23 |
#ifndef LEMON_CONCEPT_GRAPH_H |
|
24 |
#define LEMON_CONCEPT_GRAPH_H |
|
23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
|
24 |
#define LEMON_CONCEPTS_GRAPH_H |
|
25 | 25 |
|
26 | 26 |
#include <lemon/concepts/graph_components.h> |
27 |
#include <lemon/concepts/graph.h> |
|
28 | 27 |
#include <lemon/core.h> |
29 | 28 |
|
30 | 29 |
namespace lemon { |
31 | 30 |
namespace concepts { |
32 | 31 |
|
33 | 32 |
/// \ingroup graph_concepts |
34 | 33 |
/// |
35 | 34 |
/// \brief Class describing the concept of Undirected Graphs. |
36 | 35 |
/// |
37 | 36 |
/// This class describes the common interface of all Undirected |
38 | 37 |
/// Graphs. |
39 | 38 |
/// |
40 | 39 |
/// As all concept describing classes it provides only interface |
41 | 40 |
/// without any sensible implementation. So any algorithm for |
42 | 41 |
/// undirected graph should compile with this class, but it will not |
43 | 42 |
/// run properly, of course. |
44 | 43 |
/// |
45 | 44 |
/// The LEMON undirected graphs also fulfill the concept of |
46 | 45 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
47 | 46 |
/// Concept"). Each edges can be seen as two opposite |
48 | 47 |
/// directed arc and consequently the undirected graph can be |
49 | 48 |
/// seen as the direceted graph of these directed arcs. The |
50 | 49 |
/// Graph has the Edge inner class for the edges and |
51 | 50 |
/// the Arc type for the directed arcs. The Arc type is |
52 | 51 |
/// convertible to Edge or inherited from it so from a directed |
53 | 52 |
/// arc we can get the represented edge. |
54 | 53 |
/// |
55 | 54 |
/// In the sense of the LEMON each edge has a default |
56 | 55 |
/// direction (it should be in every computer implementation, |
57 | 56 |
/// because the order of edge's nodes defines an |
58 | 57 |
/// orientation). With the default orientation we can define that |
59 | 58 |
/// the directed arc is forward or backward directed. With the \c |
60 | 59 |
/// direction() and \c direct() function we can get the direction |
61 | 60 |
/// of the directed arc and we can direct an edge. |
62 | 61 |
/// |
63 | 62 |
/// The EdgeIt is an iterator for the edges. We can use |
64 | 63 |
/// the EdgeMap to map values for the edges. The InArcIt and |
65 | 64 |
/// OutArcIt iterates on the same edges but with opposite |
66 | 65 |
/// direction. The IncEdgeIt iterates also on the same edges |
67 | 66 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
68 | 67 |
/// to Edge. |
69 | 68 |
class Graph { |
70 | 69 |
public: |
71 | 70 |
/// \brief The undirected graph should be tagged by the |
72 | 71 |
/// UndirectedTag. |
73 | 72 |
/// |
74 | 73 |
/// The undirected graph should be tagged by the UndirectedTag. This |
75 | 74 |
/// tag helps the enable_if technics to make compile time |
76 | 75 |
/// specializations for undirected graphs. |
77 | 76 |
typedef True UndirectedTag; |
78 | 77 |
|
79 | 78 |
/// \brief The base type of node iterators, |
80 | 79 |
/// or in other words, the trivial node iterator. |
81 | 80 |
/// |
82 | 81 |
/// This is the base type of each node iterator, |
83 | 82 |
/// thus each kind of node iterator converts to this. |
84 | 83 |
/// More precisely each kind of node iterator should be inherited |
85 | 84 |
/// from the trivial node iterator. |
86 | 85 |
class Node { |
87 | 86 |
public: |
88 | 87 |
/// Default constructor |
89 | 88 |
|
90 | 89 |
/// @warning The default constructor sets the iterator |
91 | 90 |
/// to an undefined value. |
92 | 91 |
Node() { } |
93 | 92 |
/// Copy constructor. |
94 | 93 |
|
95 | 94 |
/// Copy constructor. |
96 | 95 |
/// |
97 | 96 |
Node(const Node&) { } |
98 | 97 |
|
99 | 98 |
/// Invalid constructor \& conversion. |
100 | 99 |
|
101 | 100 |
/// This constructor initializes the iterator to be invalid. |
102 | 101 |
/// \sa Invalid for more details. |
103 | 102 |
Node(Invalid) { } |
104 | 103 |
/// Equality operator |
105 | 104 |
|
106 | 105 |
/// Two iterators are equal if and only if they point to the |
107 | 106 |
/// same object or both are invalid. |
108 | 107 |
bool operator==(Node) const { return true; } |
109 | 108 |
|
110 | 109 |
/// Inequality operator |
111 | 110 |
|
112 | 111 |
/// \sa operator==(Node n) |
113 | 112 |
/// |
114 | 113 |
bool operator!=(Node) const { return true; } |
115 | 114 |
|
116 | 115 |
/// Artificial ordering operator. |
117 | 116 |
|
118 | 117 |
/// To allow the use of graph descriptors as key type in std::map or |
119 | 118 |
/// similar associative container we require this. |
120 | 119 |
/// |
121 | 120 |
/// \note This operator only have to define some strict ordering of |
122 | 121 |
/// the items; this order has nothing to do with the iteration |
123 | 122 |
/// ordering of the items. |
124 | 123 |
bool operator<(Node) const { return false; } |
125 | 124 |
|
126 | 125 |
}; |
127 | 126 |
|
128 | 127 |
/// This iterator goes through each node. |
129 | 128 |
|
130 | 129 |
/// This iterator goes through each node. |
131 | 130 |
/// Its usage is quite simple, for example you can count the number |
132 | 131 |
/// of nodes in graph \c g of type \c Graph like this: |
133 | 132 |
///\code |
134 | 133 |
/// int count=0; |
135 | 134 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
136 | 135 |
///\endcode |
137 | 136 |
class NodeIt : public Node { |
138 | 137 |
public: |
139 | 138 |
/// Default constructor |
140 | 139 |
|
141 | 140 |
/// @warning The default constructor sets the iterator |
142 | 141 |
/// to an undefined value. |
143 | 142 |
NodeIt() { } |
144 | 143 |
/// Copy constructor. |
145 | 144 |
|
146 | 145 |
/// Copy constructor. |
147 | 146 |
/// |
148 | 147 |
NodeIt(const NodeIt& n) : Node(n) { } |
149 | 148 |
/// Invalid constructor \& conversion. |
150 | 149 |
|
151 | 150 |
/// Initialize the iterator to be invalid. |
152 | 151 |
/// \sa Invalid for more details. |
153 | 152 |
NodeIt(Invalid) { } |
154 | 153 |
/// Sets the iterator to the first node. |
155 | 154 |
|
156 | 155 |
/// Sets the iterator to the first node of \c g. |
157 | 156 |
/// |
158 | 157 |
NodeIt(const Graph&) { } |
159 | 158 |
/// Node -> NodeIt conversion. |
160 | 159 |
|
161 | 160 |
/// Sets the iterator to the node of \c the graph pointed by |
162 | 161 |
/// the trivial iterator. |
163 | 162 |
/// This feature necessitates that each time we |
164 | 163 |
/// iterate the arc-set, the iteration order is the same. |
165 | 164 |
NodeIt(const Graph&, const Node&) { } |
166 | 165 |
/// Next node. |
167 | 166 |
|
168 | 167 |
/// Assign the iterator to the next node. |
169 | 168 |
/// |
170 | 169 |
NodeIt& operator++() { return *this; } |
171 | 170 |
}; |
172 | 171 |
|
173 | 172 |
|
174 | 173 |
/// The base type of the edge iterators. |
175 | 174 |
|
176 | 175 |
/// The base type of the edge iterators. |
177 | 176 |
/// |
178 | 177 |
class Edge { |
179 | 178 |
public: |
180 | 179 |
/// Default constructor |
181 | 180 |
|
182 | 181 |
/// @warning The default constructor sets the iterator |
183 | 182 |
/// to an undefined value. |
184 | 183 |
Edge() { } |
185 | 184 |
/// Copy constructor. |
186 | 185 |
|
187 | 186 |
/// Copy constructor. |
188 | 187 |
/// |
189 | 188 |
Edge(const Edge&) { } |
190 | 189 |
/// Initialize the iterator to be invalid. |
191 | 190 |
|
192 | 191 |
/// Initialize the iterator to be invalid. |
193 | 192 |
/// |
194 | 193 |
Edge(Invalid) { } |
195 | 194 |
/// Equality operator |
196 | 195 |
|
197 | 196 |
/// Two iterators are equal if and only if they point to the |
198 | 197 |
/// same object or both are invalid. |
199 | 198 |
bool operator==(Edge) const { return true; } |
200 | 199 |
/// Inequality operator |
201 | 200 |
|
202 | 201 |
/// \sa operator==(Edge n) |
203 | 202 |
/// |
204 | 203 |
bool operator!=(Edge) const { return true; } |
205 | 204 |
|
206 | 205 |
/// Artificial ordering operator. |
207 | 206 |
|
208 | 207 |
/// To allow the use of graph descriptors as key type in std::map or |
209 | 208 |
/// similar associative container we require this. |
210 | 209 |
/// |
211 | 210 |
/// \note This operator only have to define some strict ordering of |
212 | 211 |
/// the items; this order has nothing to do with the iteration |
213 | 212 |
/// ordering of the items. |
214 | 213 |
bool operator<(Edge) const { return false; } |
215 | 214 |
}; |
216 | 215 |
|
217 | 216 |
/// This iterator goes through each edge. |
218 | 217 |
|
219 | 218 |
/// This iterator goes through each edge of a graph. |
220 | 219 |
/// Its usage is quite simple, for example you can count the number |
221 | 220 |
/// of edges in a graph \c g of type \c Graph as follows: |
222 | 221 |
///\code |
223 | 222 |
/// int count=0; |
224 | 223 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
225 | 224 |
///\endcode |
226 | 225 |
class EdgeIt : public Edge { |
227 | 226 |
public: |
228 | 227 |
/// Default constructor |
229 | 228 |
|
230 | 229 |
/// @warning The default constructor sets the iterator |
231 | 230 |
/// to an undefined value. |
232 | 231 |
EdgeIt() { } |
233 | 232 |
/// Copy constructor. |
234 | 233 |
|
235 | 234 |
/// Copy constructor. |
236 | 235 |
/// |
237 | 236 |
EdgeIt(const EdgeIt& e) : Edge(e) { } |
238 | 237 |
/// Initialize the iterator to be invalid. |
239 | 238 |
|
240 | 239 |
/// Initialize the iterator to be invalid. |
241 | 240 |
/// |
242 | 241 |
EdgeIt(Invalid) { } |
243 | 242 |
/// This constructor sets the iterator to the first edge. |
244 | 243 |
|
245 | 244 |
/// This constructor sets the iterator to the first edge. |
246 | 245 |
EdgeIt(const Graph&) { } |
247 | 246 |
/// Edge -> EdgeIt conversion |
248 | 247 |
|
249 | 248 |
/// Sets the iterator to the value of the trivial iterator. |
250 | 249 |
/// This feature necessitates that each time we |
251 | 250 |
/// iterate the edge-set, the iteration order is the |
252 | 251 |
/// same. |
253 | 252 |
EdgeIt(const Graph&, const Edge&) { } |
254 | 253 |
/// Next edge |
255 | 254 |
|
256 | 255 |
/// Assign the iterator to the next edge. |
257 | 256 |
EdgeIt& operator++() { return *this; } |
258 | 257 |
}; |
259 | 258 |
|
260 | 259 |
/// \brief This iterator goes trough the incident undirected |
261 | 260 |
/// arcs of a node. |
262 | 261 |
/// |
263 | 262 |
/// This iterator goes trough the incident edges |
264 | 263 |
/// of a certain node of a graph. You should assume that the |
265 | 264 |
/// loop arcs will be iterated twice. |
266 | 265 |
/// |
267 | 266 |
/// Its usage is quite simple, for example you can compute the |
268 | 267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
269 | 268 |
/// in graph \c g of type \c Graph as follows. |
270 | 269 |
/// |
271 | 270 |
///\code |
272 | 271 |
/// int count=0; |
273 | 272 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
274 | 273 |
///\endcode |
275 | 274 |
class IncEdgeIt : public Edge { |
276 | 275 |
public: |
277 | 276 |
/// Default constructor |
278 | 277 |
|
279 | 278 |
/// @warning The default constructor sets the iterator |
280 | 279 |
/// to an undefined value. |
281 | 280 |
IncEdgeIt() { } |
282 | 281 |
/// Copy constructor. |
283 | 282 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of graph components. |
22 | 22 |
|
23 | 23 |
|
24 |
#ifndef LEMON_CONCEPT_GRAPH_COMPONENTS_H |
|
25 |
#define LEMON_CONCEPT_GRAPH_COMPONENTS_H |
|
24 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
|
25 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
|
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/concepts/maps.h> |
29 | 29 |
|
30 | 30 |
#include <lemon/bits/alteration_notifier.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
namespace concepts { |
34 | 34 |
|
35 | 35 |
/// \brief Skeleton class for graph Node and Arc types |
36 | 36 |
/// |
37 | 37 |
/// This class describes the interface of Node and Arc (and Edge |
38 | 38 |
/// in undirected graphs) subtypes of graph types. |
39 | 39 |
/// |
40 | 40 |
/// \note This class is a template class so that we can use it to |
41 | 41 |
/// create graph skeleton classes. The reason for this is than Node |
42 | 42 |
/// and Arc types should \em not derive from the same base class. |
43 | 43 |
/// For Node you should instantiate it with character 'n' and for Arc |
44 | 44 |
/// with 'a'. |
45 | 45 |
|
46 | 46 |
#ifndef DOXYGEN |
47 | 47 |
template <char _selector = '0'> |
48 | 48 |
#endif |
49 | 49 |
class GraphItem { |
50 | 50 |
public: |
51 | 51 |
/// \brief Default constructor. |
52 | 52 |
/// |
53 | 53 |
/// \warning The default constructor is not required to set |
54 | 54 |
/// the item to some well-defined value. So you should consider it |
55 | 55 |
/// as uninitialized. |
56 | 56 |
GraphItem() {} |
57 | 57 |
/// \brief Copy constructor. |
58 | 58 |
/// |
59 | 59 |
/// Copy constructor. |
60 | 60 |
/// |
61 | 61 |
GraphItem(const GraphItem &) {} |
62 | 62 |
/// \brief Invalid constructor \& conversion. |
63 | 63 |
/// |
64 | 64 |
/// This constructor initializes the item to be invalid. |
65 | 65 |
/// \sa Invalid for more details. |
66 | 66 |
GraphItem(Invalid) {} |
67 | 67 |
/// \brief Assign operator for nodes. |
68 | 68 |
/// |
69 | 69 |
/// The nodes are assignable. |
70 | 70 |
/// |
71 | 71 |
GraphItem& operator=(GraphItem const&) { return *this; } |
72 | 72 |
/// \brief Equality operator. |
73 | 73 |
/// |
74 | 74 |
/// Two iterators are equal if and only if they represents the |
75 | 75 |
/// same node in the graph or both are invalid. |
76 | 76 |
bool operator==(GraphItem) const { return false; } |
77 | 77 |
/// \brief Inequality operator. |
78 | 78 |
/// |
79 | 79 |
/// \sa operator==(const Node& n) |
80 | 80 |
/// |
81 | 81 |
bool operator!=(GraphItem) const { return false; } |
82 | 82 |
|
83 | 83 |
/// \brief Artificial ordering operator. |
84 | 84 |
/// |
85 | 85 |
/// To allow the use of graph descriptors as key type in std::map or |
86 | 86 |
/// similar associative container we require this. |
87 | 87 |
/// |
88 | 88 |
/// \note This operator only have to define some strict ordering of |
89 | 89 |
/// the items; this order has nothing to do with the iteration |
90 | 90 |
/// ordering of the items. |
91 | 91 |
bool operator<(GraphItem) const { return false; } |
92 | 92 |
|
93 | 93 |
template<typename _GraphItem> |
94 | 94 |
struct Constraints { |
95 | 95 |
void constraints() { |
96 | 96 |
_GraphItem i1; |
97 | 97 |
_GraphItem i2 = i1; |
98 | 98 |
_GraphItem i3 = INVALID; |
99 | 99 |
|
100 | 100 |
i1 = i2 = i3; |
101 | 101 |
|
102 | 102 |
bool b; |
103 | 103 |
// b = (ia == ib) && (ia != ib) && (ia < ib); |
104 | 104 |
b = (ia == ib) && (ia != ib); |
105 | 105 |
b = (ia == INVALID) && (ib != INVALID); |
106 | 106 |
b = (ia < ib); |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
const _GraphItem &ia; |
110 | 110 |
const _GraphItem &ib; |
111 | 111 |
}; |
112 | 112 |
}; |
113 | 113 |
|
114 | 114 |
/// \brief An empty base directed graph class. |
115 | 115 |
/// |
116 | 116 |
/// This class provides the minimal set of features needed for a |
117 | 117 |
/// directed graph structure. All digraph concepts have to be |
118 | 118 |
/// conform to this base directed graph. It just provides types |
119 | 119 |
/// for nodes and arcs and functions to get the source and the |
120 | 120 |
/// target of the arcs. |
121 | 121 |
class BaseDigraphComponent { |
122 | 122 |
public: |
123 | 123 |
|
124 | 124 |
typedef BaseDigraphComponent Digraph; |
125 | 125 |
|
126 | 126 |
/// \brief Node class of the digraph. |
127 | 127 |
/// |
128 | 128 |
/// This class represents the Nodes of the digraph. |
129 | 129 |
/// |
130 | 130 |
typedef GraphItem<'n'> Node; |
131 | 131 |
|
132 | 132 |
/// \brief Arc class of the digraph. |
133 | 133 |
/// |
134 | 134 |
/// This class represents the Arcs of the digraph. |
135 | 135 |
/// |
136 | 136 |
typedef GraphItem<'e'> Arc; |
137 | 137 |
|
138 | 138 |
/// \brief Gives back the target node of an arc. |
139 | 139 |
/// |
140 | 140 |
/// Gives back the target node of an arc. |
141 | 141 |
/// |
142 | 142 |
Node target(const Arc&) const { return INVALID;} |
143 | 143 |
|
144 | 144 |
/// \brief Gives back the source node of an arc. |
145 | 145 |
/// |
146 | 146 |
/// Gives back the source node of an arc. |
147 | 147 |
/// |
148 | 148 |
Node source(const Arc&) const { return INVALID;} |
149 | 149 |
|
150 | 150 |
/// \brief Gives back the opposite node on the given arc. |
151 | 151 |
/// |
152 | 152 |
/// Gives back the opposite node on the given arc. |
153 | 153 |
Node oppositeNode(const Node&, const Arc&) const { |
154 | 154 |
return INVALID; |
155 | 155 |
} |
156 | 156 |
|
157 | 157 |
template <typename _Digraph> |
158 | 158 |
struct Constraints { |
159 | 159 |
typedef typename _Digraph::Node Node; |
160 | 160 |
typedef typename _Digraph::Arc Arc; |
161 | 161 |
|
162 | 162 |
void constraints() { |
163 | 163 |
checkConcept<GraphItem<'n'>, Node>(); |
164 | 164 |
checkConcept<GraphItem<'a'>, Arc>(); |
165 | 165 |
{ |
166 | 166 |
Node n; |
167 | 167 |
Arc e(INVALID); |
168 | 168 |
n = digraph.source(e); |
169 | 169 |
n = digraph.target(e); |
170 | 170 |
n = digraph.oppositeNode(n, e); |
171 | 171 |
} |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
const _Digraph& digraph; |
175 | 175 |
}; |
176 | 176 |
}; |
177 | 177 |
|
178 | 178 |
/// \brief An empty base undirected graph class. |
179 | 179 |
/// |
180 | 180 |
/// This class provides the minimal set of features needed for an |
181 | 181 |
/// undirected graph structure. All undirected graph concepts have |
182 | 182 |
/// to be conform to this base graph. It just provides types for |
183 | 183 |
/// nodes, arcs and edges and functions to get the |
184 | 184 |
/// source and the target of the arcs and edges, |
185 | 185 |
/// conversion from arcs to edges and function to get |
186 | 186 |
/// both direction of the edges. |
187 | 187 |
class BaseGraphComponent : public BaseDigraphComponent { |
188 | 188 |
public: |
189 | 189 |
typedef BaseDigraphComponent::Node Node; |
190 | 190 |
typedef BaseDigraphComponent::Arc Arc; |
191 | 191 |
/// \brief Undirected arc class of the graph. |
192 | 192 |
/// |
193 | 193 |
/// This class represents the edges of the graph. |
194 | 194 |
/// The undirected graphs can be used as a directed graph which |
195 | 195 |
/// for each arc contains the opposite arc too so the graph is |
196 | 196 |
/// bidirected. The edge represents two opposite |
197 | 197 |
/// directed arcs. |
198 | 198 |
class Edge : public GraphItem<'u'> { |
199 | 199 |
public: |
200 | 200 |
typedef GraphItem<'u'> Parent; |
201 | 201 |
/// \brief Default constructor. |
202 | 202 |
/// |
203 | 203 |
/// \warning The default constructor is not required to set |
204 | 204 |
/// the item to some well-defined value. So you should consider it |
205 | 205 |
/// as uninitialized. |
206 | 206 |
Edge() {} |
207 | 207 |
/// \brief Copy constructor. |
208 | 208 |
/// |
209 | 209 |
/// Copy constructor. |
210 | 210 |
/// |
211 | 211 |
Edge(const Edge &) : Parent() {} |
212 | 212 |
/// \brief Invalid constructor \& conversion. |
213 | 213 |
/// |
214 | 214 |
/// This constructor initializes the item to be invalid. |
215 | 215 |
/// \sa Invalid for more details. |
216 | 216 |
Edge(Invalid) {} |
217 | 217 |
/// \brief Converter from arc to edge. |
218 | 218 |
/// |
219 | 219 |
/// Besides the core graph item functionality each arc should |
220 | 220 |
/// be convertible to the represented edge. |
221 | 221 |
Edge(const Arc&) {} |
222 | 222 |
/// \brief Assign arc to edge. |
223 | 223 |
/// |
224 | 224 |
/// Besides the core graph item functionality each arc should |
225 | 225 |
/// be convertible to the represented edge. |
226 | 226 |
Edge& operator=(const Arc&) { return *this; } |
227 | 227 |
}; |
228 | 228 |
|
229 | 229 |
/// \brief Returns the direction of the arc. |
230 | 230 |
/// |
231 | 231 |
/// Returns the direction of the arc. Each arc represents an |
232 | 232 |
/// edge with a direction. It gives back the |
233 | 233 |
/// direction. |
234 | 234 |
bool direction(const Arc&) const { return true; } |
235 | 235 |
|
236 | 236 |
/// \brief Returns the directed arc. |
237 | 237 |
/// |
238 | 238 |
/// Returns the directed arc from its direction and the |
239 | 239 |
/// represented edge. |
240 | 240 |
Arc direct(const Edge&, bool) const { return INVALID;} |
241 | 241 |
|
242 | 242 |
/// \brief Returns the directed arc. |
243 | 243 |
/// |
244 | 244 |
/// Returns the directed arc from its source and the |
245 | 245 |
/// represented edge. |
246 | 246 |
Arc direct(const Edge&, const Node&) const { return INVALID;} |
247 | 247 |
|
248 | 248 |
/// \brief Returns the opposite arc. |
249 | 249 |
/// |
250 | 250 |
/// Returns the opposite arc. It is the arc representing the |
251 | 251 |
/// same edge and has opposite direction. |
252 | 252 |
Arc oppositeArc(const Arc&) const { return INVALID;} |
253 | 253 |
|
254 | 254 |
/// \brief Gives back one ending of an edge. |
255 | 255 |
/// |
256 | 256 |
/// Gives back one ending of an edge. |
257 | 257 |
Node u(const Edge&) const { return INVALID;} |
258 | 258 |
|
259 | 259 |
/// \brief Gives back the other ending of an edge. |
260 | 260 |
/// |
261 | 261 |
/// Gives back the other ending of an edge. |
262 | 262 |
Node v(const Edge&) const { return INVALID;} |
263 | 263 |
|
264 | 264 |
template <typename _Graph> |
265 | 265 |
struct Constraints { |
266 | 266 |
typedef typename _Graph::Node Node; |
267 | 267 |
typedef typename _Graph::Arc Arc; |
268 | 268 |
typedef typename _Graph::Edge Edge; |
269 | 269 |
|
270 | 270 |
void constraints() { |
271 | 271 |
checkConcept<BaseDigraphComponent, _Graph>(); |
272 | 272 |
checkConcept<GraphItem<'u'>, Edge>(); |
273 | 273 |
{ |
274 | 274 |
Node n; |
275 | 275 |
Edge ue(INVALID); |
276 | 276 |
Arc e; |
277 | 277 |
n = graph.u(ue); |
278 | 278 |
n = graph.v(ue); |
279 | 279 |
e = graph.direct(ue, true); |
280 | 280 |
e = graph.direct(ue, n); |
281 | 281 |
e = graph.oppositeArc(e); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of heaps. |
22 | 22 |
|
23 |
#ifndef LEMON_CONCEPT_HEAP_H |
|
24 |
#define LEMON_CONCEPT_HEAP_H |
|
23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
24 |
#define LEMON_CONCEPTS_HEAP_H |
|
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 | 38 |
/// Concept class describing the main interface of heaps. |
39 | 39 |
template <typename Priority, typename ItemIntMap> |
40 | 40 |
class Heap { |
41 | 41 |
public: |
42 | 42 |
|
43 | 43 |
/// Type of the items stored in the heap. |
44 | 44 |
typedef typename ItemIntMap::Key Item; |
45 | 45 |
|
46 | 46 |
/// Type of the priorities. |
47 | 47 |
typedef Priority Prio; |
48 | 48 |
|
49 | 49 |
/// \brief Type to represent the states of the items. |
50 | 50 |
/// |
51 | 51 |
/// Each item has a state associated to it. It can be "in heap", |
52 | 52 |
/// "pre heap" or "post heap". The later two are indifferent |
53 | 53 |
/// from the point of view of the heap, but may be useful for |
54 | 54 |
/// the user. |
55 | 55 |
/// |
56 | 56 |
/// The \c ItemIntMap must be initialized in such a way, that it |
57 | 57 |
/// assigns \c PRE_HEAP (<tt>-1</tt>) to every item. |
58 | 58 |
enum State { |
59 | 59 |
IN_HEAP = 0, |
60 | 60 |
PRE_HEAP = -1, |
61 | 61 |
POST_HEAP = -2 |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
/// \brief The constructor. |
65 | 65 |
/// |
66 | 66 |
/// The constructor. |
67 | 67 |
/// \param map A map that assigns \c int values to keys of type |
68 | 68 |
/// \c Item. It is used internally by the heap implementations to |
69 | 69 |
/// handle the cross references. The assigned value must be |
70 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
71 | 71 |
explicit Heap(ItemIntMap &map) {} |
72 | 72 |
|
73 | 73 |
/// \brief The number of items stored in the heap. |
74 | 74 |
/// |
75 | 75 |
/// Returns the number of items stored in the heap. |
76 | 76 |
int size() const { return 0; } |
77 | 77 |
|
78 | 78 |
/// \brief Checks if the heap is empty. |
79 | 79 |
/// |
80 | 80 |
/// Returns \c true if the heap is empty. |
81 | 81 |
bool empty() const { return false; } |
82 | 82 |
|
83 | 83 |
/// \brief Makes the heap empty. |
84 | 84 |
/// |
85 | 85 |
/// Makes the heap empty. |
86 | 86 |
void clear(); |
87 | 87 |
|
88 | 88 |
/// \brief Inserts an item into the heap with the given priority. |
89 | 89 |
/// |
90 | 90 |
/// Inserts the given item into the heap with the given priority. |
91 | 91 |
/// \param i The item to insert. |
92 | 92 |
/// \param p The priority of the item. |
93 | 93 |
void push(const Item &i, const Prio &p) {} |
94 | 94 |
|
95 | 95 |
/// \brief Returns the item having minimum priority. |
96 | 96 |
/// |
97 | 97 |
/// Returns the item having minimum priority. |
98 | 98 |
/// \pre The heap must be non-empty. |
99 | 99 |
Item top() const {} |
100 | 100 |
|
101 | 101 |
/// \brief The minimum priority. |
102 | 102 |
/// |
103 | 103 |
/// Returns the minimum priority. |
104 | 104 |
/// \pre The heap must be non-empty. |
105 | 105 |
Prio prio() const {} |
106 | 106 |
|
107 | 107 |
/// \brief Removes the item having minimum priority. |
108 | 108 |
/// |
109 | 109 |
/// Removes the item having minimum priority. |
110 | 110 |
/// \pre The heap must be non-empty. |
111 | 111 |
void pop() {} |
112 | 112 |
|
113 | 113 |
/// \brief Removes an item from the heap. |
114 | 114 |
/// |
115 | 115 |
/// Removes the given item from the heap if it is already stored. |
116 | 116 |
/// \param i The item to delete. |
117 | 117 |
void erase(const Item &i) {} |
118 | 118 |
|
119 | 119 |
/// \brief The priority of an item. |
120 | 120 |
/// |
121 | 121 |
/// Returns the priority of the given item. |
122 | 122 |
/// \pre \c i must be in the heap. |
123 | 123 |
/// \param i The item. |
124 | 124 |
Prio operator[](const Item &i) const {} |
125 | 125 |
|
126 | 126 |
/// \brief Sets the priority of an item or inserts it, if it is |
127 | 127 |
/// not stored in the heap. |
128 | 128 |
/// |
129 | 129 |
/// This method sets the priority of the given item if it is |
130 | 130 |
/// already stored in the heap. |
131 | 131 |
/// Otherwise it inserts the given item with the given priority. |
132 | 132 |
/// |
133 | 133 |
/// \param i The item. |
134 | 134 |
/// \param p The priority. |
135 | 135 |
void set(const Item &i, const Prio &p) {} |
136 | 136 |
|
137 | 137 |
/// \brief Decreases the priority of an item to the given value. |
138 | 138 |
/// |
139 | 139 |
/// Decreases the priority of an item to the given value. |
140 | 140 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
141 | 141 |
/// \param i The item. |
142 | 142 |
/// \param p The priority. |
143 | 143 |
void decrease(const Item &i, const Prio &p) {} |
144 | 144 |
|
145 | 145 |
/// \brief Increases the priority of an item to the given value. |
146 | 146 |
/// |
147 | 147 |
/// Increases the priority of an item to the given value. |
148 | 148 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
149 | 149 |
/// \param i The item. |
150 | 150 |
/// \param p The priority. |
151 | 151 |
void increase(const Item &i, const Prio &p) {} |
152 | 152 |
|
153 | 153 |
/// \brief Returns if an item is in, has already been in, or has |
154 | 154 |
/// never been in the heap. |
155 | 155 |
/// |
156 | 156 |
/// This method returns \c PRE_HEAP if the given item has never |
157 | 157 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
158 | 158 |
/// and \c POST_HEAP otherwise. |
159 | 159 |
/// In the latter case it is possible that the item will get back |
160 | 160 |
/// to the heap again. |
161 | 161 |
/// \param i The item. |
162 | 162 |
State state(const Item &i) const {} |
163 | 163 |
|
164 | 164 |
/// \brief Sets the state of an item in the heap. |
165 | 165 |
/// |
166 | 166 |
/// Sets the state of the given item in the heap. It can be used |
167 | 167 |
/// to manually clear the heap when it is important to achive the |
168 | 168 |
/// better time complexity. |
169 | 169 |
/// \param i The item. |
170 | 170 |
/// \param st The state. It should not be \c IN_HEAP. |
171 | 171 |
void state(const Item& i, State st) {} |
172 | 172 |
|
173 | 173 |
|
174 | 174 |
template <typename _Heap> |
175 | 175 |
struct Constraints { |
176 | 176 |
public: |
177 | 177 |
void constraints() { |
178 | 178 |
typedef typename _Heap::Item OwnItem; |
179 | 179 |
typedef typename _Heap::Prio OwnPrio; |
180 | 180 |
typedef typename _Heap::State OwnState; |
181 | 181 |
|
182 | 182 |
Item item; |
183 | 183 |
Prio prio; |
184 | 184 |
item=Item(); |
185 | 185 |
prio=Prio(); |
186 | 186 |
ignore_unused_variable_warning(item); |
187 | 187 |
ignore_unused_variable_warning(prio); |
188 | 188 |
|
189 | 189 |
OwnItem own_item; |
190 | 190 |
OwnPrio own_prio; |
191 | 191 |
OwnState own_state; |
192 | 192 |
own_item=Item(); |
193 | 193 |
own_prio=Prio(); |
194 | 194 |
ignore_unused_variable_warning(own_item); |
195 | 195 |
ignore_unused_variable_warning(own_prio); |
196 | 196 |
ignore_unused_variable_warning(own_state); |
197 | 197 |
|
198 | 198 |
_Heap heap1(map); |
199 | 199 |
_Heap heap2 = heap1; |
200 | 200 |
ignore_unused_variable_warning(heap1); |
201 | 201 |
ignore_unused_variable_warning(heap2); |
202 | 202 |
|
203 | 203 |
int s = heap.size(); |
204 | 204 |
ignore_unused_variable_warning(s); |
205 | 205 |
bool e = heap.empty(); |
206 | 206 |
ignore_unused_variable_warning(e); |
207 | 207 |
|
208 | 208 |
prio = heap.prio(); |
209 | 209 |
item = heap.top(); |
210 | 210 |
prio = heap[item]; |
211 | 211 |
own_prio = heap.prio(); |
212 | 212 |
own_item = heap.top(); |
213 | 213 |
own_prio = heap[own_item]; |
214 | 214 |
|
215 | 215 |
heap.push(item, prio); |
216 | 216 |
heap.push(own_item, own_prio); |
217 | 217 |
heap.pop(); |
218 | 218 |
|
219 | 219 |
heap.set(item, prio); |
220 | 220 |
heap.decrease(item, prio); |
221 | 221 |
heap.increase(item, prio); |
222 | 222 |
heap.set(own_item, own_prio); |
223 | 223 |
heap.decrease(own_item, own_prio); |
224 | 224 |
heap.increase(own_item, own_prio); |
225 | 225 |
|
226 | 226 |
heap.erase(item); |
227 | 227 |
heap.erase(own_item); |
228 | 228 |
heap.clear(); |
229 | 229 |
|
230 | 230 |
own_state = heap.state(own_item); |
231 | 231 |
heap.state(own_item, own_state); |
232 | 232 |
|
233 | 233 |
own_state = _Heap::PRE_HEAP; |
234 | 234 |
own_state = _Heap::IN_HEAP; |
235 | 235 |
own_state = _Heap::POST_HEAP; |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
_Heap& heap; |
239 | 239 |
ItemIntMap& map; |
240 | 240 |
}; |
241 | 241 |
}; |
242 | 242 |
|
243 | 243 |
/// @} |
244 | 244 |
} // namespace lemon |
245 | 245 |
} |
246 |
#endif |
|
246 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_CONCEPT_MAPS_H |
|
20 |
#define LEMON_CONCEPT_MAPS_H |
|
19 |
#ifndef LEMON_CONCEPTS_MAPS_H |
|
20 |
#define LEMON_CONCEPTS_MAPS_H |
|
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
///\ingroup map_concepts |
26 | 26 |
///\file |
27 | 27 |
///\brief The concept of maps. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup map_concepts |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// Readable map concept |
37 | 37 |
|
38 | 38 |
/// Readable map concept. |
39 | 39 |
/// |
40 | 40 |
template<typename K, typename T> |
41 | 41 |
class ReadMap |
42 | 42 |
{ |
43 | 43 |
public: |
44 | 44 |
/// The key type of the map. |
45 | 45 |
typedef K Key; |
46 | 46 |
/// \brief The value type of the map. |
47 | 47 |
/// (The type of objects associated with the keys). |
48 | 48 |
typedef T Value; |
49 | 49 |
|
50 | 50 |
/// Returns the value associated with the given key. |
51 | 51 |
Value operator[](const Key &) const { |
52 | 52 |
return *static_cast<Value *>(0); |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
template<typename _ReadMap> |
56 | 56 |
struct Constraints { |
57 | 57 |
void constraints() { |
58 | 58 |
Value val = m[key]; |
59 | 59 |
val = m[key]; |
60 | 60 |
typename _ReadMap::Value own_val = m[own_key]; |
61 | 61 |
own_val = m[own_key]; |
62 | 62 |
|
63 | 63 |
ignore_unused_variable_warning(key); |
64 | 64 |
ignore_unused_variable_warning(val); |
65 | 65 |
ignore_unused_variable_warning(own_key); |
66 | 66 |
ignore_unused_variable_warning(own_val); |
67 | 67 |
} |
68 | 68 |
const Key& key; |
69 | 69 |
const typename _ReadMap::Key& own_key; |
70 | 70 |
const _ReadMap& m; |
71 | 71 |
}; |
72 | 72 |
|
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
/// Writable map concept |
77 | 77 |
|
78 | 78 |
/// Writable map concept. |
79 | 79 |
/// |
80 | 80 |
template<typename K, typename T> |
81 | 81 |
class WriteMap |
82 | 82 |
{ |
83 | 83 |
public: |
84 | 84 |
/// The key type of the map. |
85 | 85 |
typedef K Key; |
86 | 86 |
/// \brief The value type of the map. |
87 | 87 |
/// (The type of objects associated with the keys). |
88 | 88 |
typedef T Value; |
89 | 89 |
|
90 | 90 |
/// Sets the value associated with the given key. |
91 | 91 |
void set(const Key &, const Value &) {} |
92 | 92 |
|
93 | 93 |
/// Default constructor. |
94 | 94 |
WriteMap() {} |
95 | 95 |
|
96 | 96 |
template <typename _WriteMap> |
97 | 97 |
struct Constraints { |
98 | 98 |
void constraints() { |
99 | 99 |
m.set(key, val); |
100 | 100 |
m.set(own_key, own_val); |
101 | 101 |
|
102 | 102 |
ignore_unused_variable_warning(key); |
103 | 103 |
ignore_unused_variable_warning(val); |
104 | 104 |
ignore_unused_variable_warning(own_key); |
105 | 105 |
ignore_unused_variable_warning(own_val); |
106 | 106 |
} |
107 | 107 |
const Key& key; |
108 | 108 |
const Value& val; |
109 | 109 |
const typename _WriteMap::Key& own_key; |
110 | 110 |
const typename _WriteMap::Value& own_val; |
111 | 111 |
_WriteMap& m; |
112 | 112 |
}; |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
/// Read/writable map concept |
116 | 116 |
|
117 | 117 |
/// Read/writable map concept. |
118 | 118 |
/// |
119 | 119 |
template<typename K, typename T> |
120 | 120 |
class ReadWriteMap : public ReadMap<K,T>, |
121 | 121 |
public WriteMap<K,T> |
122 | 122 |
{ |
123 | 123 |
public: |
124 | 124 |
/// The key type of the map. |
125 | 125 |
typedef K Key; |
126 | 126 |
/// \brief The value type of the map. |
127 | 127 |
/// (The type of objects associated with the keys). |
128 | 128 |
typedef T Value; |
129 | 129 |
|
130 | 130 |
/// Returns the value associated with the given key. |
131 | 131 |
Value operator[](const Key &) const { |
132 | 132 |
return *static_cast<Value *>(0); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
/// Sets the value associated with the given key. |
136 | 136 |
void set(const Key &, const Value &) {} |
137 | 137 |
|
138 | 138 |
template<typename _ReadWriteMap> |
139 | 139 |
struct Constraints { |
140 | 140 |
void constraints() { |
141 | 141 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
142 | 142 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
143 | 143 |
} |
144 | 144 |
}; |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
|
148 | 148 |
/// Dereferable map concept |
149 | 149 |
|
150 | 150 |
/// Dereferable map concept. |
151 | 151 |
/// |
152 | 152 |
template<typename K, typename T, typename R, typename CR> |
153 | 153 |
class ReferenceMap : public ReadWriteMap<K,T> |
154 | 154 |
{ |
155 | 155 |
public: |
156 | 156 |
/// Tag for reference maps. |
157 | 157 |
typedef True ReferenceMapTag; |
158 | 158 |
/// The key type of the map. |
159 | 159 |
typedef K Key; |
160 | 160 |
/// \brief The value type of the map. |
161 | 161 |
/// (The type of objects associated with the keys). |
162 | 162 |
typedef T Value; |
163 | 163 |
/// The reference type of the map. |
164 | 164 |
typedef R Reference; |
165 | 165 |
/// The const reference type of the map. |
166 | 166 |
typedef CR ConstReference; |
167 | 167 |
|
168 | 168 |
public: |
169 | 169 |
|
170 | 170 |
/// Returns a reference to the value associated with the given key. |
171 | 171 |
Reference operator[](const Key &) { |
172 | 172 |
return *static_cast<Value *>(0); |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
/// Returns a const reference to the value associated with the given key. |
176 | 176 |
ConstReference operator[](const Key &) const { |
177 | 177 |
return *static_cast<Value *>(0); |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
/// Sets the value associated with the given key. |
181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
182 | 182 |
|
183 | 183 |
template<typename _ReferenceMap> |
184 | 184 |
struct Constraints { |
185 | 185 |
void constraints() { |
186 | 186 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
187 | 187 |
ref = m[key]; |
188 | 188 |
m[key] = val; |
189 | 189 |
m[key] = ref; |
190 | 190 |
m[key] = cref; |
191 | 191 |
own_ref = m[own_key]; |
192 | 192 |
m[own_key] = own_val; |
193 | 193 |
m[own_key] = own_ref; |
194 | 194 |
m[own_key] = own_cref; |
195 | 195 |
m[key] = m[own_key]; |
196 | 196 |
m[own_key] = m[key]; |
197 | 197 |
} |
198 | 198 |
const Key& key; |
199 | 199 |
Value& val; |
200 | 200 |
Reference ref; |
201 | 201 |
ConstReference cref; |
202 | 202 |
const typename _ReferenceMap::Key& own_key; |
203 | 203 |
typename _ReferenceMap::Value& own_val; |
204 | 204 |
typename _ReferenceMap::Reference own_ref; |
205 | 205 |
typename _ReferenceMap::ConstReference own_cref; |
206 | 206 |
_ReferenceMap& m; |
207 | 207 |
}; |
208 | 208 |
}; |
209 | 209 |
|
210 | 210 |
// @} |
211 | 211 |
|
212 | 212 |
} //namespace concepts |
213 | 213 |
|
214 | 214 |
} //namespace lemon |
215 | 215 |
|
216 |
#endif |
|
216 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
|
24 |
#ifndef LEMON_CONCEPT_PATH_H |
|
25 |
#define LEMON_CONCEPT_PATH_H |
|
24 |
#ifndef LEMON_CONCEPTS_PATH_H |
|
25 |
#define LEMON_CONCEPTS_PATH_H |
|
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
37 | 37 |
/// a digraph. |
38 | 38 |
/// |
39 | 39 |
/// A skeleton structure for representing directed paths in a |
40 | 40 |
/// digraph. |
41 | 41 |
/// \tparam _Digraph The digraph type in which the path is. |
42 | 42 |
/// |
43 | 43 |
/// In a sense, the path can be treated as a list of arcs. The |
44 | 44 |
/// lemon path type stores just this list. As a consequence it |
45 | 45 |
/// cannot enumerate the nodes in the path and the zero length |
46 | 46 |
/// paths cannot store the source. |
47 | 47 |
/// |
48 | 48 |
template <typename _Digraph> |
49 | 49 |
class Path { |
50 | 50 |
public: |
51 | 51 |
|
52 | 52 |
/// Type of the underlying digraph. |
53 | 53 |
typedef _Digraph Digraph; |
54 | 54 |
/// Arc type of the underlying digraph. |
55 | 55 |
typedef typename Digraph::Arc Arc; |
56 | 56 |
|
57 | 57 |
class ArcIt; |
58 | 58 |
|
59 | 59 |
/// \brief Default constructor |
60 | 60 |
Path() {} |
61 | 61 |
|
62 | 62 |
/// \brief Template constructor |
63 | 63 |
template <typename CPath> |
64 | 64 |
Path(const CPath& cpath) {} |
65 | 65 |
|
66 | 66 |
/// \brief Template assigment |
67 | 67 |
template <typename CPath> |
68 | 68 |
Path& operator=(const CPath& cpath) { |
69 | 69 |
ignore_unused_variable_warning(cpath); |
70 | 70 |
return *this; |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
/// Length of the path ie. the number of arcs in the path. |
74 | 74 |
int length() const { return 0;} |
75 | 75 |
|
76 | 76 |
/// Returns whether the path is empty. |
77 | 77 |
bool empty() const { return true;} |
78 | 78 |
|
79 | 79 |
/// Resets the path to an empty path. |
80 | 80 |
void clear() {} |
81 | 81 |
|
82 | 82 |
/// \brief LEMON style iterator for path arcs |
83 | 83 |
/// |
84 | 84 |
/// This class is used to iterate on the arcs of the paths. |
85 | 85 |
class ArcIt { |
86 | 86 |
public: |
87 | 87 |
/// Default constructor |
88 | 88 |
ArcIt() {} |
89 | 89 |
/// Invalid constructor |
90 | 90 |
ArcIt(Invalid) {} |
91 | 91 |
/// Constructor for first arc |
92 | 92 |
ArcIt(const Path &) {} |
93 | 93 |
|
94 | 94 |
/// Conversion to Arc |
95 | 95 |
operator Arc() const { return INVALID; } |
96 | 96 |
|
97 | 97 |
/// Next arc |
98 | 98 |
ArcIt& operator++() {return *this;} |
99 | 99 |
|
100 | 100 |
/// Comparison operator |
101 | 101 |
bool operator==(const ArcIt&) const {return true;} |
102 | 102 |
/// Comparison operator |
103 | 103 |
bool operator!=(const ArcIt&) const {return true;} |
104 | 104 |
/// Comparison operator |
105 | 105 |
bool operator<(const ArcIt&) const {return false;} |
106 | 106 |
|
107 | 107 |
}; |
108 | 108 |
|
109 | 109 |
template <typename _Path> |
110 | 110 |
struct Constraints { |
111 | 111 |
void constraints() { |
112 | 112 |
Path<Digraph> pc; |
113 | 113 |
_Path p, pp(pc); |
114 | 114 |
int l = p.length(); |
115 | 115 |
int e = p.empty(); |
116 | 116 |
p.clear(); |
117 | 117 |
|
118 | 118 |
p = pc; |
119 | 119 |
|
120 | 120 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
121 | 121 |
|
122 | 122 |
++i; |
123 | 123 |
typename Digraph::Arc ed = i; |
124 | 124 |
|
125 | 125 |
e = (i == ii); |
126 | 126 |
e = (i != ii); |
127 | 127 |
e = (i < ii); |
128 | 128 |
|
129 | 129 |
ignore_unused_variable_warning(l); |
130 | 130 |
ignore_unused_variable_warning(pp); |
131 | 131 |
ignore_unused_variable_warning(e); |
132 | 132 |
ignore_unused_variable_warning(id); |
133 | 133 |
ignore_unused_variable_warning(ii); |
134 | 134 |
ignore_unused_variable_warning(ed); |
135 | 135 |
} |
136 | 136 |
}; |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
namespace _path_bits { |
141 | 141 |
|
142 | 142 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
143 | 143 |
struct PathDumperConstraints { |
144 | 144 |
void constraints() { |
145 | 145 |
int l = p.length(); |
146 | 146 |
int e = p.empty(); |
147 | 147 |
|
148 | 148 |
typename _Path::ArcIt id, i(p); |
149 | 149 |
|
150 | 150 |
++i; |
151 | 151 |
typename _Digraph::Arc ed = i; |
152 | 152 |
|
153 | 153 |
e = (i == INVALID); |
154 | 154 |
e = (i != INVALID); |
155 | 155 |
|
156 | 156 |
ignore_unused_variable_warning(l); |
157 | 157 |
ignore_unused_variable_warning(e); |
158 | 158 |
ignore_unused_variable_warning(id); |
159 | 159 |
ignore_unused_variable_warning(ed); |
160 | 160 |
} |
161 | 161 |
_Path& p; |
162 | 162 |
}; |
163 | 163 |
|
164 | 164 |
template <typename _Digraph, typename _Path> |
165 | 165 |
struct PathDumperConstraints< |
166 | 166 |
_Digraph, _Path, |
167 | 167 |
typename enable_if<typename _Path::RevPathTag, void>::type |
168 | 168 |
> { |
169 | 169 |
void constraints() { |
170 | 170 |
int l = p.length(); |
171 | 171 |
int e = p.empty(); |
172 | 172 |
|
173 | 173 |
typename _Path::RevArcIt id, i(p); |
174 | 174 |
|
175 | 175 |
++i; |
176 | 176 |
typename _Digraph::Arc ed = i; |
177 | 177 |
|
178 | 178 |
e = (i == INVALID); |
179 | 179 |
e = (i != INVALID); |
180 | 180 |
|
181 | 181 |
ignore_unused_variable_warning(l); |
182 | 182 |
ignore_unused_variable_warning(e); |
183 | 183 |
ignore_unused_variable_warning(id); |
184 | 184 |
ignore_unused_variable_warning(ed); |
185 | 185 |
} |
186 | 186 |
_Path& p; |
187 | 187 |
}; |
188 | 188 |
|
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
|
192 | 192 |
/// \brief A skeleton structure for path dumpers. |
193 | 193 |
/// |
194 | 194 |
/// A skeleton structure for path dumpers. The path dumpers are |
195 | 195 |
/// the generalization of the paths. The path dumpers can |
196 | 196 |
/// enumerate the arcs of the path wheter in forward or in |
197 | 197 |
/// backward order. In most time these classes are not used |
198 | 198 |
/// directly rather it used to assign a dumped class to a real |
199 | 199 |
/// path type. |
200 | 200 |
/// |
201 | 201 |
/// The main purpose of this concept is that the shortest path |
202 | 202 |
/// algorithms can enumerate easily the arcs in reverse order. |
203 | 203 |
/// If we would like to give back a real path from these |
204 | 204 |
/// algorithms then we should create a temporarly path object. In |
205 | 205 |
/// LEMON such algorithms gives back a path dumper what can |
206 | 206 |
/// assigned to a real path and the dumpers can be implemented as |
207 | 207 |
/// an adaptor class to the predecessor map. |
208 | 208 |
|
209 | 209 |
/// \tparam _Digraph The digraph type in which the path is. |
210 | 210 |
/// |
211 | 211 |
/// The paths can be constructed from any path type by a |
212 | 212 |
/// template constructor or a template assignment operator. |
213 | 213 |
/// |
214 | 214 |
template <typename _Digraph> |
215 | 215 |
class PathDumper { |
216 | 216 |
public: |
217 | 217 |
|
218 | 218 |
/// Type of the underlying digraph. |
219 | 219 |
typedef _Digraph Digraph; |
220 | 220 |
/// Arc type of the underlying digraph. |
221 | 221 |
typedef typename Digraph::Arc Arc; |
222 | 222 |
|
223 | 223 |
/// Length of the path ie. the number of arcs in the path. |
224 | 224 |
int length() const { return 0;} |
225 | 225 |
|
226 | 226 |
/// Returns whether the path is empty. |
227 | 227 |
bool empty() const { return true;} |
228 | 228 |
|
229 | 229 |
/// \brief Forward or reverse dumping |
230 | 230 |
/// |
231 | 231 |
/// If the RevPathTag is defined and true then reverse dumping |
232 | 232 |
/// is provided in the path dumper. In this case instead of the |
233 | 233 |
/// ArcIt the RevArcIt iterator should be implemented in the |
234 | 234 |
/// dumper. |
235 | 235 |
typedef False RevPathTag; |
236 | 236 |
|
237 | 237 |
/// \brief LEMON style iterator for path arcs |
238 | 238 |
/// |
239 | 239 |
/// This class is used to iterate on the arcs of the paths. |
240 | 240 |
class ArcIt { |
241 | 241 |
public: |
242 | 242 |
/// Default constructor |
243 | 243 |
ArcIt() {} |
244 | 244 |
/// Invalid constructor |
245 | 245 |
ArcIt(Invalid) {} |
246 | 246 |
/// Constructor for first arc |
247 | 247 |
ArcIt(const PathDumper&) {} |
248 | 248 |
|
249 | 249 |
/// Conversion to Arc |
250 | 250 |
operator Arc() const { return INVALID; } |
251 | 251 |
|
252 | 252 |
/// Next arc |
253 | 253 |
ArcIt& operator++() {return *this;} |
254 | 254 |
|
255 | 255 |
/// Comparison operator |
256 | 256 |
bool operator==(const ArcIt&) const {return true;} |
257 | 257 |
/// Comparison operator |
258 | 258 |
bool operator!=(const ArcIt&) const {return true;} |
259 | 259 |
/// Comparison operator |
260 | 260 |
bool operator<(const ArcIt&) const {return false;} |
261 | 261 |
|
262 | 262 |
}; |
263 | 263 |
|
264 | 264 |
/// \brief LEMON style iterator for path arcs |
265 | 265 |
/// |
266 | 266 |
/// This class is used to iterate on the arcs of the paths in |
267 | 267 |
/// reverse direction. |
268 | 268 |
class RevArcIt { |
269 | 269 |
public: |
270 | 270 |
/// Default constructor |
271 | 271 |
RevArcIt() {} |
272 | 272 |
/// Invalid constructor |
273 | 273 |
RevArcIt(Invalid) {} |
274 | 274 |
/// Constructor for first arc |
275 | 275 |
RevArcIt(const PathDumper &) {} |
276 | 276 |
|
277 | 277 |
/// Conversion to Arc |
278 | 278 |
operator Arc() const { return INVALID; } |
279 | 279 |
|
280 | 280 |
/// Next arc |
281 | 281 |
RevArcIt& operator++() {return *this;} |
282 | 282 |
|
283 | 283 |
/// Comparison operator |
284 | 284 |
bool operator==(const RevArcIt&) const {return true;} |
285 | 285 |
/// Comparison operator |
286 | 286 |
bool operator!=(const RevArcIt&) const {return true;} |
287 | 287 |
/// Comparison operator |
288 | 288 |
bool operator<(const RevArcIt&) const {return false;} |
289 | 289 |
|
290 | 290 |
}; |
291 | 291 |
|
292 | 292 |
template <typename _Path> |
293 | 293 |
struct Constraints { |
294 | 294 |
void constraints() { |
295 | 295 |
function_requires<_path_bits:: |
296 | 296 |
PathDumperConstraints<Digraph, _Path> >(); |
297 | 297 |
} |
298 | 298 |
}; |
299 | 299 |
|
300 | 300 |
}; |
301 | 301 |
|
302 | 302 |
|
303 | 303 |
///@} |
304 | 304 |
} |
305 | 305 |
|
306 | 306 |
} // namespace lemon |
307 | 307 |
|
308 |
#endif |
|
308 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_LP_SKELETON |
|
20 |
#define LEMON_LP_SKELETON |
|
19 |
#ifndef LEMON_LP_SKELETON_H |
|
20 |
#define LEMON_LP_SKELETON_H |
|
21 | 21 |
|
22 | 22 |
#include <lemon/lp_base.h> |
23 | 23 |
|
24 | 24 |
///\file |
25 | 25 |
///\brief A skeleton file to implement LP solver interfaces |
26 | 26 |
namespace lemon { |
27 | 27 |
|
28 | 28 |
///A skeleton class to implement LP solver interfaces |
29 | 29 |
class SkeletonSolverBase : public virtual LpBase { |
30 | 30 |
int col_num,row_num; |
31 | 31 |
|
32 | 32 |
protected: |
33 | 33 |
|
34 | 34 |
SkeletonSolverBase() |
35 | 35 |
: col_num(-1), row_num(-1) {} |
36 | 36 |
|
37 | 37 |
/// \e |
38 | 38 |
virtual int _addCol(); |
39 | 39 |
/// \e |
40 | 40 |
virtual int _addRow(); |
41 | 41 |
/// \e |
42 | 42 |
virtual void _eraseCol(int i); |
43 | 43 |
/// \e |
44 | 44 |
virtual void _eraseRow(int i); |
45 | 45 |
|
46 | 46 |
/// \e |
47 | 47 |
virtual void _getColName(int col, std::string& name) const; |
48 | 48 |
/// \e |
49 | 49 |
virtual void _setColName(int col, const std::string& name); |
50 | 50 |
/// \e |
51 | 51 |
virtual int _colByName(const std::string& name) const; |
52 | 52 |
|
53 | 53 |
/// \e |
54 | 54 |
virtual void _getRowName(int row, std::string& name) const; |
55 | 55 |
/// \e |
56 | 56 |
virtual void _setRowName(int row, const std::string& name); |
57 | 57 |
/// \e |
58 | 58 |
virtual int _rowByName(const std::string& name) const; |
59 | 59 |
|
60 | 60 |
/// \e |
61 | 61 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
62 | 62 |
/// \e |
63 | 63 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
64 | 64 |
/// \e |
65 | 65 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
66 | 66 |
/// \e |
67 | 67 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
68 | 68 |
|
69 | 69 |
/// Set one element of the coefficient matrix |
70 | 70 |
virtual void _setCoeff(int row, int col, Value value); |
71 | 71 |
|
72 | 72 |
/// Get one element of the coefficient matrix |
73 | 73 |
virtual Value _getCoeff(int row, int col) const; |
74 | 74 |
|
75 | 75 |
/// The lower bound of a variable (column) have to be given by an |
76 | 76 |
/// extended number of type Value, i.e. a finite number of type |
77 | 77 |
/// Value or -\ref INF. |
78 | 78 |
virtual void _setColLowerBound(int i, Value value); |
79 | 79 |
/// \e |
80 | 80 |
|
81 | 81 |
/// The lower bound of a variable (column) is an |
82 | 82 |
/// extended number of type Value, i.e. a finite number of type |
83 | 83 |
/// Value or -\ref INF. |
84 | 84 |
virtual Value _getColLowerBound(int i) const; |
85 | 85 |
|
86 | 86 |
/// The upper bound of a variable (column) have to be given by an |
87 | 87 |
/// extended number of type Value, i.e. a finite number of type |
88 | 88 |
/// Value or \ref INF. |
89 | 89 |
virtual void _setColUpperBound(int i, Value value); |
90 | 90 |
/// \e |
91 | 91 |
|
92 | 92 |
/// The upper bound of a variable (column) is an |
93 | 93 |
/// extended number of type Value, i.e. a finite number of type |
94 | 94 |
/// Value or \ref INF. |
95 | 95 |
virtual Value _getColUpperBound(int i) const; |
96 | 96 |
|
97 | 97 |
/// The lower bound of a constraint (row) have to be given by an |
98 | 98 |
/// extended number of type Value, i.e. a finite number of type |
99 | 99 |
/// Value or -\ref INF. |
100 | 100 |
virtual void _setRowLowerBound(int i, Value value); |
101 | 101 |
/// \e |
102 | 102 |
|
103 | 103 |
/// The lower bound of a constraint (row) is an |
104 | 104 |
/// extended number of type Value, i.e. a finite number of type |
105 | 105 |
/// Value or -\ref INF. |
106 | 106 |
virtual Value _getRowLowerBound(int i) const; |
107 | 107 |
|
108 | 108 |
/// The upper bound of a constraint (row) have to be given by an |
109 | 109 |
/// extended number of type Value, i.e. a finite number of type |
110 | 110 |
/// Value or \ref INF. |
111 | 111 |
virtual void _setRowUpperBound(int i, Value value); |
112 | 112 |
/// \e |
113 | 113 |
|
114 | 114 |
/// The upper bound of a constraint (row) is an |
115 | 115 |
/// extended number of type Value, i.e. a finite number of type |
116 | 116 |
/// Value or \ref INF. |
117 | 117 |
virtual Value _getRowUpperBound(int i) const; |
118 | 118 |
|
119 | 119 |
/// \e |
120 | 120 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
121 | 121 |
/// \e |
122 | 122 |
virtual void _getObjCoeffs(InsertIterator b) const; |
123 | 123 |
|
124 | 124 |
/// \e |
125 | 125 |
virtual void _setObjCoeff(int i, Value obj_coef); |
126 | 126 |
/// \e |
127 | 127 |
virtual Value _getObjCoeff(int i) const; |
128 | 128 |
|
129 | 129 |
///\e |
130 | 130 |
virtual void _setSense(Sense); |
131 | 131 |
///\e |
132 | 132 |
virtual Sense _getSense() const; |
133 | 133 |
|
134 | 134 |
///\e |
135 | 135 |
virtual void _clear(); |
136 | 136 |
|
137 | 137 |
}; |
138 | 138 |
|
139 | 139 |
/// \brief Interface for a skeleton LP solver |
140 | 140 |
/// |
141 | 141 |
/// This class implements an interface for a skeleton LP solver. |
142 | 142 |
///\ingroup lp_group |
143 | 143 |
class LpSkeleton : public SkeletonSolverBase, public LpSolver { |
144 | 144 |
public: |
145 | 145 |
LpSkeleton() : SkeletonSolverBase(), LpSolver() {} |
146 | 146 |
|
147 | 147 |
protected: |
148 | 148 |
|
149 | 149 |
///\e |
150 | 150 |
virtual SolveExitStatus _solve(); |
151 | 151 |
|
152 | 152 |
///\e |
153 | 153 |
virtual Value _getPrimal(int i) const; |
154 | 154 |
///\e |
155 | 155 |
virtual Value _getDual(int i) const; |
156 | 156 |
|
157 | 157 |
///\e |
158 | 158 |
virtual Value _getPrimalValue() const; |
159 | 159 |
|
160 | 160 |
///\e |
161 | 161 |
virtual Value _getPrimalRay(int i) const; |
162 | 162 |
///\e |
163 | 163 |
virtual Value _getDualRay(int i) const; |
164 | 164 |
|
165 | 165 |
///\e |
166 | 166 |
virtual ProblemType _getPrimalType() const; |
167 | 167 |
///\e |
168 | 168 |
virtual ProblemType _getDualType() const; |
169 | 169 |
|
170 | 170 |
///\e |
171 | 171 |
virtual VarStatus _getColStatus(int i) const; |
172 | 172 |
///\e |
173 | 173 |
virtual VarStatus _getRowStatus(int i) const; |
174 | 174 |
|
175 | 175 |
///\e |
176 | 176 |
virtual LpSkeleton* _newSolver() const; |
177 | 177 |
///\e |
178 | 178 |
virtual LpSkeleton* _cloneSolver() const; |
179 | 179 |
///\e |
180 | 180 |
virtual const char* _solverName() const; |
181 | 181 |
|
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
/// \brief Interface for a skeleton MIP solver |
185 | 185 |
/// |
186 | 186 |
/// This class implements an interface for a skeleton MIP solver. |
187 | 187 |
///\ingroup lp_group |
188 | 188 |
class MipSkeleton : public SkeletonSolverBase, public MipSolver { |
189 | 189 |
public: |
190 | 190 |
MipSkeleton() : SkeletonSolverBase(), MipSolver() {} |
191 | 191 |
|
192 | 192 |
protected: |
193 | 193 |
///\e |
194 | 194 |
|
195 | 195 |
///\bug Wrong interface |
196 | 196 |
/// |
197 | 197 |
virtual SolveExitStatus _solve(); |
198 | 198 |
|
199 | 199 |
///\e |
200 | 200 |
|
201 | 201 |
///\bug Wrong interface |
202 | 202 |
/// |
203 | 203 |
virtual Value _getSol(int i) const; |
204 | 204 |
|
205 | 205 |
///\e |
206 | 206 |
|
207 | 207 |
///\bug Wrong interface |
208 | 208 |
/// |
209 | 209 |
virtual Value _getSolValue() const; |
210 | 210 |
|
211 | 211 |
///\e |
212 | 212 |
|
213 | 213 |
///\bug Wrong interface |
214 | 214 |
/// |
215 | 215 |
virtual ProblemType _getType() const; |
216 | 216 |
|
217 | 217 |
///\e |
218 | 218 |
virtual MipSkeleton* _newSolver() const; |
219 | 219 |
|
220 | 220 |
///\e |
221 | 221 |
virtual MipSkeleton* _cloneSolver() const; |
222 | 222 |
///\e |
223 | 223 |
virtual const char* _solverName() const; |
224 | 224 |
|
225 | 225 |
}; |
226 | 226 |
|
227 | 227 |
} //namespace lemon |
228 | 228 |
|
229 |
#endif |
|
229 |
#endif |
0 comments (0 inline)