0
1
1
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_COST_SCALING_H |
|
20 |
#define LEMON_COST_SCALING_H |
|
21 |
|
|
22 |
/// \ingroup min_cost_flow_algs |
|
23 |
/// \file |
|
24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <deque> |
|
28 |
#include <limits> |
|
29 |
|
|
30 |
#include <lemon/core.h> |
|
31 |
#include <lemon/maps.h> |
|
32 |
#include <lemon/math.h> |
|
33 |
#include <lemon/adaptors.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/bellman_ford.h> |
|
36 |
|
|
37 |
namespace lemon { |
|
38 |
|
|
39 |
/// \addtogroup min_cost_flow_algs |
|
40 |
/// @{ |
|
41 |
|
|
42 |
/// \brief Implementation of the cost scaling algorithm for finding a |
|
43 |
/// minimum cost flow. |
|
44 |
/// |
|
45 |
/// \ref CostScaling implements the cost scaling algorithm performing |
|
46 |
/// augment/push and relabel operations for finding a minimum cost |
|
47 |
/// flow. |
|
48 |
/// |
|
49 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
50 |
/// \tparam LowerMap The type of the lower bound map. |
|
51 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
52 |
/// \tparam CostMap The type of the cost (length) map. |
|
53 |
/// \tparam SupplyMap The type of the supply map. |
|
54 |
/// |
|
55 |
/// \warning |
|
56 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
57 |
/// - Supply values should be \e signed \e integers. |
|
58 |
/// - The value types of the maps should be convertible to each other. |
|
59 |
/// - \c CostMap::Value must be signed type. |
|
60 |
/// |
|
61 |
/// \note Arc costs are multiplied with the number of nodes during |
|
62 |
/// the algorithm so overflow problems may arise more easily than with |
|
63 |
/// other minimum cost flow algorithms. |
|
64 |
/// If it is available, <tt>long long int</tt> type is used instead of |
|
65 |
/// <tt>long int</tt> in the inside computations. |
|
66 |
/// |
|
67 |
/// \author Peter Kovacs |
|
68 |
template < typename Digraph, |
|
69 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
70 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
71 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
72 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
73 |
class CostScaling |
|
74 |
{ |
|
75 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
76 |
|
|
77 |
typedef typename CapacityMap::Value Capacity; |
|
78 |
typedef typename CostMap::Value Cost; |
|
79 |
typedef typename SupplyMap::Value Supply; |
|
80 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
81 |
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap; |
|
82 |
|
|
83 |
typedef ResidualDigraph< const Digraph, |
|
84 |
CapacityArcMap, CapacityArcMap > ResDigraph; |
|
85 |
typedef typename ResDigraph::Arc ResArc; |
|
86 |
|
|
87 |
#if defined __GNUC__ && !defined __STRICT_ANSI__ |
|
88 |
typedef long long int LCost; |
|
89 |
#else |
|
90 |
typedef long int LCost; |
|
91 |
#endif |
|
92 |
typedef typename Digraph::template ArcMap<LCost> LargeCostMap; |
|
93 |
|
|
94 |
public: |
|
95 |
|
|
96 |
/// The type of the flow map. |
|
97 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
98 |
/// The type of the potential map. |
|
99 |
typedef typename Digraph::template NodeMap<LCost> PotentialMap; |
|
100 |
|
|
101 |
private: |
|
102 |
|
|
103 |
/// \brief Map adaptor class for handling residual arc costs. |
|
104 |
/// |
|
105 |
/// Map adaptor class for handling residual arc costs. |
|
106 |
template <typename Map> |
|
107 |
class ResidualCostMap : public MapBase<ResArc, typename Map::Value> |
|
108 |
{ |
|
109 |
private: |
|
110 |
|
|
111 |
const Map &_cost_map; |
|
112 |
|
|
113 |
public: |
|
114 |
|
|
115 |
///\e |
|
116 |
ResidualCostMap(const Map &cost_map) : |
|
117 |
_cost_map(cost_map) {} |
|
118 |
|
|
119 |
///\e |
|
120 |
inline typename Map::Value operator[](const ResArc &e) const { |
|
121 |
return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
|
122 |
} |
|
123 |
|
|
124 |
}; //class ResidualCostMap |
|
125 |
|
|
126 |
/// \brief Map adaptor class for handling reduced arc costs. |
|
127 |
/// |
|
128 |
/// Map adaptor class for handling reduced arc costs. |
|
129 |
class ReducedCostMap : public MapBase<Arc, LCost> |
|
130 |
{ |
|
131 |
private: |
|
132 |
|
|
133 |
const Digraph &_gr; |
|
134 |
const LargeCostMap &_cost_map; |
|
135 |
const PotentialMap &_pot_map; |
|
136 |
|
|
137 |
public: |
|
138 |
|
|
139 |
///\e |
|
140 |
ReducedCostMap( const Digraph &gr, |
|
141 |
const LargeCostMap &cost_map, |
|
142 |
const PotentialMap &pot_map ) : |
|
143 |
_gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} |
|
144 |
|
|
145 |
///\e |
|
146 |
inline LCost operator[](const Arc &e) const { |
|
147 |
return _cost_map[e] + _pot_map[_gr.source(e)] |
|
148 |
- _pot_map[_gr.target(e)]; |
|
149 |
} |
|
150 |
|
|
151 |
}; //class ReducedCostMap |
|
152 |
|
|
153 |
private: |
|
154 |
|
|
155 |
// The digraph the algorithm runs on |
|
156 |
const Digraph &_graph; |
|
157 |
// The original lower bound map |
|
158 |
const LowerMap *_lower; |
|
159 |
// The modified capacity map |
|
160 |
CapacityArcMap _capacity; |
|
161 |
// The original cost map |
|
162 |
const CostMap &_orig_cost; |
|
163 |
// The scaled cost map |
|
164 |
LargeCostMap _cost; |
|
165 |
// The modified supply map |
|
166 |
SupplyNodeMap _supply; |
|
167 |
bool _valid_supply; |
|
168 |
|
|
169 |
// Arc map of the current flow |
|
170 |
FlowMap *_flow; |
|
171 |
bool _local_flow; |
|
172 |
// Node map of the current potentials |
|
173 |
PotentialMap *_potential; |
|
174 |
bool _local_potential; |
|
175 |
|
|
176 |
// The residual cost map |
|
177 |
ResidualCostMap<LargeCostMap> _res_cost; |
|
178 |
// The residual digraph |
|
179 |
ResDigraph *_res_graph; |
|
180 |
// The reduced cost map |
|
181 |
ReducedCostMap *_red_cost; |
|
182 |
// The excess map |
|
183 |
SupplyNodeMap _excess; |
|
184 |
// The epsilon parameter used for cost scaling |
|
185 |
LCost _epsilon; |
|
186 |
// The scaling factor |
|
187 |
int _alpha; |
|
188 |
|
|
189 |
public: |
|
190 |
|
|
191 |
/// \brief General constructor (with lower bounds). |
|
192 |
/// |
|
193 |
/// General constructor (with lower bounds). |
|
194 |
/// |
|
195 |
/// \param digraph The digraph the algorithm runs on. |
|
196 |
/// \param lower The lower bounds of the arcs. |
|
197 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
198 |
/// \param cost The cost (length) values of the arcs. |
|
199 |
/// \param supply The supply values of the nodes (signed). |
|
200 |
CostScaling( const Digraph &digraph, |
|
201 |
const LowerMap &lower, |
|
202 |
const CapacityMap &capacity, |
|
203 |
const CostMap &cost, |
|
204 |
const SupplyMap &supply ) : |
|
205 |
_graph(digraph), _lower(&lower), _capacity(digraph), _orig_cost(cost), |
|
206 |
_cost(digraph), _supply(digraph), _flow(NULL), _local_flow(false), |
|
207 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
208 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
209 |
{ |
|
210 |
// Check the sum of supply values |
|
211 |
Supply sum = 0; |
|
212 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
213 |
_valid_supply = sum == 0; |
|
214 |
|
|
215 |
for (ArcIt e(_graph); e != INVALID; ++e) _capacity[e] = capacity[e]; |
|
216 |
for (NodeIt n(_graph); n != INVALID; ++n) _supply[n] = supply[n]; |
|
217 |
|
|
218 |
// Remove non-zero lower bounds |
|
219 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
220 |
if (lower[e] != 0) { |
|
221 |
_capacity[e] -= lower[e]; |
|
222 |
_supply[_graph.source(e)] -= lower[e]; |
|
223 |
_supply[_graph.target(e)] += lower[e]; |
|
224 |
} |
|
225 |
} |
|
226 |
} |
|
227 |
/* |
|
228 |
/// \brief General constructor (without lower bounds). |
|
229 |
/// |
|
230 |
/// General constructor (without lower bounds). |
|
231 |
/// |
|
232 |
/// \param digraph The digraph the algorithm runs on. |
|
233 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
234 |
/// \param cost The cost (length) values of the arcs. |
|
235 |
/// \param supply The supply values of the nodes (signed). |
|
236 |
CostScaling( const Digraph &digraph, |
|
237 |
const CapacityMap &capacity, |
|
238 |
const CostMap &cost, |
|
239 |
const SupplyMap &supply ) : |
|
240 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
241 |
_cost(digraph), _supply(supply), _flow(NULL), _local_flow(false), |
|
242 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
243 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
244 |
{ |
|
245 |
// Check the sum of supply values |
|
246 |
Supply sum = 0; |
|
247 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
248 |
_valid_supply = sum == 0; |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Simple constructor (with lower bounds). |
|
252 |
/// |
|
253 |
/// Simple constructor (with lower bounds). |
|
254 |
/// |
|
255 |
/// \param digraph The digraph the algorithm runs on. |
|
256 |
/// \param lower The lower bounds of the arcs. |
|
257 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
258 |
/// \param cost The cost (length) values of the arcs. |
|
259 |
/// \param s The source node. |
|
260 |
/// \param t The target node. |
|
261 |
/// \param flow_value The required amount of flow from node \c s |
|
262 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
263 |
CostScaling( const Digraph &digraph, |
|
264 |
const LowerMap &lower, |
|
265 |
const CapacityMap &capacity, |
|
266 |
const CostMap &cost, |
|
267 |
Node s, Node t, |
|
268 |
Supply flow_value ) : |
|
269 |
_graph(digraph), _lower(&lower), _capacity(capacity), _orig_cost(cost), |
|
270 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
271 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
272 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
273 |
{ |
|
274 |
// Remove non-zero lower bounds |
|
275 |
_supply[s] = flow_value; |
|
276 |
_supply[t] = -flow_value; |
|
277 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
278 |
if (lower[e] != 0) { |
|
279 |
_capacity[e] -= lower[e]; |
|
280 |
_supply[_graph.source(e)] -= lower[e]; |
|
281 |
_supply[_graph.target(e)] += lower[e]; |
|
282 |
} |
|
283 |
} |
|
284 |
_valid_supply = true; |
|
285 |
} |
|
286 |
|
|
287 |
/// \brief Simple constructor (without lower bounds). |
|
288 |
/// |
|
289 |
/// Simple constructor (without lower bounds). |
|
290 |
/// |
|
291 |
/// \param digraph The digraph the algorithm runs on. |
|
292 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
293 |
/// \param cost The cost (length) values of the arcs. |
|
294 |
/// \param s The source node. |
|
295 |
/// \param t The target node. |
|
296 |
/// \param flow_value The required amount of flow from node \c s |
|
297 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
298 |
CostScaling( const Digraph &digraph, |
|
299 |
const CapacityMap &capacity, |
|
300 |
const CostMap &cost, |
|
301 |
Node s, Node t, |
|
302 |
Supply flow_value ) : |
|
303 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
304 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
305 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
306 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
307 |
{ |
|
308 |
_supply[s] = flow_value; |
|
309 |
_supply[t] = -flow_value; |
|
310 |
_valid_supply = true; |
|
311 |
} |
|
312 |
*/ |
|
313 |
/// Destructor. |
|
314 |
~CostScaling() { |
|
315 |
if (_local_flow) delete _flow; |
|
316 |
if (_local_potential) delete _potential; |
|
317 |
delete _res_graph; |
|
318 |
delete _red_cost; |
|
319 |
} |
|
320 |
|
|
321 |
/// \brief Set the flow map. |
|
322 |
/// |
|
323 |
/// Set the flow map. |
|
324 |
/// |
|
325 |
/// \return \c (*this) |
|
326 |
CostScaling& flowMap(FlowMap &map) { |
|
327 |
if (_local_flow) { |
|
328 |
delete _flow; |
|
329 |
_local_flow = false; |
|
330 |
} |
|
331 |
_flow = ↦ |
|
332 |
return *this; |
|
333 |
} |
|
334 |
|
|
335 |
/// \brief Set the potential map. |
|
336 |
/// |
|
337 |
/// Set the potential map. |
|
338 |
/// |
|
339 |
/// \return \c (*this) |
|
340 |
CostScaling& potentialMap(PotentialMap &map) { |
|
341 |
if (_local_potential) { |
|
342 |
delete _potential; |
|
343 |
_local_potential = false; |
|
344 |
} |
|
345 |
_potential = ↦ |
|
346 |
return *this; |
|
347 |
} |
|
348 |
|
|
349 |
/// \name Execution control |
|
350 |
|
|
351 |
/// @{ |
|
352 |
|
|
353 |
/// \brief Run the algorithm. |
|
354 |
/// |
|
355 |
/// Run the algorithm. |
|
356 |
/// |
|
357 |
/// \param partial_augment By default the algorithm performs |
|
358 |
/// partial augment and relabel operations in the cost scaling |
|
359 |
/// phases. Set this parameter to \c false for using local push and |
|
360 |
/// relabel operations instead. |
|
361 |
/// |
|
362 |
/// \return \c true if a feasible flow can be found. |
|
363 |
bool run(bool partial_augment = true) { |
|
364 |
if (partial_augment) { |
|
365 |
return init() && startPartialAugment(); |
|
366 |
} else { |
|
367 |
return init() && startPushRelabel(); |
|
368 |
} |
|
369 |
} |
|
370 |
|
|
371 |
/// @} |
|
372 |
|
|
373 |
/// \name Query Functions |
|
374 |
/// The result of the algorithm can be obtained using these |
|
375 |
/// functions.\n |
|
376 |
/// \ref lemon::CostScaling::run() "run()" must be called before |
|
377 |
/// using them. |
|
378 |
|
|
379 |
/// @{ |
|
380 |
|
|
381 |
/// \brief Return a const reference to the arc map storing the |
|
382 |
/// found flow. |
|
383 |
/// |
|
384 |
/// Return a const reference to the arc map storing the found flow. |
|
385 |
/// |
|
386 |
/// \pre \ref run() must be called before using this function. |
|
387 |
const FlowMap& flowMap() const { |
|
388 |
return *_flow; |
|
389 |
} |
|
390 |
|
|
391 |
/// \brief Return a const reference to the node map storing the |
|
392 |
/// found potentials (the dual solution). |
|
393 |
/// |
|
394 |
/// Return a const reference to the node map storing the found |
|
395 |
/// potentials (the dual solution). |
|
396 |
/// |
|
397 |
/// \pre \ref run() must be called before using this function. |
|
398 |
const PotentialMap& potentialMap() const { |
|
399 |
return *_potential; |
|
400 |
} |
|
401 |
|
|
402 |
/// \brief Return the flow on the given arc. |
|
403 |
/// |
|
404 |
/// Return the flow on the given arc. |
|
405 |
/// |
|
406 |
/// \pre \ref run() must be called before using this function. |
|
407 |
Capacity flow(const Arc& arc) const { |
|
408 |
return (*_flow)[arc]; |
|
409 |
} |
|
410 |
|
|
411 |
/// \brief Return the potential of the given node. |
|
412 |
/// |
|
413 |
/// Return the potential of the given node. |
|
414 |
/// |
|
415 |
/// \pre \ref run() must be called before using this function. |
|
416 |
Cost potential(const Node& node) const { |
|
417 |
return (*_potential)[node]; |
|
418 |
} |
|
419 |
|
|
420 |
/// \brief Return the total cost of the found flow. |
|
421 |
/// |
|
422 |
/// Return the total cost of the found flow. The complexity of the |
|
423 |
/// function is \f$ O(e) \f$. |
|
424 |
/// |
|
425 |
/// \pre \ref run() must be called before using this function. |
|
426 |
Cost totalCost() const { |
|
427 |
Cost c = 0; |
|
428 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
429 |
c += (*_flow)[e] * _orig_cost[e]; |
|
430 |
return c; |
|
431 |
} |
|
432 |
|
|
433 |
/// @} |
|
434 |
|
|
435 |
private: |
|
436 |
|
|
437 |
/// Initialize the algorithm. |
|
438 |
bool init() { |
|
439 |
if (!_valid_supply) return false; |
|
440 |
// The scaling factor |
|
441 |
_alpha = 8; |
|
442 |
|
|
443 |
// Initialize flow and potential maps |
|
444 |
if (!_flow) { |
|
445 |
_flow = new FlowMap(_graph); |
|
446 |
_local_flow = true; |
|
447 |
} |
|
448 |
if (!_potential) { |
|
449 |
_potential = new PotentialMap(_graph); |
|
450 |
_local_potential = true; |
|
451 |
} |
|
452 |
|
|
453 |
_red_cost = new ReducedCostMap(_graph, _cost, *_potential); |
|
454 |
_res_graph = new ResDigraph(_graph, _capacity, *_flow); |
|
455 |
|
|
456 |
// Initialize the scaled cost map and the epsilon parameter |
|
457 |
Cost max_cost = 0; |
|
458 |
int node_num = countNodes(_graph); |
|
459 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
460 |
_cost[e] = LCost(_orig_cost[e]) * node_num * _alpha; |
|
461 |
if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e]; |
|
462 |
} |
|
463 |
_epsilon = max_cost * node_num; |
|
464 |
|
|
465 |
// Find a feasible flow using Circulation |
|
466 |
Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap, |
|
467 |
SupplyMap > |
|
468 |
circulation( _graph, constMap<Arc>(Capacity(0)), _capacity, |
|
469 |
_supply ); |
|
470 |
return circulation.flowMap(*_flow).run(); |
|
471 |
} |
|
472 |
|
|
473 |
/// Execute the algorithm performing partial augmentation and |
|
474 |
/// relabel operations. |
|
475 |
bool startPartialAugment() { |
|
476 |
// Paramters for heuristics |
|
477 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
478 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
479 |
// Maximum augment path length |
|
480 |
const int MAX_PATH_LENGTH = 4; |
|
481 |
|
|
482 |
// Variables |
|
483 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
484 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
485 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
486 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
487 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
488 |
std::deque<Node> active_nodes; |
|
489 |
std::vector<Node> path_nodes; |
|
490 |
|
|
491 |
// int node_num = countNodes(_graph); |
|
492 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
493 |
1 : _epsilon / _alpha ) |
|
494 |
{ |
|
495 |
/* |
|
496 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
497 |
// to check if the current flow is optimal |
|
498 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { |
|
499 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
500 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
501 |
BellmanFord<ResDigraph, ShiftCostMap> bf(*_res_graph, shift_cost); |
|
502 |
bf.init(0); |
|
503 |
bool done = false; |
|
504 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num)); |
|
505 |
for (int i = 0; i < K && !done; ++i) |
|
506 |
done = bf.processNextWeakRound(); |
|
507 |
if (done) break; |
|
508 |
} |
|
509 |
*/ |
|
510 |
// Saturate arcs not satisfying the optimality condition |
|
511 |
Capacity delta; |
|
512 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
513 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
514 |
delta = _capacity[e] - (*_flow)[e]; |
|
515 |
_excess[_graph.source(e)] -= delta; |
|
516 |
_excess[_graph.target(e)] += delta; |
|
517 |
(*_flow)[e] = _capacity[e]; |
|
518 |
} |
|
519 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
520 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
521 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
522 |
(*_flow)[e] = 0; |
|
523 |
} |
|
524 |
} |
|
525 |
|
|
526 |
// Find active nodes (i.e. nodes with positive excess) |
|
527 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
528 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
529 |
} |
|
530 |
|
|
531 |
// Initialize the next arc maps |
|
532 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
533 |
next_out[n] = OutArcIt(_graph, n); |
|
534 |
next_in[n] = InArcIt(_graph, n); |
|
535 |
next_dir[n] = true; |
|
536 |
} |
|
537 |
|
|
538 |
// Perform partial augment and relabel operations |
|
539 |
while (active_nodes.size() > 0) { |
|
540 |
// Select an active node (FIFO selection) |
|
541 |
if (_excess[active_nodes[0]] <= 0) { |
|
542 |
active_nodes.pop_front(); |
|
543 |
continue; |
|
544 |
} |
|
545 |
Node start = active_nodes[0]; |
|
546 |
path_nodes.clear(); |
|
547 |
path_nodes.push_back(start); |
|
548 |
|
|
549 |
// Find an augmenting path from the start node |
|
550 |
Node u, tip = start; |
|
551 |
LCost min_red_cost; |
|
552 |
while ( _excess[tip] >= 0 && |
|
553 |
int(path_nodes.size()) <= MAX_PATH_LENGTH ) |
|
554 |
{ |
|
555 |
if (next_dir[tip]) { |
|
556 |
for (OutArcIt e = next_out[tip]; e != INVALID; ++e) { |
|
557 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
558 |
u = _graph.target(e); |
|
559 |
pred_arc[u] = e; |
|
560 |
forward[u] = true; |
|
561 |
next_out[tip] = e; |
|
562 |
tip = u; |
|
563 |
path_nodes.push_back(tip); |
|
564 |
goto next_step; |
|
565 |
} |
|
566 |
} |
|
567 |
next_dir[tip] = false; |
|
568 |
} |
|
569 |
for (InArcIt e = next_in[tip]; e != INVALID; ++e) { |
|
570 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
571 |
u = _graph.source(e); |
|
572 |
pred_arc[u] = e; |
|
573 |
forward[u] = false; |
|
574 |
next_in[tip] = e; |
|
575 |
tip = u; |
|
576 |
path_nodes.push_back(tip); |
|
577 |
goto next_step; |
|
578 |
} |
|
579 |
} |
|
580 |
|
|
581 |
// Relabel tip node |
|
582 |
min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
583 |
for (OutArcIt oe(_graph, tip); oe != INVALID; ++oe) { |
|
584 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
585 |
(*_red_cost)[oe] < min_red_cost ) |
|
586 |
min_red_cost = (*_red_cost)[oe]; |
|
587 |
} |
|
588 |
for (InArcIt ie(_graph, tip); ie != INVALID; ++ie) { |
|
589 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
590 |
min_red_cost = -(*_red_cost)[ie]; |
|
591 |
} |
|
592 |
(*_potential)[tip] -= min_red_cost + _epsilon; |
|
593 |
|
|
594 |
// Reset the next arc maps |
|
595 |
next_out[tip] = OutArcIt(_graph, tip); |
|
596 |
next_in[tip] = InArcIt(_graph, tip); |
|
597 |
next_dir[tip] = true; |
|
598 |
|
|
599 |
// Step back |
|
600 |
if (tip != start) { |
|
601 |
path_nodes.pop_back(); |
|
602 |
tip = path_nodes[path_nodes.size()-1]; |
|
603 |
} |
|
604 |
|
|
605 |
next_step: |
|
606 |
continue; |
|
607 |
} |
|
608 |
|
|
609 |
// Augment along the found path (as much flow as possible) |
|
610 |
Capacity delta; |
|
611 |
for (int i = 1; i < int(path_nodes.size()); ++i) { |
|
612 |
u = path_nodes[i]; |
|
613 |
delta = forward[u] ? |
|
614 |
_capacity[pred_arc[u]] - (*_flow)[pred_arc[u]] : |
|
615 |
(*_flow)[pred_arc[u]]; |
|
616 |
delta = std::min(delta, _excess[path_nodes[i-1]]); |
|
617 |
(*_flow)[pred_arc[u]] += forward[u] ? delta : -delta; |
|
618 |
_excess[path_nodes[i-1]] -= delta; |
|
619 |
_excess[u] += delta; |
|
620 |
if (_excess[u] > 0 && _excess[u] <= delta) active_nodes.push_back(u); |
|
621 |
} |
|
622 |
} |
|
623 |
} |
|
624 |
|
|
625 |
// Compute node potentials for the original costs |
|
626 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
627 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
628 |
bf(*_res_graph, res_cost); |
|
629 |
bf.init(0); bf.start(); |
|
630 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
631 |
(*_potential)[n] = bf.dist(n); |
|
632 |
|
|
633 |
// Handle non-zero lower bounds |
|
634 |
if (_lower) { |
|
635 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
636 |
(*_flow)[e] += (*_lower)[e]; |
|
637 |
} |
|
638 |
return true; |
|
639 |
} |
|
640 |
|
|
641 |
/// Execute the algorithm performing push and relabel operations. |
|
642 |
bool startPushRelabel() { |
|
643 |
// Paramters for heuristics |
|
644 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
645 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
646 |
|
|
647 |
typename Digraph::template NodeMap<bool> hyper(_graph, false); |
|
648 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
649 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
650 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
651 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
652 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
653 |
std::deque<Node> active_nodes; |
|
654 |
|
|
655 |
// int node_num = countNodes(_graph); |
|
656 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
657 |
1 : _epsilon / _alpha ) |
|
658 |
{ |
|
659 |
/* |
|
660 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
661 |
// to check if the current flow is optimal |
|
662 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { |
|
663 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
664 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
665 |
BellmanFord<ResDigraph, ShiftCostMap> bf(*_res_graph, shift_cost); |
|
666 |
bf.init(0); |
|
667 |
bool done = false; |
|
668 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num)); |
|
669 |
for (int i = 0; i < K && !done; ++i) |
|
670 |
done = bf.processNextWeakRound(); |
|
671 |
if (done) break; |
|
672 |
} |
|
673 |
*/ |
|
674 |
|
|
675 |
// Saturate arcs not satisfying the optimality condition |
|
676 |
Capacity delta; |
|
677 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
678 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
679 |
delta = _capacity[e] - (*_flow)[e]; |
|
680 |
_excess[_graph.source(e)] -= delta; |
|
681 |
_excess[_graph.target(e)] += delta; |
|
682 |
(*_flow)[e] = _capacity[e]; |
|
683 |
} |
|
684 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
685 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
686 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
687 |
(*_flow)[e] = 0; |
|
688 |
} |
|
689 |
} |
|
690 |
|
|
691 |
// Find active nodes (i.e. nodes with positive excess) |
|
692 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
693 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
694 |
} |
|
695 |
|
|
696 |
// Initialize the next arc maps |
|
697 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
698 |
next_out[n] = OutArcIt(_graph, n); |
|
699 |
next_in[n] = InArcIt(_graph, n); |
|
700 |
next_dir[n] = true; |
|
701 |
} |
|
702 |
|
|
703 |
// Perform push and relabel operations |
|
704 |
while (active_nodes.size() > 0) { |
|
705 |
// Select an active node (FIFO selection) |
|
706 |
Node n = active_nodes[0], t; |
|
707 |
bool relabel_enabled = true; |
|
708 |
|
|
709 |
// Perform push operations if there are admissible arcs |
|
710 |
if (_excess[n] > 0 && next_dir[n]) { |
|
711 |
OutArcIt e = next_out[n]; |
|
712 |
for ( ; e != INVALID; ++e) { |
|
713 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { |
|
714 |
delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]); |
|
715 |
t = _graph.target(e); |
|
716 |
|
|
717 |
// Push-look-ahead heuristic |
|
718 |
Capacity ahead = -_excess[t]; |
|
719 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) { |
|
720 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
721 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
722 |
} |
|
723 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) { |
|
724 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
725 |
ahead += (*_flow)[ie]; |
|
726 |
} |
|
727 |
if (ahead < 0) ahead = 0; |
|
728 |
|
|
729 |
// Push flow along the arc |
|
730 |
if (ahead < delta) { |
|
731 |
(*_flow)[e] += ahead; |
|
732 |
_excess[n] -= ahead; |
|
733 |
_excess[t] += ahead; |
|
734 |
active_nodes.push_front(t); |
|
735 |
hyper[t] = true; |
|
736 |
relabel_enabled = false; |
|
737 |
break; |
|
738 |
} else { |
|
739 |
(*_flow)[e] += delta; |
|
740 |
_excess[n] -= delta; |
|
741 |
_excess[t] += delta; |
|
742 |
if (_excess[t] > 0 && _excess[t] <= delta) |
|
743 |
active_nodes.push_back(t); |
|
744 |
} |
|
745 |
|
|
746 |
if (_excess[n] == 0) break; |
|
747 |
} |
|
748 |
} |
|
749 |
if (e != INVALID) { |
|
750 |
next_out[n] = e; |
|
751 |
} else { |
|
752 |
next_dir[n] = false; |
|
753 |
} |
|
754 |
} |
|
755 |
|
|
756 |
if (_excess[n] > 0 && !next_dir[n]) { |
|
757 |
InArcIt e = next_in[n]; |
|
758 |
for ( ; e != INVALID; ++e) { |
|
759 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { |
|
760 |
delta = std::min((*_flow)[e], _excess[n]); |
|
761 |
t = _graph.source(e); |
|
762 |
|
|
763 |
// Push-look-ahead heuristic |
|
764 |
Capacity ahead = -_excess[t]; |
|
765 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) { |
|
766 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
767 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
768 |
} |
|
769 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) { |
|
770 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
771 |
ahead += (*_flow)[ie]; |
|
772 |
} |
|
773 |
if (ahead < 0) ahead = 0; |
|
774 |
|
|
775 |
// Push flow along the arc |
|
776 |
if (ahead < delta) { |
|
777 |
(*_flow)[e] -= ahead; |
|
778 |
_excess[n] -= ahead; |
|
779 |
_excess[t] += ahead; |
|
780 |
active_nodes.push_front(t); |
|
781 |
hyper[t] = true; |
|
782 |
relabel_enabled = false; |
|
783 |
break; |
|
784 |
} else { |
|
785 |
(*_flow)[e] -= delta; |
|
786 |
_excess[n] -= delta; |
|
787 |
_excess[t] += delta; |
|
788 |
if (_excess[t] > 0 && _excess[t] <= delta) |
|
789 |
active_nodes.push_back(t); |
|
790 |
} |
|
791 |
|
|
792 |
if (_excess[n] == 0) break; |
|
793 |
} |
|
794 |
} |
|
795 |
next_in[n] = e; |
|
796 |
} |
|
797 |
|
|
798 |
// Relabel the node if it is still active (or hyper) |
|
799 |
if (relabel_enabled && (_excess[n] > 0 || hyper[n])) { |
|
800 |
LCost min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
801 |
for (OutArcIt oe(_graph, n); oe != INVALID; ++oe) { |
|
802 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
803 |
(*_red_cost)[oe] < min_red_cost ) |
|
804 |
min_red_cost = (*_red_cost)[oe]; |
|
805 |
} |
|
806 |
for (InArcIt ie(_graph, n); ie != INVALID; ++ie) { |
|
807 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
808 |
min_red_cost = -(*_red_cost)[ie]; |
|
809 |
} |
|
810 |
(*_potential)[n] -= min_red_cost + _epsilon; |
|
811 |
hyper[n] = false; |
|
812 |
|
|
813 |
// Reset the next arc maps |
|
814 |
next_out[n] = OutArcIt(_graph, n); |
|
815 |
next_in[n] = InArcIt(_graph, n); |
|
816 |
next_dir[n] = true; |
|
817 |
} |
|
818 |
|
|
819 |
// Remove nodes that are not active nor hyper |
|
820 |
while ( active_nodes.size() > 0 && |
|
821 |
_excess[active_nodes[0]] <= 0 && |
|
822 |
!hyper[active_nodes[0]] ) { |
|
823 |
active_nodes.pop_front(); |
|
824 |
} |
|
825 |
} |
|
826 |
} |
|
827 |
|
|
828 |
// Compute node potentials for the original costs |
|
829 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
830 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
831 |
bf(*_res_graph, res_cost); |
|
832 |
bf.init(0); bf.start(); |
|
833 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
834 |
(*_potential)[n] = bf.dist(n); |
|
835 |
|
|
836 |
// Handle non-zero lower bounds |
|
837 |
if (_lower) { |
|
838 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
839 |
(*_flow)[e] += (*_lower)[e]; |
|
840 |
} |
|
841 |
return true; |
|
842 |
} |
|
843 |
|
|
844 |
}; //class CostScaling |
|
845 |
|
|
846 |
///@} |
|
847 |
|
|
848 |
} //namespace lemon |
|
849 |
|
|
850 |
#endif //LEMON_COST_SCALING_H |
0 comments (0 inline)