... | ... |
@@ -30,548 +30,912 @@ |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/math.h> |
33 |
#include <lemon/ |
|
33 |
#include <lemon/static_graph.h> |
|
34 | 34 |
#include <lemon/circulation.h> |
35 | 35 |
#include <lemon/bellman_ford.h> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 |
/// \brief Default traits class of CostScaling algorithm. |
|
40 |
/// |
|
41 |
/// Default traits class of CostScaling algorithm. |
|
42 |
/// \tparam GR Digraph type. |
|
43 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
44 |
/// and supply values. By default it is \c int. |
|
45 |
/// \tparam C The value type used for costs and potentials. |
|
46 |
/// By default it is the same as \c V. |
|
47 |
#ifdef DOXYGEN |
|
48 |
template <typename GR, typename V = int, typename C = V> |
|
49 |
#else |
|
50 |
template < typename GR, typename V = int, typename C = V, |
|
51 |
bool integer = std::numeric_limits<C>::is_integer > |
|
52 |
#endif |
|
53 |
struct CostScalingDefaultTraits |
|
54 |
{ |
|
55 |
/// The type of the digraph |
|
56 |
typedef GR Digraph; |
|
57 |
/// The type of the flow amounts, capacity bounds and supply values |
|
58 |
typedef V Value; |
|
59 |
/// The type of the arc costs |
|
60 |
typedef C Cost; |
|
61 |
|
|
62 |
/// \brief The large cost type used for internal computations |
|
63 |
/// |
|
64 |
/// The large cost type used for internal computations. |
|
65 |
/// It is \c long \c long if the \c Cost type is integer, |
|
66 |
/// otherwise it is \c double. |
|
67 |
/// \c Cost must be convertible to \c LargeCost. |
|
68 |
typedef double LargeCost; |
|
69 |
}; |
|
70 |
|
|
71 |
// Default traits class for integer cost types |
|
72 |
template <typename GR, typename V, typename C> |
|
73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
|
74 |
{ |
|
75 |
typedef GR Digraph; |
|
76 |
typedef V Value; |
|
77 |
typedef C Cost; |
|
78 |
#ifdef LEMON_HAVE_LONG_LONG |
|
79 |
typedef long long LargeCost; |
|
80 |
#else |
|
81 |
typedef long LargeCost; |
|
82 |
#endif |
|
83 |
}; |
|
84 |
|
|
85 |
|
|
39 | 86 |
/// \addtogroup min_cost_flow_algs |
40 | 87 |
/// @{ |
41 | 88 |
|
42 |
/// \brief Implementation of the cost scaling algorithm for finding a |
|
43 |
/// minimum cost flow. |
|
89 |
/// \brief Implementation of the Cost Scaling algorithm for |
|
90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
|
44 | 91 |
/// |
45 |
/// \ref CostScaling implements the cost scaling algorithm performing |
|
46 |
/// augment/push and relabel operations for finding a minimum cost |
|
47 |
/// |
|
92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
|
93 |
/// push/augment and relabel operations for finding a minimum cost |
|
94 |
/// flow. It is an efficient primal-dual solution method, which |
|
95 |
/// can be viewed as the generalization of the \ref Preflow |
|
96 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
|
48 | 97 |
/// |
49 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
50 |
/// \tparam LowerMap The type of the lower bound map. |
|
51 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
52 |
/// \tparam CostMap The type of the cost (length) map. |
|
53 |
/// |
|
98 |
/// Most of the parameters of the problem (except for the digraph) |
|
99 |
/// can be given using separate functions, and the algorithm can be |
|
100 |
/// executed using the \ref run() function. If some parameters are not |
|
101 |
/// specified, then default values will be used. |
|
54 | 102 |
/// |
55 |
/// \warning |
|
56 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
57 |
/// - Supply values should be \e signed \e integers. |
|
58 |
/// - The value types of the maps should be convertible to each other. |
|
59 |
/// |
|
103 |
/// \tparam GR The digraph type the algorithm runs on. |
|
104 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
105 |
/// and supply values in the algorithm. By default it is \c int. |
|
106 |
/// \tparam C The value type used for costs and potentials in the |
|
107 |
/// algorithm. By default it is the same as \c V. |
|
60 | 108 |
/// |
61 |
/// \note Arc costs are multiplied with the number of nodes during |
|
62 |
/// the algorithm so overflow problems may arise more easily than with |
|
63 |
/// other minimum cost flow algorithms. |
|
64 |
/// If it is available, <tt>long long int</tt> type is used instead of |
|
65 |
/// <tt>long int</tt> in the inside computations. |
|
66 |
/// |
|
67 |
/// \author Peter Kovacs |
|
68 |
template < typename Digraph, |
|
69 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
70 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
71 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
72 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
109 |
/// \warning Both value types must be signed and all input data must |
|
110 |
/// be integer. |
|
111 |
/// \warning This algorithm does not support negative costs for such |
|
112 |
/// arcs that have infinite upper bound. |
|
113 |
#ifdef DOXYGEN |
|
114 |
template <typename GR, typename V, typename C, typename TR> |
|
115 |
#else |
|
116 |
template < typename GR, typename V = int, typename C = V, |
|
117 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
|
118 |
#endif |
|
73 | 119 |
class CostScaling |
74 | 120 |
{ |
75 |
|
|
121 |
public: |
|
76 | 122 |
|
77 |
typedef typename CapacityMap::Value Capacity; |
|
78 |
typedef typename CostMap::Value Cost; |
|
79 |
typedef typename SupplyMap::Value Supply; |
|
80 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
81 |
|
|
123 |
/// The type of the digraph |
|
124 |
typedef typename TR::Digraph Digraph; |
|
125 |
/// The type of the flow amounts, capacity bounds and supply values |
|
126 |
typedef typename TR::Value Value; |
|
127 |
/// The type of the arc costs |
|
128 |
typedef typename TR::Cost Cost; |
|
82 | 129 |
|
83 |
typedef ResidualDigraph< const Digraph, |
|
84 |
CapacityArcMap, CapacityArcMap > ResDigraph; |
|
85 |
|
|
130 |
/// \brief The large cost type |
|
131 |
/// |
|
132 |
/// The large cost type used for internal computations. |
|
133 |
/// Using the \ref CostScalingDefaultTraits "default traits class", |
|
134 |
/// it is \c long \c long if the \c Cost type is integer, |
|
135 |
/// otherwise it is \c double. |
|
136 |
typedef typename TR::LargeCost LargeCost; |
|
86 | 137 |
|
87 |
#if defined __GNUC__ && !defined __STRICT_ANSI__ |
|
88 |
typedef long long int LCost; |
|
89 |
#else |
|
90 |
typedef long int LCost; |
|
91 |
#endif |
|
92 |
typedef typename Digraph::template ArcMap<LCost> LargeCostMap; |
|
138 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
|
139 |
typedef TR Traits; |
|
93 | 140 |
|
94 | 141 |
public: |
95 | 142 |
|
96 |
/// The type of the flow map. |
|
97 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
98 |
/// The type of the potential map. |
|
99 |
typedef typename Digraph::template NodeMap<LCost> PotentialMap; |
|
143 |
/// \brief Problem type constants for the \c run() function. |
|
144 |
/// |
|
145 |
/// Enum type containing the problem type constants that can be |
|
146 |
/// returned by the \ref run() function of the algorithm. |
|
147 |
enum ProblemType { |
|
148 |
/// The problem has no feasible solution (flow). |
|
149 |
INFEASIBLE, |
|
150 |
/// The problem has optimal solution (i.e. it is feasible and |
|
151 |
/// bounded), and the algorithm has found optimal flow and node |
|
152 |
/// potentials (primal and dual solutions). |
|
153 |
OPTIMAL, |
|
154 |
/// The digraph contains an arc of negative cost and infinite |
|
155 |
/// upper bound. It means that the objective function is unbounded |
|
156 |
/// on that arc, however note that it could actually be bounded |
|
157 |
/// over the feasible flows, but this algroithm cannot handle |
|
158 |
/// these cases. |
|
159 |
UNBOUNDED |
|
160 |
}; |
|
100 | 161 |
|
101 | 162 |
private: |
102 | 163 |
|
103 |
/// \brief Map adaptor class for handling residual arc costs. |
|
104 |
/// |
|
105 |
/// Map adaptor class for handling residual arc costs. |
|
106 |
template <typename Map> |
|
107 |
class ResidualCostMap : public MapBase<ResArc, typename Map::Value> |
|
108 |
{ |
|
109 |
|
|
164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
110 | 165 |
|
111 |
|
|
166 |
typedef std::vector<int> IntVector; |
|
167 |
typedef std::vector<char> BoolVector; |
|
168 |
typedef std::vector<Value> ValueVector; |
|
169 |
typedef std::vector<Cost> CostVector; |
|
170 |
typedef std::vector<LargeCost> LargeCostVector; |
|
112 | 171 |
|
172 |
private: |
|
173 |
|
|
174 |
template <typename KT, typename VT> |
|
175 |
class VectorMap { |
|
113 | 176 |
public: |
114 |
|
|
115 |
///\e |
|
116 |
ResidualCostMap(const Map &cost_map) : |
|
117 |
_cost_map(cost_map) {} |
|
118 |
|
|
119 |
///\e |
|
120 |
inline typename Map::Value operator[](const ResArc &e) const { |
|
121 |
return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
|
177 |
typedef KT Key; |
|
178 |
typedef VT Value; |
|
179 |
|
|
180 |
VectorMap(std::vector<Value>& v) : _v(v) {} |
|
181 |
|
|
182 |
const Value& operator[](const Key& key) const { |
|
183 |
return _v[StaticDigraph::id(key)]; |
|
122 | 184 |
} |
123 | 185 |
|
124 |
}; //class ResidualCostMap |
|
125 |
|
|
126 |
/// \brief Map adaptor class for handling reduced arc costs. |
|
127 |
/// |
|
128 |
/// Map adaptor class for handling reduced arc costs. |
|
129 |
class ReducedCostMap : public MapBase<Arc, LCost> |
|
130 |
{ |
|
131 |
private: |
|
132 |
|
|
133 |
const Digraph &_gr; |
|
134 |
const LargeCostMap &_cost_map; |
|
135 |
const PotentialMap &_pot_map; |
|
136 |
|
|
137 |
public: |
|
138 |
|
|
139 |
///\e |
|
140 |
ReducedCostMap( const Digraph &gr, |
|
141 |
const LargeCostMap &cost_map, |
|
142 |
const PotentialMap &pot_map ) : |
|
143 |
_gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} |
|
144 |
|
|
145 |
///\e |
|
146 |
inline LCost operator[](const Arc &e) const { |
|
147 |
return _cost_map[e] + _pot_map[_gr.source(e)] |
|
148 |
|
|
186 |
Value& operator[](const Key& key) { |
|
187 |
return _v[StaticDigraph::id(key)]; |
|
188 |
} |
|
189 |
|
|
190 |
void set(const Key& key, const Value& val) { |
|
191 |
_v[StaticDigraph::id(key)] = val; |
|
149 | 192 |
} |
150 | 193 |
|
151 |
|
|
194 |
private: |
|
195 |
std::vector<Value>& _v; |
|
196 |
}; |
|
197 |
|
|
198 |
typedef VectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
|
199 |
typedef VectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
|
152 | 200 |
|
153 | 201 |
private: |
154 | 202 |
|
155 |
// The digraph the algorithm runs on |
|
156 |
const Digraph &_graph; |
|
157 |
// The original lower bound map |
|
158 |
const LowerMap *_lower; |
|
159 |
// The modified capacity map |
|
160 |
CapacityArcMap _capacity; |
|
161 |
// The original cost map |
|
162 |
const CostMap &_orig_cost; |
|
163 |
// The scaled cost map |
|
164 |
LargeCostMap _cost; |
|
165 |
// The modified supply map |
|
166 |
SupplyNodeMap _supply; |
|
167 |
|
|
203 |
// Data related to the underlying digraph |
|
204 |
const GR &_graph; |
|
205 |
int _node_num; |
|
206 |
int _arc_num; |
|
207 |
int _res_node_num; |
|
208 |
int _res_arc_num; |
|
209 |
int _root; |
|
168 | 210 |
|
169 |
// Arc map of the current flow |
|
170 |
FlowMap *_flow; |
|
171 |
bool _local_flow; |
|
172 |
// Node map of the current potentials |
|
173 |
PotentialMap *_potential; |
|
174 |
bool _local_potential; |
|
211 |
// Parameters of the problem |
|
212 |
bool _have_lower; |
|
213 |
Value _sum_supply; |
|
175 | 214 |
|
176 |
// The residual cost map |
|
177 |
ResidualCostMap<LargeCostMap> _res_cost; |
|
178 |
// The residual digraph |
|
179 |
ResDigraph *_res_graph; |
|
180 |
// The reduced cost map |
|
181 |
ReducedCostMap *_red_cost; |
|
182 |
// The excess map |
|
183 |
SupplyNodeMap _excess; |
|
184 |
// The epsilon parameter used for cost scaling |
|
185 |
LCost _epsilon; |
|
186 |
// |
|
215 |
// Data structures for storing the digraph |
|
216 |
IntNodeMap _node_id; |
|
217 |
IntArcMap _arc_idf; |
|
218 |
IntArcMap _arc_idb; |
|
219 |
IntVector _first_out; |
|
220 |
BoolVector _forward; |
|
221 |
IntVector _source; |
|
222 |
IntVector _target; |
|
223 |
IntVector _reverse; |
|
224 |
|
|
225 |
// Node and arc data |
|
226 |
ValueVector _lower; |
|
227 |
ValueVector _upper; |
|
228 |
CostVector _scost; |
|
229 |
ValueVector _supply; |
|
230 |
|
|
231 |
ValueVector _res_cap; |
|
232 |
LargeCostVector _cost; |
|
233 |
LargeCostVector _pi; |
|
234 |
ValueVector _excess; |
|
235 |
IntVector _next_out; |
|
236 |
std::deque<int> _active_nodes; |
|
237 |
|
|
238 |
// Data for scaling |
|
239 |
LargeCost _epsilon; |
|
187 | 240 |
int _alpha; |
188 | 241 |
|
242 |
// Data for a StaticDigraph structure |
|
243 |
typedef std::pair<int, int> IntPair; |
|
244 |
StaticDigraph _sgr; |
|
245 |
std::vector<IntPair> _arc_vec; |
|
246 |
std::vector<LargeCost> _cost_vec; |
|
247 |
LargeCostArcMap _cost_map; |
|
248 |
LargeCostNodeMap _pi_map; |
|
249 |
|
|
250 |
public: |
|
251 |
|
|
252 |
/// \brief Constant for infinite upper bounds (capacities). |
|
253 |
/// |
|
254 |
/// Constant for infinite upper bounds (capacities). |
|
255 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
256 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
257 |
const Value INF; |
|
258 |
|
|
189 | 259 |
public: |
190 | 260 |
|
191 |
/// \ |
|
261 |
/// \name Named Template Parameters |
|
262 |
/// @{ |
|
263 |
|
|
264 |
template <typename T> |
|
265 |
struct SetLargeCostTraits : public Traits { |
|
266 |
typedef T LargeCost; |
|
267 |
}; |
|
268 |
|
|
269 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
270 |
/// \c LargeCost type. |
|
192 | 271 |
/// |
193 |
/// |
|
272 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
|
273 |
/// type, which is used for internal computations in the algorithm. |
|
274 |
/// \c Cost must be convertible to \c LargeCost. |
|
275 |
template <typename T> |
|
276 |
struct SetLargeCost |
|
277 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > { |
|
278 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
|
279 |
}; |
|
280 |
|
|
281 |
/// @} |
|
282 |
|
|
283 |
public: |
|
284 |
|
|
285 |
/// \brief Constructor. |
|
194 | 286 |
/// |
195 |
/// \param digraph The digraph the algorithm runs on. |
|
196 |
/// \param lower The lower bounds of the arcs. |
|
197 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
198 |
/// \param cost The cost (length) values of the arcs. |
|
199 |
/// \param supply The supply values of the nodes (signed). |
|
200 |
CostScaling( const Digraph &digraph, |
|
201 |
const LowerMap &lower, |
|
202 |
const CapacityMap &capacity, |
|
203 |
const CostMap &cost, |
|
204 |
const SupplyMap &supply ) : |
|
205 |
_graph(digraph), _lower(&lower), _capacity(digraph), _orig_cost(cost), |
|
206 |
_cost(digraph), _supply(digraph), _flow(NULL), _local_flow(false), |
|
207 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
208 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
287 |
/// The constructor of the class. |
|
288 |
/// |
|
289 |
/// \param graph The digraph the algorithm runs on. |
|
290 |
CostScaling(const GR& graph) : |
|
291 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
|
292 |
_cost_map(_cost_vec), _pi_map(_pi), |
|
293 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
294 |
std::numeric_limits<Value>::infinity() : |
|
295 |
std::numeric_limits<Value>::max()) |
|
209 | 296 |
{ |
210 |
// Check the sum of supply values |
|
211 |
Supply sum = 0; |
|
212 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
213 |
_valid_supply = sum == 0; |
|
297 |
// Check the value types |
|
298 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
299 |
"The flow type of CostScaling must be signed"); |
|
300 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
301 |
"The cost type of CostScaling must be signed"); |
|
302 |
|
|
303 |
// Resize vectors |
|
304 |
_node_num = countNodes(_graph); |
|
305 |
_arc_num = countArcs(_graph); |
|
306 |
_res_node_num = _node_num + 1; |
|
307 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
308 |
_root = _node_num; |
|
309 |
|
|
310 |
_first_out.resize(_res_node_num + 1); |
|
311 |
_forward.resize(_res_arc_num); |
|
312 |
_source.resize(_res_arc_num); |
|
313 |
_target.resize(_res_arc_num); |
|
314 |
_reverse.resize(_res_arc_num); |
|
315 |
|
|
316 |
_lower.resize(_res_arc_num); |
|
317 |
_upper.resize(_res_arc_num); |
|
318 |
_scost.resize(_res_arc_num); |
|
319 |
_supply.resize(_res_node_num); |
|
214 | 320 |
|
215 |
for (ArcIt e(_graph); e != INVALID; ++e) _capacity[e] = capacity[e]; |
|
216 |
for (NodeIt n(_graph); n != INVALID; ++n) _supply[n] = supply[n]; |
|
321 |
_res_cap.resize(_res_arc_num); |
|
322 |
_cost.resize(_res_arc_num); |
|
323 |
_pi.resize(_res_node_num); |
|
324 |
_excess.resize(_res_node_num); |
|
325 |
_next_out.resize(_res_node_num); |
|
217 | 326 |
|
218 |
// Remove non-zero lower bounds |
|
219 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
220 |
if (lower[e] != 0) { |
|
221 |
_capacity[e] -= lower[e]; |
|
222 |
_supply[_graph.source(e)] -= lower[e]; |
|
223 |
_supply[_graph.target(e)] += lower[e]; |
|
327 |
_arc_vec.reserve(_res_arc_num); |
|
328 |
_cost_vec.reserve(_res_arc_num); |
|
329 |
|
|
330 |
// Copy the graph |
|
331 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
332 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
333 |
_node_id[n] = i; |
|
334 |
} |
|
335 |
i = 0; |
|
336 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
337 |
_first_out[i] = j; |
|
338 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
339 |
_arc_idf[a] = j; |
|
340 |
_forward[j] = true; |
|
341 |
_source[j] = i; |
|
342 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
224 | 343 |
} |
344 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
345 |
_arc_idb[a] = j; |
|
346 |
_forward[j] = false; |
|
347 |
_source[j] = i; |
|
348 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
349 |
} |
|
350 |
_forward[j] = false; |
|
351 |
_source[j] = i; |
|
352 |
_target[j] = _root; |
|
353 |
_reverse[j] = k; |
|
354 |
_forward[k] = true; |
|
355 |
_source[k] = _root; |
|
356 |
_target[k] = i; |
|
357 |
_reverse[k] = j; |
|
358 |
++j; ++k; |
|
225 | 359 |
} |
226 |
} |
|
227 |
/* |
|
228 |
/// \brief General constructor (without lower bounds). |
|
229 |
/// |
|
230 |
/// General constructor (without lower bounds). |
|
231 |
/// |
|
232 |
/// \param digraph The digraph the algorithm runs on. |
|
233 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
234 |
/// \param cost The cost (length) values of the arcs. |
|
235 |
/// \param supply The supply values of the nodes (signed). |
|
236 |
CostScaling( const Digraph &digraph, |
|
237 |
const CapacityMap &capacity, |
|
238 |
const CostMap &cost, |
|
239 |
const SupplyMap &supply ) : |
|
240 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
241 |
_cost(digraph), _supply(supply), _flow(NULL), _local_flow(false), |
|
242 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
243 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
244 |
{ |
|
245 |
// Check the sum of supply values |
|
246 |
Supply sum = 0; |
|
247 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
248 |
|
|
360 |
_first_out[i] = j; |
|
361 |
_first_out[_res_node_num] = k; |
|
362 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
363 |
int fi = _arc_idf[a]; |
|
364 |
int bi = _arc_idb[a]; |
|
365 |
_reverse[fi] = bi; |
|
366 |
_reverse[bi] = fi; |
|
367 |
} |
|
368 |
|
|
369 |
// Reset parameters |
|
370 |
reset(); |
|
249 | 371 |
} |
250 | 372 |
|
251 |
/// \ |
|
373 |
/// \name Parameters |
|
374 |
/// The parameters of the algorithm can be specified using these |
|
375 |
/// functions. |
|
376 |
|
|
377 |
/// @{ |
|
378 |
|
|
379 |
/// \brief Set the lower bounds on the arcs. |
|
252 | 380 |
/// |
253 |
/// |
|
381 |
/// This function sets the lower bounds on the arcs. |
|
382 |
/// If it is not used before calling \ref run(), the lower bounds |
|
383 |
/// will be set to zero on all arcs. |
|
254 | 384 |
/// |
255 |
/// \param digraph The digraph the algorithm runs on. |
|
256 |
/// \param lower The lower bounds of the arcs. |
|
257 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
258 |
/// \param cost The cost (length) values of the arcs. |
|
259 |
/// \param s The source node. |
|
260 |
/// \param t The target node. |
|
261 |
/// \param flow_value The required amount of flow from node \c s |
|
262 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
263 |
CostScaling( const Digraph &digraph, |
|
264 |
const LowerMap &lower, |
|
265 |
const CapacityMap &capacity, |
|
266 |
const CostMap &cost, |
|
267 |
Node s, Node t, |
|
268 |
Supply flow_value ) : |
|
269 |
_graph(digraph), _lower(&lower), _capacity(capacity), _orig_cost(cost), |
|
270 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
271 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
272 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
273 |
{ |
|
274 |
// Remove non-zero lower bounds |
|
275 |
_supply[s] = flow_value; |
|
276 |
_supply[t] = -flow_value; |
|
277 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
278 |
if (lower[e] != 0) { |
|
279 |
_capacity[e] -= lower[e]; |
|
280 |
_supply[_graph.source(e)] -= lower[e]; |
|
281 |
_supply[_graph.target(e)] += lower[e]; |
|
282 |
} |
|
385 |
/// \param map An arc map storing the lower bounds. |
|
386 |
/// Its \c Value type must be convertible to the \c Value type |
|
387 |
/// of the algorithm. |
|
388 |
/// |
|
389 |
/// \return <tt>(*this)</tt> |
|
390 |
template <typename LowerMap> |
|
391 |
CostScaling& lowerMap(const LowerMap& map) { |
|
392 |
_have_lower = true; |
|
393 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
394 |
_lower[_arc_idf[a]] = map[a]; |
|
395 |
_lower[_arc_idb[a]] = map[a]; |
|
283 | 396 |
} |
284 |
_valid_supply = true; |
|
285 |
} |
|
286 |
|
|
287 |
/// \brief Simple constructor (without lower bounds). |
|
288 |
/// |
|
289 |
/// Simple constructor (without lower bounds). |
|
290 |
/// |
|
291 |
/// \param digraph The digraph the algorithm runs on. |
|
292 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
293 |
/// \param cost The cost (length) values of the arcs. |
|
294 |
/// \param s The source node. |
|
295 |
/// \param t The target node. |
|
296 |
/// \param flow_value The required amount of flow from node \c s |
|
297 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
298 |
CostScaling( const Digraph &digraph, |
|
299 |
const CapacityMap &capacity, |
|
300 |
const CostMap &cost, |
|
301 |
Node s, Node t, |
|
302 |
Supply flow_value ) : |
|
303 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
304 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
305 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
306 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
307 |
{ |
|
308 |
_supply[s] = flow_value; |
|
309 |
_supply[t] = -flow_value; |
|
310 |
_valid_supply = true; |
|
311 |
} |
|
312 |
*/ |
|
313 |
/// Destructor. |
|
314 |
~CostScaling() { |
|
315 |
if (_local_flow) delete _flow; |
|
316 |
if (_local_potential) delete _potential; |
|
317 |
delete _res_graph; |
|
318 |
delete _red_cost; |
|
319 |
} |
|
320 |
|
|
321 |
/// \brief Set the flow map. |
|
322 |
/// |
|
323 |
/// Set the flow map. |
|
324 |
/// |
|
325 |
/// \return \c (*this) |
|
326 |
CostScaling& flowMap(FlowMap &map) { |
|
327 |
if (_local_flow) { |
|
328 |
delete _flow; |
|
329 |
_local_flow = false; |
|
330 |
} |
|
331 |
_flow = ↦ |
|
332 | 397 |
return *this; |
333 | 398 |
} |
334 | 399 |
|
335 |
/// \brief Set the |
|
400 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
336 | 401 |
/// |
337 |
/// |
|
402 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
403 |
/// If it is not used before calling \ref run(), the upper bounds |
|
404 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
405 |
/// unbounded from above on each arc). |
|
338 | 406 |
/// |
339 |
/// \return \c (*this) |
|
340 |
CostScaling& potentialMap(PotentialMap &map) { |
|
341 |
if (_local_potential) { |
|
342 |
delete _potential; |
|
343 |
|
|
407 |
/// \param map An arc map storing the upper bounds. |
|
408 |
/// Its \c Value type must be convertible to the \c Value type |
|
409 |
/// of the algorithm. |
|
410 |
/// |
|
411 |
/// \return <tt>(*this)</tt> |
|
412 |
template<typename UpperMap> |
|
413 |
CostScaling& upperMap(const UpperMap& map) { |
|
414 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
415 |
_upper[_arc_idf[a]] = map[a]; |
|
344 | 416 |
} |
345 |
_potential = ↦ |
|
346 | 417 |
return *this; |
347 | 418 |
} |
348 | 419 |
|
420 |
/// \brief Set the costs of the arcs. |
|
421 |
/// |
|
422 |
/// This function sets the costs of the arcs. |
|
423 |
/// If it is not used before calling \ref run(), the costs |
|
424 |
/// will be set to \c 1 on all arcs. |
|
425 |
/// |
|
426 |
/// \param map An arc map storing the costs. |
|
427 |
/// Its \c Value type must be convertible to the \c Cost type |
|
428 |
/// of the algorithm. |
|
429 |
/// |
|
430 |
/// \return <tt>(*this)</tt> |
|
431 |
template<typename CostMap> |
|
432 |
CostScaling& costMap(const CostMap& map) { |
|
433 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
434 |
_scost[_arc_idf[a]] = map[a]; |
|
435 |
_scost[_arc_idb[a]] = -map[a]; |
|
436 |
} |
|
437 |
return *this; |
|
438 |
} |
|
439 |
|
|
440 |
/// \brief Set the supply values of the nodes. |
|
441 |
/// |
|
442 |
/// This function sets the supply values of the nodes. |
|
443 |
/// If neither this function nor \ref stSupply() is used before |
|
444 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
445 |
/// |
|
446 |
/// \param map A node map storing the supply values. |
|
447 |
/// Its \c Value type must be convertible to the \c Value type |
|
448 |
/// of the algorithm. |
|
449 |
/// |
|
450 |
/// \return <tt>(*this)</tt> |
|
451 |
template<typename SupplyMap> |
|
452 |
CostScaling& supplyMap(const SupplyMap& map) { |
|
453 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
454 |
_supply[_node_id[n]] = map[n]; |
|
455 |
} |
|
456 |
return *this; |
|
457 |
} |
|
458 |
|
|
459 |
/// \brief Set single source and target nodes and a supply value. |
|
460 |
/// |
|
461 |
/// This function sets a single source node and a single target node |
|
462 |
/// and the required flow value. |
|
463 |
/// If neither this function nor \ref supplyMap() is used before |
|
464 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
465 |
/// |
|
466 |
/// Using this function has the same effect as using \ref supplyMap() |
|
467 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
468 |
/// assigned to \c t and all other nodes have zero supply value. |
|
469 |
/// |
|
470 |
/// \param s The source node. |
|
471 |
/// \param t The target node. |
|
472 |
/// \param k The required amount of flow from node \c s to node \c t |
|
473 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
474 |
/// |
|
475 |
/// \return <tt>(*this)</tt> |
|
476 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) { |
|
477 |
for (int i = 0; i != _res_node_num; ++i) { |
|
478 |
_supply[i] = 0; |
|
479 |
} |
|
480 |
_supply[_node_id[s]] = k; |
|
481 |
_supply[_node_id[t]] = -k; |
|
482 |
return *this; |
|
483 |
} |
|
484 |
|
|
485 |
/// @} |
|
486 |
|
|
349 | 487 |
/// \name Execution control |
488 |
/// The algorithm can be executed using \ref run(). |
|
350 | 489 |
|
351 | 490 |
/// @{ |
352 | 491 |
|
353 | 492 |
/// \brief Run the algorithm. |
354 | 493 |
/// |
355 |
/// |
|
494 |
/// This function runs the algorithm. |
|
495 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
496 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
497 |
/// For example, |
|
498 |
/// \code |
|
499 |
/// CostScaling<ListDigraph> cs(graph); |
|
500 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
501 |
/// .supplyMap(sup).run(); |
|
502 |
/// \endcode |
|
503 |
/// |
|
504 |
/// This function can be called more than once. All the parameters |
|
505 |
/// that have been given are kept for the next call, unless |
|
506 |
/// \ref reset() is called, thus only the modified parameters |
|
507 |
/// have to be set again. See \ref reset() for examples. |
|
508 |
/// However the underlying digraph must not be modified after this |
|
509 |
/// class have been constructed, since it copies the digraph. |
|
356 | 510 |
/// |
357 | 511 |
/// \param partial_augment By default the algorithm performs |
358 | 512 |
/// partial augment and relabel operations in the cost scaling |
359 | 513 |
/// phases. Set this parameter to \c false for using local push and |
360 | 514 |
/// relabel operations instead. |
361 | 515 |
/// |
362 |
/// \return \c true if a feasible flow can be found. |
|
363 |
bool run(bool partial_augment = true) { |
|
364 |
if (partial_augment) { |
|
365 |
return init() && startPartialAugment(); |
|
366 |
} else { |
|
367 |
return init() && startPushRelabel(); |
|
516 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
517 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
518 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
519 |
/// optimal flow and node potentials (primal and dual solutions), |
|
520 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
|
521 |
/// and infinite upper bound. It means that the objective function |
|
522 |
/// is unbounded on that arc, however note that it could actually be |
|
523 |
/// bounded over the feasible flows, but this algroithm cannot handle |
|
524 |
/// these cases. |
|
525 |
/// |
|
526 |
/// \see ProblemType |
|
527 |
ProblemType run(bool partial_augment = true) { |
|
528 |
ProblemType pt = init(); |
|
529 |
if (pt != OPTIMAL) return pt; |
|
530 |
start(partial_augment); |
|
531 |
return OPTIMAL; |
|
532 |
} |
|
533 |
|
|
534 |
/// \brief Reset all the parameters that have been given before. |
|
535 |
/// |
|
536 |
/// This function resets all the paramaters that have been given |
|
537 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
538 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
539 |
/// |
|
540 |
/// It is useful for multiple run() calls. If this function is not |
|
541 |
/// used, all the parameters given before are kept for the next |
|
542 |
/// \ref run() call. |
|
543 |
/// However the underlying digraph must not be modified after this |
|
544 |
/// class have been constructed, since it copies and extends the graph. |
|
545 |
/// |
|
546 |
/// For example, |
|
547 |
/// \code |
|
548 |
/// CostScaling<ListDigraph> cs(graph); |
|
549 |
/// |
|
550 |
/// // First run |
|
551 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
552 |
/// .supplyMap(sup).run(); |
|
553 |
/// |
|
554 |
/// // Run again with modified cost map (reset() is not called, |
|
555 |
/// // so only the cost map have to be set again) |
|
556 |
/// cost[e] += 100; |
|
557 |
/// cs.costMap(cost).run(); |
|
558 |
/// |
|
559 |
/// // Run again from scratch using reset() |
|
560 |
/// // (the lower bounds will be set to zero on all arcs) |
|
561 |
/// cs.reset(); |
|
562 |
/// cs.upperMap(capacity).costMap(cost) |
|
563 |
/// .supplyMap(sup).run(); |
|
564 |
/// \endcode |
|
565 |
/// |
|
566 |
/// \return <tt>(*this)</tt> |
|
567 |
CostScaling& reset() { |
|
568 |
for (int i = 0; i != _res_node_num; ++i) { |
|
569 |
_supply[i] = 0; |
|
368 | 570 |
} |
571 |
int limit = _first_out[_root]; |
|
572 |
for (int j = 0; j != limit; ++j) { |
|
573 |
_lower[j] = 0; |
|
574 |
_upper[j] = INF; |
|
575 |
_scost[j] = _forward[j] ? 1 : -1; |
|
576 |
} |
|
577 |
for (int j = limit; j != _res_arc_num; ++j) { |
|
578 |
_lower[j] = 0; |
|
579 |
_upper[j] = INF; |
|
580 |
_scost[j] = 0; |
|
581 |
_scost[_reverse[j]] = 0; |
|
582 |
} |
|
583 |
_have_lower = false; |
|
584 |
return *this; |
|
369 | 585 |
} |
370 | 586 |
|
371 | 587 |
/// @} |
372 | 588 |
|
373 | 589 |
/// \name Query Functions |
374 |
/// The |
|
590 |
/// The results of the algorithm can be obtained using these |
|
375 | 591 |
/// functions.\n |
376 |
/// \ref lemon::CostScaling::run() "run()" must be called before |
|
377 |
/// using them. |
|
592 |
/// The \ref run() function must be called before using them. |
|
378 | 593 |
|
379 | 594 |
/// @{ |
380 | 595 |
|
381 |
/// \brief Return a const reference to the arc map storing the |
|
382 |
/// found flow. |
|
596 |
/// \brief Return the total cost of the found flow. |
|
383 | 597 |
/// |
384 |
/// |
|
598 |
/// This function returns the total cost of the found flow. |
|
599 |
/// Its complexity is O(e). |
|
600 |
/// |
|
601 |
/// \note The return type of the function can be specified as a |
|
602 |
/// template parameter. For example, |
|
603 |
/// \code |
|
604 |
/// cs.totalCost<double>(); |
|
605 |
/// \endcode |
|
606 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
607 |
/// type of the algorithm, which is the default return type of the |
|
608 |
/// function. |
|
385 | 609 |
/// |
386 | 610 |
/// \pre \ref run() must be called before using this function. |
387 |
const FlowMap& flowMap() const { |
|
388 |
return *_flow; |
|
611 |
template <typename Number> |
|
612 |
Number totalCost() const { |
|
613 |
Number c = 0; |
|
614 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
615 |
int i = _arc_idb[a]; |
|
616 |
c += static_cast<Number>(_res_cap[i]) * |
|
617 |
(-static_cast<Number>(_scost[i])); |
|
618 |
} |
|
619 |
return c; |
|
389 | 620 |
} |
390 | 621 |
|
391 |
/// \brief Return a const reference to the node map storing the |
|
392 |
/// found potentials (the dual solution). |
|
393 |
/// |
|
394 |
/// Return a const reference to the node map storing the found |
|
395 |
/// potentials (the dual solution). |
|
396 |
/// |
|
397 |
/// \pre \ref run() must be called before using this function. |
|
398 |
const PotentialMap& potentialMap() const { |
|
399 |
|
|
622 |
#ifndef DOXYGEN |
|
623 |
Cost totalCost() const { |
|
624 |
return totalCost<Cost>(); |
|
400 | 625 |
} |
626 |
#endif |
|
401 | 627 |
|
402 | 628 |
/// \brief Return the flow on the given arc. |
403 | 629 |
/// |
404 |
/// |
|
630 |
/// This function returns the flow on the given arc. |
|
405 | 631 |
/// |
406 | 632 |
/// \pre \ref run() must be called before using this function. |
407 |
Capacity flow(const Arc& arc) const { |
|
408 |
return (*_flow)[arc]; |
|
633 |
Value flow(const Arc& a) const { |
|
634 |
return _res_cap[_arc_idb[a]]; |
|
409 | 635 |
} |
410 | 636 |
|
411 |
/// \brief Return the |
|
637 |
/// \brief Return the flow map (the primal solution). |
|
412 | 638 |
/// |
413 |
/// |
|
639 |
/// This function copies the flow value on each arc into the given |
|
640 |
/// map. The \c Value type of the algorithm must be convertible to |
|
641 |
/// the \c Value type of the map. |
|
414 | 642 |
/// |
415 | 643 |
/// \pre \ref run() must be called before using this function. |
416 |
Cost potential(const Node& node) const { |
|
417 |
return (*_potential)[node]; |
|
644 |
template <typename FlowMap> |
|
645 |
void flowMap(FlowMap &map) const { |
|
646 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
647 |
map.set(a, _res_cap[_arc_idb[a]]); |
|
648 |
} |
|
418 | 649 |
} |
419 | 650 |
|
420 |
/// \brief Return the |
|
651 |
/// \brief Return the potential (dual value) of the given node. |
|
421 | 652 |
/// |
422 |
/// Return the total cost of the found flow. The complexity of the |
|
423 |
/// function is \f$ O(e) \f$. |
|
653 |
/// This function returns the potential (dual value) of the |
|
654 |
/// given node. |
|
424 | 655 |
/// |
425 | 656 |
/// \pre \ref run() must be called before using this function. |
426 |
Cost totalCost() const { |
|
427 |
Cost c = 0; |
|
428 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
429 |
c += (*_flow)[e] * _orig_cost[e]; |
|
430 |
|
|
657 |
Cost potential(const Node& n) const { |
|
658 |
return static_cast<Cost>(_pi[_node_id[n]]); |
|
659 |
} |
|
660 |
|
|
661 |
/// \brief Return the potential map (the dual solution). |
|
662 |
/// |
|
663 |
/// This function copies the potential (dual value) of each node |
|
664 |
/// into the given map. |
|
665 |
/// The \c Cost type of the algorithm must be convertible to the |
|
666 |
/// \c Value type of the map. |
|
667 |
/// |
|
668 |
/// \pre \ref run() must be called before using this function. |
|
669 |
template <typename PotentialMap> |
|
670 |
void potentialMap(PotentialMap &map) const { |
|
671 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
672 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
|
673 |
} |
|
431 | 674 |
} |
432 | 675 |
|
433 | 676 |
/// @} |
434 | 677 |
|
435 | 678 |
private: |
436 | 679 |
|
437 |
/// Initialize the algorithm. |
|
438 |
bool init() { |
|
439 |
if (!_valid_supply) return false; |
|
440 |
// The scaling factor |
|
680 |
// Initialize the algorithm |
|
681 |
ProblemType init() { |
|
682 |
if (_res_node_num == 0) return INFEASIBLE; |
|
683 |
|
|
684 |
// Scaling factor |
|
441 | 685 |
_alpha = 8; |
442 | 686 |
|
443 |
// Initialize flow and potential maps |
|
444 |
if (!_flow) { |
|
445 |
_flow = new FlowMap(_graph); |
|
446 |
_local_flow = true; |
|
687 |
// Check the sum of supply values |
|
688 |
_sum_supply = 0; |
|
689 |
for (int i = 0; i != _root; ++i) { |
|
690 |
_sum_supply += _supply[i]; |
|
447 | 691 |
} |
448 |
if (!_potential) { |
|
449 |
_potential = new PotentialMap(_graph); |
|
450 |
|
|
692 |
if (_sum_supply > 0) return INFEASIBLE; |
|
693 |
|
|
694 |
|
|
695 |
// Initialize vectors |
|
696 |
for (int i = 0; i != _res_node_num; ++i) { |
|
697 |
_pi[i] = 0; |
|
698 |
_excess[i] = _supply[i]; |
|
699 |
} |
|
700 |
|
|
701 |
// Remove infinite upper bounds and check negative arcs |
|
702 |
const Value MAX = std::numeric_limits<Value>::max(); |
|
703 |
int last_out; |
|
704 |
if (_have_lower) { |
|
705 |
for (int i = 0; i != _root; ++i) { |
|
706 |
last_out = _first_out[i+1]; |
|
707 |
for (int j = _first_out[i]; j != last_out; ++j) { |
|
708 |
if (_forward[j]) { |
|
709 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
|
710 |
if (c >= MAX) return UNBOUNDED; |
|
711 |
_excess[i] -= c; |
|
712 |
_excess[_target[j]] += c; |
|
713 |
} |
|
714 |
} |
|
715 |
} |
|
716 |
} else { |
|
717 |
for (int i = 0; i != _root; ++i) { |
|
718 |
last_out = _first_out[i+1]; |
|
719 |
for (int j = _first_out[i]; j != last_out; ++j) { |
|
720 |
if (_forward[j] && _scost[j] < 0) { |
|
721 |
Value c = _upper[j]; |
|
722 |
if (c >= MAX) return UNBOUNDED; |
|
723 |
_excess[i] -= c; |
|
724 |
_excess[_target[j]] += c; |
|
725 |
} |
|
726 |
} |
|
727 |
} |
|
728 |
} |
|
729 |
Value ex, max_cap = 0; |
|
730 |
for (int i = 0; i != _res_node_num; ++i) { |
|
731 |
ex = _excess[i]; |
|
732 |
_excess[i] = 0; |
|
733 |
if (ex < 0) max_cap -= ex; |
|
734 |
} |
|
735 |
for (int j = 0; j != _res_arc_num; ++j) { |
|
736 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
|
451 | 737 |
} |
452 | 738 |
|
453 |
_red_cost = new ReducedCostMap(_graph, _cost, *_potential); |
|
454 |
_res_graph = new ResDigraph(_graph, _capacity, *_flow); |
|
739 |
// Initialize the large cost vector and the epsilon parameter |
|
740 |
_epsilon = 0; |
|
741 |
LargeCost lc; |
|
742 |
for (int i = 0; i != _root; ++i) { |
|
743 |
last_out = _first_out[i+1]; |
|
744 |
for (int j = _first_out[i]; j != last_out; ++j) { |
|
745 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
|
746 |
_cost[j] = lc; |
|
747 |
if (lc > _epsilon) _epsilon = lc; |
|
748 |
} |
|
749 |
} |
|
750 |
_epsilon /= _alpha; |
|
455 | 751 |
|
456 |
// Initialize the scaled cost map and the epsilon parameter |
|
457 |
Cost max_cost = 0; |
|
458 |
int node_num = countNodes(_graph); |
|
459 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
460 |
_cost[e] = LCost(_orig_cost[e]) * node_num * _alpha; |
|
461 |
if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e]; |
|
752 |
// Initialize maps for Circulation and remove non-zero lower bounds |
|
753 |
ConstMap<Arc, Value> low(0); |
|
754 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
|
755 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
|
756 |
ValueArcMap cap(_graph), flow(_graph); |
|
757 |
ValueNodeMap sup(_graph); |
|
758 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
759 |
sup[n] = _supply[_node_id[n]]; |
|
462 | 760 |
} |
463 |
|
|
761 |
if (_have_lower) { |
|
762 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
763 |
int j = _arc_idf[a]; |
|
764 |
Value c = _lower[j]; |
|
765 |
cap[a] = _upper[j] - c; |
|
766 |
sup[_graph.source(a)] -= c; |
|
767 |
sup[_graph.target(a)] += c; |
|
768 |
} |
|
769 |
} else { |
|
770 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
771 |
cap[a] = _upper[_arc_idf[a]]; |
|
772 |
} |
|
773 |
} |
|
464 | 774 |
|
465 | 775 |
// Find a feasible flow using Circulation |
466 |
Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap, |
|
467 |
SupplyMap > |
|
468 |
circulation( _graph, constMap<Arc>(Capacity(0)), _capacity, |
|
469 |
_supply ); |
|
470 |
|
|
776 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
|
777 |
circ(_graph, low, cap, sup); |
|
778 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
|
779 |
|
|
780 |
// Set residual capacities and handle GEQ supply type |
|
781 |
if (_sum_supply < 0) { |
|
782 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
783 |
Value fa = flow[a]; |
|
784 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
785 |
_res_cap[_arc_idb[a]] = fa; |
|
786 |
sup[_graph.source(a)] -= fa; |
|
787 |
sup[_graph.target(a)] += fa; |
|
788 |
} |
|
789 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
790 |
_excess[_node_id[n]] = sup[n]; |
|
791 |
} |
|
792 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
|
793 |
int u = _target[a]; |
|
794 |
int ra = _reverse[a]; |
|
795 |
_res_cap[a] = -_sum_supply + 1; |
|
796 |
_res_cap[ra] = -_excess[u]; |
|
797 |
_cost[a] = 0; |
|
798 |
_cost[ra] = 0; |
|
799 |
_excess[u] = 0; |
|
800 |
} |
|
801 |
} else { |
|
802 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
803 |
Value fa = flow[a]; |
|
804 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
805 |
_res_cap[_arc_idb[a]] = fa; |
|
806 |
} |
|
807 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
|
808 |
int ra = _reverse[a]; |
|
809 |
_res_cap[a] = 1; |
|
810 |
_res_cap[ra] = 0; |
|
811 |
_cost[a] = 0; |
|
812 |
_cost[ra] = 0; |
|
813 |
} |
|
814 |
} |
|
815 |
|
|
816 |
return OPTIMAL; |
|
817 |
} |
|
818 |
|
|
819 |
// Execute the algorithm and transform the results |
|
820 |
void start(bool partial_augment) { |
|
821 |
// Execute the algorithm |
|
822 |
if (partial_augment) { |
|
823 |
startPartialAugment(); |
|
824 |
} else { |
|
825 |
startPushRelabel(); |
|
826 |
} |
|
827 |
|
|
828 |
// Compute node potentials for the original costs |
|
829 |
_arc_vec.clear(); |
|
830 |
_cost_vec.clear(); |
|
831 |
for (int j = 0; j != _res_arc_num; ++j) { |
|
832 |
if (_res_cap[j] > 0) { |
|
833 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
834 |
_cost_vec.push_back(_scost[j]); |
|
835 |
} |
|
836 |
} |
|
837 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
838 |
|
|
839 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
|
840 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
|
841 |
bf.distMap(_pi_map); |
|
842 |
bf.init(0); |
|
843 |
bf.start(); |
|
844 |
|
|
845 |
// Handle non-zero lower bounds |
|
846 |
if (_have_lower) { |
|
847 |
int limit = _first_out[_root]; |
|
848 |
for (int j = 0; j != limit; ++j) { |
|
849 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
|
850 |
} |
|
851 |
} |
|
471 | 852 |
} |
472 | 853 |
|
473 | 854 |
/// Execute the algorithm performing partial augmentation and |
474 |
/// relabel operations. |
|
475 |
bool startPartialAugment() { |
|
855 |
/// relabel operations |
|
856 |
void startPartialAugment() { |
|
476 | 857 |
// Paramters for heuristics |
477 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
478 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
858 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
859 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
479 | 860 |
// Maximum augment path length |
480 | 861 |
const int MAX_PATH_LENGTH = 4; |
481 | 862 |
|
482 |
// Variables |
|
483 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
484 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
485 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
486 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
487 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
488 |
std::deque<Node> active_nodes; |
|
489 |
std::vector<Node> path_nodes; |
|
490 |
|
|
491 |
// int node_num = countNodes(_graph); |
|
863 |
// Perform cost scaling phases |
|
864 |
IntVector pred_arc(_res_node_num); |
|
865 |
std::vector<int> path_nodes; |
|
492 | 866 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
493 | 867 |
1 : _epsilon / _alpha ) |
494 | 868 |
{ |
495 |
/* |
|
496 | 869 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
497 | 870 |
// to check if the current flow is optimal |
498 | 871 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { |
499 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
500 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
501 |
|
|
872 |
_arc_vec.clear(); |
|
873 |
_cost_vec.clear(); |
|
874 |
for (int j = 0; j != _res_arc_num; ++j) { |
|
875 |
if (_res_cap[j] > 0) { |
|
876 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
877 |
_cost_vec.push_back(_cost[j] + 1); |
|
878 |
} |
|
879 |
} |
|
880 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
881 |
|
|
882 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
502 | 883 |
bf.init(0); |
503 | 884 |
bool done = false; |
504 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt( |
|
885 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
505 | 886 |
for (int i = 0; i < K && !done; ++i) |
506 | 887 |
done = bf.processNextWeakRound(); |
507 | 888 |
if (done) break; |
508 | 889 |
} |
509 |
|
|
890 |
|
|
510 | 891 |
// Saturate arcs not satisfying the optimality condition |
511 |
Capacity delta; |
|
512 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
513 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
514 |
delta = _capacity[e] - (*_flow)[e]; |
|
515 |
_excess[_graph.source(e)] -= delta; |
|
516 |
_excess[_graph.target(e)] += delta; |
|
517 |
(*_flow)[e] = _capacity[e]; |
|
518 |
} |
|
519 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
520 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
521 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
522 |
(*_flow)[e] = 0; |
|
892 |
for (int a = 0; a != _res_arc_num; ++a) { |
|
893 |
if (_res_cap[a] > 0 && |
|
894 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
|
895 |
Value delta = _res_cap[a]; |
|
896 |
_excess[_source[a]] -= delta; |
|
897 |
_excess[_target[a]] += delta; |
|
898 |
_res_cap[a] = 0; |
|
899 |
_res_cap[_reverse[a]] += delta; |
|
523 | 900 |
} |
524 | 901 |
} |
525 |
|
|
902 |
|
|
526 | 903 |
// Find active nodes (i.e. nodes with positive excess) |
527 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
528 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
904 |
for (int u = 0; u != _res_node_num; ++u) { |
|
905 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
529 | 906 |
} |
530 | 907 |
|
531 |
// Initialize the next arc maps |
|
532 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
533 |
next_out[n] = OutArcIt(_graph, n); |
|
534 |
next_in[n] = InArcIt(_graph, n); |
|
535 |
|
|
908 |
// Initialize the next arcs |
|
909 |
for (int u = 0; u != _res_node_num; ++u) { |
|
910 |
_next_out[u] = _first_out[u]; |
|
536 | 911 |
} |
537 | 912 |
|
538 | 913 |
// Perform partial augment and relabel operations |
539 |
while ( |
|
914 |
while (true) { |
|
540 | 915 |
// Select an active node (FIFO selection) |
541 |
if (_excess[active_nodes[0]] <= 0) { |
|
542 |
active_nodes.pop_front(); |
|
543 |
|
|
916 |
while (_active_nodes.size() > 0 && |
|
917 |
_excess[_active_nodes.front()] <= 0) { |
|
918 |
_active_nodes.pop_front(); |
|
544 | 919 |
} |
545 |
|
|
920 |
if (_active_nodes.size() == 0) break; |
|
921 |
int start = _active_nodes.front(); |
|
546 | 922 |
path_nodes.clear(); |
547 | 923 |
path_nodes.push_back(start); |
548 | 924 |
|
549 | 925 |
// Find an augmenting path from the start node |
550 |
Node u, tip = start; |
|
551 |
LCost min_red_cost; |
|
552 |
while ( _excess[tip] >= 0 && |
|
553 |
int(path_nodes.size()) <= MAX_PATH_LENGTH ) |
|
554 |
{ |
|
555 |
if (next_dir[tip]) { |
|
556 |
for (OutArcIt e = next_out[tip]; e != INVALID; ++e) { |
|
557 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
558 |
u = _graph.target(e); |
|
559 |
pred_arc[u] = e; |
|
560 |
forward[u] = true; |
|
561 |
next_out[tip] = e; |
|
562 |
tip = u; |
|
563 |
path_nodes.push_back(tip); |
|
564 |
goto next_step; |
|
565 |
} |
|
566 |
} |
|
567 |
next_dir[tip] = false; |
|
568 |
} |
|
569 |
for (InArcIt e = next_in[tip]; e != INVALID; ++e) { |
|
570 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
571 |
u = _graph.source(e); |
|
572 |
pred_arc[u] = e; |
|
573 |
forward[u] = false; |
|
574 |
|
|
926 |
int tip = start; |
|
927 |
while (_excess[tip] >= 0 && |
|
928 |
int(path_nodes.size()) <= MAX_PATH_LENGTH) { |
|
929 |
int u; |
|
930 |
LargeCost min_red_cost, rc; |
|
931 |
int last_out = _sum_supply < 0 ? |
|
932 |
_first_out[tip+1] : _first_out[tip+1] - 1; |
|
933 |
for (int a = _next_out[tip]; a != last_out; ++a) { |
|
934 |
if (_res_cap[a] > 0 && |
|
935 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
|
936 |
u = _target[a]; |
|
937 |
pred_arc[u] = a; |
|
938 |
_next_out[tip] = a; |
|
575 | 939 |
tip = u; |
576 | 940 |
path_nodes.push_back(tip); |
577 | 941 |
goto next_step; |
... | ... |
@@ -579,266 +943,186 @@ |
579 | 943 |
} |
580 | 944 |
|
581 | 945 |
// Relabel tip node |
582 |
min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
583 |
for (OutArcIt oe(_graph, tip); oe != INVALID; ++oe) { |
|
584 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
585 |
(*_red_cost)[oe] < min_red_cost ) |
|
586 |
|
|
946 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2; |
|
947 |
for (int a = _first_out[tip]; a != last_out; ++a) { |
|
948 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]]; |
|
949 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
|
950 |
min_red_cost = rc; |
|
951 |
} |
|
587 | 952 |
} |
588 |
for (InArcIt ie(_graph, tip); ie != INVALID; ++ie) { |
|
589 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
590 |
min_red_cost = -(*_red_cost)[ie]; |
|
591 |
} |
|
592 |
|
|
953 |
_pi[tip] -= min_red_cost + _epsilon; |
|
593 | 954 |
|
594 |
// Reset the next arc maps |
|
595 |
next_out[tip] = OutArcIt(_graph, tip); |
|
596 |
next_in[tip] = InArcIt(_graph, tip); |
|
597 |
next_dir[tip] = true; |
|
955 |
// Reset the next arc of tip |
|
956 |
_next_out[tip] = _first_out[tip]; |
|
598 | 957 |
|
599 | 958 |
// Step back |
600 | 959 |
if (tip != start) { |
601 | 960 |
path_nodes.pop_back(); |
602 |
tip = path_nodes |
|
961 |
tip = path_nodes.back(); |
|
603 | 962 |
} |
604 | 963 |
|
605 |
next_step: |
|
606 |
continue; |
|
964 |
next_step: ; |
|
607 | 965 |
} |
608 | 966 |
|
609 | 967 |
// Augment along the found path (as much flow as possible) |
610 |
|
|
968 |
Value delta; |
|
969 |
int u, v = path_nodes.front(), pa; |
|
611 | 970 |
for (int i = 1; i < int(path_nodes.size()); ++i) { |
612 |
u = path_nodes[i]; |
|
613 |
delta = forward[u] ? |
|
614 |
_capacity[pred_arc[u]] - (*_flow)[pred_arc[u]] : |
|
615 |
(*_flow)[pred_arc[u]]; |
|
616 |
delta = std::min(delta, _excess[path_nodes[i-1]]); |
|
617 |
(*_flow)[pred_arc[u]] += forward[u] ? delta : -delta; |
|
618 |
_excess[path_nodes[i-1]] -= delta; |
|
619 |
_excess[u] += delta; |
|
620 |
|
|
971 |
u = v; |
|
972 |
v = path_nodes[i]; |
|
973 |
pa = pred_arc[v]; |
|
974 |
delta = std::min(_res_cap[pa], _excess[u]); |
|
975 |
_res_cap[pa] -= delta; |
|
976 |
_res_cap[_reverse[pa]] += delta; |
|
977 |
_excess[u] -= delta; |
|
978 |
_excess[v] += delta; |
|
979 |
if (_excess[v] > 0 && _excess[v] <= delta) |
|
980 |
_active_nodes.push_back(v); |
|
621 | 981 |
} |
622 | 982 |
} |
623 | 983 |
} |
624 |
|
|
625 |
// Compute node potentials for the original costs |
|
626 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
627 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
628 |
bf(*_res_graph, res_cost); |
|
629 |
bf.init(0); bf.start(); |
|
630 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
631 |
(*_potential)[n] = bf.dist(n); |
|
632 |
|
|
633 |
// Handle non-zero lower bounds |
|
634 |
if (_lower) { |
|
635 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
636 |
(*_flow)[e] += (*_lower)[e]; |
|
637 |
} |
|
638 |
return true; |
|
639 | 984 |
} |
640 | 985 |
|
641 |
/// Execute the algorithm performing push and relabel operations. |
|
642 |
bool startPushRelabel() { |
|
986 |
/// Execute the algorithm performing push and relabel operations |
|
987 |
void startPushRelabel() { |
|
643 | 988 |
// Paramters for heuristics |
644 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
645 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
989 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
990 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
646 | 991 |
|
647 |
typename Digraph::template NodeMap<bool> hyper(_graph, false); |
|
648 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
649 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
650 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
651 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
652 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
653 |
std::deque<Node> active_nodes; |
|
654 |
|
|
655 |
|
|
992 |
// Perform cost scaling phases |
|
993 |
BoolVector hyper(_res_node_num, false); |
|
656 | 994 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
657 | 995 |
1 : _epsilon / _alpha ) |
658 | 996 |
{ |
659 |
/* |
|
660 | 997 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
661 | 998 |
// to check if the current flow is optimal |
662 | 999 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { |
663 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
664 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
665 |
|
|
1000 |
_arc_vec.clear(); |
|
1001 |
_cost_vec.clear(); |
|
1002 |
for (int j = 0; j != _res_arc_num; ++j) { |
|
1003 |
if (_res_cap[j] > 0) { |
|
1004 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
1005 |
_cost_vec.push_back(_cost[j] + 1); |
|
1006 |
} |
|
1007 |
} |
|
1008 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
1009 |
|
|
1010 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
666 | 1011 |
bf.init(0); |
667 | 1012 |
bool done = false; |
668 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt( |
|
1013 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
669 | 1014 |
for (int i = 0; i < K && !done; ++i) |
670 | 1015 |
done = bf.processNextWeakRound(); |
671 | 1016 |
if (done) break; |
672 | 1017 |
} |
673 |
*/ |
|
674 | 1018 |
|
675 | 1019 |
// Saturate arcs not satisfying the optimality condition |
676 |
Capacity delta; |
|
677 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
678 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
679 |
delta = _capacity[e] - (*_flow)[e]; |
|
680 |
_excess[_graph.source(e)] -= delta; |
|
681 |
_excess[_graph.target(e)] += delta; |
|
682 |
(*_flow)[e] = _capacity[e]; |
|
683 |
} |
|
684 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
685 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
686 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
687 |
(*_flow)[e] = 0; |
|
1020 |
for (int a = 0; a != _res_arc_num; ++a) { |
|
1021 |
if (_res_cap[a] > 0 && |
|
1022 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
|
1023 |
Value delta = _res_cap[a]; |
|
1024 |
_excess[_source[a]] -= delta; |
|
1025 |
_excess[_target[a]] += delta; |
|
1026 |
_res_cap[a] = 0; |
|
1027 |
_res_cap[_reverse[a]] += delta; |
|
688 | 1028 |
} |
689 | 1029 |
} |
690 | 1030 |
|
691 | 1031 |
// Find active nodes (i.e. nodes with positive excess) |
692 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
693 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
1032 |
for (int u = 0; u != _res_node_num; ++u) { |
|
1033 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
694 | 1034 |
} |
695 | 1035 |
|
696 |
// Initialize the next arc maps |
|
697 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
698 |
next_out[n] = OutArcIt(_graph, n); |
|
699 |
next_in[n] = InArcIt(_graph, n); |
|
700 |
|
|
1036 |
// Initialize the next arcs |
|
1037 |
for (int u = 0; u != _res_node_num; ++u) { |
|
1038 |
_next_out[u] = _first_out[u]; |
|
701 | 1039 |
} |
702 | 1040 |
|
703 | 1041 |
// Perform push and relabel operations |
704 |
while ( |
|
1042 |
while (_active_nodes.size() > 0) { |
|
1043 |
LargeCost min_red_cost, rc; |
|
1044 |
Value delta; |
|
1045 |
int n, t, a, last_out = _res_arc_num; |
|
1046 |
|
|
705 | 1047 |
// Select an active node (FIFO selection) |
706 |
Node n = active_nodes[0], t; |
|
707 |
bool relabel_enabled = true; |
|
1048 |
next_node: |
|
1049 |
n = _active_nodes.front(); |
|
1050 |
last_out = _sum_supply < 0 ? |
|
1051 |
_first_out[n+1] : _first_out[n+1] - 1; |
|
708 | 1052 |
|
709 | 1053 |
// Perform push operations if there are admissible arcs |
710 |
if (_excess[n] > 0 && next_dir[n]) { |
|
711 |
OutArcIt e = next_out[n]; |
|
712 |
for ( ; e != INVALID; ++e) { |
|
713 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
714 |
delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]); |
|
715 |
t = _graph.target(e); |
|
1054 |
if (_excess[n] > 0) { |
|
1055 |
for (a = _next_out[n]; a != last_out; ++a) { |
|
1056 |
if (_res_cap[a] > 0 && |
|
1057 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
|
1058 |
delta = std::min(_res_cap[a], _excess[n]); |
|
1059 |
t = _target[a]; |
|
716 | 1060 |
|
717 | 1061 |
// Push-look-ahead heuristic |
718 |
Capacity ahead = -_excess[t]; |
|
719 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) { |
|
720 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
721 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
722 |
} |
|
723 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) { |
|
724 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
725 |
ahead += (*_flow)[ie]; |
|
1062 |
Value ahead = -_excess[t]; |
|
1063 |
int last_out_t = _sum_supply < 0 ? |
|
1064 |
_first_out[t+1] : _first_out[t+1] - 1; |
|
1065 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
|
1066 |
if (_res_cap[ta] > 0 && |
|
1067 |
_cost[ta] + _pi[_source[ta]] - _pi[_target[ta]] < 0) |
|
1068 |
ahead += _res_cap[ta]; |
|
1069 |
if (ahead >= delta) break; |
|
726 | 1070 |
} |
727 | 1071 |
if (ahead < 0) ahead = 0; |
728 | 1072 |
|
729 | 1073 |
// Push flow along the arc |
730 | 1074 |
if (ahead < delta) { |
731 |
|
|
1075 |
_res_cap[a] -= ahead; |
|
1076 |
_res_cap[_reverse[a]] += ahead; |
|
732 | 1077 |
_excess[n] -= ahead; |
733 | 1078 |
_excess[t] += ahead; |
734 |
|
|
1079 |
_active_nodes.push_front(t); |
|
735 | 1080 |
hyper[t] = true; |
736 |
relabel_enabled = false; |
|
737 |
break; |
|
1081 |
_next_out[n] = a; |
|
1082 |
goto next_node; |
|
738 | 1083 |
} else { |
739 |
|
|
1084 |
_res_cap[a] -= delta; |
|
1085 |
_res_cap[_reverse[a]] += delta; |
|
740 | 1086 |
_excess[n] -= delta; |
741 | 1087 |
_excess[t] += delta; |
742 | 1088 |
if (_excess[t] > 0 && _excess[t] <= delta) |
743 |
|
|
1089 |
_active_nodes.push_back(t); |
|
744 | 1090 |
} |
745 | 1091 |
|
746 |
if (_excess[n] == 0) |
|
1092 |
if (_excess[n] == 0) { |
|
1093 |
_next_out[n] = a; |
|
1094 |
goto remove_nodes; |
|
1095 |
} |
|
747 | 1096 |
} |
748 | 1097 |
} |
749 |
if (e != INVALID) { |
|
750 |
next_out[n] = e; |
|
751 |
} else { |
|
752 |
next_dir[n] = false; |
|
753 |
} |
|
754 |
} |
|
755 |
|
|
756 |
if (_excess[n] > 0 && !next_dir[n]) { |
|
757 |
InArcIt e = next_in[n]; |
|
758 |
for ( ; e != INVALID; ++e) { |
|
759 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
760 |
delta = std::min((*_flow)[e], _excess[n]); |
|
761 |
t = _graph.source(e); |
|
762 |
|
|
763 |
// Push-look-ahead heuristic |
|
764 |
Capacity ahead = -_excess[t]; |
|
765 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) { |
|
766 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
767 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
768 |
} |
|
769 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) { |
|
770 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
771 |
ahead += (*_flow)[ie]; |
|
772 |
} |
|
773 |
if (ahead < 0) ahead = 0; |
|
774 |
|
|
775 |
// Push flow along the arc |
|
776 |
if (ahead < delta) { |
|
777 |
(*_flow)[e] -= ahead; |
|
778 |
_excess[n] -= ahead; |
|
779 |
_excess[t] += ahead; |
|
780 |
active_nodes.push_front(t); |
|
781 |
hyper[t] = true; |
|
782 |
relabel_enabled = false; |
|
783 |
break; |
|
784 |
} else { |
|
785 |
(*_flow)[e] -= delta; |
|
786 |
_excess[n] -= delta; |
|
787 |
_excess[t] += delta; |
|
788 |
if (_excess[t] > 0 && _excess[t] <= delta) |
|
789 |
active_nodes.push_back(t); |
|
790 |
} |
|
791 |
|
|
792 |
if (_excess[n] == 0) break; |
|
793 |
} |
|
794 |
} |
|
795 |
|
|
1098 |
_next_out[n] = a; |
|
796 | 1099 |
} |
797 | 1100 |
|
798 | 1101 |
// Relabel the node if it is still active (or hyper) |
799 |
if (relabel_enabled && (_excess[n] > 0 || hyper[n])) { |
|
800 |
LCost min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
801 |
for (OutArcIt oe(_graph, n); oe != INVALID; ++oe) { |
|
802 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
803 |
(*_red_cost)[oe] < min_red_cost ) |
|
804 |
min_red_cost = (*_red_cost)[oe]; |
|
1102 |
if (_excess[n] > 0 || hyper[n]) { |
|
1103 |
min_red_cost = std::numeric_limits<LargeCost>::max() / 2; |
|
1104 |
for (int a = _first_out[n]; a != last_out; ++a) { |
|
1105 |
rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]]; |
|
1106 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
|
1107 |
min_red_cost = rc; |
|
1108 |
} |
|
805 | 1109 |
} |
806 |
for (InArcIt ie(_graph, n); ie != INVALID; ++ie) { |
|
807 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
808 |
min_red_cost = -(*_red_cost)[ie]; |
|
809 |
} |
|
810 |
|
|
1110 |
_pi[n] -= min_red_cost + _epsilon; |
|
811 | 1111 |
hyper[n] = false; |
812 | 1112 |
|
813 |
// Reset the next arc maps |
|
814 |
next_out[n] = OutArcIt(_graph, n); |
|
815 |
next_in[n] = InArcIt(_graph, n); |
|
816 |
next_dir[n] = true; |
|
1113 |
// Reset the next arc |
|
1114 |
_next_out[n] = _first_out[n]; |
|
817 | 1115 |
} |
818 |
|
|
1116 |
|
|
819 | 1117 |
// Remove nodes that are not active nor hyper |
820 |
while ( active_nodes.size() > 0 && |
|
821 |
_excess[active_nodes[0]] <= 0 && |
|
822 |
!hyper[active_nodes[0]] ) { |
|
823 |
active_nodes.pop_front(); |
|
1118 |
remove_nodes: |
|
1119 |
while ( _active_nodes.size() > 0 && |
|
1120 |
_excess[_active_nodes.front()] <= 0 && |
|
1121 |
!hyper[_active_nodes.front()] ) { |
|
1122 |
_active_nodes.pop_front(); |
|
824 | 1123 |
} |
825 | 1124 |
} |
826 | 1125 |
} |
827 |
|
|
828 |
// Compute node potentials for the original costs |
|
829 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
830 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
831 |
bf(*_res_graph, res_cost); |
|
832 |
bf.init(0); bf.start(); |
|
833 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
834 |
(*_potential)[n] = bf.dist(n); |
|
835 |
|
|
836 |
// Handle non-zero lower bounds |
|
837 |
if (_lower) { |
|
838 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
839 |
(*_flow)[e] += (*_lower)[e]; |
|
840 |
} |
|
841 |
return true; |
|
842 | 1126 |
} |
843 | 1127 |
|
844 | 1128 |
}; //class CostScaling |
0 comments (0 inline)