0
105
25
1165
1316
352
590
2755
22
8
17
15
1
174
76
20
10
66
42
84
83
110
110
167
140
12
3
2
28
14
14
1
3
2
174
173
345
325
119
57
10
10
4
3
35
2
80
81
73
65
2
9
20
16
125
118
72
56
37
1
8
7
95
97
35
39
27
10
273
218
2
2
65
51
1319
68
568
367
2
2
318
186
4
4
30
12
184
179
176
170
15
2
359
115
132
1
96
10
623
8
252
160
| 1 |
%!PS-Adobe-2.0 EPSF-2.0 |
|
| 2 |
%%Creator: LEMON, graphToEps() |
|
| 3 |
%%CreationDate: Sun Mar 14 09:08:34 2010 |
|
| 4 |
%%BoundingBox: -353 -264 559 292 |
|
| 5 |
%%EndComments |
|
| 6 |
/lb { setlinewidth setrgbcolor newpath moveto
|
|
| 7 |
4 2 roll 1 index 1 index curveto stroke } bind def |
|
| 8 |
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def
|
|
| 9 |
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def
|
|
| 10 |
/sq { newpath 2 index 1 index add 2 index 2 index add moveto
|
|
| 11 |
2 index 1 index sub 2 index 2 index add lineto |
|
| 12 |
2 index 1 index sub 2 index 2 index sub lineto |
|
| 13 |
2 index 1 index add 2 index 2 index sub lineto |
|
| 14 |
closepath pop pop pop} bind def |
|
| 15 |
/di { newpath 2 index 1 index add 2 index moveto
|
|
| 16 |
2 index 2 index 2 index add lineto |
|
| 17 |
2 index 1 index sub 2 index lineto |
|
| 18 |
2 index 2 index 2 index sub lineto |
|
| 19 |
closepath pop pop pop} bind def |
|
| 20 |
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill
|
|
| 21 |
setrgbcolor 1.1 div c fill |
|
| 22 |
} bind def |
|
| 23 |
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill
|
|
| 24 |
setrgbcolor 1.1 div sq fill |
|
| 25 |
} bind def |
|
| 26 |
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill
|
|
| 27 |
setrgbcolor 1.1 div di fill |
|
| 28 |
} bind def |
|
| 29 |
/nfemale { 0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
|
|
| 30 |
newpath 5 index 5 index moveto 5 index 5 index 5 index 3.01 mul sub |
|
| 31 |
lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto |
|
| 32 |
5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke |
|
| 33 |
5 index 5 index 5 index c fill |
|
| 34 |
setrgbcolor 1.1 div c fill |
|
| 35 |
} bind def |
|
| 36 |
/nmale {
|
|
| 37 |
0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth |
|
| 38 |
newpath 5 index 5 index moveto |
|
| 39 |
5 index 4 index 1 mul 1.5 mul add |
|
| 40 |
5 index 5 index 3 sqrt 1.5 mul mul add |
|
| 41 |
1 index 1 index lineto |
|
| 42 |
1 index 1 index 7 index sub moveto |
|
| 43 |
1 index 1 index lineto |
|
| 44 |
exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub lineto |
|
| 45 |
stroke |
|
| 46 |
5 index 5 index 5 index c fill |
|
| 47 |
setrgbcolor 1.1 div c fill |
|
| 48 |
} bind def |
|
| 49 |
/arrl 1 def |
|
| 50 |
/arrw 0.3 def |
|
| 51 |
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def
|
|
| 52 |
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def
|
|
| 53 |
/w exch def /len exch def |
|
| 54 |
newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto |
|
| 55 |
len w sub arrl sub dx dy lrl |
|
| 56 |
arrw dy dx neg lrl |
|
| 57 |
dx arrl w add mul dy w 2 div arrw add mul sub |
|
| 58 |
dy arrl w add mul dx w 2 div arrw add mul add rlineto |
|
| 59 |
dx arrl w add mul neg dy w 2 div arrw add mul sub |
|
| 60 |
dy arrl w add mul neg dx w 2 div arrw add mul add rlineto |
|
| 61 |
arrw dy dx neg lrl |
|
| 62 |
len w sub arrl sub neg dx dy lrl |
|
| 63 |
closepath fill } bind def |
|
| 64 |
/cshow { 2 index 2 index moveto dup stringwidth pop
|
|
| 65 |
neg 2 div fosi .35 mul neg rmoveto show pop pop} def |
|
| 66 |
|
|
| 67 |
gsave |
|
| 68 |
%Arcs: |
|
| 69 |
gsave |
|
| 70 |
140.321 266.249 -327.729 150.06 0 0 0 4.99223 l |
|
| 71 |
82.1207 -238.726 -245.288 -110.743 0 0 0 4.99223 l |
|
| 72 |
336.635 -229.036 533.603 13.109 0 0 0 4.99223 l |
|
| 73 |
53.8598 -45.8071 -245.288 -110.743 0 0 0 4.99223 l |
|
| 74 |
-75.5617 118.579 -327.729 150.06 0 0 0 4.99223 l |
|
| 75 |
-327.729 150.06 -245.288 -110.743 1 0 0 11.9813 l |
|
| 76 |
533.603 13.109 218.184 -84.2955 0 0 0 4.99223 l |
|
| 77 |
39.87 175.035 141.163 67.2575 0 0 0 4.99223 l |
|
| 78 |
53.8598 -45.8071 -75.5617 118.579 0 0 0 4.99223 l |
|
| 79 |
-102.406 -141.267 82.1207 -238.726 0 0 0 4.99223 l |
|
| 80 |
399.144 166.894 533.603 13.109 1 0 0 11.9813 l |
|
| 81 |
39.87 175.035 140.321 266.249 1 0 0 11.9813 l |
|
| 82 |
399.144 166.894 140.321 266.249 0 0 0 4.99223 l |
|
| 83 |
399.144 166.894 141.163 67.2575 0 0 0 4.99223 l |
|
| 84 |
53.8598 -45.8071 204.765 -173.77 0 0 0 4.99223 l |
|
| 85 |
82.1207 -238.726 204.765 -173.77 0 0 0 4.99223 l |
|
| 86 |
258.227 61.658 399.144 166.894 0 0 0 4.99223 l |
|
| 87 |
53.8598 -45.8071 -102.406 -141.267 1 0 0 11.9813 l |
|
| 88 |
175.073 -37.4477 141.163 67.2575 0 0 0 4.99223 l |
|
| 89 |
258.227 61.658 380 0 0 0 0 4.99223 l |
|
| 90 |
34.6739 40.8267 -75.5617 118.579 1 0 0 11.9813 l |
|
| 91 |
380 0 533.603 13.109 0 0 0 4.99223 l |
|
| 92 |
175.073 -37.4477 380 0 0 0 0 4.99223 l |
|
| 93 |
218.184 -84.2955 204.765 -173.77 0 0 0 4.99223 l |
|
| 94 |
53.8598 -45.8071 34.6739 40.8267 0 0 0 4.99223 l |
|
| 95 |
167.905 -213.988 82.1207 -238.726 1 0 0 11.9813 l |
|
| 96 |
336.635 -229.036 204.765 -173.77 1 0 0 11.9813 l |
|
| 97 |
336.635 -229.036 167.905 -213.988 0 0 0 4.99223 l |
|
| 98 |
329.08 -26.3098 218.184 -84.2955 0 0 0 4.99223 l |
|
| 99 |
39.87 175.035 -75.5617 118.579 0 0 0 4.99223 l |
|
| 100 |
53.8598 -45.8071 175.073 -37.4477 0 0 0 4.99223 l |
|
| 101 |
34.6739 40.8267 141.163 67.2575 0 0 0 4.99223 l |
|
| 102 |
258.227 61.658 141.163 67.2575 1 0 0 11.9813 l |
|
| 103 |
175.073 -37.4477 218.184 -84.2955 1 0 0 11.9813 l |
|
| 104 |
380 0 329.08 -26.3098 1 0 0 11.9813 l |
|
| 105 |
grestore |
|
| 106 |
%Nodes: |
|
| 107 |
gsave |
|
| 108 |
-245.288 -110.743 14.9767 1 1 1 nc |
|
| 109 |
204.765 -173.77 14.9767 1 1 1 nc |
|
| 110 |
-327.729 150.06 14.9767 1 1 1 nc |
|
| 111 |
-75.5617 118.579 14.9767 1 1 1 nc |
|
| 112 |
218.184 -84.2955 14.9767 1 1 1 nc |
|
| 113 |
140.321 266.249 14.9767 1 1 1 nc |
|
| 114 |
141.163 67.2575 14.9767 1 1 1 nc |
|
| 115 |
82.1207 -238.726 14.9767 1 1 1 nc |
|
| 116 |
329.08 -26.3098 14.9767 1 1 1 nc |
|
| 117 |
-102.406 -141.267 14.9767 1 1 1 nc |
|
| 118 |
533.603 13.109 14.9767 1 1 1 nc |
|
| 119 |
167.905 -213.988 14.9767 1 1 1 nc |
|
| 120 |
336.635 -229.036 14.9767 1 1 1 nc |
|
| 121 |
380 0 14.9767 1 1 1 nc |
|
| 122 |
399.144 166.894 14.9767 1 1 1 nc |
|
| 123 |
34.6739 40.8267 14.9767 1 1 1 nc |
|
| 124 |
39.87 175.035 14.9767 1 1 1 nc |
|
| 125 |
175.073 -37.4477 14.9767 1 1 1 nc |
|
| 126 |
53.8598 -45.8071 14.9767 1 1 1 nc |
|
| 127 |
258.227 61.658 14.9767 1 1 1 nc |
|
| 128 |
grestore |
|
| 129 |
grestore |
|
| 130 |
showpage |
| 1 |
%!PS-Adobe-2.0 EPSF-2.0 |
|
| 2 |
%%Creator: LEMON, graphToEps() |
|
| 3 |
%%CreationDate: Fri Oct 19 18:32:32 2007 |
|
| 4 |
%%BoundingBox: 0 0 596 842 |
|
| 5 |
%%DocumentPaperSizes: a4 |
|
| 6 |
%%EndComments |
|
| 7 |
/lb { setlinewidth setrgbcolor newpath moveto
|
|
| 8 |
4 2 roll 1 index 1 index curveto stroke } bind def |
|
| 9 |
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def
|
|
| 10 |
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def
|
|
| 11 |
/sq { newpath 2 index 1 index add 2 index 2 index add moveto
|
|
| 12 |
2 index 1 index sub 2 index 2 index add lineto |
|
| 13 |
2 index 1 index sub 2 index 2 index sub lineto |
|
| 14 |
2 index 1 index add 2 index 2 index sub lineto |
|
| 15 |
closepath pop pop pop} bind def |
|
| 16 |
/di { newpath 2 index 1 index add 2 index moveto
|
|
| 17 |
2 index 2 index 2 index add lineto |
|
| 18 |
2 index 1 index sub 2 index lineto |
|
| 19 |
2 index 2 index 2 index sub lineto |
|
| 20 |
closepath pop pop pop} bind def |
|
| 21 |
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill
|
|
| 22 |
setrgbcolor 1.1 div c fill |
|
| 23 |
} bind def |
|
| 24 |
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill
|
|
| 25 |
setrgbcolor 1.1 div sq fill |
|
| 26 |
} bind def |
|
| 27 |
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill
|
|
| 28 |
setrgbcolor 1.1 div di fill |
|
| 29 |
} bind def |
|
| 30 |
/nfemale { 0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
|
|
| 31 |
newpath 5 index 5 index moveto 5 index 5 index 5 index 3.01 mul sub |
|
| 32 |
lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto |
|
| 33 |
5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke |
|
| 34 |
5 index 5 index 5 index c fill |
|
| 35 |
setrgbcolor 1.1 div c fill |
|
| 36 |
} bind def |
|
| 37 |
/nmale {
|
|
| 38 |
0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth |
|
| 39 |
newpath 5 index 5 index moveto |
|
| 40 |
5 index 4 index 1 mul 1.5 mul add |
|
| 41 |
5 index 5 index 3 sqrt 1.5 mul mul add |
|
| 42 |
1 index 1 index lineto |
|
| 43 |
1 index 1 index 7 index sub moveto |
|
| 44 |
1 index 1 index lineto |
|
| 45 |
exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub lineto |
|
| 46 |
stroke |
|
| 47 |
5 index 5 index 5 index c fill |
|
| 48 |
setrgbcolor 1.1 div c fill |
|
| 49 |
} bind def |
|
| 50 |
/arrl 1 def |
|
| 51 |
/arrw 0.3 def |
|
| 52 |
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def
|
|
| 53 |
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def
|
|
| 54 |
/w exch def /len exch def |
|
| 55 |
newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto |
|
| 56 |
len w sub arrl sub dx dy lrl |
|
| 57 |
arrw dy dx neg lrl |
|
| 58 |
dx arrl w add mul dy w 2 div arrw add mul sub |
|
| 59 |
dy arrl w add mul dx w 2 div arrw add mul add rlineto |
|
| 60 |
dx arrl w add mul neg dy w 2 div arrw add mul sub |
|
| 61 |
dy arrl w add mul neg dx w 2 div arrw add mul add rlineto |
|
| 62 |
arrw dy dx neg lrl |
|
| 63 |
len w sub arrl sub neg dx dy lrl |
|
| 64 |
closepath fill } bind def |
|
| 65 |
/cshow { 2 index 2 index moveto dup stringwidth pop
|
|
| 66 |
neg 2 div fosi .35 mul neg rmoveto show pop pop} def |
|
| 67 |
|
|
| 68 |
gsave |
|
| 69 |
15 138.307 translate |
|
| 70 |
12.7843 dup scale |
|
| 71 |
90 rotate |
|
| 72 |
0.608112 -43.6081 translate |
|
| 73 |
%Edges: |
|
| 74 |
gsave |
|
| 75 |
9 31 9.5 30.5 10 30 0 0 0 0.091217 lb |
|
| 76 |
9 31 5.5 34.5 2 38 0 0 0 0.091217 lb |
|
| 77 |
9 31 25.5 16 42 1 0 0 0 0.091217 lb |
|
| 78 |
3 40 23 20.5 43 1 0 0 0 0.091217 lb |
|
| 79 |
3 40 22.5 20.5 42 1 0 0 0 0.091217 lb |
|
| 80 |
3 40 2.5 40.5 2 41 0 0 0 0.091217 lb |
|
| 81 |
13 25 10.5 24.5 8 24 0 0 0 0.091217 lb |
|
| 82 |
13 25 12 27 11 29 0 0 0 0.091217 lb |
|
| 83 |
3 4 2.5 3 2 2 0 0 0 0.091217 lb |
|
| 84 |
3 4 4.5 3 6 2 0 0 0 0.091217 lb |
|
| 85 |
6 25 7 24.5 8 24 0 0 0 0.091217 lb |
|
| 86 |
6 25 6 24.5 6 24 0 0 0 0.091217 lb |
|
| 87 |
34 2 33.5 2 33 2 0 0 0 0.091217 lb |
|
| 88 |
34 2 35 2 36 2 0 0 0 0.091217 lb |
|
| 89 |
6 8 16 9 26 10 0 0 0 0.091217 lb |
|
| 90 |
6 8 6 10.5 6 13 0 0 0 0.091217 lb |
|
| 91 |
6 8 6 7.5 6 7 0 0 0 0.091217 lb |
|
| 92 |
26 10 27.5 8.5 29 7 0 0 0 0.091217 lb |
|
| 93 |
26 10 27.5 9 29 8 0 0 0 0.091217 lb |
|
| 94 |
10 30 10.5 29.5 11 29 0 0 0 0.091217 lb |
|
| 95 |
8 24 7 23.5 6 23 0 0 0 0.091217 lb |
|
| 96 |
8 24 8 24.5 8 25 0 0 0 0.091217 lb |
|
| 97 |
33 2 32.5 2 32 2 0 0 0 0.091217 lb |
|
| 98 |
29 7 17.5 7 6 7 0 0 0 0.091217 lb |
|
| 99 |
2 2 1.5 22 1 42 0 0 0 0.091217 lb |
|
| 100 |
2 2 3.5 2 5 2 0 0 0 0.091217 lb |
|
| 101 |
21 15 13.5 14.5 6 14 0 0 0 0.091217 lb |
|
| 102 |
21 15 21 15.5 21 16 0 0 0 0.091217 lb |
|
| 103 |
1 42 0.5 42.5 0 43 0 0 0 0.091217 lb |
|
| 104 |
1 42 1.5 41.5 2 41 0 0 0 0.091217 lb |
|
| 105 |
6 15 6 15.5 6 16 0 0 0 0.091217 lb |
|
| 106 |
6 15 6 14.5 6 14 0 0 0 0.091217 lb |
|
| 107 |
43 1 22 0.5 1 0 0 0 0 0.091217 lb |
|
| 108 |
31 2 18.5 2 6 2 0 0 0 0.091217 lb |
|
| 109 |
31 2 31.5 2 32 2 0 0 0 0.091217 lb |
|
| 110 |
6 24 6 23.5 6 23 0 0 0 0.091217 lb |
|
| 111 |
6 16 6 16.5 6 17 0 0 0 0.091217 lb |
|
| 112 |
6 23 6 20 6 17 0 0 0 0.091217 lb |
|
| 113 |
6 2 5.5 2 5 2 0 0 0 0.091217 lb |
|
| 114 |
6 2 6 4.5 6 7 0 0 0 0.091217 lb |
|
| 115 |
0 43 0.5 21.5 1 0 0 0 0 0.091217 lb |
|
| 116 |
1 1 19.5 1.5 38 2 0 0 0 0.091217 lb |
|
| 117 |
1 1 1 0.5 1 0 0 0 0 0.091217 lb |
|
| 118 |
2 38 5.5 31.5 9 25 0 0 0 0.091217 lb |
|
| 119 |
25 13 15.5 13 6 13 0 0 0 0.091217 lb |
|
| 120 |
25 13 15.5 13.5 6 14 0 0 0 0.091217 lb |
|
| 121 |
8 25 8.5 25 9 25 0 0 0 0.091217 lb |
|
| 122 |
11 29 24.5 15.5 38 2 0 0 0 0.091217 lb |
|
| 123 |
6 17 11.5 18 17 19 0 0 0 0.091217 lb |
|
| 124 |
16 23 26.5 12.5 37 2 0 0 0 0.091217 lb |
|
| 125 |
16 23 18.5 19.5 21 16 0 0 0 0.091217 lb |
|
| 126 |
36 2 36.5 2 37 2 0 0 0 0.091217 lb |
|
| 127 |
36 2 32.5 5 29 8 0 0 0 0.091217 lb |
|
| 128 |
6 13 6 13.5 6 14 0 0 0 0.091217 lb |
|
| 129 |
37 2 37.5 2 38 2 0 0 0 0.091217 lb |
|
| 130 |
21 16 19 17.5 17 19 0 0 0 0.091217 lb |
|
| 131 |
grestore |
|
| 132 |
%Nodes: |
|
| 133 |
gsave |
|
| 134 |
29 8 0.304556 1 1 1 nc |
|
| 135 |
2 41 0.304556 1 1 1 nc |
|
| 136 |
6 7 0.304556 1 1 1 nc |
|
| 137 |
5 2 0.304556 1 1 1 nc |
|
| 138 |
17 19 0.304556 1 1 1 nc |
|
| 139 |
21 16 0.304556 1 1 1 nc |
|
| 140 |
1 0 0.304556 1 1 1 nc |
|
| 141 |
9 25 0.304556 1 1 1 nc |
|
| 142 |
6 14 0.304556 1 1 1 nc |
|
| 143 |
42 1 0.304556 1 1 1 nc |
|
| 144 |
38 2 0.304556 1 1 1 nc |
|
| 145 |
37 2 0.304556 1 1 1 nc |
|
| 146 |
6 13 0.304556 1 1 1 nc |
|
| 147 |
36 2 0.304556 1 1 1 nc |
|
| 148 |
16 23 0.304556 1 1 1 nc |
|
| 149 |
6 17 0.304556 1 1 1 nc |
|
| 150 |
11 29 0.304556 1 1 1 nc |
|
| 151 |
8 25 0.304556 1 1 1 nc |
|
| 152 |
32 2 0.304556 1 1 1 nc |
|
| 153 |
25 13 0.304556 1 1 1 nc |
|
| 154 |
2 38 0.304556 1 1 1 nc |
|
| 155 |
1 1 0.304556 1 1 1 nc |
|
| 156 |
0 43 0.304556 1 1 1 nc |
|
| 157 |
6 2 0.304556 1 1 1 nc |
|
| 158 |
6 23 0.304556 1 1 1 nc |
|
| 159 |
6 16 0.304556 1 1 1 nc |
|
| 160 |
6 24 0.304556 1 1 1 nc |
|
| 161 |
31 2 0.304556 1 1 1 nc |
|
| 162 |
43 1 0.304556 1 1 1 nc |
|
| 163 |
6 15 0.304556 1 1 1 nc |
|
| 164 |
1 42 0.304556 1 1 1 nc |
|
| 165 |
21 15 0.304556 1 1 1 nc |
|
| 166 |
2 2 0.304556 1 1 1 nc |
|
| 167 |
29 7 0.304556 1 1 1 nc |
|
| 168 |
33 2 0.304556 1 1 1 nc |
|
| 169 |
8 24 0.304556 1 1 1 nc |
|
| 170 |
10 30 0.304556 1 1 1 nc |
|
| 171 |
26 10 0.304556 1 1 1 nc |
|
| 172 |
6 8 0.304556 1 1 1 nc |
|
| 173 |
34 2 0.304556 1 1 1 nc |
|
| 174 |
6 25 0.304556 1 1 1 nc |
|
| 175 |
3 4 0.304556 1 1 1 nc |
|
| 176 |
13 25 0.304556 1 1 1 nc |
|
| 177 |
3 40 0.304556 1 1 1 nc |
|
| 178 |
9 31 0.304556 1 1 1 nc |
|
| 179 |
grestore |
|
| 180 |
grestore |
|
| 181 |
showpage |
| 1 |
%%%%% Defining LEMON %%%%% |
|
| 2 |
|
|
| 3 |
@misc{lemon,
|
|
| 4 |
key = {LEMON},
|
|
| 5 |
title = {{LEMON} -- {L}ibrary for {E}fficient {M}odeling and
|
|
| 6 |
{O}ptimization in {N}etworks},
|
|
| 7 |
howpublished = {\url{http://lemon.cs.elte.hu/}},
|
|
| 8 |
year = 2009 |
|
| 9 |
} |
|
| 10 |
|
|
| 11 |
@misc{egres,
|
|
| 12 |
key = {EGRES},
|
|
| 13 |
title = {{EGRES} -- {E}gerv{\'a}ry {R}esearch {G}roup on
|
|
| 14 |
{C}ombinatorial {O}ptimization},
|
|
| 15 |
url = {http://www.cs.elte.hu/egres/}
|
|
| 16 |
} |
|
| 17 |
|
|
| 18 |
@misc{coinor,
|
|
| 19 |
key = {COIN-OR},
|
|
| 20 |
title = {{COIN-OR} -- {C}omputational {I}nfrastructure for
|
|
| 21 |
{O}perations {R}esearch},
|
|
| 22 |
url = {http://www.coin-or.org/}
|
|
| 23 |
} |
|
| 24 |
|
|
| 25 |
|
|
| 26 |
%%%%% Other libraries %%%%%% |
|
| 27 |
|
|
| 28 |
@misc{boost,
|
|
| 29 |
key = {Boost},
|
|
| 30 |
title = {{B}oost {C++} {L}ibraries},
|
|
| 31 |
url = {http://www.boost.org/}
|
|
| 32 |
} |
|
| 33 |
|
|
| 34 |
@book{bglbook,
|
|
| 35 |
author = {Jeremy G. Siek and Lee-Quan Lee and Andrew
|
|
| 36 |
Lumsdaine}, |
|
| 37 |
title = {The Boost Graph Library: User Guide and Reference
|
|
| 38 |
Manual}, |
|
| 39 |
publisher = {Addison-Wesley},
|
|
| 40 |
year = 2002 |
|
| 41 |
} |
|
| 42 |
|
|
| 43 |
@misc{leda,
|
|
| 44 |
key = {LEDA},
|
|
| 45 |
title = {{LEDA} -- {L}ibrary of {E}fficient {D}ata {T}ypes and
|
|
| 46 |
{A}lgorithms},
|
|
| 47 |
url = {http://www.algorithmic-solutions.com/}
|
|
| 48 |
} |
|
| 49 |
|
|
| 50 |
@book{ledabook,
|
|
| 51 |
author = {Kurt Mehlhorn and Stefan N{\"a}her},
|
|
| 52 |
title = {{LEDA}: {A} platform for combinatorial and geometric
|
|
| 53 |
computing}, |
|
| 54 |
isbn = {0-521-56329-1},
|
|
| 55 |
publisher = {Cambridge University Press},
|
|
| 56 |
address = {New York, NY, USA},
|
|
| 57 |
year = 1999 |
|
| 58 |
} |
|
| 59 |
|
|
| 60 |
|
|
| 61 |
%%%%% Tools that LEMON depends on %%%%% |
|
| 62 |
|
|
| 63 |
@misc{cmake,
|
|
| 64 |
key = {CMake},
|
|
| 65 |
title = {{CMake} -- {C}ross {P}latform {M}ake},
|
|
| 66 |
url = {http://www.cmake.org/}
|
|
| 67 |
} |
|
| 68 |
|
|
| 69 |
@misc{doxygen,
|
|
| 70 |
key = {Doxygen},
|
|
| 71 |
title = {{Doxygen} -- {S}ource code documentation generator
|
|
| 72 |
tool}, |
|
| 73 |
url = {http://www.doxygen.org/}
|
|
| 74 |
} |
|
| 75 |
|
|
| 76 |
|
|
| 77 |
%%%%% LP/MIP libraries %%%%% |
|
| 78 |
|
|
| 79 |
@misc{glpk,
|
|
| 80 |
key = {GLPK},
|
|
| 81 |
title = {{GLPK} -- {GNU} {L}inear {P}rogramming {K}it},
|
|
| 82 |
url = {http://www.gnu.org/software/glpk/}
|
|
| 83 |
} |
|
| 84 |
|
|
| 85 |
@misc{clp,
|
|
| 86 |
key = {Clp},
|
|
| 87 |
title = {{Clp} -- {Coin-Or} {L}inear {P}rogramming},
|
|
| 88 |
url = {http://projects.coin-or.org/Clp/}
|
|
| 89 |
} |
|
| 90 |
|
|
| 91 |
@misc{cbc,
|
|
| 92 |
key = {Cbc},
|
|
| 93 |
title = {{Cbc} -- {Coin-Or} {B}ranch and {C}ut},
|
|
| 94 |
url = {http://projects.coin-or.org/Cbc/}
|
|
| 95 |
} |
|
| 96 |
|
|
| 97 |
@misc{cplex,
|
|
| 98 |
key = {CPLEX},
|
|
| 99 |
title = {{ILOG} {CPLEX}},
|
|
| 100 |
url = {http://www.ilog.com/}
|
|
| 101 |
} |
|
| 102 |
|
|
| 103 |
@misc{soplex,
|
|
| 104 |
key = {SoPlex},
|
|
| 105 |
title = {{SoPlex} -- {T}he {S}equential {O}bject-{O}riented
|
|
| 106 |
{S}implex},
|
|
| 107 |
url = {http://soplex.zib.de/}
|
|
| 108 |
} |
|
| 109 |
|
|
| 110 |
|
|
| 111 |
%%%%% General books %%%%% |
|
| 112 |
|
|
| 113 |
@book{amo93networkflows,
|
|
| 114 |
author = {Ravindra K. Ahuja and Thomas L. Magnanti and James
|
|
| 115 |
B. Orlin}, |
|
| 116 |
title = {Network Flows: Theory, Algorithms, and Applications},
|
|
| 117 |
publisher = {Prentice-Hall, Inc.},
|
|
| 118 |
year = 1993, |
|
| 119 |
month = feb, |
|
| 120 |
isbn = {978-0136175490}
|
|
| 121 |
} |
|
| 122 |
|
|
| 123 |
@book{schrijver03combinatorial,
|
|
| 124 |
author = {Alexander Schrijver},
|
|
| 125 |
title = {Combinatorial Optimization: Polyhedra and Efficiency},
|
|
| 126 |
publisher = {Springer-Verlag},
|
|
| 127 |
year = 2003, |
|
| 128 |
isbn = {978-3540443896}
|
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
@book{clrs01algorithms,
|
|
| 132 |
author = {Thomas H. Cormen and Charles E. Leiserson and Ronald
|
|
| 133 |
L. Rivest and Clifford Stein}, |
|
| 134 |
title = {Introduction to Algorithms},
|
|
| 135 |
publisher = {The MIT Press},
|
|
| 136 |
year = 2001, |
|
| 137 |
edition = {2nd}
|
|
| 138 |
} |
|
| 139 |
|
|
| 140 |
@book{stroustrup00cpp,
|
|
| 141 |
author = {Bjarne Stroustrup},
|
|
| 142 |
title = {The C++ Programming Language},
|
|
| 143 |
edition = {3rd},
|
|
| 144 |
publisher = {Addison-Wesley Professional},
|
|
| 145 |
isbn = 0201700735, |
|
| 146 |
month = {February},
|
|
| 147 |
year = 2000 |
|
| 148 |
} |
|
| 149 |
|
|
| 150 |
|
|
| 151 |
%%%%% Maximum flow algorithms %%%%% |
|
| 152 |
|
|
| 153 |
@article{edmondskarp72theoretical,
|
|
| 154 |
author = {Jack Edmonds and Richard M. Karp},
|
|
| 155 |
title = {Theoretical improvements in algorithmic efficiency
|
|
| 156 |
for network flow problems}, |
|
| 157 |
journal = {Journal of the ACM},
|
|
| 158 |
year = 1972, |
|
| 159 |
volume = 19, |
|
| 160 |
number = 2, |
|
| 161 |
pages = {248-264}
|
|
| 162 |
} |
|
| 163 |
|
|
| 164 |
@article{goldberg88newapproach,
|
|
| 165 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 166 |
title = {A new approach to the maximum flow problem},
|
|
| 167 |
journal = {Journal of the ACM},
|
|
| 168 |
year = 1988, |
|
| 169 |
volume = 35, |
|
| 170 |
number = 4, |
|
| 171 |
pages = {921-940}
|
|
| 172 |
} |
|
| 173 |
|
|
| 174 |
@article{dinic70algorithm,
|
|
| 175 |
author = {E. A. Dinic},
|
|
| 176 |
title = {Algorithm for solution of a problem of maximum flow
|
|
| 177 |
in a network with power estimation}, |
|
| 178 |
journal = {Soviet Math. Doklady},
|
|
| 179 |
year = 1970, |
|
| 180 |
volume = 11, |
|
| 181 |
pages = {1277-1280}
|
|
| 182 |
} |
|
| 183 |
|
|
| 184 |
@article{goldberg08partial,
|
|
| 185 |
author = {Andrew V. Goldberg},
|
|
| 186 |
title = {The Partial Augment-Relabel Algorithm for the
|
|
| 187 |
Maximum Flow Problem}, |
|
| 188 |
journal = {16th Annual European Symposium on Algorithms},
|
|
| 189 |
year = 2008, |
|
| 190 |
pages = {466-477}
|
|
| 191 |
} |
|
| 192 |
|
|
| 193 |
@article{sleator83dynamic,
|
|
| 194 |
author = {Daniel D. Sleator and Robert E. Tarjan},
|
|
| 195 |
title = {A data structure for dynamic trees},
|
|
| 196 |
journal = {Journal of Computer and System Sciences},
|
|
| 197 |
year = 1983, |
|
| 198 |
volume = 26, |
|
| 199 |
number = 3, |
|
| 200 |
pages = {362-391}
|
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
|
|
| 204 |
%%%%% Minimum mean cycle algorithms %%%%% |
|
| 205 |
|
|
| 206 |
@article{karp78characterization,
|
|
| 207 |
author = {Richard M. Karp},
|
|
| 208 |
title = {A characterization of the minimum cycle mean in a
|
|
| 209 |
digraph}, |
|
| 210 |
journal = {Discrete Math.},
|
|
| 211 |
year = 1978, |
|
| 212 |
volume = 23, |
|
| 213 |
pages = {309-311}
|
|
| 214 |
} |
|
| 215 |
|
|
| 216 |
@article{dasdan98minmeancycle,
|
|
| 217 |
author = {Ali Dasdan and Rajesh K. Gupta},
|
|
| 218 |
title = {Faster Maximum and Minimum Mean Cycle Alogrithms for
|
|
| 219 |
System Performance Analysis}, |
|
| 220 |
journal = {IEEE Transactions on Computer-Aided Design of
|
|
| 221 |
Integrated Circuits and Systems}, |
|
| 222 |
year = 1998, |
|
| 223 |
volume = 17, |
|
| 224 |
number = 10, |
|
| 225 |
pages = {889-899}
|
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
|
|
| 229 |
%%%%% Minimum cost flow algorithms %%%%% |
|
| 230 |
|
|
| 231 |
@article{klein67primal,
|
|
| 232 |
author = {Morton Klein},
|
|
| 233 |
title = {A primal method for minimal cost flows with
|
|
| 234 |
applications to the assignment and transportation |
|
| 235 |
problems}, |
|
| 236 |
journal = {Management Science},
|
|
| 237 |
year = 1967, |
|
| 238 |
volume = 14, |
|
| 239 |
pages = {205-220}
|
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
@article{goldberg89cyclecanceling,
|
|
| 243 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 244 |
title = {Finding minimum-cost circulations by canceling
|
|
| 245 |
negative cycles}, |
|
| 246 |
journal = {Journal of the ACM},
|
|
| 247 |
year = 1989, |
|
| 248 |
volume = 36, |
|
| 249 |
number = 4, |
|
| 250 |
pages = {873-886}
|
|
| 251 |
} |
|
| 252 |
|
|
| 253 |
@article{goldberg90approximation,
|
|
| 254 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 255 |
title = {Finding Minimum-Cost Circulations by Successive
|
|
| 256 |
Approximation}, |
|
| 257 |
journal = {Mathematics of Operations Research},
|
|
| 258 |
year = 1990, |
|
| 259 |
volume = 15, |
|
| 260 |
number = 3, |
|
| 261 |
pages = {430-466}
|
|
| 262 |
} |
|
| 263 |
|
|
| 264 |
@article{goldberg97efficient,
|
|
| 265 |
author = {Andrew V. Goldberg},
|
|
| 266 |
title = {An Efficient Implementation of a Scaling
|
|
| 267 |
Minimum-Cost Flow Algorithm}, |
|
| 268 |
journal = {Journal of Algorithms},
|
|
| 269 |
year = 1997, |
|
| 270 |
volume = 22, |
|
| 271 |
number = 1, |
|
| 272 |
pages = {1-29}
|
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
@article{bunnagel98efficient,
|
|
| 276 |
author = {Ursula B{\"u}nnagel and Bernhard Korte and Jens
|
|
| 277 |
Vygen}, |
|
| 278 |
title = {Efficient implementation of the {G}oldberg-{T}arjan
|
|
| 279 |
minimum-cost flow algorithm}, |
|
| 280 |
journal = {Optimization Methods and Software},
|
|
| 281 |
year = 1998, |
|
| 282 |
volume = 10, |
|
| 283 |
pages = {157-174}
|
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
@book{dantzig63linearprog,
|
|
| 287 |
author = {George B. Dantzig},
|
|
| 288 |
title = {Linear Programming and Extensions},
|
|
| 289 |
publisher = {Princeton University Press},
|
|
| 290 |
year = 1963 |
|
| 291 |
} |
|
| 292 |
|
|
| 293 |
@mastersthesis{kellyoneill91netsimplex,
|
|
| 294 |
author = {Damian J. Kelly and Garrett M. O'Neill},
|
|
| 295 |
title = {The Minimum Cost Flow Problem and The Network
|
|
| 296 |
Simplex Method}, |
|
| 297 |
school = {University College},
|
|
| 298 |
address = {Dublin, Ireland},
|
|
| 299 |
year = 1991, |
|
| 300 |
month = sep, |
|
| 301 |
} |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
| 20 |
#define LEMON_BELLMAN_FORD_H |
|
| 21 |
|
|
| 22 |
/// \ingroup shortest_path |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Bellman-Ford algorithm. |
|
| 25 |
|
|
| 26 |
#include <lemon/list_graph.h> |
|
| 27 |
#include <lemon/bits/path_dump.h> |
|
| 28 |
#include <lemon/core.h> |
|
| 29 |
#include <lemon/error.h> |
|
| 30 |
#include <lemon/maps.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/path.h> |
|
| 33 |
|
|
| 34 |
#include <limits> |
|
| 35 |
|
|
| 36 |
namespace lemon {
|
|
| 37 |
|
|
| 38 |
/// \brief Default operation traits for the BellmanFord algorithm class. |
|
| 39 |
/// |
|
| 40 |
/// This operation traits class defines all computational operations |
|
| 41 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 42 |
/// The default implementation is based on the \c numeric_limits class. |
|
| 43 |
/// If the numeric type does not have infinity value, then the maximum |
|
| 44 |
/// value is used as extremal infinity value. |
|
| 45 |
/// |
|
| 46 |
/// \see BellmanFordToleranceOperationTraits |
|
| 47 |
template < |
|
| 48 |
typename V, |
|
| 49 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
| 50 |
struct BellmanFordDefaultOperationTraits {
|
|
| 51 |
/// \brief Value type for the algorithm. |
|
| 52 |
typedef V Value; |
|
| 53 |
/// \brief Gives back the zero value of the type. |
|
| 54 |
static Value zero() {
|
|
| 55 |
return static_cast<Value>(0); |
|
| 56 |
} |
|
| 57 |
/// \brief Gives back the positive infinity value of the type. |
|
| 58 |
static Value infinity() {
|
|
| 59 |
return std::numeric_limits<Value>::infinity(); |
|
| 60 |
} |
|
| 61 |
/// \brief Gives back the sum of the given two elements. |
|
| 62 |
static Value plus(const Value& left, const Value& right) {
|
|
| 63 |
return left + right; |
|
| 64 |
} |
|
| 65 |
/// \brief Gives back \c true only if the first value is less than |
|
| 66 |
/// the second. |
|
| 67 |
static bool less(const Value& left, const Value& right) {
|
|
| 68 |
return left < right; |
|
| 69 |
} |
|
| 70 |
}; |
|
| 71 |
|
|
| 72 |
template <typename V> |
|
| 73 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
|
| 74 |
typedef V Value; |
|
| 75 |
static Value zero() {
|
|
| 76 |
return static_cast<Value>(0); |
|
| 77 |
} |
|
| 78 |
static Value infinity() {
|
|
| 79 |
return std::numeric_limits<Value>::max(); |
|
| 80 |
} |
|
| 81 |
static Value plus(const Value& left, const Value& right) {
|
|
| 82 |
if (left == infinity() || right == infinity()) return infinity(); |
|
| 83 |
return left + right; |
|
| 84 |
} |
|
| 85 |
static bool less(const Value& left, const Value& right) {
|
|
| 86 |
return left < right; |
|
| 87 |
} |
|
| 88 |
}; |
|
| 89 |
|
|
| 90 |
/// \brief Operation traits for the BellmanFord algorithm class |
|
| 91 |
/// using tolerance. |
|
| 92 |
/// |
|
| 93 |
/// This operation traits class defines all computational operations |
|
| 94 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 95 |
/// The only difference between this implementation and |
|
| 96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
|
| 97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
|
| 98 |
/// function. |
|
| 99 |
/// |
|
| 100 |
/// \tparam V The value type. |
|
| 101 |
/// \tparam eps The epsilon value for the \ref less() function. |
|
| 102 |
/// By default, it is the epsilon value used by \ref Tolerance |
|
| 103 |
/// "Tolerance<V>". |
|
| 104 |
/// |
|
| 105 |
/// \see BellmanFordDefaultOperationTraits |
|
| 106 |
#ifdef DOXYGEN |
|
| 107 |
template <typename V, V eps> |
|
| 108 |
#else |
|
| 109 |
template < |
|
| 110 |
typename V, |
|
| 111 |
V eps = Tolerance<V>::def_epsilon> |
|
| 112 |
#endif |
|
| 113 |
struct BellmanFordToleranceOperationTraits {
|
|
| 114 |
/// \brief Value type for the algorithm. |
|
| 115 |
typedef V Value; |
|
| 116 |
/// \brief Gives back the zero value of the type. |
|
| 117 |
static Value zero() {
|
|
| 118 |
return static_cast<Value>(0); |
|
| 119 |
} |
|
| 120 |
/// \brief Gives back the positive infinity value of the type. |
|
| 121 |
static Value infinity() {
|
|
| 122 |
return std::numeric_limits<Value>::infinity(); |
|
| 123 |
} |
|
| 124 |
/// \brief Gives back the sum of the given two elements. |
|
| 125 |
static Value plus(const Value& left, const Value& right) {
|
|
| 126 |
return left + right; |
|
| 127 |
} |
|
| 128 |
/// \brief Gives back \c true only if the first value is less than |
|
| 129 |
/// the second. |
|
| 130 |
static bool less(const Value& left, const Value& right) {
|
|
| 131 |
return left + eps < right; |
|
| 132 |
} |
|
| 133 |
}; |
|
| 134 |
|
|
| 135 |
/// \brief Default traits class of BellmanFord class. |
|
| 136 |
/// |
|
| 137 |
/// Default traits class of BellmanFord class. |
|
| 138 |
/// \param GR The type of the digraph. |
|
| 139 |
/// \param LEN The type of the length map. |
|
| 140 |
template<typename GR, typename LEN> |
|
| 141 |
struct BellmanFordDefaultTraits {
|
|
| 142 |
/// The type of the digraph the algorithm runs on. |
|
| 143 |
typedef GR Digraph; |
|
| 144 |
|
|
| 145 |
/// \brief The type of the map that stores the arc lengths. |
|
| 146 |
/// |
|
| 147 |
/// The type of the map that stores the arc lengths. |
|
| 148 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 149 |
typedef LEN LengthMap; |
|
| 150 |
|
|
| 151 |
/// The type of the arc lengths. |
|
| 152 |
typedef typename LEN::Value Value; |
|
| 153 |
|
|
| 154 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 155 |
/// |
|
| 156 |
/// It defines the used operations and the infinity value for the |
|
| 157 |
/// given \c Value type. |
|
| 158 |
/// \see BellmanFordDefaultOperationTraits, |
|
| 159 |
/// BellmanFordToleranceOperationTraits |
|
| 160 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 161 |
|
|
| 162 |
/// \brief The type of the map that stores the last arcs of the |
|
| 163 |
/// shortest paths. |
|
| 164 |
/// |
|
| 165 |
/// The type of the map that stores the last |
|
| 166 |
/// arcs of the shortest paths. |
|
| 167 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 168 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 169 |
|
|
| 170 |
/// \brief Instantiates a \c PredMap. |
|
| 171 |
/// |
|
| 172 |
/// This function instantiates a \ref PredMap. |
|
| 173 |
/// \param g is the digraph to which we would like to define the |
|
| 174 |
/// \ref PredMap. |
|
| 175 |
static PredMap *createPredMap(const GR& g) {
|
|
| 176 |
return new PredMap(g); |
|
| 177 |
} |
|
| 178 |
|
|
| 179 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 180 |
/// |
|
| 181 |
/// The type of the map that stores the distances of the nodes. |
|
| 182 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 183 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
| 184 |
|
|
| 185 |
/// \brief Instantiates a \c DistMap. |
|
| 186 |
/// |
|
| 187 |
/// This function instantiates a \ref DistMap. |
|
| 188 |
/// \param g is the digraph to which we would like to define the |
|
| 189 |
/// \ref DistMap. |
|
| 190 |
static DistMap *createDistMap(const GR& g) {
|
|
| 191 |
return new DistMap(g); |
|
| 192 |
} |
|
| 193 |
|
|
| 194 |
}; |
|
| 195 |
|
|
| 196 |
/// \brief %BellmanFord algorithm class. |
|
| 197 |
/// |
|
| 198 |
/// \ingroup shortest_path |
|
| 199 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 200 |
/// algorithm. The maximum time complexity of the algorithm is |
|
| 201 |
/// <tt>O(ne)</tt>. |
|
| 202 |
/// |
|
| 203 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
| 204 |
/// problem when the arcs can have negative lengths, but the digraph |
|
| 205 |
/// should not contain directed cycles with negative total length. |
|
| 206 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
| 207 |
/// algorithm instead, since it is more efficient. |
|
| 208 |
/// |
|
| 209 |
/// The arc lengths are passed to the algorithm using a |
|
| 210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 211 |
/// kind of length. The type of the length values is determined by the |
|
| 212 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
| 213 |
/// |
|
| 214 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
| 215 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
| 216 |
/// it can be used easier. |
|
| 217 |
/// |
|
| 218 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 219 |
/// The default type is \ref ListDigraph. |
|
| 220 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
| 221 |
/// the lengths of the arcs. The default map type is |
|
| 222 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 223 |
/// \tparam TR The traits class that defines various types used by the |
|
| 224 |
/// algorithm. By default, it is \ref BellmanFordDefaultTraits |
|
| 225 |
/// "BellmanFordDefaultTraits<GR, LEN>". |
|
| 226 |
/// In most cases, this parameter should not be set directly, |
|
| 227 |
/// consider to use the named template parameters instead. |
|
| 228 |
#ifdef DOXYGEN |
|
| 229 |
template <typename GR, typename LEN, typename TR> |
|
| 230 |
#else |
|
| 231 |
template <typename GR=ListDigraph, |
|
| 232 |
typename LEN=typename GR::template ArcMap<int>, |
|
| 233 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
| 234 |
#endif |
|
| 235 |
class BellmanFord {
|
|
| 236 |
public: |
|
| 237 |
|
|
| 238 |
///The type of the underlying digraph. |
|
| 239 |
typedef typename TR::Digraph Digraph; |
|
| 240 |
|
|
| 241 |
/// \brief The type of the arc lengths. |
|
| 242 |
typedef typename TR::LengthMap::Value Value; |
|
| 243 |
/// \brief The type of the map that stores the arc lengths. |
|
| 244 |
typedef typename TR::LengthMap LengthMap; |
|
| 245 |
/// \brief The type of the map that stores the last |
|
| 246 |
/// arcs of the shortest paths. |
|
| 247 |
typedef typename TR::PredMap PredMap; |
|
| 248 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 249 |
typedef typename TR::DistMap DistMap; |
|
| 250 |
/// The type of the paths. |
|
| 251 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
| 252 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
| 253 |
/// "operation traits class" of the algorithm. |
|
| 254 |
typedef typename TR::OperationTraits OperationTraits; |
|
| 255 |
|
|
| 256 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
| 257 |
typedef TR Traits; |
|
| 258 |
|
|
| 259 |
private: |
|
| 260 |
|
|
| 261 |
typedef typename Digraph::Node Node; |
|
| 262 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 263 |
typedef typename Digraph::Arc Arc; |
|
| 264 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 265 |
|
|
| 266 |
// Pointer to the underlying digraph. |
|
| 267 |
const Digraph *_gr; |
|
| 268 |
// Pointer to the length map |
|
| 269 |
const LengthMap *_length; |
|
| 270 |
// Pointer to the map of predecessors arcs. |
|
| 271 |
PredMap *_pred; |
|
| 272 |
// Indicates if _pred is locally allocated (true) or not. |
|
| 273 |
bool _local_pred; |
|
| 274 |
// Pointer to the map of distances. |
|
| 275 |
DistMap *_dist; |
|
| 276 |
// Indicates if _dist is locally allocated (true) or not. |
|
| 277 |
bool _local_dist; |
|
| 278 |
|
|
| 279 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
| 280 |
MaskMap *_mask; |
|
| 281 |
|
|
| 282 |
std::vector<Node> _process; |
|
| 283 |
|
|
| 284 |
// Creates the maps if necessary. |
|
| 285 |
void create_maps() {
|
|
| 286 |
if(!_pred) {
|
|
| 287 |
_local_pred = true; |
|
| 288 |
_pred = Traits::createPredMap(*_gr); |
|
| 289 |
} |
|
| 290 |
if(!_dist) {
|
|
| 291 |
_local_dist = true; |
|
| 292 |
_dist = Traits::createDistMap(*_gr); |
|
| 293 |
} |
|
| 294 |
if(!_mask) {
|
|
| 295 |
_mask = new MaskMap(*_gr); |
|
| 296 |
} |
|
| 297 |
} |
|
| 298 |
|
|
| 299 |
public : |
|
| 300 |
|
|
| 301 |
typedef BellmanFord Create; |
|
| 302 |
|
|
| 303 |
/// \name Named Template Parameters |
|
| 304 |
|
|
| 305 |
///@{
|
|
| 306 |
|
|
| 307 |
template <class T> |
|
| 308 |
struct SetPredMapTraits : public Traits {
|
|
| 309 |
typedef T PredMap; |
|
| 310 |
static PredMap *createPredMap(const Digraph&) {
|
|
| 311 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
| 312 |
return 0; // ignore warnings |
|
| 313 |
} |
|
| 314 |
}; |
|
| 315 |
|
|
| 316 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 317 |
/// \c PredMap type. |
|
| 318 |
/// |
|
| 319 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 320 |
/// \c PredMap type. |
|
| 321 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 322 |
template <class T> |
|
| 323 |
struct SetPredMap |
|
| 324 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
|
| 325 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
| 326 |
}; |
|
| 327 |
|
|
| 328 |
template <class T> |
|
| 329 |
struct SetDistMapTraits : public Traits {
|
|
| 330 |
typedef T DistMap; |
|
| 331 |
static DistMap *createDistMap(const Digraph&) {
|
|
| 332 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
| 333 |
return 0; // ignore warnings |
|
| 334 |
} |
|
| 335 |
}; |
|
| 336 |
|
|
| 337 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 338 |
/// \c DistMap type. |
|
| 339 |
/// |
|
| 340 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 341 |
/// \c DistMap type. |
|
| 342 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 343 |
template <class T> |
|
| 344 |
struct SetDistMap |
|
| 345 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
|
| 346 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
| 347 |
}; |
|
| 348 |
|
|
| 349 |
template <class T> |
|
| 350 |
struct SetOperationTraitsTraits : public Traits {
|
|
| 351 |
typedef T OperationTraits; |
|
| 352 |
}; |
|
| 353 |
|
|
| 354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 355 |
/// \c OperationTraits type. |
|
| 356 |
/// |
|
| 357 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 358 |
/// \c OperationTraits type. |
|
| 359 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
|
| 360 |
template <class T> |
|
| 361 |
struct SetOperationTraits |
|
| 362 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
|
| 363 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
| 364 |
Create; |
|
| 365 |
}; |
|
| 366 |
|
|
| 367 |
///@} |
|
| 368 |
|
|
| 369 |
protected: |
|
| 370 |
|
|
| 371 |
BellmanFord() {}
|
|
| 372 |
|
|
| 373 |
public: |
|
| 374 |
|
|
| 375 |
/// \brief Constructor. |
|
| 376 |
/// |
|
| 377 |
/// Constructor. |
|
| 378 |
/// \param g The digraph the algorithm runs on. |
|
| 379 |
/// \param length The length map used by the algorithm. |
|
| 380 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
| 381 |
_gr(&g), _length(&length), |
|
| 382 |
_pred(0), _local_pred(false), |
|
| 383 |
_dist(0), _local_dist(false), _mask(0) {}
|
|
| 384 |
|
|
| 385 |
///Destructor. |
|
| 386 |
~BellmanFord() {
|
|
| 387 |
if(_local_pred) delete _pred; |
|
| 388 |
if(_local_dist) delete _dist; |
|
| 389 |
if(_mask) delete _mask; |
|
| 390 |
} |
|
| 391 |
|
|
| 392 |
/// \brief Sets the length map. |
|
| 393 |
/// |
|
| 394 |
/// Sets the length map. |
|
| 395 |
/// \return <tt>(*this)</tt> |
|
| 396 |
BellmanFord &lengthMap(const LengthMap &map) {
|
|
| 397 |
_length = ↦ |
|
| 398 |
return *this; |
|
| 399 |
} |
|
| 400 |
|
|
| 401 |
/// \brief Sets the map that stores the predecessor arcs. |
|
| 402 |
/// |
|
| 403 |
/// Sets the map that stores the predecessor arcs. |
|
| 404 |
/// If you don't use this function before calling \ref run() |
|
| 405 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 406 |
/// The destructor deallocates this automatically allocated map, |
|
| 407 |
/// of course. |
|
| 408 |
/// \return <tt>(*this)</tt> |
|
| 409 |
BellmanFord &predMap(PredMap &map) {
|
|
| 410 |
if(_local_pred) {
|
|
| 411 |
delete _pred; |
|
| 412 |
_local_pred=false; |
|
| 413 |
} |
|
| 414 |
_pred = ↦ |
|
| 415 |
return *this; |
|
| 416 |
} |
|
| 417 |
|
|
| 418 |
/// \brief Sets the map that stores the distances of the nodes. |
|
| 419 |
/// |
|
| 420 |
/// Sets the map that stores the distances of the nodes calculated |
|
| 421 |
/// by the algorithm. |
|
| 422 |
/// If you don't use this function before calling \ref run() |
|
| 423 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 424 |
/// The destructor deallocates this automatically allocated map, |
|
| 425 |
/// of course. |
|
| 426 |
/// \return <tt>(*this)</tt> |
|
| 427 |
BellmanFord &distMap(DistMap &map) {
|
|
| 428 |
if(_local_dist) {
|
|
| 429 |
delete _dist; |
|
| 430 |
_local_dist=false; |
|
| 431 |
} |
|
| 432 |
_dist = ↦ |
|
| 433 |
return *this; |
|
| 434 |
} |
|
| 435 |
|
|
| 436 |
/// \name Execution Control |
|
| 437 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
| 438 |
/// one of the member functions called \ref run().\n |
|
| 439 |
/// If you need better control on the execution, you have to call |
|
| 440 |
/// \ref init() first, then you can add several source nodes |
|
| 441 |
/// with \ref addSource(). Finally the actual path computation can be |
|
| 442 |
/// performed with \ref start(), \ref checkedStart() or |
|
| 443 |
/// \ref limitedStart(). |
|
| 444 |
|
|
| 445 |
///@{
|
|
| 446 |
|
|
| 447 |
/// \brief Initializes the internal data structures. |
|
| 448 |
/// |
|
| 449 |
/// Initializes the internal data structures. The optional parameter |
|
| 450 |
/// is the initial distance of each node. |
|
| 451 |
void init(const Value value = OperationTraits::infinity()) {
|
|
| 452 |
create_maps(); |
|
| 453 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 454 |
_pred->set(it, INVALID); |
|
| 455 |
_dist->set(it, value); |
|
| 456 |
} |
|
| 457 |
_process.clear(); |
|
| 458 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
|
| 459 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 460 |
_process.push_back(it); |
|
| 461 |
_mask->set(it, true); |
|
| 462 |
} |
|
| 463 |
} else {
|
|
| 464 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 465 |
_mask->set(it, false); |
|
| 466 |
} |
|
| 467 |
} |
|
| 468 |
} |
|
| 469 |
|
|
| 470 |
/// \brief Adds a new source node. |
|
| 471 |
/// |
|
| 472 |
/// This function adds a new source node. The optional second parameter |
|
| 473 |
/// is the initial distance of the node. |
|
| 474 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
|
| 475 |
_dist->set(source, dst); |
|
| 476 |
if (!(*_mask)[source]) {
|
|
| 477 |
_process.push_back(source); |
|
| 478 |
_mask->set(source, true); |
|
| 479 |
} |
|
| 480 |
} |
|
| 481 |
|
|
| 482 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
| 483 |
/// |
|
| 484 |
/// If the algoritm calculated the distances in the previous round |
|
| 485 |
/// exactly for the paths of at most \c k arcs, then this function |
|
| 486 |
/// will calculate the distances exactly for the paths of at most |
|
| 487 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
| 488 |
/// calculates the shortest path distances exactly for the paths |
|
| 489 |
/// consisting of at most \c k arcs. |
|
| 490 |
/// |
|
| 491 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 492 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 493 |
/// need the shortest paths and not only the distances, you should |
|
| 494 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 495 |
/// and build the path manually. |
|
| 496 |
/// |
|
| 497 |
/// \return \c true when the algorithm have not found more shorter |
|
| 498 |
/// paths. |
|
| 499 |
/// |
|
| 500 |
/// \see ActiveIt |
|
| 501 |
bool processNextRound() {
|
|
| 502 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 503 |
_mask->set(_process[i], false); |
|
| 504 |
} |
|
| 505 |
std::vector<Node> nextProcess; |
|
| 506 |
std::vector<Value> values(_process.size()); |
|
| 507 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 508 |
values[i] = (*_dist)[_process[i]]; |
|
| 509 |
} |
|
| 510 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 511 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 512 |
Node target = _gr->target(it); |
|
| 513 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 514 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 515 |
_pred->set(target, it); |
|
| 516 |
_dist->set(target, relaxed); |
|
| 517 |
if (!(*_mask)[target]) {
|
|
| 518 |
_mask->set(target, true); |
|
| 519 |
nextProcess.push_back(target); |
|
| 520 |
} |
|
| 521 |
} |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
_process.swap(nextProcess); |
|
| 525 |
return _process.empty(); |
|
| 526 |
} |
|
| 527 |
|
|
| 528 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
| 529 |
/// |
|
| 530 |
/// If the algorithm calculated the distances in the previous round |
|
| 531 |
/// at least for the paths of at most \c k arcs, then this function |
|
| 532 |
/// will calculate the distances at least for the paths of at most |
|
| 533 |
/// <tt>k+1</tt> arcs. |
|
| 534 |
/// This function does not make it possible to calculate the shortest |
|
| 535 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
| 536 |
/// this is why it is called weak round. |
|
| 537 |
/// |
|
| 538 |
/// \return \c true when the algorithm have not found more shorter |
|
| 539 |
/// paths. |
|
| 540 |
/// |
|
| 541 |
/// \see ActiveIt |
|
| 542 |
bool processNextWeakRound() {
|
|
| 543 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 544 |
_mask->set(_process[i], false); |
|
| 545 |
} |
|
| 546 |
std::vector<Node> nextProcess; |
|
| 547 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 548 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 549 |
Node target = _gr->target(it); |
|
| 550 |
Value relaxed = |
|
| 551 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 552 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 553 |
_pred->set(target, it); |
|
| 554 |
_dist->set(target, relaxed); |
|
| 555 |
if (!(*_mask)[target]) {
|
|
| 556 |
_mask->set(target, true); |
|
| 557 |
nextProcess.push_back(target); |
|
| 558 |
} |
|
| 559 |
} |
|
| 560 |
} |
|
| 561 |
} |
|
| 562 |
_process.swap(nextProcess); |
|
| 563 |
return _process.empty(); |
|
| 564 |
} |
|
| 565 |
|
|
| 566 |
/// \brief Executes the algorithm. |
|
| 567 |
/// |
|
| 568 |
/// Executes the algorithm. |
|
| 569 |
/// |
|
| 570 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 571 |
/// in order to compute the shortest path to each node. |
|
| 572 |
/// |
|
| 573 |
/// The algorithm computes |
|
| 574 |
/// - the shortest path tree (forest), |
|
| 575 |
/// - the distance of each node from the root(s). |
|
| 576 |
/// |
|
| 577 |
/// \pre init() must be called and at least one root node should be |
|
| 578 |
/// added with addSource() before using this function. |
|
| 579 |
void start() {
|
|
| 580 |
int num = countNodes(*_gr) - 1; |
|
| 581 |
for (int i = 0; i < num; ++i) {
|
|
| 582 |
if (processNextWeakRound()) break; |
|
| 583 |
} |
|
| 584 |
} |
|
| 585 |
|
|
| 586 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
| 587 |
/// |
|
| 588 |
/// Executes the algorithm and checks the negative cycles. |
|
| 589 |
/// |
|
| 590 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 591 |
/// in order to compute the shortest path to each node and also checks |
|
| 592 |
/// if the digraph contains cycles with negative total length. |
|
| 593 |
/// |
|
| 594 |
/// The algorithm computes |
|
| 595 |
/// - the shortest path tree (forest), |
|
| 596 |
/// - the distance of each node from the root(s). |
|
| 597 |
/// |
|
| 598 |
/// \return \c false if there is a negative cycle in the digraph. |
|
| 599 |
/// |
|
| 600 |
/// \pre init() must be called and at least one root node should be |
|
| 601 |
/// added with addSource() before using this function. |
|
| 602 |
bool checkedStart() {
|
|
| 603 |
int num = countNodes(*_gr); |
|
| 604 |
for (int i = 0; i < num; ++i) {
|
|
| 605 |
if (processNextWeakRound()) return true; |
|
| 606 |
} |
|
| 607 |
return _process.empty(); |
|
| 608 |
} |
|
| 609 |
|
|
| 610 |
/// \brief Executes the algorithm with arc number limit. |
|
| 611 |
/// |
|
| 612 |
/// Executes the algorithm with arc number limit. |
|
| 613 |
/// |
|
| 614 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 615 |
/// in order to compute the shortest path distance for each node |
|
| 616 |
/// using only the paths consisting of at most \c num arcs. |
|
| 617 |
/// |
|
| 618 |
/// The algorithm computes |
|
| 619 |
/// - the limited distance of each node from the root(s), |
|
| 620 |
/// - the predecessor arc for each node. |
|
| 621 |
/// |
|
| 622 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 623 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 624 |
/// need the shortest paths and not only the distances, you should |
|
| 625 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 626 |
/// and build the path manually. |
|
| 627 |
/// |
|
| 628 |
/// \pre init() must be called and at least one root node should be |
|
| 629 |
/// added with addSource() before using this function. |
|
| 630 |
void limitedStart(int num) {
|
|
| 631 |
for (int i = 0; i < num; ++i) {
|
|
| 632 |
if (processNextRound()) break; |
|
| 633 |
} |
|
| 634 |
} |
|
| 635 |
|
|
| 636 |
/// \brief Runs the algorithm from the given root node. |
|
| 637 |
/// |
|
| 638 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 639 |
/// node \c s in order to compute the shortest path to each node. |
|
| 640 |
/// |
|
| 641 |
/// The algorithm computes |
|
| 642 |
/// - the shortest path tree (forest), |
|
| 643 |
/// - the distance of each node from the root(s). |
|
| 644 |
/// |
|
| 645 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
| 646 |
/// \code |
|
| 647 |
/// bf.init(); |
|
| 648 |
/// bf.addSource(s); |
|
| 649 |
/// bf.start(); |
|
| 650 |
/// \endcode |
|
| 651 |
void run(Node s) {
|
|
| 652 |
init(); |
|
| 653 |
addSource(s); |
|
| 654 |
start(); |
|
| 655 |
} |
|
| 656 |
|
|
| 657 |
/// \brief Runs the algorithm from the given root node with arc |
|
| 658 |
/// number limit. |
|
| 659 |
/// |
|
| 660 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 661 |
/// node \c s in order to compute the shortest path distance for each |
|
| 662 |
/// node using only the paths consisting of at most \c num arcs. |
|
| 663 |
/// |
|
| 664 |
/// The algorithm computes |
|
| 665 |
/// - the limited distance of each node from the root(s), |
|
| 666 |
/// - the predecessor arc for each node. |
|
| 667 |
/// |
|
| 668 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 669 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 670 |
/// need the shortest paths and not only the distances, you should |
|
| 671 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 672 |
/// and build the path manually. |
|
| 673 |
/// |
|
| 674 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
| 675 |
/// \code |
|
| 676 |
/// bf.init(); |
|
| 677 |
/// bf.addSource(s); |
|
| 678 |
/// bf.limitedStart(num); |
|
| 679 |
/// \endcode |
|
| 680 |
void run(Node s, int num) {
|
|
| 681 |
init(); |
|
| 682 |
addSource(s); |
|
| 683 |
limitedStart(num); |
|
| 684 |
} |
|
| 685 |
|
|
| 686 |
///@} |
|
| 687 |
|
|
| 688 |
/// \brief LEMON iterator for getting the active nodes. |
|
| 689 |
/// |
|
| 690 |
/// This class provides a common style LEMON iterator that traverses |
|
| 691 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
| 692 |
/// phase. These nodes should be checked in the next phase to |
|
| 693 |
/// find augmenting arcs outgoing from them. |
|
| 694 |
class ActiveIt {
|
|
| 695 |
public: |
|
| 696 |
|
|
| 697 |
/// \brief Constructor. |
|
| 698 |
/// |
|
| 699 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
| 700 |
/// instance. |
|
| 701 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
| 702 |
{
|
|
| 703 |
_index = _algorithm->_process.size() - 1; |
|
| 704 |
} |
|
| 705 |
|
|
| 706 |
/// \brief Invalid constructor. |
|
| 707 |
/// |
|
| 708 |
/// Invalid constructor. |
|
| 709 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
|
| 710 |
|
|
| 711 |
/// \brief Conversion to \c Node. |
|
| 712 |
/// |
|
| 713 |
/// Conversion to \c Node. |
|
| 714 |
operator Node() const {
|
|
| 715 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
| 716 |
} |
|
| 717 |
|
|
| 718 |
/// \brief Increment operator. |
|
| 719 |
/// |
|
| 720 |
/// Increment operator. |
|
| 721 |
ActiveIt& operator++() {
|
|
| 722 |
--_index; |
|
| 723 |
return *this; |
|
| 724 |
} |
|
| 725 |
|
|
| 726 |
bool operator==(const ActiveIt& it) const {
|
|
| 727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 728 |
} |
|
| 729 |
bool operator!=(const ActiveIt& it) const {
|
|
| 730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 731 |
} |
|
| 732 |
bool operator<(const ActiveIt& it) const {
|
|
| 733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 734 |
} |
|
| 735 |
|
|
| 736 |
private: |
|
| 737 |
const BellmanFord* _algorithm; |
|
| 738 |
int _index; |
|
| 739 |
}; |
|
| 740 |
|
|
| 741 |
/// \name Query Functions |
|
| 742 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
| 743 |
/// functions.\n |
|
| 744 |
/// Either \ref run() or \ref init() should be called before using them. |
|
| 745 |
|
|
| 746 |
///@{
|
|
| 747 |
|
|
| 748 |
/// \brief The shortest path to the given node. |
|
| 749 |
/// |
|
| 750 |
/// Gives back the shortest path to the given node from the root(s). |
|
| 751 |
/// |
|
| 752 |
/// \warning \c t should be reached from the root(s). |
|
| 753 |
/// |
|
| 754 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 755 |
/// using this function. |
|
| 756 |
Path path(Node t) const |
|
| 757 |
{
|
|
| 758 |
return Path(*_gr, *_pred, t); |
|
| 759 |
} |
|
| 760 |
|
|
| 761 |
/// \brief The distance of the given node from the root(s). |
|
| 762 |
/// |
|
| 763 |
/// Returns the distance of the given node from the root(s). |
|
| 764 |
/// |
|
| 765 |
/// \warning If node \c v is not reached from the root(s), then |
|
| 766 |
/// the return value of this function is undefined. |
|
| 767 |
/// |
|
| 768 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 769 |
/// using this function. |
|
| 770 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 771 |
|
|
| 772 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
| 773 |
/// the given node. |
|
| 774 |
/// |
|
| 775 |
/// This function returns the 'previous arc' of the shortest path |
|
| 776 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
| 777 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 778 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 779 |
/// |
|
| 780 |
/// The shortest path tree used here is equal to the shortest path |
|
| 781 |
/// tree used in \ref predNode() and \ref predMap(). |
|
| 782 |
/// |
|
| 783 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 784 |
/// using this function. |
|
| 785 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 786 |
|
|
| 787 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
| 788 |
/// the given node. |
|
| 789 |
/// |
|
| 790 |
/// This function returns the 'previous node' of the shortest path |
|
| 791 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
| 792 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 793 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 794 |
/// |
|
| 795 |
/// The shortest path tree used here is equal to the shortest path |
|
| 796 |
/// tree used in \ref predArc() and \ref predMap(). |
|
| 797 |
/// |
|
| 798 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 799 |
/// using this function. |
|
| 800 |
Node predNode(Node v) const {
|
|
| 801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 802 |
} |
|
| 803 |
|
|
| 804 |
/// \brief Returns a const reference to the node map that stores the |
|
| 805 |
/// distances of the nodes. |
|
| 806 |
/// |
|
| 807 |
/// Returns a const reference to the node map that stores the distances |
|
| 808 |
/// of the nodes calculated by the algorithm. |
|
| 809 |
/// |
|
| 810 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 811 |
/// using this function. |
|
| 812 |
const DistMap &distMap() const { return *_dist;}
|
|
| 813 |
|
|
| 814 |
/// \brief Returns a const reference to the node map that stores the |
|
| 815 |
/// predecessor arcs. |
|
| 816 |
/// |
|
| 817 |
/// Returns a const reference to the node map that stores the predecessor |
|
| 818 |
/// arcs, which form the shortest path tree (forest). |
|
| 819 |
/// |
|
| 820 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 821 |
/// using this function. |
|
| 822 |
const PredMap &predMap() const { return *_pred; }
|
|
| 823 |
|
|
| 824 |
/// \brief Checks if a node is reached from the root(s). |
|
| 825 |
/// |
|
| 826 |
/// Returns \c true if \c v is reached from the root(s). |
|
| 827 |
/// |
|
| 828 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 829 |
/// using this function. |
|
| 830 |
bool reached(Node v) const {
|
|
| 831 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
| 832 |
} |
|
| 833 |
|
|
| 834 |
/// \brief Gives back a negative cycle. |
|
| 835 |
/// |
|
| 836 |
/// This function gives back a directed cycle with negative total |
|
| 837 |
/// length if the algorithm has already found one. |
|
| 838 |
/// Otherwise it gives back an empty path. |
|
| 839 |
lemon::Path<Digraph> negativeCycle() const {
|
|
| 840 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
| 841 |
lemon::Path<Digraph> cycle; |
|
| 842 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 843 |
if (state[_process[i]] != -1) continue; |
|
| 844 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
| 845 |
v = _gr->source((*_pred)[v])) {
|
|
| 846 |
if (state[v] == i) {
|
|
| 847 |
cycle.addFront((*_pred)[v]); |
|
| 848 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
| 849 |
u = _gr->source((*_pred)[u])) {
|
|
| 850 |
cycle.addFront((*_pred)[u]); |
|
| 851 |
} |
|
| 852 |
return cycle; |
|
| 853 |
} |
|
| 854 |
else if (state[v] >= 0) {
|
|
| 855 |
break; |
|
| 856 |
} |
|
| 857 |
state[v] = i; |
|
| 858 |
} |
|
| 859 |
} |
|
| 860 |
return cycle; |
|
| 861 |
} |
|
| 862 |
|
|
| 863 |
///@} |
|
| 864 |
}; |
|
| 865 |
|
|
| 866 |
/// \brief Default traits class of bellmanFord() function. |
|
| 867 |
/// |
|
| 868 |
/// Default traits class of bellmanFord() function. |
|
| 869 |
/// \tparam GR The type of the digraph. |
|
| 870 |
/// \tparam LEN The type of the length map. |
|
| 871 |
template <typename GR, typename LEN> |
|
| 872 |
struct BellmanFordWizardDefaultTraits {
|
|
| 873 |
/// The type of the digraph the algorithm runs on. |
|
| 874 |
typedef GR Digraph; |
|
| 875 |
|
|
| 876 |
/// \brief The type of the map that stores the arc lengths. |
|
| 877 |
/// |
|
| 878 |
/// The type of the map that stores the arc lengths. |
|
| 879 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 880 |
typedef LEN LengthMap; |
|
| 881 |
|
|
| 882 |
/// The type of the arc lengths. |
|
| 883 |
typedef typename LEN::Value Value; |
|
| 884 |
|
|
| 885 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 886 |
/// |
|
| 887 |
/// It defines the used operations and the infinity value for the |
|
| 888 |
/// given \c Value type. |
|
| 889 |
/// \see BellmanFordDefaultOperationTraits, |
|
| 890 |
/// BellmanFordToleranceOperationTraits |
|
| 891 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 892 |
|
|
| 893 |
/// \brief The type of the map that stores the last |
|
| 894 |
/// arcs of the shortest paths. |
|
| 895 |
/// |
|
| 896 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
| 897 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 898 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 899 |
|
|
| 900 |
/// \brief Instantiates a \c PredMap. |
|
| 901 |
/// |
|
| 902 |
/// This function instantiates a \ref PredMap. |
|
| 903 |
/// \param g is the digraph to which we would like to define the |
|
| 904 |
/// \ref PredMap. |
|
| 905 |
static PredMap *createPredMap(const GR &g) {
|
|
| 906 |
return new PredMap(g); |
|
| 907 |
} |
|
| 908 |
|
|
| 909 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 910 |
/// |
|
| 911 |
/// The type of the map that stores the distances of the nodes. |
|
| 912 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 913 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
| 914 |
|
|
| 915 |
/// \brief Instantiates a \c DistMap. |
|
| 916 |
/// |
|
| 917 |
/// This function instantiates a \ref DistMap. |
|
| 918 |
/// \param g is the digraph to which we would like to define the |
|
| 919 |
/// \ref DistMap. |
|
| 920 |
static DistMap *createDistMap(const GR &g) {
|
|
| 921 |
return new DistMap(g); |
|
| 922 |
} |
|
| 923 |
|
|
| 924 |
///The type of the shortest paths. |
|
| 925 |
|
|
| 926 |
///The type of the shortest paths. |
|
| 927 |
///It must meet the \ref concepts::Path "Path" concept. |
|
| 928 |
typedef lemon::Path<Digraph> Path; |
|
| 929 |
}; |
|
| 930 |
|
|
| 931 |
/// \brief Default traits class used by BellmanFordWizard. |
|
| 932 |
/// |
|
| 933 |
/// Default traits class used by BellmanFordWizard. |
|
| 934 |
/// \tparam GR The type of the digraph. |
|
| 935 |
/// \tparam LEN The type of the length map. |
|
| 936 |
template <typename GR, typename LEN> |
|
| 937 |
class BellmanFordWizardBase |
|
| 938 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
|
| 939 |
|
|
| 940 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
| 941 |
protected: |
|
| 942 |
// Type of the nodes in the digraph. |
|
| 943 |
typedef typename Base::Digraph::Node Node; |
|
| 944 |
|
|
| 945 |
// Pointer to the underlying digraph. |
|
| 946 |
void *_graph; |
|
| 947 |
// Pointer to the length map |
|
| 948 |
void *_length; |
|
| 949 |
// Pointer to the map of predecessors arcs. |
|
| 950 |
void *_pred; |
|
| 951 |
// Pointer to the map of distances. |
|
| 952 |
void *_dist; |
|
| 953 |
//Pointer to the shortest path to the target node. |
|
| 954 |
void *_path; |
|
| 955 |
//Pointer to the distance of the target node. |
|
| 956 |
void *_di; |
|
| 957 |
|
|
| 958 |
public: |
|
| 959 |
/// Constructor. |
|
| 960 |
|
|
| 961 |
/// This constructor does not require parameters, it initiates |
|
| 962 |
/// all of the attributes to default values \c 0. |
|
| 963 |
BellmanFordWizardBase() : |
|
| 964 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 965 |
|
|
| 966 |
/// Constructor. |
|
| 967 |
|
|
| 968 |
/// This constructor requires two parameters, |
|
| 969 |
/// others are initiated to \c 0. |
|
| 970 |
/// \param gr The digraph the algorithm runs on. |
|
| 971 |
/// \param len The length map. |
|
| 972 |
BellmanFordWizardBase(const GR& gr, |
|
| 973 |
const LEN& len) : |
|
| 974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 976 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 977 |
|
|
| 978 |
}; |
|
| 979 |
|
|
| 980 |
/// \brief Auxiliary class for the function-type interface of the |
|
| 981 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 982 |
/// |
|
| 983 |
/// This auxiliary class is created to implement the |
|
| 984 |
/// \ref bellmanFord() "function-type interface" of the |
|
| 985 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 986 |
/// It does not have own \ref run() method, it uses the |
|
| 987 |
/// functions and features of the plain \ref BellmanFord. |
|
| 988 |
/// |
|
| 989 |
/// This class should only be used through the \ref bellmanFord() |
|
| 990 |
/// function, which makes it easier to use the algorithm. |
|
| 991 |
/// |
|
| 992 |
/// \tparam TR The traits class that defines various types used by the |
|
| 993 |
/// algorithm. |
|
| 994 |
template<class TR> |
|
| 995 |
class BellmanFordWizard : public TR {
|
|
| 996 |
typedef TR Base; |
|
| 997 |
|
|
| 998 |
typedef typename TR::Digraph Digraph; |
|
| 999 |
|
|
| 1000 |
typedef typename Digraph::Node Node; |
|
| 1001 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1002 |
typedef typename Digraph::Arc Arc; |
|
| 1003 |
typedef typename Digraph::OutArcIt ArcIt; |
|
| 1004 |
|
|
| 1005 |
typedef typename TR::LengthMap LengthMap; |
|
| 1006 |
typedef typename LengthMap::Value Value; |
|
| 1007 |
typedef typename TR::PredMap PredMap; |
|
| 1008 |
typedef typename TR::DistMap DistMap; |
|
| 1009 |
typedef typename TR::Path Path; |
|
| 1010 |
|
|
| 1011 |
public: |
|
| 1012 |
/// Constructor. |
|
| 1013 |
BellmanFordWizard() : TR() {}
|
|
| 1014 |
|
|
| 1015 |
/// \brief Constructor that requires parameters. |
|
| 1016 |
/// |
|
| 1017 |
/// Constructor that requires parameters. |
|
| 1018 |
/// These parameters will be the default values for the traits class. |
|
| 1019 |
/// \param gr The digraph the algorithm runs on. |
|
| 1020 |
/// \param len The length map. |
|
| 1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 1022 |
: TR(gr, len) {}
|
|
| 1023 |
|
|
| 1024 |
/// \brief Copy constructor |
|
| 1025 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
|
| 1026 |
|
|
| 1027 |
~BellmanFordWizard() {}
|
|
| 1028 |
|
|
| 1029 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
| 1030 |
/// |
|
| 1031 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
| 1032 |
/// node in order to compute the shortest path to each node. |
|
| 1033 |
void run(Node s) {
|
|
| 1034 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 1036 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 1037 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 1038 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 1039 |
bf.run(s); |
|
| 1040 |
} |
|
| 1041 |
|
|
| 1042 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
| 1043 |
/// between \c s and \c t. |
|
| 1044 |
/// |
|
| 1045 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
| 1046 |
/// in order to compute the shortest path to node \c t. |
|
| 1047 |
/// Actually, it computes the shortest path to each node, but using |
|
| 1048 |
/// this function you can retrieve the distance and the shortest path |
|
| 1049 |
/// for a single target node easier. |
|
| 1050 |
/// |
|
| 1051 |
/// \return \c true if \c t is reachable form \c s. |
|
| 1052 |
bool run(Node s, Node t) {
|
|
| 1053 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 1054 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 1055 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 1056 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 1057 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 1058 |
bf.run(s); |
|
| 1059 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
| 1060 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
| 1061 |
return bf.reached(t); |
|
| 1062 |
} |
|
| 1063 |
|
|
| 1064 |
template<class T> |
|
| 1065 |
struct SetPredMapBase : public Base {
|
|
| 1066 |
typedef T PredMap; |
|
| 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
|
| 1068 |
SetPredMapBase(const TR &b) : TR(b) {}
|
|
| 1069 |
}; |
|
| 1070 |
|
|
| 1071 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1072 |
/// the predecessor map. |
|
| 1073 |
/// |
|
| 1074 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1075 |
/// the map that stores the predecessor arcs of the nodes. |
|
| 1076 |
template<class T> |
|
| 1077 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
|
| 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1079 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
| 1080 |
} |
|
| 1081 |
|
|
| 1082 |
template<class T> |
|
| 1083 |
struct SetDistMapBase : public Base {
|
|
| 1084 |
typedef T DistMap; |
|
| 1085 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
|
| 1086 |
SetDistMapBase(const TR &b) : TR(b) {}
|
|
| 1087 |
}; |
|
| 1088 |
|
|
| 1089 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1090 |
/// the distance map. |
|
| 1091 |
/// |
|
| 1092 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1093 |
/// the map that stores the distances of the nodes calculated |
|
| 1094 |
/// by the algorithm. |
|
| 1095 |
template<class T> |
|
| 1096 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
|
| 1097 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1098 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
| 1099 |
} |
|
| 1100 |
|
|
| 1101 |
template<class T> |
|
| 1102 |
struct SetPathBase : public Base {
|
|
| 1103 |
typedef T Path; |
|
| 1104 |
SetPathBase(const TR &b) : TR(b) {}
|
|
| 1105 |
}; |
|
| 1106 |
|
|
| 1107 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1108 |
/// the shortest path to the target node. |
|
| 1109 |
/// |
|
| 1110 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1111 |
/// the shortest path to the target node. |
|
| 1112 |
template<class T> |
|
| 1113 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
| 1114 |
{
|
|
| 1115 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1116 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
| 1117 |
} |
|
| 1118 |
|
|
| 1119 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1120 |
/// the distance of the target node. |
|
| 1121 |
/// |
|
| 1122 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1123 |
/// the distance of the target node. |
|
| 1124 |
BellmanFordWizard dist(const Value &d) |
|
| 1125 |
{
|
|
| 1126 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
| 1127 |
return *this; |
|
| 1128 |
} |
|
| 1129 |
|
|
| 1130 |
}; |
|
| 1131 |
|
|
| 1132 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1133 |
/// algorithm. |
|
| 1134 |
/// |
|
| 1135 |
/// \ingroup shortest_path |
|
| 1136 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1137 |
/// algorithm. |
|
| 1138 |
/// |
|
| 1139 |
/// This function also has several \ref named-templ-func-param |
|
| 1140 |
/// "named parameters", they are declared as the members of class |
|
| 1141 |
/// \ref BellmanFordWizard. |
|
| 1142 |
/// The following examples show how to use these parameters. |
|
| 1143 |
/// \code |
|
| 1144 |
/// // Compute shortest path from node s to each node |
|
| 1145 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
| 1146 |
/// |
|
| 1147 |
/// // Compute shortest path from s to t |
|
| 1148 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
| 1149 |
/// \endcode |
|
| 1150 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
| 1151 |
/// to the end of the parameter list. |
|
| 1152 |
/// \sa BellmanFordWizard |
|
| 1153 |
/// \sa BellmanFord |
|
| 1154 |
template<typename GR, typename LEN> |
|
| 1155 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
| 1156 |
bellmanFord(const GR& digraph, |
|
| 1157 |
const LEN& length) |
|
| 1158 |
{
|
|
| 1159 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
| 1160 |
} |
|
| 1161 |
|
|
| 1162 |
} //END OF NAMESPACE LEMON |
|
| 1163 |
|
|
| 1164 |
#endif |
|
| 1165 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BINOMIAL_HEAP_H |
|
| 20 |
#define LEMON_BINOMIAL_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Binomial Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
#include <lemon/math.h> |
|
| 30 |
#include <lemon/counter.h> |
|
| 31 |
|
|
| 32 |
namespace lemon {
|
|
| 33 |
|
|
| 34 |
/// \ingroup heaps |
|
| 35 |
/// |
|
| 36 |
///\brief Binomial heap data structure. |
|
| 37 |
/// |
|
| 38 |
/// This class implements the \e binomial \e heap data structure. |
|
| 39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 40 |
/// |
|
| 41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
| 42 |
/// in a binomial heap. In case of many calls of these operations, |
|
| 43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
| 44 |
/// "binary heap". |
|
| 45 |
/// |
|
| 46 |
/// \tparam PR Type of the priorities of the items. |
|
| 47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 48 |
/// internally to handle the cross references. |
|
| 49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 50 |
/// The default is \c std::less<PR>. |
|
| 51 |
#ifdef DOXYGEN |
|
| 52 |
template <typename PR, typename IM, typename CMP> |
|
| 53 |
#else |
|
| 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 55 |
#endif |
|
| 56 |
class BinomialHeap {
|
|
| 57 |
public: |
|
| 58 |
/// Type of the item-int map. |
|
| 59 |
typedef IM ItemIntMap; |
|
| 60 |
/// Type of the priorities. |
|
| 61 |
typedef PR Prio; |
|
| 62 |
/// Type of the items stored in the heap. |
|
| 63 |
typedef typename ItemIntMap::Key Item; |
|
| 64 |
/// Functor type for comparing the priorities. |
|
| 65 |
typedef CMP Compare; |
|
| 66 |
|
|
| 67 |
/// \brief Type to represent the states of the items. |
|
| 68 |
/// |
|
| 69 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 |
/// heap's point of view, but may be useful to the user. |
|
| 72 |
/// |
|
| 73 |
/// The item-int map must be initialized in such way that it assigns |
|
| 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 75 |
enum State {
|
|
| 76 |
IN_HEAP = 0, ///< = 0. |
|
| 77 |
PRE_HEAP = -1, ///< = -1. |
|
| 78 |
POST_HEAP = -2 ///< = -2. |
|
| 79 |
}; |
|
| 80 |
|
|
| 81 |
private: |
|
| 82 |
class Store; |
|
| 83 |
|
|
| 84 |
std::vector<Store> _data; |
|
| 85 |
int _min, _head; |
|
| 86 |
ItemIntMap &_iim; |
|
| 87 |
Compare _comp; |
|
| 88 |
int _num_items; |
|
| 89 |
|
|
| 90 |
public: |
|
| 91 |
/// \brief Constructor. |
|
| 92 |
/// |
|
| 93 |
/// Constructor. |
|
| 94 |
/// \param map A map that assigns \c int values to the items. |
|
| 95 |
/// It is used internally to handle the cross references. |
|
| 96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 97 |
explicit BinomialHeap(ItemIntMap &map) |
|
| 98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {}
|
|
| 99 |
|
|
| 100 |
/// \brief Constructor. |
|
| 101 |
/// |
|
| 102 |
/// Constructor. |
|
| 103 |
/// \param map A map that assigns \c int values to the items. |
|
| 104 |
/// It is used internally to handle the cross references. |
|
| 105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 106 |
/// \param comp The function object used for comparing the priorities. |
|
| 107 |
BinomialHeap(ItemIntMap &map, const Compare &comp) |
|
| 108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
|
|
| 109 |
|
|
| 110 |
/// \brief The number of items stored in the heap. |
|
| 111 |
/// |
|
| 112 |
/// This function returns the number of items stored in the heap. |
|
| 113 |
int size() const { return _num_items; }
|
|
| 114 |
|
|
| 115 |
/// \brief Check if the heap is empty. |
|
| 116 |
/// |
|
| 117 |
/// This function returns \c true if the heap is empty. |
|
| 118 |
bool empty() const { return _num_items==0; }
|
|
| 119 |
|
|
| 120 |
/// \brief Make the heap empty. |
|
| 121 |
/// |
|
| 122 |
/// This functon makes the heap empty. |
|
| 123 |
/// It does not change the cross reference map. If you want to reuse |
|
| 124 |
/// a heap that is not surely empty, you should first clear it and |
|
| 125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 126 |
/// for each item. |
|
| 127 |
void clear() {
|
|
| 128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 132 |
/// not stored in the heap. |
|
| 133 |
/// |
|
| 134 |
/// This method sets the priority of the given item if it is |
|
| 135 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 136 |
/// item into the heap with the given priority. |
|
| 137 |
/// \param item The item. |
|
| 138 |
/// \param value The priority. |
|
| 139 |
void set (const Item& item, const Prio& value) {
|
|
| 140 |
int i=_iim[item]; |
|
| 141 |
if ( i >= 0 && _data[i].in ) {
|
|
| 142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 144 |
} else push(item, value); |
|
| 145 |
} |
|
| 146 |
|
|
| 147 |
/// \brief Insert an item into the heap with the given priority. |
|
| 148 |
/// |
|
| 149 |
/// This function inserts the given item into the heap with the |
|
| 150 |
/// given priority. |
|
| 151 |
/// \param item The item to insert. |
|
| 152 |
/// \param value The priority of the item. |
|
| 153 |
/// \pre \e item must not be stored in the heap. |
|
| 154 |
void push (const Item& item, const Prio& value) {
|
|
| 155 |
int i=_iim[item]; |
|
| 156 |
if ( i<0 ) {
|
|
| 157 |
int s=_data.size(); |
|
| 158 |
_iim.set( item,s ); |
|
| 159 |
Store st; |
|
| 160 |
st.name=item; |
|
| 161 |
st.prio=value; |
|
| 162 |
_data.push_back(st); |
|
| 163 |
i=s; |
|
| 164 |
} |
|
| 165 |
else {
|
|
| 166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
| 167 |
_data[i].degree=0; |
|
| 168 |
_data[i].in=true; |
|
| 169 |
_data[i].prio=value; |
|
| 170 |
} |
|
| 171 |
|
|
| 172 |
if( 0==_num_items ) {
|
|
| 173 |
_head=i; |
|
| 174 |
_min=i; |
|
| 175 |
} else {
|
|
| 176 |
merge(i); |
|
| 177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
| 178 |
} |
|
| 179 |
++_num_items; |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
/// \brief Return the item having minimum priority. |
|
| 183 |
/// |
|
| 184 |
/// This function returns the item having minimum priority. |
|
| 185 |
/// \pre The heap must be non-empty. |
|
| 186 |
Item top() const { return _data[_min].name; }
|
|
| 187 |
|
|
| 188 |
/// \brief The minimum priority. |
|
| 189 |
/// |
|
| 190 |
/// This function returns the minimum priority. |
|
| 191 |
/// \pre The heap must be non-empty. |
|
| 192 |
Prio prio() const { return _data[_min].prio; }
|
|
| 193 |
|
|
| 194 |
/// \brief The priority of the given item. |
|
| 195 |
/// |
|
| 196 |
/// This function returns the priority of the given item. |
|
| 197 |
/// \param item The item. |
|
| 198 |
/// \pre \e item must be in the heap. |
|
| 199 |
const Prio& operator[](const Item& item) const {
|
|
| 200 |
return _data[_iim[item]].prio; |
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
/// \brief Remove the item having minimum priority. |
|
| 204 |
/// |
|
| 205 |
/// This function removes the item having minimum priority. |
|
| 206 |
/// \pre The heap must be non-empty. |
|
| 207 |
void pop() {
|
|
| 208 |
_data[_min].in=false; |
|
| 209 |
|
|
| 210 |
int head_child=-1; |
|
| 211 |
if ( _data[_min].child!=-1 ) {
|
|
| 212 |
int child=_data[_min].child; |
|
| 213 |
int neighb; |
|
| 214 |
while( child!=-1 ) {
|
|
| 215 |
neighb=_data[child].right_neighbor; |
|
| 216 |
_data[child].parent=-1; |
|
| 217 |
_data[child].right_neighbor=head_child; |
|
| 218 |
head_child=child; |
|
| 219 |
child=neighb; |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
if ( _data[_head].right_neighbor==-1 ) {
|
|
| 224 |
// there was only one root |
|
| 225 |
_head=head_child; |
|
| 226 |
} |
|
| 227 |
else {
|
|
| 228 |
// there were more roots |
|
| 229 |
if( _head!=_min ) { unlace(_min); }
|
|
| 230 |
else { _head=_data[_head].right_neighbor; }
|
|
| 231 |
merge(head_child); |
|
| 232 |
} |
|
| 233 |
_min=findMin(); |
|
| 234 |
--_num_items; |
|
| 235 |
} |
|
| 236 |
|
|
| 237 |
/// \brief Remove the given item from the heap. |
|
| 238 |
/// |
|
| 239 |
/// This function removes the given item from the heap if it is |
|
| 240 |
/// already stored. |
|
| 241 |
/// \param item The item to delete. |
|
| 242 |
/// \pre \e item must be in the heap. |
|
| 243 |
void erase (const Item& item) {
|
|
| 244 |
int i=_iim[item]; |
|
| 245 |
if ( i >= 0 && _data[i].in ) {
|
|
| 246 |
decrease( item, _data[_min].prio-1 ); |
|
| 247 |
pop(); |
|
| 248 |
} |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Decrease the priority of an item to the given value. |
|
| 252 |
/// |
|
| 253 |
/// This function decreases the priority of an item to the given value. |
|
| 254 |
/// \param item The item. |
|
| 255 |
/// \param value The priority. |
|
| 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
| 257 |
void decrease (Item item, const Prio& value) {
|
|
| 258 |
int i=_iim[item]; |
|
| 259 |
int p=_data[i].parent; |
|
| 260 |
_data[i].prio=value; |
|
| 261 |
|
|
| 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) {
|
|
| 263 |
_data[i].name=_data[p].name; |
|
| 264 |
_data[i].prio=_data[p].prio; |
|
| 265 |
_data[p].name=item; |
|
| 266 |
_data[p].prio=value; |
|
| 267 |
_iim[_data[i].name]=i; |
|
| 268 |
i=p; |
|
| 269 |
p=_data[p].parent; |
|
| 270 |
} |
|
| 271 |
_iim[item]=i; |
|
| 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
/// \brief Increase the priority of an item to the given value. |
|
| 276 |
/// |
|
| 277 |
/// This function increases the priority of an item to the given value. |
|
| 278 |
/// \param item The item. |
|
| 279 |
/// \param value The priority. |
|
| 280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
| 281 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
erase(item); |
|
| 283 |
push(item, value); |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Return the state of an item. |
|
| 287 |
/// |
|
| 288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 290 |
/// and \c POST_HEAP otherwise. |
|
| 291 |
/// In the latter case it is possible that the item will get back |
|
| 292 |
/// to the heap again. |
|
| 293 |
/// \param item The item. |
|
| 294 |
State state(const Item &item) const {
|
|
| 295 |
int i=_iim[item]; |
|
| 296 |
if( i>=0 ) {
|
|
| 297 |
if ( _data[i].in ) i=0; |
|
| 298 |
else i=-2; |
|
| 299 |
} |
|
| 300 |
return State(i); |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \brief Set the state of an item in the heap. |
|
| 304 |
/// |
|
| 305 |
/// This function sets the state of the given item in the heap. |
|
| 306 |
/// It can be used to manually clear the heap when it is important |
|
| 307 |
/// to achive better time complexity. |
|
| 308 |
/// \param i The item. |
|
| 309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 310 |
void state(const Item& i, State st) {
|
|
| 311 |
switch (st) {
|
|
| 312 |
case POST_HEAP: |
|
| 313 |
case PRE_HEAP: |
|
| 314 |
if (state(i) == IN_HEAP) {
|
|
| 315 |
erase(i); |
|
| 316 |
} |
|
| 317 |
_iim[i] = st; |
|
| 318 |
break; |
|
| 319 |
case IN_HEAP: |
|
| 320 |
break; |
|
| 321 |
} |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
private: |
|
| 325 |
|
|
| 326 |
// Find the minimum of the roots |
|
| 327 |
int findMin() {
|
|
| 328 |
if( _head!=-1 ) {
|
|
| 329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
| 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
| 331 |
x=_data[x].right_neighbor ) {
|
|
| 332 |
if( _comp( _data[x].prio,min_val ) ) {
|
|
| 333 |
min_val=_data[x].prio; |
|
| 334 |
min_loc=x; |
|
| 335 |
} |
|
| 336 |
} |
|
| 337 |
return min_loc; |
|
| 338 |
} |
|
| 339 |
else return -1; |
|
| 340 |
} |
|
| 341 |
|
|
| 342 |
// Merge the heap with another heap starting at the given position |
|
| 343 |
void merge(int a) {
|
|
| 344 |
if( _head==-1 || a==-1 ) return; |
|
| 345 |
if( _data[a].right_neighbor==-1 && |
|
| 346 |
_data[a].degree<=_data[_head].degree ) {
|
|
| 347 |
_data[a].right_neighbor=_head; |
|
| 348 |
_head=a; |
|
| 349 |
} else {
|
|
| 350 |
interleave(a); |
|
| 351 |
} |
|
| 352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
| 353 |
|
|
| 354 |
int x=_head; |
|
| 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
| 356 |
while( x_next!=-1 ) {
|
|
| 357 |
if( _data[x].degree!=_data[x_next].degree || |
|
| 358 |
( _data[x_next].right_neighbor!=-1 && |
|
| 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
|
|
| 360 |
x_prev=x; |
|
| 361 |
x=x_next; |
|
| 362 |
} |
|
| 363 |
else {
|
|
| 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) {
|
|
| 365 |
if( x_prev==-1 ) {
|
|
| 366 |
_head=x_next; |
|
| 367 |
} else {
|
|
| 368 |
_data[x_prev].right_neighbor=x_next; |
|
| 369 |
} |
|
| 370 |
fuse(x,x_next); |
|
| 371 |
x=x_next; |
|
| 372 |
} |
|
| 373 |
else {
|
|
| 374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
| 375 |
fuse(x_next,x); |
|
| 376 |
} |
|
| 377 |
} |
|
| 378 |
x_next=_data[x].right_neighbor; |
|
| 379 |
} |
|
| 380 |
} |
|
| 381 |
|
|
| 382 |
// Interleave the elements of the given list into the list of the roots |
|
| 383 |
void interleave(int a) {
|
|
| 384 |
int p=_head, q=a; |
|
| 385 |
int curr=_data.size(); |
|
| 386 |
_data.push_back(Store()); |
|
| 387 |
|
|
| 388 |
while( p!=-1 || q!=-1 ) {
|
|
| 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
|
|
| 390 |
_data[curr].right_neighbor=p; |
|
| 391 |
curr=p; |
|
| 392 |
p=_data[p].right_neighbor; |
|
| 393 |
} |
|
| 394 |
else {
|
|
| 395 |
_data[curr].right_neighbor=q; |
|
| 396 |
curr=q; |
|
| 397 |
q=_data[q].right_neighbor; |
|
| 398 |
} |
|
| 399 |
} |
|
| 400 |
|
|
| 401 |
_head=_data.back().right_neighbor; |
|
| 402 |
_data.pop_back(); |
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
// Lace node a under node b |
|
| 406 |
void fuse(int a, int b) {
|
|
| 407 |
_data[a].parent=b; |
|
| 408 |
_data[a].right_neighbor=_data[b].child; |
|
| 409 |
_data[b].child=a; |
|
| 410 |
|
|
| 411 |
++_data[b].degree; |
|
| 412 |
} |
|
| 413 |
|
|
| 414 |
// Unlace node a (if it has siblings) |
|
| 415 |
void unlace(int a) {
|
|
| 416 |
int neighb=_data[a].right_neighbor; |
|
| 417 |
int other=_head; |
|
| 418 |
|
|
| 419 |
while( _data[other].right_neighbor!=a ) |
|
| 420 |
other=_data[other].right_neighbor; |
|
| 421 |
_data[other].right_neighbor=neighb; |
|
| 422 |
} |
|
| 423 |
|
|
| 424 |
private: |
|
| 425 |
|
|
| 426 |
class Store {
|
|
| 427 |
friend class BinomialHeap; |
|
| 428 |
|
|
| 429 |
Item name; |
|
| 430 |
int parent; |
|
| 431 |
int right_neighbor; |
|
| 432 |
int child; |
|
| 433 |
int degree; |
|
| 434 |
bool in; |
|
| 435 |
Prio prio; |
|
| 436 |
|
|
| 437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
| 438 |
in(true) {}
|
|
| 439 |
}; |
|
| 440 |
}; |
|
| 441 |
|
|
| 442 |
} //namespace lemon |
|
| 443 |
|
|
| 444 |
#endif //LEMON_BINOMIAL_HEAP_H |
|
| 445 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
|
| 20 |
#define LEMON_CAPACITY_SCALING_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow_algs |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/bin_heap.h> |
|
| 31 |
|
|
| 32 |
namespace lemon {
|
|
| 33 |
|
|
| 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
|
| 35 |
/// |
|
| 36 |
/// Default traits class of CapacityScaling algorithm. |
|
| 37 |
/// \tparam GR Digraph type. |
|
| 38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 39 |
/// and supply values. By default it is \c int. |
|
| 40 |
/// \tparam C The number type used for costs and potentials. |
|
| 41 |
/// By default it is the same as \c V. |
|
| 42 |
template <typename GR, typename V = int, typename C = V> |
|
| 43 |
struct CapacityScalingDefaultTraits |
|
| 44 |
{
|
|
| 45 |
/// The type of the digraph |
|
| 46 |
typedef GR Digraph; |
|
| 47 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 48 |
typedef V Value; |
|
| 49 |
/// The type of the arc costs |
|
| 50 |
typedef C Cost; |
|
| 51 |
|
|
| 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
|
| 53 |
/// |
|
| 54 |
/// The type of the heap used for internal Dijkstra computations. |
|
| 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|
| 56 |
/// its priority type must be \c Cost and its cross reference type |
|
| 57 |
/// must be \ref RangeMap "RangeMap<int>". |
|
| 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
|
| 59 |
}; |
|
| 60 |
|
|
| 61 |
/// \addtogroup min_cost_flow_algs |
|
| 62 |
/// @{
|
|
| 63 |
|
|
| 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
|
| 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
|
| 66 |
/// |
|
| 67 |
/// \ref CapacityScaling implements the capacity scaling version |
|
| 68 |
/// of the successive shortest path algorithm for finding a |
|
| 69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
|
| 70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
|
| 71 |
/// solution method. |
|
| 72 |
/// |
|
| 73 |
/// Most of the parameters of the problem (except for the digraph) |
|
| 74 |
/// can be given using separate functions, and the algorithm can be |
|
| 75 |
/// executed using the \ref run() function. If some parameters are not |
|
| 76 |
/// specified, then default values will be used. |
|
| 77 |
/// |
|
| 78 |
/// \tparam GR The digraph type the algorithm runs on. |
|
| 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 80 |
/// and supply values in the algorithm. By default, it is \c int. |
|
| 81 |
/// \tparam C The number type used for costs and potentials in the |
|
| 82 |
/// algorithm. By default, it is the same as \c V. |
|
| 83 |
/// \tparam TR The traits class that defines various types used by the |
|
| 84 |
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits |
|
| 85 |
/// "CapacityScalingDefaultTraits<GR, V, C>". |
|
| 86 |
/// In most cases, this parameter should not be set directly, |
|
| 87 |
/// consider to use the named template parameters instead. |
|
| 88 |
/// |
|
| 89 |
/// \warning Both number types must be signed and all input data must |
|
| 90 |
/// be integer. |
|
| 91 |
/// \warning This algorithm does not support negative costs for such |
|
| 92 |
/// arcs that have infinite upper bound. |
|
| 93 |
#ifdef DOXYGEN |
|
| 94 |
template <typename GR, typename V, typename C, typename TR> |
|
| 95 |
#else |
|
| 96 |
template < typename GR, typename V = int, typename C = V, |
|
| 97 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
|
| 98 |
#endif |
|
| 99 |
class CapacityScaling |
|
| 100 |
{
|
|
| 101 |
public: |
|
| 102 |
|
|
| 103 |
/// The type of the digraph |
|
| 104 |
typedef typename TR::Digraph Digraph; |
|
| 105 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 106 |
typedef typename TR::Value Value; |
|
| 107 |
/// The type of the arc costs |
|
| 108 |
typedef typename TR::Cost Cost; |
|
| 109 |
|
|
| 110 |
/// The type of the heap used for internal Dijkstra computations |
|
| 111 |
typedef typename TR::Heap Heap; |
|
| 112 |
|
|
| 113 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
|
| 114 |
typedef TR Traits; |
|
| 115 |
|
|
| 116 |
public: |
|
| 117 |
|
|
| 118 |
/// \brief Problem type constants for the \c run() function. |
|
| 119 |
/// |
|
| 120 |
/// Enum type containing the problem type constants that can be |
|
| 121 |
/// returned by the \ref run() function of the algorithm. |
|
| 122 |
enum ProblemType {
|
|
| 123 |
/// The problem has no feasible solution (flow). |
|
| 124 |
INFEASIBLE, |
|
| 125 |
/// The problem has optimal solution (i.e. it is feasible and |
|
| 126 |
/// bounded), and the algorithm has found optimal flow and node |
|
| 127 |
/// potentials (primal and dual solutions). |
|
| 128 |
OPTIMAL, |
|
| 129 |
/// The digraph contains an arc of negative cost and infinite |
|
| 130 |
/// upper bound. It means that the objective function is unbounded |
|
| 131 |
/// on that arc, however, note that it could actually be bounded |
|
| 132 |
/// over the feasible flows, but this algroithm cannot handle |
|
| 133 |
/// these cases. |
|
| 134 |
UNBOUNDED |
|
| 135 |
}; |
|
| 136 |
|
|
| 137 |
private: |
|
| 138 |
|
|
| 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 140 |
|
|
| 141 |
typedef std::vector<int> IntVector; |
|
| 142 |
typedef std::vector<Value> ValueVector; |
|
| 143 |
typedef std::vector<Cost> CostVector; |
|
| 144 |
typedef std::vector<char> BoolVector; |
|
| 145 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 146 |
|
|
| 147 |
private: |
|
| 148 |
|
|
| 149 |
// Data related to the underlying digraph |
|
| 150 |
const GR &_graph; |
|
| 151 |
int _node_num; |
|
| 152 |
int _arc_num; |
|
| 153 |
int _res_arc_num; |
|
| 154 |
int _root; |
|
| 155 |
|
|
| 156 |
// Parameters of the problem |
|
| 157 |
bool _have_lower; |
|
| 158 |
Value _sum_supply; |
|
| 159 |
|
|
| 160 |
// Data structures for storing the digraph |
|
| 161 |
IntNodeMap _node_id; |
|
| 162 |
IntArcMap _arc_idf; |
|
| 163 |
IntArcMap _arc_idb; |
|
| 164 |
IntVector _first_out; |
|
| 165 |
BoolVector _forward; |
|
| 166 |
IntVector _source; |
|
| 167 |
IntVector _target; |
|
| 168 |
IntVector _reverse; |
|
| 169 |
|
|
| 170 |
// Node and arc data |
|
| 171 |
ValueVector _lower; |
|
| 172 |
ValueVector _upper; |
|
| 173 |
CostVector _cost; |
|
| 174 |
ValueVector _supply; |
|
| 175 |
|
|
| 176 |
ValueVector _res_cap; |
|
| 177 |
CostVector _pi; |
|
| 178 |
ValueVector _excess; |
|
| 179 |
IntVector _excess_nodes; |
|
| 180 |
IntVector _deficit_nodes; |
|
| 181 |
|
|
| 182 |
Value _delta; |
|
| 183 |
int _factor; |
|
| 184 |
IntVector _pred; |
|
| 185 |
|
|
| 186 |
public: |
|
| 187 |
|
|
| 188 |
/// \brief Constant for infinite upper bounds (capacities). |
|
| 189 |
/// |
|
| 190 |
/// Constant for infinite upper bounds (capacities). |
|
| 191 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
| 192 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
| 193 |
const Value INF; |
|
| 194 |
|
|
| 195 |
private: |
|
| 196 |
|
|
| 197 |
// Special implementation of the Dijkstra algorithm for finding |
|
| 198 |
// shortest paths in the residual network of the digraph with |
|
| 199 |
// respect to the reduced arc costs and modifying the node |
|
| 200 |
// potentials according to the found distance labels. |
|
| 201 |
class ResidualDijkstra |
|
| 202 |
{
|
|
| 203 |
private: |
|
| 204 |
|
|
| 205 |
int _node_num; |
|
| 206 |
bool _geq; |
|
| 207 |
const IntVector &_first_out; |
|
| 208 |
const IntVector &_target; |
|
| 209 |
const CostVector &_cost; |
|
| 210 |
const ValueVector &_res_cap; |
|
| 211 |
const ValueVector &_excess; |
|
| 212 |
CostVector &_pi; |
|
| 213 |
IntVector &_pred; |
|
| 214 |
|
|
| 215 |
IntVector _proc_nodes; |
|
| 216 |
CostVector _dist; |
|
| 217 |
|
|
| 218 |
public: |
|
| 219 |
|
|
| 220 |
ResidualDijkstra(CapacityScaling& cs) : |
|
| 221 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
|
| 222 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
|
| 223 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
|
| 224 |
_pred(cs._pred), _dist(cs._node_num) |
|
| 225 |
{}
|
|
| 226 |
|
|
| 227 |
int run(int s, Value delta = 1) {
|
|
| 228 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
|
| 229 |
Heap heap(heap_cross_ref); |
|
| 230 |
heap.push(s, 0); |
|
| 231 |
_pred[s] = -1; |
|
| 232 |
_proc_nodes.clear(); |
|
| 233 |
|
|
| 234 |
// Process nodes |
|
| 235 |
while (!heap.empty() && _excess[heap.top()] > -delta) {
|
|
| 236 |
int u = heap.top(), v; |
|
| 237 |
Cost d = heap.prio() + _pi[u], dn; |
|
| 238 |
_dist[u] = heap.prio(); |
|
| 239 |
_proc_nodes.push_back(u); |
|
| 240 |
heap.pop(); |
|
| 241 |
|
|
| 242 |
// Traverse outgoing residual arcs |
|
| 243 |
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
|
| 244 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 245 |
if (_res_cap[a] < delta) continue; |
|
| 246 |
v = _target[a]; |
|
| 247 |
switch (heap.state(v)) {
|
|
| 248 |
case Heap::PRE_HEAP: |
|
| 249 |
heap.push(v, d + _cost[a] - _pi[v]); |
|
| 250 |
_pred[v] = a; |
|
| 251 |
break; |
|
| 252 |
case Heap::IN_HEAP: |
|
| 253 |
dn = d + _cost[a] - _pi[v]; |
|
| 254 |
if (dn < heap[v]) {
|
|
| 255 |
heap.decrease(v, dn); |
|
| 256 |
_pred[v] = a; |
|
| 257 |
} |
|
| 258 |
break; |
|
| 259 |
case Heap::POST_HEAP: |
|
| 260 |
break; |
|
| 261 |
} |
|
| 262 |
} |
|
| 263 |
} |
|
| 264 |
if (heap.empty()) return -1; |
|
| 265 |
|
|
| 266 |
// Update potentials of processed nodes |
|
| 267 |
int t = heap.top(); |
|
| 268 |
Cost dt = heap.prio(); |
|
| 269 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) {
|
|
| 270 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
|
| 271 |
} |
|
| 272 |
|
|
| 273 |
return t; |
|
| 274 |
} |
|
| 275 |
|
|
| 276 |
}; //class ResidualDijkstra |
|
| 277 |
|
|
| 278 |
public: |
|
| 279 |
|
|
| 280 |
/// \name Named Template Parameters |
|
| 281 |
/// @{
|
|
| 282 |
|
|
| 283 |
template <typename T> |
|
| 284 |
struct SetHeapTraits : public Traits {
|
|
| 285 |
typedef T Heap; |
|
| 286 |
}; |
|
| 287 |
|
|
| 288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 289 |
/// \c Heap type. |
|
| 290 |
/// |
|
| 291 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
|
| 292 |
/// type, which is used for internal Dijkstra computations. |
|
| 293 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|
| 294 |
/// its priority type must be \c Cost and its cross reference type |
|
| 295 |
/// must be \ref RangeMap "RangeMap<int>". |
|
| 296 |
template <typename T> |
|
| 297 |
struct SetHeap |
|
| 298 |
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
|
|
| 299 |
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
|
| 300 |
}; |
|
| 301 |
|
|
| 302 |
/// @} |
|
| 303 |
|
|
| 304 |
protected: |
|
| 305 |
|
|
| 306 |
CapacityScaling() {}
|
|
| 307 |
|
|
| 308 |
public: |
|
| 309 |
|
|
| 310 |
/// \brief Constructor. |
|
| 311 |
/// |
|
| 312 |
/// The constructor of the class. |
|
| 313 |
/// |
|
| 314 |
/// \param graph The digraph the algorithm runs on. |
|
| 315 |
CapacityScaling(const GR& graph) : |
|
| 316 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
|
| 317 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
| 318 |
std::numeric_limits<Value>::infinity() : |
|
| 319 |
std::numeric_limits<Value>::max()) |
|
| 320 |
{
|
|
| 321 |
// Check the number types |
|
| 322 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
| 323 |
"The flow type of CapacityScaling must be signed"); |
|
| 324 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
| 325 |
"The cost type of CapacityScaling must be signed"); |
|
| 326 |
|
|
| 327 |
// Reset data structures |
|
| 328 |
reset(); |
|
| 329 |
} |
|
| 330 |
|
|
| 331 |
/// \name Parameters |
|
| 332 |
/// The parameters of the algorithm can be specified using these |
|
| 333 |
/// functions. |
|
| 334 |
|
|
| 335 |
/// @{
|
|
| 336 |
|
|
| 337 |
/// \brief Set the lower bounds on the arcs. |
|
| 338 |
/// |
|
| 339 |
/// This function sets the lower bounds on the arcs. |
|
| 340 |
/// If it is not used before calling \ref run(), the lower bounds |
|
| 341 |
/// will be set to zero on all arcs. |
|
| 342 |
/// |
|
| 343 |
/// \param map An arc map storing the lower bounds. |
|
| 344 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 345 |
/// of the algorithm. |
|
| 346 |
/// |
|
| 347 |
/// \return <tt>(*this)</tt> |
|
| 348 |
template <typename LowerMap> |
|
| 349 |
CapacityScaling& lowerMap(const LowerMap& map) {
|
|
| 350 |
_have_lower = true; |
|
| 351 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 352 |
_lower[_arc_idf[a]] = map[a]; |
|
| 353 |
_lower[_arc_idb[a]] = map[a]; |
|
| 354 |
} |
|
| 355 |
return *this; |
|
| 356 |
} |
|
| 357 |
|
|
| 358 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 359 |
/// |
|
| 360 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 361 |
/// If it is not used before calling \ref run(), the upper bounds |
|
| 362 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
| 363 |
/// unbounded from above). |
|
| 364 |
/// |
|
| 365 |
/// \param map An arc map storing the upper bounds. |
|
| 366 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 367 |
/// of the algorithm. |
|
| 368 |
/// |
|
| 369 |
/// \return <tt>(*this)</tt> |
|
| 370 |
template<typename UpperMap> |
|
| 371 |
CapacityScaling& upperMap(const UpperMap& map) {
|
|
| 372 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 373 |
_upper[_arc_idf[a]] = map[a]; |
|
| 374 |
} |
|
| 375 |
return *this; |
|
| 376 |
} |
|
| 377 |
|
|
| 378 |
/// \brief Set the costs of the arcs. |
|
| 379 |
/// |
|
| 380 |
/// This function sets the costs of the arcs. |
|
| 381 |
/// If it is not used before calling \ref run(), the costs |
|
| 382 |
/// will be set to \c 1 on all arcs. |
|
| 383 |
/// |
|
| 384 |
/// \param map An arc map storing the costs. |
|
| 385 |
/// Its \c Value type must be convertible to the \c Cost type |
|
| 386 |
/// of the algorithm. |
|
| 387 |
/// |
|
| 388 |
/// \return <tt>(*this)</tt> |
|
| 389 |
template<typename CostMap> |
|
| 390 |
CapacityScaling& costMap(const CostMap& map) {
|
|
| 391 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 392 |
_cost[_arc_idf[a]] = map[a]; |
|
| 393 |
_cost[_arc_idb[a]] = -map[a]; |
|
| 394 |
} |
|
| 395 |
return *this; |
|
| 396 |
} |
|
| 397 |
|
|
| 398 |
/// \brief Set the supply values of the nodes. |
|
| 399 |
/// |
|
| 400 |
/// This function sets the supply values of the nodes. |
|
| 401 |
/// If neither this function nor \ref stSupply() is used before |
|
| 402 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 403 |
/// |
|
| 404 |
/// \param map A node map storing the supply values. |
|
| 405 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 406 |
/// of the algorithm. |
|
| 407 |
/// |
|
| 408 |
/// \return <tt>(*this)</tt> |
|
| 409 |
template<typename SupplyMap> |
|
| 410 |
CapacityScaling& supplyMap(const SupplyMap& map) {
|
|
| 411 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 412 |
_supply[_node_id[n]] = map[n]; |
|
| 413 |
} |
|
| 414 |
return *this; |
|
| 415 |
} |
|
| 416 |
|
|
| 417 |
/// \brief Set single source and target nodes and a supply value. |
|
| 418 |
/// |
|
| 419 |
/// This function sets a single source node and a single target node |
|
| 420 |
/// and the required flow value. |
|
| 421 |
/// If neither this function nor \ref supplyMap() is used before |
|
| 422 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 423 |
/// |
|
| 424 |
/// Using this function has the same effect as using \ref supplyMap() |
|
| 425 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
| 426 |
/// assigned to \c t and all other nodes have zero supply value. |
|
| 427 |
/// |
|
| 428 |
/// \param s The source node. |
|
| 429 |
/// \param t The target node. |
|
| 430 |
/// \param k The required amount of flow from node \c s to node \c t |
|
| 431 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
| 432 |
/// |
|
| 433 |
/// \return <tt>(*this)</tt> |
|
| 434 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 435 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 436 |
_supply[i] = 0; |
|
| 437 |
} |
|
| 438 |
_supply[_node_id[s]] = k; |
|
| 439 |
_supply[_node_id[t]] = -k; |
|
| 440 |
return *this; |
|
| 441 |
} |
|
| 442 |
|
|
| 443 |
/// @} |
|
| 444 |
|
|
| 445 |
/// \name Execution control |
|
| 446 |
/// The algorithm can be executed using \ref run(). |
|
| 447 |
|
|
| 448 |
/// @{
|
|
| 449 |
|
|
| 450 |
/// \brief Run the algorithm. |
|
| 451 |
/// |
|
| 452 |
/// This function runs the algorithm. |
|
| 453 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
| 454 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 455 |
/// For example, |
|
| 456 |
/// \code |
|
| 457 |
/// CapacityScaling<ListDigraph> cs(graph); |
|
| 458 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 459 |
/// .supplyMap(sup).run(); |
|
| 460 |
/// \endcode |
|
| 461 |
/// |
|
| 462 |
/// This function can be called more than once. All the given parameters |
|
| 463 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
| 464 |
/// is used, thus only the modified parameters have to be set again. |
|
| 465 |
/// If the underlying digraph was also modified after the construction |
|
| 466 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
| 467 |
/// function must be called. |
|
| 468 |
/// |
|
| 469 |
/// \param factor The capacity scaling factor. It must be larger than |
|
| 470 |
/// one to use scaling. If it is less or equal to one, then scaling |
|
| 471 |
/// will be disabled. |
|
| 472 |
/// |
|
| 473 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
| 474 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
| 475 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
| 476 |
/// optimal flow and node potentials (primal and dual solutions), |
|
| 477 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
|
| 478 |
/// and infinite upper bound. It means that the objective function |
|
| 479 |
/// is unbounded on that arc, however, note that it could actually be |
|
| 480 |
/// bounded over the feasible flows, but this algroithm cannot handle |
|
| 481 |
/// these cases. |
|
| 482 |
/// |
|
| 483 |
/// \see ProblemType |
|
| 484 |
/// \see resetParams(), reset() |
|
| 485 |
ProblemType run(int factor = 4) {
|
|
| 486 |
_factor = factor; |
|
| 487 |
ProblemType pt = init(); |
|
| 488 |
if (pt != OPTIMAL) return pt; |
|
| 489 |
return start(); |
|
| 490 |
} |
|
| 491 |
|
|
| 492 |
/// \brief Reset all the parameters that have been given before. |
|
| 493 |
/// |
|
| 494 |
/// This function resets all the paramaters that have been given |
|
| 495 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
| 496 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 497 |
/// |
|
| 498 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
| 499 |
/// parameters are kept for the next \ref run() call, unless |
|
| 500 |
/// \ref resetParams() or \ref reset() is used. |
|
| 501 |
/// If the underlying digraph was also modified after the construction |
|
| 502 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
| 503 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
| 504 |
/// |
|
| 505 |
/// For example, |
|
| 506 |
/// \code |
|
| 507 |
/// CapacityScaling<ListDigraph> cs(graph); |
|
| 508 |
/// |
|
| 509 |
/// // First run |
|
| 510 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 511 |
/// .supplyMap(sup).run(); |
|
| 512 |
/// |
|
| 513 |
/// // Run again with modified cost map (resetParams() is not called, |
|
| 514 |
/// // so only the cost map have to be set again) |
|
| 515 |
/// cost[e] += 100; |
|
| 516 |
/// cs.costMap(cost).run(); |
|
| 517 |
/// |
|
| 518 |
/// // Run again from scratch using resetParams() |
|
| 519 |
/// // (the lower bounds will be set to zero on all arcs) |
|
| 520 |
/// cs.resetParams(); |
|
| 521 |
/// cs.upperMap(capacity).costMap(cost) |
|
| 522 |
/// .supplyMap(sup).run(); |
|
| 523 |
/// \endcode |
|
| 524 |
/// |
|
| 525 |
/// \return <tt>(*this)</tt> |
|
| 526 |
/// |
|
| 527 |
/// \see reset(), run() |
|
| 528 |
CapacityScaling& resetParams() {
|
|
| 529 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 530 |
_supply[i] = 0; |
|
| 531 |
} |
|
| 532 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 533 |
_lower[j] = 0; |
|
| 534 |
_upper[j] = INF; |
|
| 535 |
_cost[j] = _forward[j] ? 1 : -1; |
|
| 536 |
} |
|
| 537 |
_have_lower = false; |
|
| 538 |
return *this; |
|
| 539 |
} |
|
| 540 |
|
|
| 541 |
/// \brief Reset the internal data structures and all the parameters |
|
| 542 |
/// that have been given before. |
|
| 543 |
/// |
|
| 544 |
/// This function resets the internal data structures and all the |
|
| 545 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
| 546 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 547 |
/// |
|
| 548 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
| 549 |
/// parameters are kept for the next \ref run() call, unless |
|
| 550 |
/// \ref resetParams() or \ref reset() is used. |
|
| 551 |
/// If the underlying digraph was also modified after the construction |
|
| 552 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
| 553 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
| 554 |
/// |
|
| 555 |
/// See \ref resetParams() for examples. |
|
| 556 |
/// |
|
| 557 |
/// \return <tt>(*this)</tt> |
|
| 558 |
/// |
|
| 559 |
/// \see resetParams(), run() |
|
| 560 |
CapacityScaling& reset() {
|
|
| 561 |
// Resize vectors |
|
| 562 |
_node_num = countNodes(_graph); |
|
| 563 |
_arc_num = countArcs(_graph); |
|
| 564 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
| 565 |
_root = _node_num; |
|
| 566 |
++_node_num; |
|
| 567 |
|
|
| 568 |
_first_out.resize(_node_num + 1); |
|
| 569 |
_forward.resize(_res_arc_num); |
|
| 570 |
_source.resize(_res_arc_num); |
|
| 571 |
_target.resize(_res_arc_num); |
|
| 572 |
_reverse.resize(_res_arc_num); |
|
| 573 |
|
|
| 574 |
_lower.resize(_res_arc_num); |
|
| 575 |
_upper.resize(_res_arc_num); |
|
| 576 |
_cost.resize(_res_arc_num); |
|
| 577 |
_supply.resize(_node_num); |
|
| 578 |
|
|
| 579 |
_res_cap.resize(_res_arc_num); |
|
| 580 |
_pi.resize(_node_num); |
|
| 581 |
_excess.resize(_node_num); |
|
| 582 |
_pred.resize(_node_num); |
|
| 583 |
|
|
| 584 |
// Copy the graph |
|
| 585 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
|
| 586 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 587 |
_node_id[n] = i; |
|
| 588 |
} |
|
| 589 |
i = 0; |
|
| 590 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 591 |
_first_out[i] = j; |
|
| 592 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 593 |
_arc_idf[a] = j; |
|
| 594 |
_forward[j] = true; |
|
| 595 |
_source[j] = i; |
|
| 596 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 597 |
} |
|
| 598 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 599 |
_arc_idb[a] = j; |
|
| 600 |
_forward[j] = false; |
|
| 601 |
_source[j] = i; |
|
| 602 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 603 |
} |
|
| 604 |
_forward[j] = false; |
|
| 605 |
_source[j] = i; |
|
| 606 |
_target[j] = _root; |
|
| 607 |
_reverse[j] = k; |
|
| 608 |
_forward[k] = true; |
|
| 609 |
_source[k] = _root; |
|
| 610 |
_target[k] = i; |
|
| 611 |
_reverse[k] = j; |
|
| 612 |
++j; ++k; |
|
| 613 |
} |
|
| 614 |
_first_out[i] = j; |
|
| 615 |
_first_out[_node_num] = k; |
|
| 616 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 617 |
int fi = _arc_idf[a]; |
|
| 618 |
int bi = _arc_idb[a]; |
|
| 619 |
_reverse[fi] = bi; |
|
| 620 |
_reverse[bi] = fi; |
|
| 621 |
} |
|
| 622 |
|
|
| 623 |
// Reset parameters |
|
| 624 |
resetParams(); |
|
| 625 |
return *this; |
|
| 626 |
} |
|
| 627 |
|
|
| 628 |
/// @} |
|
| 629 |
|
|
| 630 |
/// \name Query Functions |
|
| 631 |
/// The results of the algorithm can be obtained using these |
|
| 632 |
/// functions.\n |
|
| 633 |
/// The \ref run() function must be called before using them. |
|
| 634 |
|
|
| 635 |
/// @{
|
|
| 636 |
|
|
| 637 |
/// \brief Return the total cost of the found flow. |
|
| 638 |
/// |
|
| 639 |
/// This function returns the total cost of the found flow. |
|
| 640 |
/// Its complexity is O(e). |
|
| 641 |
/// |
|
| 642 |
/// \note The return type of the function can be specified as a |
|
| 643 |
/// template parameter. For example, |
|
| 644 |
/// \code |
|
| 645 |
/// cs.totalCost<double>(); |
|
| 646 |
/// \endcode |
|
| 647 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
| 648 |
/// type of the algorithm, which is the default return type of the |
|
| 649 |
/// function. |
|
| 650 |
/// |
|
| 651 |
/// \pre \ref run() must be called before using this function. |
|
| 652 |
template <typename Number> |
|
| 653 |
Number totalCost() const {
|
|
| 654 |
Number c = 0; |
|
| 655 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 656 |
int i = _arc_idb[a]; |
|
| 657 |
c += static_cast<Number>(_res_cap[i]) * |
|
| 658 |
(-static_cast<Number>(_cost[i])); |
|
| 659 |
} |
|
| 660 |
return c; |
|
| 661 |
} |
|
| 662 |
|
|
| 663 |
#ifndef DOXYGEN |
|
| 664 |
Cost totalCost() const {
|
|
| 665 |
return totalCost<Cost>(); |
|
| 666 |
} |
|
| 667 |
#endif |
|
| 668 |
|
|
| 669 |
/// \brief Return the flow on the given arc. |
|
| 670 |
/// |
|
| 671 |
/// This function returns the flow on the given arc. |
|
| 672 |
/// |
|
| 673 |
/// \pre \ref run() must be called before using this function. |
|
| 674 |
Value flow(const Arc& a) const {
|
|
| 675 |
return _res_cap[_arc_idb[a]]; |
|
| 676 |
} |
|
| 677 |
|
|
| 678 |
/// \brief Return the flow map (the primal solution). |
|
| 679 |
/// |
|
| 680 |
/// This function copies the flow value on each arc into the given |
|
| 681 |
/// map. The \c Value type of the algorithm must be convertible to |
|
| 682 |
/// the \c Value type of the map. |
|
| 683 |
/// |
|
| 684 |
/// \pre \ref run() must be called before using this function. |
|
| 685 |
template <typename FlowMap> |
|
| 686 |
void flowMap(FlowMap &map) const {
|
|
| 687 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 688 |
map.set(a, _res_cap[_arc_idb[a]]); |
|
| 689 |
} |
|
| 690 |
} |
|
| 691 |
|
|
| 692 |
/// \brief Return the potential (dual value) of the given node. |
|
| 693 |
/// |
|
| 694 |
/// This function returns the potential (dual value) of the |
|
| 695 |
/// given node. |
|
| 696 |
/// |
|
| 697 |
/// \pre \ref run() must be called before using this function. |
|
| 698 |
Cost potential(const Node& n) const {
|
|
| 699 |
return _pi[_node_id[n]]; |
|
| 700 |
} |
|
| 701 |
|
|
| 702 |
/// \brief Return the potential map (the dual solution). |
|
| 703 |
/// |
|
| 704 |
/// This function copies the potential (dual value) of each node |
|
| 705 |
/// into the given map. |
|
| 706 |
/// The \c Cost type of the algorithm must be convertible to the |
|
| 707 |
/// \c Value type of the map. |
|
| 708 |
/// |
|
| 709 |
/// \pre \ref run() must be called before using this function. |
|
| 710 |
template <typename PotentialMap> |
|
| 711 |
void potentialMap(PotentialMap &map) const {
|
|
| 712 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 713 |
map.set(n, _pi[_node_id[n]]); |
|
| 714 |
} |
|
| 715 |
} |
|
| 716 |
|
|
| 717 |
/// @} |
|
| 718 |
|
|
| 719 |
private: |
|
| 720 |
|
|
| 721 |
// Initialize the algorithm |
|
| 722 |
ProblemType init() {
|
|
| 723 |
if (_node_num <= 1) return INFEASIBLE; |
|
| 724 |
|
|
| 725 |
// Check the sum of supply values |
|
| 726 |
_sum_supply = 0; |
|
| 727 |
for (int i = 0; i != _root; ++i) {
|
|
| 728 |
_sum_supply += _supply[i]; |
|
| 729 |
} |
|
| 730 |
if (_sum_supply > 0) return INFEASIBLE; |
|
| 731 |
|
|
| 732 |
// Initialize vectors |
|
| 733 |
for (int i = 0; i != _root; ++i) {
|
|
| 734 |
_pi[i] = 0; |
|
| 735 |
_excess[i] = _supply[i]; |
|
| 736 |
} |
|
| 737 |
|
|
| 738 |
// Remove non-zero lower bounds |
|
| 739 |
const Value MAX = std::numeric_limits<Value>::max(); |
|
| 740 |
int last_out; |
|
| 741 |
if (_have_lower) {
|
|
| 742 |
for (int i = 0; i != _root; ++i) {
|
|
| 743 |
last_out = _first_out[i+1]; |
|
| 744 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 745 |
if (_forward[j]) {
|
|
| 746 |
Value c = _lower[j]; |
|
| 747 |
if (c >= 0) {
|
|
| 748 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
|
| 749 |
} else {
|
|
| 750 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
|
| 751 |
} |
|
| 752 |
_excess[i] -= c; |
|
| 753 |
_excess[_target[j]] += c; |
|
| 754 |
} else {
|
|
| 755 |
_res_cap[j] = 0; |
|
| 756 |
} |
|
| 757 |
} |
|
| 758 |
} |
|
| 759 |
} else {
|
|
| 760 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 761 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
|
| 762 |
} |
|
| 763 |
} |
|
| 764 |
|
|
| 765 |
// Handle negative costs |
|
| 766 |
for (int i = 0; i != _root; ++i) {
|
|
| 767 |
last_out = _first_out[i+1] - 1; |
|
| 768 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 769 |
Value rc = _res_cap[j]; |
|
| 770 |
if (_cost[j] < 0 && rc > 0) {
|
|
| 771 |
if (rc >= MAX) return UNBOUNDED; |
|
| 772 |
_excess[i] -= rc; |
|
| 773 |
_excess[_target[j]] += rc; |
|
| 774 |
_res_cap[j] = 0; |
|
| 775 |
_res_cap[_reverse[j]] += rc; |
|
| 776 |
} |
|
| 777 |
} |
|
| 778 |
} |
|
| 779 |
|
|
| 780 |
// Handle GEQ supply type |
|
| 781 |
if (_sum_supply < 0) {
|
|
| 782 |
_pi[_root] = 0; |
|
| 783 |
_excess[_root] = -_sum_supply; |
|
| 784 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 785 |
int ra = _reverse[a]; |
|
| 786 |
_res_cap[a] = -_sum_supply + 1; |
|
| 787 |
_res_cap[ra] = 0; |
|
| 788 |
_cost[a] = 0; |
|
| 789 |
_cost[ra] = 0; |
|
| 790 |
} |
|
| 791 |
} else {
|
|
| 792 |
_pi[_root] = 0; |
|
| 793 |
_excess[_root] = 0; |
|
| 794 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 795 |
int ra = _reverse[a]; |
|
| 796 |
_res_cap[a] = 1; |
|
| 797 |
_res_cap[ra] = 0; |
|
| 798 |
_cost[a] = 0; |
|
| 799 |
_cost[ra] = 0; |
|
| 800 |
} |
|
| 801 |
} |
|
| 802 |
|
|
| 803 |
// Initialize delta value |
|
| 804 |
if (_factor > 1) {
|
|
| 805 |
// With scaling |
|
| 806 |
Value max_sup = 0, max_dem = 0, max_cap = 0; |
|
| 807 |
for (int i = 0; i != _root; ++i) {
|
|
| 808 |
Value ex = _excess[i]; |
|
| 809 |
if ( ex > max_sup) max_sup = ex; |
|
| 810 |
if (-ex > max_dem) max_dem = -ex; |
|
| 811 |
int last_out = _first_out[i+1] - 1; |
|
| 812 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 813 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
|
| 814 |
} |
|
| 815 |
} |
|
| 816 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
|
| 817 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
|
| 818 |
} else {
|
|
| 819 |
// Without scaling |
|
| 820 |
_delta = 1; |
|
| 821 |
} |
|
| 822 |
|
|
| 823 |
return OPTIMAL; |
|
| 824 |
} |
|
| 825 |
|
|
| 826 |
ProblemType start() {
|
|
| 827 |
// Execute the algorithm |
|
| 828 |
ProblemType pt; |
|
| 829 |
if (_delta > 1) |
|
| 830 |
pt = startWithScaling(); |
|
| 831 |
else |
|
| 832 |
pt = startWithoutScaling(); |
|
| 833 |
|
|
| 834 |
// Handle non-zero lower bounds |
|
| 835 |
if (_have_lower) {
|
|
| 836 |
int limit = _first_out[_root]; |
|
| 837 |
for (int j = 0; j != limit; ++j) {
|
|
| 838 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
|
| 839 |
} |
|
| 840 |
} |
|
| 841 |
|
|
| 842 |
// Shift potentials if necessary |
|
| 843 |
Cost pr = _pi[_root]; |
|
| 844 |
if (_sum_supply < 0 || pr > 0) {
|
|
| 845 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 846 |
_pi[i] -= pr; |
|
| 847 |
} |
|
| 848 |
} |
|
| 849 |
|
|
| 850 |
return pt; |
|
| 851 |
} |
|
| 852 |
|
|
| 853 |
// Execute the capacity scaling algorithm |
|
| 854 |
ProblemType startWithScaling() {
|
|
| 855 |
// Perform capacity scaling phases |
|
| 856 |
int s, t; |
|
| 857 |
ResidualDijkstra _dijkstra(*this); |
|
| 858 |
while (true) {
|
|
| 859 |
// Saturate all arcs not satisfying the optimality condition |
|
| 860 |
int last_out; |
|
| 861 |
for (int u = 0; u != _node_num; ++u) {
|
|
| 862 |
last_out = _sum_supply < 0 ? |
|
| 863 |
_first_out[u+1] : _first_out[u+1] - 1; |
|
| 864 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 865 |
int v = _target[a]; |
|
| 866 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
|
| 867 |
Value rc = _res_cap[a]; |
|
| 868 |
if (c < 0 && rc >= _delta) {
|
|
| 869 |
_excess[u] -= rc; |
|
| 870 |
_excess[v] += rc; |
|
| 871 |
_res_cap[a] = 0; |
|
| 872 |
_res_cap[_reverse[a]] += rc; |
|
| 873 |
} |
|
| 874 |
} |
|
| 875 |
} |
|
| 876 |
|
|
| 877 |
// Find excess nodes and deficit nodes |
|
| 878 |
_excess_nodes.clear(); |
|
| 879 |
_deficit_nodes.clear(); |
|
| 880 |
for (int u = 0; u != _node_num; ++u) {
|
|
| 881 |
Value ex = _excess[u]; |
|
| 882 |
if (ex >= _delta) _excess_nodes.push_back(u); |
|
| 883 |
if (ex <= -_delta) _deficit_nodes.push_back(u); |
|
| 884 |
} |
|
| 885 |
int next_node = 0, next_def_node = 0; |
|
| 886 |
|
|
| 887 |
// Find augmenting shortest paths |
|
| 888 |
while (next_node < int(_excess_nodes.size())) {
|
|
| 889 |
// Check deficit nodes |
|
| 890 |
if (_delta > 1) {
|
|
| 891 |
bool delta_deficit = false; |
|
| 892 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
|
| 893 |
++next_def_node ) {
|
|
| 894 |
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
|
|
| 895 |
delta_deficit = true; |
|
| 896 |
break; |
|
| 897 |
} |
|
| 898 |
} |
|
| 899 |
if (!delta_deficit) break; |
|
| 900 |
} |
|
| 901 |
|
|
| 902 |
// Run Dijkstra in the residual network |
|
| 903 |
s = _excess_nodes[next_node]; |
|
| 904 |
if ((t = _dijkstra.run(s, _delta)) == -1) {
|
|
| 905 |
if (_delta > 1) {
|
|
| 906 |
++next_node; |
|
| 907 |
continue; |
|
| 908 |
} |
|
| 909 |
return INFEASIBLE; |
|
| 910 |
} |
|
| 911 |
|
|
| 912 |
// Augment along a shortest path from s to t |
|
| 913 |
Value d = std::min(_excess[s], -_excess[t]); |
|
| 914 |
int u = t; |
|
| 915 |
int a; |
|
| 916 |
if (d > _delta) {
|
|
| 917 |
while ((a = _pred[u]) != -1) {
|
|
| 918 |
if (_res_cap[a] < d) d = _res_cap[a]; |
|
| 919 |
u = _source[a]; |
|
| 920 |
} |
|
| 921 |
} |
|
| 922 |
u = t; |
|
| 923 |
while ((a = _pred[u]) != -1) {
|
|
| 924 |
_res_cap[a] -= d; |
|
| 925 |
_res_cap[_reverse[a]] += d; |
|
| 926 |
u = _source[a]; |
|
| 927 |
} |
|
| 928 |
_excess[s] -= d; |
|
| 929 |
_excess[t] += d; |
|
| 930 |
|
|
| 931 |
if (_excess[s] < _delta) ++next_node; |
|
| 932 |
} |
|
| 933 |
|
|
| 934 |
if (_delta == 1) break; |
|
| 935 |
_delta = _delta <= _factor ? 1 : _delta / _factor; |
|
| 936 |
} |
|
| 937 |
|
|
| 938 |
return OPTIMAL; |
|
| 939 |
} |
|
| 940 |
|
|
| 941 |
// Execute the successive shortest path algorithm |
|
| 942 |
ProblemType startWithoutScaling() {
|
|
| 943 |
// Find excess nodes |
|
| 944 |
_excess_nodes.clear(); |
|
| 945 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 946 |
if (_excess[i] > 0) _excess_nodes.push_back(i); |
|
| 947 |
} |
|
| 948 |
if (_excess_nodes.size() == 0) return OPTIMAL; |
|
| 949 |
int next_node = 0; |
|
| 950 |
|
|
| 951 |
// Find shortest paths |
|
| 952 |
int s, t; |
|
| 953 |
ResidualDijkstra _dijkstra(*this); |
|
| 954 |
while ( _excess[_excess_nodes[next_node]] > 0 || |
|
| 955 |
++next_node < int(_excess_nodes.size()) ) |
|
| 956 |
{
|
|
| 957 |
// Run Dijkstra in the residual network |
|
| 958 |
s = _excess_nodes[next_node]; |
|
| 959 |
if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE; |
|
| 960 |
|
|
| 961 |
// Augment along a shortest path from s to t |
|
| 962 |
Value d = std::min(_excess[s], -_excess[t]); |
|
| 963 |
int u = t; |
|
| 964 |
int a; |
|
| 965 |
if (d > 1) {
|
|
| 966 |
while ((a = _pred[u]) != -1) {
|
|
| 967 |
if (_res_cap[a] < d) d = _res_cap[a]; |
|
| 968 |
u = _source[a]; |
|
| 969 |
} |
|
| 970 |
} |
|
| 971 |
u = t; |
|
| 972 |
while ((a = _pred[u]) != -1) {
|
|
| 973 |
_res_cap[a] -= d; |
|
| 974 |
_res_cap[_reverse[a]] += d; |
|
| 975 |
u = _source[a]; |
|
| 976 |
} |
|
| 977 |
_excess[s] -= d; |
|
| 978 |
_excess[t] += d; |
|
| 979 |
} |
|
| 980 |
|
|
| 981 |
return OPTIMAL; |
|
| 982 |
} |
|
| 983 |
|
|
| 984 |
}; //class CapacityScaling |
|
| 985 |
|
|
| 986 |
///@} |
|
| 987 |
|
|
| 988 |
} //namespace lemon |
|
| 989 |
|
|
| 990 |
#endif //LEMON_CAPACITY_SCALING_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_COST_SCALING_H |
|
| 20 |
#define LEMON_COST_SCALING_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow_algs |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <deque> |
|
| 28 |
#include <limits> |
|
| 29 |
|
|
| 30 |
#include <lemon/core.h> |
|
| 31 |
#include <lemon/maps.h> |
|
| 32 |
#include <lemon/math.h> |
|
| 33 |
#include <lemon/static_graph.h> |
|
| 34 |
#include <lemon/circulation.h> |
|
| 35 |
#include <lemon/bellman_ford.h> |
|
| 36 |
|
|
| 37 |
namespace lemon {
|
|
| 38 |
|
|
| 39 |
/// \brief Default traits class of CostScaling algorithm. |
|
| 40 |
/// |
|
| 41 |
/// Default traits class of CostScaling algorithm. |
|
| 42 |
/// \tparam GR Digraph type. |
|
| 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 44 |
/// and supply values. By default it is \c int. |
|
| 45 |
/// \tparam C The number type used for costs and potentials. |
|
| 46 |
/// By default it is the same as \c V. |
|
| 47 |
#ifdef DOXYGEN |
|
| 48 |
template <typename GR, typename V = int, typename C = V> |
|
| 49 |
#else |
|
| 50 |
template < typename GR, typename V = int, typename C = V, |
|
| 51 |
bool integer = std::numeric_limits<C>::is_integer > |
|
| 52 |
#endif |
|
| 53 |
struct CostScalingDefaultTraits |
|
| 54 |
{
|
|
| 55 |
/// The type of the digraph |
|
| 56 |
typedef GR Digraph; |
|
| 57 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 58 |
typedef V Value; |
|
| 59 |
/// The type of the arc costs |
|
| 60 |
typedef C Cost; |
|
| 61 |
|
|
| 62 |
/// \brief The large cost type used for internal computations |
|
| 63 |
/// |
|
| 64 |
/// The large cost type used for internal computations. |
|
| 65 |
/// It is \c long \c long if the \c Cost type is integer, |
|
| 66 |
/// otherwise it is \c double. |
|
| 67 |
/// \c Cost must be convertible to \c LargeCost. |
|
| 68 |
typedef double LargeCost; |
|
| 69 |
}; |
|
| 70 |
|
|
| 71 |
// Default traits class for integer cost types |
|
| 72 |
template <typename GR, typename V, typename C> |
|
| 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
|
| 74 |
{
|
|
| 75 |
typedef GR Digraph; |
|
| 76 |
typedef V Value; |
|
| 77 |
typedef C Cost; |
|
| 78 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 79 |
typedef long long LargeCost; |
|
| 80 |
#else |
|
| 81 |
typedef long LargeCost; |
|
| 82 |
#endif |
|
| 83 |
}; |
|
| 84 |
|
|
| 85 |
|
|
| 86 |
/// \addtogroup min_cost_flow_algs |
|
| 87 |
/// @{
|
|
| 88 |
|
|
| 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
|
| 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
|
| 91 |
/// |
|
| 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
|
| 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
|
| 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
|
| 95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
|
| 96 |
/// It is a highly efficient primal-dual solution method, which |
|
| 97 |
/// can be viewed as the generalization of the \ref Preflow |
|
| 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
|
| 99 |
/// |
|
| 100 |
/// Most of the parameters of the problem (except for the digraph) |
|
| 101 |
/// can be given using separate functions, and the algorithm can be |
|
| 102 |
/// executed using the \ref run() function. If some parameters are not |
|
| 103 |
/// specified, then default values will be used. |
|
| 104 |
/// |
|
| 105 |
/// \tparam GR The digraph type the algorithm runs on. |
|
| 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 107 |
/// and supply values in the algorithm. By default, it is \c int. |
|
| 108 |
/// \tparam C The number type used for costs and potentials in the |
|
| 109 |
/// algorithm. By default, it is the same as \c V. |
|
| 110 |
/// \tparam TR The traits class that defines various types used by the |
|
| 111 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits |
|
| 112 |
/// "CostScalingDefaultTraits<GR, V, C>". |
|
| 113 |
/// In most cases, this parameter should not be set directly, |
|
| 114 |
/// consider to use the named template parameters instead. |
|
| 115 |
/// |
|
| 116 |
/// \warning Both number types must be signed and all input data must |
|
| 117 |
/// be integer. |
|
| 118 |
/// \warning This algorithm does not support negative costs for such |
|
| 119 |
/// arcs that have infinite upper bound. |
|
| 120 |
/// |
|
| 121 |
/// \note %CostScaling provides three different internal methods, |
|
| 122 |
/// from which the most efficient one is used by default. |
|
| 123 |
/// For more information, see \ref Method. |
|
| 124 |
#ifdef DOXYGEN |
|
| 125 |
template <typename GR, typename V, typename C, typename TR> |
|
| 126 |
#else |
|
| 127 |
template < typename GR, typename V = int, typename C = V, |
|
| 128 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
|
| 129 |
#endif |
|
| 130 |
class CostScaling |
|
| 131 |
{
|
|
| 132 |
public: |
|
| 133 |
|
|
| 134 |
/// The type of the digraph |
|
| 135 |
typedef typename TR::Digraph Digraph; |
|
| 136 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 137 |
typedef typename TR::Value Value; |
|
| 138 |
/// The type of the arc costs |
|
| 139 |
typedef typename TR::Cost Cost; |
|
| 140 |
|
|
| 141 |
/// \brief The large cost type |
|
| 142 |
/// |
|
| 143 |
/// The large cost type used for internal computations. |
|
| 144 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
|
| 145 |
/// otherwise it is \c double. |
|
| 146 |
typedef typename TR::LargeCost LargeCost; |
|
| 147 |
|
|
| 148 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
|
| 149 |
typedef TR Traits; |
|
| 150 |
|
|
| 151 |
public: |
|
| 152 |
|
|
| 153 |
/// \brief Problem type constants for the \c run() function. |
|
| 154 |
/// |
|
| 155 |
/// Enum type containing the problem type constants that can be |
|
| 156 |
/// returned by the \ref run() function of the algorithm. |
|
| 157 |
enum ProblemType {
|
|
| 158 |
/// The problem has no feasible solution (flow). |
|
| 159 |
INFEASIBLE, |
|
| 160 |
/// The problem has optimal solution (i.e. it is feasible and |
|
| 161 |
/// bounded), and the algorithm has found optimal flow and node |
|
| 162 |
/// potentials (primal and dual solutions). |
|
| 163 |
OPTIMAL, |
|
| 164 |
/// The digraph contains an arc of negative cost and infinite |
|
| 165 |
/// upper bound. It means that the objective function is unbounded |
|
| 166 |
/// on that arc, however, note that it could actually be bounded |
|
| 167 |
/// over the feasible flows, but this algroithm cannot handle |
|
| 168 |
/// these cases. |
|
| 169 |
UNBOUNDED |
|
| 170 |
}; |
|
| 171 |
|
|
| 172 |
/// \brief Constants for selecting the internal method. |
|
| 173 |
/// |
|
| 174 |
/// Enum type containing constants for selecting the internal method |
|
| 175 |
/// for the \ref run() function. |
|
| 176 |
/// |
|
| 177 |
/// \ref CostScaling provides three internal methods that differ mainly |
|
| 178 |
/// in their base operations, which are used in conjunction with the |
|
| 179 |
/// relabel operation. |
|
| 180 |
/// By default, the so called \ref PARTIAL_AUGMENT |
|
| 181 |
/// "Partial Augment-Relabel" method is used, which proved to be |
|
| 182 |
/// the most efficient and the most robust on various test inputs. |
|
| 183 |
/// However, the other methods can be selected using the \ref run() |
|
| 184 |
/// function with the proper parameter. |
|
| 185 |
enum Method {
|
|
| 186 |
/// Local push operations are used, i.e. flow is moved only on one |
|
| 187 |
/// admissible arc at once. |
|
| 188 |
PUSH, |
|
| 189 |
/// Augment operations are used, i.e. flow is moved on admissible |
|
| 190 |
/// paths from a node with excess to a node with deficit. |
|
| 191 |
AUGMENT, |
|
| 192 |
/// Partial augment operations are used, i.e. flow is moved on |
|
| 193 |
/// admissible paths started from a node with excess, but the |
|
| 194 |
/// lengths of these paths are limited. This method can be viewed |
|
| 195 |
/// as a combined version of the previous two operations. |
|
| 196 |
PARTIAL_AUGMENT |
|
| 197 |
}; |
|
| 198 |
|
|
| 199 |
private: |
|
| 200 |
|
|
| 201 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 202 |
|
|
| 203 |
typedef std::vector<int> IntVector; |
|
| 204 |
typedef std::vector<Value> ValueVector; |
|
| 205 |
typedef std::vector<Cost> CostVector; |
|
| 206 |
typedef std::vector<LargeCost> LargeCostVector; |
|
| 207 |
typedef std::vector<char> BoolVector; |
|
| 208 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 209 |
|
|
| 210 |
private: |
|
| 211 |
|
|
| 212 |
template <typename KT, typename VT> |
|
| 213 |
class StaticVectorMap {
|
|
| 214 |
public: |
|
| 215 |
typedef KT Key; |
|
| 216 |
typedef VT Value; |
|
| 217 |
|
|
| 218 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
|
| 219 |
|
|
| 220 |
const Value& operator[](const Key& key) const {
|
|
| 221 |
return _v[StaticDigraph::id(key)]; |
|
| 222 |
} |
|
| 223 |
|
|
| 224 |
Value& operator[](const Key& key) {
|
|
| 225 |
return _v[StaticDigraph::id(key)]; |
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
void set(const Key& key, const Value& val) {
|
|
| 229 |
_v[StaticDigraph::id(key)] = val; |
|
| 230 |
} |
|
| 231 |
|
|
| 232 |
private: |
|
| 233 |
std::vector<Value>& _v; |
|
| 234 |
}; |
|
| 235 |
|
|
| 236 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
|
| 237 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
|
| 238 |
|
|
| 239 |
private: |
|
| 240 |
|
|
| 241 |
// Data related to the underlying digraph |
|
| 242 |
const GR &_graph; |
|
| 243 |
int _node_num; |
|
| 244 |
int _arc_num; |
|
| 245 |
int _res_node_num; |
|
| 246 |
int _res_arc_num; |
|
| 247 |
int _root; |
|
| 248 |
|
|
| 249 |
// Parameters of the problem |
|
| 250 |
bool _have_lower; |
|
| 251 |
Value _sum_supply; |
|
| 252 |
int _sup_node_num; |
|
| 253 |
|
|
| 254 |
// Data structures for storing the digraph |
|
| 255 |
IntNodeMap _node_id; |
|
| 256 |
IntArcMap _arc_idf; |
|
| 257 |
IntArcMap _arc_idb; |
|
| 258 |
IntVector _first_out; |
|
| 259 |
BoolVector _forward; |
|
| 260 |
IntVector _source; |
|
| 261 |
IntVector _target; |
|
| 262 |
IntVector _reverse; |
|
| 263 |
|
|
| 264 |
// Node and arc data |
|
| 265 |
ValueVector _lower; |
|
| 266 |
ValueVector _upper; |
|
| 267 |
CostVector _scost; |
|
| 268 |
ValueVector _supply; |
|
| 269 |
|
|
| 270 |
ValueVector _res_cap; |
|
| 271 |
LargeCostVector _cost; |
|
| 272 |
LargeCostVector _pi; |
|
| 273 |
ValueVector _excess; |
|
| 274 |
IntVector _next_out; |
|
| 275 |
std::deque<int> _active_nodes; |
|
| 276 |
|
|
| 277 |
// Data for scaling |
|
| 278 |
LargeCost _epsilon; |
|
| 279 |
int _alpha; |
|
| 280 |
|
|
| 281 |
IntVector _buckets; |
|
| 282 |
IntVector _bucket_next; |
|
| 283 |
IntVector _bucket_prev; |
|
| 284 |
IntVector _rank; |
|
| 285 |
int _max_rank; |
|
| 286 |
|
|
| 287 |
// Data for a StaticDigraph structure |
|
| 288 |
typedef std::pair<int, int> IntPair; |
|
| 289 |
StaticDigraph _sgr; |
|
| 290 |
std::vector<IntPair> _arc_vec; |
|
| 291 |
std::vector<LargeCost> _cost_vec; |
|
| 292 |
LargeCostArcMap _cost_map; |
|
| 293 |
LargeCostNodeMap _pi_map; |
|
| 294 |
|
|
| 295 |
public: |
|
| 296 |
|
|
| 297 |
/// \brief Constant for infinite upper bounds (capacities). |
|
| 298 |
/// |
|
| 299 |
/// Constant for infinite upper bounds (capacities). |
|
| 300 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
| 301 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
| 302 |
const Value INF; |
|
| 303 |
|
|
| 304 |
public: |
|
| 305 |
|
|
| 306 |
/// \name Named Template Parameters |
|
| 307 |
/// @{
|
|
| 308 |
|
|
| 309 |
template <typename T> |
|
| 310 |
struct SetLargeCostTraits : public Traits {
|
|
| 311 |
typedef T LargeCost; |
|
| 312 |
}; |
|
| 313 |
|
|
| 314 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 315 |
/// \c LargeCost type. |
|
| 316 |
/// |
|
| 317 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
|
| 318 |
/// type, which is used for internal computations in the algorithm. |
|
| 319 |
/// \c Cost must be convertible to \c LargeCost. |
|
| 320 |
template <typename T> |
|
| 321 |
struct SetLargeCost |
|
| 322 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
|
|
| 323 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
|
| 324 |
}; |
|
| 325 |
|
|
| 326 |
/// @} |
|
| 327 |
|
|
| 328 |
protected: |
|
| 329 |
|
|
| 330 |
CostScaling() {}
|
|
| 331 |
|
|
| 332 |
public: |
|
| 333 |
|
|
| 334 |
/// \brief Constructor. |
|
| 335 |
/// |
|
| 336 |
/// The constructor of the class. |
|
| 337 |
/// |
|
| 338 |
/// \param graph The digraph the algorithm runs on. |
|
| 339 |
CostScaling(const GR& graph) : |
|
| 340 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
|
| 341 |
_cost_map(_cost_vec), _pi_map(_pi), |
|
| 342 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
| 343 |
std::numeric_limits<Value>::infinity() : |
|
| 344 |
std::numeric_limits<Value>::max()) |
|
| 345 |
{
|
|
| 346 |
// Check the number types |
|
| 347 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
| 348 |
"The flow type of CostScaling must be signed"); |
|
| 349 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
| 350 |
"The cost type of CostScaling must be signed"); |
|
| 351 |
|
|
| 352 |
// Reset data structures |
|
| 353 |
reset(); |
|
| 354 |
} |
|
| 355 |
|
|
| 356 |
/// \name Parameters |
|
| 357 |
/// The parameters of the algorithm can be specified using these |
|
| 358 |
/// functions. |
|
| 359 |
|
|
| 360 |
/// @{
|
|
| 361 |
|
|
| 362 |
/// \brief Set the lower bounds on the arcs. |
|
| 363 |
/// |
|
| 364 |
/// This function sets the lower bounds on the arcs. |
|
| 365 |
/// If it is not used before calling \ref run(), the lower bounds |
|
| 366 |
/// will be set to zero on all arcs. |
|
| 367 |
/// |
|
| 368 |
/// \param map An arc map storing the lower bounds. |
|
| 369 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 370 |
/// of the algorithm. |
|
| 371 |
/// |
|
| 372 |
/// \return <tt>(*this)</tt> |
|
| 373 |
template <typename LowerMap> |
|
| 374 |
CostScaling& lowerMap(const LowerMap& map) {
|
|
| 375 |
_have_lower = true; |
|
| 376 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 377 |
_lower[_arc_idf[a]] = map[a]; |
|
| 378 |
_lower[_arc_idb[a]] = map[a]; |
|
| 379 |
} |
|
| 380 |
return *this; |
|
| 381 |
} |
|
| 382 |
|
|
| 383 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 384 |
/// |
|
| 385 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 386 |
/// If it is not used before calling \ref run(), the upper bounds |
|
| 387 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
| 388 |
/// unbounded from above). |
|
| 389 |
/// |
|
| 390 |
/// \param map An arc map storing the upper bounds. |
|
| 391 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 392 |
/// of the algorithm. |
|
| 393 |
/// |
|
| 394 |
/// \return <tt>(*this)</tt> |
|
| 395 |
template<typename UpperMap> |
|
| 396 |
CostScaling& upperMap(const UpperMap& map) {
|
|
| 397 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 398 |
_upper[_arc_idf[a]] = map[a]; |
|
| 399 |
} |
|
| 400 |
return *this; |
|
| 401 |
} |
|
| 402 |
|
|
| 403 |
/// \brief Set the costs of the arcs. |
|
| 404 |
/// |
|
| 405 |
/// This function sets the costs of the arcs. |
|
| 406 |
/// If it is not used before calling \ref run(), the costs |
|
| 407 |
/// will be set to \c 1 on all arcs. |
|
| 408 |
/// |
|
| 409 |
/// \param map An arc map storing the costs. |
|
| 410 |
/// Its \c Value type must be convertible to the \c Cost type |
|
| 411 |
/// of the algorithm. |
|
| 412 |
/// |
|
| 413 |
/// \return <tt>(*this)</tt> |
|
| 414 |
template<typename CostMap> |
|
| 415 |
CostScaling& costMap(const CostMap& map) {
|
|
| 416 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 417 |
_scost[_arc_idf[a]] = map[a]; |
|
| 418 |
_scost[_arc_idb[a]] = -map[a]; |
|
| 419 |
} |
|
| 420 |
return *this; |
|
| 421 |
} |
|
| 422 |
|
|
| 423 |
/// \brief Set the supply values of the nodes. |
|
| 424 |
/// |
|
| 425 |
/// This function sets the supply values of the nodes. |
|
| 426 |
/// If neither this function nor \ref stSupply() is used before |
|
| 427 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 428 |
/// |
|
| 429 |
/// \param map A node map storing the supply values. |
|
| 430 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 431 |
/// of the algorithm. |
|
| 432 |
/// |
|
| 433 |
/// \return <tt>(*this)</tt> |
|
| 434 |
template<typename SupplyMap> |
|
| 435 |
CostScaling& supplyMap(const SupplyMap& map) {
|
|
| 436 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 437 |
_supply[_node_id[n]] = map[n]; |
|
| 438 |
} |
|
| 439 |
return *this; |
|
| 440 |
} |
|
| 441 |
|
|
| 442 |
/// \brief Set single source and target nodes and a supply value. |
|
| 443 |
/// |
|
| 444 |
/// This function sets a single source node and a single target node |
|
| 445 |
/// and the required flow value. |
|
| 446 |
/// If neither this function nor \ref supplyMap() is used before |
|
| 447 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 448 |
/// |
|
| 449 |
/// Using this function has the same effect as using \ref supplyMap() |
|
| 450 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
| 451 |
/// assigned to \c t and all other nodes have zero supply value. |
|
| 452 |
/// |
|
| 453 |
/// \param s The source node. |
|
| 454 |
/// \param t The target node. |
|
| 455 |
/// \param k The required amount of flow from node \c s to node \c t |
|
| 456 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
| 457 |
/// |
|
| 458 |
/// \return <tt>(*this)</tt> |
|
| 459 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 460 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 461 |
_supply[i] = 0; |
|
| 462 |
} |
|
| 463 |
_supply[_node_id[s]] = k; |
|
| 464 |
_supply[_node_id[t]] = -k; |
|
| 465 |
return *this; |
|
| 466 |
} |
|
| 467 |
|
|
| 468 |
/// @} |
|
| 469 |
|
|
| 470 |
/// \name Execution control |
|
| 471 |
/// The algorithm can be executed using \ref run(). |
|
| 472 |
|
|
| 473 |
/// @{
|
|
| 474 |
|
|
| 475 |
/// \brief Run the algorithm. |
|
| 476 |
/// |
|
| 477 |
/// This function runs the algorithm. |
|
| 478 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
| 479 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 480 |
/// For example, |
|
| 481 |
/// \code |
|
| 482 |
/// CostScaling<ListDigraph> cs(graph); |
|
| 483 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 484 |
/// .supplyMap(sup).run(); |
|
| 485 |
/// \endcode |
|
| 486 |
/// |
|
| 487 |
/// This function can be called more than once. All the given parameters |
|
| 488 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
| 489 |
/// is used, thus only the modified parameters have to be set again. |
|
| 490 |
/// If the underlying digraph was also modified after the construction |
|
| 491 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
| 492 |
/// function must be called. |
|
| 493 |
/// |
|
| 494 |
/// \param method The internal method that will be used in the |
|
| 495 |
/// algorithm. For more information, see \ref Method. |
|
| 496 |
/// \param factor The cost scaling factor. It must be larger than one. |
|
| 497 |
/// |
|
| 498 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
| 499 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
| 500 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
| 501 |
/// optimal flow and node potentials (primal and dual solutions), |
|
| 502 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
|
| 503 |
/// and infinite upper bound. It means that the objective function |
|
| 504 |
/// is unbounded on that arc, however, note that it could actually be |
|
| 505 |
/// bounded over the feasible flows, but this algroithm cannot handle |
|
| 506 |
/// these cases. |
|
| 507 |
/// |
|
| 508 |
/// \see ProblemType, Method |
|
| 509 |
/// \see resetParams(), reset() |
|
| 510 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
|
|
| 511 |
_alpha = factor; |
|
| 512 |
ProblemType pt = init(); |
|
| 513 |
if (pt != OPTIMAL) return pt; |
|
| 514 |
start(method); |
|
| 515 |
return OPTIMAL; |
|
| 516 |
} |
|
| 517 |
|
|
| 518 |
/// \brief Reset all the parameters that have been given before. |
|
| 519 |
/// |
|
| 520 |
/// This function resets all the paramaters that have been given |
|
| 521 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
| 522 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 523 |
/// |
|
| 524 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
| 525 |
/// parameters are kept for the next \ref run() call, unless |
|
| 526 |
/// \ref resetParams() or \ref reset() is used. |
|
| 527 |
/// If the underlying digraph was also modified after the construction |
|
| 528 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
| 529 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
| 530 |
/// |
|
| 531 |
/// For example, |
|
| 532 |
/// \code |
|
| 533 |
/// CostScaling<ListDigraph> cs(graph); |
|
| 534 |
/// |
|
| 535 |
/// // First run |
|
| 536 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 537 |
/// .supplyMap(sup).run(); |
|
| 538 |
/// |
|
| 539 |
/// // Run again with modified cost map (resetParams() is not called, |
|
| 540 |
/// // so only the cost map have to be set again) |
|
| 541 |
/// cost[e] += 100; |
|
| 542 |
/// cs.costMap(cost).run(); |
|
| 543 |
/// |
|
| 544 |
/// // Run again from scratch using resetParams() |
|
| 545 |
/// // (the lower bounds will be set to zero on all arcs) |
|
| 546 |
/// cs.resetParams(); |
|
| 547 |
/// cs.upperMap(capacity).costMap(cost) |
|
| 548 |
/// .supplyMap(sup).run(); |
|
| 549 |
/// \endcode |
|
| 550 |
/// |
|
| 551 |
/// \return <tt>(*this)</tt> |
|
| 552 |
/// |
|
| 553 |
/// \see reset(), run() |
|
| 554 |
CostScaling& resetParams() {
|
|
| 555 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 556 |
_supply[i] = 0; |
|
| 557 |
} |
|
| 558 |
int limit = _first_out[_root]; |
|
| 559 |
for (int j = 0; j != limit; ++j) {
|
|
| 560 |
_lower[j] = 0; |
|
| 561 |
_upper[j] = INF; |
|
| 562 |
_scost[j] = _forward[j] ? 1 : -1; |
|
| 563 |
} |
|
| 564 |
for (int j = limit; j != _res_arc_num; ++j) {
|
|
| 565 |
_lower[j] = 0; |
|
| 566 |
_upper[j] = INF; |
|
| 567 |
_scost[j] = 0; |
|
| 568 |
_scost[_reverse[j]] = 0; |
|
| 569 |
} |
|
| 570 |
_have_lower = false; |
|
| 571 |
return *this; |
|
| 572 |
} |
|
| 573 |
|
|
| 574 |
/// \brief Reset all the parameters that have been given before. |
|
| 575 |
/// |
|
| 576 |
/// This function resets all the paramaters that have been given |
|
| 577 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
| 578 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 579 |
/// |
|
| 580 |
/// It is useful for multiple run() calls. If this function is not |
|
| 581 |
/// used, all the parameters given before are kept for the next |
|
| 582 |
/// \ref run() call. |
|
| 583 |
/// However, the underlying digraph must not be modified after this |
|
| 584 |
/// class have been constructed, since it copies and extends the graph. |
|
| 585 |
/// \return <tt>(*this)</tt> |
|
| 586 |
CostScaling& reset() {
|
|
| 587 |
// Resize vectors |
|
| 588 |
_node_num = countNodes(_graph); |
|
| 589 |
_arc_num = countArcs(_graph); |
|
| 590 |
_res_node_num = _node_num + 1; |
|
| 591 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
| 592 |
_root = _node_num; |
|
| 593 |
|
|
| 594 |
_first_out.resize(_res_node_num + 1); |
|
| 595 |
_forward.resize(_res_arc_num); |
|
| 596 |
_source.resize(_res_arc_num); |
|
| 597 |
_target.resize(_res_arc_num); |
|
| 598 |
_reverse.resize(_res_arc_num); |
|
| 599 |
|
|
| 600 |
_lower.resize(_res_arc_num); |
|
| 601 |
_upper.resize(_res_arc_num); |
|
| 602 |
_scost.resize(_res_arc_num); |
|
| 603 |
_supply.resize(_res_node_num); |
|
| 604 |
|
|
| 605 |
_res_cap.resize(_res_arc_num); |
|
| 606 |
_cost.resize(_res_arc_num); |
|
| 607 |
_pi.resize(_res_node_num); |
|
| 608 |
_excess.resize(_res_node_num); |
|
| 609 |
_next_out.resize(_res_node_num); |
|
| 610 |
|
|
| 611 |
_arc_vec.reserve(_res_arc_num); |
|
| 612 |
_cost_vec.reserve(_res_arc_num); |
|
| 613 |
|
|
| 614 |
// Copy the graph |
|
| 615 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
| 616 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 617 |
_node_id[n] = i; |
|
| 618 |
} |
|
| 619 |
i = 0; |
|
| 620 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 621 |
_first_out[i] = j; |
|
| 622 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 623 |
_arc_idf[a] = j; |
|
| 624 |
_forward[j] = true; |
|
| 625 |
_source[j] = i; |
|
| 626 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 627 |
} |
|
| 628 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 629 |
_arc_idb[a] = j; |
|
| 630 |
_forward[j] = false; |
|
| 631 |
_source[j] = i; |
|
| 632 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 633 |
} |
|
| 634 |
_forward[j] = false; |
|
| 635 |
_source[j] = i; |
|
| 636 |
_target[j] = _root; |
|
| 637 |
_reverse[j] = k; |
|
| 638 |
_forward[k] = true; |
|
| 639 |
_source[k] = _root; |
|
| 640 |
_target[k] = i; |
|
| 641 |
_reverse[k] = j; |
|
| 642 |
++j; ++k; |
|
| 643 |
} |
|
| 644 |
_first_out[i] = j; |
|
| 645 |
_first_out[_res_node_num] = k; |
|
| 646 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 647 |
int fi = _arc_idf[a]; |
|
| 648 |
int bi = _arc_idb[a]; |
|
| 649 |
_reverse[fi] = bi; |
|
| 650 |
_reverse[bi] = fi; |
|
| 651 |
} |
|
| 652 |
|
|
| 653 |
// Reset parameters |
|
| 654 |
resetParams(); |
|
| 655 |
return *this; |
|
| 656 |
} |
|
| 657 |
|
|
| 658 |
/// @} |
|
| 659 |
|
|
| 660 |
/// \name Query Functions |
|
| 661 |
/// The results of the algorithm can be obtained using these |
|
| 662 |
/// functions.\n |
|
| 663 |
/// The \ref run() function must be called before using them. |
|
| 664 |
|
|
| 665 |
/// @{
|
|
| 666 |
|
|
| 667 |
/// \brief Return the total cost of the found flow. |
|
| 668 |
/// |
|
| 669 |
/// This function returns the total cost of the found flow. |
|
| 670 |
/// Its complexity is O(e). |
|
| 671 |
/// |
|
| 672 |
/// \note The return type of the function can be specified as a |
|
| 673 |
/// template parameter. For example, |
|
| 674 |
/// \code |
|
| 675 |
/// cs.totalCost<double>(); |
|
| 676 |
/// \endcode |
|
| 677 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
| 678 |
/// type of the algorithm, which is the default return type of the |
|
| 679 |
/// function. |
|
| 680 |
/// |
|
| 681 |
/// \pre \ref run() must be called before using this function. |
|
| 682 |
template <typename Number> |
|
| 683 |
Number totalCost() const {
|
|
| 684 |
Number c = 0; |
|
| 685 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 686 |
int i = _arc_idb[a]; |
|
| 687 |
c += static_cast<Number>(_res_cap[i]) * |
|
| 688 |
(-static_cast<Number>(_scost[i])); |
|
| 689 |
} |
|
| 690 |
return c; |
|
| 691 |
} |
|
| 692 |
|
|
| 693 |
#ifndef DOXYGEN |
|
| 694 |
Cost totalCost() const {
|
|
| 695 |
return totalCost<Cost>(); |
|
| 696 |
} |
|
| 697 |
#endif |
|
| 698 |
|
|
| 699 |
/// \brief Return the flow on the given arc. |
|
| 700 |
/// |
|
| 701 |
/// This function returns the flow on the given arc. |
|
| 702 |
/// |
|
| 703 |
/// \pre \ref run() must be called before using this function. |
|
| 704 |
Value flow(const Arc& a) const {
|
|
| 705 |
return _res_cap[_arc_idb[a]]; |
|
| 706 |
} |
|
| 707 |
|
|
| 708 |
/// \brief Return the flow map (the primal solution). |
|
| 709 |
/// |
|
| 710 |
/// This function copies the flow value on each arc into the given |
|
| 711 |
/// map. The \c Value type of the algorithm must be convertible to |
|
| 712 |
/// the \c Value type of the map. |
|
| 713 |
/// |
|
| 714 |
/// \pre \ref run() must be called before using this function. |
|
| 715 |
template <typename FlowMap> |
|
| 716 |
void flowMap(FlowMap &map) const {
|
|
| 717 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 718 |
map.set(a, _res_cap[_arc_idb[a]]); |
|
| 719 |
} |
|
| 720 |
} |
|
| 721 |
|
|
| 722 |
/// \brief Return the potential (dual value) of the given node. |
|
| 723 |
/// |
|
| 724 |
/// This function returns the potential (dual value) of the |
|
| 725 |
/// given node. |
|
| 726 |
/// |
|
| 727 |
/// \pre \ref run() must be called before using this function. |
|
| 728 |
Cost potential(const Node& n) const {
|
|
| 729 |
return static_cast<Cost>(_pi[_node_id[n]]); |
|
| 730 |
} |
|
| 731 |
|
|
| 732 |
/// \brief Return the potential map (the dual solution). |
|
| 733 |
/// |
|
| 734 |
/// This function copies the potential (dual value) of each node |
|
| 735 |
/// into the given map. |
|
| 736 |
/// The \c Cost type of the algorithm must be convertible to the |
|
| 737 |
/// \c Value type of the map. |
|
| 738 |
/// |
|
| 739 |
/// \pre \ref run() must be called before using this function. |
|
| 740 |
template <typename PotentialMap> |
|
| 741 |
void potentialMap(PotentialMap &map) const {
|
|
| 742 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 743 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
|
| 744 |
} |
|
| 745 |
} |
|
| 746 |
|
|
| 747 |
/// @} |
|
| 748 |
|
|
| 749 |
private: |
|
| 750 |
|
|
| 751 |
// Initialize the algorithm |
|
| 752 |
ProblemType init() {
|
|
| 753 |
if (_res_node_num <= 1) return INFEASIBLE; |
|
| 754 |
|
|
| 755 |
// Check the sum of supply values |
|
| 756 |
_sum_supply = 0; |
|
| 757 |
for (int i = 0; i != _root; ++i) {
|
|
| 758 |
_sum_supply += _supply[i]; |
|
| 759 |
} |
|
| 760 |
if (_sum_supply > 0) return INFEASIBLE; |
|
| 761 |
|
|
| 762 |
|
|
| 763 |
// Initialize vectors |
|
| 764 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 765 |
_pi[i] = 0; |
|
| 766 |
_excess[i] = _supply[i]; |
|
| 767 |
} |
|
| 768 |
|
|
| 769 |
// Remove infinite upper bounds and check negative arcs |
|
| 770 |
const Value MAX = std::numeric_limits<Value>::max(); |
|
| 771 |
int last_out; |
|
| 772 |
if (_have_lower) {
|
|
| 773 |
for (int i = 0; i != _root; ++i) {
|
|
| 774 |
last_out = _first_out[i+1]; |
|
| 775 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 776 |
if (_forward[j]) {
|
|
| 777 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
|
| 778 |
if (c >= MAX) return UNBOUNDED; |
|
| 779 |
_excess[i] -= c; |
|
| 780 |
_excess[_target[j]] += c; |
|
| 781 |
} |
|
| 782 |
} |
|
| 783 |
} |
|
| 784 |
} else {
|
|
| 785 |
for (int i = 0; i != _root; ++i) {
|
|
| 786 |
last_out = _first_out[i+1]; |
|
| 787 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 788 |
if (_forward[j] && _scost[j] < 0) {
|
|
| 789 |
Value c = _upper[j]; |
|
| 790 |
if (c >= MAX) return UNBOUNDED; |
|
| 791 |
_excess[i] -= c; |
|
| 792 |
_excess[_target[j]] += c; |
|
| 793 |
} |
|
| 794 |
} |
|
| 795 |
} |
|
| 796 |
} |
|
| 797 |
Value ex, max_cap = 0; |
|
| 798 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 799 |
ex = _excess[i]; |
|
| 800 |
_excess[i] = 0; |
|
| 801 |
if (ex < 0) max_cap -= ex; |
|
| 802 |
} |
|
| 803 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 804 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
|
| 805 |
} |
|
| 806 |
|
|
| 807 |
// Initialize the large cost vector and the epsilon parameter |
|
| 808 |
_epsilon = 0; |
|
| 809 |
LargeCost lc; |
|
| 810 |
for (int i = 0; i != _root; ++i) {
|
|
| 811 |
last_out = _first_out[i+1]; |
|
| 812 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 813 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
|
| 814 |
_cost[j] = lc; |
|
| 815 |
if (lc > _epsilon) _epsilon = lc; |
|
| 816 |
} |
|
| 817 |
} |
|
| 818 |
_epsilon /= _alpha; |
|
| 819 |
|
|
| 820 |
// Initialize maps for Circulation and remove non-zero lower bounds |
|
| 821 |
ConstMap<Arc, Value> low(0); |
|
| 822 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
|
| 823 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
|
| 824 |
ValueArcMap cap(_graph), flow(_graph); |
|
| 825 |
ValueNodeMap sup(_graph); |
|
| 826 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 827 |
sup[n] = _supply[_node_id[n]]; |
|
| 828 |
} |
|
| 829 |
if (_have_lower) {
|
|
| 830 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 831 |
int j = _arc_idf[a]; |
|
| 832 |
Value c = _lower[j]; |
|
| 833 |
cap[a] = _upper[j] - c; |
|
| 834 |
sup[_graph.source(a)] -= c; |
|
| 835 |
sup[_graph.target(a)] += c; |
|
| 836 |
} |
|
| 837 |
} else {
|
|
| 838 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 839 |
cap[a] = _upper[_arc_idf[a]]; |
|
| 840 |
} |
|
| 841 |
} |
|
| 842 |
|
|
| 843 |
_sup_node_num = 0; |
|
| 844 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 845 |
if (sup[n] > 0) ++_sup_node_num; |
|
| 846 |
} |
|
| 847 |
|
|
| 848 |
// Find a feasible flow using Circulation |
|
| 849 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
|
| 850 |
circ(_graph, low, cap, sup); |
|
| 851 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
|
| 852 |
|
|
| 853 |
// Set residual capacities and handle GEQ supply type |
|
| 854 |
if (_sum_supply < 0) {
|
|
| 855 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 856 |
Value fa = flow[a]; |
|
| 857 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
| 858 |
_res_cap[_arc_idb[a]] = fa; |
|
| 859 |
sup[_graph.source(a)] -= fa; |
|
| 860 |
sup[_graph.target(a)] += fa; |
|
| 861 |
} |
|
| 862 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 863 |
_excess[_node_id[n]] = sup[n]; |
|
| 864 |
} |
|
| 865 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 866 |
int u = _target[a]; |
|
| 867 |
int ra = _reverse[a]; |
|
| 868 |
_res_cap[a] = -_sum_supply + 1; |
|
| 869 |
_res_cap[ra] = -_excess[u]; |
|
| 870 |
_cost[a] = 0; |
|
| 871 |
_cost[ra] = 0; |
|
| 872 |
_excess[u] = 0; |
|
| 873 |
} |
|
| 874 |
} else {
|
|
| 875 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 876 |
Value fa = flow[a]; |
|
| 877 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
| 878 |
_res_cap[_arc_idb[a]] = fa; |
|
| 879 |
} |
|
| 880 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 881 |
int ra = _reverse[a]; |
|
| 882 |
_res_cap[a] = 0; |
|
| 883 |
_res_cap[ra] = 0; |
|
| 884 |
_cost[a] = 0; |
|
| 885 |
_cost[ra] = 0; |
|
| 886 |
} |
|
| 887 |
} |
|
| 888 |
|
|
| 889 |
return OPTIMAL; |
|
| 890 |
} |
|
| 891 |
|
|
| 892 |
// Execute the algorithm and transform the results |
|
| 893 |
void start(Method method) {
|
|
| 894 |
// Maximum path length for partial augment |
|
| 895 |
const int MAX_PATH_LENGTH = 4; |
|
| 896 |
|
|
| 897 |
// Initialize data structures for buckets |
|
| 898 |
_max_rank = _alpha * _res_node_num; |
|
| 899 |
_buckets.resize(_max_rank); |
|
| 900 |
_bucket_next.resize(_res_node_num + 1); |
|
| 901 |
_bucket_prev.resize(_res_node_num + 1); |
|
| 902 |
_rank.resize(_res_node_num + 1); |
|
| 903 |
|
|
| 904 |
// Execute the algorithm |
|
| 905 |
switch (method) {
|
|
| 906 |
case PUSH: |
|
| 907 |
startPush(); |
|
| 908 |
break; |
|
| 909 |
case AUGMENT: |
|
| 910 |
startAugment(_res_node_num - 1); |
|
| 911 |
break; |
|
| 912 |
case PARTIAL_AUGMENT: |
|
| 913 |
startAugment(MAX_PATH_LENGTH); |
|
| 914 |
break; |
|
| 915 |
} |
|
| 916 |
|
|
| 917 |
// Compute node potentials for the original costs |
|
| 918 |
_arc_vec.clear(); |
|
| 919 |
_cost_vec.clear(); |
|
| 920 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 921 |
if (_res_cap[j] > 0) {
|
|
| 922 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 923 |
_cost_vec.push_back(_scost[j]); |
|
| 924 |
} |
|
| 925 |
} |
|
| 926 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 927 |
|
|
| 928 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
|
| 929 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
|
| 930 |
bf.distMap(_pi_map); |
|
| 931 |
bf.init(0); |
|
| 932 |
bf.start(); |
|
| 933 |
|
|
| 934 |
// Handle non-zero lower bounds |
|
| 935 |
if (_have_lower) {
|
|
| 936 |
int limit = _first_out[_root]; |
|
| 937 |
for (int j = 0; j != limit; ++j) {
|
|
| 938 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
|
| 939 |
} |
|
| 940 |
} |
|
| 941 |
} |
|
| 942 |
|
|
| 943 |
// Initialize a cost scaling phase |
|
| 944 |
void initPhase() {
|
|
| 945 |
// Saturate arcs not satisfying the optimality condition |
|
| 946 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 947 |
int last_out = _first_out[u+1]; |
|
| 948 |
LargeCost pi_u = _pi[u]; |
|
| 949 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 950 |
int v = _target[a]; |
|
| 951 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
|
|
| 952 |
Value delta = _res_cap[a]; |
|
| 953 |
_excess[u] -= delta; |
|
| 954 |
_excess[v] += delta; |
|
| 955 |
_res_cap[a] = 0; |
|
| 956 |
_res_cap[_reverse[a]] += delta; |
|
| 957 |
} |
|
| 958 |
} |
|
| 959 |
} |
|
| 960 |
|
|
| 961 |
// Find active nodes (i.e. nodes with positive excess) |
|
| 962 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 963 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
| 964 |
} |
|
| 965 |
|
|
| 966 |
// Initialize the next arcs |
|
| 967 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 968 |
_next_out[u] = _first_out[u]; |
|
| 969 |
} |
|
| 970 |
} |
|
| 971 |
|
|
| 972 |
// Early termination heuristic |
|
| 973 |
bool earlyTermination() {
|
|
| 974 |
const double EARLY_TERM_FACTOR = 3.0; |
|
| 975 |
|
|
| 976 |
// Build a static residual graph |
|
| 977 |
_arc_vec.clear(); |
|
| 978 |
_cost_vec.clear(); |
|
| 979 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 980 |
if (_res_cap[j] > 0) {
|
|
| 981 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 982 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 983 |
} |
|
| 984 |
} |
|
| 985 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 986 |
|
|
| 987 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
|
| 988 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 989 |
bf.init(0); |
|
| 990 |
bool done = false; |
|
| 991 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
|
| 992 |
for (int i = 0; i < K && !done; ++i) {
|
|
| 993 |
done = bf.processNextWeakRound(); |
|
| 994 |
} |
|
| 995 |
return done; |
|
| 996 |
} |
|
| 997 |
|
|
| 998 |
// Global potential update heuristic |
|
| 999 |
void globalUpdate() {
|
|
| 1000 |
int bucket_end = _root + 1; |
|
| 1001 |
|
|
| 1002 |
// Initialize buckets |
|
| 1003 |
for (int r = 0; r != _max_rank; ++r) {
|
|
| 1004 |
_buckets[r] = bucket_end; |
|
| 1005 |
} |
|
| 1006 |
Value total_excess = 0; |
|
| 1007 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 1008 |
if (_excess[i] < 0) {
|
|
| 1009 |
_rank[i] = 0; |
|
| 1010 |
_bucket_next[i] = _buckets[0]; |
|
| 1011 |
_bucket_prev[_buckets[0]] = i; |
|
| 1012 |
_buckets[0] = i; |
|
| 1013 |
} else {
|
|
| 1014 |
total_excess += _excess[i]; |
|
| 1015 |
_rank[i] = _max_rank; |
|
| 1016 |
} |
|
| 1017 |
} |
|
| 1018 |
if (total_excess == 0) return; |
|
| 1019 |
|
|
| 1020 |
// Search the buckets |
|
| 1021 |
int r = 0; |
|
| 1022 |
for ( ; r != _max_rank; ++r) {
|
|
| 1023 |
while (_buckets[r] != bucket_end) {
|
|
| 1024 |
// Remove the first node from the current bucket |
|
| 1025 |
int u = _buckets[r]; |
|
| 1026 |
_buckets[r] = _bucket_next[u]; |
|
| 1027 |
|
|
| 1028 |
// Search the incomming arcs of u |
|
| 1029 |
LargeCost pi_u = _pi[u]; |
|
| 1030 |
int last_out = _first_out[u+1]; |
|
| 1031 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1032 |
int ra = _reverse[a]; |
|
| 1033 |
if (_res_cap[ra] > 0) {
|
|
| 1034 |
int v = _source[ra]; |
|
| 1035 |
int old_rank_v = _rank[v]; |
|
| 1036 |
if (r < old_rank_v) {
|
|
| 1037 |
// Compute the new rank of v |
|
| 1038 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
|
| 1039 |
int new_rank_v = old_rank_v; |
|
| 1040 |
if (nrc < LargeCost(_max_rank)) |
|
| 1041 |
new_rank_v = r + 1 + int(nrc); |
|
| 1042 |
|
|
| 1043 |
// Change the rank of v |
|
| 1044 |
if (new_rank_v < old_rank_v) {
|
|
| 1045 |
_rank[v] = new_rank_v; |
|
| 1046 |
_next_out[v] = _first_out[v]; |
|
| 1047 |
|
|
| 1048 |
// Remove v from its old bucket |
|
| 1049 |
if (old_rank_v < _max_rank) {
|
|
| 1050 |
if (_buckets[old_rank_v] == v) {
|
|
| 1051 |
_buckets[old_rank_v] = _bucket_next[v]; |
|
| 1052 |
} else {
|
|
| 1053 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
|
| 1054 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
|
| 1055 |
} |
|
| 1056 |
} |
|
| 1057 |
|
|
| 1058 |
// Insert v to its new bucket |
|
| 1059 |
_bucket_next[v] = _buckets[new_rank_v]; |
|
| 1060 |
_bucket_prev[_buckets[new_rank_v]] = v; |
|
| 1061 |
_buckets[new_rank_v] = v; |
|
| 1062 |
} |
|
| 1063 |
} |
|
| 1064 |
} |
|
| 1065 |
} |
|
| 1066 |
|
|
| 1067 |
// Finish search if there are no more active nodes |
|
| 1068 |
if (_excess[u] > 0) {
|
|
| 1069 |
total_excess -= _excess[u]; |
|
| 1070 |
if (total_excess <= 0) break; |
|
| 1071 |
} |
|
| 1072 |
} |
|
| 1073 |
if (total_excess <= 0) break; |
|
| 1074 |
} |
|
| 1075 |
|
|
| 1076 |
// Relabel nodes |
|
| 1077 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1078 |
int k = std::min(_rank[u], r); |
|
| 1079 |
if (k > 0) {
|
|
| 1080 |
_pi[u] -= _epsilon * k; |
|
| 1081 |
_next_out[u] = _first_out[u]; |
|
| 1082 |
} |
|
| 1083 |
} |
|
| 1084 |
} |
|
| 1085 |
|
|
| 1086 |
/// Execute the algorithm performing augment and relabel operations |
|
| 1087 |
void startAugment(int max_length) {
|
|
| 1088 |
// Paramters for heuristics |
|
| 1089 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
|
| 1090 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
|
| 1091 |
|
|
| 1092 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
| 1093 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
|
| 1094 |
int next_update_limit = global_update_freq; |
|
| 1095 |
|
|
| 1096 |
int relabel_cnt = 0; |
|
| 1097 |
|
|
| 1098 |
// Perform cost scaling phases |
|
| 1099 |
std::vector<int> path; |
|
| 1100 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
| 1101 |
1 : _epsilon / _alpha ) |
|
| 1102 |
{
|
|
| 1103 |
// Early termination heuristic |
|
| 1104 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1105 |
if (earlyTermination()) break; |
|
| 1106 |
} |
|
| 1107 |
|
|
| 1108 |
// Initialize current phase |
|
| 1109 |
initPhase(); |
|
| 1110 |
|
|
| 1111 |
// Perform partial augment and relabel operations |
|
| 1112 |
while (true) {
|
|
| 1113 |
// Select an active node (FIFO selection) |
|
| 1114 |
while (_active_nodes.size() > 0 && |
|
| 1115 |
_excess[_active_nodes.front()] <= 0) {
|
|
| 1116 |
_active_nodes.pop_front(); |
|
| 1117 |
} |
|
| 1118 |
if (_active_nodes.size() == 0) break; |
|
| 1119 |
int start = _active_nodes.front(); |
|
| 1120 |
|
|
| 1121 |
// Find an augmenting path from the start node |
|
| 1122 |
path.clear(); |
|
| 1123 |
int tip = start; |
|
| 1124 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) {
|
|
| 1125 |
int u; |
|
| 1126 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
|
| 1127 |
int last_out = _first_out[tip+1]; |
|
| 1128 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
|
| 1129 |
u = _target[a]; |
|
| 1130 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
|
|
| 1131 |
path.push_back(a); |
|
| 1132 |
_next_out[tip] = a; |
|
| 1133 |
tip = u; |
|
| 1134 |
goto next_step; |
|
| 1135 |
} |
|
| 1136 |
} |
|
| 1137 |
|
|
| 1138 |
// Relabel tip node |
|
| 1139 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
|
| 1140 |
if (tip != start) {
|
|
| 1141 |
int ra = _reverse[path.back()]; |
|
| 1142 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
|
| 1143 |
} |
|
| 1144 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
|
| 1145 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
|
| 1146 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
|
| 1147 |
min_red_cost = rc; |
|
| 1148 |
} |
|
| 1149 |
} |
|
| 1150 |
_pi[tip] -= min_red_cost + _epsilon; |
|
| 1151 |
_next_out[tip] = _first_out[tip]; |
|
| 1152 |
++relabel_cnt; |
|
| 1153 |
|
|
| 1154 |
// Step back |
|
| 1155 |
if (tip != start) {
|
|
| 1156 |
tip = _source[path.back()]; |
|
| 1157 |
path.pop_back(); |
|
| 1158 |
} |
|
| 1159 |
|
|
| 1160 |
next_step: ; |
|
| 1161 |
} |
|
| 1162 |
|
|
| 1163 |
// Augment along the found path (as much flow as possible) |
|
| 1164 |
Value delta; |
|
| 1165 |
int pa, u, v = start; |
|
| 1166 |
for (int i = 0; i != int(path.size()); ++i) {
|
|
| 1167 |
pa = path[i]; |
|
| 1168 |
u = v; |
|
| 1169 |
v = _target[pa]; |
|
| 1170 |
delta = std::min(_res_cap[pa], _excess[u]); |
|
| 1171 |
_res_cap[pa] -= delta; |
|
| 1172 |
_res_cap[_reverse[pa]] += delta; |
|
| 1173 |
_excess[u] -= delta; |
|
| 1174 |
_excess[v] += delta; |
|
| 1175 |
if (_excess[v] > 0 && _excess[v] <= delta) |
|
| 1176 |
_active_nodes.push_back(v); |
|
| 1177 |
} |
|
| 1178 |
|
|
| 1179 |
// Global update heuristic |
|
| 1180 |
if (relabel_cnt >= next_update_limit) {
|
|
| 1181 |
globalUpdate(); |
|
| 1182 |
next_update_limit += global_update_freq; |
|
| 1183 |
} |
|
| 1184 |
} |
|
| 1185 |
} |
|
| 1186 |
} |
|
| 1187 |
|
|
| 1188 |
/// Execute the algorithm performing push and relabel operations |
|
| 1189 |
void startPush() {
|
|
| 1190 |
// Paramters for heuristics |
|
| 1191 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
|
| 1192 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
|
| 1193 |
|
|
| 1194 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
| 1195 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
|
| 1196 |
int next_update_limit = global_update_freq; |
|
| 1197 |
|
|
| 1198 |
int relabel_cnt = 0; |
|
| 1199 |
|
|
| 1200 |
// Perform cost scaling phases |
|
| 1201 |
BoolVector hyper(_res_node_num, false); |
|
| 1202 |
LargeCostVector hyper_cost(_res_node_num); |
|
| 1203 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
| 1204 |
1 : _epsilon / _alpha ) |
|
| 1205 |
{
|
|
| 1206 |
// Early termination heuristic |
|
| 1207 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1208 |
if (earlyTermination()) break; |
|
| 1209 |
} |
|
| 1210 |
|
|
| 1211 |
// Initialize current phase |
|
| 1212 |
initPhase(); |
|
| 1213 |
|
|
| 1214 |
// Perform push and relabel operations |
|
| 1215 |
while (_active_nodes.size() > 0) {
|
|
| 1216 |
LargeCost min_red_cost, rc, pi_n; |
|
| 1217 |
Value delta; |
|
| 1218 |
int n, t, a, last_out = _res_arc_num; |
|
| 1219 |
|
|
| 1220 |
next_node: |
|
| 1221 |
// Select an active node (FIFO selection) |
|
| 1222 |
n = _active_nodes.front(); |
|
| 1223 |
last_out = _first_out[n+1]; |
|
| 1224 |
pi_n = _pi[n]; |
|
| 1225 |
|
|
| 1226 |
// Perform push operations if there are admissible arcs |
|
| 1227 |
if (_excess[n] > 0) {
|
|
| 1228 |
for (a = _next_out[n]; a != last_out; ++a) {
|
|
| 1229 |
if (_res_cap[a] > 0 && |
|
| 1230 |
_cost[a] + pi_n - _pi[_target[a]] < 0) {
|
|
| 1231 |
delta = std::min(_res_cap[a], _excess[n]); |
|
| 1232 |
t = _target[a]; |
|
| 1233 |
|
|
| 1234 |
// Push-look-ahead heuristic |
|
| 1235 |
Value ahead = -_excess[t]; |
|
| 1236 |
int last_out_t = _first_out[t+1]; |
|
| 1237 |
LargeCost pi_t = _pi[t]; |
|
| 1238 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
|
| 1239 |
if (_res_cap[ta] > 0 && |
|
| 1240 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
|
| 1241 |
ahead += _res_cap[ta]; |
|
| 1242 |
if (ahead >= delta) break; |
|
| 1243 |
} |
|
| 1244 |
if (ahead < 0) ahead = 0; |
|
| 1245 |
|
|
| 1246 |
// Push flow along the arc |
|
| 1247 |
if (ahead < delta && !hyper[t]) {
|
|
| 1248 |
_res_cap[a] -= ahead; |
|
| 1249 |
_res_cap[_reverse[a]] += ahead; |
|
| 1250 |
_excess[n] -= ahead; |
|
| 1251 |
_excess[t] += ahead; |
|
| 1252 |
_active_nodes.push_front(t); |
|
| 1253 |
hyper[t] = true; |
|
| 1254 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
|
| 1255 |
_next_out[n] = a; |
|
| 1256 |
goto next_node; |
|
| 1257 |
} else {
|
|
| 1258 |
_res_cap[a] -= delta; |
|
| 1259 |
_res_cap[_reverse[a]] += delta; |
|
| 1260 |
_excess[n] -= delta; |
|
| 1261 |
_excess[t] += delta; |
|
| 1262 |
if (_excess[t] > 0 && _excess[t] <= delta) |
|
| 1263 |
_active_nodes.push_back(t); |
|
| 1264 |
} |
|
| 1265 |
|
|
| 1266 |
if (_excess[n] == 0) {
|
|
| 1267 |
_next_out[n] = a; |
|
| 1268 |
goto remove_nodes; |
|
| 1269 |
} |
|
| 1270 |
} |
|
| 1271 |
} |
|
| 1272 |
_next_out[n] = a; |
|
| 1273 |
} |
|
| 1274 |
|
|
| 1275 |
// Relabel the node if it is still active (or hyper) |
|
| 1276 |
if (_excess[n] > 0 || hyper[n]) {
|
|
| 1277 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
|
| 1278 |
std::numeric_limits<LargeCost>::max(); |
|
| 1279 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
|
| 1280 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
|
| 1281 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
|
| 1282 |
min_red_cost = rc; |
|
| 1283 |
} |
|
| 1284 |
} |
|
| 1285 |
_pi[n] -= min_red_cost + _epsilon; |
|
| 1286 |
_next_out[n] = _first_out[n]; |
|
| 1287 |
hyper[n] = false; |
|
| 1288 |
++relabel_cnt; |
|
| 1289 |
} |
|
| 1290 |
|
|
| 1291 |
// Remove nodes that are not active nor hyper |
|
| 1292 |
remove_nodes: |
|
| 1293 |
while ( _active_nodes.size() > 0 && |
|
| 1294 |
_excess[_active_nodes.front()] <= 0 && |
|
| 1295 |
!hyper[_active_nodes.front()] ) {
|
|
| 1296 |
_active_nodes.pop_front(); |
|
| 1297 |
} |
|
| 1298 |
|
|
| 1299 |
// Global update heuristic |
|
| 1300 |
if (relabel_cnt >= next_update_limit) {
|
|
| 1301 |
globalUpdate(); |
|
| 1302 |
for (int u = 0; u != _res_node_num; ++u) |
|
| 1303 |
hyper[u] = false; |
|
| 1304 |
next_update_limit += global_update_freq; |
|
| 1305 |
} |
|
| 1306 |
} |
|
| 1307 |
} |
|
| 1308 |
} |
|
| 1309 |
|
|
| 1310 |
}; //class CostScaling |
|
| 1311 |
|
|
| 1312 |
///@} |
|
| 1313 |
|
|
| 1314 |
} //namespace lemon |
|
| 1315 |
|
|
| 1316 |
#endif //LEMON_COST_SCALING_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_CYCLE_CANCELING_H |
|
| 20 |
#define LEMON_CYCLE_CANCELING_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow_algs |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Cycle-canceling algorithms for finding a minimum cost flow. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <limits> |
|
| 28 |
|
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/maps.h> |
|
| 31 |
#include <lemon/path.h> |
|
| 32 |
#include <lemon/math.h> |
|
| 33 |
#include <lemon/static_graph.h> |
|
| 34 |
#include <lemon/adaptors.h> |
|
| 35 |
#include <lemon/circulation.h> |
|
| 36 |
#include <lemon/bellman_ford.h> |
|
| 37 |
#include <lemon/howard_mmc.h> |
|
| 38 |
|
|
| 39 |
namespace lemon {
|
|
| 40 |
|
|
| 41 |
/// \addtogroup min_cost_flow_algs |
|
| 42 |
/// @{
|
|
| 43 |
|
|
| 44 |
/// \brief Implementation of cycle-canceling algorithms for |
|
| 45 |
/// finding a \ref min_cost_flow "minimum cost flow". |
|
| 46 |
/// |
|
| 47 |
/// \ref CycleCanceling implements three different cycle-canceling |
|
| 48 |
/// algorithms for finding a \ref min_cost_flow "minimum cost flow" |
|
| 49 |
/// \ref amo93networkflows, \ref klein67primal, |
|
| 50 |
/// \ref goldberg89cyclecanceling. |
|
| 51 |
/// The most efficent one (both theoretically and practically) |
|
| 52 |
/// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm, |
|
| 53 |
/// thus it is the default method. |
|
| 54 |
/// It is strongly polynomial, but in practice, it is typically much |
|
| 55 |
/// slower than the scaling algorithms and NetworkSimplex. |
|
| 56 |
/// |
|
| 57 |
/// Most of the parameters of the problem (except for the digraph) |
|
| 58 |
/// can be given using separate functions, and the algorithm can be |
|
| 59 |
/// executed using the \ref run() function. If some parameters are not |
|
| 60 |
/// specified, then default values will be used. |
|
| 61 |
/// |
|
| 62 |
/// \tparam GR The digraph type the algorithm runs on. |
|
| 63 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 64 |
/// and supply values in the algorithm. By default, it is \c int. |
|
| 65 |
/// \tparam C The number type used for costs and potentials in the |
|
| 66 |
/// algorithm. By default, it is the same as \c V. |
|
| 67 |
/// |
|
| 68 |
/// \warning Both number types must be signed and all input data must |
|
| 69 |
/// be integer. |
|
| 70 |
/// \warning This algorithm does not support negative costs for such |
|
| 71 |
/// arcs that have infinite upper bound. |
|
| 72 |
/// |
|
| 73 |
/// \note For more information about the three available methods, |
|
| 74 |
/// see \ref Method. |
|
| 75 |
#ifdef DOXYGEN |
|
| 76 |
template <typename GR, typename V, typename C> |
|
| 77 |
#else |
|
| 78 |
template <typename GR, typename V = int, typename C = V> |
|
| 79 |
#endif |
|
| 80 |
class CycleCanceling |
|
| 81 |
{
|
|
| 82 |
public: |
|
| 83 |
|
|
| 84 |
/// The type of the digraph |
|
| 85 |
typedef GR Digraph; |
|
| 86 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 87 |
typedef V Value; |
|
| 88 |
/// The type of the arc costs |
|
| 89 |
typedef C Cost; |
|
| 90 |
|
|
| 91 |
public: |
|
| 92 |
|
|
| 93 |
/// \brief Problem type constants for the \c run() function. |
|
| 94 |
/// |
|
| 95 |
/// Enum type containing the problem type constants that can be |
|
| 96 |
/// returned by the \ref run() function of the algorithm. |
|
| 97 |
enum ProblemType {
|
|
| 98 |
/// The problem has no feasible solution (flow). |
|
| 99 |
INFEASIBLE, |
|
| 100 |
/// The problem has optimal solution (i.e. it is feasible and |
|
| 101 |
/// bounded), and the algorithm has found optimal flow and node |
|
| 102 |
/// potentials (primal and dual solutions). |
|
| 103 |
OPTIMAL, |
|
| 104 |
/// The digraph contains an arc of negative cost and infinite |
|
| 105 |
/// upper bound. It means that the objective function is unbounded |
|
| 106 |
/// on that arc, however, note that it could actually be bounded |
|
| 107 |
/// over the feasible flows, but this algroithm cannot handle |
|
| 108 |
/// these cases. |
|
| 109 |
UNBOUNDED |
|
| 110 |
}; |
|
| 111 |
|
|
| 112 |
/// \brief Constants for selecting the used method. |
|
| 113 |
/// |
|
| 114 |
/// Enum type containing constants for selecting the used method |
|
| 115 |
/// for the \ref run() function. |
|
| 116 |
/// |
|
| 117 |
/// \ref CycleCanceling provides three different cycle-canceling |
|
| 118 |
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" |
|
| 119 |
/// is used, which proved to be the most efficient and the most robust |
|
| 120 |
/// on various test inputs. |
|
| 121 |
/// However, the other methods can be selected using the \ref run() |
|
| 122 |
/// function with the proper parameter. |
|
| 123 |
enum Method {
|
|
| 124 |
/// A simple cycle-canceling method, which uses the |
|
| 125 |
/// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration |
|
| 126 |
/// number for detecting negative cycles in the residual network. |
|
| 127 |
SIMPLE_CYCLE_CANCELING, |
|
| 128 |
/// The "Minimum Mean Cycle-Canceling" algorithm, which is a |
|
| 129 |
/// well-known strongly polynomial method |
|
| 130 |
/// \ref goldberg89cyclecanceling. It improves along a |
|
| 131 |
/// \ref min_mean_cycle "minimum mean cycle" in each iteration. |
|
| 132 |
/// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)). |
|
| 133 |
MINIMUM_MEAN_CYCLE_CANCELING, |
|
| 134 |
/// The "Cancel And Tighten" algorithm, which can be viewed as an |
|
| 135 |
/// improved version of the previous method |
|
| 136 |
/// \ref goldberg89cyclecanceling. |
|
| 137 |
/// It is faster both in theory and in practice, its running time |
|
| 138 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
|
| 139 |
CANCEL_AND_TIGHTEN |
|
| 140 |
}; |
|
| 141 |
|
|
| 142 |
private: |
|
| 143 |
|
|
| 144 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 145 |
|
|
| 146 |
typedef std::vector<int> IntVector; |
|
| 147 |
typedef std::vector<double> DoubleVector; |
|
| 148 |
typedef std::vector<Value> ValueVector; |
|
| 149 |
typedef std::vector<Cost> CostVector; |
|
| 150 |
typedef std::vector<char> BoolVector; |
|
| 151 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 152 |
|
|
| 153 |
private: |
|
| 154 |
|
|
| 155 |
template <typename KT, typename VT> |
|
| 156 |
class StaticVectorMap {
|
|
| 157 |
public: |
|
| 158 |
typedef KT Key; |
|
| 159 |
typedef VT Value; |
|
| 160 |
|
|
| 161 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
|
| 162 |
|
|
| 163 |
const Value& operator[](const Key& key) const {
|
|
| 164 |
return _v[StaticDigraph::id(key)]; |
|
| 165 |
} |
|
| 166 |
|
|
| 167 |
Value& operator[](const Key& key) {
|
|
| 168 |
return _v[StaticDigraph::id(key)]; |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
void set(const Key& key, const Value& val) {
|
|
| 172 |
_v[StaticDigraph::id(key)] = val; |
|
| 173 |
} |
|
| 174 |
|
|
| 175 |
private: |
|
| 176 |
std::vector<Value>& _v; |
|
| 177 |
}; |
|
| 178 |
|
|
| 179 |
typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap; |
|
| 180 |
typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap; |
|
| 181 |
|
|
| 182 |
private: |
|
| 183 |
|
|
| 184 |
|
|
| 185 |
// Data related to the underlying digraph |
|
| 186 |
const GR &_graph; |
|
| 187 |
int _node_num; |
|
| 188 |
int _arc_num; |
|
| 189 |
int _res_node_num; |
|
| 190 |
int _res_arc_num; |
|
| 191 |
int _root; |
|
| 192 |
|
|
| 193 |
// Parameters of the problem |
|
| 194 |
bool _have_lower; |
|
| 195 |
Value _sum_supply; |
|
| 196 |
|
|
| 197 |
// Data structures for storing the digraph |
|
| 198 |
IntNodeMap _node_id; |
|
| 199 |
IntArcMap _arc_idf; |
|
| 200 |
IntArcMap _arc_idb; |
|
| 201 |
IntVector _first_out; |
|
| 202 |
BoolVector _forward; |
|
| 203 |
IntVector _source; |
|
| 204 |
IntVector _target; |
|
| 205 |
IntVector _reverse; |
|
| 206 |
|
|
| 207 |
// Node and arc data |
|
| 208 |
ValueVector _lower; |
|
| 209 |
ValueVector _upper; |
|
| 210 |
CostVector _cost; |
|
| 211 |
ValueVector _supply; |
|
| 212 |
|
|
| 213 |
ValueVector _res_cap; |
|
| 214 |
CostVector _pi; |
|
| 215 |
|
|
| 216 |
// Data for a StaticDigraph structure |
|
| 217 |
typedef std::pair<int, int> IntPair; |
|
| 218 |
StaticDigraph _sgr; |
|
| 219 |
std::vector<IntPair> _arc_vec; |
|
| 220 |
std::vector<Cost> _cost_vec; |
|
| 221 |
IntVector _id_vec; |
|
| 222 |
CostArcMap _cost_map; |
|
| 223 |
CostNodeMap _pi_map; |
|
| 224 |
|
|
| 225 |
public: |
|
| 226 |
|
|
| 227 |
/// \brief Constant for infinite upper bounds (capacities). |
|
| 228 |
/// |
|
| 229 |
/// Constant for infinite upper bounds (capacities). |
|
| 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
| 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
| 232 |
const Value INF; |
|
| 233 |
|
|
| 234 |
public: |
|
| 235 |
|
|
| 236 |
/// \brief Constructor. |
|
| 237 |
/// |
|
| 238 |
/// The constructor of the class. |
|
| 239 |
/// |
|
| 240 |
/// \param graph The digraph the algorithm runs on. |
|
| 241 |
CycleCanceling(const GR& graph) : |
|
| 242 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
|
| 243 |
_cost_map(_cost_vec), _pi_map(_pi), |
|
| 244 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
| 245 |
std::numeric_limits<Value>::infinity() : |
|
| 246 |
std::numeric_limits<Value>::max()) |
|
| 247 |
{
|
|
| 248 |
// Check the number types |
|
| 249 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
| 250 |
"The flow type of CycleCanceling must be signed"); |
|
| 251 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
| 252 |
"The cost type of CycleCanceling must be signed"); |
|
| 253 |
|
|
| 254 |
// Reset data structures |
|
| 255 |
reset(); |
|
| 256 |
} |
|
| 257 |
|
|
| 258 |
/// \name Parameters |
|
| 259 |
/// The parameters of the algorithm can be specified using these |
|
| 260 |
/// functions. |
|
| 261 |
|
|
| 262 |
/// @{
|
|
| 263 |
|
|
| 264 |
/// \brief Set the lower bounds on the arcs. |
|
| 265 |
/// |
|
| 266 |
/// This function sets the lower bounds on the arcs. |
|
| 267 |
/// If it is not used before calling \ref run(), the lower bounds |
|
| 268 |
/// will be set to zero on all arcs. |
|
| 269 |
/// |
|
| 270 |
/// \param map An arc map storing the lower bounds. |
|
| 271 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 272 |
/// of the algorithm. |
|
| 273 |
/// |
|
| 274 |
/// \return <tt>(*this)</tt> |
|
| 275 |
template <typename LowerMap> |
|
| 276 |
CycleCanceling& lowerMap(const LowerMap& map) {
|
|
| 277 |
_have_lower = true; |
|
| 278 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 279 |
_lower[_arc_idf[a]] = map[a]; |
|
| 280 |
_lower[_arc_idb[a]] = map[a]; |
|
| 281 |
} |
|
| 282 |
return *this; |
|
| 283 |
} |
|
| 284 |
|
|
| 285 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 286 |
/// |
|
| 287 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 288 |
/// If it is not used before calling \ref run(), the upper bounds |
|
| 289 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
| 290 |
/// unbounded from above). |
|
| 291 |
/// |
|
| 292 |
/// \param map An arc map storing the upper bounds. |
|
| 293 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 294 |
/// of the algorithm. |
|
| 295 |
/// |
|
| 296 |
/// \return <tt>(*this)</tt> |
|
| 297 |
template<typename UpperMap> |
|
| 298 |
CycleCanceling& upperMap(const UpperMap& map) {
|
|
| 299 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 300 |
_upper[_arc_idf[a]] = map[a]; |
|
| 301 |
} |
|
| 302 |
return *this; |
|
| 303 |
} |
|
| 304 |
|
|
| 305 |
/// \brief Set the costs of the arcs. |
|
| 306 |
/// |
|
| 307 |
/// This function sets the costs of the arcs. |
|
| 308 |
/// If it is not used before calling \ref run(), the costs |
|
| 309 |
/// will be set to \c 1 on all arcs. |
|
| 310 |
/// |
|
| 311 |
/// \param map An arc map storing the costs. |
|
| 312 |
/// Its \c Value type must be convertible to the \c Cost type |
|
| 313 |
/// of the algorithm. |
|
| 314 |
/// |
|
| 315 |
/// \return <tt>(*this)</tt> |
|
| 316 |
template<typename CostMap> |
|
| 317 |
CycleCanceling& costMap(const CostMap& map) {
|
|
| 318 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 319 |
_cost[_arc_idf[a]] = map[a]; |
|
| 320 |
_cost[_arc_idb[a]] = -map[a]; |
|
| 321 |
} |
|
| 322 |
return *this; |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
/// \brief Set the supply values of the nodes. |
|
| 326 |
/// |
|
| 327 |
/// This function sets the supply values of the nodes. |
|
| 328 |
/// If neither this function nor \ref stSupply() is used before |
|
| 329 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 330 |
/// |
|
| 331 |
/// \param map A node map storing the supply values. |
|
| 332 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 333 |
/// of the algorithm. |
|
| 334 |
/// |
|
| 335 |
/// \return <tt>(*this)</tt> |
|
| 336 |
template<typename SupplyMap> |
|
| 337 |
CycleCanceling& supplyMap(const SupplyMap& map) {
|
|
| 338 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 339 |
_supply[_node_id[n]] = map[n]; |
|
| 340 |
} |
|
| 341 |
return *this; |
|
| 342 |
} |
|
| 343 |
|
|
| 344 |
/// \brief Set single source and target nodes and a supply value. |
|
| 345 |
/// |
|
| 346 |
/// This function sets a single source node and a single target node |
|
| 347 |
/// and the required flow value. |
|
| 348 |
/// If neither this function nor \ref supplyMap() is used before |
|
| 349 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 350 |
/// |
|
| 351 |
/// Using this function has the same effect as using \ref supplyMap() |
|
| 352 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
| 353 |
/// assigned to \c t and all other nodes have zero supply value. |
|
| 354 |
/// |
|
| 355 |
/// \param s The source node. |
|
| 356 |
/// \param t The target node. |
|
| 357 |
/// \param k The required amount of flow from node \c s to node \c t |
|
| 358 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
| 359 |
/// |
|
| 360 |
/// \return <tt>(*this)</tt> |
|
| 361 |
CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 362 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 363 |
_supply[i] = 0; |
|
| 364 |
} |
|
| 365 |
_supply[_node_id[s]] = k; |
|
| 366 |
_supply[_node_id[t]] = -k; |
|
| 367 |
return *this; |
|
| 368 |
} |
|
| 369 |
|
|
| 370 |
/// @} |
|
| 371 |
|
|
| 372 |
/// \name Execution control |
|
| 373 |
/// The algorithm can be executed using \ref run(). |
|
| 374 |
|
|
| 375 |
/// @{
|
|
| 376 |
|
|
| 377 |
/// \brief Run the algorithm. |
|
| 378 |
/// |
|
| 379 |
/// This function runs the algorithm. |
|
| 380 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
| 381 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 382 |
/// For example, |
|
| 383 |
/// \code |
|
| 384 |
/// CycleCanceling<ListDigraph> cc(graph); |
|
| 385 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 386 |
/// .supplyMap(sup).run(); |
|
| 387 |
/// \endcode |
|
| 388 |
/// |
|
| 389 |
/// This function can be called more than once. All the given parameters |
|
| 390 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
| 391 |
/// is used, thus only the modified parameters have to be set again. |
|
| 392 |
/// If the underlying digraph was also modified after the construction |
|
| 393 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
| 394 |
/// function must be called. |
|
| 395 |
/// |
|
| 396 |
/// \param method The cycle-canceling method that will be used. |
|
| 397 |
/// For more information, see \ref Method. |
|
| 398 |
/// |
|
| 399 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
| 400 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
| 401 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
| 402 |
/// optimal flow and node potentials (primal and dual solutions), |
|
| 403 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
|
| 404 |
/// and infinite upper bound. It means that the objective function |
|
| 405 |
/// is unbounded on that arc, however, note that it could actually be |
|
| 406 |
/// bounded over the feasible flows, but this algroithm cannot handle |
|
| 407 |
/// these cases. |
|
| 408 |
/// |
|
| 409 |
/// \see ProblemType, Method |
|
| 410 |
/// \see resetParams(), reset() |
|
| 411 |
ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
|
|
| 412 |
ProblemType pt = init(); |
|
| 413 |
if (pt != OPTIMAL) return pt; |
|
| 414 |
start(method); |
|
| 415 |
return OPTIMAL; |
|
| 416 |
} |
|
| 417 |
|
|
| 418 |
/// \brief Reset all the parameters that have been given before. |
|
| 419 |
/// |
|
| 420 |
/// This function resets all the paramaters that have been given |
|
| 421 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
| 422 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 423 |
/// |
|
| 424 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
| 425 |
/// parameters are kept for the next \ref run() call, unless |
|
| 426 |
/// \ref resetParams() or \ref reset() is used. |
|
| 427 |
/// If the underlying digraph was also modified after the construction |
|
| 428 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
| 429 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
| 430 |
/// |
|
| 431 |
/// For example, |
|
| 432 |
/// \code |
|
| 433 |
/// CycleCanceling<ListDigraph> cs(graph); |
|
| 434 |
/// |
|
| 435 |
/// // First run |
|
| 436 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 437 |
/// .supplyMap(sup).run(); |
|
| 438 |
/// |
|
| 439 |
/// // Run again with modified cost map (resetParams() is not called, |
|
| 440 |
/// // so only the cost map have to be set again) |
|
| 441 |
/// cost[e] += 100; |
|
| 442 |
/// cc.costMap(cost).run(); |
|
| 443 |
/// |
|
| 444 |
/// // Run again from scratch using resetParams() |
|
| 445 |
/// // (the lower bounds will be set to zero on all arcs) |
|
| 446 |
/// cc.resetParams(); |
|
| 447 |
/// cc.upperMap(capacity).costMap(cost) |
|
| 448 |
/// .supplyMap(sup).run(); |
|
| 449 |
/// \endcode |
|
| 450 |
/// |
|
| 451 |
/// \return <tt>(*this)</tt> |
|
| 452 |
/// |
|
| 453 |
/// \see reset(), run() |
|
| 454 |
CycleCanceling& resetParams() {
|
|
| 455 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 456 |
_supply[i] = 0; |
|
| 457 |
} |
|
| 458 |
int limit = _first_out[_root]; |
|
| 459 |
for (int j = 0; j != limit; ++j) {
|
|
| 460 |
_lower[j] = 0; |
|
| 461 |
_upper[j] = INF; |
|
| 462 |
_cost[j] = _forward[j] ? 1 : -1; |
|
| 463 |
} |
|
| 464 |
for (int j = limit; j != _res_arc_num; ++j) {
|
|
| 465 |
_lower[j] = 0; |
|
| 466 |
_upper[j] = INF; |
|
| 467 |
_cost[j] = 0; |
|
| 468 |
_cost[_reverse[j]] = 0; |
|
| 469 |
} |
|
| 470 |
_have_lower = false; |
|
| 471 |
return *this; |
|
| 472 |
} |
|
| 473 |
|
|
| 474 |
/// \brief Reset the internal data structures and all the parameters |
|
| 475 |
/// that have been given before. |
|
| 476 |
/// |
|
| 477 |
/// This function resets the internal data structures and all the |
|
| 478 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
| 479 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
| 480 |
/// |
|
| 481 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
| 482 |
/// parameters are kept for the next \ref run() call, unless |
|
| 483 |
/// \ref resetParams() or \ref reset() is used. |
|
| 484 |
/// If the underlying digraph was also modified after the construction |
|
| 485 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
| 486 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
| 487 |
/// |
|
| 488 |
/// See \ref resetParams() for examples. |
|
| 489 |
/// |
|
| 490 |
/// \return <tt>(*this)</tt> |
|
| 491 |
/// |
|
| 492 |
/// \see resetParams(), run() |
|
| 493 |
CycleCanceling& reset() {
|
|
| 494 |
// Resize vectors |
|
| 495 |
_node_num = countNodes(_graph); |
|
| 496 |
_arc_num = countArcs(_graph); |
|
| 497 |
_res_node_num = _node_num + 1; |
|
| 498 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
| 499 |
_root = _node_num; |
|
| 500 |
|
|
| 501 |
_first_out.resize(_res_node_num + 1); |
|
| 502 |
_forward.resize(_res_arc_num); |
|
| 503 |
_source.resize(_res_arc_num); |
|
| 504 |
_target.resize(_res_arc_num); |
|
| 505 |
_reverse.resize(_res_arc_num); |
|
| 506 |
|
|
| 507 |
_lower.resize(_res_arc_num); |
|
| 508 |
_upper.resize(_res_arc_num); |
|
| 509 |
_cost.resize(_res_arc_num); |
|
| 510 |
_supply.resize(_res_node_num); |
|
| 511 |
|
|
| 512 |
_res_cap.resize(_res_arc_num); |
|
| 513 |
_pi.resize(_res_node_num); |
|
| 514 |
|
|
| 515 |
_arc_vec.reserve(_res_arc_num); |
|
| 516 |
_cost_vec.reserve(_res_arc_num); |
|
| 517 |
_id_vec.reserve(_res_arc_num); |
|
| 518 |
|
|
| 519 |
// Copy the graph |
|
| 520 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
| 521 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 522 |
_node_id[n] = i; |
|
| 523 |
} |
|
| 524 |
i = 0; |
|
| 525 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 526 |
_first_out[i] = j; |
|
| 527 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 528 |
_arc_idf[a] = j; |
|
| 529 |
_forward[j] = true; |
|
| 530 |
_source[j] = i; |
|
| 531 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 532 |
} |
|
| 533 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
|
| 534 |
_arc_idb[a] = j; |
|
| 535 |
_forward[j] = false; |
|
| 536 |
_source[j] = i; |
|
| 537 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
| 538 |
} |
|
| 539 |
_forward[j] = false; |
|
| 540 |
_source[j] = i; |
|
| 541 |
_target[j] = _root; |
|
| 542 |
_reverse[j] = k; |
|
| 543 |
_forward[k] = true; |
|
| 544 |
_source[k] = _root; |
|
| 545 |
_target[k] = i; |
|
| 546 |
_reverse[k] = j; |
|
| 547 |
++j; ++k; |
|
| 548 |
} |
|
| 549 |
_first_out[i] = j; |
|
| 550 |
_first_out[_res_node_num] = k; |
|
| 551 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 552 |
int fi = _arc_idf[a]; |
|
| 553 |
int bi = _arc_idb[a]; |
|
| 554 |
_reverse[fi] = bi; |
|
| 555 |
_reverse[bi] = fi; |
|
| 556 |
} |
|
| 557 |
|
|
| 558 |
// Reset parameters |
|
| 559 |
resetParams(); |
|
| 560 |
return *this; |
|
| 561 |
} |
|
| 562 |
|
|
| 563 |
/// @} |
|
| 564 |
|
|
| 565 |
/// \name Query Functions |
|
| 566 |
/// The results of the algorithm can be obtained using these |
|
| 567 |
/// functions.\n |
|
| 568 |
/// The \ref run() function must be called before using them. |
|
| 569 |
|
|
| 570 |
/// @{
|
|
| 571 |
|
|
| 572 |
/// \brief Return the total cost of the found flow. |
|
| 573 |
/// |
|
| 574 |
/// This function returns the total cost of the found flow. |
|
| 575 |
/// Its complexity is O(e). |
|
| 576 |
/// |
|
| 577 |
/// \note The return type of the function can be specified as a |
|
| 578 |
/// template parameter. For example, |
|
| 579 |
/// \code |
|
| 580 |
/// cc.totalCost<double>(); |
|
| 581 |
/// \endcode |
|
| 582 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
| 583 |
/// type of the algorithm, which is the default return type of the |
|
| 584 |
/// function. |
|
| 585 |
/// |
|
| 586 |
/// \pre \ref run() must be called before using this function. |
|
| 587 |
template <typename Number> |
|
| 588 |
Number totalCost() const {
|
|
| 589 |
Number c = 0; |
|
| 590 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 591 |
int i = _arc_idb[a]; |
|
| 592 |
c += static_cast<Number>(_res_cap[i]) * |
|
| 593 |
(-static_cast<Number>(_cost[i])); |
|
| 594 |
} |
|
| 595 |
return c; |
|
| 596 |
} |
|
| 597 |
|
|
| 598 |
#ifndef DOXYGEN |
|
| 599 |
Cost totalCost() const {
|
|
| 600 |
return totalCost<Cost>(); |
|
| 601 |
} |
|
| 602 |
#endif |
|
| 603 |
|
|
| 604 |
/// \brief Return the flow on the given arc. |
|
| 605 |
/// |
|
| 606 |
/// This function returns the flow on the given arc. |
|
| 607 |
/// |
|
| 608 |
/// \pre \ref run() must be called before using this function. |
|
| 609 |
Value flow(const Arc& a) const {
|
|
| 610 |
return _res_cap[_arc_idb[a]]; |
|
| 611 |
} |
|
| 612 |
|
|
| 613 |
/// \brief Return the flow map (the primal solution). |
|
| 614 |
/// |
|
| 615 |
/// This function copies the flow value on each arc into the given |
|
| 616 |
/// map. The \c Value type of the algorithm must be convertible to |
|
| 617 |
/// the \c Value type of the map. |
|
| 618 |
/// |
|
| 619 |
/// \pre \ref run() must be called before using this function. |
|
| 620 |
template <typename FlowMap> |
|
| 621 |
void flowMap(FlowMap &map) const {
|
|
| 622 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 623 |
map.set(a, _res_cap[_arc_idb[a]]); |
|
| 624 |
} |
|
| 625 |
} |
|
| 626 |
|
|
| 627 |
/// \brief Return the potential (dual value) of the given node. |
|
| 628 |
/// |
|
| 629 |
/// This function returns the potential (dual value) of the |
|
| 630 |
/// given node. |
|
| 631 |
/// |
|
| 632 |
/// \pre \ref run() must be called before using this function. |
|
| 633 |
Cost potential(const Node& n) const {
|
|
| 634 |
return static_cast<Cost>(_pi[_node_id[n]]); |
|
| 635 |
} |
|
| 636 |
|
|
| 637 |
/// \brief Return the potential map (the dual solution). |
|
| 638 |
/// |
|
| 639 |
/// This function copies the potential (dual value) of each node |
|
| 640 |
/// into the given map. |
|
| 641 |
/// The \c Cost type of the algorithm must be convertible to the |
|
| 642 |
/// \c Value type of the map. |
|
| 643 |
/// |
|
| 644 |
/// \pre \ref run() must be called before using this function. |
|
| 645 |
template <typename PotentialMap> |
|
| 646 |
void potentialMap(PotentialMap &map) const {
|
|
| 647 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 648 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
|
| 649 |
} |
|
| 650 |
} |
|
| 651 |
|
|
| 652 |
/// @} |
|
| 653 |
|
|
| 654 |
private: |
|
| 655 |
|
|
| 656 |
// Initialize the algorithm |
|
| 657 |
ProblemType init() {
|
|
| 658 |
if (_res_node_num <= 1) return INFEASIBLE; |
|
| 659 |
|
|
| 660 |
// Check the sum of supply values |
|
| 661 |
_sum_supply = 0; |
|
| 662 |
for (int i = 0; i != _root; ++i) {
|
|
| 663 |
_sum_supply += _supply[i]; |
|
| 664 |
} |
|
| 665 |
if (_sum_supply > 0) return INFEASIBLE; |
|
| 666 |
|
|
| 667 |
|
|
| 668 |
// Initialize vectors |
|
| 669 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 670 |
_pi[i] = 0; |
|
| 671 |
} |
|
| 672 |
ValueVector excess(_supply); |
|
| 673 |
|
|
| 674 |
// Remove infinite upper bounds and check negative arcs |
|
| 675 |
const Value MAX = std::numeric_limits<Value>::max(); |
|
| 676 |
int last_out; |
|
| 677 |
if (_have_lower) {
|
|
| 678 |
for (int i = 0; i != _root; ++i) {
|
|
| 679 |
last_out = _first_out[i+1]; |
|
| 680 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 681 |
if (_forward[j]) {
|
|
| 682 |
Value c = _cost[j] < 0 ? _upper[j] : _lower[j]; |
|
| 683 |
if (c >= MAX) return UNBOUNDED; |
|
| 684 |
excess[i] -= c; |
|
| 685 |
excess[_target[j]] += c; |
|
| 686 |
} |
|
| 687 |
} |
|
| 688 |
} |
|
| 689 |
} else {
|
|
| 690 |
for (int i = 0; i != _root; ++i) {
|
|
| 691 |
last_out = _first_out[i+1]; |
|
| 692 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 693 |
if (_forward[j] && _cost[j] < 0) {
|
|
| 694 |
Value c = _upper[j]; |
|
| 695 |
if (c >= MAX) return UNBOUNDED; |
|
| 696 |
excess[i] -= c; |
|
| 697 |
excess[_target[j]] += c; |
|
| 698 |
} |
|
| 699 |
} |
|
| 700 |
} |
|
| 701 |
} |
|
| 702 |
Value ex, max_cap = 0; |
|
| 703 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 704 |
ex = excess[i]; |
|
| 705 |
if (ex < 0) max_cap -= ex; |
|
| 706 |
} |
|
| 707 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 708 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
|
| 709 |
} |
|
| 710 |
|
|
| 711 |
// Initialize maps for Circulation and remove non-zero lower bounds |
|
| 712 |
ConstMap<Arc, Value> low(0); |
|
| 713 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
|
| 714 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
|
| 715 |
ValueArcMap cap(_graph), flow(_graph); |
|
| 716 |
ValueNodeMap sup(_graph); |
|
| 717 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 718 |
sup[n] = _supply[_node_id[n]]; |
|
| 719 |
} |
|
| 720 |
if (_have_lower) {
|
|
| 721 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 722 |
int j = _arc_idf[a]; |
|
| 723 |
Value c = _lower[j]; |
|
| 724 |
cap[a] = _upper[j] - c; |
|
| 725 |
sup[_graph.source(a)] -= c; |
|
| 726 |
sup[_graph.target(a)] += c; |
|
| 727 |
} |
|
| 728 |
} else {
|
|
| 729 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 730 |
cap[a] = _upper[_arc_idf[a]]; |
|
| 731 |
} |
|
| 732 |
} |
|
| 733 |
|
|
| 734 |
// Find a feasible flow using Circulation |
|
| 735 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
|
| 736 |
circ(_graph, low, cap, sup); |
|
| 737 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
|
| 738 |
|
|
| 739 |
// Set residual capacities and handle GEQ supply type |
|
| 740 |
if (_sum_supply < 0) {
|
|
| 741 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 742 |
Value fa = flow[a]; |
|
| 743 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
| 744 |
_res_cap[_arc_idb[a]] = fa; |
|
| 745 |
sup[_graph.source(a)] -= fa; |
|
| 746 |
sup[_graph.target(a)] += fa; |
|
| 747 |
} |
|
| 748 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 749 |
excess[_node_id[n]] = sup[n]; |
|
| 750 |
} |
|
| 751 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 752 |
int u = _target[a]; |
|
| 753 |
int ra = _reverse[a]; |
|
| 754 |
_res_cap[a] = -_sum_supply + 1; |
|
| 755 |
_res_cap[ra] = -excess[u]; |
|
| 756 |
_cost[a] = 0; |
|
| 757 |
_cost[ra] = 0; |
|
| 758 |
} |
|
| 759 |
} else {
|
|
| 760 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 761 |
Value fa = flow[a]; |
|
| 762 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
|
| 763 |
_res_cap[_arc_idb[a]] = fa; |
|
| 764 |
} |
|
| 765 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
|
| 766 |
int ra = _reverse[a]; |
|
| 767 |
_res_cap[a] = 1; |
|
| 768 |
_res_cap[ra] = 0; |
|
| 769 |
_cost[a] = 0; |
|
| 770 |
_cost[ra] = 0; |
|
| 771 |
} |
|
| 772 |
} |
|
| 773 |
|
|
| 774 |
return OPTIMAL; |
|
| 775 |
} |
|
| 776 |
|
|
| 777 |
// Build a StaticDigraph structure containing the current |
|
| 778 |
// residual network |
|
| 779 |
void buildResidualNetwork() {
|
|
| 780 |
_arc_vec.clear(); |
|
| 781 |
_cost_vec.clear(); |
|
| 782 |
_id_vec.clear(); |
|
| 783 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 784 |
if (_res_cap[j] > 0) {
|
|
| 785 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 786 |
_cost_vec.push_back(_cost[j]); |
|
| 787 |
_id_vec.push_back(j); |
|
| 788 |
} |
|
| 789 |
} |
|
| 790 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 791 |
} |
|
| 792 |
|
|
| 793 |
// Execute the algorithm and transform the results |
|
| 794 |
void start(Method method) {
|
|
| 795 |
// Execute the algorithm |
|
| 796 |
switch (method) {
|
|
| 797 |
case SIMPLE_CYCLE_CANCELING: |
|
| 798 |
startSimpleCycleCanceling(); |
|
| 799 |
break; |
|
| 800 |
case MINIMUM_MEAN_CYCLE_CANCELING: |
|
| 801 |
startMinMeanCycleCanceling(); |
|
| 802 |
break; |
|
| 803 |
case CANCEL_AND_TIGHTEN: |
|
| 804 |
startCancelAndTighten(); |
|
| 805 |
break; |
|
| 806 |
} |
|
| 807 |
|
|
| 808 |
// Compute node potentials |
|
| 809 |
if (method != SIMPLE_CYCLE_CANCELING) {
|
|
| 810 |
buildResidualNetwork(); |
|
| 811 |
typename BellmanFord<StaticDigraph, CostArcMap> |
|
| 812 |
::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map); |
|
| 813 |
bf.distMap(_pi_map); |
|
| 814 |
bf.init(0); |
|
| 815 |
bf.start(); |
|
| 816 |
} |
|
| 817 |
|
|
| 818 |
// Handle non-zero lower bounds |
|
| 819 |
if (_have_lower) {
|
|
| 820 |
int limit = _first_out[_root]; |
|
| 821 |
for (int j = 0; j != limit; ++j) {
|
|
| 822 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
|
| 823 |
} |
|
| 824 |
} |
|
| 825 |
} |
|
| 826 |
|
|
| 827 |
// Execute the "Simple Cycle Canceling" method |
|
| 828 |
void startSimpleCycleCanceling() {
|
|
| 829 |
// Constants for computing the iteration limits |
|
| 830 |
const int BF_FIRST_LIMIT = 2; |
|
| 831 |
const double BF_LIMIT_FACTOR = 1.5; |
|
| 832 |
|
|
| 833 |
typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap; |
|
| 834 |
typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph; |
|
| 835 |
typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap; |
|
| 836 |
typedef typename BellmanFord<ResDigraph, CostArcMap> |
|
| 837 |
::template SetDistMap<CostNodeMap> |
|
| 838 |
::template SetPredMap<PredMap>::Create BF; |
|
| 839 |
|
|
| 840 |
// Build the residual network |
|
| 841 |
_arc_vec.clear(); |
|
| 842 |
_cost_vec.clear(); |
|
| 843 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 844 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 845 |
_cost_vec.push_back(_cost[j]); |
|
| 846 |
} |
|
| 847 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 848 |
|
|
| 849 |
FilterMap filter_map(_res_cap); |
|
| 850 |
ResDigraph rgr(_sgr, filter_map); |
|
| 851 |
std::vector<int> cycle; |
|
| 852 |
std::vector<StaticDigraph::Arc> pred(_res_arc_num); |
|
| 853 |
PredMap pred_map(pred); |
|
| 854 |
BF bf(rgr, _cost_map); |
|
| 855 |
bf.distMap(_pi_map).predMap(pred_map); |
|
| 856 |
|
|
| 857 |
int length_bound = BF_FIRST_LIMIT; |
|
| 858 |
bool optimal = false; |
|
| 859 |
while (!optimal) {
|
|
| 860 |
bf.init(0); |
|
| 861 |
int iter_num = 0; |
|
| 862 |
bool cycle_found = false; |
|
| 863 |
while (!cycle_found) {
|
|
| 864 |
// Perform some iterations of the Bellman-Ford algorithm |
|
| 865 |
int curr_iter_num = iter_num + length_bound <= _node_num ? |
|
| 866 |
length_bound : _node_num - iter_num; |
|
| 867 |
iter_num += curr_iter_num; |
|
| 868 |
int real_iter_num = curr_iter_num; |
|
| 869 |
for (int i = 0; i < curr_iter_num; ++i) {
|
|
| 870 |
if (bf.processNextWeakRound()) {
|
|
| 871 |
real_iter_num = i; |
|
| 872 |
break; |
|
| 873 |
} |
|
| 874 |
} |
|
| 875 |
if (real_iter_num < curr_iter_num) {
|
|
| 876 |
// Optimal flow is found |
|
| 877 |
optimal = true; |
|
| 878 |
break; |
|
| 879 |
} else {
|
|
| 880 |
// Search for node disjoint negative cycles |
|
| 881 |
std::vector<int> state(_res_node_num, 0); |
|
| 882 |
int id = 0; |
|
| 883 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 884 |
if (state[u] != 0) continue; |
|
| 885 |
++id; |
|
| 886 |
int v = u; |
|
| 887 |
for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ? |
|
| 888 |
-1 : rgr.id(rgr.source(pred[v]))) {
|
|
| 889 |
state[v] = id; |
|
| 890 |
} |
|
| 891 |
if (v != -1 && state[v] == id) {
|
|
| 892 |
// A negative cycle is found |
|
| 893 |
cycle_found = true; |
|
| 894 |
cycle.clear(); |
|
| 895 |
StaticDigraph::Arc a = pred[v]; |
|
| 896 |
Value d, delta = _res_cap[rgr.id(a)]; |
|
| 897 |
cycle.push_back(rgr.id(a)); |
|
| 898 |
while (rgr.id(rgr.source(a)) != v) {
|
|
| 899 |
a = pred_map[rgr.source(a)]; |
|
| 900 |
d = _res_cap[rgr.id(a)]; |
|
| 901 |
if (d < delta) delta = d; |
|
| 902 |
cycle.push_back(rgr.id(a)); |
|
| 903 |
} |
|
| 904 |
|
|
| 905 |
// Augment along the cycle |
|
| 906 |
for (int i = 0; i < int(cycle.size()); ++i) {
|
|
| 907 |
int j = cycle[i]; |
|
| 908 |
_res_cap[j] -= delta; |
|
| 909 |
_res_cap[_reverse[j]] += delta; |
|
| 910 |
} |
|
| 911 |
} |
|
| 912 |
} |
|
| 913 |
} |
|
| 914 |
|
|
| 915 |
// Increase iteration limit if no cycle is found |
|
| 916 |
if (!cycle_found) {
|
|
| 917 |
length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR); |
|
| 918 |
} |
|
| 919 |
} |
|
| 920 |
} |
|
| 921 |
} |
|
| 922 |
|
|
| 923 |
// Execute the "Minimum Mean Cycle Canceling" method |
|
| 924 |
void startMinMeanCycleCanceling() {
|
|
| 925 |
typedef SimplePath<StaticDigraph> SPath; |
|
| 926 |
typedef typename SPath::ArcIt SPathArcIt; |
|
| 927 |
typedef typename HowardMmc<StaticDigraph, CostArcMap> |
|
| 928 |
::template SetPath<SPath>::Create MMC; |
|
| 929 |
|
|
| 930 |
SPath cycle; |
|
| 931 |
MMC mmc(_sgr, _cost_map); |
|
| 932 |
mmc.cycle(cycle); |
|
| 933 |
buildResidualNetwork(); |
|
| 934 |
while (mmc.findCycleMean() && mmc.cycleCost() < 0) {
|
|
| 935 |
// Find the cycle |
|
| 936 |
mmc.findCycle(); |
|
| 937 |
|
|
| 938 |
// Compute delta value |
|
| 939 |
Value delta = INF; |
|
| 940 |
for (SPathArcIt a(cycle); a != INVALID; ++a) {
|
|
| 941 |
Value d = _res_cap[_id_vec[_sgr.id(a)]]; |
|
| 942 |
if (d < delta) delta = d; |
|
| 943 |
} |
|
| 944 |
|
|
| 945 |
// Augment along the cycle |
|
| 946 |
for (SPathArcIt a(cycle); a != INVALID; ++a) {
|
|
| 947 |
int j = _id_vec[_sgr.id(a)]; |
|
| 948 |
_res_cap[j] -= delta; |
|
| 949 |
_res_cap[_reverse[j]] += delta; |
|
| 950 |
} |
|
| 951 |
|
|
| 952 |
// Rebuild the residual network |
|
| 953 |
buildResidualNetwork(); |
|
| 954 |
} |
|
| 955 |
} |
|
| 956 |
|
|
| 957 |
// Execute the "Cancel And Tighten" method |
|
| 958 |
void startCancelAndTighten() {
|
|
| 959 |
// Constants for the min mean cycle computations |
|
| 960 |
const double LIMIT_FACTOR = 1.0; |
|
| 961 |
const int MIN_LIMIT = 5; |
|
| 962 |
|
|
| 963 |
// Contruct auxiliary data vectors |
|
| 964 |
DoubleVector pi(_res_node_num, 0.0); |
|
| 965 |
IntVector level(_res_node_num); |
|
| 966 |
BoolVector reached(_res_node_num); |
|
| 967 |
BoolVector processed(_res_node_num); |
|
| 968 |
IntVector pred_node(_res_node_num); |
|
| 969 |
IntVector pred_arc(_res_node_num); |
|
| 970 |
std::vector<int> stack(_res_node_num); |
|
| 971 |
std::vector<int> proc_vector(_res_node_num); |
|
| 972 |
|
|
| 973 |
// Initialize epsilon |
|
| 974 |
double epsilon = 0; |
|
| 975 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
| 976 |
if (_res_cap[a] > 0 && -_cost[a] > epsilon) |
|
| 977 |
epsilon = -_cost[a]; |
|
| 978 |
} |
|
| 979 |
|
|
| 980 |
// Start phases |
|
| 981 |
Tolerance<double> tol; |
|
| 982 |
tol.epsilon(1e-6); |
|
| 983 |
int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num))); |
|
| 984 |
if (limit < MIN_LIMIT) limit = MIN_LIMIT; |
|
| 985 |
int iter = limit; |
|
| 986 |
while (epsilon * _res_node_num >= 1) {
|
|
| 987 |
// Find and cancel cycles in the admissible network using DFS |
|
| 988 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 989 |
reached[u] = false; |
|
| 990 |
processed[u] = false; |
|
| 991 |
} |
|
| 992 |
int stack_head = -1; |
|
| 993 |
int proc_head = -1; |
|
| 994 |
for (int start = 0; start != _res_node_num; ++start) {
|
|
| 995 |
if (reached[start]) continue; |
|
| 996 |
|
|
| 997 |
// New start node |
|
| 998 |
reached[start] = true; |
|
| 999 |
pred_arc[start] = -1; |
|
| 1000 |
pred_node[start] = -1; |
|
| 1001 |
|
|
| 1002 |
// Find the first admissible outgoing arc |
|
| 1003 |
double p = pi[start]; |
|
| 1004 |
int a = _first_out[start]; |
|
| 1005 |
int last_out = _first_out[start+1]; |
|
| 1006 |
for (; a != last_out && (_res_cap[a] == 0 || |
|
| 1007 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
|
| 1008 |
if (a == last_out) {
|
|
| 1009 |
processed[start] = true; |
|
| 1010 |
proc_vector[++proc_head] = start; |
|
| 1011 |
continue; |
|
| 1012 |
} |
|
| 1013 |
stack[++stack_head] = a; |
|
| 1014 |
|
|
| 1015 |
while (stack_head >= 0) {
|
|
| 1016 |
int sa = stack[stack_head]; |
|
| 1017 |
int u = _source[sa]; |
|
| 1018 |
int v = _target[sa]; |
|
| 1019 |
|
|
| 1020 |
if (!reached[v]) {
|
|
| 1021 |
// A new node is reached |
|
| 1022 |
reached[v] = true; |
|
| 1023 |
pred_node[v] = u; |
|
| 1024 |
pred_arc[v] = sa; |
|
| 1025 |
p = pi[v]; |
|
| 1026 |
a = _first_out[v]; |
|
| 1027 |
last_out = _first_out[v+1]; |
|
| 1028 |
for (; a != last_out && (_res_cap[a] == 0 || |
|
| 1029 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
|
| 1030 |
stack[++stack_head] = a == last_out ? -1 : a; |
|
| 1031 |
} else {
|
|
| 1032 |
if (!processed[v]) {
|
|
| 1033 |
// A cycle is found |
|
| 1034 |
int n, w = u; |
|
| 1035 |
Value d, delta = _res_cap[sa]; |
|
| 1036 |
for (n = u; n != v; n = pred_node[n]) {
|
|
| 1037 |
d = _res_cap[pred_arc[n]]; |
|
| 1038 |
if (d <= delta) {
|
|
| 1039 |
delta = d; |
|
| 1040 |
w = pred_node[n]; |
|
| 1041 |
} |
|
| 1042 |
} |
|
| 1043 |
|
|
| 1044 |
// Augment along the cycle |
|
| 1045 |
_res_cap[sa] -= delta; |
|
| 1046 |
_res_cap[_reverse[sa]] += delta; |
|
| 1047 |
for (n = u; n != v; n = pred_node[n]) {
|
|
| 1048 |
int pa = pred_arc[n]; |
|
| 1049 |
_res_cap[pa] -= delta; |
|
| 1050 |
_res_cap[_reverse[pa]] += delta; |
|
| 1051 |
} |
|
| 1052 |
for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
|
|
| 1053 |
--stack_head; |
|
| 1054 |
reached[n] = false; |
|
| 1055 |
} |
|
| 1056 |
u = w; |
|
| 1057 |
} |
|
| 1058 |
v = u; |
|
| 1059 |
|
|
| 1060 |
// Find the next admissible outgoing arc |
|
| 1061 |
p = pi[v]; |
|
| 1062 |
a = stack[stack_head] + 1; |
|
| 1063 |
last_out = _first_out[v+1]; |
|
| 1064 |
for (; a != last_out && (_res_cap[a] == 0 || |
|
| 1065 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
|
| 1066 |
stack[stack_head] = a == last_out ? -1 : a; |
|
| 1067 |
} |
|
| 1068 |
|
|
| 1069 |
while (stack_head >= 0 && stack[stack_head] == -1) {
|
|
| 1070 |
processed[v] = true; |
|
| 1071 |
proc_vector[++proc_head] = v; |
|
| 1072 |
if (--stack_head >= 0) {
|
|
| 1073 |
// Find the next admissible outgoing arc |
|
| 1074 |
v = _source[stack[stack_head]]; |
|
| 1075 |
p = pi[v]; |
|
| 1076 |
a = stack[stack_head] + 1; |
|
| 1077 |
last_out = _first_out[v+1]; |
|
| 1078 |
for (; a != last_out && (_res_cap[a] == 0 || |
|
| 1079 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
|
| 1080 |
stack[stack_head] = a == last_out ? -1 : a; |
|
| 1081 |
} |
|
| 1082 |
} |
|
| 1083 |
} |
|
| 1084 |
} |
|
| 1085 |
|
|
| 1086 |
// Tighten potentials and epsilon |
|
| 1087 |
if (--iter > 0) {
|
|
| 1088 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1089 |
level[u] = 0; |
|
| 1090 |
} |
|
| 1091 |
for (int i = proc_head; i > 0; --i) {
|
|
| 1092 |
int u = proc_vector[i]; |
|
| 1093 |
double p = pi[u]; |
|
| 1094 |
int l = level[u] + 1; |
|
| 1095 |
int last_out = _first_out[u+1]; |
|
| 1096 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1097 |
int v = _target[a]; |
|
| 1098 |
if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) && |
|
| 1099 |
l > level[v]) level[v] = l; |
|
| 1100 |
} |
|
| 1101 |
} |
|
| 1102 |
|
|
| 1103 |
// Modify potentials |
|
| 1104 |
double q = std::numeric_limits<double>::max(); |
|
| 1105 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1106 |
int lu = level[u]; |
|
| 1107 |
double p, pu = pi[u]; |
|
| 1108 |
int last_out = _first_out[u+1]; |
|
| 1109 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1110 |
if (_res_cap[a] == 0) continue; |
|
| 1111 |
int v = _target[a]; |
|
| 1112 |
int ld = lu - level[v]; |
|
| 1113 |
if (ld > 0) {
|
|
| 1114 |
p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1); |
|
| 1115 |
if (p < q) q = p; |
|
| 1116 |
} |
|
| 1117 |
} |
|
| 1118 |
} |
|
| 1119 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1120 |
pi[u] -= q * level[u]; |
|
| 1121 |
} |
|
| 1122 |
|
|
| 1123 |
// Modify epsilon |
|
| 1124 |
epsilon = 0; |
|
| 1125 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1126 |
double curr, pu = pi[u]; |
|
| 1127 |
int last_out = _first_out[u+1]; |
|
| 1128 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1129 |
if (_res_cap[a] == 0) continue; |
|
| 1130 |
curr = _cost[a] + pu - pi[_target[a]]; |
|
| 1131 |
if (-curr > epsilon) epsilon = -curr; |
|
| 1132 |
} |
|
| 1133 |
} |
|
| 1134 |
} else {
|
|
| 1135 |
typedef HowardMmc<StaticDigraph, CostArcMap> MMC; |
|
| 1136 |
typedef typename BellmanFord<StaticDigraph, CostArcMap> |
|
| 1137 |
::template SetDistMap<CostNodeMap>::Create BF; |
|
| 1138 |
|
|
| 1139 |
// Set epsilon to the minimum cycle mean |
|
| 1140 |
buildResidualNetwork(); |
|
| 1141 |
MMC mmc(_sgr, _cost_map); |
|
| 1142 |
mmc.findCycleMean(); |
|
| 1143 |
epsilon = -mmc.cycleMean(); |
|
| 1144 |
Cost cycle_cost = mmc.cycleCost(); |
|
| 1145 |
int cycle_size = mmc.cycleSize(); |
|
| 1146 |
|
|
| 1147 |
// Compute feasible potentials for the current epsilon |
|
| 1148 |
for (int i = 0; i != int(_cost_vec.size()); ++i) {
|
|
| 1149 |
_cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost; |
|
| 1150 |
} |
|
| 1151 |
BF bf(_sgr, _cost_map); |
|
| 1152 |
bf.distMap(_pi_map); |
|
| 1153 |
bf.init(0); |
|
| 1154 |
bf.start(); |
|
| 1155 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1156 |
pi[u] = static_cast<double>(_pi[u]) / cycle_size; |
|
| 1157 |
} |
|
| 1158 |
|
|
| 1159 |
iter = limit; |
|
| 1160 |
} |
|
| 1161 |
} |
|
| 1162 |
} |
|
| 1163 |
|
|
| 1164 |
}; //class CycleCanceling |
|
| 1165 |
|
|
| 1166 |
///@} |
|
| 1167 |
|
|
| 1168 |
} //namespace lemon |
|
| 1169 |
|
|
| 1170 |
#endif //LEMON_CYCLE_CANCELING_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_DHEAP_H |
|
| 20 |
#define LEMON_DHEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief D-ary heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief D-ary heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e D-ary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 38 |
/// |
|
| 39 |
/// The \ref DHeap "D-ary heap" is a generalization of the |
|
| 40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
| 41 |
/// \c D children, instead of two. |
|
| 42 |
/// \ref BinHeap and \ref QuadHeap are specialized implementations |
|
| 43 |
/// of this structure for <tt>D=2</tt> and <tt>D=4</tt>, respectively. |
|
| 44 |
/// |
|
| 45 |
/// \tparam PR Type of the priorities of the items. |
|
| 46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 47 |
/// internally to handle the cross references. |
|
| 48 |
/// \tparam D The degree of the heap, each node have at most \e D |
|
| 49 |
/// children. The default is 16. Powers of two are suggested to use |
|
| 50 |
/// so that the multiplications and divisions needed to traverse the |
|
| 51 |
/// nodes of the heap could be performed faster. |
|
| 52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 53 |
/// The default is \c std::less<PR>. |
|
| 54 |
/// |
|
| 55 |
///\sa BinHeap |
|
| 56 |
///\sa FouraryHeap |
|
| 57 |
#ifdef DOXYGEN |
|
| 58 |
template <typename PR, typename IM, int D, typename CMP> |
|
| 59 |
#else |
|
| 60 |
template <typename PR, typename IM, int D = 16, |
|
| 61 |
typename CMP = std::less<PR> > |
|
| 62 |
#endif |
|
| 63 |
class DHeap {
|
|
| 64 |
public: |
|
| 65 |
/// Type of the item-int map. |
|
| 66 |
typedef IM ItemIntMap; |
|
| 67 |
/// Type of the priorities. |
|
| 68 |
typedef PR Prio; |
|
| 69 |
/// Type of the items stored in the heap. |
|
| 70 |
typedef typename ItemIntMap::Key Item; |
|
| 71 |
/// Type of the item-priority pairs. |
|
| 72 |
typedef std::pair<Item,Prio> Pair; |
|
| 73 |
/// Functor type for comparing the priorities. |
|
| 74 |
typedef CMP Compare; |
|
| 75 |
|
|
| 76 |
/// \brief Type to represent the states of the items. |
|
| 77 |
/// |
|
| 78 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 80 |
/// heap's point of view, but may be useful to the user. |
|
| 81 |
/// |
|
| 82 |
/// The item-int map must be initialized in such way that it assigns |
|
| 83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 84 |
enum State {
|
|
| 85 |
IN_HEAP = 0, ///< = 0. |
|
| 86 |
PRE_HEAP = -1, ///< = -1. |
|
| 87 |
POST_HEAP = -2 ///< = -2. |
|
| 88 |
}; |
|
| 89 |
|
|
| 90 |
private: |
|
| 91 |
std::vector<Pair> _data; |
|
| 92 |
Compare _comp; |
|
| 93 |
ItemIntMap &_iim; |
|
| 94 |
|
|
| 95 |
public: |
|
| 96 |
/// \brief Constructor. |
|
| 97 |
/// |
|
| 98 |
/// Constructor. |
|
| 99 |
/// \param map A map that assigns \c int values to the items. |
|
| 100 |
/// It is used internally to handle the cross references. |
|
| 101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 102 |
explicit DHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 103 |
|
|
| 104 |
/// \brief Constructor. |
|
| 105 |
/// |
|
| 106 |
/// Constructor. |
|
| 107 |
/// \param map A map that assigns \c int values to the items. |
|
| 108 |
/// It is used internally to handle the cross references. |
|
| 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 110 |
/// \param comp The function object used for comparing the priorities. |
|
| 111 |
DHeap(ItemIntMap &map, const Compare &comp) |
|
| 112 |
: _iim(map), _comp(comp) {}
|
|
| 113 |
|
|
| 114 |
/// \brief The number of items stored in the heap. |
|
| 115 |
/// |
|
| 116 |
/// This function returns the number of items stored in the heap. |
|
| 117 |
int size() const { return _data.size(); }
|
|
| 118 |
|
|
| 119 |
/// \brief Check if the heap is empty. |
|
| 120 |
/// |
|
| 121 |
/// This function returns \c true if the heap is empty. |
|
| 122 |
bool empty() const { return _data.empty(); }
|
|
| 123 |
|
|
| 124 |
/// \brief Make the heap empty. |
|
| 125 |
/// |
|
| 126 |
/// This functon makes the heap empty. |
|
| 127 |
/// It does not change the cross reference map. If you want to reuse |
|
| 128 |
/// a heap that is not surely empty, you should first clear it and |
|
| 129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 130 |
/// for each item. |
|
| 131 |
void clear() { _data.clear(); }
|
|
| 132 |
|
|
| 133 |
private: |
|
| 134 |
int parent(int i) { return (i-1)/D; }
|
|
| 135 |
int firstChild(int i) { return D*i+1; }
|
|
| 136 |
|
|
| 137 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 138 |
return _comp(p1.second, p2.second); |
|
| 139 |
} |
|
| 140 |
|
|
| 141 |
void bubbleUp(int hole, Pair p) {
|
|
| 142 |
int par = parent(hole); |
|
| 143 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 144 |
move(_data[par],hole); |
|
| 145 |
hole = par; |
|
| 146 |
par = parent(hole); |
|
| 147 |
} |
|
| 148 |
move(p, hole); |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 152 |
if( length>1 ) {
|
|
| 153 |
int child = firstChild(hole); |
|
| 154 |
while( child+D<=length ) {
|
|
| 155 |
int min=child; |
|
| 156 |
for (int i=1; i<D; ++i) {
|
|
| 157 |
if( less(_data[child+i], _data[min]) ) |
|
| 158 |
min=child+i; |
|
| 159 |
} |
|
| 160 |
if( !less(_data[min], p) ) |
|
| 161 |
goto ok; |
|
| 162 |
move(_data[min], hole); |
|
| 163 |
hole = min; |
|
| 164 |
child = firstChild(hole); |
|
| 165 |
} |
|
| 166 |
if ( child<length ) {
|
|
| 167 |
int min = child; |
|
| 168 |
while (++child < length) {
|
|
| 169 |
if( less(_data[child], _data[min]) ) |
|
| 170 |
min=child; |
|
| 171 |
} |
|
| 172 |
if( less(_data[min], p) ) {
|
|
| 173 |
move(_data[min], hole); |
|
| 174 |
hole = min; |
|
| 175 |
} |
|
| 176 |
} |
|
| 177 |
} |
|
| 178 |
ok: |
|
| 179 |
move(p, hole); |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
void move(const Pair &p, int i) {
|
|
| 183 |
_data[i] = p; |
|
| 184 |
_iim.set(p.first, i); |
|
| 185 |
} |
|
| 186 |
|
|
| 187 |
public: |
|
| 188 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 189 |
/// |
|
| 190 |
/// This function inserts \c p.first to the heap with priority |
|
| 191 |
/// \c p.second. |
|
| 192 |
/// \param p The pair to insert. |
|
| 193 |
/// \pre \c p.first must not be stored in the heap. |
|
| 194 |
void push(const Pair &p) {
|
|
| 195 |
int n = _data.size(); |
|
| 196 |
_data.resize(n+1); |
|
| 197 |
bubbleUp(n, p); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Insert an item into the heap with the given priority. |
|
| 201 |
/// |
|
| 202 |
/// This function inserts the given item into the heap with the |
|
| 203 |
/// given priority. |
|
| 204 |
/// \param i The item to insert. |
|
| 205 |
/// \param p The priority of the item. |
|
| 206 |
/// \pre \e i must not be stored in the heap. |
|
| 207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 208 |
|
|
| 209 |
/// \brief Return the item having minimum priority. |
|
| 210 |
/// |
|
| 211 |
/// This function returns the item having minimum priority. |
|
| 212 |
/// \pre The heap must be non-empty. |
|
| 213 |
Item top() const { return _data[0].first; }
|
|
| 214 |
|
|
| 215 |
/// \brief The minimum priority. |
|
| 216 |
/// |
|
| 217 |
/// This function returns the minimum priority. |
|
| 218 |
/// \pre The heap must be non-empty. |
|
| 219 |
Prio prio() const { return _data[0].second; }
|
|
| 220 |
|
|
| 221 |
/// \brief Remove the item having minimum priority. |
|
| 222 |
/// |
|
| 223 |
/// This function removes the item having minimum priority. |
|
| 224 |
/// \pre The heap must be non-empty. |
|
| 225 |
void pop() {
|
|
| 226 |
int n = _data.size()-1; |
|
| 227 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 229 |
_data.pop_back(); |
|
| 230 |
} |
|
| 231 |
|
|
| 232 |
/// \brief Remove the given item from the heap. |
|
| 233 |
/// |
|
| 234 |
/// This function removes the given item from the heap if it is |
|
| 235 |
/// already stored. |
|
| 236 |
/// \param i The item to delete. |
|
| 237 |
/// \pre \e i must be in the heap. |
|
| 238 |
void erase(const Item &i) {
|
|
| 239 |
int h = _iim[i]; |
|
| 240 |
int n = _data.size()-1; |
|
| 241 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 242 |
if( h<n ) {
|
|
| 243 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 244 |
bubbleDown(h, _data[n], n); |
|
| 245 |
else |
|
| 246 |
bubbleUp(h, _data[n]); |
|
| 247 |
} |
|
| 248 |
_data.pop_back(); |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief The priority of the given item. |
|
| 252 |
/// |
|
| 253 |
/// This function returns the priority of the given item. |
|
| 254 |
/// \param i The item. |
|
| 255 |
/// \pre \e i must be in the heap. |
|
| 256 |
Prio operator[](const Item &i) const {
|
|
| 257 |
int idx = _iim[i]; |
|
| 258 |
return _data[idx].second; |
|
| 259 |
} |
|
| 260 |
|
|
| 261 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 262 |
/// not stored in the heap. |
|
| 263 |
/// |
|
| 264 |
/// This method sets the priority of the given item if it is |
|
| 265 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 266 |
/// item into the heap with the given priority. |
|
| 267 |
/// \param i The item. |
|
| 268 |
/// \param p The priority. |
|
| 269 |
void set(const Item &i, const Prio &p) {
|
|
| 270 |
int idx = _iim[i]; |
|
| 271 |
if( idx<0 ) |
|
| 272 |
push(i,p); |
|
| 273 |
else if( _comp(p, _data[idx].second) ) |
|
| 274 |
bubbleUp(idx, Pair(i,p)); |
|
| 275 |
else |
|
| 276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
/// \brief Decrease the priority of an item to the given value. |
|
| 280 |
/// |
|
| 281 |
/// This function decreases the priority of an item to the given value. |
|
| 282 |
/// \param i The item. |
|
| 283 |
/// \param p The priority. |
|
| 284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 285 |
void decrease(const Item &i, const Prio &p) {
|
|
| 286 |
int idx = _iim[i]; |
|
| 287 |
bubbleUp(idx, Pair(i,p)); |
|
| 288 |
} |
|
| 289 |
|
|
| 290 |
/// \brief Increase the priority of an item to the given value. |
|
| 291 |
/// |
|
| 292 |
/// This function increases the priority of an item to the given value. |
|
| 293 |
/// \param i The item. |
|
| 294 |
/// \param p The priority. |
|
| 295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 296 |
void increase(const Item &i, const Prio &p) {
|
|
| 297 |
int idx = _iim[i]; |
|
| 298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 299 |
} |
|
| 300 |
|
|
| 301 |
/// \brief Return the state of an item. |
|
| 302 |
/// |
|
| 303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 305 |
/// and \c POST_HEAP otherwise. |
|
| 306 |
/// In the latter case it is possible that the item will get back |
|
| 307 |
/// to the heap again. |
|
| 308 |
/// \param i The item. |
|
| 309 |
State state(const Item &i) const {
|
|
| 310 |
int s = _iim[i]; |
|
| 311 |
if (s>=0) s=0; |
|
| 312 |
return State(s); |
|
| 313 |
} |
|
| 314 |
|
|
| 315 |
/// \brief Set the state of an item in the heap. |
|
| 316 |
/// |
|
| 317 |
/// This function sets the state of the given item in the heap. |
|
| 318 |
/// It can be used to manually clear the heap when it is important |
|
| 319 |
/// to achive better time complexity. |
|
| 320 |
/// \param i The item. |
|
| 321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 322 |
void state(const Item& i, State st) {
|
|
| 323 |
switch (st) {
|
|
| 324 |
case POST_HEAP: |
|
| 325 |
case PRE_HEAP: |
|
| 326 |
if (state(i) == IN_HEAP) erase(i); |
|
| 327 |
_iim[i] = st; |
|
| 328 |
break; |
|
| 329 |
case IN_HEAP: |
|
| 330 |
break; |
|
| 331 |
} |
|
| 332 |
} |
|
| 333 |
|
|
| 334 |
/// \brief Replace an item in the heap. |
|
| 335 |
/// |
|
| 336 |
/// This function replaces item \c i with item \c j. |
|
| 337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 338 |
/// After calling this method, item \c i will be out of the |
|
| 339 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 340 |
/// as item \c i had before. |
|
| 341 |
void replace(const Item& i, const Item& j) {
|
|
| 342 |
int idx=_iim[i]; |
|
| 343 |
_iim.set(i, _iim[j]); |
|
| 344 |
_iim.set(j, idx); |
|
| 345 |
_data[idx].first=j; |
|
| 346 |
} |
|
| 347 |
|
|
| 348 |
}; // class DHeap |
|
| 349 |
|
|
| 350 |
} // namespace lemon |
|
| 351 |
|
|
| 352 |
#endif // LEMON_DHEAP_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_FRACTIONAL_MATCHING_H |
|
| 20 |
#define LEMON_FRACTIONAL_MATCHING_H |
|
| 21 |
|
|
| 22 |
#include <vector> |
|
| 23 |
#include <queue> |
|
| 24 |
#include <set> |
|
| 25 |
#include <limits> |
|
| 26 |
|
|
| 27 |
#include <lemon/core.h> |
|
| 28 |
#include <lemon/unionfind.h> |
|
| 29 |
#include <lemon/bin_heap.h> |
|
| 30 |
#include <lemon/maps.h> |
|
| 31 |
#include <lemon/assert.h> |
|
| 32 |
#include <lemon/elevator.h> |
|
| 33 |
|
|
| 34 |
///\ingroup matching |
|
| 35 |
///\file |
|
| 36 |
///\brief Fractional matching algorithms in general graphs. |
|
| 37 |
|
|
| 38 |
namespace lemon {
|
|
| 39 |
|
|
| 40 |
/// \brief Default traits class of MaxFractionalMatching class. |
|
| 41 |
/// |
|
| 42 |
/// Default traits class of MaxFractionalMatching class. |
|
| 43 |
/// \tparam GR Graph type. |
|
| 44 |
template <typename GR> |
|
| 45 |
struct MaxFractionalMatchingDefaultTraits {
|
|
| 46 |
|
|
| 47 |
/// \brief The type of the graph the algorithm runs on. |
|
| 48 |
typedef GR Graph; |
|
| 49 |
|
|
| 50 |
/// \brief The type of the map that stores the matching. |
|
| 51 |
/// |
|
| 52 |
/// The type of the map that stores the matching arcs. |
|
| 53 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 54 |
typedef typename Graph::template NodeMap<typename GR::Arc> MatchingMap; |
|
| 55 |
|
|
| 56 |
/// \brief Instantiates a MatchingMap. |
|
| 57 |
/// |
|
| 58 |
/// This function instantiates a \ref MatchingMap. |
|
| 59 |
/// \param graph The graph for which we would like to define |
|
| 60 |
/// the matching map. |
|
| 61 |
static MatchingMap* createMatchingMap(const Graph& graph) {
|
|
| 62 |
return new MatchingMap(graph); |
|
| 63 |
} |
|
| 64 |
|
|
| 65 |
/// \brief The elevator type used by MaxFractionalMatching algorithm. |
|
| 66 |
/// |
|
| 67 |
/// The elevator type used by MaxFractionalMatching algorithm. |
|
| 68 |
/// |
|
| 69 |
/// \sa Elevator |
|
| 70 |
/// \sa LinkedElevator |
|
| 71 |
typedef LinkedElevator<Graph, typename Graph::Node> Elevator; |
|
| 72 |
|
|
| 73 |
/// \brief Instantiates an Elevator. |
|
| 74 |
/// |
|
| 75 |
/// This function instantiates an \ref Elevator. |
|
| 76 |
/// \param graph The graph for which we would like to define |
|
| 77 |
/// the elevator. |
|
| 78 |
/// \param max_level The maximum level of the elevator. |
|
| 79 |
static Elevator* createElevator(const Graph& graph, int max_level) {
|
|
| 80 |
return new Elevator(graph, max_level); |
|
| 81 |
} |
|
| 82 |
}; |
|
| 83 |
|
|
| 84 |
/// \ingroup matching |
|
| 85 |
/// |
|
| 86 |
/// \brief Max cardinality fractional matching |
|
| 87 |
/// |
|
| 88 |
/// This class provides an implementation of fractional matching |
|
| 89 |
/// algorithm based on push-relabel principle. |
|
| 90 |
/// |
|
| 91 |
/// The maximum cardinality fractional matching is a relaxation of the |
|
| 92 |
/// maximum cardinality matching problem where the odd set constraints |
|
| 93 |
/// are omitted. |
|
| 94 |
/// It can be formulated with the following linear program. |
|
| 95 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
|
| 96 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
| 97 |
/// \f[\max \sum_{e\in E}x_e\f]
|
|
| 98 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
| 99 |
/// \f$X\f$. The result can be represented as the union of a |
|
| 100 |
/// matching with one value edges and a set of odd length cycles |
|
| 101 |
/// with half value edges. |
|
| 102 |
/// |
|
| 103 |
/// The algorithm calculates an optimal fractional matching and a |
|
| 104 |
/// barrier. The number of adjacents of any node set minus the size |
|
| 105 |
/// of node set is a lower bound on the uncovered nodes in the |
|
| 106 |
/// graph. For maximum matching a barrier is computed which |
|
| 107 |
/// maximizes this difference. |
|
| 108 |
/// |
|
| 109 |
/// The algorithm can be executed with the run() function. After it |
|
| 110 |
/// the matching (the primal solution) and the barrier (the dual |
|
| 111 |
/// solution) can be obtained using the query functions. |
|
| 112 |
/// |
|
| 113 |
/// The primal solution is multiplied by |
|
| 114 |
/// \ref MaxFractionalMatching::primalScale "2". |
|
| 115 |
/// |
|
| 116 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 117 |
#ifdef DOXYGEN |
|
| 118 |
template <typename GR, typename TR> |
|
| 119 |
#else |
|
| 120 |
template <typename GR, |
|
| 121 |
typename TR = MaxFractionalMatchingDefaultTraits<GR> > |
|
| 122 |
#endif |
|
| 123 |
class MaxFractionalMatching {
|
|
| 124 |
public: |
|
| 125 |
|
|
| 126 |
/// \brief The \ref MaxFractionalMatchingDefaultTraits "traits |
|
| 127 |
/// class" of the algorithm. |
|
| 128 |
typedef TR Traits; |
|
| 129 |
/// The type of the graph the algorithm runs on. |
|
| 130 |
typedef typename TR::Graph Graph; |
|
| 131 |
/// The type of the matching map. |
|
| 132 |
typedef typename TR::MatchingMap MatchingMap; |
|
| 133 |
/// The type of the elevator. |
|
| 134 |
typedef typename TR::Elevator Elevator; |
|
| 135 |
|
|
| 136 |
/// \brief Scaling factor for primal solution |
|
| 137 |
/// |
|
| 138 |
/// Scaling factor for primal solution. |
|
| 139 |
static const int primalScale = 2; |
|
| 140 |
|
|
| 141 |
private: |
|
| 142 |
|
|
| 143 |
const Graph &_graph; |
|
| 144 |
int _node_num; |
|
| 145 |
bool _allow_loops; |
|
| 146 |
int _empty_level; |
|
| 147 |
|
|
| 148 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 149 |
|
|
| 150 |
bool _local_matching; |
|
| 151 |
MatchingMap *_matching; |
|
| 152 |
|
|
| 153 |
bool _local_level; |
|
| 154 |
Elevator *_level; |
|
| 155 |
|
|
| 156 |
typedef typename Graph::template NodeMap<int> InDegMap; |
|
| 157 |
InDegMap *_indeg; |
|
| 158 |
|
|
| 159 |
void createStructures() {
|
|
| 160 |
_node_num = countNodes(_graph); |
|
| 161 |
|
|
| 162 |
if (!_matching) {
|
|
| 163 |
_local_matching = true; |
|
| 164 |
_matching = Traits::createMatchingMap(_graph); |
|
| 165 |
} |
|
| 166 |
if (!_level) {
|
|
| 167 |
_local_level = true; |
|
| 168 |
_level = Traits::createElevator(_graph, _node_num); |
|
| 169 |
} |
|
| 170 |
if (!_indeg) {
|
|
| 171 |
_indeg = new InDegMap(_graph); |
|
| 172 |
} |
|
| 173 |
} |
|
| 174 |
|
|
| 175 |
void destroyStructures() {
|
|
| 176 |
if (_local_matching) {
|
|
| 177 |
delete _matching; |
|
| 178 |
} |
|
| 179 |
if (_local_level) {
|
|
| 180 |
delete _level; |
|
| 181 |
} |
|
| 182 |
if (_indeg) {
|
|
| 183 |
delete _indeg; |
|
| 184 |
} |
|
| 185 |
} |
|
| 186 |
|
|
| 187 |
void postprocessing() {
|
|
| 188 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 189 |
if ((*_indeg)[n] != 0) continue; |
|
| 190 |
_indeg->set(n, -1); |
|
| 191 |
Node u = n; |
|
| 192 |
while ((*_matching)[u] != INVALID) {
|
|
| 193 |
Node v = _graph.target((*_matching)[u]); |
|
| 194 |
_indeg->set(v, -1); |
|
| 195 |
Arc a = _graph.oppositeArc((*_matching)[u]); |
|
| 196 |
u = _graph.target((*_matching)[v]); |
|
| 197 |
_indeg->set(u, -1); |
|
| 198 |
_matching->set(v, a); |
|
| 199 |
} |
|
| 200 |
} |
|
| 201 |
|
|
| 202 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 203 |
if ((*_indeg)[n] != 1) continue; |
|
| 204 |
_indeg->set(n, -1); |
|
| 205 |
|
|
| 206 |
int num = 1; |
|
| 207 |
Node u = _graph.target((*_matching)[n]); |
|
| 208 |
while (u != n) {
|
|
| 209 |
_indeg->set(u, -1); |
|
| 210 |
u = _graph.target((*_matching)[u]); |
|
| 211 |
++num; |
|
| 212 |
} |
|
| 213 |
if (num % 2 == 0 && num > 2) {
|
|
| 214 |
Arc prev = _graph.oppositeArc((*_matching)[n]); |
|
| 215 |
Node v = _graph.target((*_matching)[n]); |
|
| 216 |
u = _graph.target((*_matching)[v]); |
|
| 217 |
_matching->set(v, prev); |
|
| 218 |
while (u != n) {
|
|
| 219 |
prev = _graph.oppositeArc((*_matching)[u]); |
|
| 220 |
v = _graph.target((*_matching)[u]); |
|
| 221 |
u = _graph.target((*_matching)[v]); |
|
| 222 |
_matching->set(v, prev); |
|
| 223 |
} |
|
| 224 |
} |
|
| 225 |
} |
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
public: |
|
| 229 |
|
|
| 230 |
typedef MaxFractionalMatching Create; |
|
| 231 |
|
|
| 232 |
///\name Named Template Parameters |
|
| 233 |
|
|
| 234 |
///@{
|
|
| 235 |
|
|
| 236 |
template <typename T> |
|
| 237 |
struct SetMatchingMapTraits : public Traits {
|
|
| 238 |
typedef T MatchingMap; |
|
| 239 |
static MatchingMap *createMatchingMap(const Graph&) {
|
|
| 240 |
LEMON_ASSERT(false, "MatchingMap is not initialized"); |
|
| 241 |
return 0; // ignore warnings |
|
| 242 |
} |
|
| 243 |
}; |
|
| 244 |
|
|
| 245 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 246 |
/// MatchingMap type |
|
| 247 |
/// |
|
| 248 |
/// \ref named-templ-param "Named parameter" for setting MatchingMap |
|
| 249 |
/// type. |
|
| 250 |
template <typename T> |
|
| 251 |
struct SetMatchingMap |
|
| 252 |
: public MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > {
|
|
| 253 |
typedef MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > Create; |
|
| 254 |
}; |
|
| 255 |
|
|
| 256 |
template <typename T> |
|
| 257 |
struct SetElevatorTraits : public Traits {
|
|
| 258 |
typedef T Elevator; |
|
| 259 |
static Elevator *createElevator(const Graph&, int) {
|
|
| 260 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
|
| 261 |
return 0; // ignore warnings |
|
| 262 |
} |
|
| 263 |
}; |
|
| 264 |
|
|
| 265 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 266 |
/// Elevator type |
|
| 267 |
/// |
|
| 268 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
| 269 |
/// type. If this named parameter is used, then an external |
|
| 270 |
/// elevator object must be passed to the algorithm using the |
|
| 271 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
|
| 272 |
/// \ref run() or \ref init(). |
|
| 273 |
/// \sa SetStandardElevator |
|
| 274 |
template <typename T> |
|
| 275 |
struct SetElevator |
|
| 276 |
: public MaxFractionalMatching<Graph, SetElevatorTraits<T> > {
|
|
| 277 |
typedef MaxFractionalMatching<Graph, SetElevatorTraits<T> > Create; |
|
| 278 |
}; |
|
| 279 |
|
|
| 280 |
template <typename T> |
|
| 281 |
struct SetStandardElevatorTraits : public Traits {
|
|
| 282 |
typedef T Elevator; |
|
| 283 |
static Elevator *createElevator(const Graph& graph, int max_level) {
|
|
| 284 |
return new Elevator(graph, max_level); |
|
| 285 |
} |
|
| 286 |
}; |
|
| 287 |
|
|
| 288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 289 |
/// Elevator type with automatic allocation |
|
| 290 |
/// |
|
| 291 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
| 292 |
/// type with automatic allocation. |
|
| 293 |
/// The Elevator should have standard constructor interface to be |
|
| 294 |
/// able to automatically created by the algorithm (i.e. the |
|
| 295 |
/// graph and the maximum level should be passed to it). |
|
| 296 |
/// However an external elevator object could also be passed to the |
|
| 297 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
|
| 298 |
/// before calling \ref run() or \ref init(). |
|
| 299 |
/// \sa SetElevator |
|
| 300 |
template <typename T> |
|
| 301 |
struct SetStandardElevator |
|
| 302 |
: public MaxFractionalMatching<Graph, SetStandardElevatorTraits<T> > {
|
|
| 303 |
typedef MaxFractionalMatching<Graph, |
|
| 304 |
SetStandardElevatorTraits<T> > Create; |
|
| 305 |
}; |
|
| 306 |
|
|
| 307 |
/// @} |
|
| 308 |
|
|
| 309 |
protected: |
|
| 310 |
|
|
| 311 |
MaxFractionalMatching() {}
|
|
| 312 |
|
|
| 313 |
public: |
|
| 314 |
|
|
| 315 |
/// \brief Constructor |
|
| 316 |
/// |
|
| 317 |
/// Constructor. |
|
| 318 |
/// |
|
| 319 |
MaxFractionalMatching(const Graph &graph, bool allow_loops = true) |
|
| 320 |
: _graph(graph), _allow_loops(allow_loops), |
|
| 321 |
_local_matching(false), _matching(0), |
|
| 322 |
_local_level(false), _level(0), _indeg(0) |
|
| 323 |
{}
|
|
| 324 |
|
|
| 325 |
~MaxFractionalMatching() {
|
|
| 326 |
destroyStructures(); |
|
| 327 |
} |
|
| 328 |
|
|
| 329 |
/// \brief Sets the matching map. |
|
| 330 |
/// |
|
| 331 |
/// Sets the matching map. |
|
| 332 |
/// If you don't use this function before calling \ref run() or |
|
| 333 |
/// \ref init(), an instance will be allocated automatically. |
|
| 334 |
/// The destructor deallocates this automatically allocated map, |
|
| 335 |
/// of course. |
|
| 336 |
/// \return <tt>(*this)</tt> |
|
| 337 |
MaxFractionalMatching& matchingMap(MatchingMap& map) {
|
|
| 338 |
if (_local_matching) {
|
|
| 339 |
delete _matching; |
|
| 340 |
_local_matching = false; |
|
| 341 |
} |
|
| 342 |
_matching = ↦ |
|
| 343 |
return *this; |
|
| 344 |
} |
|
| 345 |
|
|
| 346 |
/// \brief Sets the elevator used by algorithm. |
|
| 347 |
/// |
|
| 348 |
/// Sets the elevator used by algorithm. |
|
| 349 |
/// If you don't use this function before calling \ref run() or |
|
| 350 |
/// \ref init(), an instance will be allocated automatically. |
|
| 351 |
/// The destructor deallocates this automatically allocated elevator, |
|
| 352 |
/// of course. |
|
| 353 |
/// \return <tt>(*this)</tt> |
|
| 354 |
MaxFractionalMatching& elevator(Elevator& elevator) {
|
|
| 355 |
if (_local_level) {
|
|
| 356 |
delete _level; |
|
| 357 |
_local_level = false; |
|
| 358 |
} |
|
| 359 |
_level = &elevator; |
|
| 360 |
return *this; |
|
| 361 |
} |
|
| 362 |
|
|
| 363 |
/// \brief Returns a const reference to the elevator. |
|
| 364 |
/// |
|
| 365 |
/// Returns a const reference to the elevator. |
|
| 366 |
/// |
|
| 367 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 368 |
/// using this function. |
|
| 369 |
const Elevator& elevator() const {
|
|
| 370 |
return *_level; |
|
| 371 |
} |
|
| 372 |
|
|
| 373 |
/// \name Execution control |
|
| 374 |
/// The simplest way to execute the algorithm is to use one of the |
|
| 375 |
/// member functions called \c run(). \n |
|
| 376 |
/// If you need more control on the execution, first |
|
| 377 |
/// you must call \ref init() and then one variant of the start() |
|
| 378 |
/// member. |
|
| 379 |
|
|
| 380 |
/// @{
|
|
| 381 |
|
|
| 382 |
/// \brief Initializes the internal data structures. |
|
| 383 |
/// |
|
| 384 |
/// Initializes the internal data structures and sets the initial |
|
| 385 |
/// matching. |
|
| 386 |
void init() {
|
|
| 387 |
createStructures(); |
|
| 388 |
|
|
| 389 |
_level->initStart(); |
|
| 390 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 391 |
_indeg->set(n, 0); |
|
| 392 |
_matching->set(n, INVALID); |
|
| 393 |
_level->initAddItem(n); |
|
| 394 |
} |
|
| 395 |
_level->initFinish(); |
|
| 396 |
|
|
| 397 |
_empty_level = _node_num; |
|
| 398 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 399 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 400 |
if (_graph.target(a) == n && !_allow_loops) continue; |
|
| 401 |
_matching->set(n, a); |
|
| 402 |
Node v = _graph.target((*_matching)[n]); |
|
| 403 |
_indeg->set(v, (*_indeg)[v] + 1); |
|
| 404 |
break; |
|
| 405 |
} |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 409 |
if ((*_indeg)[n] == 0) {
|
|
| 410 |
_level->activate(n); |
|
| 411 |
} |
|
| 412 |
} |
|
| 413 |
} |
|
| 414 |
|
|
| 415 |
/// \brief Starts the algorithm and computes a fractional matching |
|
| 416 |
/// |
|
| 417 |
/// The algorithm computes a maximum fractional matching. |
|
| 418 |
/// |
|
| 419 |
/// \param postprocess The algorithm computes first a matching |
|
| 420 |
/// which is a union of a matching with one value edges, cycles |
|
| 421 |
/// with half value edges and even length paths with half value |
|
| 422 |
/// edges. If the parameter is true, then after the push-relabel |
|
| 423 |
/// algorithm it postprocesses the matching to contain only |
|
| 424 |
/// matching edges and half value odd cycles. |
|
| 425 |
void start(bool postprocess = true) {
|
|
| 426 |
Node n; |
|
| 427 |
while ((n = _level->highestActive()) != INVALID) {
|
|
| 428 |
int level = _level->highestActiveLevel(); |
|
| 429 |
int new_level = _level->maxLevel(); |
|
| 430 |
for (InArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 431 |
Node u = _graph.source(a); |
|
| 432 |
if (n == u && !_allow_loops) continue; |
|
| 433 |
Node v = _graph.target((*_matching)[u]); |
|
| 434 |
if ((*_level)[v] < level) {
|
|
| 435 |
_indeg->set(v, (*_indeg)[v] - 1); |
|
| 436 |
if ((*_indeg)[v] == 0) {
|
|
| 437 |
_level->activate(v); |
|
| 438 |
} |
|
| 439 |
_matching->set(u, a); |
|
| 440 |
_indeg->set(n, (*_indeg)[n] + 1); |
|
| 441 |
_level->deactivate(n); |
|
| 442 |
goto no_more_push; |
|
| 443 |
} else if (new_level > (*_level)[v]) {
|
|
| 444 |
new_level = (*_level)[v]; |
|
| 445 |
} |
|
| 446 |
} |
|
| 447 |
|
|
| 448 |
if (new_level + 1 < _level->maxLevel()) {
|
|
| 449 |
_level->liftHighestActive(new_level + 1); |
|
| 450 |
} else {
|
|
| 451 |
_level->liftHighestActiveToTop(); |
|
| 452 |
} |
|
| 453 |
if (_level->emptyLevel(level)) {
|
|
| 454 |
_level->liftToTop(level); |
|
| 455 |
} |
|
| 456 |
no_more_push: |
|
| 457 |
; |
|
| 458 |
} |
|
| 459 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 460 |
if ((*_matching)[n] == INVALID) continue; |
|
| 461 |
Node u = _graph.target((*_matching)[n]); |
|
| 462 |
if ((*_indeg)[u] > 1) {
|
|
| 463 |
_indeg->set(u, (*_indeg)[u] - 1); |
|
| 464 |
_matching->set(n, INVALID); |
|
| 465 |
} |
|
| 466 |
} |
|
| 467 |
if (postprocess) {
|
|
| 468 |
postprocessing(); |
|
| 469 |
} |
|
| 470 |
} |
|
| 471 |
|
|
| 472 |
/// \brief Starts the algorithm and computes a perfect fractional |
|
| 473 |
/// matching |
|
| 474 |
/// |
|
| 475 |
/// The algorithm computes a perfect fractional matching. If it |
|
| 476 |
/// does not exists, then the algorithm returns false and the |
|
| 477 |
/// matching is undefined and the barrier. |
|
| 478 |
/// |
|
| 479 |
/// \param postprocess The algorithm computes first a matching |
|
| 480 |
/// which is a union of a matching with one value edges, cycles |
|
| 481 |
/// with half value edges and even length paths with half value |
|
| 482 |
/// edges. If the parameter is true, then after the push-relabel |
|
| 483 |
/// algorithm it postprocesses the matching to contain only |
|
| 484 |
/// matching edges and half value odd cycles. |
|
| 485 |
bool startPerfect(bool postprocess = true) {
|
|
| 486 |
Node n; |
|
| 487 |
while ((n = _level->highestActive()) != INVALID) {
|
|
| 488 |
int level = _level->highestActiveLevel(); |
|
| 489 |
int new_level = _level->maxLevel(); |
|
| 490 |
for (InArcIt a(_graph, n); a != INVALID; ++a) {
|
|
| 491 |
Node u = _graph.source(a); |
|
| 492 |
if (n == u && !_allow_loops) continue; |
|
| 493 |
Node v = _graph.target((*_matching)[u]); |
|
| 494 |
if ((*_level)[v] < level) {
|
|
| 495 |
_indeg->set(v, (*_indeg)[v] - 1); |
|
| 496 |
if ((*_indeg)[v] == 0) {
|
|
| 497 |
_level->activate(v); |
|
| 498 |
} |
|
| 499 |
_matching->set(u, a); |
|
| 500 |
_indeg->set(n, (*_indeg)[n] + 1); |
|
| 501 |
_level->deactivate(n); |
|
| 502 |
goto no_more_push; |
|
| 503 |
} else if (new_level > (*_level)[v]) {
|
|
| 504 |
new_level = (*_level)[v]; |
|
| 505 |
} |
|
| 506 |
} |
|
| 507 |
|
|
| 508 |
if (new_level + 1 < _level->maxLevel()) {
|
|
| 509 |
_level->liftHighestActive(new_level + 1); |
|
| 510 |
} else {
|
|
| 511 |
_level->liftHighestActiveToTop(); |
|
| 512 |
_empty_level = _level->maxLevel() - 1; |
|
| 513 |
return false; |
|
| 514 |
} |
|
| 515 |
if (_level->emptyLevel(level)) {
|
|
| 516 |
_level->liftToTop(level); |
|
| 517 |
_empty_level = level; |
|
| 518 |
return false; |
|
| 519 |
} |
|
| 520 |
no_more_push: |
|
| 521 |
; |
|
| 522 |
} |
|
| 523 |
if (postprocess) {
|
|
| 524 |
postprocessing(); |
|
| 525 |
} |
|
| 526 |
return true; |
|
| 527 |
} |
|
| 528 |
|
|
| 529 |
/// \brief Runs the algorithm |
|
| 530 |
/// |
|
| 531 |
/// Just a shortcut for the next code: |
|
| 532 |
///\code |
|
| 533 |
/// init(); |
|
| 534 |
/// start(); |
|
| 535 |
///\endcode |
|
| 536 |
void run(bool postprocess = true) {
|
|
| 537 |
init(); |
|
| 538 |
start(postprocess); |
|
| 539 |
} |
|
| 540 |
|
|
| 541 |
/// \brief Runs the algorithm to find a perfect fractional matching |
|
| 542 |
/// |
|
| 543 |
/// Just a shortcut for the next code: |
|
| 544 |
///\code |
|
| 545 |
/// init(); |
|
| 546 |
/// startPerfect(); |
|
| 547 |
///\endcode |
|
| 548 |
bool runPerfect(bool postprocess = true) {
|
|
| 549 |
init(); |
|
| 550 |
return startPerfect(postprocess); |
|
| 551 |
} |
|
| 552 |
|
|
| 553 |
///@} |
|
| 554 |
|
|
| 555 |
/// \name Query Functions |
|
| 556 |
/// The result of the %Matching algorithm can be obtained using these |
|
| 557 |
/// functions.\n |
|
| 558 |
/// Before the use of these functions, |
|
| 559 |
/// either run() or start() must be called. |
|
| 560 |
///@{
|
|
| 561 |
|
|
| 562 |
|
|
| 563 |
/// \brief Return the number of covered nodes in the matching. |
|
| 564 |
/// |
|
| 565 |
/// This function returns the number of covered nodes in the matching. |
|
| 566 |
/// |
|
| 567 |
/// \pre Either run() or start() must be called before using this function. |
|
| 568 |
int matchingSize() const {
|
|
| 569 |
int num = 0; |
|
| 570 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 571 |
if ((*_matching)[n] != INVALID) {
|
|
| 572 |
++num; |
|
| 573 |
} |
|
| 574 |
} |
|
| 575 |
return num; |
|
| 576 |
} |
|
| 577 |
|
|
| 578 |
/// \brief Returns a const reference to the matching map. |
|
| 579 |
/// |
|
| 580 |
/// Returns a const reference to the node map storing the found |
|
| 581 |
/// fractional matching. This method can be called after |
|
| 582 |
/// running the algorithm. |
|
| 583 |
/// |
|
| 584 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 585 |
/// using this function. |
|
| 586 |
const MatchingMap& matchingMap() const {
|
|
| 587 |
return *_matching; |
|
| 588 |
} |
|
| 589 |
|
|
| 590 |
/// \brief Return \c true if the given edge is in the matching. |
|
| 591 |
/// |
|
| 592 |
/// This function returns \c true if the given edge is in the |
|
| 593 |
/// found matching. The result is scaled by \ref primalScale |
|
| 594 |
/// "primal scale". |
|
| 595 |
/// |
|
| 596 |
/// \pre Either run() or start() must be called before using this function. |
|
| 597 |
int matching(const Edge& edge) const {
|
|
| 598 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) + |
|
| 599 |
(edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
| 600 |
} |
|
| 601 |
|
|
| 602 |
/// \brief Return the fractional matching arc (or edge) incident |
|
| 603 |
/// to the given node. |
|
| 604 |
/// |
|
| 605 |
/// This function returns one of the fractional matching arc (or |
|
| 606 |
/// edge) incident to the given node in the found matching or \c |
|
| 607 |
/// INVALID if the node is not covered by the matching or if the |
|
| 608 |
/// node is on an odd length cycle then it is the successor edge |
|
| 609 |
/// on the cycle. |
|
| 610 |
/// |
|
| 611 |
/// \pre Either run() or start() must be called before using this function. |
|
| 612 |
Arc matching(const Node& node) const {
|
|
| 613 |
return (*_matching)[node]; |
|
| 614 |
} |
|
| 615 |
|
|
| 616 |
/// \brief Returns true if the node is in the barrier |
|
| 617 |
/// |
|
| 618 |
/// The barrier is a subset of the nodes. If the nodes in the |
|
| 619 |
/// barrier have less adjacent nodes than the size of the barrier, |
|
| 620 |
/// then at least as much nodes cannot be covered as the |
|
| 621 |
/// difference of the two subsets. |
|
| 622 |
bool barrier(const Node& node) const {
|
|
| 623 |
return (*_level)[node] >= _empty_level; |
|
| 624 |
} |
|
| 625 |
|
|
| 626 |
/// @} |
|
| 627 |
|
|
| 628 |
}; |
|
| 629 |
|
|
| 630 |
/// \ingroup matching |
|
| 631 |
/// |
|
| 632 |
/// \brief Weighted fractional matching in general graphs |
|
| 633 |
/// |
|
| 634 |
/// This class provides an efficient implementation of fractional |
|
| 635 |
/// matching algorithm. The implementation uses priority queues and |
|
| 636 |
/// provides \f$O(nm\log n)\f$ time complexity. |
|
| 637 |
/// |
|
| 638 |
/// The maximum weighted fractional matching is a relaxation of the |
|
| 639 |
/// maximum weighted matching problem where the odd set constraints |
|
| 640 |
/// are omitted. |
|
| 641 |
/// It can be formulated with the following linear program. |
|
| 642 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
|
| 643 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
| 644 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
|
| 645 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
| 646 |
/// \f$X\f$. The result must be the union of a matching with one |
|
| 647 |
/// value edges and a set of odd length cycles with half value edges. |
|
| 648 |
/// |
|
| 649 |
/// The algorithm calculates an optimal fractional matching and a |
|
| 650 |
/// proof of the optimality. The solution of the dual problem can be |
|
| 651 |
/// used to check the result of the algorithm. The dual linear |
|
| 652 |
/// problem is the following. |
|
| 653 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
|
|
| 654 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
|
| 655 |
/// \f[\min \sum_{u \in V}y_u \f]
|
|
| 656 |
/// |
|
| 657 |
/// The algorithm can be executed with the run() function. |
|
| 658 |
/// After it the matching (the primal solution) and the dual solution |
|
| 659 |
/// can be obtained using the query functions. |
|
| 660 |
/// |
|
| 661 |
/// The primal solution is multiplied by |
|
| 662 |
/// \ref MaxWeightedFractionalMatching::primalScale "2". |
|
| 663 |
/// If the value type is integer, then the dual |
|
| 664 |
/// solution is scaled by |
|
| 665 |
/// \ref MaxWeightedFractionalMatching::dualScale "4". |
|
| 666 |
/// |
|
| 667 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 668 |
/// \tparam WM The type edge weight map. The default type is |
|
| 669 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
| 670 |
#ifdef DOXYGEN |
|
| 671 |
template <typename GR, typename WM> |
|
| 672 |
#else |
|
| 673 |
template <typename GR, |
|
| 674 |
typename WM = typename GR::template EdgeMap<int> > |
|
| 675 |
#endif |
|
| 676 |
class MaxWeightedFractionalMatching {
|
|
| 677 |
public: |
|
| 678 |
|
|
| 679 |
/// The graph type of the algorithm |
|
| 680 |
typedef GR Graph; |
|
| 681 |
/// The type of the edge weight map |
|
| 682 |
typedef WM WeightMap; |
|
| 683 |
/// The value type of the edge weights |
|
| 684 |
typedef typename WeightMap::Value Value; |
|
| 685 |
|
|
| 686 |
/// The type of the matching map |
|
| 687 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
| 688 |
MatchingMap; |
|
| 689 |
|
|
| 690 |
/// \brief Scaling factor for primal solution |
|
| 691 |
/// |
|
| 692 |
/// Scaling factor for primal solution. |
|
| 693 |
static const int primalScale = 2; |
|
| 694 |
|
|
| 695 |
/// \brief Scaling factor for dual solution |
|
| 696 |
/// |
|
| 697 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
|
| 698 |
/// according to the value type. |
|
| 699 |
static const int dualScale = |
|
| 700 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
| 701 |
|
|
| 702 |
private: |
|
| 703 |
|
|
| 704 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 705 |
|
|
| 706 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
| 707 |
|
|
| 708 |
const Graph& _graph; |
|
| 709 |
const WeightMap& _weight; |
|
| 710 |
|
|
| 711 |
MatchingMap* _matching; |
|
| 712 |
NodePotential* _node_potential; |
|
| 713 |
|
|
| 714 |
int _node_num; |
|
| 715 |
bool _allow_loops; |
|
| 716 |
|
|
| 717 |
enum Status {
|
|
| 718 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 719 |
}; |
|
| 720 |
|
|
| 721 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
| 722 |
StatusMap* _status; |
|
| 723 |
|
|
| 724 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 725 |
PredMap* _pred; |
|
| 726 |
|
|
| 727 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
| 728 |
|
|
| 729 |
IntNodeMap *_tree_set_index; |
|
| 730 |
TreeSet *_tree_set; |
|
| 731 |
|
|
| 732 |
IntNodeMap *_delta1_index; |
|
| 733 |
BinHeap<Value, IntNodeMap> *_delta1; |
|
| 734 |
|
|
| 735 |
IntNodeMap *_delta2_index; |
|
| 736 |
BinHeap<Value, IntNodeMap> *_delta2; |
|
| 737 |
|
|
| 738 |
IntEdgeMap *_delta3_index; |
|
| 739 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
| 740 |
|
|
| 741 |
Value _delta_sum; |
|
| 742 |
|
|
| 743 |
void createStructures() {
|
|
| 744 |
_node_num = countNodes(_graph); |
|
| 745 |
|
|
| 746 |
if (!_matching) {
|
|
| 747 |
_matching = new MatchingMap(_graph); |
|
| 748 |
} |
|
| 749 |
if (!_node_potential) {
|
|
| 750 |
_node_potential = new NodePotential(_graph); |
|
| 751 |
} |
|
| 752 |
if (!_status) {
|
|
| 753 |
_status = new StatusMap(_graph); |
|
| 754 |
} |
|
| 755 |
if (!_pred) {
|
|
| 756 |
_pred = new PredMap(_graph); |
|
| 757 |
} |
|
| 758 |
if (!_tree_set) {
|
|
| 759 |
_tree_set_index = new IntNodeMap(_graph); |
|
| 760 |
_tree_set = new TreeSet(*_tree_set_index); |
|
| 761 |
} |
|
| 762 |
if (!_delta1) {
|
|
| 763 |
_delta1_index = new IntNodeMap(_graph); |
|
| 764 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
|
| 765 |
} |
|
| 766 |
if (!_delta2) {
|
|
| 767 |
_delta2_index = new IntNodeMap(_graph); |
|
| 768 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
|
| 769 |
} |
|
| 770 |
if (!_delta3) {
|
|
| 771 |
_delta3_index = new IntEdgeMap(_graph); |
|
| 772 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
| 773 |
} |
|
| 774 |
} |
|
| 775 |
|
|
| 776 |
void destroyStructures() {
|
|
| 777 |
if (_matching) {
|
|
| 778 |
delete _matching; |
|
| 779 |
} |
|
| 780 |
if (_node_potential) {
|
|
| 781 |
delete _node_potential; |
|
| 782 |
} |
|
| 783 |
if (_status) {
|
|
| 784 |
delete _status; |
|
| 785 |
} |
|
| 786 |
if (_pred) {
|
|
| 787 |
delete _pred; |
|
| 788 |
} |
|
| 789 |
if (_tree_set) {
|
|
| 790 |
delete _tree_set_index; |
|
| 791 |
delete _tree_set; |
|
| 792 |
} |
|
| 793 |
if (_delta1) {
|
|
| 794 |
delete _delta1_index; |
|
| 795 |
delete _delta1; |
|
| 796 |
} |
|
| 797 |
if (_delta2) {
|
|
| 798 |
delete _delta2_index; |
|
| 799 |
delete _delta2; |
|
| 800 |
} |
|
| 801 |
if (_delta3) {
|
|
| 802 |
delete _delta3_index; |
|
| 803 |
delete _delta3; |
|
| 804 |
} |
|
| 805 |
} |
|
| 806 |
|
|
| 807 |
void matchedToEven(Node node, int tree) {
|
|
| 808 |
_tree_set->insert(node, tree); |
|
| 809 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
| 810 |
_delta1->push(node, (*_node_potential)[node]); |
|
| 811 |
|
|
| 812 |
if (_delta2->state(node) == _delta2->IN_HEAP) {
|
|
| 813 |
_delta2->erase(node); |
|
| 814 |
} |
|
| 815 |
|
|
| 816 |
for (InArcIt a(_graph, node); a != INVALID; ++a) {
|
|
| 817 |
Node v = _graph.source(a); |
|
| 818 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
| 819 |
dualScale * _weight[a]; |
|
| 820 |
if (node == v) {
|
|
| 821 |
if (_allow_loops && _graph.direction(a)) {
|
|
| 822 |
_delta3->push(a, rw / 2); |
|
| 823 |
} |
|
| 824 |
} else if ((*_status)[v] == EVEN) {
|
|
| 825 |
_delta3->push(a, rw / 2); |
|
| 826 |
} else if ((*_status)[v] == MATCHED) {
|
|
| 827 |
if (_delta2->state(v) != _delta2->IN_HEAP) {
|
|
| 828 |
_pred->set(v, a); |
|
| 829 |
_delta2->push(v, rw); |
|
| 830 |
} else if ((*_delta2)[v] > rw) {
|
|
| 831 |
_pred->set(v, a); |
|
| 832 |
_delta2->decrease(v, rw); |
|
| 833 |
} |
|
| 834 |
} |
|
| 835 |
} |
|
| 836 |
} |
|
| 837 |
|
|
| 838 |
void matchedToOdd(Node node, int tree) {
|
|
| 839 |
_tree_set->insert(node, tree); |
|
| 840 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
| 841 |
|
|
| 842 |
if (_delta2->state(node) == _delta2->IN_HEAP) {
|
|
| 843 |
_delta2->erase(node); |
|
| 844 |
} |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
void evenToMatched(Node node, int tree) {
|
|
| 848 |
_delta1->erase(node); |
|
| 849 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
| 850 |
Arc min = INVALID; |
|
| 851 |
Value minrw = std::numeric_limits<Value>::max(); |
|
| 852 |
for (InArcIt a(_graph, node); a != INVALID; ++a) {
|
|
| 853 |
Node v = _graph.source(a); |
|
| 854 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
| 855 |
dualScale * _weight[a]; |
|
| 856 |
|
|
| 857 |
if (node == v) {
|
|
| 858 |
if (_allow_loops && _graph.direction(a)) {
|
|
| 859 |
_delta3->erase(a); |
|
| 860 |
} |
|
| 861 |
} else if ((*_status)[v] == EVEN) {
|
|
| 862 |
_delta3->erase(a); |
|
| 863 |
if (minrw > rw) {
|
|
| 864 |
min = _graph.oppositeArc(a); |
|
| 865 |
minrw = rw; |
|
| 866 |
} |
|
| 867 |
} else if ((*_status)[v] == MATCHED) {
|
|
| 868 |
if ((*_pred)[v] == a) {
|
|
| 869 |
Arc mina = INVALID; |
|
| 870 |
Value minrwa = std::numeric_limits<Value>::max(); |
|
| 871 |
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) {
|
|
| 872 |
Node va = _graph.target(aa); |
|
| 873 |
if ((*_status)[va] != EVEN || |
|
| 874 |
_tree_set->find(va) == tree) continue; |
|
| 875 |
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
|
| 876 |
dualScale * _weight[aa]; |
|
| 877 |
if (minrwa > rwa) {
|
|
| 878 |
minrwa = rwa; |
|
| 879 |
mina = aa; |
|
| 880 |
} |
|
| 881 |
} |
|
| 882 |
if (mina != INVALID) {
|
|
| 883 |
_pred->set(v, mina); |
|
| 884 |
_delta2->increase(v, minrwa); |
|
| 885 |
} else {
|
|
| 886 |
_pred->set(v, INVALID); |
|
| 887 |
_delta2->erase(v); |
|
| 888 |
} |
|
| 889 |
} |
|
| 890 |
} |
|
| 891 |
} |
|
| 892 |
if (min != INVALID) {
|
|
| 893 |
_pred->set(node, min); |
|
| 894 |
_delta2->push(node, minrw); |
|
| 895 |
} else {
|
|
| 896 |
_pred->set(node, INVALID); |
|
| 897 |
} |
|
| 898 |
} |
|
| 899 |
|
|
| 900 |
void oddToMatched(Node node) {
|
|
| 901 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
| 902 |
Arc min = INVALID; |
|
| 903 |
Value minrw = std::numeric_limits<Value>::max(); |
|
| 904 |
for (InArcIt a(_graph, node); a != INVALID; ++a) {
|
|
| 905 |
Node v = _graph.source(a); |
|
| 906 |
if ((*_status)[v] != EVEN) continue; |
|
| 907 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
| 908 |
dualScale * _weight[a]; |
|
| 909 |
|
|
| 910 |
if (minrw > rw) {
|
|
| 911 |
min = _graph.oppositeArc(a); |
|
| 912 |
minrw = rw; |
|
| 913 |
} |
|
| 914 |
} |
|
| 915 |
if (min != INVALID) {
|
|
| 916 |
_pred->set(node, min); |
|
| 917 |
_delta2->push(node, minrw); |
|
| 918 |
} else {
|
|
| 919 |
_pred->set(node, INVALID); |
|
| 920 |
} |
|
| 921 |
} |
|
| 922 |
|
|
| 923 |
void alternatePath(Node even, int tree) {
|
|
| 924 |
Node odd; |
|
| 925 |
|
|
| 926 |
_status->set(even, MATCHED); |
|
| 927 |
evenToMatched(even, tree); |
|
| 928 |
|
|
| 929 |
Arc prev = (*_matching)[even]; |
|
| 930 |
while (prev != INVALID) {
|
|
| 931 |
odd = _graph.target(prev); |
|
| 932 |
even = _graph.target((*_pred)[odd]); |
|
| 933 |
_matching->set(odd, (*_pred)[odd]); |
|
| 934 |
_status->set(odd, MATCHED); |
|
| 935 |
oddToMatched(odd); |
|
| 936 |
|
|
| 937 |
prev = (*_matching)[even]; |
|
| 938 |
_status->set(even, MATCHED); |
|
| 939 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
|
| 940 |
evenToMatched(even, tree); |
|
| 941 |
} |
|
| 942 |
} |
|
| 943 |
|
|
| 944 |
void destroyTree(int tree) {
|
|
| 945 |
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) {
|
|
| 946 |
if ((*_status)[n] == EVEN) {
|
|
| 947 |
_status->set(n, MATCHED); |
|
| 948 |
evenToMatched(n, tree); |
|
| 949 |
} else if ((*_status)[n] == ODD) {
|
|
| 950 |
_status->set(n, MATCHED); |
|
| 951 |
oddToMatched(n); |
|
| 952 |
} |
|
| 953 |
} |
|
| 954 |
_tree_set->eraseClass(tree); |
|
| 955 |
} |
|
| 956 |
|
|
| 957 |
|
|
| 958 |
void unmatchNode(const Node& node) {
|
|
| 959 |
int tree = _tree_set->find(node); |
|
| 960 |
|
|
| 961 |
alternatePath(node, tree); |
|
| 962 |
destroyTree(tree); |
|
| 963 |
|
|
| 964 |
_matching->set(node, INVALID); |
|
| 965 |
} |
|
| 966 |
|
|
| 967 |
|
|
| 968 |
void augmentOnEdge(const Edge& edge) {
|
|
| 969 |
Node left = _graph.u(edge); |
|
| 970 |
int left_tree = _tree_set->find(left); |
|
| 971 |
|
|
| 972 |
alternatePath(left, left_tree); |
|
| 973 |
destroyTree(left_tree); |
|
| 974 |
_matching->set(left, _graph.direct(edge, true)); |
|
| 975 |
|
|
| 976 |
Node right = _graph.v(edge); |
|
| 977 |
int right_tree = _tree_set->find(right); |
|
| 978 |
|
|
| 979 |
alternatePath(right, right_tree); |
|
| 980 |
destroyTree(right_tree); |
|
| 981 |
_matching->set(right, _graph.direct(edge, false)); |
|
| 982 |
} |
|
| 983 |
|
|
| 984 |
void augmentOnArc(const Arc& arc) {
|
|
| 985 |
Node left = _graph.source(arc); |
|
| 986 |
_status->set(left, MATCHED); |
|
| 987 |
_matching->set(left, arc); |
|
| 988 |
_pred->set(left, arc); |
|
| 989 |
|
|
| 990 |
Node right = _graph.target(arc); |
|
| 991 |
int right_tree = _tree_set->find(right); |
|
| 992 |
|
|
| 993 |
alternatePath(right, right_tree); |
|
| 994 |
destroyTree(right_tree); |
|
| 995 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
| 996 |
} |
|
| 997 |
|
|
| 998 |
void extendOnArc(const Arc& arc) {
|
|
| 999 |
Node base = _graph.target(arc); |
|
| 1000 |
int tree = _tree_set->find(base); |
|
| 1001 |
|
|
| 1002 |
Node odd = _graph.source(arc); |
|
| 1003 |
_tree_set->insert(odd, tree); |
|
| 1004 |
_status->set(odd, ODD); |
|
| 1005 |
matchedToOdd(odd, tree); |
|
| 1006 |
_pred->set(odd, arc); |
|
| 1007 |
|
|
| 1008 |
Node even = _graph.target((*_matching)[odd]); |
|
| 1009 |
_tree_set->insert(even, tree); |
|
| 1010 |
_status->set(even, EVEN); |
|
| 1011 |
matchedToEven(even, tree); |
|
| 1012 |
} |
|
| 1013 |
|
|
| 1014 |
void cycleOnEdge(const Edge& edge, int tree) {
|
|
| 1015 |
Node nca = INVALID; |
|
| 1016 |
std::vector<Node> left_path, right_path; |
|
| 1017 |
|
|
| 1018 |
{
|
|
| 1019 |
std::set<Node> left_set, right_set; |
|
| 1020 |
Node left = _graph.u(edge); |
|
| 1021 |
left_path.push_back(left); |
|
| 1022 |
left_set.insert(left); |
|
| 1023 |
|
|
| 1024 |
Node right = _graph.v(edge); |
|
| 1025 |
right_path.push_back(right); |
|
| 1026 |
right_set.insert(right); |
|
| 1027 |
|
|
| 1028 |
while (true) {
|
|
| 1029 |
|
|
| 1030 |
if (left_set.find(right) != left_set.end()) {
|
|
| 1031 |
nca = right; |
|
| 1032 |
break; |
|
| 1033 |
} |
|
| 1034 |
|
|
| 1035 |
if ((*_matching)[left] == INVALID) break; |
|
| 1036 |
|
|
| 1037 |
left = _graph.target((*_matching)[left]); |
|
| 1038 |
left_path.push_back(left); |
|
| 1039 |
left = _graph.target((*_pred)[left]); |
|
| 1040 |
left_path.push_back(left); |
|
| 1041 |
|
|
| 1042 |
left_set.insert(left); |
|
| 1043 |
|
|
| 1044 |
if (right_set.find(left) != right_set.end()) {
|
|
| 1045 |
nca = left; |
|
| 1046 |
break; |
|
| 1047 |
} |
|
| 1048 |
|
|
| 1049 |
if ((*_matching)[right] == INVALID) break; |
|
| 1050 |
|
|
| 1051 |
right = _graph.target((*_matching)[right]); |
|
| 1052 |
right_path.push_back(right); |
|
| 1053 |
right = _graph.target((*_pred)[right]); |
|
| 1054 |
right_path.push_back(right); |
|
| 1055 |
|
|
| 1056 |
right_set.insert(right); |
|
| 1057 |
|
|
| 1058 |
} |
|
| 1059 |
|
|
| 1060 |
if (nca == INVALID) {
|
|
| 1061 |
if ((*_matching)[left] == INVALID) {
|
|
| 1062 |
nca = right; |
|
| 1063 |
while (left_set.find(nca) == left_set.end()) {
|
|
| 1064 |
nca = _graph.target((*_matching)[nca]); |
|
| 1065 |
right_path.push_back(nca); |
|
| 1066 |
nca = _graph.target((*_pred)[nca]); |
|
| 1067 |
right_path.push_back(nca); |
|
| 1068 |
} |
|
| 1069 |
} else {
|
|
| 1070 |
nca = left; |
|
| 1071 |
while (right_set.find(nca) == right_set.end()) {
|
|
| 1072 |
nca = _graph.target((*_matching)[nca]); |
|
| 1073 |
left_path.push_back(nca); |
|
| 1074 |
nca = _graph.target((*_pred)[nca]); |
|
| 1075 |
left_path.push_back(nca); |
|
| 1076 |
} |
|
| 1077 |
} |
|
| 1078 |
} |
|
| 1079 |
} |
|
| 1080 |
|
|
| 1081 |
alternatePath(nca, tree); |
|
| 1082 |
Arc prev; |
|
| 1083 |
|
|
| 1084 |
prev = _graph.direct(edge, true); |
|
| 1085 |
for (int i = 0; left_path[i] != nca; i += 2) {
|
|
| 1086 |
_matching->set(left_path[i], prev); |
|
| 1087 |
_status->set(left_path[i], MATCHED); |
|
| 1088 |
evenToMatched(left_path[i], tree); |
|
| 1089 |
|
|
| 1090 |
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]); |
|
| 1091 |
_status->set(left_path[i + 1], MATCHED); |
|
| 1092 |
oddToMatched(left_path[i + 1]); |
|
| 1093 |
} |
|
| 1094 |
_matching->set(nca, prev); |
|
| 1095 |
|
|
| 1096 |
for (int i = 0; right_path[i] != nca; i += 2) {
|
|
| 1097 |
_status->set(right_path[i], MATCHED); |
|
| 1098 |
evenToMatched(right_path[i], tree); |
|
| 1099 |
|
|
| 1100 |
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]); |
|
| 1101 |
_status->set(right_path[i + 1], MATCHED); |
|
| 1102 |
oddToMatched(right_path[i + 1]); |
|
| 1103 |
} |
|
| 1104 |
|
|
| 1105 |
destroyTree(tree); |
|
| 1106 |
} |
|
| 1107 |
|
|
| 1108 |
void extractCycle(const Arc &arc) {
|
|
| 1109 |
Node left = _graph.source(arc); |
|
| 1110 |
Node odd = _graph.target((*_matching)[left]); |
|
| 1111 |
Arc prev; |
|
| 1112 |
while (odd != left) {
|
|
| 1113 |
Node even = _graph.target((*_matching)[odd]); |
|
| 1114 |
prev = (*_matching)[odd]; |
|
| 1115 |
odd = _graph.target((*_matching)[even]); |
|
| 1116 |
_matching->set(even, _graph.oppositeArc(prev)); |
|
| 1117 |
} |
|
| 1118 |
_matching->set(left, arc); |
|
| 1119 |
|
|
| 1120 |
Node right = _graph.target(arc); |
|
| 1121 |
int right_tree = _tree_set->find(right); |
|
| 1122 |
alternatePath(right, right_tree); |
|
| 1123 |
destroyTree(right_tree); |
|
| 1124 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
| 1125 |
} |
|
| 1126 |
|
|
| 1127 |
public: |
|
| 1128 |
|
|
| 1129 |
/// \brief Constructor |
|
| 1130 |
/// |
|
| 1131 |
/// Constructor. |
|
| 1132 |
MaxWeightedFractionalMatching(const Graph& graph, const WeightMap& weight, |
|
| 1133 |
bool allow_loops = true) |
|
| 1134 |
: _graph(graph), _weight(weight), _matching(0), |
|
| 1135 |
_node_potential(0), _node_num(0), _allow_loops(allow_loops), |
|
| 1136 |
_status(0), _pred(0), |
|
| 1137 |
_tree_set_index(0), _tree_set(0), |
|
| 1138 |
|
|
| 1139 |
_delta1_index(0), _delta1(0), |
|
| 1140 |
_delta2_index(0), _delta2(0), |
|
| 1141 |
_delta3_index(0), _delta3(0), |
|
| 1142 |
|
|
| 1143 |
_delta_sum() {}
|
|
| 1144 |
|
|
| 1145 |
~MaxWeightedFractionalMatching() {
|
|
| 1146 |
destroyStructures(); |
|
| 1147 |
} |
|
| 1148 |
|
|
| 1149 |
/// \name Execution Control |
|
| 1150 |
/// The simplest way to execute the algorithm is to use the |
|
| 1151 |
/// \ref run() member function. |
|
| 1152 |
|
|
| 1153 |
///@{
|
|
| 1154 |
|
|
| 1155 |
/// \brief Initialize the algorithm |
|
| 1156 |
/// |
|
| 1157 |
/// This function initializes the algorithm. |
|
| 1158 |
void init() {
|
|
| 1159 |
createStructures(); |
|
| 1160 |
|
|
| 1161 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1162 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
| 1163 |
(*_delta2_index)[n] = _delta2->PRE_HEAP; |
|
| 1164 |
} |
|
| 1165 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1166 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 1167 |
} |
|
| 1168 |
|
|
| 1169 |
_delta1->clear(); |
|
| 1170 |
_delta2->clear(); |
|
| 1171 |
_delta3->clear(); |
|
| 1172 |
_tree_set->clear(); |
|
| 1173 |
|
|
| 1174 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1175 |
Value max = 0; |
|
| 1176 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1177 |
if (_graph.target(e) == n && !_allow_loops) continue; |
|
| 1178 |
if ((dualScale * _weight[e]) / 2 > max) {
|
|
| 1179 |
max = (dualScale * _weight[e]) / 2; |
|
| 1180 |
} |
|
| 1181 |
} |
|
| 1182 |
_node_potential->set(n, max); |
|
| 1183 |
_delta1->push(n, max); |
|
| 1184 |
|
|
| 1185 |
_tree_set->insert(n); |
|
| 1186 |
|
|
| 1187 |
_matching->set(n, INVALID); |
|
| 1188 |
_status->set(n, EVEN); |
|
| 1189 |
} |
|
| 1190 |
|
|
| 1191 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1192 |
Node left = _graph.u(e); |
|
| 1193 |
Node right = _graph.v(e); |
|
| 1194 |
if (left == right && !_allow_loops) continue; |
|
| 1195 |
_delta3->push(e, ((*_node_potential)[left] + |
|
| 1196 |
(*_node_potential)[right] - |
|
| 1197 |
dualScale * _weight[e]) / 2); |
|
| 1198 |
} |
|
| 1199 |
} |
|
| 1200 |
|
|
| 1201 |
/// \brief Start the algorithm |
|
| 1202 |
/// |
|
| 1203 |
/// This function starts the algorithm. |
|
| 1204 |
/// |
|
| 1205 |
/// \pre \ref init() must be called before using this function. |
|
| 1206 |
void start() {
|
|
| 1207 |
enum OpType {
|
|
| 1208 |
D1, D2, D3 |
|
| 1209 |
}; |
|
| 1210 |
|
|
| 1211 |
int unmatched = _node_num; |
|
| 1212 |
while (unmatched > 0) {
|
|
| 1213 |
Value d1 = !_delta1->empty() ? |
|
| 1214 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
|
| 1215 |
|
|
| 1216 |
Value d2 = !_delta2->empty() ? |
|
| 1217 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
| 1218 |
|
|
| 1219 |
Value d3 = !_delta3->empty() ? |
|
| 1220 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
| 1221 |
|
|
| 1222 |
_delta_sum = d3; OpType ot = D3; |
|
| 1223 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
|
|
| 1224 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
|
| 1225 |
|
|
| 1226 |
switch (ot) {
|
|
| 1227 |
case D1: |
|
| 1228 |
{
|
|
| 1229 |
Node n = _delta1->top(); |
|
| 1230 |
unmatchNode(n); |
|
| 1231 |
--unmatched; |
|
| 1232 |
} |
|
| 1233 |
break; |
|
| 1234 |
case D2: |
|
| 1235 |
{
|
|
| 1236 |
Node n = _delta2->top(); |
|
| 1237 |
Arc a = (*_pred)[n]; |
|
| 1238 |
if ((*_matching)[n] == INVALID) {
|
|
| 1239 |
augmentOnArc(a); |
|
| 1240 |
--unmatched; |
|
| 1241 |
} else {
|
|
| 1242 |
Node v = _graph.target((*_matching)[n]); |
|
| 1243 |
if ((*_matching)[n] != |
|
| 1244 |
_graph.oppositeArc((*_matching)[v])) {
|
|
| 1245 |
extractCycle(a); |
|
| 1246 |
--unmatched; |
|
| 1247 |
} else {
|
|
| 1248 |
extendOnArc(a); |
|
| 1249 |
} |
|
| 1250 |
} |
|
| 1251 |
} break; |
|
| 1252 |
case D3: |
|
| 1253 |
{
|
|
| 1254 |
Edge e = _delta3->top(); |
|
| 1255 |
|
|
| 1256 |
Node left = _graph.u(e); |
|
| 1257 |
Node right = _graph.v(e); |
|
| 1258 |
|
|
| 1259 |
int left_tree = _tree_set->find(left); |
|
| 1260 |
int right_tree = _tree_set->find(right); |
|
| 1261 |
|
|
| 1262 |
if (left_tree == right_tree) {
|
|
| 1263 |
cycleOnEdge(e, left_tree); |
|
| 1264 |
--unmatched; |
|
| 1265 |
} else {
|
|
| 1266 |
augmentOnEdge(e); |
|
| 1267 |
unmatched -= 2; |
|
| 1268 |
} |
|
| 1269 |
} break; |
|
| 1270 |
} |
|
| 1271 |
} |
|
| 1272 |
} |
|
| 1273 |
|
|
| 1274 |
/// \brief Run the algorithm. |
|
| 1275 |
/// |
|
| 1276 |
/// This method runs the \c %MaxWeightedFractionalMatching algorithm. |
|
| 1277 |
/// |
|
| 1278 |
/// \note mwfm.run() is just a shortcut of the following code. |
|
| 1279 |
/// \code |
|
| 1280 |
/// mwfm.init(); |
|
| 1281 |
/// mwfm.start(); |
|
| 1282 |
/// \endcode |
|
| 1283 |
void run() {
|
|
| 1284 |
init(); |
|
| 1285 |
start(); |
|
| 1286 |
} |
|
| 1287 |
|
|
| 1288 |
/// @} |
|
| 1289 |
|
|
| 1290 |
/// \name Primal Solution |
|
| 1291 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 1292 |
/// matching.\n |
|
| 1293 |
/// Either \ref run() or \ref start() function should be called before |
|
| 1294 |
/// using them. |
|
| 1295 |
|
|
| 1296 |
/// @{
|
|
| 1297 |
|
|
| 1298 |
/// \brief Return the weight of the matching. |
|
| 1299 |
/// |
|
| 1300 |
/// This function returns the weight of the found matching. This |
|
| 1301 |
/// value is scaled by \ref primalScale "primal scale". |
|
| 1302 |
/// |
|
| 1303 |
/// \pre Either run() or start() must be called before using this function. |
|
| 1304 |
Value matchingWeight() const {
|
|
| 1305 |
Value sum = 0; |
|
| 1306 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1307 |
if ((*_matching)[n] != INVALID) {
|
|
| 1308 |
sum += _weight[(*_matching)[n]]; |
|
| 1309 |
} |
|
| 1310 |
} |
|
| 1311 |
return sum * primalScale / 2; |
|
| 1312 |
} |
|
| 1313 |
|
|
| 1314 |
/// \brief Return the number of covered nodes in the matching. |
|
| 1315 |
/// |
|
| 1316 |
/// This function returns the number of covered nodes in the matching. |
|
| 1317 |
/// |
|
| 1318 |
/// \pre Either run() or start() must be called before using this function. |
|
| 1319 |
int matchingSize() const {
|
|
| 1320 |
int num = 0; |
|
| 1321 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1322 |
if ((*_matching)[n] != INVALID) {
|
|
| 1323 |
++num; |
|
| 1324 |
} |
|
| 1325 |
} |
|
| 1326 |
return num; |
|
| 1327 |
} |
|
| 1328 |
|
|
| 1329 |
/// \brief Return \c true if the given edge is in the matching. |
|
| 1330 |
/// |
|
| 1331 |
/// This function returns \c true if the given edge is in the |
|
| 1332 |
/// found matching. The result is scaled by \ref primalScale |
|
| 1333 |
/// "primal scale". |
|
| 1334 |
/// |
|
| 1335 |
/// \pre Either run() or start() must be called before using this function. |
|
| 1336 |
int matching(const Edge& edge) const {
|
|
| 1337 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
| 1338 |
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
| 1339 |
} |
|
| 1340 |
|
|
| 1341 |
/// \brief Return the fractional matching arc (or edge) incident |
|
| 1342 |
/// to the given node. |
|
| 1343 |
/// |
|
| 1344 |
/// This function returns one of the fractional matching arc (or |
|
| 1345 |
/// edge) incident to the given node in the found matching or \c |
|
| 1346 |
/// INVALID if the node is not covered by the matching or if the |
|
| 1347 |
/// node is on an odd length cycle then it is the successor edge |
|
| 1348 |
/// on the cycle. |
|
| 1349 |
/// |
|
| 1350 |
/// \pre Either run() or start() must be called before using this function. |
|
| 1351 |
Arc matching(const Node& node) const {
|
|
| 1352 |
return (*_matching)[node]; |
|
| 1353 |
} |
|
| 1354 |
|
|
| 1355 |
/// \brief Return a const reference to the matching map. |
|
| 1356 |
/// |
|
| 1357 |
/// This function returns a const reference to a node map that stores |
|
| 1358 |
/// the matching arc (or edge) incident to each node. |
|
| 1359 |
const MatchingMap& matchingMap() const {
|
|
| 1360 |
return *_matching; |
|
| 1361 |
} |
|
| 1362 |
|
|
| 1363 |
/// @} |
|
| 1364 |
|
|
| 1365 |
/// \name Dual Solution |
|
| 1366 |
/// Functions to get the dual solution.\n |
|
| 1367 |
/// Either \ref run() or \ref start() function should be called before |
|
| 1368 |
/// using them. |
|
| 1369 |
|
|
| 1370 |
/// @{
|
|
| 1371 |
|
|
| 1372 |
/// \brief Return the value of the dual solution. |
|
| 1373 |
/// |
|
| 1374 |
/// This function returns the value of the dual solution. |
|
| 1375 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 1376 |
/// "dual scale". |
|
| 1377 |
/// |
|
| 1378 |
/// \pre Either run() or start() must be called before using this function. |
|
| 1379 |
Value dualValue() const {
|
|
| 1380 |
Value sum = 0; |
|
| 1381 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1382 |
sum += nodeValue(n); |
|
| 1383 |
} |
|
| 1384 |
return sum; |
|
| 1385 |
} |
|
| 1386 |
|
|
| 1387 |
/// \brief Return the dual value (potential) of the given node. |
|
| 1388 |
/// |
|
| 1389 |
/// This function returns the dual value (potential) of the given node. |
|
| 1390 |
/// |
|
| 1391 |
/// \pre Either run() or start() must be called before using this function. |
|
| 1392 |
Value nodeValue(const Node& n) const {
|
|
| 1393 |
return (*_node_potential)[n]; |
|
| 1394 |
} |
|
| 1395 |
|
|
| 1396 |
/// @} |
|
| 1397 |
|
|
| 1398 |
}; |
|
| 1399 |
|
|
| 1400 |
/// \ingroup matching |
|
| 1401 |
/// |
|
| 1402 |
/// \brief Weighted fractional perfect matching in general graphs |
|
| 1403 |
/// |
|
| 1404 |
/// This class provides an efficient implementation of fractional |
|
| 1405 |
/// matching algorithm. The implementation uses priority queues and |
|
| 1406 |
/// provides \f$O(nm\log n)\f$ time complexity. |
|
| 1407 |
/// |
|
| 1408 |
/// The maximum weighted fractional perfect matching is a relaxation |
|
| 1409 |
/// of the maximum weighted perfect matching problem where the odd |
|
| 1410 |
/// set constraints are omitted. |
|
| 1411 |
/// It can be formulated with the following linear program. |
|
| 1412 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
|
| 1413 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
| 1414 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
|
| 1415 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
| 1416 |
/// \f$X\f$. The result must be the union of a matching with one |
|
| 1417 |
/// value edges and a set of odd length cycles with half value edges. |
|
| 1418 |
/// |
|
| 1419 |
/// The algorithm calculates an optimal fractional matching and a |
|
| 1420 |
/// proof of the optimality. The solution of the dual problem can be |
|
| 1421 |
/// used to check the result of the algorithm. The dual linear |
|
| 1422 |
/// problem is the following. |
|
| 1423 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
|
|
| 1424 |
/// \f[\min \sum_{u \in V}y_u \f]
|
|
| 1425 |
/// |
|
| 1426 |
/// The algorithm can be executed with the run() function. |
|
| 1427 |
/// After it the matching (the primal solution) and the dual solution |
|
| 1428 |
/// can be obtained using the query functions. |
|
| 1429 |
/// |
|
| 1430 |
/// The primal solution is multiplied by |
|
| 1431 |
/// \ref MaxWeightedPerfectFractionalMatching::primalScale "2". |
|
| 1432 |
/// If the value type is integer, then the dual |
|
| 1433 |
/// solution is scaled by |
|
| 1434 |
/// \ref MaxWeightedPerfectFractionalMatching::dualScale "4". |
|
| 1435 |
/// |
|
| 1436 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 1437 |
/// \tparam WM The type edge weight map. The default type is |
|
| 1438 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
| 1439 |
#ifdef DOXYGEN |
|
| 1440 |
template <typename GR, typename WM> |
|
| 1441 |
#else |
|
| 1442 |
template <typename GR, |
|
| 1443 |
typename WM = typename GR::template EdgeMap<int> > |
|
| 1444 |
#endif |
|
| 1445 |
class MaxWeightedPerfectFractionalMatching {
|
|
| 1446 |
public: |
|
| 1447 |
|
|
| 1448 |
/// The graph type of the algorithm |
|
| 1449 |
typedef GR Graph; |
|
| 1450 |
/// The type of the edge weight map |
|
| 1451 |
typedef WM WeightMap; |
|
| 1452 |
/// The value type of the edge weights |
|
| 1453 |
typedef typename WeightMap::Value Value; |
|
| 1454 |
|
|
| 1455 |
/// The type of the matching map |
|
| 1456 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
| 1457 |
MatchingMap; |
|
| 1458 |
|
|
| 1459 |
/// \brief Scaling factor for primal solution |
|
| 1460 |
/// |
|
| 1461 |
/// Scaling factor for primal solution. |
|
| 1462 |
static const int primalScale = 2; |
|
| 1463 |
|
|
| 1464 |
/// \brief Scaling factor for dual solution |
|
| 1465 |
/// |
|
| 1466 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
|
| 1467 |
/// according to the value type. |
|
| 1468 |
static const int dualScale = |
|
| 1469 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
| 1470 |
|
|
| 1471 |
private: |
|
| 1472 |
|
|
| 1473 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 1474 |
|
|
| 1475 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
| 1476 |
|
|
| 1477 |
const Graph& _graph; |
|
| 1478 |
const WeightMap& _weight; |
|
| 1479 |
|
|
| 1480 |
MatchingMap* _matching; |
|
| 1481 |
NodePotential* _node_potential; |
|
| 1482 |
|
|
| 1483 |
int _node_num; |
|
| 1484 |
bool _allow_loops; |
|
| 1485 |
|
|
| 1486 |
enum Status {
|
|
| 1487 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 1488 |
}; |
|
| 1489 |
|
|
| 1490 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
| 1491 |
StatusMap* _status; |
|
| 1492 |
|
|
| 1493 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 1494 |
PredMap* _pred; |
|
| 1495 |
|
|
| 1496 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
| 1497 |
|
|
| 1498 |
IntNodeMap *_tree_set_index; |
|
| 1499 |
TreeSet *_tree_set; |
|
| 1500 |
|
|
| 1501 |
IntNodeMap *_delta2_index; |
|
| 1502 |
BinHeap<Value, IntNodeMap> *_delta2; |
|
| 1503 |
|
|
| 1504 |
IntEdgeMap *_delta3_index; |
|
| 1505 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
| 1506 |
|
|
| 1507 |
Value _delta_sum; |
|
| 1508 |
|
|
| 1509 |
void createStructures() {
|
|
| 1510 |
_node_num = countNodes(_graph); |
|
| 1511 |
|
|
| 1512 |
if (!_matching) {
|
|
| 1513 |
_matching = new MatchingMap(_graph); |
|
| 1514 |
} |
|
| 1515 |
if (!_node_potential) {
|
|
| 1516 |
_node_potential = new NodePotential(_graph); |
|
| 1517 |
} |
|
| 1518 |
if (!_status) {
|
|
| 1519 |
_status = new StatusMap(_graph); |
|
| 1520 |
} |
|
| 1521 |
if (!_pred) {
|
|
| 1522 |
_pred = new PredMap(_graph); |
|
| 1523 |
} |
|
| 1524 |
if (!_tree_set) {
|
|
| 1525 |
_tree_set_index = new IntNodeMap(_graph); |
|
| 1526 |
_tree_set = new TreeSet(*_tree_set_index); |
|
| 1527 |
} |
|
| 1528 |
if (!_delta2) {
|
|
| 1529 |
_delta2_index = new IntNodeMap(_graph); |
|
| 1530 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
|
| 1531 |
} |
|
| 1532 |
if (!_delta3) {
|
|
| 1533 |
_delta3_index = new IntEdgeMap(_graph); |
|
| 1534 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
| 1535 |
} |
|
| 1536 |
} |
|
| 1537 |
|
|
| 1538 |
void destroyStructures() {
|
|
| 1539 |
if (_matching) {
|
|
| 1540 |
delete _matching; |
|
| 1541 |
} |
|
| 1542 |
if (_node_potential) {
|
|
| 1543 |
delete _node_potential; |
|
| 1544 |
} |
|
| 1545 |
if (_status) {
|
|
| 1546 |
delete _status; |
|
| 1547 |
} |
|
| 1548 |
if (_pred) {
|
|
| 1549 |
delete _pred; |
|
| 1550 |
} |
|
| 1551 |
if (_tree_set) {
|
|
| 1552 |
delete _tree_set_index; |
|
| 1553 |
delete _tree_set; |
|
| 1554 |
} |
|
| 1555 |
if (_delta2) {
|
|
| 1556 |
delete _delta2_index; |
|
| 1557 |
delete _delta2; |
|
| 1558 |
} |
|
| 1559 |
if (_delta3) {
|
|
| 1560 |
delete _delta3_index; |
|
| 1561 |
delete _delta3; |
|
| 1562 |
} |
|
| 1563 |
} |
|
| 1564 |
|
|
| 1565 |
void matchedToEven(Node node, int tree) {
|
|
| 1566 |
_tree_set->insert(node, tree); |
|
| 1567 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
| 1568 |
|
|
| 1569 |
if (_delta2->state(node) == _delta2->IN_HEAP) {
|
|
| 1570 |
_delta2->erase(node); |
|
| 1571 |
} |
|
| 1572 |
|
|
| 1573 |
for (InArcIt a(_graph, node); a != INVALID; ++a) {
|
|
| 1574 |
Node v = _graph.source(a); |
|
| 1575 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
| 1576 |
dualScale * _weight[a]; |
|
| 1577 |
if (node == v) {
|
|
| 1578 |
if (_allow_loops && _graph.direction(a)) {
|
|
| 1579 |
_delta3->push(a, rw / 2); |
|
| 1580 |
} |
|
| 1581 |
} else if ((*_status)[v] == EVEN) {
|
|
| 1582 |
_delta3->push(a, rw / 2); |
|
| 1583 |
} else if ((*_status)[v] == MATCHED) {
|
|
| 1584 |
if (_delta2->state(v) != _delta2->IN_HEAP) {
|
|
| 1585 |
_pred->set(v, a); |
|
| 1586 |
_delta2->push(v, rw); |
|
| 1587 |
} else if ((*_delta2)[v] > rw) {
|
|
| 1588 |
_pred->set(v, a); |
|
| 1589 |
_delta2->decrease(v, rw); |
|
| 1590 |
} |
|
| 1591 |
} |
|
| 1592 |
} |
|
| 1593 |
} |
|
| 1594 |
|
|
| 1595 |
void matchedToOdd(Node node, int tree) {
|
|
| 1596 |
_tree_set->insert(node, tree); |
|
| 1597 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
| 1598 |
|
|
| 1599 |
if (_delta2->state(node) == _delta2->IN_HEAP) {
|
|
| 1600 |
_delta2->erase(node); |
|
| 1601 |
} |
|
| 1602 |
} |
|
| 1603 |
|
|
| 1604 |
void evenToMatched(Node node, int tree) {
|
|
| 1605 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
| 1606 |
Arc min = INVALID; |
|
| 1607 |
Value minrw = std::numeric_limits<Value>::max(); |
|
| 1608 |
for (InArcIt a(_graph, node); a != INVALID; ++a) {
|
|
| 1609 |
Node v = _graph.source(a); |
|
| 1610 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
| 1611 |
dualScale * _weight[a]; |
|
| 1612 |
|
|
| 1613 |
if (node == v) {
|
|
| 1614 |
if (_allow_loops && _graph.direction(a)) {
|
|
| 1615 |
_delta3->erase(a); |
|
| 1616 |
} |
|
| 1617 |
} else if ((*_status)[v] == EVEN) {
|
|
| 1618 |
_delta3->erase(a); |
|
| 1619 |
if (minrw > rw) {
|
|
| 1620 |
min = _graph.oppositeArc(a); |
|
| 1621 |
minrw = rw; |
|
| 1622 |
} |
|
| 1623 |
} else if ((*_status)[v] == MATCHED) {
|
|
| 1624 |
if ((*_pred)[v] == a) {
|
|
| 1625 |
Arc mina = INVALID; |
|
| 1626 |
Value minrwa = std::numeric_limits<Value>::max(); |
|
| 1627 |
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) {
|
|
| 1628 |
Node va = _graph.target(aa); |
|
| 1629 |
if ((*_status)[va] != EVEN || |
|
| 1630 |
_tree_set->find(va) == tree) continue; |
|
| 1631 |
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
|
| 1632 |
dualScale * _weight[aa]; |
|
| 1633 |
if (minrwa > rwa) {
|
|
| 1634 |
minrwa = rwa; |
|
| 1635 |
mina = aa; |
|
| 1636 |
} |
|
| 1637 |
} |
|
| 1638 |
if (mina != INVALID) {
|
|
| 1639 |
_pred->set(v, mina); |
|
| 1640 |
_delta2->increase(v, minrwa); |
|
| 1641 |
} else {
|
|
| 1642 |
_pred->set(v, INVALID); |
|
| 1643 |
_delta2->erase(v); |
|
| 1644 |
} |
|
| 1645 |
} |
|
| 1646 |
} |
|
| 1647 |
} |
|
| 1648 |
if (min != INVALID) {
|
|
| 1649 |
_pred->set(node, min); |
|
| 1650 |
_delta2->push(node, minrw); |
|
| 1651 |
} else {
|
|
| 1652 |
_pred->set(node, INVALID); |
|
| 1653 |
} |
|
| 1654 |
} |
|
| 1655 |
|
|
| 1656 |
void oddToMatched(Node node) {
|
|
| 1657 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
| 1658 |
Arc min = INVALID; |
|
| 1659 |
Value minrw = std::numeric_limits<Value>::max(); |
|
| 1660 |
for (InArcIt a(_graph, node); a != INVALID; ++a) {
|
|
| 1661 |
Node v = _graph.source(a); |
|
| 1662 |
if ((*_status)[v] != EVEN) continue; |
|
| 1663 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
| 1664 |
dualScale * _weight[a]; |
|
| 1665 |
|
|
| 1666 |
if (minrw > rw) {
|
|
| 1667 |
min = _graph.oppositeArc(a); |
|
| 1668 |
minrw = rw; |
|
| 1669 |
} |
|
| 1670 |
} |
|
| 1671 |
if (min != INVALID) {
|
|
| 1672 |
_pred->set(node, min); |
|
| 1673 |
_delta2->push(node, minrw); |
|
| 1674 |
} else {
|
|
| 1675 |
_pred->set(node, INVALID); |
|
| 1676 |
} |
|
| 1677 |
} |
|
| 1678 |
|
|
| 1679 |
void alternatePath(Node even, int tree) {
|
|
| 1680 |
Node odd; |
|
| 1681 |
|
|
| 1682 |
_status->set(even, MATCHED); |
|
| 1683 |
evenToMatched(even, tree); |
|
| 1684 |
|
|
| 1685 |
Arc prev = (*_matching)[even]; |
|
| 1686 |
while (prev != INVALID) {
|
|
| 1687 |
odd = _graph.target(prev); |
|
| 1688 |
even = _graph.target((*_pred)[odd]); |
|
| 1689 |
_matching->set(odd, (*_pred)[odd]); |
|
| 1690 |
_status->set(odd, MATCHED); |
|
| 1691 |
oddToMatched(odd); |
|
| 1692 |
|
|
| 1693 |
prev = (*_matching)[even]; |
|
| 1694 |
_status->set(even, MATCHED); |
|
| 1695 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
|
| 1696 |
evenToMatched(even, tree); |
|
| 1697 |
} |
|
| 1698 |
} |
|
| 1699 |
|
|
| 1700 |
void destroyTree(int tree) {
|
|
| 1701 |
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) {
|
|
| 1702 |
if ((*_status)[n] == EVEN) {
|
|
| 1703 |
_status->set(n, MATCHED); |
|
| 1704 |
evenToMatched(n, tree); |
|
| 1705 |
} else if ((*_status)[n] == ODD) {
|
|
| 1706 |
_status->set(n, MATCHED); |
|
| 1707 |
oddToMatched(n); |
|
| 1708 |
} |
|
| 1709 |
} |
|
| 1710 |
_tree_set->eraseClass(tree); |
|
| 1711 |
} |
|
| 1712 |
|
|
| 1713 |
void augmentOnEdge(const Edge& edge) {
|
|
| 1714 |
Node left = _graph.u(edge); |
|
| 1715 |
int left_tree = _tree_set->find(left); |
|
| 1716 |
|
|
| 1717 |
alternatePath(left, left_tree); |
|
| 1718 |
destroyTree(left_tree); |
|
| 1719 |
_matching->set(left, _graph.direct(edge, true)); |
|
| 1720 |
|
|
| 1721 |
Node right = _graph.v(edge); |
|
| 1722 |
int right_tree = _tree_set->find(right); |
|
| 1723 |
|
|
| 1724 |
alternatePath(right, right_tree); |
|
| 1725 |
destroyTree(right_tree); |
|
| 1726 |
_matching->set(right, _graph.direct(edge, false)); |
|
| 1727 |
} |
|
| 1728 |
|
|
| 1729 |
void augmentOnArc(const Arc& arc) {
|
|
| 1730 |
Node left = _graph.source(arc); |
|
| 1731 |
_status->set(left, MATCHED); |
|
| 1732 |
_matching->set(left, arc); |
|
| 1733 |
_pred->set(left, arc); |
|
| 1734 |
|
|
| 1735 |
Node right = _graph.target(arc); |
|
| 1736 |
int right_tree = _tree_set->find(right); |
|
| 1737 |
|
|
| 1738 |
alternatePath(right, right_tree); |
|
| 1739 |
destroyTree(right_tree); |
|
| 1740 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
| 1741 |
} |
|
| 1742 |
|
|
| 1743 |
void extendOnArc(const Arc& arc) {
|
|
| 1744 |
Node base = _graph.target(arc); |
|
| 1745 |
int tree = _tree_set->find(base); |
|
| 1746 |
|
|
| 1747 |
Node odd = _graph.source(arc); |
|
| 1748 |
_tree_set->insert(odd, tree); |
|
| 1749 |
_status->set(odd, ODD); |
|
| 1750 |
matchedToOdd(odd, tree); |
|
| 1751 |
_pred->set(odd, arc); |
|
| 1752 |
|
|
| 1753 |
Node even = _graph.target((*_matching)[odd]); |
|
| 1754 |
_tree_set->insert(even, tree); |
|
| 1755 |
_status->set(even, EVEN); |
|
| 1756 |
matchedToEven(even, tree); |
|
| 1757 |
} |
|
| 1758 |
|
|
| 1759 |
void cycleOnEdge(const Edge& edge, int tree) {
|
|
| 1760 |
Node nca = INVALID; |
|
| 1761 |
std::vector<Node> left_path, right_path; |
|
| 1762 |
|
|
| 1763 |
{
|
|
| 1764 |
std::set<Node> left_set, right_set; |
|
| 1765 |
Node left = _graph.u(edge); |
|
| 1766 |
left_path.push_back(left); |
|
| 1767 |
left_set.insert(left); |
|
| 1768 |
|
|
| 1769 |
Node right = _graph.v(edge); |
|
| 1770 |
right_path.push_back(right); |
|
| 1771 |
right_set.insert(right); |
|
| 1772 |
|
|
| 1773 |
while (true) {
|
|
| 1774 |
|
|
| 1775 |
if (left_set.find(right) != left_set.end()) {
|
|
| 1776 |
nca = right; |
|
| 1777 |
break; |
|
| 1778 |
} |
|
| 1779 |
|
|
| 1780 |
if ((*_matching)[left] == INVALID) break; |
|
| 1781 |
|
|
| 1782 |
left = _graph.target((*_matching)[left]); |
|
| 1783 |
left_path.push_back(left); |
|
| 1784 |
left = _graph.target((*_pred)[left]); |
|
| 1785 |
left_path.push_back(left); |
|
| 1786 |
|
|
| 1787 |
left_set.insert(left); |
|
| 1788 |
|
|
| 1789 |
if (right_set.find(left) != right_set.end()) {
|
|
| 1790 |
nca = left; |
|
| 1791 |
break; |
|
| 1792 |
} |
|
| 1793 |
|
|
| 1794 |
if ((*_matching)[right] == INVALID) break; |
|
| 1795 |
|
|
| 1796 |
right = _graph.target((*_matching)[right]); |
|
| 1797 |
right_path.push_back(right); |
|
| 1798 |
right = _graph.target((*_pred)[right]); |
|
| 1799 |
right_path.push_back(right); |
|
| 1800 |
|
|
| 1801 |
right_set.insert(right); |
|
| 1802 |
|
|
| 1803 |
} |
|
| 1804 |
|
|
| 1805 |
if (nca == INVALID) {
|
|
| 1806 |
if ((*_matching)[left] == INVALID) {
|
|
| 1807 |
nca = right; |
|
| 1808 |
while (left_set.find(nca) == left_set.end()) {
|
|
| 1809 |
nca = _graph.target((*_matching)[nca]); |
|
| 1810 |
right_path.push_back(nca); |
|
| 1811 |
nca = _graph.target((*_pred)[nca]); |
|
| 1812 |
right_path.push_back(nca); |
|
| 1813 |
} |
|
| 1814 |
} else {
|
|
| 1815 |
nca = left; |
|
| 1816 |
while (right_set.find(nca) == right_set.end()) {
|
|
| 1817 |
nca = _graph.target((*_matching)[nca]); |
|
| 1818 |
left_path.push_back(nca); |
|
| 1819 |
nca = _graph.target((*_pred)[nca]); |
|
| 1820 |
left_path.push_back(nca); |
|
| 1821 |
} |
|
| 1822 |
} |
|
| 1823 |
} |
|
| 1824 |
} |
|
| 1825 |
|
|
| 1826 |
alternatePath(nca, tree); |
|
| 1827 |
Arc prev; |
|
| 1828 |
|
|
| 1829 |
prev = _graph.direct(edge, true); |
|
| 1830 |
for (int i = 0; left_path[i] != nca; i += 2) {
|
|
| 1831 |
_matching->set(left_path[i], prev); |
|
| 1832 |
_status->set(left_path[i], MATCHED); |
|
| 1833 |
evenToMatched(left_path[i], tree); |
|
| 1834 |
|
|
| 1835 |
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]); |
|
| 1836 |
_status->set(left_path[i + 1], MATCHED); |
|
| 1837 |
oddToMatched(left_path[i + 1]); |
|
| 1838 |
} |
|
| 1839 |
_matching->set(nca, prev); |
|
| 1840 |
|
|
| 1841 |
for (int i = 0; right_path[i] != nca; i += 2) {
|
|
| 1842 |
_status->set(right_path[i], MATCHED); |
|
| 1843 |
evenToMatched(right_path[i], tree); |
|
| 1844 |
|
|
| 1845 |
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]); |
|
| 1846 |
_status->set(right_path[i + 1], MATCHED); |
|
| 1847 |
oddToMatched(right_path[i + 1]); |
|
| 1848 |
} |
|
| 1849 |
|
|
| 1850 |
destroyTree(tree); |
|
| 1851 |
} |
|
| 1852 |
|
|
| 1853 |
void extractCycle(const Arc &arc) {
|
|
| 1854 |
Node left = _graph.source(arc); |
|
| 1855 |
Node odd = _graph.target((*_matching)[left]); |
|
| 1856 |
Arc prev; |
|
| 1857 |
while (odd != left) {
|
|
| 1858 |
Node even = _graph.target((*_matching)[odd]); |
|
| 1859 |
prev = (*_matching)[odd]; |
|
| 1860 |
odd = _graph.target((*_matching)[even]); |
|
| 1861 |
_matching->set(even, _graph.oppositeArc(prev)); |
|
| 1862 |
} |
|
| 1863 |
_matching->set(left, arc); |
|
| 1864 |
|
|
| 1865 |
Node right = _graph.target(arc); |
|
| 1866 |
int right_tree = _tree_set->find(right); |
|
| 1867 |
alternatePath(right, right_tree); |
|
| 1868 |
destroyTree(right_tree); |
|
| 1869 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
| 1870 |
} |
|
| 1871 |
|
|
| 1872 |
public: |
|
| 1873 |
|
|
| 1874 |
/// \brief Constructor |
|
| 1875 |
/// |
|
| 1876 |
/// Constructor. |
|
| 1877 |
MaxWeightedPerfectFractionalMatching(const Graph& graph, |
|
| 1878 |
const WeightMap& weight, |
|
| 1879 |
bool allow_loops = true) |
|
| 1880 |
: _graph(graph), _weight(weight), _matching(0), |
|
| 1881 |
_node_potential(0), _node_num(0), _allow_loops(allow_loops), |
|
| 1882 |
_status(0), _pred(0), |
|
| 1883 |
_tree_set_index(0), _tree_set(0), |
|
| 1884 |
|
|
| 1885 |
_delta2_index(0), _delta2(0), |
|
| 1886 |
_delta3_index(0), _delta3(0), |
|
| 1887 |
|
|
| 1888 |
_delta_sum() {}
|
|
| 1889 |
|
|
| 1890 |
~MaxWeightedPerfectFractionalMatching() {
|
|
| 1891 |
destroyStructures(); |
|
| 1892 |
} |
|
| 1893 |
|
|
| 1894 |
/// \name Execution Control |
|
| 1895 |
/// The simplest way to execute the algorithm is to use the |
|
| 1896 |
/// \ref run() member function. |
|
| 1897 |
|
|
| 1898 |
///@{
|
|
| 1899 |
|
|
| 1900 |
/// \brief Initialize the algorithm |
|
| 1901 |
/// |
|
| 1902 |
/// This function initializes the algorithm. |
|
| 1903 |
void init() {
|
|
| 1904 |
createStructures(); |
|
| 1905 |
|
|
| 1906 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1907 |
(*_delta2_index)[n] = _delta2->PRE_HEAP; |
|
| 1908 |
} |
|
| 1909 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1910 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 1911 |
} |
|
| 1912 |
|
|
| 1913 |
_delta2->clear(); |
|
| 1914 |
_delta3->clear(); |
|
| 1915 |
_tree_set->clear(); |
|
| 1916 |
|
|
| 1917 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1918 |
Value max = - std::numeric_limits<Value>::max(); |
|
| 1919 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1920 |
if (_graph.target(e) == n && !_allow_loops) continue; |
|
| 1921 |
if ((dualScale * _weight[e]) / 2 > max) {
|
|
| 1922 |
max = (dualScale * _weight[e]) / 2; |
|
| 1923 |
} |
|
| 1924 |
} |
|
| 1925 |
_node_potential->set(n, max); |
|
| 1926 |
|
|
| 1927 |
_tree_set->insert(n); |
|
| 1928 |
|
|
| 1929 |
_matching->set(n, INVALID); |
|
| 1930 |
_status->set(n, EVEN); |
|
| 1931 |
} |
|
| 1932 |
|
|
| 1933 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1934 |
Node left = _graph.u(e); |
|
| 1935 |
Node right = _graph.v(e); |
|
| 1936 |
if (left == right && !_allow_loops) continue; |
|
| 1937 |
_delta3->push(e, ((*_node_potential)[left] + |
|
| 1938 |
(*_node_potential)[right] - |
|
| 1939 |
dualScale * _weight[e]) / 2); |
|
| 1940 |
} |
|
| 1941 |
} |
|
| 1942 |
|
|
| 1943 |
/// \brief Start the algorithm |
|
| 1944 |
/// |
|
| 1945 |
/// This function starts the algorithm. |
|
| 1946 |
/// |
|
| 1947 |
/// \pre \ref init() must be called before using this function. |
|
| 1948 |
bool start() {
|
|
| 1949 |
enum OpType {
|
|
| 1950 |
D2, D3 |
|
| 1951 |
}; |
|
| 1952 |
|
|
| 1953 |
int unmatched = _node_num; |
|
| 1954 |
while (unmatched > 0) {
|
|
| 1955 |
Value d2 = !_delta2->empty() ? |
|
| 1956 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
| 1957 |
|
|
| 1958 |
Value d3 = !_delta3->empty() ? |
|
| 1959 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
| 1960 |
|
|
| 1961 |
_delta_sum = d3; OpType ot = D3; |
|
| 1962 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
|
| 1963 |
|
|
| 1964 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
|
| 1965 |
return false; |
|
| 1966 |
} |
|
| 1967 |
|
|
| 1968 |
switch (ot) {
|
|
| 1969 |
case D2: |
|
| 1970 |
{
|
|
| 1971 |
Node n = _delta2->top(); |
|
| 1972 |
Arc a = (*_pred)[n]; |
|
| 1973 |
if ((*_matching)[n] == INVALID) {
|
|
| 1974 |
augmentOnArc(a); |
|
| 1975 |
--unmatched; |
|
| 1976 |
} else {
|
|
| 1977 |
Node v = _graph.target((*_matching)[n]); |
|
| 1978 |
if ((*_matching)[n] != |
|
| 1979 |
_graph.oppositeArc((*_matching)[v])) {
|
|
| 1980 |
extractCycle(a); |
|
| 1981 |
--unmatched; |
|
| 1982 |
} else {
|
|
| 1983 |
extendOnArc(a); |
|
| 1984 |
} |
|
| 1985 |
} |
|
| 1986 |
} break; |
|
| 1987 |
case D3: |
|
| 1988 |
{
|
|
| 1989 |
Edge e = _delta3->top(); |
|
| 1990 |
|
|
| 1991 |
Node left = _graph.u(e); |
|
| 1992 |
Node right = _graph.v(e); |
|
| 1993 |
|
|
| 1994 |
int left_tree = _tree_set->find(left); |
|
| 1995 |
int right_tree = _tree_set->find(right); |
|
| 1996 |
|
|
| 1997 |
if (left_tree == right_tree) {
|
|
| 1998 |
cycleOnEdge(e, left_tree); |
|
| 1999 |
--unmatched; |
|
| 2000 |
} else {
|
|
| 2001 |
augmentOnEdge(e); |
|
| 2002 |
unmatched -= 2; |
|
| 2003 |
} |
|
| 2004 |
} break; |
|
| 2005 |
} |
|
| 2006 |
} |
|
| 2007 |
return true; |
|
| 2008 |
} |
|
| 2009 |
|
|
| 2010 |
/// \brief Run the algorithm. |
|
| 2011 |
/// |
|
| 2012 |
/// This method runs the \c %MaxWeightedPerfectFractionalMatching |
|
| 2013 |
/// algorithm. |
|
| 2014 |
/// |
|
| 2015 |
/// \note mwfm.run() is just a shortcut of the following code. |
|
| 2016 |
/// \code |
|
| 2017 |
/// mwpfm.init(); |
|
| 2018 |
/// mwpfm.start(); |
|
| 2019 |
/// \endcode |
|
| 2020 |
bool run() {
|
|
| 2021 |
init(); |
|
| 2022 |
return start(); |
|
| 2023 |
} |
|
| 2024 |
|
|
| 2025 |
/// @} |
|
| 2026 |
|
|
| 2027 |
/// \name Primal Solution |
|
| 2028 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 2029 |
/// matching.\n |
|
| 2030 |
/// Either \ref run() or \ref start() function should be called before |
|
| 2031 |
/// using them. |
|
| 2032 |
|
|
| 2033 |
/// @{
|
|
| 2034 |
|
|
| 2035 |
/// \brief Return the weight of the matching. |
|
| 2036 |
/// |
|
| 2037 |
/// This function returns the weight of the found matching. This |
|
| 2038 |
/// value is scaled by \ref primalScale "primal scale". |
|
| 2039 |
/// |
|
| 2040 |
/// \pre Either run() or start() must be called before using this function. |
|
| 2041 |
Value matchingWeight() const {
|
|
| 2042 |
Value sum = 0; |
|
| 2043 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 2044 |
if ((*_matching)[n] != INVALID) {
|
|
| 2045 |
sum += _weight[(*_matching)[n]]; |
|
| 2046 |
} |
|
| 2047 |
} |
|
| 2048 |
return sum * primalScale / 2; |
|
| 2049 |
} |
|
| 2050 |
|
|
| 2051 |
/// \brief Return the number of covered nodes in the matching. |
|
| 2052 |
/// |
|
| 2053 |
/// This function returns the number of covered nodes in the matching. |
|
| 2054 |
/// |
|
| 2055 |
/// \pre Either run() or start() must be called before using this function. |
|
| 2056 |
int matchingSize() const {
|
|
| 2057 |
int num = 0; |
|
| 2058 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 2059 |
if ((*_matching)[n] != INVALID) {
|
|
| 2060 |
++num; |
|
| 2061 |
} |
|
| 2062 |
} |
|
| 2063 |
return num; |
|
| 2064 |
} |
|
| 2065 |
|
|
| 2066 |
/// \brief Return \c true if the given edge is in the matching. |
|
| 2067 |
/// |
|
| 2068 |
/// This function returns \c true if the given edge is in the |
|
| 2069 |
/// found matching. The result is scaled by \ref primalScale |
|
| 2070 |
/// "primal scale". |
|
| 2071 |
/// |
|
| 2072 |
/// \pre Either run() or start() must be called before using this function. |
|
| 2073 |
int matching(const Edge& edge) const {
|
|
| 2074 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
| 2075 |
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
| 2076 |
} |
|
| 2077 |
|
|
| 2078 |
/// \brief Return the fractional matching arc (or edge) incident |
|
| 2079 |
/// to the given node. |
|
| 2080 |
/// |
|
| 2081 |
/// This function returns one of the fractional matching arc (or |
|
| 2082 |
/// edge) incident to the given node in the found matching or \c |
|
| 2083 |
/// INVALID if the node is not covered by the matching or if the |
|
| 2084 |
/// node is on an odd length cycle then it is the successor edge |
|
| 2085 |
/// on the cycle. |
|
| 2086 |
/// |
|
| 2087 |
/// \pre Either run() or start() must be called before using this function. |
|
| 2088 |
Arc matching(const Node& node) const {
|
|
| 2089 |
return (*_matching)[node]; |
|
| 2090 |
} |
|
| 2091 |
|
|
| 2092 |
/// \brief Return a const reference to the matching map. |
|
| 2093 |
/// |
|
| 2094 |
/// This function returns a const reference to a node map that stores |
|
| 2095 |
/// the matching arc (or edge) incident to each node. |
|
| 2096 |
const MatchingMap& matchingMap() const {
|
|
| 2097 |
return *_matching; |
|
| 2098 |
} |
|
| 2099 |
|
|
| 2100 |
/// @} |
|
| 2101 |
|
|
| 2102 |
/// \name Dual Solution |
|
| 2103 |
/// Functions to get the dual solution.\n |
|
| 2104 |
/// Either \ref run() or \ref start() function should be called before |
|
| 2105 |
/// using them. |
|
| 2106 |
|
|
| 2107 |
/// @{
|
|
| 2108 |
|
|
| 2109 |
/// \brief Return the value of the dual solution. |
|
| 2110 |
/// |
|
| 2111 |
/// This function returns the value of the dual solution. |
|
| 2112 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 2113 |
/// "dual scale". |
|
| 2114 |
/// |
|
| 2115 |
/// \pre Either run() or start() must be called before using this function. |
|
| 2116 |
Value dualValue() const {
|
|
| 2117 |
Value sum = 0; |
|
| 2118 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 2119 |
sum += nodeValue(n); |
|
| 2120 |
} |
|
| 2121 |
return sum; |
|
| 2122 |
} |
|
| 2123 |
|
|
| 2124 |
/// \brief Return the dual value (potential) of the given node. |
|
| 2125 |
/// |
|
| 2126 |
/// This function returns the dual value (potential) of the given node. |
|
| 2127 |
/// |
|
| 2128 |
/// \pre Either run() or start() must be called before using this function. |
|
| 2129 |
Value nodeValue(const Node& n) const {
|
|
| 2130 |
return (*_node_potential)[n]; |
|
| 2131 |
} |
|
| 2132 |
|
|
| 2133 |
/// @} |
|
| 2134 |
|
|
| 2135 |
}; |
|
| 2136 |
|
|
| 2137 |
} //END OF NAMESPACE LEMON |
|
| 2138 |
|
|
| 2139 |
#endif //LEMON_FRACTIONAL_MATCHING_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_HARTMANN_ORLIN_MMC_H |
|
| 20 |
#define LEMON_HARTMANN_ORLIN_MMC_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_mean_cycle |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of HartmannOrlinMmc class. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of HartmannOrlinMmc class. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam CM The type of the cost map. |
|
| 41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename CM> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename CM, |
|
| 46 |
bool integer = std::numeric_limits<typename CM::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct HartmannOrlinMmcDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the cost map |
|
| 53 |
typedef CM CostMap; |
|
| 54 |
/// The type of the arc costs |
|
| 55 |
typedef typename CostMap::Value Cost; |
|
| 56 |
|
|
| 57 |
/// \brief The large cost type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large cost type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Cost type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Cost must be convertible to \c LargeCost. |
|
| 63 |
typedef double LargeCost; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addFront() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer cost types |
|
| 77 |
template <typename GR, typename CM> |
|
| 78 |
struct HartmannOrlinMmcDefaultTraits<GR, CM, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef CM CostMap; |
|
| 82 |
typedef typename CostMap::Value Cost; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeCost; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeCost; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup min_mean_cycle |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
|
| 97 |
/// a minimum mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
|
| 100 |
/// a directed cycle of minimum mean cost in a digraph |
|
| 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
| 102 |
/// It is an improved version of \ref Karp "Karp"'s original algorithm, |
|
| 103 |
/// it applies an efficient early termination scheme. |
|
| 104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
|
| 105 |
/// |
|
| 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 107 |
/// \tparam CM The type of the cost map. The default |
|
| 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 109 |
/// \tparam TR The traits class that defines various types used by the |
|
| 110 |
/// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits |
|
| 111 |
/// "HartmannOrlinMmcDefaultTraits<GR, CM>". |
|
| 112 |
/// In most cases, this parameter should not be set directly, |
|
| 113 |
/// consider to use the named template parameters instead. |
|
| 114 |
#ifdef DOXYGEN |
|
| 115 |
template <typename GR, typename CM, typename TR> |
|
| 116 |
#else |
|
| 117 |
template < typename GR, |
|
| 118 |
typename CM = typename GR::template ArcMap<int>, |
|
| 119 |
typename TR = HartmannOrlinMmcDefaultTraits<GR, CM> > |
|
| 120 |
#endif |
|
| 121 |
class HartmannOrlinMmc |
|
| 122 |
{
|
|
| 123 |
public: |
|
| 124 |
|
|
| 125 |
/// The type of the digraph |
|
| 126 |
typedef typename TR::Digraph Digraph; |
|
| 127 |
/// The type of the cost map |
|
| 128 |
typedef typename TR::CostMap CostMap; |
|
| 129 |
/// The type of the arc costs |
|
| 130 |
typedef typename TR::Cost Cost; |
|
| 131 |
|
|
| 132 |
/// \brief The large cost type |
|
| 133 |
/// |
|
| 134 |
/// The large cost type used for internal computations. |
|
| 135 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
|
| 136 |
/// otherwise it is \c double. |
|
| 137 |
typedef typename TR::LargeCost LargeCost; |
|
| 138 |
|
|
| 139 |
/// The tolerance type |
|
| 140 |
typedef typename TR::Tolerance Tolerance; |
|
| 141 |
|
|
| 142 |
/// \brief The path type of the found cycles |
|
| 143 |
/// |
|
| 144 |
/// The path type of the found cycles. |
|
| 145 |
/// Using the \ref HartmannOrlinMmcDefaultTraits "default traits class", |
|
| 146 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 147 |
typedef typename TR::Path Path; |
|
| 148 |
|
|
| 149 |
/// The \ref HartmannOrlinMmcDefaultTraits "traits class" of the algorithm |
|
| 150 |
typedef TR Traits; |
|
| 151 |
|
|
| 152 |
private: |
|
| 153 |
|
|
| 154 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 155 |
|
|
| 156 |
// Data sturcture for path data |
|
| 157 |
struct PathData |
|
| 158 |
{
|
|
| 159 |
LargeCost dist; |
|
| 160 |
Arc pred; |
|
| 161 |
PathData(LargeCost d, Arc p = INVALID) : |
|
| 162 |
dist(d), pred(p) {}
|
|
| 163 |
}; |
|
| 164 |
|
|
| 165 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
| 166 |
PathDataNodeMap; |
|
| 167 |
|
|
| 168 |
private: |
|
| 169 |
|
|
| 170 |
// The digraph the algorithm runs on |
|
| 171 |
const Digraph &_gr; |
|
| 172 |
// The cost of the arcs |
|
| 173 |
const CostMap &_cost; |
|
| 174 |
|
|
| 175 |
// Data for storing the strongly connected components |
|
| 176 |
int _comp_num; |
|
| 177 |
typename Digraph::template NodeMap<int> _comp; |
|
| 178 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 179 |
std::vector<Node>* _nodes; |
|
| 180 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
| 181 |
|
|
| 182 |
// Data for the found cycles |
|
| 183 |
bool _curr_found, _best_found; |
|
| 184 |
LargeCost _curr_cost, _best_cost; |
|
| 185 |
int _curr_size, _best_size; |
|
| 186 |
Node _curr_node, _best_node; |
|
| 187 |
int _curr_level, _best_level; |
|
| 188 |
|
|
| 189 |
Path *_cycle_path; |
|
| 190 |
bool _local_path; |
|
| 191 |
|
|
| 192 |
// Node map for storing path data |
|
| 193 |
PathDataNodeMap _data; |
|
| 194 |
// The processed nodes in the last round |
|
| 195 |
std::vector<Node> _process; |
|
| 196 |
|
|
| 197 |
Tolerance _tolerance; |
|
| 198 |
|
|
| 199 |
// Infinite constant |
|
| 200 |
const LargeCost INF; |
|
| 201 |
|
|
| 202 |
public: |
|
| 203 |
|
|
| 204 |
/// \name Named Template Parameters |
|
| 205 |
/// @{
|
|
| 206 |
|
|
| 207 |
template <typename T> |
|
| 208 |
struct SetLargeCostTraits : public Traits {
|
|
| 209 |
typedef T LargeCost; |
|
| 210 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 211 |
}; |
|
| 212 |
|
|
| 213 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 214 |
/// \c LargeCost type. |
|
| 215 |
/// |
|
| 216 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
|
| 217 |
/// type. It is used for internal computations in the algorithm. |
|
| 218 |
template <typename T> |
|
| 219 |
struct SetLargeCost |
|
| 220 |
: public HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > {
|
|
| 221 |
typedef HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > Create; |
|
| 222 |
}; |
|
| 223 |
|
|
| 224 |
template <typename T> |
|
| 225 |
struct SetPathTraits : public Traits {
|
|
| 226 |
typedef T Path; |
|
| 227 |
}; |
|
| 228 |
|
|
| 229 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 230 |
/// \c %Path type. |
|
| 231 |
/// |
|
| 232 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 233 |
/// type of the found cycles. |
|
| 234 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 235 |
/// and it must have an \c addFront() function. |
|
| 236 |
template <typename T> |
|
| 237 |
struct SetPath |
|
| 238 |
: public HartmannOrlinMmc<GR, CM, SetPathTraits<T> > {
|
|
| 239 |
typedef HartmannOrlinMmc<GR, CM, SetPathTraits<T> > Create; |
|
| 240 |
}; |
|
| 241 |
|
|
| 242 |
/// @} |
|
| 243 |
|
|
| 244 |
protected: |
|
| 245 |
|
|
| 246 |
HartmannOrlinMmc() {}
|
|
| 247 |
|
|
| 248 |
public: |
|
| 249 |
|
|
| 250 |
/// \brief Constructor. |
|
| 251 |
/// |
|
| 252 |
/// The constructor of the class. |
|
| 253 |
/// |
|
| 254 |
/// \param digraph The digraph the algorithm runs on. |
|
| 255 |
/// \param cost The costs of the arcs. |
|
| 256 |
HartmannOrlinMmc( const Digraph &digraph, |
|
| 257 |
const CostMap &cost ) : |
|
| 258 |
_gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph), |
|
| 259 |
_best_found(false), _best_cost(0), _best_size(1), |
|
| 260 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
|
| 261 |
INF(std::numeric_limits<LargeCost>::has_infinity ? |
|
| 262 |
std::numeric_limits<LargeCost>::infinity() : |
|
| 263 |
std::numeric_limits<LargeCost>::max()) |
|
| 264 |
{}
|
|
| 265 |
|
|
| 266 |
/// Destructor. |
|
| 267 |
~HartmannOrlinMmc() {
|
|
| 268 |
if (_local_path) delete _cycle_path; |
|
| 269 |
} |
|
| 270 |
|
|
| 271 |
/// \brief Set the path structure for storing the found cycle. |
|
| 272 |
/// |
|
| 273 |
/// This function sets an external path structure for storing the |
|
| 274 |
/// found cycle. |
|
| 275 |
/// |
|
| 276 |
/// If you don't call this function before calling \ref run() or |
|
| 277 |
/// \ref findCycleMean(), it will allocate a local \ref Path "path" |
|
| 278 |
/// structure. The destuctor deallocates this automatically |
|
| 279 |
/// allocated object, of course. |
|
| 280 |
/// |
|
| 281 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
| 282 |
/// "addFront()" function of the given path structure. |
|
| 283 |
/// |
|
| 284 |
/// \return <tt>(*this)</tt> |
|
| 285 |
HartmannOrlinMmc& cycle(Path &path) {
|
|
| 286 |
if (_local_path) {
|
|
| 287 |
delete _cycle_path; |
|
| 288 |
_local_path = false; |
|
| 289 |
} |
|
| 290 |
_cycle_path = &path; |
|
| 291 |
return *this; |
|
| 292 |
} |
|
| 293 |
|
|
| 294 |
/// \brief Set the tolerance used by the algorithm. |
|
| 295 |
/// |
|
| 296 |
/// This function sets the tolerance object used by the algorithm. |
|
| 297 |
/// |
|
| 298 |
/// \return <tt>(*this)</tt> |
|
| 299 |
HartmannOrlinMmc& tolerance(const Tolerance& tolerance) {
|
|
| 300 |
_tolerance = tolerance; |
|
| 301 |
return *this; |
|
| 302 |
} |
|
| 303 |
|
|
| 304 |
/// \brief Return a const reference to the tolerance. |
|
| 305 |
/// |
|
| 306 |
/// This function returns a const reference to the tolerance object |
|
| 307 |
/// used by the algorithm. |
|
| 308 |
const Tolerance& tolerance() const {
|
|
| 309 |
return _tolerance; |
|
| 310 |
} |
|
| 311 |
|
|
| 312 |
/// \name Execution control |
|
| 313 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 314 |
/// function.\n |
|
| 315 |
/// If you only need the minimum mean cost, you may call |
|
| 316 |
/// \ref findCycleMean(). |
|
| 317 |
|
|
| 318 |
/// @{
|
|
| 319 |
|
|
| 320 |
/// \brief Run the algorithm. |
|
| 321 |
/// |
|
| 322 |
/// This function runs the algorithm. |
|
| 323 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 324 |
/// and/or the arc costs have been modified). |
|
| 325 |
/// |
|
| 326 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 327 |
/// |
|
| 328 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 329 |
/// \code |
|
| 330 |
/// return mmc.findCycleMean() && mmc.findCycle(); |
|
| 331 |
/// \endcode |
|
| 332 |
bool run() {
|
|
| 333 |
return findCycleMean() && findCycle(); |
|
| 334 |
} |
|
| 335 |
|
|
| 336 |
/// \brief Find the minimum cycle mean. |
|
| 337 |
/// |
|
| 338 |
/// This function finds the minimum mean cost of the directed |
|
| 339 |
/// cycles in the digraph. |
|
| 340 |
/// |
|
| 341 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 342 |
bool findCycleMean() {
|
|
| 343 |
// Initialization and find strongly connected components |
|
| 344 |
init(); |
|
| 345 |
findComponents(); |
|
| 346 |
|
|
| 347 |
// Find the minimum cycle mean in the components |
|
| 348 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 349 |
if (!initComponent(comp)) continue; |
|
| 350 |
processRounds(); |
|
| 351 |
|
|
| 352 |
// Update the best cycle (global minimum mean cycle) |
|
| 353 |
if ( _curr_found && (!_best_found || |
|
| 354 |
_curr_cost * _best_size < _best_cost * _curr_size) ) {
|
|
| 355 |
_best_found = true; |
|
| 356 |
_best_cost = _curr_cost; |
|
| 357 |
_best_size = _curr_size; |
|
| 358 |
_best_node = _curr_node; |
|
| 359 |
_best_level = _curr_level; |
|
| 360 |
} |
|
| 361 |
} |
|
| 362 |
return _best_found; |
|
| 363 |
} |
|
| 364 |
|
|
| 365 |
/// \brief Find a minimum mean directed cycle. |
|
| 366 |
/// |
|
| 367 |
/// This function finds a directed cycle of minimum mean cost |
|
| 368 |
/// in the digraph using the data computed by findCycleMean(). |
|
| 369 |
/// |
|
| 370 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 371 |
/// |
|
| 372 |
/// \pre \ref findCycleMean() must be called before using this function. |
|
| 373 |
bool findCycle() {
|
|
| 374 |
if (!_best_found) return false; |
|
| 375 |
IntNodeMap reached(_gr, -1); |
|
| 376 |
int r = _best_level + 1; |
|
| 377 |
Node u = _best_node; |
|
| 378 |
while (reached[u] < 0) {
|
|
| 379 |
reached[u] = --r; |
|
| 380 |
u = _gr.source(_data[u][r].pred); |
|
| 381 |
} |
|
| 382 |
r = reached[u]; |
|
| 383 |
Arc e = _data[u][r].pred; |
|
| 384 |
_cycle_path->addFront(e); |
|
| 385 |
_best_cost = _cost[e]; |
|
| 386 |
_best_size = 1; |
|
| 387 |
Node v; |
|
| 388 |
while ((v = _gr.source(e)) != u) {
|
|
| 389 |
e = _data[v][--r].pred; |
|
| 390 |
_cycle_path->addFront(e); |
|
| 391 |
_best_cost += _cost[e]; |
|
| 392 |
++_best_size; |
|
| 393 |
} |
|
| 394 |
return true; |
|
| 395 |
} |
|
| 396 |
|
|
| 397 |
/// @} |
|
| 398 |
|
|
| 399 |
/// \name Query Functions |
|
| 400 |
/// The results of the algorithm can be obtained using these |
|
| 401 |
/// functions.\n |
|
| 402 |
/// The algorithm should be executed before using them. |
|
| 403 |
|
|
| 404 |
/// @{
|
|
| 405 |
|
|
| 406 |
/// \brief Return the total cost of the found cycle. |
|
| 407 |
/// |
|
| 408 |
/// This function returns the total cost of the found cycle. |
|
| 409 |
/// |
|
| 410 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 411 |
/// using this function. |
|
| 412 |
Cost cycleCost() const {
|
|
| 413 |
return static_cast<Cost>(_best_cost); |
|
| 414 |
} |
|
| 415 |
|
|
| 416 |
/// \brief Return the number of arcs on the found cycle. |
|
| 417 |
/// |
|
| 418 |
/// This function returns the number of arcs on the found cycle. |
|
| 419 |
/// |
|
| 420 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 421 |
/// using this function. |
|
| 422 |
int cycleSize() const {
|
|
| 423 |
return _best_size; |
|
| 424 |
} |
|
| 425 |
|
|
| 426 |
/// \brief Return the mean cost of the found cycle. |
|
| 427 |
/// |
|
| 428 |
/// This function returns the mean cost of the found cycle. |
|
| 429 |
/// |
|
| 430 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 431 |
/// following code. |
|
| 432 |
/// \code |
|
| 433 |
/// return static_cast<double>(alg.cycleCost()) / alg.cycleSize(); |
|
| 434 |
/// \endcode |
|
| 435 |
/// |
|
| 436 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 437 |
/// using this function. |
|
| 438 |
double cycleMean() const {
|
|
| 439 |
return static_cast<double>(_best_cost) / _best_size; |
|
| 440 |
} |
|
| 441 |
|
|
| 442 |
/// \brief Return the found cycle. |
|
| 443 |
/// |
|
| 444 |
/// This function returns a const reference to the path structure |
|
| 445 |
/// storing the found cycle. |
|
| 446 |
/// |
|
| 447 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 448 |
/// this function. |
|
| 449 |
const Path& cycle() const {
|
|
| 450 |
return *_cycle_path; |
|
| 451 |
} |
|
| 452 |
|
|
| 453 |
///@} |
|
| 454 |
|
|
| 455 |
private: |
|
| 456 |
|
|
| 457 |
// Initialization |
|
| 458 |
void init() {
|
|
| 459 |
if (!_cycle_path) {
|
|
| 460 |
_local_path = true; |
|
| 461 |
_cycle_path = new Path; |
|
| 462 |
} |
|
| 463 |
_cycle_path->clear(); |
|
| 464 |
_best_found = false; |
|
| 465 |
_best_cost = 0; |
|
| 466 |
_best_size = 1; |
|
| 467 |
_cycle_path->clear(); |
|
| 468 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
| 469 |
_data[u].clear(); |
|
| 470 |
} |
|
| 471 |
|
|
| 472 |
// Find strongly connected components and initialize _comp_nodes |
|
| 473 |
// and _out_arcs |
|
| 474 |
void findComponents() {
|
|
| 475 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 476 |
_comp_nodes.resize(_comp_num); |
|
| 477 |
if (_comp_num == 1) {
|
|
| 478 |
_comp_nodes[0].clear(); |
|
| 479 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 480 |
_comp_nodes[0].push_back(n); |
|
| 481 |
_out_arcs[n].clear(); |
|
| 482 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 483 |
_out_arcs[n].push_back(a); |
|
| 484 |
} |
|
| 485 |
} |
|
| 486 |
} else {
|
|
| 487 |
for (int i = 0; i < _comp_num; ++i) |
|
| 488 |
_comp_nodes[i].clear(); |
|
| 489 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 490 |
int k = _comp[n]; |
|
| 491 |
_comp_nodes[k].push_back(n); |
|
| 492 |
_out_arcs[n].clear(); |
|
| 493 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 494 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
| 495 |
} |
|
| 496 |
} |
|
| 497 |
} |
|
| 498 |
} |
|
| 499 |
|
|
| 500 |
// Initialize path data for the current component |
|
| 501 |
bool initComponent(int comp) {
|
|
| 502 |
_nodes = &(_comp_nodes[comp]); |
|
| 503 |
int n = _nodes->size(); |
|
| 504 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 505 |
return false; |
|
| 506 |
} |
|
| 507 |
for (int i = 0; i < n; ++i) {
|
|
| 508 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
|
| 509 |
} |
|
| 510 |
return true; |
|
| 511 |
} |
|
| 512 |
|
|
| 513 |
// Process all rounds of computing path data for the current component. |
|
| 514 |
// _data[v][k] is the cost of a shortest directed walk from the root |
|
| 515 |
// node to node v containing exactly k arcs. |
|
| 516 |
void processRounds() {
|
|
| 517 |
Node start = (*_nodes)[0]; |
|
| 518 |
_data[start][0] = PathData(0); |
|
| 519 |
_process.clear(); |
|
| 520 |
_process.push_back(start); |
|
| 521 |
|
|
| 522 |
int k, n = _nodes->size(); |
|
| 523 |
int next_check = 4; |
|
| 524 |
bool terminate = false; |
|
| 525 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
|
|
| 526 |
processNextBuildRound(k); |
|
| 527 |
if (k == next_check || k == n) {
|
|
| 528 |
terminate = checkTermination(k); |
|
| 529 |
next_check = next_check * 3 / 2; |
|
| 530 |
} |
|
| 531 |
} |
|
| 532 |
for ( ; k <= n && !terminate; ++k) {
|
|
| 533 |
processNextFullRound(k); |
|
| 534 |
if (k == next_check || k == n) {
|
|
| 535 |
terminate = checkTermination(k); |
|
| 536 |
next_check = next_check * 3 / 2; |
|
| 537 |
} |
|
| 538 |
} |
|
| 539 |
} |
|
| 540 |
|
|
| 541 |
// Process one round and rebuild _process |
|
| 542 |
void processNextBuildRound(int k) {
|
|
| 543 |
std::vector<Node> next; |
|
| 544 |
Node u, v; |
|
| 545 |
Arc e; |
|
| 546 |
LargeCost d; |
|
| 547 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 548 |
u = _process[i]; |
|
| 549 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 550 |
e = _out_arcs[u][j]; |
|
| 551 |
v = _gr.target(e); |
|
| 552 |
d = _data[u][k-1].dist + _cost[e]; |
|
| 553 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 554 |
if (_data[v][k].dist == INF) next.push_back(v); |
|
| 555 |
_data[v][k] = PathData(d, e); |
|
| 556 |
} |
|
| 557 |
} |
|
| 558 |
} |
|
| 559 |
_process.swap(next); |
|
| 560 |
} |
|
| 561 |
|
|
| 562 |
// Process one round using _nodes instead of _process |
|
| 563 |
void processNextFullRound(int k) {
|
|
| 564 |
Node u, v; |
|
| 565 |
Arc e; |
|
| 566 |
LargeCost d; |
|
| 567 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 568 |
u = (*_nodes)[i]; |
|
| 569 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 570 |
e = _out_arcs[u][j]; |
|
| 571 |
v = _gr.target(e); |
|
| 572 |
d = _data[u][k-1].dist + _cost[e]; |
|
| 573 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 574 |
_data[v][k] = PathData(d, e); |
|
| 575 |
} |
|
| 576 |
} |
|
| 577 |
} |
|
| 578 |
} |
|
| 579 |
|
|
| 580 |
// Check early termination |
|
| 581 |
bool checkTermination(int k) {
|
|
| 582 |
typedef std::pair<int, int> Pair; |
|
| 583 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
|
| 584 |
typename GR::template NodeMap<LargeCost> pi(_gr); |
|
| 585 |
int n = _nodes->size(); |
|
| 586 |
LargeCost cost; |
|
| 587 |
int size; |
|
| 588 |
Node u; |
|
| 589 |
|
|
| 590 |
// Search for cycles that are already found |
|
| 591 |
_curr_found = false; |
|
| 592 |
for (int i = 0; i < n; ++i) {
|
|
| 593 |
u = (*_nodes)[i]; |
|
| 594 |
if (_data[u][k].dist == INF) continue; |
|
| 595 |
for (int j = k; j >= 0; --j) {
|
|
| 596 |
if (level[u].first == i && level[u].second > 0) {
|
|
| 597 |
// A cycle is found |
|
| 598 |
cost = _data[u][level[u].second].dist - _data[u][j].dist; |
|
| 599 |
size = level[u].second - j; |
|
| 600 |
if (!_curr_found || cost * _curr_size < _curr_cost * size) {
|
|
| 601 |
_curr_cost = cost; |
|
| 602 |
_curr_size = size; |
|
| 603 |
_curr_node = u; |
|
| 604 |
_curr_level = level[u].second; |
|
| 605 |
_curr_found = true; |
|
| 606 |
} |
|
| 607 |
} |
|
| 608 |
level[u] = Pair(i, j); |
|
| 609 |
if (j != 0) {
|
|
| 610 |
u = _gr.source(_data[u][j].pred); |
|
| 611 |
} |
|
| 612 |
} |
|
| 613 |
} |
|
| 614 |
|
|
| 615 |
// If at least one cycle is found, check the optimality condition |
|
| 616 |
LargeCost d; |
|
| 617 |
if (_curr_found && k < n) {
|
|
| 618 |
// Find node potentials |
|
| 619 |
for (int i = 0; i < n; ++i) {
|
|
| 620 |
u = (*_nodes)[i]; |
|
| 621 |
pi[u] = INF; |
|
| 622 |
for (int j = 0; j <= k; ++j) {
|
|
| 623 |
if (_data[u][j].dist < INF) {
|
|
| 624 |
d = _data[u][j].dist * _curr_size - j * _curr_cost; |
|
| 625 |
if (_tolerance.less(d, pi[u])) pi[u] = d; |
|
| 626 |
} |
|
| 627 |
} |
|
| 628 |
} |
|
| 629 |
|
|
| 630 |
// Check the optimality condition for all arcs |
|
| 631 |
bool done = true; |
|
| 632 |
for (ArcIt a(_gr); a != INVALID; ++a) {
|
|
| 633 |
if (_tolerance.less(_cost[a] * _curr_size - _curr_cost, |
|
| 634 |
pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
|
|
| 635 |
done = false; |
|
| 636 |
break; |
|
| 637 |
} |
|
| 638 |
} |
|
| 639 |
return done; |
|
| 640 |
} |
|
| 641 |
return (k == n); |
|
| 642 |
} |
|
| 643 |
|
|
| 644 |
}; //class HartmannOrlinMmc |
|
| 645 |
|
|
| 646 |
///@} |
|
| 647 |
|
|
| 648 |
} //namespace lemon |
|
| 649 |
|
|
| 650 |
#endif //LEMON_HARTMANN_ORLIN_MMC_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_HOWARD_MMC_H |
|
| 20 |
#define LEMON_HOWARD_MMC_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_mean_cycle |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Howard's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of HowardMmc class. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of HowardMmc class. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam CM The type of the cost map. |
|
| 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename CM> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename CM, |
|
| 46 |
bool integer = std::numeric_limits<typename CM::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct HowardMmcDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the cost map |
|
| 53 |
typedef CM CostMap; |
|
| 54 |
/// The type of the arc costs |
|
| 55 |
typedef typename CostMap::Value Cost; |
|
| 56 |
|
|
| 57 |
/// \brief The large cost type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large cost type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Cost type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Cost must be convertible to \c LargeCost. |
|
| 63 |
typedef double LargeCost; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addBack() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer cost types |
|
| 77 |
template <typename GR, typename CM> |
|
| 78 |
struct HowardMmcDefaultTraits<GR, CM, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef CM CostMap; |
|
| 82 |
typedef typename CostMap::Value Cost; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeCost; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeCost; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup min_mean_cycle |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of Howard's algorithm for finding a minimum |
|
| 97 |
/// mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements Howard's policy iteration algorithm for finding |
|
| 100 |
/// a directed cycle of minimum mean cost in a digraph |
|
| 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
| 102 |
/// This class provides the most efficient algorithm for the |
|
| 103 |
/// minimum mean cycle problem, though the best known theoretical |
|
| 104 |
/// bound on its running time is exponential. |
|
| 105 |
/// |
|
| 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 107 |
/// \tparam CM The type of the cost map. The default |
|
| 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 109 |
/// \tparam TR The traits class that defines various types used by the |
|
| 110 |
/// algorithm. By default, it is \ref HowardMmcDefaultTraits |
|
| 111 |
/// "HowardMmcDefaultTraits<GR, CM>". |
|
| 112 |
/// In most cases, this parameter should not be set directly, |
|
| 113 |
/// consider to use the named template parameters instead. |
|
| 114 |
#ifdef DOXYGEN |
|
| 115 |
template <typename GR, typename CM, typename TR> |
|
| 116 |
#else |
|
| 117 |
template < typename GR, |
|
| 118 |
typename CM = typename GR::template ArcMap<int>, |
|
| 119 |
typename TR = HowardMmcDefaultTraits<GR, CM> > |
|
| 120 |
#endif |
|
| 121 |
class HowardMmc |
|
| 122 |
{
|
|
| 123 |
public: |
|
| 124 |
|
|
| 125 |
/// The type of the digraph |
|
| 126 |
typedef typename TR::Digraph Digraph; |
|
| 127 |
/// The type of the cost map |
|
| 128 |
typedef typename TR::CostMap CostMap; |
|
| 129 |
/// The type of the arc costs |
|
| 130 |
typedef typename TR::Cost Cost; |
|
| 131 |
|
|
| 132 |
/// \brief The large cost type |
|
| 133 |
/// |
|
| 134 |
/// The large cost type used for internal computations. |
|
| 135 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
|
| 136 |
/// otherwise it is \c double. |
|
| 137 |
typedef typename TR::LargeCost LargeCost; |
|
| 138 |
|
|
| 139 |
/// The tolerance type |
|
| 140 |
typedef typename TR::Tolerance Tolerance; |
|
| 141 |
|
|
| 142 |
/// \brief The path type of the found cycles |
|
| 143 |
/// |
|
| 144 |
/// The path type of the found cycles. |
|
| 145 |
/// Using the \ref HowardMmcDefaultTraits "default traits class", |
|
| 146 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 147 |
typedef typename TR::Path Path; |
|
| 148 |
|
|
| 149 |
/// The \ref HowardMmcDefaultTraits "traits class" of the algorithm |
|
| 150 |
typedef TR Traits; |
|
| 151 |
|
|
| 152 |
private: |
|
| 153 |
|
|
| 154 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 155 |
|
|
| 156 |
// The digraph the algorithm runs on |
|
| 157 |
const Digraph &_gr; |
|
| 158 |
// The cost of the arcs |
|
| 159 |
const CostMap &_cost; |
|
| 160 |
|
|
| 161 |
// Data for the found cycles |
|
| 162 |
bool _curr_found, _best_found; |
|
| 163 |
LargeCost _curr_cost, _best_cost; |
|
| 164 |
int _curr_size, _best_size; |
|
| 165 |
Node _curr_node, _best_node; |
|
| 166 |
|
|
| 167 |
Path *_cycle_path; |
|
| 168 |
bool _local_path; |
|
| 169 |
|
|
| 170 |
// Internal data used by the algorithm |
|
| 171 |
typename Digraph::template NodeMap<Arc> _policy; |
|
| 172 |
typename Digraph::template NodeMap<bool> _reached; |
|
| 173 |
typename Digraph::template NodeMap<int> _level; |
|
| 174 |
typename Digraph::template NodeMap<LargeCost> _dist; |
|
| 175 |
|
|
| 176 |
// Data for storing the strongly connected components |
|
| 177 |
int _comp_num; |
|
| 178 |
typename Digraph::template NodeMap<int> _comp; |
|
| 179 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 180 |
std::vector<Node>* _nodes; |
|
| 181 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
|
| 182 |
|
|
| 183 |
// Queue used for BFS search |
|
| 184 |
std::vector<Node> _queue; |
|
| 185 |
int _qfront, _qback; |
|
| 186 |
|
|
| 187 |
Tolerance _tolerance; |
|
| 188 |
|
|
| 189 |
// Infinite constant |
|
| 190 |
const LargeCost INF; |
|
| 191 |
|
|
| 192 |
public: |
|
| 193 |
|
|
| 194 |
/// \name Named Template Parameters |
|
| 195 |
/// @{
|
|
| 196 |
|
|
| 197 |
template <typename T> |
|
| 198 |
struct SetLargeCostTraits : public Traits {
|
|
| 199 |
typedef T LargeCost; |
|
| 200 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 201 |
}; |
|
| 202 |
|
|
| 203 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 204 |
/// \c LargeCost type. |
|
| 205 |
/// |
|
| 206 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
|
| 207 |
/// type. It is used for internal computations in the algorithm. |
|
| 208 |
template <typename T> |
|
| 209 |
struct SetLargeCost |
|
| 210 |
: public HowardMmc<GR, CM, SetLargeCostTraits<T> > {
|
|
| 211 |
typedef HowardMmc<GR, CM, SetLargeCostTraits<T> > Create; |
|
| 212 |
}; |
|
| 213 |
|
|
| 214 |
template <typename T> |
|
| 215 |
struct SetPathTraits : public Traits {
|
|
| 216 |
typedef T Path; |
|
| 217 |
}; |
|
| 218 |
|
|
| 219 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 220 |
/// \c %Path type. |
|
| 221 |
/// |
|
| 222 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 223 |
/// type of the found cycles. |
|
| 224 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 225 |
/// and it must have an \c addBack() function. |
|
| 226 |
template <typename T> |
|
| 227 |
struct SetPath |
|
| 228 |
: public HowardMmc<GR, CM, SetPathTraits<T> > {
|
|
| 229 |
typedef HowardMmc<GR, CM, SetPathTraits<T> > Create; |
|
| 230 |
}; |
|
| 231 |
|
|
| 232 |
/// @} |
|
| 233 |
|
|
| 234 |
protected: |
|
| 235 |
|
|
| 236 |
HowardMmc() {}
|
|
| 237 |
|
|
| 238 |
public: |
|
| 239 |
|
|
| 240 |
/// \brief Constructor. |
|
| 241 |
/// |
|
| 242 |
/// The constructor of the class. |
|
| 243 |
/// |
|
| 244 |
/// \param digraph The digraph the algorithm runs on. |
|
| 245 |
/// \param cost The costs of the arcs. |
|
| 246 |
HowardMmc( const Digraph &digraph, |
|
| 247 |
const CostMap &cost ) : |
|
| 248 |
_gr(digraph), _cost(cost), _best_found(false), |
|
| 249 |
_best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false), |
|
| 250 |
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), |
|
| 251 |
_comp(digraph), _in_arcs(digraph), |
|
| 252 |
INF(std::numeric_limits<LargeCost>::has_infinity ? |
|
| 253 |
std::numeric_limits<LargeCost>::infinity() : |
|
| 254 |
std::numeric_limits<LargeCost>::max()) |
|
| 255 |
{}
|
|
| 256 |
|
|
| 257 |
/// Destructor. |
|
| 258 |
~HowardMmc() {
|
|
| 259 |
if (_local_path) delete _cycle_path; |
|
| 260 |
} |
|
| 261 |
|
|
| 262 |
/// \brief Set the path structure for storing the found cycle. |
|
| 263 |
/// |
|
| 264 |
/// This function sets an external path structure for storing the |
|
| 265 |
/// found cycle. |
|
| 266 |
/// |
|
| 267 |
/// If you don't call this function before calling \ref run() or |
|
| 268 |
/// \ref findCycleMean(), it will allocate a local \ref Path "path" |
|
| 269 |
/// structure. The destuctor deallocates this automatically |
|
| 270 |
/// allocated object, of course. |
|
| 271 |
/// |
|
| 272 |
/// \note The algorithm calls only the \ref lemon::Path::addBack() |
|
| 273 |
/// "addBack()" function of the given path structure. |
|
| 274 |
/// |
|
| 275 |
/// \return <tt>(*this)</tt> |
|
| 276 |
HowardMmc& cycle(Path &path) {
|
|
| 277 |
if (_local_path) {
|
|
| 278 |
delete _cycle_path; |
|
| 279 |
_local_path = false; |
|
| 280 |
} |
|
| 281 |
_cycle_path = &path; |
|
| 282 |
return *this; |
|
| 283 |
} |
|
| 284 |
|
|
| 285 |
/// \brief Set the tolerance used by the algorithm. |
|
| 286 |
/// |
|
| 287 |
/// This function sets the tolerance object used by the algorithm. |
|
| 288 |
/// |
|
| 289 |
/// \return <tt>(*this)</tt> |
|
| 290 |
HowardMmc& tolerance(const Tolerance& tolerance) {
|
|
| 291 |
_tolerance = tolerance; |
|
| 292 |
return *this; |
|
| 293 |
} |
|
| 294 |
|
|
| 295 |
/// \brief Return a const reference to the tolerance. |
|
| 296 |
/// |
|
| 297 |
/// This function returns a const reference to the tolerance object |
|
| 298 |
/// used by the algorithm. |
|
| 299 |
const Tolerance& tolerance() const {
|
|
| 300 |
return _tolerance; |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \name Execution control |
|
| 304 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 305 |
/// function.\n |
|
| 306 |
/// If you only need the minimum mean cost, you may call |
|
| 307 |
/// \ref findCycleMean(). |
|
| 308 |
|
|
| 309 |
/// @{
|
|
| 310 |
|
|
| 311 |
/// \brief Run the algorithm. |
|
| 312 |
/// |
|
| 313 |
/// This function runs the algorithm. |
|
| 314 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 315 |
/// and/or the arc costs have been modified). |
|
| 316 |
/// |
|
| 317 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 318 |
/// |
|
| 319 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 320 |
/// \code |
|
| 321 |
/// return mmc.findCycleMean() && mmc.findCycle(); |
|
| 322 |
/// \endcode |
|
| 323 |
bool run() {
|
|
| 324 |
return findCycleMean() && findCycle(); |
|
| 325 |
} |
|
| 326 |
|
|
| 327 |
/// \brief Find the minimum cycle mean. |
|
| 328 |
/// |
|
| 329 |
/// This function finds the minimum mean cost of the directed |
|
| 330 |
/// cycles in the digraph. |
|
| 331 |
/// |
|
| 332 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 333 |
bool findCycleMean() {
|
|
| 334 |
// Initialize and find strongly connected components |
|
| 335 |
init(); |
|
| 336 |
findComponents(); |
|
| 337 |
|
|
| 338 |
// Find the minimum cycle mean in the components |
|
| 339 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 340 |
// Find the minimum mean cycle in the current component |
|
| 341 |
if (!buildPolicyGraph(comp)) continue; |
|
| 342 |
while (true) {
|
|
| 343 |
findPolicyCycle(); |
|
| 344 |
if (!computeNodeDistances()) break; |
|
| 345 |
} |
|
| 346 |
// Update the best cycle (global minimum mean cycle) |
|
| 347 |
if ( _curr_found && (!_best_found || |
|
| 348 |
_curr_cost * _best_size < _best_cost * _curr_size) ) {
|
|
| 349 |
_best_found = true; |
|
| 350 |
_best_cost = _curr_cost; |
|
| 351 |
_best_size = _curr_size; |
|
| 352 |
_best_node = _curr_node; |
|
| 353 |
} |
|
| 354 |
} |
|
| 355 |
return _best_found; |
|
| 356 |
} |
|
| 357 |
|
|
| 358 |
/// \brief Find a minimum mean directed cycle. |
|
| 359 |
/// |
|
| 360 |
/// This function finds a directed cycle of minimum mean cost |
|
| 361 |
/// in the digraph using the data computed by findCycleMean(). |
|
| 362 |
/// |
|
| 363 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 364 |
/// |
|
| 365 |
/// \pre \ref findCycleMean() must be called before using this function. |
|
| 366 |
bool findCycle() {
|
|
| 367 |
if (!_best_found) return false; |
|
| 368 |
_cycle_path->addBack(_policy[_best_node]); |
|
| 369 |
for ( Node v = _best_node; |
|
| 370 |
(v = _gr.target(_policy[v])) != _best_node; ) {
|
|
| 371 |
_cycle_path->addBack(_policy[v]); |
|
| 372 |
} |
|
| 373 |
return true; |
|
| 374 |
} |
|
| 375 |
|
|
| 376 |
/// @} |
|
| 377 |
|
|
| 378 |
/// \name Query Functions |
|
| 379 |
/// The results of the algorithm can be obtained using these |
|
| 380 |
/// functions.\n |
|
| 381 |
/// The algorithm should be executed before using them. |
|
| 382 |
|
|
| 383 |
/// @{
|
|
| 384 |
|
|
| 385 |
/// \brief Return the total cost of the found cycle. |
|
| 386 |
/// |
|
| 387 |
/// This function returns the total cost of the found cycle. |
|
| 388 |
/// |
|
| 389 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 390 |
/// using this function. |
|
| 391 |
Cost cycleCost() const {
|
|
| 392 |
return static_cast<Cost>(_best_cost); |
|
| 393 |
} |
|
| 394 |
|
|
| 395 |
/// \brief Return the number of arcs on the found cycle. |
|
| 396 |
/// |
|
| 397 |
/// This function returns the number of arcs on the found cycle. |
|
| 398 |
/// |
|
| 399 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 400 |
/// using this function. |
|
| 401 |
int cycleSize() const {
|
|
| 402 |
return _best_size; |
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
/// \brief Return the mean cost of the found cycle. |
|
| 406 |
/// |
|
| 407 |
/// This function returns the mean cost of the found cycle. |
|
| 408 |
/// |
|
| 409 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 410 |
/// following code. |
|
| 411 |
/// \code |
|
| 412 |
/// return static_cast<double>(alg.cycleCost()) / alg.cycleSize(); |
|
| 413 |
/// \endcode |
|
| 414 |
/// |
|
| 415 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 416 |
/// using this function. |
|
| 417 |
double cycleMean() const {
|
|
| 418 |
return static_cast<double>(_best_cost) / _best_size; |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
/// \brief Return the found cycle. |
|
| 422 |
/// |
|
| 423 |
/// This function returns a const reference to the path structure |
|
| 424 |
/// storing the found cycle. |
|
| 425 |
/// |
|
| 426 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 427 |
/// this function. |
|
| 428 |
const Path& cycle() const {
|
|
| 429 |
return *_cycle_path; |
|
| 430 |
} |
|
| 431 |
|
|
| 432 |
///@} |
|
| 433 |
|
|
| 434 |
private: |
|
| 435 |
|
|
| 436 |
// Initialize |
|
| 437 |
void init() {
|
|
| 438 |
if (!_cycle_path) {
|
|
| 439 |
_local_path = true; |
|
| 440 |
_cycle_path = new Path; |
|
| 441 |
} |
|
| 442 |
_queue.resize(countNodes(_gr)); |
|
| 443 |
_best_found = false; |
|
| 444 |
_best_cost = 0; |
|
| 445 |
_best_size = 1; |
|
| 446 |
_cycle_path->clear(); |
|
| 447 |
} |
|
| 448 |
|
|
| 449 |
// Find strongly connected components and initialize _comp_nodes |
|
| 450 |
// and _in_arcs |
|
| 451 |
void findComponents() {
|
|
| 452 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 453 |
_comp_nodes.resize(_comp_num); |
|
| 454 |
if (_comp_num == 1) {
|
|
| 455 |
_comp_nodes[0].clear(); |
|
| 456 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 457 |
_comp_nodes[0].push_back(n); |
|
| 458 |
_in_arcs[n].clear(); |
|
| 459 |
for (InArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 460 |
_in_arcs[n].push_back(a); |
|
| 461 |
} |
|
| 462 |
} |
|
| 463 |
} else {
|
|
| 464 |
for (int i = 0; i < _comp_num; ++i) |
|
| 465 |
_comp_nodes[i].clear(); |
|
| 466 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 467 |
int k = _comp[n]; |
|
| 468 |
_comp_nodes[k].push_back(n); |
|
| 469 |
_in_arcs[n].clear(); |
|
| 470 |
for (InArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 471 |
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); |
|
| 472 |
} |
|
| 473 |
} |
|
| 474 |
} |
|
| 475 |
} |
|
| 476 |
|
|
| 477 |
// Build the policy graph in the given strongly connected component |
|
| 478 |
// (the out-degree of every node is 1) |
|
| 479 |
bool buildPolicyGraph(int comp) {
|
|
| 480 |
_nodes = &(_comp_nodes[comp]); |
|
| 481 |
if (_nodes->size() < 1 || |
|
| 482 |
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 483 |
return false; |
|
| 484 |
} |
|
| 485 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 486 |
_dist[(*_nodes)[i]] = INF; |
|
| 487 |
} |
|
| 488 |
Node u, v; |
|
| 489 |
Arc e; |
|
| 490 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 491 |
v = (*_nodes)[i]; |
|
| 492 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 493 |
e = _in_arcs[v][j]; |
|
| 494 |
u = _gr.source(e); |
|
| 495 |
if (_cost[e] < _dist[u]) {
|
|
| 496 |
_dist[u] = _cost[e]; |
|
| 497 |
_policy[u] = e; |
|
| 498 |
} |
|
| 499 |
} |
|
| 500 |
} |
|
| 501 |
return true; |
|
| 502 |
} |
|
| 503 |
|
|
| 504 |
// Find the minimum mean cycle in the policy graph |
|
| 505 |
void findPolicyCycle() {
|
|
| 506 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 507 |
_level[(*_nodes)[i]] = -1; |
|
| 508 |
} |
|
| 509 |
LargeCost ccost; |
|
| 510 |
int csize; |
|
| 511 |
Node u, v; |
|
| 512 |
_curr_found = false; |
|
| 513 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 514 |
u = (*_nodes)[i]; |
|
| 515 |
if (_level[u] >= 0) continue; |
|
| 516 |
for (; _level[u] < 0; u = _gr.target(_policy[u])) {
|
|
| 517 |
_level[u] = i; |
|
| 518 |
} |
|
| 519 |
if (_level[u] == i) {
|
|
| 520 |
// A cycle is found |
|
| 521 |
ccost = _cost[_policy[u]]; |
|
| 522 |
csize = 1; |
|
| 523 |
for (v = u; (v = _gr.target(_policy[v])) != u; ) {
|
|
| 524 |
ccost += _cost[_policy[v]]; |
|
| 525 |
++csize; |
|
| 526 |
} |
|
| 527 |
if ( !_curr_found || |
|
| 528 |
(ccost * _curr_size < _curr_cost * csize) ) {
|
|
| 529 |
_curr_found = true; |
|
| 530 |
_curr_cost = ccost; |
|
| 531 |
_curr_size = csize; |
|
| 532 |
_curr_node = u; |
|
| 533 |
} |
|
| 534 |
} |
|
| 535 |
} |
|
| 536 |
} |
|
| 537 |
|
|
| 538 |
// Contract the policy graph and compute node distances |
|
| 539 |
bool computeNodeDistances() {
|
|
| 540 |
// Find the component of the main cycle and compute node distances |
|
| 541 |
// using reverse BFS |
|
| 542 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 543 |
_reached[(*_nodes)[i]] = false; |
|
| 544 |
} |
|
| 545 |
_qfront = _qback = 0; |
|
| 546 |
_queue[0] = _curr_node; |
|
| 547 |
_reached[_curr_node] = true; |
|
| 548 |
_dist[_curr_node] = 0; |
|
| 549 |
Node u, v; |
|
| 550 |
Arc e; |
|
| 551 |
while (_qfront <= _qback) {
|
|
| 552 |
v = _queue[_qfront++]; |
|
| 553 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 554 |
e = _in_arcs[v][j]; |
|
| 555 |
u = _gr.source(e); |
|
| 556 |
if (_policy[u] == e && !_reached[u]) {
|
|
| 557 |
_reached[u] = true; |
|
| 558 |
_dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost; |
|
| 559 |
_queue[++_qback] = u; |
|
| 560 |
} |
|
| 561 |
} |
|
| 562 |
} |
|
| 563 |
|
|
| 564 |
// Connect all other nodes to this component and compute node |
|
| 565 |
// distances using reverse BFS |
|
| 566 |
_qfront = 0; |
|
| 567 |
while (_qback < int(_nodes->size())-1) {
|
|
| 568 |
v = _queue[_qfront++]; |
|
| 569 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 570 |
e = _in_arcs[v][j]; |
|
| 571 |
u = _gr.source(e); |
|
| 572 |
if (!_reached[u]) {
|
|
| 573 |
_reached[u] = true; |
|
| 574 |
_policy[u] = e; |
|
| 575 |
_dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost; |
|
| 576 |
_queue[++_qback] = u; |
|
| 577 |
} |
|
| 578 |
} |
|
| 579 |
} |
|
| 580 |
|
|
| 581 |
// Improve node distances |
|
| 582 |
bool improved = false; |
|
| 583 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 584 |
v = (*_nodes)[i]; |
|
| 585 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 586 |
e = _in_arcs[v][j]; |
|
| 587 |
u = _gr.source(e); |
|
| 588 |
LargeCost delta = _dist[v] + _cost[e] * _curr_size - _curr_cost; |
|
| 589 |
if (_tolerance.less(delta, _dist[u])) {
|
|
| 590 |
_dist[u] = delta; |
|
| 591 |
_policy[u] = e; |
|
| 592 |
improved = true; |
|
| 593 |
} |
|
| 594 |
} |
|
| 595 |
} |
|
| 596 |
return improved; |
|
| 597 |
} |
|
| 598 |
|
|
| 599 |
}; //class HowardMmc |
|
| 600 |
|
|
| 601 |
///@} |
|
| 602 |
|
|
| 603 |
} //namespace lemon |
|
| 604 |
|
|
| 605 |
#endif //LEMON_HOWARD_MMC_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_KARP_MMC_H |
|
| 20 |
#define LEMON_KARP_MMC_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_mean_cycle |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Karp's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of KarpMmc class. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of KarpMmc class. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam CM The type of the cost map. |
|
| 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename CM> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename CM, |
|
| 46 |
bool integer = std::numeric_limits<typename CM::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct KarpMmcDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the cost map |
|
| 53 |
typedef CM CostMap; |
|
| 54 |
/// The type of the arc costs |
|
| 55 |
typedef typename CostMap::Value Cost; |
|
| 56 |
|
|
| 57 |
/// \brief The large cost type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large cost type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Cost type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Cost must be convertible to \c LargeCost. |
|
| 63 |
typedef double LargeCost; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addFront() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer cost types |
|
| 77 |
template <typename GR, typename CM> |
|
| 78 |
struct KarpMmcDefaultTraits<GR, CM, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef CM CostMap; |
|
| 82 |
typedef typename CostMap::Value Cost; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeCost; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeCost; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup min_mean_cycle |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of Karp's algorithm for finding a minimum |
|
| 97 |
/// mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements Karp's algorithm for finding a directed |
|
| 100 |
/// cycle of minimum mean cost in a digraph |
|
| 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
| 102 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
|
| 103 |
/// |
|
| 104 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 105 |
/// \tparam CM The type of the cost map. The default |
|
| 106 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 107 |
/// \tparam TR The traits class that defines various types used by the |
|
| 108 |
/// algorithm. By default, it is \ref KarpMmcDefaultTraits |
|
| 109 |
/// "KarpMmcDefaultTraits<GR, CM>". |
|
| 110 |
/// In most cases, this parameter should not be set directly, |
|
| 111 |
/// consider to use the named template parameters instead. |
|
| 112 |
#ifdef DOXYGEN |
|
| 113 |
template <typename GR, typename CM, typename TR> |
|
| 114 |
#else |
|
| 115 |
template < typename GR, |
|
| 116 |
typename CM = typename GR::template ArcMap<int>, |
|
| 117 |
typename TR = KarpMmcDefaultTraits<GR, CM> > |
|
| 118 |
#endif |
|
| 119 |
class KarpMmc |
|
| 120 |
{
|
|
| 121 |
public: |
|
| 122 |
|
|
| 123 |
/// The type of the digraph |
|
| 124 |
typedef typename TR::Digraph Digraph; |
|
| 125 |
/// The type of the cost map |
|
| 126 |
typedef typename TR::CostMap CostMap; |
|
| 127 |
/// The type of the arc costs |
|
| 128 |
typedef typename TR::Cost Cost; |
|
| 129 |
|
|
| 130 |
/// \brief The large cost type |
|
| 131 |
/// |
|
| 132 |
/// The large cost type used for internal computations. |
|
| 133 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
|
| 134 |
/// otherwise it is \c double. |
|
| 135 |
typedef typename TR::LargeCost LargeCost; |
|
| 136 |
|
|
| 137 |
/// The tolerance type |
|
| 138 |
typedef typename TR::Tolerance Tolerance; |
|
| 139 |
|
|
| 140 |
/// \brief The path type of the found cycles |
|
| 141 |
/// |
|
| 142 |
/// The path type of the found cycles. |
|
| 143 |
/// Using the \ref KarpMmcDefaultTraits "default traits class", |
|
| 144 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 145 |
typedef typename TR::Path Path; |
|
| 146 |
|
|
| 147 |
/// The \ref KarpMmcDefaultTraits "traits class" of the algorithm |
|
| 148 |
typedef TR Traits; |
|
| 149 |
|
|
| 150 |
private: |
|
| 151 |
|
|
| 152 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 153 |
|
|
| 154 |
// Data sturcture for path data |
|
| 155 |
struct PathData |
|
| 156 |
{
|
|
| 157 |
LargeCost dist; |
|
| 158 |
Arc pred; |
|
| 159 |
PathData(LargeCost d, Arc p = INVALID) : |
|
| 160 |
dist(d), pred(p) {}
|
|
| 161 |
}; |
|
| 162 |
|
|
| 163 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
| 164 |
PathDataNodeMap; |
|
| 165 |
|
|
| 166 |
private: |
|
| 167 |
|
|
| 168 |
// The digraph the algorithm runs on |
|
| 169 |
const Digraph &_gr; |
|
| 170 |
// The cost of the arcs |
|
| 171 |
const CostMap &_cost; |
|
| 172 |
|
|
| 173 |
// Data for storing the strongly connected components |
|
| 174 |
int _comp_num; |
|
| 175 |
typename Digraph::template NodeMap<int> _comp; |
|
| 176 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 177 |
std::vector<Node>* _nodes; |
|
| 178 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
| 179 |
|
|
| 180 |
// Data for the found cycle |
|
| 181 |
LargeCost _cycle_cost; |
|
| 182 |
int _cycle_size; |
|
| 183 |
Node _cycle_node; |
|
| 184 |
|
|
| 185 |
Path *_cycle_path; |
|
| 186 |
bool _local_path; |
|
| 187 |
|
|
| 188 |
// Node map for storing path data |
|
| 189 |
PathDataNodeMap _data; |
|
| 190 |
// The processed nodes in the last round |
|
| 191 |
std::vector<Node> _process; |
|
| 192 |
|
|
| 193 |
Tolerance _tolerance; |
|
| 194 |
|
|
| 195 |
// Infinite constant |
|
| 196 |
const LargeCost INF; |
|
| 197 |
|
|
| 198 |
public: |
|
| 199 |
|
|
| 200 |
/// \name Named Template Parameters |
|
| 201 |
/// @{
|
|
| 202 |
|
|
| 203 |
template <typename T> |
|
| 204 |
struct SetLargeCostTraits : public Traits {
|
|
| 205 |
typedef T LargeCost; |
|
| 206 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 207 |
}; |
|
| 208 |
|
|
| 209 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 210 |
/// \c LargeCost type. |
|
| 211 |
/// |
|
| 212 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
|
| 213 |
/// type. It is used for internal computations in the algorithm. |
|
| 214 |
template <typename T> |
|
| 215 |
struct SetLargeCost |
|
| 216 |
: public KarpMmc<GR, CM, SetLargeCostTraits<T> > {
|
|
| 217 |
typedef KarpMmc<GR, CM, SetLargeCostTraits<T> > Create; |
|
| 218 |
}; |
|
| 219 |
|
|
| 220 |
template <typename T> |
|
| 221 |
struct SetPathTraits : public Traits {
|
|
| 222 |
typedef T Path; |
|
| 223 |
}; |
|
| 224 |
|
|
| 225 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 226 |
/// \c %Path type. |
|
| 227 |
/// |
|
| 228 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 229 |
/// type of the found cycles. |
|
| 230 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 231 |
/// and it must have an \c addFront() function. |
|
| 232 |
template <typename T> |
|
| 233 |
struct SetPath |
|
| 234 |
: public KarpMmc<GR, CM, SetPathTraits<T> > {
|
|
| 235 |
typedef KarpMmc<GR, CM, SetPathTraits<T> > Create; |
|
| 236 |
}; |
|
| 237 |
|
|
| 238 |
/// @} |
|
| 239 |
|
|
| 240 |
protected: |
|
| 241 |
|
|
| 242 |
KarpMmc() {}
|
|
| 243 |
|
|
| 244 |
public: |
|
| 245 |
|
|
| 246 |
/// \brief Constructor. |
|
| 247 |
/// |
|
| 248 |
/// The constructor of the class. |
|
| 249 |
/// |
|
| 250 |
/// \param digraph The digraph the algorithm runs on. |
|
| 251 |
/// \param cost The costs of the arcs. |
|
| 252 |
KarpMmc( const Digraph &digraph, |
|
| 253 |
const CostMap &cost ) : |
|
| 254 |
_gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph), |
|
| 255 |
_cycle_cost(0), _cycle_size(1), _cycle_node(INVALID), |
|
| 256 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
|
| 257 |
INF(std::numeric_limits<LargeCost>::has_infinity ? |
|
| 258 |
std::numeric_limits<LargeCost>::infinity() : |
|
| 259 |
std::numeric_limits<LargeCost>::max()) |
|
| 260 |
{}
|
|
| 261 |
|
|
| 262 |
/// Destructor. |
|
| 263 |
~KarpMmc() {
|
|
| 264 |
if (_local_path) delete _cycle_path; |
|
| 265 |
} |
|
| 266 |
|
|
| 267 |
/// \brief Set the path structure for storing the found cycle. |
|
| 268 |
/// |
|
| 269 |
/// This function sets an external path structure for storing the |
|
| 270 |
/// found cycle. |
|
| 271 |
/// |
|
| 272 |
/// If you don't call this function before calling \ref run() or |
|
| 273 |
/// \ref findCycleMean(), it will allocate a local \ref Path "path" |
|
| 274 |
/// structure. The destuctor deallocates this automatically |
|
| 275 |
/// allocated object, of course. |
|
| 276 |
/// |
|
| 277 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
| 278 |
/// "addFront()" function of the given path structure. |
|
| 279 |
/// |
|
| 280 |
/// \return <tt>(*this)</tt> |
|
| 281 |
KarpMmc& cycle(Path &path) {
|
|
| 282 |
if (_local_path) {
|
|
| 283 |
delete _cycle_path; |
|
| 284 |
_local_path = false; |
|
| 285 |
} |
|
| 286 |
_cycle_path = &path; |
|
| 287 |
return *this; |
|
| 288 |
} |
|
| 289 |
|
|
| 290 |
/// \brief Set the tolerance used by the algorithm. |
|
| 291 |
/// |
|
| 292 |
/// This function sets the tolerance object used by the algorithm. |
|
| 293 |
/// |
|
| 294 |
/// \return <tt>(*this)</tt> |
|
| 295 |
KarpMmc& tolerance(const Tolerance& tolerance) {
|
|
| 296 |
_tolerance = tolerance; |
|
| 297 |
return *this; |
|
| 298 |
} |
|
| 299 |
|
|
| 300 |
/// \brief Return a const reference to the tolerance. |
|
| 301 |
/// |
|
| 302 |
/// This function returns a const reference to the tolerance object |
|
| 303 |
/// used by the algorithm. |
|
| 304 |
const Tolerance& tolerance() const {
|
|
| 305 |
return _tolerance; |
|
| 306 |
} |
|
| 307 |
|
|
| 308 |
/// \name Execution control |
|
| 309 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 310 |
/// function.\n |
|
| 311 |
/// If you only need the minimum mean cost, you may call |
|
| 312 |
/// \ref findCycleMean(). |
|
| 313 |
|
|
| 314 |
/// @{
|
|
| 315 |
|
|
| 316 |
/// \brief Run the algorithm. |
|
| 317 |
/// |
|
| 318 |
/// This function runs the algorithm. |
|
| 319 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 320 |
/// and/or the arc costs have been modified). |
|
| 321 |
/// |
|
| 322 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 323 |
/// |
|
| 324 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 325 |
/// \code |
|
| 326 |
/// return mmc.findCycleMean() && mmc.findCycle(); |
|
| 327 |
/// \endcode |
|
| 328 |
bool run() {
|
|
| 329 |
return findCycleMean() && findCycle(); |
|
| 330 |
} |
|
| 331 |
|
|
| 332 |
/// \brief Find the minimum cycle mean. |
|
| 333 |
/// |
|
| 334 |
/// This function finds the minimum mean cost of the directed |
|
| 335 |
/// cycles in the digraph. |
|
| 336 |
/// |
|
| 337 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 338 |
bool findCycleMean() {
|
|
| 339 |
// Initialization and find strongly connected components |
|
| 340 |
init(); |
|
| 341 |
findComponents(); |
|
| 342 |
|
|
| 343 |
// Find the minimum cycle mean in the components |
|
| 344 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 345 |
if (!initComponent(comp)) continue; |
|
| 346 |
processRounds(); |
|
| 347 |
updateMinMean(); |
|
| 348 |
} |
|
| 349 |
return (_cycle_node != INVALID); |
|
| 350 |
} |
|
| 351 |
|
|
| 352 |
/// \brief Find a minimum mean directed cycle. |
|
| 353 |
/// |
|
| 354 |
/// This function finds a directed cycle of minimum mean cost |
|
| 355 |
/// in the digraph using the data computed by findCycleMean(). |
|
| 356 |
/// |
|
| 357 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 358 |
/// |
|
| 359 |
/// \pre \ref findCycleMean() must be called before using this function. |
|
| 360 |
bool findCycle() {
|
|
| 361 |
if (_cycle_node == INVALID) return false; |
|
| 362 |
IntNodeMap reached(_gr, -1); |
|
| 363 |
int r = _data[_cycle_node].size(); |
|
| 364 |
Node u = _cycle_node; |
|
| 365 |
while (reached[u] < 0) {
|
|
| 366 |
reached[u] = --r; |
|
| 367 |
u = _gr.source(_data[u][r].pred); |
|
| 368 |
} |
|
| 369 |
r = reached[u]; |
|
| 370 |
Arc e = _data[u][r].pred; |
|
| 371 |
_cycle_path->addFront(e); |
|
| 372 |
_cycle_cost = _cost[e]; |
|
| 373 |
_cycle_size = 1; |
|
| 374 |
Node v; |
|
| 375 |
while ((v = _gr.source(e)) != u) {
|
|
| 376 |
e = _data[v][--r].pred; |
|
| 377 |
_cycle_path->addFront(e); |
|
| 378 |
_cycle_cost += _cost[e]; |
|
| 379 |
++_cycle_size; |
|
| 380 |
} |
|
| 381 |
return true; |
|
| 382 |
} |
|
| 383 |
|
|
| 384 |
/// @} |
|
| 385 |
|
|
| 386 |
/// \name Query Functions |
|
| 387 |
/// The results of the algorithm can be obtained using these |
|
| 388 |
/// functions.\n |
|
| 389 |
/// The algorithm should be executed before using them. |
|
| 390 |
|
|
| 391 |
/// @{
|
|
| 392 |
|
|
| 393 |
/// \brief Return the total cost of the found cycle. |
|
| 394 |
/// |
|
| 395 |
/// This function returns the total cost of the found cycle. |
|
| 396 |
/// |
|
| 397 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 398 |
/// using this function. |
|
| 399 |
Cost cycleCost() const {
|
|
| 400 |
return static_cast<Cost>(_cycle_cost); |
|
| 401 |
} |
|
| 402 |
|
|
| 403 |
/// \brief Return the number of arcs on the found cycle. |
|
| 404 |
/// |
|
| 405 |
/// This function returns the number of arcs on the found cycle. |
|
| 406 |
/// |
|
| 407 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 408 |
/// using this function. |
|
| 409 |
int cycleSize() const {
|
|
| 410 |
return _cycle_size; |
|
| 411 |
} |
|
| 412 |
|
|
| 413 |
/// \brief Return the mean cost of the found cycle. |
|
| 414 |
/// |
|
| 415 |
/// This function returns the mean cost of the found cycle. |
|
| 416 |
/// |
|
| 417 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 418 |
/// following code. |
|
| 419 |
/// \code |
|
| 420 |
/// return static_cast<double>(alg.cycleCost()) / alg.cycleSize(); |
|
| 421 |
/// \endcode |
|
| 422 |
/// |
|
| 423 |
/// \pre \ref run() or \ref findCycleMean() must be called before |
|
| 424 |
/// using this function. |
|
| 425 |
double cycleMean() const {
|
|
| 426 |
return static_cast<double>(_cycle_cost) / _cycle_size; |
|
| 427 |
} |
|
| 428 |
|
|
| 429 |
/// \brief Return the found cycle. |
|
| 430 |
/// |
|
| 431 |
/// This function returns a const reference to the path structure |
|
| 432 |
/// storing the found cycle. |
|
| 433 |
/// |
|
| 434 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 435 |
/// this function. |
|
| 436 |
const Path& cycle() const {
|
|
| 437 |
return *_cycle_path; |
|
| 438 |
} |
|
| 439 |
|
|
| 440 |
///@} |
|
| 441 |
|
|
| 442 |
private: |
|
| 443 |
|
|
| 444 |
// Initialization |
|
| 445 |
void init() {
|
|
| 446 |
if (!_cycle_path) {
|
|
| 447 |
_local_path = true; |
|
| 448 |
_cycle_path = new Path; |
|
| 449 |
} |
|
| 450 |
_cycle_path->clear(); |
|
| 451 |
_cycle_cost = 0; |
|
| 452 |
_cycle_size = 1; |
|
| 453 |
_cycle_node = INVALID; |
|
| 454 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
| 455 |
_data[u].clear(); |
|
| 456 |
} |
|
| 457 |
|
|
| 458 |
// Find strongly connected components and initialize _comp_nodes |
|
| 459 |
// and _out_arcs |
|
| 460 |
void findComponents() {
|
|
| 461 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 462 |
_comp_nodes.resize(_comp_num); |
|
| 463 |
if (_comp_num == 1) {
|
|
| 464 |
_comp_nodes[0].clear(); |
|
| 465 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 466 |
_comp_nodes[0].push_back(n); |
|
| 467 |
_out_arcs[n].clear(); |
|
| 468 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 469 |
_out_arcs[n].push_back(a); |
|
| 470 |
} |
|
| 471 |
} |
|
| 472 |
} else {
|
|
| 473 |
for (int i = 0; i < _comp_num; ++i) |
|
| 474 |
_comp_nodes[i].clear(); |
|
| 475 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 476 |
int k = _comp[n]; |
|
| 477 |
_comp_nodes[k].push_back(n); |
|
| 478 |
_out_arcs[n].clear(); |
|
| 479 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 480 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
| 481 |
} |
|
| 482 |
} |
|
| 483 |
} |
|
| 484 |
} |
|
| 485 |
|
|
| 486 |
// Initialize path data for the current component |
|
| 487 |
bool initComponent(int comp) {
|
|
| 488 |
_nodes = &(_comp_nodes[comp]); |
|
| 489 |
int n = _nodes->size(); |
|
| 490 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 491 |
return false; |
|
| 492 |
} |
|
| 493 |
for (int i = 0; i < n; ++i) {
|
|
| 494 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
|
| 495 |
} |
|
| 496 |
return true; |
|
| 497 |
} |
|
| 498 |
|
|
| 499 |
// Process all rounds of computing path data for the current component. |
|
| 500 |
// _data[v][k] is the cost of a shortest directed walk from the root |
|
| 501 |
// node to node v containing exactly k arcs. |
|
| 502 |
void processRounds() {
|
|
| 503 |
Node start = (*_nodes)[0]; |
|
| 504 |
_data[start][0] = PathData(0); |
|
| 505 |
_process.clear(); |
|
| 506 |
_process.push_back(start); |
|
| 507 |
|
|
| 508 |
int k, n = _nodes->size(); |
|
| 509 |
for (k = 1; k <= n && int(_process.size()) < n; ++k) {
|
|
| 510 |
processNextBuildRound(k); |
|
| 511 |
} |
|
| 512 |
for ( ; k <= n; ++k) {
|
|
| 513 |
processNextFullRound(k); |
|
| 514 |
} |
|
| 515 |
} |
|
| 516 |
|
|
| 517 |
// Process one round and rebuild _process |
|
| 518 |
void processNextBuildRound(int k) {
|
|
| 519 |
std::vector<Node> next; |
|
| 520 |
Node u, v; |
|
| 521 |
Arc e; |
|
| 522 |
LargeCost d; |
|
| 523 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 524 |
u = _process[i]; |
|
| 525 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 526 |
e = _out_arcs[u][j]; |
|
| 527 |
v = _gr.target(e); |
|
| 528 |
d = _data[u][k-1].dist + _cost[e]; |
|
| 529 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 530 |
if (_data[v][k].dist == INF) next.push_back(v); |
|
| 531 |
_data[v][k] = PathData(d, e); |
|
| 532 |
} |
|
| 533 |
} |
|
| 534 |
} |
|
| 535 |
_process.swap(next); |
|
| 536 |
} |
|
| 537 |
|
|
| 538 |
// Process one round using _nodes instead of _process |
|
| 539 |
void processNextFullRound(int k) {
|
|
| 540 |
Node u, v; |
|
| 541 |
Arc e; |
|
| 542 |
LargeCost d; |
|
| 543 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 544 |
u = (*_nodes)[i]; |
|
| 545 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 546 |
e = _out_arcs[u][j]; |
|
| 547 |
v = _gr.target(e); |
|
| 548 |
d = _data[u][k-1].dist + _cost[e]; |
|
| 549 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 550 |
_data[v][k] = PathData(d, e); |
|
| 551 |
} |
|
| 552 |
} |
|
| 553 |
} |
|
| 554 |
} |
|
| 555 |
|
|
| 556 |
// Update the minimum cycle mean |
|
| 557 |
void updateMinMean() {
|
|
| 558 |
int n = _nodes->size(); |
|
| 559 |
for (int i = 0; i < n; ++i) {
|
|
| 560 |
Node u = (*_nodes)[i]; |
|
| 561 |
if (_data[u][n].dist == INF) continue; |
|
| 562 |
LargeCost cost, max_cost = 0; |
|
| 563 |
int size, max_size = 1; |
|
| 564 |
bool found_curr = false; |
|
| 565 |
for (int k = 0; k < n; ++k) {
|
|
| 566 |
if (_data[u][k].dist == INF) continue; |
|
| 567 |
cost = _data[u][n].dist - _data[u][k].dist; |
|
| 568 |
size = n - k; |
|
| 569 |
if (!found_curr || cost * max_size > max_cost * size) {
|
|
| 570 |
found_curr = true; |
|
| 571 |
max_cost = cost; |
|
| 572 |
max_size = size; |
|
| 573 |
} |
|
| 574 |
} |
|
| 575 |
if ( found_curr && (_cycle_node == INVALID || |
|
| 576 |
max_cost * _cycle_size < _cycle_cost * max_size) ) {
|
|
| 577 |
_cycle_cost = max_cost; |
|
| 578 |
_cycle_size = max_size; |
|
| 579 |
_cycle_node = u; |
|
| 580 |
} |
|
| 581 |
} |
|
| 582 |
} |
|
| 583 |
|
|
| 584 |
}; //class KarpMmc |
|
| 585 |
|
|
| 586 |
///@} |
|
| 587 |
|
|
| 588 |
} //namespace lemon |
|
| 589 |
|
|
| 590 |
#endif //LEMON_KARP_MMC_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_PAIRING_HEAP_H |
|
| 20 |
#define LEMON_PAIRING_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Pairing heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
#include <lemon/math.h> |
|
| 30 |
|
|
| 31 |
namespace lemon {
|
|
| 32 |
|
|
| 33 |
/// \ingroup heaps |
|
| 34 |
/// |
|
| 35 |
///\brief Pairing Heap. |
|
| 36 |
/// |
|
| 37 |
/// This class implements the \e pairing \e heap data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 39 |
/// |
|
| 40 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
| 41 |
/// in a pairing heap. In case of many calls of these operations, |
|
| 42 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
| 43 |
/// "binary heap". |
|
| 44 |
/// |
|
| 45 |
/// \tparam PR Type of the priorities of the items. |
|
| 46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 47 |
/// internally to handle the cross references. |
|
| 48 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 49 |
/// The default is \c std::less<PR>. |
|
| 50 |
#ifdef DOXYGEN |
|
| 51 |
template <typename PR, typename IM, typename CMP> |
|
| 52 |
#else |
|
| 53 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 54 |
#endif |
|
| 55 |
class PairingHeap {
|
|
| 56 |
public: |
|
| 57 |
/// Type of the item-int map. |
|
| 58 |
typedef IM ItemIntMap; |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 61 |
/// Type of the items stored in the heap. |
|
| 62 |
typedef typename ItemIntMap::Key Item; |
|
| 63 |
/// Functor type for comparing the priorities. |
|
| 64 |
typedef CMP Compare; |
|
| 65 |
|
|
| 66 |
/// \brief Type to represent the states of the items. |
|
| 67 |
/// |
|
| 68 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 69 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 70 |
/// heap's point of view, but may be useful to the user. |
|
| 71 |
/// |
|
| 72 |
/// The item-int map must be initialized in such way that it assigns |
|
| 73 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 74 |
enum State {
|
|
| 75 |
IN_HEAP = 0, ///< = 0. |
|
| 76 |
PRE_HEAP = -1, ///< = -1. |
|
| 77 |
POST_HEAP = -2 ///< = -2. |
|
| 78 |
}; |
|
| 79 |
|
|
| 80 |
private: |
|
| 81 |
class store; |
|
| 82 |
|
|
| 83 |
std::vector<store> _data; |
|
| 84 |
int _min; |
|
| 85 |
ItemIntMap &_iim; |
|
| 86 |
Compare _comp; |
|
| 87 |
int _num_items; |
|
| 88 |
|
|
| 89 |
public: |
|
| 90 |
/// \brief Constructor. |
|
| 91 |
/// |
|
| 92 |
/// Constructor. |
|
| 93 |
/// \param map A map that assigns \c int values to the items. |
|
| 94 |
/// It is used internally to handle the cross references. |
|
| 95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 96 |
explicit PairingHeap(ItemIntMap &map) |
|
| 97 |
: _min(0), _iim(map), _num_items(0) {}
|
|
| 98 |
|
|
| 99 |
/// \brief Constructor. |
|
| 100 |
/// |
|
| 101 |
/// Constructor. |
|
| 102 |
/// \param map A map that assigns \c int values to the items. |
|
| 103 |
/// It is used internally to handle the cross references. |
|
| 104 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 105 |
/// \param comp The function object used for comparing the priorities. |
|
| 106 |
PairingHeap(ItemIntMap &map, const Compare &comp) |
|
| 107 |
: _min(0), _iim(map), _comp(comp), _num_items(0) {}
|
|
| 108 |
|
|
| 109 |
/// \brief The number of items stored in the heap. |
|
| 110 |
/// |
|
| 111 |
/// This function returns the number of items stored in the heap. |
|
| 112 |
int size() const { return _num_items; }
|
|
| 113 |
|
|
| 114 |
/// \brief Check if the heap is empty. |
|
| 115 |
/// |
|
| 116 |
/// This function returns \c true if the heap is empty. |
|
| 117 |
bool empty() const { return _num_items==0; }
|
|
| 118 |
|
|
| 119 |
/// \brief Make the heap empty. |
|
| 120 |
/// |
|
| 121 |
/// This functon makes the heap empty. |
|
| 122 |
/// It does not change the cross reference map. If you want to reuse |
|
| 123 |
/// a heap that is not surely empty, you should first clear it and |
|
| 124 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 125 |
/// for each item. |
|
| 126 |
void clear() {
|
|
| 127 |
_data.clear(); |
|
| 128 |
_min = 0; |
|
| 129 |
_num_items = 0; |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 133 |
/// not stored in the heap. |
|
| 134 |
/// |
|
| 135 |
/// This method sets the priority of the given item if it is |
|
| 136 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 137 |
/// item into the heap with the given priority. |
|
| 138 |
/// \param item The item. |
|
| 139 |
/// \param value The priority. |
|
| 140 |
void set (const Item& item, const Prio& value) {
|
|
| 141 |
int i=_iim[item]; |
|
| 142 |
if ( i>=0 && _data[i].in ) {
|
|
| 143 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 144 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 145 |
} else push(item, value); |
|
| 146 |
} |
|
| 147 |
|
|
| 148 |
/// \brief Insert an item into the heap with the given priority. |
|
| 149 |
/// |
|
| 150 |
/// This function inserts the given item into the heap with the |
|
| 151 |
/// given priority. |
|
| 152 |
/// \param item The item to insert. |
|
| 153 |
/// \param value The priority of the item. |
|
| 154 |
/// \pre \e item must not be stored in the heap. |
|
| 155 |
void push (const Item& item, const Prio& value) {
|
|
| 156 |
int i=_iim[item]; |
|
| 157 |
if( i<0 ) {
|
|
| 158 |
int s=_data.size(); |
|
| 159 |
_iim.set(item, s); |
|
| 160 |
store st; |
|
| 161 |
st.name=item; |
|
| 162 |
_data.push_back(st); |
|
| 163 |
i=s; |
|
| 164 |
} else {
|
|
| 165 |
_data[i].parent=_data[i].child=-1; |
|
| 166 |
_data[i].left_child=false; |
|
| 167 |
_data[i].degree=0; |
|
| 168 |
_data[i].in=true; |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
_data[i].prio=value; |
|
| 172 |
|
|
| 173 |
if ( _num_items!=0 ) {
|
|
| 174 |
if ( _comp( value, _data[_min].prio) ) {
|
|
| 175 |
fuse(i,_min); |
|
| 176 |
_min=i; |
|
| 177 |
} |
|
| 178 |
else fuse(_min,i); |
|
| 179 |
} |
|
| 180 |
else _min=i; |
|
| 181 |
|
|
| 182 |
++_num_items; |
|
| 183 |
} |
|
| 184 |
|
|
| 185 |
/// \brief Return the item having minimum priority. |
|
| 186 |
/// |
|
| 187 |
/// This function returns the item having minimum priority. |
|
| 188 |
/// \pre The heap must be non-empty. |
|
| 189 |
Item top() const { return _data[_min].name; }
|
|
| 190 |
|
|
| 191 |
/// \brief The minimum priority. |
|
| 192 |
/// |
|
| 193 |
/// This function returns the minimum priority. |
|
| 194 |
/// \pre The heap must be non-empty. |
|
| 195 |
const Prio& prio() const { return _data[_min].prio; }
|
|
| 196 |
|
|
| 197 |
/// \brief The priority of the given item. |
|
| 198 |
/// |
|
| 199 |
/// This function returns the priority of the given item. |
|
| 200 |
/// \param item The item. |
|
| 201 |
/// \pre \e item must be in the heap. |
|
| 202 |
const Prio& operator[](const Item& item) const {
|
|
| 203 |
return _data[_iim[item]].prio; |
|
| 204 |
} |
|
| 205 |
|
|
| 206 |
/// \brief Remove the item having minimum priority. |
|
| 207 |
/// |
|
| 208 |
/// This function removes the item having minimum priority. |
|
| 209 |
/// \pre The heap must be non-empty. |
|
| 210 |
void pop() {
|
|
| 211 |
std::vector<int> trees; |
|
| 212 |
int i=0, child_right = 0; |
|
| 213 |
_data[_min].in=false; |
|
| 214 |
|
|
| 215 |
if( -1!=_data[_min].child ) {
|
|
| 216 |
i=_data[_min].child; |
|
| 217 |
trees.push_back(i); |
|
| 218 |
_data[i].parent = -1; |
|
| 219 |
_data[_min].child = -1; |
|
| 220 |
|
|
| 221 |
int ch=-1; |
|
| 222 |
while( _data[i].child!=-1 ) {
|
|
| 223 |
ch=_data[i].child; |
|
| 224 |
if( _data[ch].left_child && i==_data[ch].parent ) {
|
|
| 225 |
break; |
|
| 226 |
} else {
|
|
| 227 |
if( _data[ch].left_child ) {
|
|
| 228 |
child_right=_data[ch].parent; |
|
| 229 |
_data[ch].parent = i; |
|
| 230 |
--_data[i].degree; |
|
| 231 |
} |
|
| 232 |
else {
|
|
| 233 |
child_right=ch; |
|
| 234 |
_data[i].child=-1; |
|
| 235 |
_data[i].degree=0; |
|
| 236 |
} |
|
| 237 |
_data[child_right].parent = -1; |
|
| 238 |
trees.push_back(child_right); |
|
| 239 |
i = child_right; |
|
| 240 |
} |
|
| 241 |
} |
|
| 242 |
|
|
| 243 |
int num_child = trees.size(); |
|
| 244 |
int other; |
|
| 245 |
for( i=0; i<num_child-1; i+=2 ) {
|
|
| 246 |
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
|
|
| 247 |
other=trees[i]; |
|
| 248 |
trees[i]=trees[i+1]; |
|
| 249 |
trees[i+1]=other; |
|
| 250 |
} |
|
| 251 |
fuse( trees[i], trees[i+1] ); |
|
| 252 |
} |
|
| 253 |
|
|
| 254 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
|
| 255 |
while(i>=2) {
|
|
| 256 |
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
|
|
| 257 |
other=trees[i]; |
|
| 258 |
trees[i]=trees[i-2]; |
|
| 259 |
trees[i-2]=other; |
|
| 260 |
} |
|
| 261 |
fuse( trees[i-2], trees[i] ); |
|
| 262 |
i-=2; |
|
| 263 |
} |
|
| 264 |
_min = trees[0]; |
|
| 265 |
} |
|
| 266 |
else {
|
|
| 267 |
_min = _data[_min].child; |
|
| 268 |
} |
|
| 269 |
|
|
| 270 |
if (_min >= 0) _data[_min].left_child = false; |
|
| 271 |
--_num_items; |
|
| 272 |
} |
|
| 273 |
|
|
| 274 |
/// \brief Remove the given item from the heap. |
|
| 275 |
/// |
|
| 276 |
/// This function removes the given item from the heap if it is |
|
| 277 |
/// already stored. |
|
| 278 |
/// \param item The item to delete. |
|
| 279 |
/// \pre \e item must be in the heap. |
|
| 280 |
void erase (const Item& item) {
|
|
| 281 |
int i=_iim[item]; |
|
| 282 |
if ( i>=0 && _data[i].in ) {
|
|
| 283 |
decrease( item, _data[_min].prio-1 ); |
|
| 284 |
pop(); |
|
| 285 |
} |
|
| 286 |
} |
|
| 287 |
|
|
| 288 |
/// \brief Decrease the priority of an item to the given value. |
|
| 289 |
/// |
|
| 290 |
/// This function decreases the priority of an item to the given value. |
|
| 291 |
/// \param item The item. |
|
| 292 |
/// \param value The priority. |
|
| 293 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
| 294 |
void decrease (Item item, const Prio& value) {
|
|
| 295 |
int i=_iim[item]; |
|
| 296 |
_data[i].prio=value; |
|
| 297 |
int p=_data[i].parent; |
|
| 298 |
|
|
| 299 |
if( _data[i].left_child && i!=_data[p].child ) {
|
|
| 300 |
p=_data[p].parent; |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
if ( p!=-1 && _comp(value,_data[p].prio) ) {
|
|
| 304 |
cut(i,p); |
|
| 305 |
if ( _comp(_data[_min].prio,value) ) {
|
|
| 306 |
fuse(_min,i); |
|
| 307 |
} else {
|
|
| 308 |
fuse(i,_min); |
|
| 309 |
_min=i; |
|
| 310 |
} |
|
| 311 |
} |
|
| 312 |
} |
|
| 313 |
|
|
| 314 |
/// \brief Increase the priority of an item to the given value. |
|
| 315 |
/// |
|
| 316 |
/// This function increases the priority of an item to the given value. |
|
| 317 |
/// \param item The item. |
|
| 318 |
/// \param value The priority. |
|
| 319 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
| 320 |
void increase (Item item, const Prio& value) {
|
|
| 321 |
erase(item); |
|
| 322 |
push(item,value); |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
/// \brief Return the state of an item. |
|
| 326 |
/// |
|
| 327 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 328 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 329 |
/// and \c POST_HEAP otherwise. |
|
| 330 |
/// In the latter case it is possible that the item will get back |
|
| 331 |
/// to the heap again. |
|
| 332 |
/// \param item The item. |
|
| 333 |
State state(const Item &item) const {
|
|
| 334 |
int i=_iim[item]; |
|
| 335 |
if( i>=0 ) {
|
|
| 336 |
if( _data[i].in ) i=0; |
|
| 337 |
else i=-2; |
|
| 338 |
} |
|
| 339 |
return State(i); |
|
| 340 |
} |
|
| 341 |
|
|
| 342 |
/// \brief Set the state of an item in the heap. |
|
| 343 |
/// |
|
| 344 |
/// This function sets the state of the given item in the heap. |
|
| 345 |
/// It can be used to manually clear the heap when it is important |
|
| 346 |
/// to achive better time complexity. |
|
| 347 |
/// \param i The item. |
|
| 348 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 349 |
void state(const Item& i, State st) {
|
|
| 350 |
switch (st) {
|
|
| 351 |
case POST_HEAP: |
|
| 352 |
case PRE_HEAP: |
|
| 353 |
if (state(i) == IN_HEAP) erase(i); |
|
| 354 |
_iim[i]=st; |
|
| 355 |
break; |
|
| 356 |
case IN_HEAP: |
|
| 357 |
break; |
|
| 358 |
} |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
private: |
|
| 362 |
|
|
| 363 |
void cut(int a, int b) {
|
|
| 364 |
int child_a; |
|
| 365 |
switch (_data[a].degree) {
|
|
| 366 |
case 2: |
|
| 367 |
child_a = _data[_data[a].child].parent; |
|
| 368 |
if( _data[a].left_child ) {
|
|
| 369 |
_data[child_a].left_child=true; |
|
| 370 |
_data[b].child=child_a; |
|
| 371 |
_data[child_a].parent=_data[a].parent; |
|
| 372 |
} |
|
| 373 |
else {
|
|
| 374 |
_data[child_a].left_child=false; |
|
| 375 |
_data[child_a].parent=b; |
|
| 376 |
if( a!=_data[b].child ) |
|
| 377 |
_data[_data[b].child].parent=child_a; |
|
| 378 |
else |
|
| 379 |
_data[b].child=child_a; |
|
| 380 |
} |
|
| 381 |
--_data[a].degree; |
|
| 382 |
_data[_data[a].child].parent=a; |
|
| 383 |
break; |
|
| 384 |
|
|
| 385 |
case 1: |
|
| 386 |
child_a = _data[a].child; |
|
| 387 |
if( !_data[child_a].left_child ) {
|
|
| 388 |
--_data[a].degree; |
|
| 389 |
if( _data[a].left_child ) {
|
|
| 390 |
_data[child_a].left_child=true; |
|
| 391 |
_data[child_a].parent=_data[a].parent; |
|
| 392 |
_data[b].child=child_a; |
|
| 393 |
} |
|
| 394 |
else {
|
|
| 395 |
_data[child_a].left_child=false; |
|
| 396 |
_data[child_a].parent=b; |
|
| 397 |
if( a!=_data[b].child ) |
|
| 398 |
_data[_data[b].child].parent=child_a; |
|
| 399 |
else |
|
| 400 |
_data[b].child=child_a; |
|
| 401 |
} |
|
| 402 |
_data[a].child=-1; |
|
| 403 |
} |
|
| 404 |
else {
|
|
| 405 |
--_data[b].degree; |
|
| 406 |
if( _data[a].left_child ) {
|
|
| 407 |
_data[b].child = |
|
| 408 |
(1==_data[b].degree) ? _data[a].parent : -1; |
|
| 409 |
} else {
|
|
| 410 |
if (1==_data[b].degree) |
|
| 411 |
_data[_data[b].child].parent=b; |
|
| 412 |
else |
|
| 413 |
_data[b].child=-1; |
|
| 414 |
} |
|
| 415 |
} |
|
| 416 |
break; |
|
| 417 |
|
|
| 418 |
case 0: |
|
| 419 |
--_data[b].degree; |
|
| 420 |
if( _data[a].left_child ) {
|
|
| 421 |
_data[b].child = |
|
| 422 |
(0!=_data[b].degree) ? _data[a].parent : -1; |
|
| 423 |
} else {
|
|
| 424 |
if( 0!=_data[b].degree ) |
|
| 425 |
_data[_data[b].child].parent=b; |
|
| 426 |
else |
|
| 427 |
_data[b].child=-1; |
|
| 428 |
} |
|
| 429 |
break; |
|
| 430 |
} |
|
| 431 |
_data[a].parent=-1; |
|
| 432 |
_data[a].left_child=false; |
|
| 433 |
} |
|
| 434 |
|
|
| 435 |
void fuse(int a, int b) {
|
|
| 436 |
int child_a = _data[a].child; |
|
| 437 |
int child_b = _data[b].child; |
|
| 438 |
_data[a].child=b; |
|
| 439 |
_data[b].parent=a; |
|
| 440 |
_data[b].left_child=true; |
|
| 441 |
|
|
| 442 |
if( -1!=child_a ) {
|
|
| 443 |
_data[b].child=child_a; |
|
| 444 |
_data[child_a].parent=b; |
|
| 445 |
_data[child_a].left_child=false; |
|
| 446 |
++_data[b].degree; |
|
| 447 |
|
|
| 448 |
if( -1!=child_b ) {
|
|
| 449 |
_data[b].child=child_b; |
|
| 450 |
_data[child_b].parent=child_a; |
|
| 451 |
} |
|
| 452 |
} |
|
| 453 |
else { ++_data[a].degree; }
|
|
| 454 |
} |
|
| 455 |
|
|
| 456 |
class store {
|
|
| 457 |
friend class PairingHeap; |
|
| 458 |
|
|
| 459 |
Item name; |
|
| 460 |
int parent; |
|
| 461 |
int child; |
|
| 462 |
bool left_child; |
|
| 463 |
int degree; |
|
| 464 |
bool in; |
|
| 465 |
Prio prio; |
|
| 466 |
|
|
| 467 |
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
|
|
| 468 |
}; |
|
| 469 |
}; |
|
| 470 |
|
|
| 471 |
} //namespace lemon |
|
| 472 |
|
|
| 473 |
#endif //LEMON_PAIRING_HEAP_H |
|
| 474 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_PLANARITY_H |
|
| 20 |
#define LEMON_PLANARITY_H |
|
| 21 |
|
|
| 22 |
/// \ingroup planar |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Planarity checking, embedding, drawing and coloring |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <list> |
|
| 28 |
|
|
| 29 |
#include <lemon/dfs.h> |
|
| 30 |
#include <lemon/bfs.h> |
|
| 31 |
#include <lemon/radix_sort.h> |
|
| 32 |
#include <lemon/maps.h> |
|
| 33 |
#include <lemon/path.h> |
|
| 34 |
#include <lemon/bucket_heap.h> |
|
| 35 |
#include <lemon/adaptors.h> |
|
| 36 |
#include <lemon/edge_set.h> |
|
| 37 |
#include <lemon/color.h> |
|
| 38 |
#include <lemon/dim2.h> |
|
| 39 |
|
|
| 40 |
namespace lemon {
|
|
| 41 |
|
|
| 42 |
namespace _planarity_bits {
|
|
| 43 |
|
|
| 44 |
template <typename Graph> |
|
| 45 |
struct PlanarityVisitor : DfsVisitor<Graph> {
|
|
| 46 |
|
|
| 47 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 48 |
|
|
| 49 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 50 |
|
|
| 51 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
| 52 |
|
|
| 53 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
| 54 |
typedef std::vector<Node> OrderList; |
|
| 55 |
|
|
| 56 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
| 57 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
| 58 |
|
|
| 59 |
PlanarityVisitor(const Graph& graph, |
|
| 60 |
PredMap& pred_map, TreeMap& tree_map, |
|
| 61 |
OrderMap& order_map, OrderList& order_list, |
|
| 62 |
AncestorMap& ancestor_map, LowMap& low_map) |
|
| 63 |
: _graph(graph), _pred_map(pred_map), _tree_map(tree_map), |
|
| 64 |
_order_map(order_map), _order_list(order_list), |
|
| 65 |
_ancestor_map(ancestor_map), _low_map(low_map) {}
|
|
| 66 |
|
|
| 67 |
void reach(const Node& node) {
|
|
| 68 |
_order_map[node] = _order_list.size(); |
|
| 69 |
_low_map[node] = _order_list.size(); |
|
| 70 |
_ancestor_map[node] = _order_list.size(); |
|
| 71 |
_order_list.push_back(node); |
|
| 72 |
} |
|
| 73 |
|
|
| 74 |
void discover(const Arc& arc) {
|
|
| 75 |
Node source = _graph.source(arc); |
|
| 76 |
Node target = _graph.target(arc); |
|
| 77 |
|
|
| 78 |
_tree_map[arc] = true; |
|
| 79 |
_pred_map[target] = arc; |
|
| 80 |
} |
|
| 81 |
|
|
| 82 |
void examine(const Arc& arc) {
|
|
| 83 |
Node source = _graph.source(arc); |
|
| 84 |
Node target = _graph.target(arc); |
|
| 85 |
|
|
| 86 |
if (_order_map[target] < _order_map[source] && !_tree_map[arc]) {
|
|
| 87 |
if (_low_map[source] > _order_map[target]) {
|
|
| 88 |
_low_map[source] = _order_map[target]; |
|
| 89 |
} |
|
| 90 |
if (_ancestor_map[source] > _order_map[target]) {
|
|
| 91 |
_ancestor_map[source] = _order_map[target]; |
|
| 92 |
} |
|
| 93 |
} |
|
| 94 |
} |
|
| 95 |
|
|
| 96 |
void backtrack(const Arc& arc) {
|
|
| 97 |
Node source = _graph.source(arc); |
|
| 98 |
Node target = _graph.target(arc); |
|
| 99 |
|
|
| 100 |
if (_low_map[source] > _low_map[target]) {
|
|
| 101 |
_low_map[source] = _low_map[target]; |
|
| 102 |
} |
|
| 103 |
} |
|
| 104 |
|
|
| 105 |
const Graph& _graph; |
|
| 106 |
PredMap& _pred_map; |
|
| 107 |
TreeMap& _tree_map; |
|
| 108 |
OrderMap& _order_map; |
|
| 109 |
OrderList& _order_list; |
|
| 110 |
AncestorMap& _ancestor_map; |
|
| 111 |
LowMap& _low_map; |
|
| 112 |
}; |
|
| 113 |
|
|
| 114 |
template <typename Graph, bool embedding = true> |
|
| 115 |
struct NodeDataNode {
|
|
| 116 |
int prev, next; |
|
| 117 |
int visited; |
|
| 118 |
typename Graph::Arc first; |
|
| 119 |
bool inverted; |
|
| 120 |
}; |
|
| 121 |
|
|
| 122 |
template <typename Graph> |
|
| 123 |
struct NodeDataNode<Graph, false> {
|
|
| 124 |
int prev, next; |
|
| 125 |
int visited; |
|
| 126 |
}; |
|
| 127 |
|
|
| 128 |
template <typename Graph> |
|
| 129 |
struct ChildListNode {
|
|
| 130 |
typedef typename Graph::Node Node; |
|
| 131 |
Node first; |
|
| 132 |
Node prev, next; |
|
| 133 |
}; |
|
| 134 |
|
|
| 135 |
template <typename Graph> |
|
| 136 |
struct ArcListNode {
|
|
| 137 |
typename Graph::Arc prev, next; |
|
| 138 |
}; |
|
| 139 |
|
|
| 140 |
template <typename Graph> |
|
| 141 |
class PlanarityChecking {
|
|
| 142 |
private: |
|
| 143 |
|
|
| 144 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 145 |
|
|
| 146 |
const Graph& _graph; |
|
| 147 |
|
|
| 148 |
private: |
|
| 149 |
|
|
| 150 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 151 |
|
|
| 152 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
| 153 |
|
|
| 154 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
| 155 |
typedef std::vector<Node> OrderList; |
|
| 156 |
|
|
| 157 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
| 158 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
| 159 |
|
|
| 160 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
| 161 |
typedef std::vector<NodeDataNode> NodeData; |
|
| 162 |
|
|
| 163 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
| 164 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
| 165 |
|
|
| 166 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
| 167 |
|
|
| 168 |
typedef typename Graph::template NodeMap<bool> EmbedArc; |
|
| 169 |
|
|
| 170 |
public: |
|
| 171 |
|
|
| 172 |
PlanarityChecking(const Graph& graph) : _graph(graph) {}
|
|
| 173 |
|
|
| 174 |
bool run() {
|
|
| 175 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
| 176 |
|
|
| 177 |
PredMap pred_map(_graph, INVALID); |
|
| 178 |
TreeMap tree_map(_graph, false); |
|
| 179 |
|
|
| 180 |
OrderMap order_map(_graph, -1); |
|
| 181 |
OrderList order_list; |
|
| 182 |
|
|
| 183 |
AncestorMap ancestor_map(_graph, -1); |
|
| 184 |
LowMap low_map(_graph, -1); |
|
| 185 |
|
|
| 186 |
Visitor visitor(_graph, pred_map, tree_map, |
|
| 187 |
order_map, order_list, ancestor_map, low_map); |
|
| 188 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
| 189 |
visit.run(); |
|
| 190 |
|
|
| 191 |
ChildLists child_lists(_graph); |
|
| 192 |
createChildLists(tree_map, order_map, low_map, child_lists); |
|
| 193 |
|
|
| 194 |
NodeData node_data(2 * order_list.size()); |
|
| 195 |
|
|
| 196 |
EmbedArc embed_arc(_graph, false); |
|
| 197 |
|
|
| 198 |
MergeRoots merge_roots(_graph); |
|
| 199 |
|
|
| 200 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
|
| 201 |
|
|
| 202 |
Node node = order_list[i]; |
|
| 203 |
|
|
| 204 |
Node source = node; |
|
| 205 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 206 |
Node target = _graph.target(e); |
|
| 207 |
|
|
| 208 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 209 |
initFace(target, node_data, order_map, order_list); |
|
| 210 |
} |
|
| 211 |
} |
|
| 212 |
|
|
| 213 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 214 |
Node target = _graph.target(e); |
|
| 215 |
|
|
| 216 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 217 |
embed_arc[target] = true; |
|
| 218 |
walkUp(target, source, i, pred_map, low_map, |
|
| 219 |
order_map, order_list, node_data, merge_roots); |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
for (typename MergeRoots::Value::iterator it = |
|
| 224 |
merge_roots[node].begin(); |
|
| 225 |
it != merge_roots[node].end(); ++it) {
|
|
| 226 |
int rn = *it; |
|
| 227 |
walkDown(rn, i, node_data, order_list, child_lists, |
|
| 228 |
ancestor_map, low_map, embed_arc, merge_roots); |
|
| 229 |
} |
|
| 230 |
merge_roots[node].clear(); |
|
| 231 |
|
|
| 232 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 233 |
Node target = _graph.target(e); |
|
| 234 |
|
|
| 235 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 236 |
if (embed_arc[target]) {
|
|
| 237 |
return false; |
|
| 238 |
} |
|
| 239 |
} |
|
| 240 |
} |
|
| 241 |
} |
|
| 242 |
|
|
| 243 |
return true; |
|
| 244 |
} |
|
| 245 |
|
|
| 246 |
private: |
|
| 247 |
|
|
| 248 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
| 249 |
const LowMap& low_map, ChildLists& child_lists) {
|
|
| 250 |
|
|
| 251 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 252 |
Node source = n; |
|
| 253 |
|
|
| 254 |
std::vector<Node> targets; |
|
| 255 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 256 |
Node target = _graph.target(e); |
|
| 257 |
|
|
| 258 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 259 |
targets.push_back(target); |
|
| 260 |
} |
|
| 261 |
} |
|
| 262 |
|
|
| 263 |
if (targets.size() == 0) {
|
|
| 264 |
child_lists[source].first = INVALID; |
|
| 265 |
} else if (targets.size() == 1) {
|
|
| 266 |
child_lists[source].first = targets[0]; |
|
| 267 |
child_lists[targets[0]].prev = INVALID; |
|
| 268 |
child_lists[targets[0]].next = INVALID; |
|
| 269 |
} else {
|
|
| 270 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
| 271 |
for (int i = 1; i < int(targets.size()); ++i) {
|
|
| 272 |
child_lists[targets[i]].prev = targets[i - 1]; |
|
| 273 |
child_lists[targets[i - 1]].next = targets[i]; |
|
| 274 |
} |
|
| 275 |
child_lists[targets.back()].next = INVALID; |
|
| 276 |
child_lists[targets.front()].prev = INVALID; |
|
| 277 |
child_lists[source].first = targets.front(); |
|
| 278 |
} |
|
| 279 |
} |
|
| 280 |
} |
|
| 281 |
|
|
| 282 |
void walkUp(const Node& node, Node root, int rorder, |
|
| 283 |
const PredMap& pred_map, const LowMap& low_map, |
|
| 284 |
const OrderMap& order_map, const OrderList& order_list, |
|
| 285 |
NodeData& node_data, MergeRoots& merge_roots) {
|
|
| 286 |
|
|
| 287 |
int na, nb; |
|
| 288 |
bool da, db; |
|
| 289 |
|
|
| 290 |
na = nb = order_map[node]; |
|
| 291 |
da = true; db = false; |
|
| 292 |
|
|
| 293 |
while (true) {
|
|
| 294 |
|
|
| 295 |
if (node_data[na].visited == rorder) break; |
|
| 296 |
if (node_data[nb].visited == rorder) break; |
|
| 297 |
|
|
| 298 |
node_data[na].visited = rorder; |
|
| 299 |
node_data[nb].visited = rorder; |
|
| 300 |
|
|
| 301 |
int rn = -1; |
|
| 302 |
|
|
| 303 |
if (na >= int(order_list.size())) {
|
|
| 304 |
rn = na; |
|
| 305 |
} else if (nb >= int(order_list.size())) {
|
|
| 306 |
rn = nb; |
|
| 307 |
} |
|
| 308 |
|
|
| 309 |
if (rn == -1) {
|
|
| 310 |
int nn; |
|
| 311 |
|
|
| 312 |
nn = da ? node_data[na].prev : node_data[na].next; |
|
| 313 |
da = node_data[nn].prev != na; |
|
| 314 |
na = nn; |
|
| 315 |
|
|
| 316 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
|
| 317 |
db = node_data[nn].prev != nb; |
|
| 318 |
nb = nn; |
|
| 319 |
|
|
| 320 |
} else {
|
|
| 321 |
|
|
| 322 |
Node rep = order_list[rn - order_list.size()]; |
|
| 323 |
Node parent = _graph.source(pred_map[rep]); |
|
| 324 |
|
|
| 325 |
if (low_map[rep] < rorder) {
|
|
| 326 |
merge_roots[parent].push_back(rn); |
|
| 327 |
} else {
|
|
| 328 |
merge_roots[parent].push_front(rn); |
|
| 329 |
} |
|
| 330 |
|
|
| 331 |
if (parent != root) {
|
|
| 332 |
na = nb = order_map[parent]; |
|
| 333 |
da = true; db = false; |
|
| 334 |
} else {
|
|
| 335 |
break; |
|
| 336 |
} |
|
| 337 |
} |
|
| 338 |
} |
|
| 339 |
} |
|
| 340 |
|
|
| 341 |
void walkDown(int rn, int rorder, NodeData& node_data, |
|
| 342 |
OrderList& order_list, ChildLists& child_lists, |
|
| 343 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
| 344 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 345 |
|
|
| 346 |
std::vector<std::pair<int, bool> > merge_stack; |
|
| 347 |
|
|
| 348 |
for (int di = 0; di < 2; ++di) {
|
|
| 349 |
bool rd = di == 0; |
|
| 350 |
int pn = rn; |
|
| 351 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
| 352 |
|
|
| 353 |
while (n != rn) {
|
|
| 354 |
|
|
| 355 |
Node node = order_list[n]; |
|
| 356 |
|
|
| 357 |
if (embed_arc[node]) {
|
|
| 358 |
|
|
| 359 |
// Merging components on the critical path |
|
| 360 |
while (!merge_stack.empty()) {
|
|
| 361 |
|
|
| 362 |
// Component root |
|
| 363 |
int cn = merge_stack.back().first; |
|
| 364 |
bool cd = merge_stack.back().second; |
|
| 365 |
merge_stack.pop_back(); |
|
| 366 |
|
|
| 367 |
// Parent of component |
|
| 368 |
int dn = merge_stack.back().first; |
|
| 369 |
bool dd = merge_stack.back().second; |
|
| 370 |
merge_stack.pop_back(); |
|
| 371 |
|
|
| 372 |
Node parent = order_list[dn]; |
|
| 373 |
|
|
| 374 |
// Erasing from merge_roots |
|
| 375 |
merge_roots[parent].pop_front(); |
|
| 376 |
|
|
| 377 |
Node child = order_list[cn - order_list.size()]; |
|
| 378 |
|
|
| 379 |
// Erasing from child_lists |
|
| 380 |
if (child_lists[child].prev != INVALID) {
|
|
| 381 |
child_lists[child_lists[child].prev].next = |
|
| 382 |
child_lists[child].next; |
|
| 383 |
} else {
|
|
| 384 |
child_lists[parent].first = child_lists[child].next; |
|
| 385 |
} |
|
| 386 |
|
|
| 387 |
if (child_lists[child].next != INVALID) {
|
|
| 388 |
child_lists[child_lists[child].next].prev = |
|
| 389 |
child_lists[child].prev; |
|
| 390 |
} |
|
| 391 |
|
|
| 392 |
// Merging external faces |
|
| 393 |
{
|
|
| 394 |
int en = cn; |
|
| 395 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
| 396 |
cd = node_data[cn].next == en; |
|
| 397 |
|
|
| 398 |
} |
|
| 399 |
|
|
| 400 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
| 401 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
| 402 |
|
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
bool d = pn == node_data[n].prev; |
|
| 406 |
|
|
| 407 |
if (node_data[n].prev == node_data[n].next && |
|
| 408 |
node_data[n].inverted) {
|
|
| 409 |
d = !d; |
|
| 410 |
} |
|
| 411 |
|
|
| 412 |
// Embedding arc into external face |
|
| 413 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
| 414 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
| 415 |
pn = rn; |
|
| 416 |
|
|
| 417 |
embed_arc[order_list[n]] = false; |
|
| 418 |
} |
|
| 419 |
|
|
| 420 |
if (!merge_roots[node].empty()) {
|
|
| 421 |
|
|
| 422 |
bool d = pn == node_data[n].prev; |
|
| 423 |
|
|
| 424 |
merge_stack.push_back(std::make_pair(n, d)); |
|
| 425 |
|
|
| 426 |
int rn = merge_roots[node].front(); |
|
| 427 |
|
|
| 428 |
int xn = node_data[rn].next; |
|
| 429 |
Node xnode = order_list[xn]; |
|
| 430 |
|
|
| 431 |
int yn = node_data[rn].prev; |
|
| 432 |
Node ynode = order_list[yn]; |
|
| 433 |
|
|
| 434 |
bool rd; |
|
| 435 |
if (!external(xnode, rorder, child_lists, |
|
| 436 |
ancestor_map, low_map)) {
|
|
| 437 |
rd = true; |
|
| 438 |
} else if (!external(ynode, rorder, child_lists, |
|
| 439 |
ancestor_map, low_map)) {
|
|
| 440 |
rd = false; |
|
| 441 |
} else if (pertinent(xnode, embed_arc, merge_roots)) {
|
|
| 442 |
rd = true; |
|
| 443 |
} else {
|
|
| 444 |
rd = false; |
|
| 445 |
} |
|
| 446 |
|
|
| 447 |
merge_stack.push_back(std::make_pair(rn, rd)); |
|
| 448 |
|
|
| 449 |
pn = rn; |
|
| 450 |
n = rd ? xn : yn; |
|
| 451 |
|
|
| 452 |
} else if (!external(node, rorder, child_lists, |
|
| 453 |
ancestor_map, low_map)) {
|
|
| 454 |
int nn = (node_data[n].next != pn ? |
|
| 455 |
node_data[n].next : node_data[n].prev); |
|
| 456 |
|
|
| 457 |
bool nd = n == node_data[nn].prev; |
|
| 458 |
|
|
| 459 |
if (nd) node_data[nn].prev = pn; |
|
| 460 |
else node_data[nn].next = pn; |
|
| 461 |
|
|
| 462 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
| 463 |
else node_data[pn].next = nn; |
|
| 464 |
|
|
| 465 |
node_data[nn].inverted = |
|
| 466 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
|
| 467 |
|
|
| 468 |
n = nn; |
|
| 469 |
} |
|
| 470 |
else break; |
|
| 471 |
|
|
| 472 |
} |
|
| 473 |
|
|
| 474 |
if (!merge_stack.empty() || n == rn) {
|
|
| 475 |
break; |
|
| 476 |
} |
|
| 477 |
} |
|
| 478 |
} |
|
| 479 |
|
|
| 480 |
void initFace(const Node& node, NodeData& node_data, |
|
| 481 |
const OrderMap& order_map, const OrderList& order_list) {
|
|
| 482 |
int n = order_map[node]; |
|
| 483 |
int rn = n + order_list.size(); |
|
| 484 |
|
|
| 485 |
node_data[n].next = node_data[n].prev = rn; |
|
| 486 |
node_data[rn].next = node_data[rn].prev = n; |
|
| 487 |
|
|
| 488 |
node_data[n].visited = order_list.size(); |
|
| 489 |
node_data[rn].visited = order_list.size(); |
|
| 490 |
|
|
| 491 |
} |
|
| 492 |
|
|
| 493 |
bool external(const Node& node, int rorder, |
|
| 494 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 495 |
LowMap& low_map) {
|
|
| 496 |
Node child = child_lists[node].first; |
|
| 497 |
|
|
| 498 |
if (child != INVALID) {
|
|
| 499 |
if (low_map[child] < rorder) return true; |
|
| 500 |
} |
|
| 501 |
|
|
| 502 |
if (ancestor_map[node] < rorder) return true; |
|
| 503 |
|
|
| 504 |
return false; |
|
| 505 |
} |
|
| 506 |
|
|
| 507 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
| 508 |
const MergeRoots& merge_roots) {
|
|
| 509 |
return !merge_roots[node].empty() || embed_arc[node]; |
|
| 510 |
} |
|
| 511 |
|
|
| 512 |
}; |
|
| 513 |
|
|
| 514 |
} |
|
| 515 |
|
|
| 516 |
/// \ingroup planar |
|
| 517 |
/// |
|
| 518 |
/// \brief Planarity checking of an undirected simple graph |
|
| 519 |
/// |
|
| 520 |
/// This function implements the Boyer-Myrvold algorithm for |
|
| 521 |
/// planarity checking of an undirected simple graph. It is a simplified |
|
| 522 |
/// version of the PlanarEmbedding algorithm class because neither |
|
| 523 |
/// the embedding nor the Kuratowski subdivisons are computed. |
|
| 524 |
template <typename GR> |
|
| 525 |
bool checkPlanarity(const GR& graph) {
|
|
| 526 |
_planarity_bits::PlanarityChecking<GR> pc(graph); |
|
| 527 |
return pc.run(); |
|
| 528 |
} |
|
| 529 |
|
|
| 530 |
/// \ingroup planar |
|
| 531 |
/// |
|
| 532 |
/// \brief Planar embedding of an undirected simple graph |
|
| 533 |
/// |
|
| 534 |
/// This class implements the Boyer-Myrvold algorithm for planar |
|
| 535 |
/// embedding of an undirected simple graph. The planar embedding is an |
|
| 536 |
/// ordering of the outgoing edges of the nodes, which is a possible |
|
| 537 |
/// configuration to draw the graph in the plane. If there is not |
|
| 538 |
/// such ordering then the graph contains a K<sub>5</sub> (full graph |
|
| 539 |
/// with 5 nodes) or a K<sub>3,3</sub> (complete bipartite graph on |
|
| 540 |
/// 3 Red and 3 Blue nodes) subdivision. |
|
| 541 |
/// |
|
| 542 |
/// The current implementation calculates either an embedding or a |
|
| 543 |
/// Kuratowski subdivision. The running time of the algorithm is O(n). |
|
| 544 |
/// |
|
| 545 |
/// \see PlanarDrawing, checkPlanarity() |
|
| 546 |
template <typename Graph> |
|
| 547 |
class PlanarEmbedding {
|
|
| 548 |
private: |
|
| 549 |
|
|
| 550 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 551 |
|
|
| 552 |
const Graph& _graph; |
|
| 553 |
typename Graph::template ArcMap<Arc> _embedding; |
|
| 554 |
|
|
| 555 |
typename Graph::template EdgeMap<bool> _kuratowski; |
|
| 556 |
|
|
| 557 |
private: |
|
| 558 |
|
|
| 559 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 560 |
|
|
| 561 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
| 562 |
|
|
| 563 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
| 564 |
typedef std::vector<Node> OrderList; |
|
| 565 |
|
|
| 566 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
| 567 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
| 568 |
|
|
| 569 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
| 570 |
typedef std::vector<NodeDataNode> NodeData; |
|
| 571 |
|
|
| 572 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
| 573 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
| 574 |
|
|
| 575 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
| 576 |
|
|
| 577 |
typedef typename Graph::template NodeMap<Arc> EmbedArc; |
|
| 578 |
|
|
| 579 |
typedef _planarity_bits::ArcListNode<Graph> ArcListNode; |
|
| 580 |
typedef typename Graph::template ArcMap<ArcListNode> ArcLists; |
|
| 581 |
|
|
| 582 |
typedef typename Graph::template NodeMap<bool> FlipMap; |
|
| 583 |
|
|
| 584 |
typedef typename Graph::template NodeMap<int> TypeMap; |
|
| 585 |
|
|
| 586 |
enum IsolatorNodeType {
|
|
| 587 |
HIGHX = 6, LOWX = 7, |
|
| 588 |
HIGHY = 8, LOWY = 9, |
|
| 589 |
ROOT = 10, PERTINENT = 11, |
|
| 590 |
INTERNAL = 12 |
|
| 591 |
}; |
|
| 592 |
|
|
| 593 |
public: |
|
| 594 |
|
|
| 595 |
/// \brief The map type for storing the embedding |
|
| 596 |
/// |
|
| 597 |
/// The map type for storing the embedding. |
|
| 598 |
/// \see embeddingMap() |
|
| 599 |
typedef typename Graph::template ArcMap<Arc> EmbeddingMap; |
|
| 600 |
|
|
| 601 |
/// \brief Constructor |
|
| 602 |
/// |
|
| 603 |
/// Constructor. |
|
| 604 |
/// \pre The graph must be simple, i.e. it should not |
|
| 605 |
/// contain parallel or loop arcs. |
|
| 606 |
PlanarEmbedding(const Graph& graph) |
|
| 607 |
: _graph(graph), _embedding(_graph), _kuratowski(graph, false) {}
|
|
| 608 |
|
|
| 609 |
/// \brief Run the algorithm. |
|
| 610 |
/// |
|
| 611 |
/// This function runs the algorithm. |
|
| 612 |
/// \param kuratowski If this parameter is set to \c false, then the |
|
| 613 |
/// algorithm does not compute a Kuratowski subdivision. |
|
| 614 |
/// \return \c true if the graph is planar. |
|
| 615 |
bool run(bool kuratowski = true) {
|
|
| 616 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
| 617 |
|
|
| 618 |
PredMap pred_map(_graph, INVALID); |
|
| 619 |
TreeMap tree_map(_graph, false); |
|
| 620 |
|
|
| 621 |
OrderMap order_map(_graph, -1); |
|
| 622 |
OrderList order_list; |
|
| 623 |
|
|
| 624 |
AncestorMap ancestor_map(_graph, -1); |
|
| 625 |
LowMap low_map(_graph, -1); |
|
| 626 |
|
|
| 627 |
Visitor visitor(_graph, pred_map, tree_map, |
|
| 628 |
order_map, order_list, ancestor_map, low_map); |
|
| 629 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
| 630 |
visit.run(); |
|
| 631 |
|
|
| 632 |
ChildLists child_lists(_graph); |
|
| 633 |
createChildLists(tree_map, order_map, low_map, child_lists); |
|
| 634 |
|
|
| 635 |
NodeData node_data(2 * order_list.size()); |
|
| 636 |
|
|
| 637 |
EmbedArc embed_arc(_graph, INVALID); |
|
| 638 |
|
|
| 639 |
MergeRoots merge_roots(_graph); |
|
| 640 |
|
|
| 641 |
ArcLists arc_lists(_graph); |
|
| 642 |
|
|
| 643 |
FlipMap flip_map(_graph, false); |
|
| 644 |
|
|
| 645 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
|
| 646 |
|
|
| 647 |
Node node = order_list[i]; |
|
| 648 |
|
|
| 649 |
node_data[i].first = INVALID; |
|
| 650 |
|
|
| 651 |
Node source = node; |
|
| 652 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 653 |
Node target = _graph.target(e); |
|
| 654 |
|
|
| 655 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 656 |
initFace(target, arc_lists, node_data, |
|
| 657 |
pred_map, order_map, order_list); |
|
| 658 |
} |
|
| 659 |
} |
|
| 660 |
|
|
| 661 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 662 |
Node target = _graph.target(e); |
|
| 663 |
|
|
| 664 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 665 |
embed_arc[target] = e; |
|
| 666 |
walkUp(target, source, i, pred_map, low_map, |
|
| 667 |
order_map, order_list, node_data, merge_roots); |
|
| 668 |
} |
|
| 669 |
} |
|
| 670 |
|
|
| 671 |
for (typename MergeRoots::Value::iterator it = |
|
| 672 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
|
|
| 673 |
int rn = *it; |
|
| 674 |
walkDown(rn, i, node_data, arc_lists, flip_map, order_list, |
|
| 675 |
child_lists, ancestor_map, low_map, embed_arc, merge_roots); |
|
| 676 |
} |
|
| 677 |
merge_roots[node].clear(); |
|
| 678 |
|
|
| 679 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 680 |
Node target = _graph.target(e); |
|
| 681 |
|
|
| 682 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 683 |
if (embed_arc[target] != INVALID) {
|
|
| 684 |
if (kuratowski) {
|
|
| 685 |
isolateKuratowski(e, node_data, arc_lists, flip_map, |
|
| 686 |
order_map, order_list, pred_map, child_lists, |
|
| 687 |
ancestor_map, low_map, |
|
| 688 |
embed_arc, merge_roots); |
|
| 689 |
} |
|
| 690 |
return false; |
|
| 691 |
} |
|
| 692 |
} |
|
| 693 |
} |
|
| 694 |
} |
|
| 695 |
|
|
| 696 |
for (int i = 0; i < int(order_list.size()); ++i) {
|
|
| 697 |
|
|
| 698 |
mergeRemainingFaces(order_list[i], node_data, order_list, order_map, |
|
| 699 |
child_lists, arc_lists); |
|
| 700 |
storeEmbedding(order_list[i], node_data, order_map, pred_map, |
|
| 701 |
arc_lists, flip_map); |
|
| 702 |
} |
|
| 703 |
|
|
| 704 |
return true; |
|
| 705 |
} |
|
| 706 |
|
|
| 707 |
/// \brief Give back the successor of an arc |
|
| 708 |
/// |
|
| 709 |
/// This function gives back the successor of an arc. It makes |
|
| 710 |
/// possible to query the cyclic order of the outgoing arcs from |
|
| 711 |
/// a node. |
|
| 712 |
Arc next(const Arc& arc) const {
|
|
| 713 |
return _embedding[arc]; |
|
| 714 |
} |
|
| 715 |
|
|
| 716 |
/// \brief Give back the calculated embedding map |
|
| 717 |
/// |
|
| 718 |
/// This function gives back the calculated embedding map, which |
|
| 719 |
/// contains the successor of each arc in the cyclic order of the |
|
| 720 |
/// outgoing arcs of its source node. |
|
| 721 |
const EmbeddingMap& embeddingMap() const {
|
|
| 722 |
return _embedding; |
|
| 723 |
} |
|
| 724 |
|
|
| 725 |
/// \brief Give back \c true if the given edge is in the Kuratowski |
|
| 726 |
/// subdivision |
|
| 727 |
/// |
|
| 728 |
/// This function gives back \c true if the given edge is in the found |
|
| 729 |
/// Kuratowski subdivision. |
|
| 730 |
/// \pre The \c run() function must be called with \c true parameter |
|
| 731 |
/// before using this function. |
|
| 732 |
bool kuratowski(const Edge& edge) const {
|
|
| 733 |
return _kuratowski[edge]; |
|
| 734 |
} |
|
| 735 |
|
|
| 736 |
private: |
|
| 737 |
|
|
| 738 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
| 739 |
const LowMap& low_map, ChildLists& child_lists) {
|
|
| 740 |
|
|
| 741 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 742 |
Node source = n; |
|
| 743 |
|
|
| 744 |
std::vector<Node> targets; |
|
| 745 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 746 |
Node target = _graph.target(e); |
|
| 747 |
|
|
| 748 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 749 |
targets.push_back(target); |
|
| 750 |
} |
|
| 751 |
} |
|
| 752 |
|
|
| 753 |
if (targets.size() == 0) {
|
|
| 754 |
child_lists[source].first = INVALID; |
|
| 755 |
} else if (targets.size() == 1) {
|
|
| 756 |
child_lists[source].first = targets[0]; |
|
| 757 |
child_lists[targets[0]].prev = INVALID; |
|
| 758 |
child_lists[targets[0]].next = INVALID; |
|
| 759 |
} else {
|
|
| 760 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
| 761 |
for (int i = 1; i < int(targets.size()); ++i) {
|
|
| 762 |
child_lists[targets[i]].prev = targets[i - 1]; |
|
| 763 |
child_lists[targets[i - 1]].next = targets[i]; |
|
| 764 |
} |
|
| 765 |
child_lists[targets.back()].next = INVALID; |
|
| 766 |
child_lists[targets.front()].prev = INVALID; |
|
| 767 |
child_lists[source].first = targets.front(); |
|
| 768 |
} |
|
| 769 |
} |
|
| 770 |
} |
|
| 771 |
|
|
| 772 |
void walkUp(const Node& node, Node root, int rorder, |
|
| 773 |
const PredMap& pred_map, const LowMap& low_map, |
|
| 774 |
const OrderMap& order_map, const OrderList& order_list, |
|
| 775 |
NodeData& node_data, MergeRoots& merge_roots) {
|
|
| 776 |
|
|
| 777 |
int na, nb; |
|
| 778 |
bool da, db; |
|
| 779 |
|
|
| 780 |
na = nb = order_map[node]; |
|
| 781 |
da = true; db = false; |
|
| 782 |
|
|
| 783 |
while (true) {
|
|
| 784 |
|
|
| 785 |
if (node_data[na].visited == rorder) break; |
|
| 786 |
if (node_data[nb].visited == rorder) break; |
|
| 787 |
|
|
| 788 |
node_data[na].visited = rorder; |
|
| 789 |
node_data[nb].visited = rorder; |
|
| 790 |
|
|
| 791 |
int rn = -1; |
|
| 792 |
|
|
| 793 |
if (na >= int(order_list.size())) {
|
|
| 794 |
rn = na; |
|
| 795 |
} else if (nb >= int(order_list.size())) {
|
|
| 796 |
rn = nb; |
|
| 797 |
} |
|
| 798 |
|
|
| 799 |
if (rn == -1) {
|
|
| 800 |
int nn; |
|
| 801 |
|
|
| 802 |
nn = da ? node_data[na].prev : node_data[na].next; |
|
| 803 |
da = node_data[nn].prev != na; |
|
| 804 |
na = nn; |
|
| 805 |
|
|
| 806 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
|
| 807 |
db = node_data[nn].prev != nb; |
|
| 808 |
nb = nn; |
|
| 809 |
|
|
| 810 |
} else {
|
|
| 811 |
|
|
| 812 |
Node rep = order_list[rn - order_list.size()]; |
|
| 813 |
Node parent = _graph.source(pred_map[rep]); |
|
| 814 |
|
|
| 815 |
if (low_map[rep] < rorder) {
|
|
| 816 |
merge_roots[parent].push_back(rn); |
|
| 817 |
} else {
|
|
| 818 |
merge_roots[parent].push_front(rn); |
|
| 819 |
} |
|
| 820 |
|
|
| 821 |
if (parent != root) {
|
|
| 822 |
na = nb = order_map[parent]; |
|
| 823 |
da = true; db = false; |
|
| 824 |
} else {
|
|
| 825 |
break; |
|
| 826 |
} |
|
| 827 |
} |
|
| 828 |
} |
|
| 829 |
} |
|
| 830 |
|
|
| 831 |
void walkDown(int rn, int rorder, NodeData& node_data, |
|
| 832 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
| 833 |
OrderList& order_list, ChildLists& child_lists, |
|
| 834 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
| 835 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 836 |
|
|
| 837 |
std::vector<std::pair<int, bool> > merge_stack; |
|
| 838 |
|
|
| 839 |
for (int di = 0; di < 2; ++di) {
|
|
| 840 |
bool rd = di == 0; |
|
| 841 |
int pn = rn; |
|
| 842 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
| 843 |
|
|
| 844 |
while (n != rn) {
|
|
| 845 |
|
|
| 846 |
Node node = order_list[n]; |
|
| 847 |
|
|
| 848 |
if (embed_arc[node] != INVALID) {
|
|
| 849 |
|
|
| 850 |
// Merging components on the critical path |
|
| 851 |
while (!merge_stack.empty()) {
|
|
| 852 |
|
|
| 853 |
// Component root |
|
| 854 |
int cn = merge_stack.back().first; |
|
| 855 |
bool cd = merge_stack.back().second; |
|
| 856 |
merge_stack.pop_back(); |
|
| 857 |
|
|
| 858 |
// Parent of component |
|
| 859 |
int dn = merge_stack.back().first; |
|
| 860 |
bool dd = merge_stack.back().second; |
|
| 861 |
merge_stack.pop_back(); |
|
| 862 |
|
|
| 863 |
Node parent = order_list[dn]; |
|
| 864 |
|
|
| 865 |
// Erasing from merge_roots |
|
| 866 |
merge_roots[parent].pop_front(); |
|
| 867 |
|
|
| 868 |
Node child = order_list[cn - order_list.size()]; |
|
| 869 |
|
|
| 870 |
// Erasing from child_lists |
|
| 871 |
if (child_lists[child].prev != INVALID) {
|
|
| 872 |
child_lists[child_lists[child].prev].next = |
|
| 873 |
child_lists[child].next; |
|
| 874 |
} else {
|
|
| 875 |
child_lists[parent].first = child_lists[child].next; |
|
| 876 |
} |
|
| 877 |
|
|
| 878 |
if (child_lists[child].next != INVALID) {
|
|
| 879 |
child_lists[child_lists[child].next].prev = |
|
| 880 |
child_lists[child].prev; |
|
| 881 |
} |
|
| 882 |
|
|
| 883 |
// Merging arcs + flipping |
|
| 884 |
Arc de = node_data[dn].first; |
|
| 885 |
Arc ce = node_data[cn].first; |
|
| 886 |
|
|
| 887 |
flip_map[order_list[cn - order_list.size()]] = cd != dd; |
|
| 888 |
if (cd != dd) {
|
|
| 889 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
| 890 |
ce = arc_lists[ce].prev; |
|
| 891 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
| 892 |
} |
|
| 893 |
|
|
| 894 |
{
|
|
| 895 |
Arc dne = arc_lists[de].next; |
|
| 896 |
Arc cne = arc_lists[ce].next; |
|
| 897 |
|
|
| 898 |
arc_lists[de].next = cne; |
|
| 899 |
arc_lists[ce].next = dne; |
|
| 900 |
|
|
| 901 |
arc_lists[dne].prev = ce; |
|
| 902 |
arc_lists[cne].prev = de; |
|
| 903 |
} |
|
| 904 |
|
|
| 905 |
if (dd) {
|
|
| 906 |
node_data[dn].first = ce; |
|
| 907 |
} |
|
| 908 |
|
|
| 909 |
// Merging external faces |
|
| 910 |
{
|
|
| 911 |
int en = cn; |
|
| 912 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
| 913 |
cd = node_data[cn].next == en; |
|
| 914 |
|
|
| 915 |
if (node_data[cn].prev == node_data[cn].next && |
|
| 916 |
node_data[cn].inverted) {
|
|
| 917 |
cd = !cd; |
|
| 918 |
} |
|
| 919 |
} |
|
| 920 |
|
|
| 921 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
| 922 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
| 923 |
|
|
| 924 |
} |
|
| 925 |
|
|
| 926 |
bool d = pn == node_data[n].prev; |
|
| 927 |
|
|
| 928 |
if (node_data[n].prev == node_data[n].next && |
|
| 929 |
node_data[n].inverted) {
|
|
| 930 |
d = !d; |
|
| 931 |
} |
|
| 932 |
|
|
| 933 |
// Add new arc |
|
| 934 |
{
|
|
| 935 |
Arc arc = embed_arc[node]; |
|
| 936 |
Arc re = node_data[rn].first; |
|
| 937 |
|
|
| 938 |
arc_lists[arc_lists[re].next].prev = arc; |
|
| 939 |
arc_lists[arc].next = arc_lists[re].next; |
|
| 940 |
arc_lists[arc].prev = re; |
|
| 941 |
arc_lists[re].next = arc; |
|
| 942 |
|
|
| 943 |
if (!rd) {
|
|
| 944 |
node_data[rn].first = arc; |
|
| 945 |
} |
|
| 946 |
|
|
| 947 |
Arc rev = _graph.oppositeArc(arc); |
|
| 948 |
Arc e = node_data[n].first; |
|
| 949 |
|
|
| 950 |
arc_lists[arc_lists[e].next].prev = rev; |
|
| 951 |
arc_lists[rev].next = arc_lists[e].next; |
|
| 952 |
arc_lists[rev].prev = e; |
|
| 953 |
arc_lists[e].next = rev; |
|
| 954 |
|
|
| 955 |
if (d) {
|
|
| 956 |
node_data[n].first = rev; |
|
| 957 |
} |
|
| 958 |
|
|
| 959 |
} |
|
| 960 |
|
|
| 961 |
// Embedding arc into external face |
|
| 962 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
| 963 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
| 964 |
pn = rn; |
|
| 965 |
|
|
| 966 |
embed_arc[order_list[n]] = INVALID; |
|
| 967 |
} |
|
| 968 |
|
|
| 969 |
if (!merge_roots[node].empty()) {
|
|
| 970 |
|
|
| 971 |
bool d = pn == node_data[n].prev; |
|
| 972 |
if (node_data[n].prev == node_data[n].next && |
|
| 973 |
node_data[n].inverted) {
|
|
| 974 |
d = !d; |
|
| 975 |
} |
|
| 976 |
|
|
| 977 |
merge_stack.push_back(std::make_pair(n, d)); |
|
| 978 |
|
|
| 979 |
int rn = merge_roots[node].front(); |
|
| 980 |
|
|
| 981 |
int xn = node_data[rn].next; |
|
| 982 |
Node xnode = order_list[xn]; |
|
| 983 |
|
|
| 984 |
int yn = node_data[rn].prev; |
|
| 985 |
Node ynode = order_list[yn]; |
|
| 986 |
|
|
| 987 |
bool rd; |
|
| 988 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 989 |
rd = true; |
|
| 990 |
} else if (!external(ynode, rorder, child_lists, |
|
| 991 |
ancestor_map, low_map)) {
|
|
| 992 |
rd = false; |
|
| 993 |
} else if (pertinent(xnode, embed_arc, merge_roots)) {
|
|
| 994 |
rd = true; |
|
| 995 |
} else {
|
|
| 996 |
rd = false; |
|
| 997 |
} |
|
| 998 |
|
|
| 999 |
merge_stack.push_back(std::make_pair(rn, rd)); |
|
| 1000 |
|
|
| 1001 |
pn = rn; |
|
| 1002 |
n = rd ? xn : yn; |
|
| 1003 |
|
|
| 1004 |
} else if (!external(node, rorder, child_lists, |
|
| 1005 |
ancestor_map, low_map)) {
|
|
| 1006 |
int nn = (node_data[n].next != pn ? |
|
| 1007 |
node_data[n].next : node_data[n].prev); |
|
| 1008 |
|
|
| 1009 |
bool nd = n == node_data[nn].prev; |
|
| 1010 |
|
|
| 1011 |
if (nd) node_data[nn].prev = pn; |
|
| 1012 |
else node_data[nn].next = pn; |
|
| 1013 |
|
|
| 1014 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
| 1015 |
else node_data[pn].next = nn; |
|
| 1016 |
|
|
| 1017 |
node_data[nn].inverted = |
|
| 1018 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
|
| 1019 |
|
|
| 1020 |
n = nn; |
|
| 1021 |
} |
|
| 1022 |
else break; |
|
| 1023 |
|
|
| 1024 |
} |
|
| 1025 |
|
|
| 1026 |
if (!merge_stack.empty() || n == rn) {
|
|
| 1027 |
break; |
|
| 1028 |
} |
|
| 1029 |
} |
|
| 1030 |
} |
|
| 1031 |
|
|
| 1032 |
void initFace(const Node& node, ArcLists& arc_lists, |
|
| 1033 |
NodeData& node_data, const PredMap& pred_map, |
|
| 1034 |
const OrderMap& order_map, const OrderList& order_list) {
|
|
| 1035 |
int n = order_map[node]; |
|
| 1036 |
int rn = n + order_list.size(); |
|
| 1037 |
|
|
| 1038 |
node_data[n].next = node_data[n].prev = rn; |
|
| 1039 |
node_data[rn].next = node_data[rn].prev = n; |
|
| 1040 |
|
|
| 1041 |
node_data[n].visited = order_list.size(); |
|
| 1042 |
node_data[rn].visited = order_list.size(); |
|
| 1043 |
|
|
| 1044 |
node_data[n].inverted = false; |
|
| 1045 |
node_data[rn].inverted = false; |
|
| 1046 |
|
|
| 1047 |
Arc arc = pred_map[node]; |
|
| 1048 |
Arc rev = _graph.oppositeArc(arc); |
|
| 1049 |
|
|
| 1050 |
node_data[rn].first = arc; |
|
| 1051 |
node_data[n].first = rev; |
|
| 1052 |
|
|
| 1053 |
arc_lists[arc].prev = arc; |
|
| 1054 |
arc_lists[arc].next = arc; |
|
| 1055 |
|
|
| 1056 |
arc_lists[rev].prev = rev; |
|
| 1057 |
arc_lists[rev].next = rev; |
|
| 1058 |
|
|
| 1059 |
} |
|
| 1060 |
|
|
| 1061 |
void mergeRemainingFaces(const Node& node, NodeData& node_data, |
|
| 1062 |
OrderList& order_list, OrderMap& order_map, |
|
| 1063 |
ChildLists& child_lists, ArcLists& arc_lists) {
|
|
| 1064 |
while (child_lists[node].first != INVALID) {
|
|
| 1065 |
int dd = order_map[node]; |
|
| 1066 |
Node child = child_lists[node].first; |
|
| 1067 |
int cd = order_map[child] + order_list.size(); |
|
| 1068 |
child_lists[node].first = child_lists[child].next; |
|
| 1069 |
|
|
| 1070 |
Arc de = node_data[dd].first; |
|
| 1071 |
Arc ce = node_data[cd].first; |
|
| 1072 |
|
|
| 1073 |
if (de != INVALID) {
|
|
| 1074 |
Arc dne = arc_lists[de].next; |
|
| 1075 |
Arc cne = arc_lists[ce].next; |
|
| 1076 |
|
|
| 1077 |
arc_lists[de].next = cne; |
|
| 1078 |
arc_lists[ce].next = dne; |
|
| 1079 |
|
|
| 1080 |
arc_lists[dne].prev = ce; |
|
| 1081 |
arc_lists[cne].prev = de; |
|
| 1082 |
} |
|
| 1083 |
|
|
| 1084 |
node_data[dd].first = ce; |
|
| 1085 |
|
|
| 1086 |
} |
|
| 1087 |
} |
|
| 1088 |
|
|
| 1089 |
void storeEmbedding(const Node& node, NodeData& node_data, |
|
| 1090 |
OrderMap& order_map, PredMap& pred_map, |
|
| 1091 |
ArcLists& arc_lists, FlipMap& flip_map) {
|
|
| 1092 |
|
|
| 1093 |
if (node_data[order_map[node]].first == INVALID) return; |
|
| 1094 |
|
|
| 1095 |
if (pred_map[node] != INVALID) {
|
|
| 1096 |
Node source = _graph.source(pred_map[node]); |
|
| 1097 |
flip_map[node] = flip_map[node] != flip_map[source]; |
|
| 1098 |
} |
|
| 1099 |
|
|
| 1100 |
Arc first = node_data[order_map[node]].first; |
|
| 1101 |
Arc prev = first; |
|
| 1102 |
|
|
| 1103 |
Arc arc = flip_map[node] ? |
|
| 1104 |
arc_lists[prev].prev : arc_lists[prev].next; |
|
| 1105 |
|
|
| 1106 |
_embedding[prev] = arc; |
|
| 1107 |
|
|
| 1108 |
while (arc != first) {
|
|
| 1109 |
Arc next = arc_lists[arc].prev == prev ? |
|
| 1110 |
arc_lists[arc].next : arc_lists[arc].prev; |
|
| 1111 |
prev = arc; arc = next; |
|
| 1112 |
_embedding[prev] = arc; |
|
| 1113 |
} |
|
| 1114 |
} |
|
| 1115 |
|
|
| 1116 |
|
|
| 1117 |
bool external(const Node& node, int rorder, |
|
| 1118 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 1119 |
LowMap& low_map) {
|
|
| 1120 |
Node child = child_lists[node].first; |
|
| 1121 |
|
|
| 1122 |
if (child != INVALID) {
|
|
| 1123 |
if (low_map[child] < rorder) return true; |
|
| 1124 |
} |
|
| 1125 |
|
|
| 1126 |
if (ancestor_map[node] < rorder) return true; |
|
| 1127 |
|
|
| 1128 |
return false; |
|
| 1129 |
} |
|
| 1130 |
|
|
| 1131 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
| 1132 |
const MergeRoots& merge_roots) {
|
|
| 1133 |
return !merge_roots[node].empty() || embed_arc[node] != INVALID; |
|
| 1134 |
} |
|
| 1135 |
|
|
| 1136 |
int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists, |
|
| 1137 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
|
| 1138 |
int low_point; |
|
| 1139 |
|
|
| 1140 |
Node child = child_lists[node].first; |
|
| 1141 |
|
|
| 1142 |
if (child != INVALID) {
|
|
| 1143 |
low_point = low_map[child]; |
|
| 1144 |
} else {
|
|
| 1145 |
low_point = order_map[node]; |
|
| 1146 |
} |
|
| 1147 |
|
|
| 1148 |
if (low_point > ancestor_map[node]) {
|
|
| 1149 |
low_point = ancestor_map[node]; |
|
| 1150 |
} |
|
| 1151 |
|
|
| 1152 |
return low_point; |
|
| 1153 |
} |
|
| 1154 |
|
|
| 1155 |
int findComponentRoot(Node root, Node node, ChildLists& child_lists, |
|
| 1156 |
OrderMap& order_map, OrderList& order_list) {
|
|
| 1157 |
|
|
| 1158 |
int order = order_map[root]; |
|
| 1159 |
int norder = order_map[node]; |
|
| 1160 |
|
|
| 1161 |
Node child = child_lists[root].first; |
|
| 1162 |
while (child != INVALID) {
|
|
| 1163 |
int corder = order_map[child]; |
|
| 1164 |
if (corder > order && corder < norder) {
|
|
| 1165 |
order = corder; |
|
| 1166 |
} |
|
| 1167 |
child = child_lists[child].next; |
|
| 1168 |
} |
|
| 1169 |
return order + order_list.size(); |
|
| 1170 |
} |
|
| 1171 |
|
|
| 1172 |
Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data, |
|
| 1173 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 1174 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
|
| 1175 |
while (!pertinent(wnode, embed_arc, merge_roots)) {
|
|
| 1176 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
|
| 1177 |
} |
|
| 1178 |
return wnode; |
|
| 1179 |
} |
|
| 1180 |
|
|
| 1181 |
|
|
| 1182 |
Node findExternal(Node node, int rorder, OrderMap& order_map, |
|
| 1183 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 1184 |
LowMap& low_map, NodeData& node_data) {
|
|
| 1185 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
|
| 1186 |
while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 1187 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
|
| 1188 |
} |
|
| 1189 |
return wnode; |
|
| 1190 |
} |
|
| 1191 |
|
|
| 1192 |
void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, |
|
| 1193 |
OrderList& order_list, OrderMap& order_map, |
|
| 1194 |
NodeData& node_data, ArcLists& arc_lists, |
|
| 1195 |
EmbedArc& embed_arc, MergeRoots& merge_roots, |
|
| 1196 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 1197 |
LowMap& low_map) {
|
|
| 1198 |
|
|
| 1199 |
Node cnode = node; |
|
| 1200 |
Node pred = INVALID; |
|
| 1201 |
|
|
| 1202 |
while (true) {
|
|
| 1203 |
|
|
| 1204 |
bool pert = pertinent(cnode, embed_arc, merge_roots); |
|
| 1205 |
bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map); |
|
| 1206 |
|
|
| 1207 |
if (pert && ext) {
|
|
| 1208 |
if (!merge_roots[cnode].empty()) {
|
|
| 1209 |
int cn = merge_roots[cnode].back(); |
|
| 1210 |
|
|
| 1211 |
if (low_map[order_list[cn - order_list.size()]] < rorder) {
|
|
| 1212 |
Arc arc = node_data[cn].first; |
|
| 1213 |
_kuratowski.set(arc, true); |
|
| 1214 |
|
|
| 1215 |
pred = cnode; |
|
| 1216 |
cnode = _graph.target(arc); |
|
| 1217 |
|
|
| 1218 |
continue; |
|
| 1219 |
} |
|
| 1220 |
} |
|
| 1221 |
wnode = znode = cnode; |
|
| 1222 |
return; |
|
| 1223 |
|
|
| 1224 |
} else if (pert) {
|
|
| 1225 |
wnode = cnode; |
|
| 1226 |
|
|
| 1227 |
while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 1228 |
Arc arc = node_data[order_map[cnode]].first; |
|
| 1229 |
|
|
| 1230 |
if (_graph.target(arc) == pred) {
|
|
| 1231 |
arc = arc_lists[arc].next; |
|
| 1232 |
} |
|
| 1233 |
_kuratowski.set(arc, true); |
|
| 1234 |
|
|
| 1235 |
Node next = _graph.target(arc); |
|
| 1236 |
pred = cnode; cnode = next; |
|
| 1237 |
} |
|
| 1238 |
|
|
| 1239 |
znode = cnode; |
|
| 1240 |
return; |
|
| 1241 |
|
|
| 1242 |
} else if (ext) {
|
|
| 1243 |
znode = cnode; |
|
| 1244 |
|
|
| 1245 |
while (!pertinent(cnode, embed_arc, merge_roots)) {
|
|
| 1246 |
Arc arc = node_data[order_map[cnode]].first; |
|
| 1247 |
|
|
| 1248 |
if (_graph.target(arc) == pred) {
|
|
| 1249 |
arc = arc_lists[arc].next; |
|
| 1250 |
} |
|
| 1251 |
_kuratowski.set(arc, true); |
|
| 1252 |
|
|
| 1253 |
Node next = _graph.target(arc); |
|
| 1254 |
pred = cnode; cnode = next; |
|
| 1255 |
} |
|
| 1256 |
|
|
| 1257 |
wnode = cnode; |
|
| 1258 |
return; |
|
| 1259 |
|
|
| 1260 |
} else {
|
|
| 1261 |
Arc arc = node_data[order_map[cnode]].first; |
|
| 1262 |
|
|
| 1263 |
if (_graph.target(arc) == pred) {
|
|
| 1264 |
arc = arc_lists[arc].next; |
|
| 1265 |
} |
|
| 1266 |
_kuratowski.set(arc, true); |
|
| 1267 |
|
|
| 1268 |
Node next = _graph.target(arc); |
|
| 1269 |
pred = cnode; cnode = next; |
|
| 1270 |
} |
|
| 1271 |
|
|
| 1272 |
} |
|
| 1273 |
|
|
| 1274 |
} |
|
| 1275 |
|
|
| 1276 |
void orientComponent(Node root, int rn, OrderMap& order_map, |
|
| 1277 |
PredMap& pred_map, NodeData& node_data, |
|
| 1278 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
| 1279 |
TypeMap& type_map) {
|
|
| 1280 |
node_data[order_map[root]].first = node_data[rn].first; |
|
| 1281 |
type_map[root] = 1; |
|
| 1282 |
|
|
| 1283 |
std::vector<Node> st, qu; |
|
| 1284 |
|
|
| 1285 |
st.push_back(root); |
|
| 1286 |
while (!st.empty()) {
|
|
| 1287 |
Node node = st.back(); |
|
| 1288 |
st.pop_back(); |
|
| 1289 |
qu.push_back(node); |
|
| 1290 |
|
|
| 1291 |
Arc arc = node_data[order_map[node]].first; |
|
| 1292 |
|
|
| 1293 |
if (type_map[_graph.target(arc)] == 0) {
|
|
| 1294 |
st.push_back(_graph.target(arc)); |
|
| 1295 |
type_map[_graph.target(arc)] = 1; |
|
| 1296 |
} |
|
| 1297 |
|
|
| 1298 |
Arc last = arc, pred = arc; |
|
| 1299 |
arc = arc_lists[arc].next; |
|
| 1300 |
while (arc != last) {
|
|
| 1301 |
|
|
| 1302 |
if (type_map[_graph.target(arc)] == 0) {
|
|
| 1303 |
st.push_back(_graph.target(arc)); |
|
| 1304 |
type_map[_graph.target(arc)] = 1; |
|
| 1305 |
} |
|
| 1306 |
|
|
| 1307 |
Arc next = arc_lists[arc].next != pred ? |
|
| 1308 |
arc_lists[arc].next : arc_lists[arc].prev; |
|
| 1309 |
pred = arc; arc = next; |
|
| 1310 |
} |
|
| 1311 |
|
|
| 1312 |
} |
|
| 1313 |
|
|
| 1314 |
type_map[root] = 2; |
|
| 1315 |
flip_map[root] = false; |
|
| 1316 |
|
|
| 1317 |
for (int i = 1; i < int(qu.size()); ++i) {
|
|
| 1318 |
|
|
| 1319 |
Node node = qu[i]; |
|
| 1320 |
|
|
| 1321 |
while (type_map[node] != 2) {
|
|
| 1322 |
st.push_back(node); |
|
| 1323 |
type_map[node] = 2; |
|
| 1324 |
node = _graph.source(pred_map[node]); |
|
| 1325 |
} |
|
| 1326 |
|
|
| 1327 |
bool flip = flip_map[node]; |
|
| 1328 |
|
|
| 1329 |
while (!st.empty()) {
|
|
| 1330 |
node = st.back(); |
|
| 1331 |
st.pop_back(); |
|
| 1332 |
|
|
| 1333 |
flip_map[node] = flip != flip_map[node]; |
|
| 1334 |
flip = flip_map[node]; |
|
| 1335 |
|
|
| 1336 |
if (flip) {
|
|
| 1337 |
Arc arc = node_data[order_map[node]].first; |
|
| 1338 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
| 1339 |
arc = arc_lists[arc].prev; |
|
| 1340 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
| 1341 |
node_data[order_map[node]].first = arc; |
|
| 1342 |
} |
|
| 1343 |
} |
|
| 1344 |
} |
|
| 1345 |
|
|
| 1346 |
for (int i = 0; i < int(qu.size()); ++i) {
|
|
| 1347 |
|
|
| 1348 |
Arc arc = node_data[order_map[qu[i]]].first; |
|
| 1349 |
Arc last = arc, pred = arc; |
|
| 1350 |
|
|
| 1351 |
arc = arc_lists[arc].next; |
|
| 1352 |
while (arc != last) {
|
|
| 1353 |
|
|
| 1354 |
if (arc_lists[arc].next == pred) {
|
|
| 1355 |
std::swap(arc_lists[arc].next, arc_lists[arc].prev); |
|
| 1356 |
} |
|
| 1357 |
pred = arc; arc = arc_lists[arc].next; |
|
| 1358 |
} |
|
| 1359 |
|
|
| 1360 |
} |
|
| 1361 |
} |
|
| 1362 |
|
|
| 1363 |
void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode, |
|
| 1364 |
OrderMap& order_map, NodeData& node_data, |
|
| 1365 |
TypeMap& type_map) {
|
|
| 1366 |
Node node = _graph.target(node_data[order_map[root]].first); |
|
| 1367 |
|
|
| 1368 |
while (node != ynode) {
|
|
| 1369 |
type_map[node] = HIGHY; |
|
| 1370 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1371 |
} |
|
| 1372 |
|
|
| 1373 |
while (node != wnode) {
|
|
| 1374 |
type_map[node] = LOWY; |
|
| 1375 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1376 |
} |
|
| 1377 |
|
|
| 1378 |
node = _graph.target(node_data[order_map[wnode]].first); |
|
| 1379 |
|
|
| 1380 |
while (node != xnode) {
|
|
| 1381 |
type_map[node] = LOWX; |
|
| 1382 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1383 |
} |
|
| 1384 |
type_map[node] = LOWX; |
|
| 1385 |
|
|
| 1386 |
node = _graph.target(node_data[order_map[xnode]].first); |
|
| 1387 |
while (node != root) {
|
|
| 1388 |
type_map[node] = HIGHX; |
|
| 1389 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1390 |
} |
|
| 1391 |
|
|
| 1392 |
type_map[wnode] = PERTINENT; |
|
| 1393 |
type_map[root] = ROOT; |
|
| 1394 |
} |
|
| 1395 |
|
|
| 1396 |
void findInternalPath(std::vector<Arc>& ipath, |
|
| 1397 |
Node wnode, Node root, TypeMap& type_map, |
|
| 1398 |
OrderMap& order_map, NodeData& node_data, |
|
| 1399 |
ArcLists& arc_lists) {
|
|
| 1400 |
std::vector<Arc> st; |
|
| 1401 |
|
|
| 1402 |
Node node = wnode; |
|
| 1403 |
|
|
| 1404 |
while (node != root) {
|
|
| 1405 |
Arc arc = arc_lists[node_data[order_map[node]].first].next; |
|
| 1406 |
st.push_back(arc); |
|
| 1407 |
node = _graph.target(arc); |
|
| 1408 |
} |
|
| 1409 |
|
|
| 1410 |
while (true) {
|
|
| 1411 |
Arc arc = st.back(); |
|
| 1412 |
if (type_map[_graph.target(arc)] == LOWX || |
|
| 1413 |
type_map[_graph.target(arc)] == HIGHX) {
|
|
| 1414 |
break; |
|
| 1415 |
} |
|
| 1416 |
if (type_map[_graph.target(arc)] == 2) {
|
|
| 1417 |
type_map[_graph.target(arc)] = 3; |
|
| 1418 |
|
|
| 1419 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
| 1420 |
st.push_back(arc); |
|
| 1421 |
} else {
|
|
| 1422 |
st.pop_back(); |
|
| 1423 |
arc = arc_lists[arc].next; |
|
| 1424 |
|
|
| 1425 |
while (_graph.oppositeArc(arc) == st.back()) {
|
|
| 1426 |
arc = st.back(); |
|
| 1427 |
st.pop_back(); |
|
| 1428 |
arc = arc_lists[arc].next; |
|
| 1429 |
} |
|
| 1430 |
st.push_back(arc); |
|
| 1431 |
} |
|
| 1432 |
} |
|
| 1433 |
|
|
| 1434 |
for (int i = 0; i < int(st.size()); ++i) {
|
|
| 1435 |
if (type_map[_graph.target(st[i])] != LOWY && |
|
| 1436 |
type_map[_graph.target(st[i])] != HIGHY) {
|
|
| 1437 |
for (; i < int(st.size()); ++i) {
|
|
| 1438 |
ipath.push_back(st[i]); |
|
| 1439 |
} |
|
| 1440 |
} |
|
| 1441 |
} |
|
| 1442 |
} |
|
| 1443 |
|
|
| 1444 |
void setInternalFlags(std::vector<Arc>& ipath, TypeMap& type_map) {
|
|
| 1445 |
for (int i = 1; i < int(ipath.size()); ++i) {
|
|
| 1446 |
type_map[_graph.source(ipath[i])] = INTERNAL; |
|
| 1447 |
} |
|
| 1448 |
} |
|
| 1449 |
|
|
| 1450 |
void findPilePath(std::vector<Arc>& ppath, |
|
| 1451 |
Node root, TypeMap& type_map, OrderMap& order_map, |
|
| 1452 |
NodeData& node_data, ArcLists& arc_lists) {
|
|
| 1453 |
std::vector<Arc> st; |
|
| 1454 |
|
|
| 1455 |
st.push_back(_graph.oppositeArc(node_data[order_map[root]].first)); |
|
| 1456 |
st.push_back(node_data[order_map[root]].first); |
|
| 1457 |
|
|
| 1458 |
while (st.size() > 1) {
|
|
| 1459 |
Arc arc = st.back(); |
|
| 1460 |
if (type_map[_graph.target(arc)] == INTERNAL) {
|
|
| 1461 |
break; |
|
| 1462 |
} |
|
| 1463 |
if (type_map[_graph.target(arc)] == 3) {
|
|
| 1464 |
type_map[_graph.target(arc)] = 4; |
|
| 1465 |
|
|
| 1466 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
| 1467 |
st.push_back(arc); |
|
| 1468 |
} else {
|
|
| 1469 |
st.pop_back(); |
|
| 1470 |
arc = arc_lists[arc].next; |
|
| 1471 |
|
|
| 1472 |
while (!st.empty() && _graph.oppositeArc(arc) == st.back()) {
|
|
| 1473 |
arc = st.back(); |
|
| 1474 |
st.pop_back(); |
|
| 1475 |
arc = arc_lists[arc].next; |
|
| 1476 |
} |
|
| 1477 |
st.push_back(arc); |
|
| 1478 |
} |
|
| 1479 |
} |
|
| 1480 |
|
|
| 1481 |
for (int i = 1; i < int(st.size()); ++i) {
|
|
| 1482 |
ppath.push_back(st[i]); |
|
| 1483 |
} |
|
| 1484 |
} |
|
| 1485 |
|
|
| 1486 |
|
|
| 1487 |
int markExternalPath(Node node, OrderMap& order_map, |
|
| 1488 |
ChildLists& child_lists, PredMap& pred_map, |
|
| 1489 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
|
| 1490 |
int lp = lowPoint(node, order_map, child_lists, |
|
| 1491 |
ancestor_map, low_map); |
|
| 1492 |
|
|
| 1493 |
if (ancestor_map[node] != lp) {
|
|
| 1494 |
node = child_lists[node].first; |
|
| 1495 |
_kuratowski[pred_map[node]] = true; |
|
| 1496 |
|
|
| 1497 |
while (ancestor_map[node] != lp) {
|
|
| 1498 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 1499 |
Node tnode = _graph.target(e); |
|
| 1500 |
if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
|
|
| 1501 |
node = tnode; |
|
| 1502 |
_kuratowski[e] = true; |
|
| 1503 |
break; |
|
| 1504 |
} |
|
| 1505 |
} |
|
| 1506 |
} |
|
| 1507 |
} |
|
| 1508 |
|
|
| 1509 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 1510 |
if (order_map[_graph.target(e)] == lp) {
|
|
| 1511 |
_kuratowski[e] = true; |
|
| 1512 |
break; |
|
| 1513 |
} |
|
| 1514 |
} |
|
| 1515 |
|
|
| 1516 |
return lp; |
|
| 1517 |
} |
|
| 1518 |
|
|
| 1519 |
void markPertinentPath(Node node, OrderMap& order_map, |
|
| 1520 |
NodeData& node_data, ArcLists& arc_lists, |
|
| 1521 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 1522 |
while (embed_arc[node] == INVALID) {
|
|
| 1523 |
int n = merge_roots[node].front(); |
|
| 1524 |
Arc arc = node_data[n].first; |
|
| 1525 |
|
|
| 1526 |
_kuratowski.set(arc, true); |
|
| 1527 |
|
|
| 1528 |
Node pred = node; |
|
| 1529 |
node = _graph.target(arc); |
|
| 1530 |
while (!pertinent(node, embed_arc, merge_roots)) {
|
|
| 1531 |
arc = node_data[order_map[node]].first; |
|
| 1532 |
if (_graph.target(arc) == pred) {
|
|
| 1533 |
arc = arc_lists[arc].next; |
|
| 1534 |
} |
|
| 1535 |
_kuratowski.set(arc, true); |
|
| 1536 |
pred = node; |
|
| 1537 |
node = _graph.target(arc); |
|
| 1538 |
} |
|
| 1539 |
} |
|
| 1540 |
_kuratowski.set(embed_arc[node], true); |
|
| 1541 |
} |
|
| 1542 |
|
|
| 1543 |
void markPredPath(Node node, Node snode, PredMap& pred_map) {
|
|
| 1544 |
while (node != snode) {
|
|
| 1545 |
_kuratowski.set(pred_map[node], true); |
|
| 1546 |
node = _graph.source(pred_map[node]); |
|
| 1547 |
} |
|
| 1548 |
} |
|
| 1549 |
|
|
| 1550 |
void markFacePath(Node ynode, Node xnode, |
|
| 1551 |
OrderMap& order_map, NodeData& node_data) {
|
|
| 1552 |
Arc arc = node_data[order_map[ynode]].first; |
|
| 1553 |
Node node = _graph.target(arc); |
|
| 1554 |
_kuratowski.set(arc, true); |
|
| 1555 |
|
|
| 1556 |
while (node != xnode) {
|
|
| 1557 |
arc = node_data[order_map[node]].first; |
|
| 1558 |
_kuratowski.set(arc, true); |
|
| 1559 |
node = _graph.target(arc); |
|
| 1560 |
} |
|
| 1561 |
} |
|
| 1562 |
|
|
| 1563 |
void markInternalPath(std::vector<Arc>& path) {
|
|
| 1564 |
for (int i = 0; i < int(path.size()); ++i) {
|
|
| 1565 |
_kuratowski.set(path[i], true); |
|
| 1566 |
} |
|
| 1567 |
} |
|
| 1568 |
|
|
| 1569 |
void markPilePath(std::vector<Arc>& path) {
|
|
| 1570 |
for (int i = 0; i < int(path.size()); ++i) {
|
|
| 1571 |
_kuratowski.set(path[i], true); |
|
| 1572 |
} |
|
| 1573 |
} |
|
| 1574 |
|
|
| 1575 |
void isolateKuratowski(Arc arc, NodeData& node_data, |
|
| 1576 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
| 1577 |
OrderMap& order_map, OrderList& order_list, |
|
| 1578 |
PredMap& pred_map, ChildLists& child_lists, |
|
| 1579 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
| 1580 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 1581 |
|
|
| 1582 |
Node root = _graph.source(arc); |
|
| 1583 |
Node enode = _graph.target(arc); |
|
| 1584 |
|
|
| 1585 |
int rorder = order_map[root]; |
|
| 1586 |
|
|
| 1587 |
TypeMap type_map(_graph, 0); |
|
| 1588 |
|
|
| 1589 |
int rn = findComponentRoot(root, enode, child_lists, |
|
| 1590 |
order_map, order_list); |
|
| 1591 |
|
|
| 1592 |
Node xnode = order_list[node_data[rn].next]; |
|
| 1593 |
Node ynode = order_list[node_data[rn].prev]; |
|
| 1594 |
|
|
| 1595 |
// Minor-A |
|
| 1596 |
{
|
|
| 1597 |
while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
|
|
| 1598 |
|
|
| 1599 |
if (!merge_roots[xnode].empty()) {
|
|
| 1600 |
root = xnode; |
|
| 1601 |
rn = merge_roots[xnode].front(); |
|
| 1602 |
} else {
|
|
| 1603 |
root = ynode; |
|
| 1604 |
rn = merge_roots[ynode].front(); |
|
| 1605 |
} |
|
| 1606 |
|
|
| 1607 |
xnode = order_list[node_data[rn].next]; |
|
| 1608 |
ynode = order_list[node_data[rn].prev]; |
|
| 1609 |
} |
|
| 1610 |
|
|
| 1611 |
if (root != _graph.source(arc)) {
|
|
| 1612 |
orientComponent(root, rn, order_map, pred_map, |
|
| 1613 |
node_data, arc_lists, flip_map, type_map); |
|
| 1614 |
markFacePath(root, root, order_map, node_data); |
|
| 1615 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1616 |
pred_map, ancestor_map, low_map); |
|
| 1617 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1618 |
pred_map, ancestor_map, low_map); |
|
| 1619 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1620 |
Node lwnode = findPertinent(ynode, order_map, node_data, |
|
| 1621 |
embed_arc, merge_roots); |
|
| 1622 |
|
|
| 1623 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
| 1624 |
embed_arc, merge_roots); |
|
| 1625 |
|
|
| 1626 |
return; |
|
| 1627 |
} |
|
| 1628 |
} |
|
| 1629 |
|
|
| 1630 |
orientComponent(root, rn, order_map, pred_map, |
|
| 1631 |
node_data, arc_lists, flip_map, type_map); |
|
| 1632 |
|
|
| 1633 |
Node wnode = findPertinent(ynode, order_map, node_data, |
|
| 1634 |
embed_arc, merge_roots); |
|
| 1635 |
setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map); |
|
| 1636 |
|
|
| 1637 |
|
|
| 1638 |
//Minor-B |
|
| 1639 |
if (!merge_roots[wnode].empty()) {
|
|
| 1640 |
int cn = merge_roots[wnode].back(); |
|
| 1641 |
Node rep = order_list[cn - order_list.size()]; |
|
| 1642 |
if (low_map[rep] < rorder) {
|
|
| 1643 |
markFacePath(root, root, order_map, node_data); |
|
| 1644 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1645 |
pred_map, ancestor_map, low_map); |
|
| 1646 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1647 |
pred_map, ancestor_map, low_map); |
|
| 1648 |
|
|
| 1649 |
Node lwnode, lznode; |
|
| 1650 |
markCommonPath(wnode, rorder, lwnode, lznode, order_list, |
|
| 1651 |
order_map, node_data, arc_lists, embed_arc, |
|
| 1652 |
merge_roots, child_lists, ancestor_map, low_map); |
|
| 1653 |
|
|
| 1654 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
| 1655 |
embed_arc, merge_roots); |
|
| 1656 |
int zlp = markExternalPath(lznode, order_map, child_lists, |
|
| 1657 |
pred_map, ancestor_map, low_map); |
|
| 1658 |
|
|
| 1659 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1660 |
if (zlp < minlp) minlp = zlp; |
|
| 1661 |
|
|
| 1662 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
| 1663 |
if (zlp > maxlp) maxlp = zlp; |
|
| 1664 |
|
|
| 1665 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
| 1666 |
|
|
| 1667 |
return; |
|
| 1668 |
} |
|
| 1669 |
} |
|
| 1670 |
|
|
| 1671 |
Node pxnode, pynode; |
|
| 1672 |
std::vector<Arc> ipath; |
|
| 1673 |
findInternalPath(ipath, wnode, root, type_map, order_map, |
|
| 1674 |
node_data, arc_lists); |
|
| 1675 |
setInternalFlags(ipath, type_map); |
|
| 1676 |
pynode = _graph.source(ipath.front()); |
|
| 1677 |
pxnode = _graph.target(ipath.back()); |
|
| 1678 |
|
|
| 1679 |
wnode = findPertinent(pynode, order_map, node_data, |
|
| 1680 |
embed_arc, merge_roots); |
|
| 1681 |
|
|
| 1682 |
// Minor-C |
|
| 1683 |
{
|
|
| 1684 |
if (type_map[_graph.source(ipath.front())] == HIGHY) {
|
|
| 1685 |
if (type_map[_graph.target(ipath.back())] == HIGHX) {
|
|
| 1686 |
markFacePath(xnode, pxnode, order_map, node_data); |
|
| 1687 |
} |
|
| 1688 |
markFacePath(root, xnode, order_map, node_data); |
|
| 1689 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1690 |
embed_arc, merge_roots); |
|
| 1691 |
markInternalPath(ipath); |
|
| 1692 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1693 |
pred_map, ancestor_map, low_map); |
|
| 1694 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1695 |
pred_map, ancestor_map, low_map); |
|
| 1696 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1697 |
return; |
|
| 1698 |
} |
|
| 1699 |
|
|
| 1700 |
if (type_map[_graph.target(ipath.back())] == HIGHX) {
|
|
| 1701 |
markFacePath(ynode, root, order_map, node_data); |
|
| 1702 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1703 |
embed_arc, merge_roots); |
|
| 1704 |
markInternalPath(ipath); |
|
| 1705 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1706 |
pred_map, ancestor_map, low_map); |
|
| 1707 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1708 |
pred_map, ancestor_map, low_map); |
|
| 1709 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1710 |
return; |
|
| 1711 |
} |
|
| 1712 |
} |
|
| 1713 |
|
|
| 1714 |
std::vector<Arc> ppath; |
|
| 1715 |
findPilePath(ppath, root, type_map, order_map, node_data, arc_lists); |
|
| 1716 |
|
|
| 1717 |
// Minor-D |
|
| 1718 |
if (!ppath.empty()) {
|
|
| 1719 |
markFacePath(ynode, xnode, order_map, node_data); |
|
| 1720 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1721 |
embed_arc, merge_roots); |
|
| 1722 |
markPilePath(ppath); |
|
| 1723 |
markInternalPath(ipath); |
|
| 1724 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1725 |
pred_map, ancestor_map, low_map); |
|
| 1726 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1727 |
pred_map, ancestor_map, low_map); |
|
| 1728 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1729 |
return; |
|
| 1730 |
} |
|
| 1731 |
|
|
| 1732 |
// Minor-E* |
|
| 1733 |
{
|
|
| 1734 |
|
|
| 1735 |
if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 1736 |
Node znode = findExternal(pynode, rorder, order_map, |
|
| 1737 |
child_lists, ancestor_map, |
|
| 1738 |
low_map, node_data); |
|
| 1739 |
|
|
| 1740 |
if (type_map[znode] == LOWY) {
|
|
| 1741 |
markFacePath(root, xnode, order_map, node_data); |
|
| 1742 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1743 |
embed_arc, merge_roots); |
|
| 1744 |
markInternalPath(ipath); |
|
| 1745 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1746 |
pred_map, ancestor_map, low_map); |
|
| 1747 |
int zlp = markExternalPath(znode, order_map, child_lists, |
|
| 1748 |
pred_map, ancestor_map, low_map); |
|
| 1749 |
markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map); |
|
| 1750 |
} else {
|
|
| 1751 |
markFacePath(ynode, root, order_map, node_data); |
|
| 1752 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1753 |
embed_arc, merge_roots); |
|
| 1754 |
markInternalPath(ipath); |
|
| 1755 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1756 |
pred_map, ancestor_map, low_map); |
|
| 1757 |
int zlp = markExternalPath(znode, order_map, child_lists, |
|
| 1758 |
pred_map, ancestor_map, low_map); |
|
| 1759 |
markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map); |
|
| 1760 |
} |
|
| 1761 |
return; |
|
| 1762 |
} |
|
| 1763 |
|
|
| 1764 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1765 |
pred_map, ancestor_map, low_map); |
|
| 1766 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1767 |
pred_map, ancestor_map, low_map); |
|
| 1768 |
int wlp = markExternalPath(wnode, order_map, child_lists, |
|
| 1769 |
pred_map, ancestor_map, low_map); |
|
| 1770 |
|
|
| 1771 |
if (wlp > xlp && wlp > ylp) {
|
|
| 1772 |
markFacePath(root, root, order_map, node_data); |
|
| 1773 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1774 |
return; |
|
| 1775 |
} |
|
| 1776 |
|
|
| 1777 |
markInternalPath(ipath); |
|
| 1778 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1779 |
embed_arc, merge_roots); |
|
| 1780 |
|
|
| 1781 |
if (xlp > ylp && xlp > wlp) {
|
|
| 1782 |
markFacePath(root, pynode, order_map, node_data); |
|
| 1783 |
markFacePath(wnode, xnode, order_map, node_data); |
|
| 1784 |
markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map); |
|
| 1785 |
return; |
|
| 1786 |
} |
|
| 1787 |
|
|
| 1788 |
if (ylp > xlp && ylp > wlp) {
|
|
| 1789 |
markFacePath(pxnode, root, order_map, node_data); |
|
| 1790 |
markFacePath(ynode, wnode, order_map, node_data); |
|
| 1791 |
markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map); |
|
| 1792 |
return; |
|
| 1793 |
} |
|
| 1794 |
|
|
| 1795 |
if (pynode != ynode) {
|
|
| 1796 |
markFacePath(pxnode, wnode, order_map, node_data); |
|
| 1797 |
|
|
| 1798 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1799 |
if (wlp < minlp) minlp = wlp; |
|
| 1800 |
|
|
| 1801 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
| 1802 |
if (wlp > maxlp) maxlp = wlp; |
|
| 1803 |
|
|
| 1804 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
| 1805 |
return; |
|
| 1806 |
} |
|
| 1807 |
|
|
| 1808 |
if (pxnode != xnode) {
|
|
| 1809 |
markFacePath(wnode, pynode, order_map, node_data); |
|
| 1810 |
|
|
| 1811 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1812 |
if (wlp < minlp) minlp = wlp; |
|
| 1813 |
|
|
| 1814 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
| 1815 |
if (wlp > maxlp) maxlp = wlp; |
|
| 1816 |
|
|
| 1817 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
| 1818 |
return; |
|
| 1819 |
} |
|
| 1820 |
|
|
| 1821 |
markFacePath(root, root, order_map, node_data); |
|
| 1822 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1823 |
if (wlp < minlp) minlp = wlp; |
|
| 1824 |
markPredPath(root, order_list[minlp], pred_map); |
|
| 1825 |
return; |
|
| 1826 |
} |
|
| 1827 |
|
|
| 1828 |
} |
|
| 1829 |
|
|
| 1830 |
}; |
|
| 1831 |
|
|
| 1832 |
namespace _planarity_bits {
|
|
| 1833 |
|
|
| 1834 |
template <typename Graph, typename EmbeddingMap> |
|
| 1835 |
void makeConnected(Graph& graph, EmbeddingMap& embedding) {
|
|
| 1836 |
DfsVisitor<Graph> null_visitor; |
|
| 1837 |
DfsVisit<Graph, DfsVisitor<Graph> > dfs(graph, null_visitor); |
|
| 1838 |
dfs.init(); |
|
| 1839 |
|
|
| 1840 |
typename Graph::Node u = INVALID; |
|
| 1841 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1842 |
if (!dfs.reached(n)) {
|
|
| 1843 |
dfs.addSource(n); |
|
| 1844 |
dfs.start(); |
|
| 1845 |
if (u == INVALID) {
|
|
| 1846 |
u = n; |
|
| 1847 |
} else {
|
|
| 1848 |
typename Graph::Node v = n; |
|
| 1849 |
|
|
| 1850 |
typename Graph::Arc ue = typename Graph::OutArcIt(graph, u); |
|
| 1851 |
typename Graph::Arc ve = typename Graph::OutArcIt(graph, v); |
|
| 1852 |
|
|
| 1853 |
typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true); |
|
| 1854 |
|
|
| 1855 |
if (ue != INVALID) {
|
|
| 1856 |
embedding[e] = embedding[ue]; |
|
| 1857 |
embedding[ue] = e; |
|
| 1858 |
} else {
|
|
| 1859 |
embedding[e] = e; |
|
| 1860 |
} |
|
| 1861 |
|
|
| 1862 |
if (ve != INVALID) {
|
|
| 1863 |
embedding[graph.oppositeArc(e)] = embedding[ve]; |
|
| 1864 |
embedding[ve] = graph.oppositeArc(e); |
|
| 1865 |
} else {
|
|
| 1866 |
embedding[graph.oppositeArc(e)] = graph.oppositeArc(e); |
|
| 1867 |
} |
|
| 1868 |
} |
|
| 1869 |
} |
|
| 1870 |
} |
|
| 1871 |
} |
|
| 1872 |
|
|
| 1873 |
template <typename Graph, typename EmbeddingMap> |
|
| 1874 |
void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) {
|
|
| 1875 |
typename Graph::template ArcMap<bool> processed(graph); |
|
| 1876 |
|
|
| 1877 |
std::vector<typename Graph::Arc> arcs; |
|
| 1878 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
|
|
| 1879 |
arcs.push_back(e); |
|
| 1880 |
} |
|
| 1881 |
|
|
| 1882 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
| 1883 |
|
|
| 1884 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
|
| 1885 |
typename Graph::Arc pp = arcs[i]; |
|
| 1886 |
if (processed[pp]) continue; |
|
| 1887 |
|
|
| 1888 |
typename Graph::Arc e = embedding[graph.oppositeArc(pp)]; |
|
| 1889 |
processed[e] = true; |
|
| 1890 |
visited.set(graph.source(e), true); |
|
| 1891 |
|
|
| 1892 |
typename Graph::Arc p = e, l = e; |
|
| 1893 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1894 |
|
|
| 1895 |
while (e != l) {
|
|
| 1896 |
processed[e] = true; |
|
| 1897 |
|
|
| 1898 |
if (visited[graph.source(e)]) {
|
|
| 1899 |
|
|
| 1900 |
typename Graph::Arc n = |
|
| 1901 |
graph.direct(graph.addEdge(graph.source(p), |
|
| 1902 |
graph.target(e)), true); |
|
| 1903 |
embedding[n] = p; |
|
| 1904 |
embedding[graph.oppositeArc(pp)] = n; |
|
| 1905 |
|
|
| 1906 |
embedding[graph.oppositeArc(n)] = |
|
| 1907 |
embedding[graph.oppositeArc(e)]; |
|
| 1908 |
embedding[graph.oppositeArc(e)] = |
|
| 1909 |
graph.oppositeArc(n); |
|
| 1910 |
|
|
| 1911 |
p = n; |
|
| 1912 |
e = embedding[graph.oppositeArc(n)]; |
|
| 1913 |
} else {
|
|
| 1914 |
visited.set(graph.source(e), true); |
|
| 1915 |
pp = p; |
|
| 1916 |
p = e; |
|
| 1917 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1918 |
} |
|
| 1919 |
} |
|
| 1920 |
visited.setAll(false); |
|
| 1921 |
} |
|
| 1922 |
} |
|
| 1923 |
|
|
| 1924 |
|
|
| 1925 |
template <typename Graph, typename EmbeddingMap> |
|
| 1926 |
void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) {
|
|
| 1927 |
|
|
| 1928 |
typename Graph::template NodeMap<int> degree(graph); |
|
| 1929 |
|
|
| 1930 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1931 |
degree[n] = countIncEdges(graph, n); |
|
| 1932 |
} |
|
| 1933 |
|
|
| 1934 |
typename Graph::template ArcMap<bool> processed(graph); |
|
| 1935 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
| 1936 |
|
|
| 1937 |
std::vector<typename Graph::Arc> arcs; |
|
| 1938 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
|
|
| 1939 |
arcs.push_back(e); |
|
| 1940 |
} |
|
| 1941 |
|
|
| 1942 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
|
| 1943 |
typename Graph::Arc e = arcs[i]; |
|
| 1944 |
|
|
| 1945 |
if (processed[e]) continue; |
|
| 1946 |
processed[e] = true; |
|
| 1947 |
|
|
| 1948 |
typename Graph::Arc mine = e; |
|
| 1949 |
int mind = degree[graph.source(e)]; |
|
| 1950 |
|
|
| 1951 |
int face_size = 1; |
|
| 1952 |
|
|
| 1953 |
typename Graph::Arc l = e; |
|
| 1954 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1955 |
while (l != e) {
|
|
| 1956 |
processed[e] = true; |
|
| 1957 |
|
|
| 1958 |
++face_size; |
|
| 1959 |
|
|
| 1960 |
if (degree[graph.source(e)] < mind) {
|
|
| 1961 |
mine = e; |
|
| 1962 |
mind = degree[graph.source(e)]; |
|
| 1963 |
} |
|
| 1964 |
|
|
| 1965 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1966 |
} |
|
| 1967 |
|
|
| 1968 |
if (face_size < 4) {
|
|
| 1969 |
continue; |
|
| 1970 |
} |
|
| 1971 |
|
|
| 1972 |
typename Graph::Node s = graph.source(mine); |
|
| 1973 |
for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) {
|
|
| 1974 |
visited.set(graph.target(e), true); |
|
| 1975 |
} |
|
| 1976 |
|
|
| 1977 |
typename Graph::Arc oppe = INVALID; |
|
| 1978 |
|
|
| 1979 |
e = embedding[graph.oppositeArc(mine)]; |
|
| 1980 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1981 |
while (graph.target(e) != s) {
|
|
| 1982 |
if (visited[graph.source(e)]) {
|
|
| 1983 |
oppe = e; |
|
| 1984 |
break; |
|
| 1985 |
} |
|
| 1986 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1987 |
} |
|
| 1988 |
visited.setAll(false); |
|
| 1989 |
|
|
| 1990 |
if (oppe == INVALID) {
|
|
| 1991 |
|
|
| 1992 |
e = embedding[graph.oppositeArc(mine)]; |
|
| 1993 |
typename Graph::Arc pn = mine, p = e; |
|
| 1994 |
|
|
| 1995 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1996 |
while (graph.target(e) != s) {
|
|
| 1997 |
typename Graph::Arc n = |
|
| 1998 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
| 1999 |
|
|
| 2000 |
embedding[n] = pn; |
|
| 2001 |
embedding[graph.oppositeArc(n)] = e; |
|
| 2002 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
| 2003 |
|
|
| 2004 |
pn = n; |
|
| 2005 |
|
|
| 2006 |
p = e; |
|
| 2007 |
e = embedding[graph.oppositeArc(e)]; |
|
| 2008 |
} |
|
| 2009 |
|
|
| 2010 |
embedding[graph.oppositeArc(e)] = pn; |
|
| 2011 |
|
|
| 2012 |
} else {
|
|
| 2013 |
|
|
| 2014 |
mine = embedding[graph.oppositeArc(mine)]; |
|
| 2015 |
s = graph.source(mine); |
|
| 2016 |
oppe = embedding[graph.oppositeArc(oppe)]; |
|
| 2017 |
typename Graph::Node t = graph.source(oppe); |
|
| 2018 |
|
|
| 2019 |
typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true); |
|
| 2020 |
embedding[ce] = mine; |
|
| 2021 |
embedding[graph.oppositeArc(ce)] = oppe; |
|
| 2022 |
|
|
| 2023 |
typename Graph::Arc pn = ce, p = oppe; |
|
| 2024 |
e = embedding[graph.oppositeArc(oppe)]; |
|
| 2025 |
while (graph.target(e) != s) {
|
|
| 2026 |
typename Graph::Arc n = |
|
| 2027 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
| 2028 |
|
|
| 2029 |
embedding[n] = pn; |
|
| 2030 |
embedding[graph.oppositeArc(n)] = e; |
|
| 2031 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
| 2032 |
|
|
| 2033 |
pn = n; |
|
| 2034 |
|
|
| 2035 |
p = e; |
|
| 2036 |
e = embedding[graph.oppositeArc(e)]; |
|
| 2037 |
|
|
| 2038 |
} |
|
| 2039 |
embedding[graph.oppositeArc(e)] = pn; |
|
| 2040 |
|
|
| 2041 |
pn = graph.oppositeArc(ce), p = mine; |
|
| 2042 |
e = embedding[graph.oppositeArc(mine)]; |
|
| 2043 |
while (graph.target(e) != t) {
|
|
| 2044 |
typename Graph::Arc n = |
|
| 2045 |
graph.direct(graph.addEdge(t, graph.source(e)), true); |
|
| 2046 |
|
|
| 2047 |
embedding[n] = pn; |
|
| 2048 |
embedding[graph.oppositeArc(n)] = e; |
|
| 2049 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
| 2050 |
|
|
| 2051 |
pn = n; |
|
| 2052 |
|
|
| 2053 |
p = e; |
|
| 2054 |
e = embedding[graph.oppositeArc(e)]; |
|
| 2055 |
|
|
| 2056 |
} |
|
| 2057 |
embedding[graph.oppositeArc(e)] = pn; |
|
| 2058 |
} |
|
| 2059 |
} |
|
| 2060 |
} |
|
| 2061 |
|
|
| 2062 |
} |
|
| 2063 |
|
|
| 2064 |
/// \ingroup planar |
|
| 2065 |
/// |
|
| 2066 |
/// \brief Schnyder's planar drawing algorithm |
|
| 2067 |
/// |
|
| 2068 |
/// The planar drawing algorithm calculates positions for the nodes |
|
| 2069 |
/// in the plane. These coordinates satisfy that if the edges are |
|
| 2070 |
/// represented with straight lines, then they will not intersect |
|
| 2071 |
/// each other. |
|
| 2072 |
/// |
|
| 2073 |
/// Scnyder's algorithm embeds the graph on an \c (n-2)x(n-2) size grid, |
|
| 2074 |
/// i.e. each node will be located in the \c [0..n-2]x[0..n-2] square. |
|
| 2075 |
/// The time complexity of the algorithm is O(n). |
|
| 2076 |
/// |
|
| 2077 |
/// \see PlanarEmbedding |
|
| 2078 |
template <typename Graph> |
|
| 2079 |
class PlanarDrawing {
|
|
| 2080 |
public: |
|
| 2081 |
|
|
| 2082 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 2083 |
|
|
| 2084 |
/// \brief The point type for storing coordinates |
|
| 2085 |
typedef dim2::Point<int> Point; |
|
| 2086 |
/// \brief The map type for storing the coordinates of the nodes |
|
| 2087 |
typedef typename Graph::template NodeMap<Point> PointMap; |
|
| 2088 |
|
|
| 2089 |
|
|
| 2090 |
/// \brief Constructor |
|
| 2091 |
/// |
|
| 2092 |
/// Constructor |
|
| 2093 |
/// \pre The graph must be simple, i.e. it should not |
|
| 2094 |
/// contain parallel or loop arcs. |
|
| 2095 |
PlanarDrawing(const Graph& graph) |
|
| 2096 |
: _graph(graph), _point_map(graph) {}
|
|
| 2097 |
|
|
| 2098 |
private: |
|
| 2099 |
|
|
| 2100 |
template <typename AuxGraph, typename AuxEmbeddingMap> |
|
| 2101 |
void drawing(const AuxGraph& graph, |
|
| 2102 |
const AuxEmbeddingMap& next, |
|
| 2103 |
PointMap& point_map) {
|
|
| 2104 |
TEMPLATE_GRAPH_TYPEDEFS(AuxGraph); |
|
| 2105 |
|
|
| 2106 |
typename AuxGraph::template ArcMap<Arc> prev(graph); |
|
| 2107 |
|
|
| 2108 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2109 |
Arc e = OutArcIt(graph, n); |
|
| 2110 |
|
|
| 2111 |
Arc p = e, l = e; |
|
| 2112 |
|
|
| 2113 |
e = next[e]; |
|
| 2114 |
while (e != l) {
|
|
| 2115 |
prev[e] = p; |
|
| 2116 |
p = e; |
|
| 2117 |
e = next[e]; |
|
| 2118 |
} |
|
| 2119 |
prev[e] = p; |
|
| 2120 |
} |
|
| 2121 |
|
|
| 2122 |
Node anode, bnode, cnode; |
|
| 2123 |
|
|
| 2124 |
{
|
|
| 2125 |
Arc e = ArcIt(graph); |
|
| 2126 |
anode = graph.source(e); |
|
| 2127 |
bnode = graph.target(e); |
|
| 2128 |
cnode = graph.target(next[graph.oppositeArc(e)]); |
|
| 2129 |
} |
|
| 2130 |
|
|
| 2131 |
IterableBoolMap<AuxGraph, Node> proper(graph, false); |
|
| 2132 |
typename AuxGraph::template NodeMap<int> conn(graph, -1); |
|
| 2133 |
|
|
| 2134 |
conn[anode] = conn[bnode] = -2; |
|
| 2135 |
{
|
|
| 2136 |
for (OutArcIt e(graph, anode); e != INVALID; ++e) {
|
|
| 2137 |
Node m = graph.target(e); |
|
| 2138 |
if (conn[m] == -1) {
|
|
| 2139 |
conn[m] = 1; |
|
| 2140 |
} |
|
| 2141 |
} |
|
| 2142 |
conn[cnode] = 2; |
|
| 2143 |
|
|
| 2144 |
for (OutArcIt e(graph, bnode); e != INVALID; ++e) {
|
|
| 2145 |
Node m = graph.target(e); |
|
| 2146 |
if (conn[m] == -1) {
|
|
| 2147 |
conn[m] = 1; |
|
| 2148 |
} else if (conn[m] != -2) {
|
|
| 2149 |
conn[m] += 1; |
|
| 2150 |
Arc pe = graph.oppositeArc(e); |
|
| 2151 |
if (conn[graph.target(next[pe])] == -2) {
|
|
| 2152 |
conn[m] -= 1; |
|
| 2153 |
} |
|
| 2154 |
if (conn[graph.target(prev[pe])] == -2) {
|
|
| 2155 |
conn[m] -= 1; |
|
| 2156 |
} |
|
| 2157 |
|
|
| 2158 |
proper.set(m, conn[m] == 1); |
|
| 2159 |
} |
|
| 2160 |
} |
|
| 2161 |
} |
|
| 2162 |
|
|
| 2163 |
|
|
| 2164 |
typename AuxGraph::template ArcMap<int> angle(graph, -1); |
|
| 2165 |
|
|
| 2166 |
while (proper.trueNum() != 0) {
|
|
| 2167 |
Node n = typename IterableBoolMap<AuxGraph, Node>::TrueIt(proper); |
|
| 2168 |
proper.set(n, false); |
|
| 2169 |
conn[n] = -2; |
|
| 2170 |
|
|
| 2171 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 2172 |
Node m = graph.target(e); |
|
| 2173 |
if (conn[m] == -1) {
|
|
| 2174 |
conn[m] = 1; |
|
| 2175 |
} else if (conn[m] != -2) {
|
|
| 2176 |
conn[m] += 1; |
|
| 2177 |
Arc pe = graph.oppositeArc(e); |
|
| 2178 |
if (conn[graph.target(next[pe])] == -2) {
|
|
| 2179 |
conn[m] -= 1; |
|
| 2180 |
} |
|
| 2181 |
if (conn[graph.target(prev[pe])] == -2) {
|
|
| 2182 |
conn[m] -= 1; |
|
| 2183 |
} |
|
| 2184 |
|
|
| 2185 |
proper.set(m, conn[m] == 1); |
|
| 2186 |
} |
|
| 2187 |
} |
|
| 2188 |
|
|
| 2189 |
{
|
|
| 2190 |
Arc e = OutArcIt(graph, n); |
|
| 2191 |
Arc p = e, l = e; |
|
| 2192 |
|
|
| 2193 |
e = next[e]; |
|
| 2194 |
while (e != l) {
|
|
| 2195 |
|
|
| 2196 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
|
|
| 2197 |
Arc f = e; |
|
| 2198 |
angle[f] = 0; |
|
| 2199 |
f = next[graph.oppositeArc(f)]; |
|
| 2200 |
angle[f] = 1; |
|
| 2201 |
f = next[graph.oppositeArc(f)]; |
|
| 2202 |
angle[f] = 2; |
|
| 2203 |
} |
|
| 2204 |
|
|
| 2205 |
p = e; |
|
| 2206 |
e = next[e]; |
|
| 2207 |
} |
|
| 2208 |
|
|
| 2209 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
|
|
| 2210 |
Arc f = e; |
|
| 2211 |
angle[f] = 0; |
|
| 2212 |
f = next[graph.oppositeArc(f)]; |
|
| 2213 |
angle[f] = 1; |
|
| 2214 |
f = next[graph.oppositeArc(f)]; |
|
| 2215 |
angle[f] = 2; |
|
| 2216 |
} |
|
| 2217 |
} |
|
| 2218 |
} |
|
| 2219 |
|
|
| 2220 |
typename AuxGraph::template NodeMap<Node> apred(graph, INVALID); |
|
| 2221 |
typename AuxGraph::template NodeMap<Node> bpred(graph, INVALID); |
|
| 2222 |
typename AuxGraph::template NodeMap<Node> cpred(graph, INVALID); |
|
| 2223 |
|
|
| 2224 |
typename AuxGraph::template NodeMap<int> apredid(graph, -1); |
|
| 2225 |
typename AuxGraph::template NodeMap<int> bpredid(graph, -1); |
|
| 2226 |
typename AuxGraph::template NodeMap<int> cpredid(graph, -1); |
|
| 2227 |
|
|
| 2228 |
for (ArcIt e(graph); e != INVALID; ++e) {
|
|
| 2229 |
if (angle[e] == angle[next[e]]) {
|
|
| 2230 |
switch (angle[e]) {
|
|
| 2231 |
case 2: |
|
| 2232 |
apred[graph.target(e)] = graph.source(e); |
|
| 2233 |
apredid[graph.target(e)] = graph.id(graph.source(e)); |
|
| 2234 |
break; |
|
| 2235 |
case 1: |
|
| 2236 |
bpred[graph.target(e)] = graph.source(e); |
|
| 2237 |
bpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
| 2238 |
break; |
|
| 2239 |
case 0: |
|
| 2240 |
cpred[graph.target(e)] = graph.source(e); |
|
| 2241 |
cpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
| 2242 |
break; |
|
| 2243 |
} |
|
| 2244 |
} |
|
| 2245 |
} |
|
| 2246 |
|
|
| 2247 |
cpred[anode] = INVALID; |
|
| 2248 |
cpred[bnode] = INVALID; |
|
| 2249 |
|
|
| 2250 |
std::vector<Node> aorder, border, corder; |
|
| 2251 |
|
|
| 2252 |
{
|
|
| 2253 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
| 2254 |
std::vector<Node> st; |
|
| 2255 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2256 |
if (!processed[n] && n != bnode && n != cnode) {
|
|
| 2257 |
st.push_back(n); |
|
| 2258 |
processed[n] = true; |
|
| 2259 |
Node m = apred[n]; |
|
| 2260 |
while (m != INVALID && !processed[m]) {
|
|
| 2261 |
st.push_back(m); |
|
| 2262 |
processed[m] = true; |
|
| 2263 |
m = apred[m]; |
|
| 2264 |
} |
|
| 2265 |
while (!st.empty()) {
|
|
| 2266 |
aorder.push_back(st.back()); |
|
| 2267 |
st.pop_back(); |
|
| 2268 |
} |
|
| 2269 |
} |
|
| 2270 |
} |
|
| 2271 |
} |
|
| 2272 |
|
|
| 2273 |
{
|
|
| 2274 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
| 2275 |
std::vector<Node> st; |
|
| 2276 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2277 |
if (!processed[n] && n != cnode && n != anode) {
|
|
| 2278 |
st.push_back(n); |
|
| 2279 |
processed[n] = true; |
|
| 2280 |
Node m = bpred[n]; |
|
| 2281 |
while (m != INVALID && !processed[m]) {
|
|
| 2282 |
st.push_back(m); |
|
| 2283 |
processed[m] = true; |
|
| 2284 |
m = bpred[m]; |
|
| 2285 |
} |
|
| 2286 |
while (!st.empty()) {
|
|
| 2287 |
border.push_back(st.back()); |
|
| 2288 |
st.pop_back(); |
|
| 2289 |
} |
|
| 2290 |
} |
|
| 2291 |
} |
|
| 2292 |
} |
|
| 2293 |
|
|
| 2294 |
{
|
|
| 2295 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
| 2296 |
std::vector<Node> st; |
|
| 2297 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2298 |
if (!processed[n] && n != anode && n != bnode) {
|
|
| 2299 |
st.push_back(n); |
|
| 2300 |
processed[n] = true; |
|
| 2301 |
Node m = cpred[n]; |
|
| 2302 |
while (m != INVALID && !processed[m]) {
|
|
| 2303 |
st.push_back(m); |
|
| 2304 |
processed[m] = true; |
|
| 2305 |
m = cpred[m]; |
|
| 2306 |
} |
|
| 2307 |
while (!st.empty()) {
|
|
| 2308 |
corder.push_back(st.back()); |
|
| 2309 |
st.pop_back(); |
|
| 2310 |
} |
|
| 2311 |
} |
|
| 2312 |
} |
|
| 2313 |
} |
|
| 2314 |
|
|
| 2315 |
typename AuxGraph::template NodeMap<int> atree(graph, 0); |
|
| 2316 |
for (int i = aorder.size() - 1; i >= 0; --i) {
|
|
| 2317 |
Node n = aorder[i]; |
|
| 2318 |
atree[n] = 1; |
|
| 2319 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 2320 |
if (apred[graph.target(e)] == n) {
|
|
| 2321 |
atree[n] += atree[graph.target(e)]; |
|
| 2322 |
} |
|
| 2323 |
} |
|
| 2324 |
} |
|
| 2325 |
|
|
| 2326 |
typename AuxGraph::template NodeMap<int> btree(graph, 0); |
|
| 2327 |
for (int i = border.size() - 1; i >= 0; --i) {
|
|
| 2328 |
Node n = border[i]; |
|
| 2329 |
btree[n] = 1; |
|
| 2330 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 2331 |
if (bpred[graph.target(e)] == n) {
|
|
| 2332 |
btree[n] += btree[graph.target(e)]; |
|
| 2333 |
} |
|
| 2334 |
} |
|
| 2335 |
} |
|
| 2336 |
|
|
| 2337 |
typename AuxGraph::template NodeMap<int> apath(graph, 0); |
|
| 2338 |
apath[bnode] = apath[cnode] = 1; |
|
| 2339 |
typename AuxGraph::template NodeMap<int> apath_btree(graph, 0); |
|
| 2340 |
apath_btree[bnode] = btree[bnode]; |
|
| 2341 |
for (int i = 1; i < int(aorder.size()); ++i) {
|
|
| 2342 |
Node n = aorder[i]; |
|
| 2343 |
apath[n] = apath[apred[n]] + 1; |
|
| 2344 |
apath_btree[n] = btree[n] + apath_btree[apred[n]]; |
|
| 2345 |
} |
|
| 2346 |
|
|
| 2347 |
typename AuxGraph::template NodeMap<int> bpath_atree(graph, 0); |
|
| 2348 |
bpath_atree[anode] = atree[anode]; |
|
| 2349 |
for (int i = 1; i < int(border.size()); ++i) {
|
|
| 2350 |
Node n = border[i]; |
|
| 2351 |
bpath_atree[n] = atree[n] + bpath_atree[bpred[n]]; |
|
| 2352 |
} |
|
| 2353 |
|
|
| 2354 |
typename AuxGraph::template NodeMap<int> cpath(graph, 0); |
|
| 2355 |
cpath[anode] = cpath[bnode] = 1; |
|
| 2356 |
typename AuxGraph::template NodeMap<int> cpath_atree(graph, 0); |
|
| 2357 |
cpath_atree[anode] = atree[anode]; |
|
| 2358 |
typename AuxGraph::template NodeMap<int> cpath_btree(graph, 0); |
|
| 2359 |
cpath_btree[bnode] = btree[bnode]; |
|
| 2360 |
for (int i = 1; i < int(corder.size()); ++i) {
|
|
| 2361 |
Node n = corder[i]; |
|
| 2362 |
cpath[n] = cpath[cpred[n]] + 1; |
|
| 2363 |
cpath_atree[n] = atree[n] + cpath_atree[cpred[n]]; |
|
| 2364 |
cpath_btree[n] = btree[n] + cpath_btree[cpred[n]]; |
|
| 2365 |
} |
|
| 2366 |
|
|
| 2367 |
typename AuxGraph::template NodeMap<int> third(graph); |
|
| 2368 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2369 |
point_map[n].x = |
|
| 2370 |
bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1; |
|
| 2371 |
point_map[n].y = |
|
| 2372 |
cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1; |
|
| 2373 |
} |
|
| 2374 |
|
|
| 2375 |
} |
|
| 2376 |
|
|
| 2377 |
public: |
|
| 2378 |
|
|
| 2379 |
/// \brief Calculate the node positions |
|
| 2380 |
/// |
|
| 2381 |
/// This function calculates the node positions on the plane. |
|
| 2382 |
/// \return \c true if the graph is planar. |
|
| 2383 |
bool run() {
|
|
| 2384 |
PlanarEmbedding<Graph> pe(_graph); |
|
| 2385 |
if (!pe.run()) return false; |
|
| 2386 |
|
|
| 2387 |
run(pe); |
|
| 2388 |
return true; |
|
| 2389 |
} |
|
| 2390 |
|
|
| 2391 |
/// \brief Calculate the node positions according to a |
|
| 2392 |
/// combinatorical embedding |
|
| 2393 |
/// |
|
| 2394 |
/// This function calculates the node positions on the plane. |
|
| 2395 |
/// The given \c embedding map should contain a valid combinatorical |
|
| 2396 |
/// embedding, i.e. a valid cyclic order of the arcs. |
|
| 2397 |
/// It can be computed using PlanarEmbedding. |
|
| 2398 |
template <typename EmbeddingMap> |
|
| 2399 |
void run(const EmbeddingMap& embedding) {
|
|
| 2400 |
typedef SmartEdgeSet<Graph> AuxGraph; |
|
| 2401 |
|
|
| 2402 |
if (3 * countNodes(_graph) - 6 == countEdges(_graph)) {
|
|
| 2403 |
drawing(_graph, embedding, _point_map); |
|
| 2404 |
return; |
|
| 2405 |
} |
|
| 2406 |
|
|
| 2407 |
AuxGraph aux_graph(_graph); |
|
| 2408 |
typename AuxGraph::template ArcMap<typename AuxGraph::Arc> |
|
| 2409 |
aux_embedding(aux_graph); |
|
| 2410 |
|
|
| 2411 |
{
|
|
| 2412 |
|
|
| 2413 |
typename Graph::template EdgeMap<typename AuxGraph::Edge> |
|
| 2414 |
ref(_graph); |
|
| 2415 |
|
|
| 2416 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 2417 |
ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e)); |
|
| 2418 |
} |
|
| 2419 |
|
|
| 2420 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 2421 |
Arc ee = embedding[_graph.direct(e, true)]; |
|
| 2422 |
aux_embedding[aux_graph.direct(ref[e], true)] = |
|
| 2423 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
| 2424 |
ee = embedding[_graph.direct(e, false)]; |
|
| 2425 |
aux_embedding[aux_graph.direct(ref[e], false)] = |
|
| 2426 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
| 2427 |
} |
|
| 2428 |
} |
|
| 2429 |
_planarity_bits::makeConnected(aux_graph, aux_embedding); |
|
| 2430 |
_planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding); |
|
| 2431 |
_planarity_bits::makeMaxPlanar(aux_graph, aux_embedding); |
|
| 2432 |
drawing(aux_graph, aux_embedding, _point_map); |
|
| 2433 |
} |
|
| 2434 |
|
|
| 2435 |
/// \brief The coordinate of the given node |
|
| 2436 |
/// |
|
| 2437 |
/// This function returns the coordinate of the given node. |
|
| 2438 |
Point operator[](const Node& node) const {
|
|
| 2439 |
return _point_map[node]; |
|
| 2440 |
} |
|
| 2441 |
|
|
| 2442 |
/// \brief Return the grid embedding in a node map |
|
| 2443 |
/// |
|
| 2444 |
/// This function returns the grid embedding in a node map of |
|
| 2445 |
/// \c dim2::Point<int> coordinates. |
|
| 2446 |
const PointMap& coords() const {
|
|
| 2447 |
return _point_map; |
|
| 2448 |
} |
|
| 2449 |
|
|
| 2450 |
private: |
|
| 2451 |
|
|
| 2452 |
const Graph& _graph; |
|
| 2453 |
PointMap _point_map; |
|
| 2454 |
|
|
| 2455 |
}; |
|
| 2456 |
|
|
| 2457 |
namespace _planarity_bits {
|
|
| 2458 |
|
|
| 2459 |
template <typename ColorMap> |
|
| 2460 |
class KempeFilter {
|
|
| 2461 |
public: |
|
| 2462 |
typedef typename ColorMap::Key Key; |
|
| 2463 |
typedef bool Value; |
|
| 2464 |
|
|
| 2465 |
KempeFilter(const ColorMap& color_map, |
|
| 2466 |
const typename ColorMap::Value& first, |
|
| 2467 |
const typename ColorMap::Value& second) |
|
| 2468 |
: _color_map(color_map), _first(first), _second(second) {}
|
|
| 2469 |
|
|
| 2470 |
Value operator[](const Key& key) const {
|
|
| 2471 |
return _color_map[key] == _first || _color_map[key] == _second; |
|
| 2472 |
} |
|
| 2473 |
|
|
| 2474 |
private: |
|
| 2475 |
const ColorMap& _color_map; |
|
| 2476 |
typename ColorMap::Value _first, _second; |
|
| 2477 |
}; |
|
| 2478 |
} |
|
| 2479 |
|
|
| 2480 |
/// \ingroup planar |
|
| 2481 |
/// |
|
| 2482 |
/// \brief Coloring planar graphs |
|
| 2483 |
/// |
|
| 2484 |
/// The graph coloring problem is the coloring of the graph nodes |
|
| 2485 |
/// so that there are no adjacent nodes with the same color. The |
|
| 2486 |
/// planar graphs can always be colored with four colors, which is |
|
| 2487 |
/// proved by Appel and Haken. Their proofs provide a quadratic |
|
| 2488 |
/// time algorithm for four coloring, but it could not be used to |
|
| 2489 |
/// implement an efficient algorithm. The five and six coloring can be |
|
| 2490 |
/// made in linear time, but in this class, the five coloring has |
|
| 2491 |
/// quadratic worst case time complexity. The two coloring (if |
|
| 2492 |
/// possible) is solvable with a graph search algorithm and it is |
|
| 2493 |
/// implemented in \ref bipartitePartitions() function in LEMON. To |
|
| 2494 |
/// decide whether a planar graph is three colorable is NP-complete. |
|
| 2495 |
/// |
|
| 2496 |
/// This class contains member functions for calculate colorings |
|
| 2497 |
/// with five and six colors. The six coloring algorithm is a simple |
|
| 2498 |
/// greedy coloring on the backward minimum outgoing order of nodes. |
|
| 2499 |
/// This order can be computed by selecting the node with least |
|
| 2500 |
/// outgoing arcs to unprocessed nodes in each phase. This order |
|
| 2501 |
/// guarantees that when a node is chosen for coloring it has at |
|
| 2502 |
/// most five already colored adjacents. The five coloring algorithm |
|
| 2503 |
/// use the same method, but if the greedy approach fails to color |
|
| 2504 |
/// with five colors, i.e. the node has five already different |
|
| 2505 |
/// colored neighbours, it swaps the colors in one of the connected |
|
| 2506 |
/// two colored sets with the Kempe recoloring method. |
|
| 2507 |
template <typename Graph> |
|
| 2508 |
class PlanarColoring {
|
|
| 2509 |
public: |
|
| 2510 |
|
|
| 2511 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 2512 |
|
|
| 2513 |
/// \brief The map type for storing color indices |
|
| 2514 |
typedef typename Graph::template NodeMap<int> IndexMap; |
|
| 2515 |
/// \brief The map type for storing colors |
|
| 2516 |
/// |
|
| 2517 |
/// The map type for storing colors. |
|
| 2518 |
/// \see Palette, Color |
|
| 2519 |
typedef ComposeMap<Palette, IndexMap> ColorMap; |
|
| 2520 |
|
|
| 2521 |
/// \brief Constructor |
|
| 2522 |
/// |
|
| 2523 |
/// Constructor. |
|
| 2524 |
/// \pre The graph must be simple, i.e. it should not |
|
| 2525 |
/// contain parallel or loop arcs. |
|
| 2526 |
PlanarColoring(const Graph& graph) |
|
| 2527 |
: _graph(graph), _color_map(graph), _palette(0) {
|
|
| 2528 |
_palette.add(Color(1,0,0)); |
|
| 2529 |
_palette.add(Color(0,1,0)); |
|
| 2530 |
_palette.add(Color(0,0,1)); |
|
| 2531 |
_palette.add(Color(1,1,0)); |
|
| 2532 |
_palette.add(Color(1,0,1)); |
|
| 2533 |
_palette.add(Color(0,1,1)); |
|
| 2534 |
} |
|
| 2535 |
|
|
| 2536 |
/// \brief Return the node map of color indices |
|
| 2537 |
/// |
|
| 2538 |
/// This function returns the node map of color indices. The values are |
|
| 2539 |
/// in the range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2540 |
IndexMap colorIndexMap() const {
|
|
| 2541 |
return _color_map; |
|
| 2542 |
} |
|
| 2543 |
|
|
| 2544 |
/// \brief Return the node map of colors |
|
| 2545 |
/// |
|
| 2546 |
/// This function returns the node map of colors. The values are among |
|
| 2547 |
/// five or six distinct \ref lemon::Color "colors". |
|
| 2548 |
ColorMap colorMap() const {
|
|
| 2549 |
return composeMap(_palette, _color_map); |
|
| 2550 |
} |
|
| 2551 |
|
|
| 2552 |
/// \brief Return the color index of the node |
|
| 2553 |
/// |
|
| 2554 |
/// This function returns the color index of the given node. The value is |
|
| 2555 |
/// in the range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2556 |
int colorIndex(const Node& node) const {
|
|
| 2557 |
return _color_map[node]; |
|
| 2558 |
} |
|
| 2559 |
|
|
| 2560 |
/// \brief Return the color of the node |
|
| 2561 |
/// |
|
| 2562 |
/// This function returns the color of the given node. The value is among |
|
| 2563 |
/// five or six distinct \ref lemon::Color "colors". |
|
| 2564 |
Color color(const Node& node) const {
|
|
| 2565 |
return _palette[_color_map[node]]; |
|
| 2566 |
} |
|
| 2567 |
|
|
| 2568 |
|
|
| 2569 |
/// \brief Calculate a coloring with at most six colors |
|
| 2570 |
/// |
|
| 2571 |
/// This function calculates a coloring with at most six colors. The time |
|
| 2572 |
/// complexity of this variant is linear in the size of the graph. |
|
| 2573 |
/// \return \c true if the algorithm could color the graph with six colors. |
|
| 2574 |
/// If the algorithm fails, then the graph is not planar. |
|
| 2575 |
/// \note This function can return \c true if the graph is not |
|
| 2576 |
/// planar, but it can be colored with at most six colors. |
|
| 2577 |
bool runSixColoring() {
|
|
| 2578 |
|
|
| 2579 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
| 2580 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
| 2581 |
|
|
| 2582 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 2583 |
_color_map[n] = -2; |
|
| 2584 |
heap.push(n, countOutArcs(_graph, n)); |
|
| 2585 |
} |
|
| 2586 |
|
|
| 2587 |
std::vector<Node> order; |
|
| 2588 |
|
|
| 2589 |
while (!heap.empty()) {
|
|
| 2590 |
Node n = heap.top(); |
|
| 2591 |
heap.pop(); |
|
| 2592 |
_color_map[n] = -1; |
|
| 2593 |
order.push_back(n); |
|
| 2594 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 2595 |
Node t = _graph.runningNode(e); |
|
| 2596 |
if (_color_map[t] == -2) {
|
|
| 2597 |
heap.decrease(t, heap[t] - 1); |
|
| 2598 |
} |
|
| 2599 |
} |
|
| 2600 |
} |
|
| 2601 |
|
|
| 2602 |
for (int i = order.size() - 1; i >= 0; --i) {
|
|
| 2603 |
std::vector<bool> forbidden(6, false); |
|
| 2604 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
|
|
| 2605 |
Node t = _graph.runningNode(e); |
|
| 2606 |
if (_color_map[t] != -1) {
|
|
| 2607 |
forbidden[_color_map[t]] = true; |
|
| 2608 |
} |
|
| 2609 |
} |
|
| 2610 |
for (int k = 0; k < 6; ++k) {
|
|
| 2611 |
if (!forbidden[k]) {
|
|
| 2612 |
_color_map[order[i]] = k; |
|
| 2613 |
break; |
|
| 2614 |
} |
|
| 2615 |
} |
|
| 2616 |
if (_color_map[order[i]] == -1) {
|
|
| 2617 |
return false; |
|
| 2618 |
} |
|
| 2619 |
} |
|
| 2620 |
return true; |
|
| 2621 |
} |
|
| 2622 |
|
|
| 2623 |
private: |
|
| 2624 |
|
|
| 2625 |
bool recolor(const Node& u, const Node& v) {
|
|
| 2626 |
int ucolor = _color_map[u]; |
|
| 2627 |
int vcolor = _color_map[v]; |
|
| 2628 |
typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter; |
|
| 2629 |
KempeFilter filter(_color_map, ucolor, vcolor); |
|
| 2630 |
|
|
| 2631 |
typedef FilterNodes<const Graph, const KempeFilter> KempeGraph; |
|
| 2632 |
KempeGraph kempe_graph(_graph, filter); |
|
| 2633 |
|
|
| 2634 |
std::vector<Node> comp; |
|
| 2635 |
Bfs<KempeGraph> bfs(kempe_graph); |
|
| 2636 |
bfs.init(); |
|
| 2637 |
bfs.addSource(u); |
|
| 2638 |
while (!bfs.emptyQueue()) {
|
|
| 2639 |
Node n = bfs.nextNode(); |
|
| 2640 |
if (n == v) return false; |
|
| 2641 |
comp.push_back(n); |
|
| 2642 |
bfs.processNextNode(); |
|
| 2643 |
} |
|
| 2644 |
|
|
| 2645 |
int scolor = ucolor + vcolor; |
|
| 2646 |
for (int i = 0; i < static_cast<int>(comp.size()); ++i) {
|
|
| 2647 |
_color_map[comp[i]] = scolor - _color_map[comp[i]]; |
|
| 2648 |
} |
|
| 2649 |
|
|
| 2650 |
return true; |
|
| 2651 |
} |
|
| 2652 |
|
|
| 2653 |
template <typename EmbeddingMap> |
|
| 2654 |
void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) {
|
|
| 2655 |
std::vector<Node> nodes; |
|
| 2656 |
nodes.reserve(4); |
|
| 2657 |
|
|
| 2658 |
for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) {
|
|
| 2659 |
Node t = _graph.target(e); |
|
| 2660 |
if (_color_map[t] != -1) {
|
|
| 2661 |
nodes.push_back(t); |
|
| 2662 |
if (nodes.size() == 4) break; |
|
| 2663 |
} |
|
| 2664 |
} |
|
| 2665 |
|
|
| 2666 |
int color = _color_map[nodes[0]]; |
|
| 2667 |
if (recolor(nodes[0], nodes[2])) {
|
|
| 2668 |
_color_map[node] = color; |
|
| 2669 |
} else {
|
|
| 2670 |
color = _color_map[nodes[1]]; |
|
| 2671 |
recolor(nodes[1], nodes[3]); |
|
| 2672 |
_color_map[node] = color; |
|
| 2673 |
} |
|
| 2674 |
} |
|
| 2675 |
|
|
| 2676 |
public: |
|
| 2677 |
|
|
| 2678 |
/// \brief Calculate a coloring with at most five colors |
|
| 2679 |
/// |
|
| 2680 |
/// This function calculates a coloring with at most five |
|
| 2681 |
/// colors. The worst case time complexity of this variant is |
|
| 2682 |
/// quadratic in the size of the graph. |
|
| 2683 |
/// \param embedding This map should contain a valid combinatorical |
|
| 2684 |
/// embedding, i.e. a valid cyclic order of the arcs. |
|
| 2685 |
/// It can be computed using PlanarEmbedding. |
|
| 2686 |
template <typename EmbeddingMap> |
|
| 2687 |
void runFiveColoring(const EmbeddingMap& embedding) {
|
|
| 2688 |
|
|
| 2689 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
| 2690 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
| 2691 |
|
|
| 2692 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 2693 |
_color_map[n] = -2; |
|
| 2694 |
heap.push(n, countOutArcs(_graph, n)); |
|
| 2695 |
} |
|
| 2696 |
|
|
| 2697 |
std::vector<Node> order; |
|
| 2698 |
|
|
| 2699 |
while (!heap.empty()) {
|
|
| 2700 |
Node n = heap.top(); |
|
| 2701 |
heap.pop(); |
|
| 2702 |
_color_map[n] = -1; |
|
| 2703 |
order.push_back(n); |
|
| 2704 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 2705 |
Node t = _graph.runningNode(e); |
|
| 2706 |
if (_color_map[t] == -2) {
|
|
| 2707 |
heap.decrease(t, heap[t] - 1); |
|
| 2708 |
} |
|
| 2709 |
} |
|
| 2710 |
} |
|
| 2711 |
|
|
| 2712 |
for (int i = order.size() - 1; i >= 0; --i) {
|
|
| 2713 |
std::vector<bool> forbidden(5, false); |
|
| 2714 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
|
|
| 2715 |
Node t = _graph.runningNode(e); |
|
| 2716 |
if (_color_map[t] != -1) {
|
|
| 2717 |
forbidden[_color_map[t]] = true; |
|
| 2718 |
} |
|
| 2719 |
} |
|
| 2720 |
for (int k = 0; k < 5; ++k) {
|
|
| 2721 |
if (!forbidden[k]) {
|
|
| 2722 |
_color_map[order[i]] = k; |
|
| 2723 |
break; |
|
| 2724 |
} |
|
| 2725 |
} |
|
| 2726 |
if (_color_map[order[i]] == -1) {
|
|
| 2727 |
kempeRecoloring(order[i], embedding); |
|
| 2728 |
} |
|
| 2729 |
} |
|
| 2730 |
} |
|
| 2731 |
|
|
| 2732 |
/// \brief Calculate a coloring with at most five colors |
|
| 2733 |
/// |
|
| 2734 |
/// This function calculates a coloring with at most five |
|
| 2735 |
/// colors. The worst case time complexity of this variant is |
|
| 2736 |
/// quadratic in the size of the graph. |
|
| 2737 |
/// \return \c true if the graph is planar. |
|
| 2738 |
bool runFiveColoring() {
|
|
| 2739 |
PlanarEmbedding<Graph> pe(_graph); |
|
| 2740 |
if (!pe.run()) return false; |
|
| 2741 |
|
|
| 2742 |
runFiveColoring(pe.embeddingMap()); |
|
| 2743 |
return true; |
|
| 2744 |
} |
|
| 2745 |
|
|
| 2746 |
private: |
|
| 2747 |
|
|
| 2748 |
const Graph& _graph; |
|
| 2749 |
IndexMap _color_map; |
|
| 2750 |
Palette _palette; |
|
| 2751 |
}; |
|
| 2752 |
|
|
| 2753 |
} |
|
| 2754 |
|
|
| 2755 |
#endif |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_QUAD_HEAP_H |
|
| 20 |
#define LEMON_QUAD_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief Fourary (quaternary) heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief Fourary (quaternary) heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e Fourary (\e quaternary) \e heap |
|
| 37 |
/// data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 39 |
/// |
|
| 40 |
/// The fourary heap is a specialization of the \ref DHeap "D-ary heap" |
|
| 41 |
/// for <tt>D=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
| 42 |
/// but its nodes have at most four children, instead of two. |
|
| 43 |
/// |
|
| 44 |
/// \tparam PR Type of the priorities of the items. |
|
| 45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 |
/// internally to handle the cross references. |
|
| 47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 |
/// The default is \c std::less<PR>. |
|
| 49 |
/// |
|
| 50 |
///\sa BinHeap |
|
| 51 |
///\sa DHeap |
|
| 52 |
#ifdef DOXYGEN |
|
| 53 |
template <typename PR, typename IM, typename CMP> |
|
| 54 |
#else |
|
| 55 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 56 |
#endif |
|
| 57 |
class QuadHeap {
|
|
| 58 |
public: |
|
| 59 |
/// Type of the item-int map. |
|
| 60 |
typedef IM ItemIntMap; |
|
| 61 |
/// Type of the priorities. |
|
| 62 |
typedef PR Prio; |
|
| 63 |
/// Type of the items stored in the heap. |
|
| 64 |
typedef typename ItemIntMap::Key Item; |
|
| 65 |
/// Type of the item-priority pairs. |
|
| 66 |
typedef std::pair<Item,Prio> Pair; |
|
| 67 |
/// Functor type for comparing the priorities. |
|
| 68 |
typedef CMP Compare; |
|
| 69 |
|
|
| 70 |
/// \brief Type to represent the states of the items. |
|
| 71 |
/// |
|
| 72 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 |
/// heap's point of view, but may be useful to the user. |
|
| 75 |
/// |
|
| 76 |
/// The item-int map must be initialized in such way that it assigns |
|
| 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 78 |
enum State {
|
|
| 79 |
IN_HEAP = 0, ///< = 0. |
|
| 80 |
PRE_HEAP = -1, ///< = -1. |
|
| 81 |
POST_HEAP = -2 ///< = -2. |
|
| 82 |
}; |
|
| 83 |
|
|
| 84 |
private: |
|
| 85 |
std::vector<Pair> _data; |
|
| 86 |
Compare _comp; |
|
| 87 |
ItemIntMap &_iim; |
|
| 88 |
|
|
| 89 |
public: |
|
| 90 |
/// \brief Constructor. |
|
| 91 |
/// |
|
| 92 |
/// Constructor. |
|
| 93 |
/// \param map A map that assigns \c int values to the items. |
|
| 94 |
/// It is used internally to handle the cross references. |
|
| 95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 96 |
explicit QuadHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 97 |
|
|
| 98 |
/// \brief Constructor. |
|
| 99 |
/// |
|
| 100 |
/// Constructor. |
|
| 101 |
/// \param map A map that assigns \c int values to the items. |
|
| 102 |
/// It is used internally to handle the cross references. |
|
| 103 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 104 |
/// \param comp The function object used for comparing the priorities. |
|
| 105 |
QuadHeap(ItemIntMap &map, const Compare &comp) |
|
| 106 |
: _iim(map), _comp(comp) {}
|
|
| 107 |
|
|
| 108 |
/// \brief The number of items stored in the heap. |
|
| 109 |
/// |
|
| 110 |
/// This function returns the number of items stored in the heap. |
|
| 111 |
int size() const { return _data.size(); }
|
|
| 112 |
|
|
| 113 |
/// \brief Check if the heap is empty. |
|
| 114 |
/// |
|
| 115 |
/// This function returns \c true if the heap is empty. |
|
| 116 |
bool empty() const { return _data.empty(); }
|
|
| 117 |
|
|
| 118 |
/// \brief Make the heap empty. |
|
| 119 |
/// |
|
| 120 |
/// This functon makes the heap empty. |
|
| 121 |
/// It does not change the cross reference map. If you want to reuse |
|
| 122 |
/// a heap that is not surely empty, you should first clear it and |
|
| 123 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 124 |
/// for each item. |
|
| 125 |
void clear() { _data.clear(); }
|
|
| 126 |
|
|
| 127 |
private: |
|
| 128 |
static int parent(int i) { return (i-1)/4; }
|
|
| 129 |
static int firstChild(int i) { return 4*i+1; }
|
|
| 130 |
|
|
| 131 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 132 |
return _comp(p1.second, p2.second); |
|
| 133 |
} |
|
| 134 |
|
|
| 135 |
void bubbleUp(int hole, Pair p) {
|
|
| 136 |
int par = parent(hole); |
|
| 137 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 138 |
move(_data[par],hole); |
|
| 139 |
hole = par; |
|
| 140 |
par = parent(hole); |
|
| 141 |
} |
|
| 142 |
move(p, hole); |
|
| 143 |
} |
|
| 144 |
|
|
| 145 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 146 |
if( length>1 ) {
|
|
| 147 |
int child = firstChild(hole); |
|
| 148 |
while( child+3<length ) {
|
|
| 149 |
int min=child; |
|
| 150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 152 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 153 |
if( !less(_data[min], p) ) |
|
| 154 |
goto ok; |
|
| 155 |
move(_data[min], hole); |
|
| 156 |
hole = min; |
|
| 157 |
child = firstChild(hole); |
|
| 158 |
} |
|
| 159 |
if ( child<length ) {
|
|
| 160 |
int min = child; |
|
| 161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 162 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 163 |
if( less(_data[min], p) ) {
|
|
| 164 |
move(_data[min], hole); |
|
| 165 |
hole = min; |
|
| 166 |
} |
|
| 167 |
} |
|
| 168 |
} |
|
| 169 |
ok: |
|
| 170 |
move(p, hole); |
|
| 171 |
} |
|
| 172 |
|
|
| 173 |
void move(const Pair &p, int i) {
|
|
| 174 |
_data[i] = p; |
|
| 175 |
_iim.set(p.first, i); |
|
| 176 |
} |
|
| 177 |
|
|
| 178 |
public: |
|
| 179 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 180 |
/// |
|
| 181 |
/// This function inserts \c p.first to the heap with priority |
|
| 182 |
/// \c p.second. |
|
| 183 |
/// \param p The pair to insert. |
|
| 184 |
/// \pre \c p.first must not be stored in the heap. |
|
| 185 |
void push(const Pair &p) {
|
|
| 186 |
int n = _data.size(); |
|
| 187 |
_data.resize(n+1); |
|
| 188 |
bubbleUp(n, p); |
|
| 189 |
} |
|
| 190 |
|
|
| 191 |
/// \brief Insert an item into the heap with the given priority. |
|
| 192 |
/// |
|
| 193 |
/// This function inserts the given item into the heap with the |
|
| 194 |
/// given priority. |
|
| 195 |
/// \param i The item to insert. |
|
| 196 |
/// \param p The priority of the item. |
|
| 197 |
/// \pre \e i must not be stored in the heap. |
|
| 198 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 199 |
|
|
| 200 |
/// \brief Return the item having minimum priority. |
|
| 201 |
/// |
|
| 202 |
/// This function returns the item having minimum priority. |
|
| 203 |
/// \pre The heap must be non-empty. |
|
| 204 |
Item top() const { return _data[0].first; }
|
|
| 205 |
|
|
| 206 |
/// \brief The minimum priority. |
|
| 207 |
/// |
|
| 208 |
/// This function returns the minimum priority. |
|
| 209 |
/// \pre The heap must be non-empty. |
|
| 210 |
Prio prio() const { return _data[0].second; }
|
|
| 211 |
|
|
| 212 |
/// \brief Remove the item having minimum priority. |
|
| 213 |
/// |
|
| 214 |
/// This function removes the item having minimum priority. |
|
| 215 |
/// \pre The heap must be non-empty. |
|
| 216 |
void pop() {
|
|
| 217 |
int n = _data.size()-1; |
|
| 218 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 219 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 220 |
_data.pop_back(); |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
/// \brief Remove the given item from the heap. |
|
| 224 |
/// |
|
| 225 |
/// This function removes the given item from the heap if it is |
|
| 226 |
/// already stored. |
|
| 227 |
/// \param i The item to delete. |
|
| 228 |
/// \pre \e i must be in the heap. |
|
| 229 |
void erase(const Item &i) {
|
|
| 230 |
int h = _iim[i]; |
|
| 231 |
int n = _data.size()-1; |
|
| 232 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 233 |
if( h<n ) {
|
|
| 234 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 235 |
bubbleDown(h, _data[n], n); |
|
| 236 |
else |
|
| 237 |
bubbleUp(h, _data[n]); |
|
| 238 |
} |
|
| 239 |
_data.pop_back(); |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
/// \brief The priority of the given item. |
|
| 243 |
/// |
|
| 244 |
/// This function returns the priority of the given item. |
|
| 245 |
/// \param i The item. |
|
| 246 |
/// \pre \e i must be in the heap. |
|
| 247 |
Prio operator[](const Item &i) const {
|
|
| 248 |
int idx = _iim[i]; |
|
| 249 |
return _data[idx].second; |
|
| 250 |
} |
|
| 251 |
|
|
| 252 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 253 |
/// not stored in the heap. |
|
| 254 |
/// |
|
| 255 |
/// This method sets the priority of the given item if it is |
|
| 256 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 257 |
/// item into the heap with the given priority. |
|
| 258 |
/// \param i The item. |
|
| 259 |
/// \param p The priority. |
|
| 260 |
void set(const Item &i, const Prio &p) {
|
|
| 261 |
int idx = _iim[i]; |
|
| 262 |
if( idx < 0 ) |
|
| 263 |
push(i,p); |
|
| 264 |
else if( _comp(p, _data[idx].second) ) |
|
| 265 |
bubbleUp(idx, Pair(i,p)); |
|
| 266 |
else |
|
| 267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 268 |
} |
|
| 269 |
|
|
| 270 |
/// \brief Decrease the priority of an item to the given value. |
|
| 271 |
/// |
|
| 272 |
/// This function decreases the priority of an item to the given value. |
|
| 273 |
/// \param i The item. |
|
| 274 |
/// \param p The priority. |
|
| 275 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 276 |
void decrease(const Item &i, const Prio &p) {
|
|
| 277 |
int idx = _iim[i]; |
|
| 278 |
bubbleUp(idx, Pair(i,p)); |
|
| 279 |
} |
|
| 280 |
|
|
| 281 |
/// \brief Increase the priority of an item to the given value. |
|
| 282 |
/// |
|
| 283 |
/// This function increases the priority of an item to the given value. |
|
| 284 |
/// \param i The item. |
|
| 285 |
/// \param p The priority. |
|
| 286 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 287 |
void increase(const Item &i, const Prio &p) {
|
|
| 288 |
int idx = _iim[i]; |
|
| 289 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 290 |
} |
|
| 291 |
|
|
| 292 |
/// \brief Return the state of an item. |
|
| 293 |
/// |
|
| 294 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 295 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 296 |
/// and \c POST_HEAP otherwise. |
|
| 297 |
/// In the latter case it is possible that the item will get back |
|
| 298 |
/// to the heap again. |
|
| 299 |
/// \param i The item. |
|
| 300 |
State state(const Item &i) const {
|
|
| 301 |
int s = _iim[i]; |
|
| 302 |
if (s>=0) s=0; |
|
| 303 |
return State(s); |
|
| 304 |
} |
|
| 305 |
|
|
| 306 |
/// \brief Set the state of an item in the heap. |
|
| 307 |
/// |
|
| 308 |
/// This function sets the state of the given item in the heap. |
|
| 309 |
/// It can be used to manually clear the heap when it is important |
|
| 310 |
/// to achive better time complexity. |
|
| 311 |
/// \param i The item. |
|
| 312 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 313 |
void state(const Item& i, State st) {
|
|
| 314 |
switch (st) {
|
|
| 315 |
case POST_HEAP: |
|
| 316 |
case PRE_HEAP: |
|
| 317 |
if (state(i) == IN_HEAP) erase(i); |
|
| 318 |
_iim[i] = st; |
|
| 319 |
break; |
|
| 320 |
case IN_HEAP: |
|
| 321 |
break; |
|
| 322 |
} |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
/// \brief Replace an item in the heap. |
|
| 326 |
/// |
|
| 327 |
/// This function replaces item \c i with item \c j. |
|
| 328 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 329 |
/// After calling this method, item \c i will be out of the |
|
| 330 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 331 |
/// as item \c i had before. |
|
| 332 |
void replace(const Item& i, const Item& j) {
|
|
| 333 |
int idx = _iim[i]; |
|
| 334 |
_iim.set(i, _iim[j]); |
|
| 335 |
_iim.set(j, idx); |
|
| 336 |
_data[idx].first = j; |
|
| 337 |
} |
|
| 338 |
|
|
| 339 |
}; // class QuadHeap |
|
| 340 |
|
|
| 341 |
} // namespace lemon |
|
| 342 |
|
|
| 343 |
#endif // LEMON_FOURARY_HEAP_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_STATIC_GRAPH_H |
|
| 20 |
#define LEMON_STATIC_GRAPH_H |
|
| 21 |
|
|
| 22 |
///\ingroup graphs |
|
| 23 |
///\file |
|
| 24 |
///\brief StaticDigraph class. |
|
| 25 |
|
|
| 26 |
#include <lemon/core.h> |
|
| 27 |
#include <lemon/bits/graph_extender.h> |
|
| 28 |
|
|
| 29 |
namespace lemon {
|
|
| 30 |
|
|
| 31 |
class StaticDigraphBase {
|
|
| 32 |
public: |
|
| 33 |
|
|
| 34 |
StaticDigraphBase() |
|
| 35 |
: built(false), node_num(0), arc_num(0), |
|
| 36 |
node_first_out(NULL), node_first_in(NULL), |
|
| 37 |
arc_source(NULL), arc_target(NULL), |
|
| 38 |
arc_next_in(NULL), arc_next_out(NULL) {}
|
|
| 39 |
|
|
| 40 |
~StaticDigraphBase() {
|
|
| 41 |
if (built) {
|
|
| 42 |
delete[] node_first_out; |
|
| 43 |
delete[] node_first_in; |
|
| 44 |
delete[] arc_source; |
|
| 45 |
delete[] arc_target; |
|
| 46 |
delete[] arc_next_out; |
|
| 47 |
delete[] arc_next_in; |
|
| 48 |
} |
|
| 49 |
} |
|
| 50 |
|
|
| 51 |
class Node {
|
|
| 52 |
friend class StaticDigraphBase; |
|
| 53 |
protected: |
|
| 54 |
int id; |
|
| 55 |
Node(int _id) : id(_id) {}
|
|
| 56 |
public: |
|
| 57 |
Node() {}
|
|
| 58 |
Node (Invalid) : id(-1) {}
|
|
| 59 |
bool operator==(const Node& node) const { return id == node.id; }
|
|
| 60 |
bool operator!=(const Node& node) const { return id != node.id; }
|
|
| 61 |
bool operator<(const Node& node) const { return id < node.id; }
|
|
| 62 |
}; |
|
| 63 |
|
|
| 64 |
class Arc {
|
|
| 65 |
friend class StaticDigraphBase; |
|
| 66 |
protected: |
|
| 67 |
int id; |
|
| 68 |
Arc(int _id) : id(_id) {}
|
|
| 69 |
public: |
|
| 70 |
Arc() { }
|
|
| 71 |
Arc (Invalid) : id(-1) {}
|
|
| 72 |
bool operator==(const Arc& arc) const { return id == arc.id; }
|
|
| 73 |
bool operator!=(const Arc& arc) const { return id != arc.id; }
|
|
| 74 |
bool operator<(const Arc& arc) const { return id < arc.id; }
|
|
| 75 |
}; |
|
| 76 |
|
|
| 77 |
Node source(const Arc& e) const { return Node(arc_source[e.id]); }
|
|
| 78 |
Node target(const Arc& e) const { return Node(arc_target[e.id]); }
|
|
| 79 |
|
|
| 80 |
void first(Node& n) const { n.id = node_num - 1; }
|
|
| 81 |
static void next(Node& n) { --n.id; }
|
|
| 82 |
|
|
| 83 |
void first(Arc& e) const { e.id = arc_num - 1; }
|
|
| 84 |
static void next(Arc& e) { --e.id; }
|
|
| 85 |
|
|
| 86 |
void firstOut(Arc& e, const Node& n) const {
|
|
| 87 |
e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? |
|
| 88 |
node_first_out[n.id] : -1; |
|
| 89 |
} |
|
| 90 |
void nextOut(Arc& e) const { e.id = arc_next_out[e.id]; }
|
|
| 91 |
|
|
| 92 |
void firstIn(Arc& e, const Node& n) const { e.id = node_first_in[n.id]; }
|
|
| 93 |
void nextIn(Arc& e) const { e.id = arc_next_in[e.id]; }
|
|
| 94 |
|
|
| 95 |
static int id(const Node& n) { return n.id; }
|
|
| 96 |
static Node nodeFromId(int id) { return Node(id); }
|
|
| 97 |
int maxNodeId() const { return node_num - 1; }
|
|
| 98 |
|
|
| 99 |
static int id(const Arc& e) { return e.id; }
|
|
| 100 |
static Arc arcFromId(int id) { return Arc(id); }
|
|
| 101 |
int maxArcId() const { return arc_num - 1; }
|
|
| 102 |
|
|
| 103 |
typedef True NodeNumTag; |
|
| 104 |
typedef True ArcNumTag; |
|
| 105 |
|
|
| 106 |
int nodeNum() const { return node_num; }
|
|
| 107 |
int arcNum() const { return arc_num; }
|
|
| 108 |
|
|
| 109 |
private: |
|
| 110 |
|
|
| 111 |
template <typename Digraph, typename NodeRefMap> |
|
| 112 |
class ArcLess {
|
|
| 113 |
public: |
|
| 114 |
typedef typename Digraph::Arc Arc; |
|
| 115 |
|
|
| 116 |
ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) |
|
| 117 |
: digraph(_graph), nodeRef(_nodeRef) {}
|
|
| 118 |
|
|
| 119 |
bool operator()(const Arc& left, const Arc& right) const {
|
|
| 120 |
return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)]; |
|
| 121 |
} |
|
| 122 |
private: |
|
| 123 |
const Digraph& digraph; |
|
| 124 |
const NodeRefMap& nodeRef; |
|
| 125 |
}; |
|
| 126 |
|
|
| 127 |
public: |
|
| 128 |
|
|
| 129 |
typedef True BuildTag; |
|
| 130 |
|
|
| 131 |
void clear() {
|
|
| 132 |
if (built) {
|
|
| 133 |
delete[] node_first_out; |
|
| 134 |
delete[] node_first_in; |
|
| 135 |
delete[] arc_source; |
|
| 136 |
delete[] arc_target; |
|
| 137 |
delete[] arc_next_out; |
|
| 138 |
delete[] arc_next_in; |
|
| 139 |
} |
|
| 140 |
built = false; |
|
| 141 |
node_num = 0; |
|
| 142 |
arc_num = 0; |
|
| 143 |
} |
|
| 144 |
|
|
| 145 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
|
| 146 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
|
|
| 147 |
typedef typename Digraph::Node GNode; |
|
| 148 |
typedef typename Digraph::Arc GArc; |
|
| 149 |
|
|
| 150 |
built = true; |
|
| 151 |
|
|
| 152 |
node_num = countNodes(digraph); |
|
| 153 |
arc_num = countArcs(digraph); |
|
| 154 |
|
|
| 155 |
node_first_out = new int[node_num + 1]; |
|
| 156 |
node_first_in = new int[node_num]; |
|
| 157 |
|
|
| 158 |
arc_source = new int[arc_num]; |
|
| 159 |
arc_target = new int[arc_num]; |
|
| 160 |
arc_next_out = new int[arc_num]; |
|
| 161 |
arc_next_in = new int[arc_num]; |
|
| 162 |
|
|
| 163 |
int node_index = 0; |
|
| 164 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
|
| 165 |
nodeRef[n] = Node(node_index); |
|
| 166 |
node_first_in[node_index] = -1; |
|
| 167 |
++node_index; |
|
| 168 |
} |
|
| 169 |
|
|
| 170 |
ArcLess<Digraph, NodeRefMap> arcLess(digraph, nodeRef); |
|
| 171 |
|
|
| 172 |
int arc_index = 0; |
|
| 173 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
|
| 174 |
int source = nodeRef[n].id; |
|
| 175 |
std::vector<GArc> arcs; |
|
| 176 |
for (typename Digraph::OutArcIt e(digraph, n); e != INVALID; ++e) {
|
|
| 177 |
arcs.push_back(e); |
|
| 178 |
} |
|
| 179 |
if (!arcs.empty()) {
|
|
| 180 |
node_first_out[source] = arc_index; |
|
| 181 |
std::sort(arcs.begin(), arcs.end(), arcLess); |
|
| 182 |
for (typename std::vector<GArc>::iterator it = arcs.begin(); |
|
| 183 |
it != arcs.end(); ++it) {
|
|
| 184 |
int target = nodeRef[digraph.target(*it)].id; |
|
| 185 |
arcRef[*it] = Arc(arc_index); |
|
| 186 |
arc_source[arc_index] = source; |
|
| 187 |
arc_target[arc_index] = target; |
|
| 188 |
arc_next_in[arc_index] = node_first_in[target]; |
|
| 189 |
node_first_in[target] = arc_index; |
|
| 190 |
arc_next_out[arc_index] = arc_index + 1; |
|
| 191 |
++arc_index; |
|
| 192 |
} |
|
| 193 |
arc_next_out[arc_index - 1] = -1; |
|
| 194 |
} else {
|
|
| 195 |
node_first_out[source] = arc_index; |
|
| 196 |
} |
|
| 197 |
} |
|
| 198 |
node_first_out[node_num] = arc_num; |
|
| 199 |
} |
|
| 200 |
|
|
| 201 |
template <typename ArcListIterator> |
|
| 202 |
void build(int n, ArcListIterator first, ArcListIterator last) {
|
|
| 203 |
built = true; |
|
| 204 |
|
|
| 205 |
node_num = n; |
|
| 206 |
arc_num = std::distance(first, last); |
|
| 207 |
|
|
| 208 |
node_first_out = new int[node_num + 1]; |
|
| 209 |
node_first_in = new int[node_num]; |
|
| 210 |
|
|
| 211 |
arc_source = new int[arc_num]; |
|
| 212 |
arc_target = new int[arc_num]; |
|
| 213 |
arc_next_out = new int[arc_num]; |
|
| 214 |
arc_next_in = new int[arc_num]; |
|
| 215 |
|
|
| 216 |
for (int i = 0; i != node_num; ++i) {
|
|
| 217 |
node_first_in[i] = -1; |
|
| 218 |
} |
|
| 219 |
|
|
| 220 |
int arc_index = 0; |
|
| 221 |
for (int i = 0; i != node_num; ++i) {
|
|
| 222 |
node_first_out[i] = arc_index; |
|
| 223 |
for ( ; first != last && (*first).first == i; ++first) {
|
|
| 224 |
int j = (*first).second; |
|
| 225 |
LEMON_ASSERT(j >= 0 && j < node_num, |
|
| 226 |
"Wrong arc list for StaticDigraph::build()"); |
|
| 227 |
arc_source[arc_index] = i; |
|
| 228 |
arc_target[arc_index] = j; |
|
| 229 |
arc_next_in[arc_index] = node_first_in[j]; |
|
| 230 |
node_first_in[j] = arc_index; |
|
| 231 |
arc_next_out[arc_index] = arc_index + 1; |
|
| 232 |
++arc_index; |
|
| 233 |
} |
|
| 234 |
if (arc_index > node_first_out[i]) |
|
| 235 |
arc_next_out[arc_index - 1] = -1; |
|
| 236 |
} |
|
| 237 |
LEMON_ASSERT(first == last, |
|
| 238 |
"Wrong arc list for StaticDigraph::build()"); |
|
| 239 |
node_first_out[node_num] = arc_num; |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
protected: |
|
| 243 |
|
|
| 244 |
void fastFirstOut(Arc& e, const Node& n) const {
|
|
| 245 |
e.id = node_first_out[n.id]; |
|
| 246 |
} |
|
| 247 |
|
|
| 248 |
static void fastNextOut(Arc& e) {
|
|
| 249 |
++e.id; |
|
| 250 |
} |
|
| 251 |
void fastLastOut(Arc& e, const Node& n) const {
|
|
| 252 |
e.id = node_first_out[n.id + 1]; |
|
| 253 |
} |
|
| 254 |
|
|
| 255 |
protected: |
|
| 256 |
bool built; |
|
| 257 |
int node_num; |
|
| 258 |
int arc_num; |
|
| 259 |
int *node_first_out; |
|
| 260 |
int *node_first_in; |
|
| 261 |
int *arc_source; |
|
| 262 |
int *arc_target; |
|
| 263 |
int *arc_next_in; |
|
| 264 |
int *arc_next_out; |
|
| 265 |
}; |
|
| 266 |
|
|
| 267 |
typedef DigraphExtender<StaticDigraphBase> ExtendedStaticDigraphBase; |
|
| 268 |
|
|
| 269 |
|
|
| 270 |
/// \ingroup graphs |
|
| 271 |
/// |
|
| 272 |
/// \brief A static directed graph class. |
|
| 273 |
/// |
|
| 274 |
/// \ref StaticDigraph is a highly efficient digraph implementation, |
|
| 275 |
/// but it is fully static. |
|
| 276 |
/// It stores only two \c int values for each node and only four \c int |
|
| 277 |
/// values for each arc. Moreover it provides faster item iteration than |
|
| 278 |
/// \ref ListDigraph and \ref SmartDigraph, especially using \c OutArcIt |
|
| 279 |
/// iterators, since its arcs are stored in an appropriate order. |
|
| 280 |
/// However it only provides build() and clear() functions and does not |
|
| 281 |
/// support any other modification of the digraph. |
|
| 282 |
/// |
|
| 283 |
/// Since this digraph structure is completely static, its nodes and arcs |
|
| 284 |
/// can be indexed with integers from the ranges <tt>[0..nodeNum()-1]</tt> |
|
| 285 |
/// and <tt>[0..arcNum()-1]</tt>, respectively. |
|
| 286 |
/// The index of an item is the same as its ID, it can be obtained |
|
| 287 |
/// using the corresponding \ref index() or \ref concepts::Digraph::id() |
|
| 288 |
/// "id()" function. A node or arc with a certain index can be obtained |
|
| 289 |
/// using node() or arc(). |
|
| 290 |
/// |
|
| 291 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
| 292 |
/// Most of its member functions and nested classes are documented |
|
| 293 |
/// only in the concept class. |
|
| 294 |
/// |
|
| 295 |
/// This class provides constant time counting for nodes and arcs. |
|
| 296 |
/// |
|
| 297 |
/// \sa concepts::Digraph |
|
| 298 |
class StaticDigraph : public ExtendedStaticDigraphBase {
|
|
| 299 |
public: |
|
| 300 |
|
|
| 301 |
typedef ExtendedStaticDigraphBase Parent; |
|
| 302 |
|
|
| 303 |
public: |
|
| 304 |
|
|
| 305 |
/// \brief Constructor |
|
| 306 |
/// |
|
| 307 |
/// Default constructor. |
|
| 308 |
StaticDigraph() : Parent() {}
|
|
| 309 |
|
|
| 310 |
/// \brief The node with the given index. |
|
| 311 |
/// |
|
| 312 |
/// This function returns the node with the given index. |
|
| 313 |
/// \sa index() |
|
| 314 |
static Node node(int ix) { return Parent::nodeFromId(ix); }
|
|
| 315 |
|
|
| 316 |
/// \brief The arc with the given index. |
|
| 317 |
/// |
|
| 318 |
/// This function returns the arc with the given index. |
|
| 319 |
/// \sa index() |
|
| 320 |
static Arc arc(int ix) { return Parent::arcFromId(ix); }
|
|
| 321 |
|
|
| 322 |
/// \brief The index of the given node. |
|
| 323 |
/// |
|
| 324 |
/// This function returns the index of the the given node. |
|
| 325 |
/// \sa node() |
|
| 326 |
static int index(Node node) { return Parent::id(node); }
|
|
| 327 |
|
|
| 328 |
/// \brief The index of the given arc. |
|
| 329 |
/// |
|
| 330 |
/// This function returns the index of the the given arc. |
|
| 331 |
/// \sa arc() |
|
| 332 |
static int index(Arc arc) { return Parent::id(arc); }
|
|
| 333 |
|
|
| 334 |
/// \brief Number of nodes. |
|
| 335 |
/// |
|
| 336 |
/// This function returns the number of nodes. |
|
| 337 |
int nodeNum() const { return node_num; }
|
|
| 338 |
|
|
| 339 |
/// \brief Number of arcs. |
|
| 340 |
/// |
|
| 341 |
/// This function returns the number of arcs. |
|
| 342 |
int arcNum() const { return arc_num; }
|
|
| 343 |
|
|
| 344 |
/// \brief Build the digraph copying another digraph. |
|
| 345 |
/// |
|
| 346 |
/// This function builds the digraph copying another digraph of any |
|
| 347 |
/// kind. It can be called more than once, but in such case, the whole |
|
| 348 |
/// structure and all maps will be cleared and rebuilt. |
|
| 349 |
/// |
|
| 350 |
/// This method also makes possible to copy a digraph to a StaticDigraph |
|
| 351 |
/// structure using \ref DigraphCopy. |
|
| 352 |
/// |
|
| 353 |
/// \param digraph An existing digraph to be copied. |
|
| 354 |
/// \param nodeRef The node references will be copied into this map. |
|
| 355 |
/// Its key type must be \c Digraph::Node and its value type must be |
|
| 356 |
/// \c StaticDigraph::Node. |
|
| 357 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 358 |
/// concept. |
|
| 359 |
/// \param arcRef The arc references will be copied into this map. |
|
| 360 |
/// Its key type must be \c Digraph::Arc and its value type must be |
|
| 361 |
/// \c StaticDigraph::Arc. |
|
| 362 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 363 |
/// |
|
| 364 |
/// \note If you do not need the arc references, then you could use |
|
| 365 |
/// \ref NullMap for the last parameter. However the node references |
|
| 366 |
/// are required by the function itself, thus they must be readable |
|
| 367 |
/// from the map. |
|
| 368 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
|
| 369 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
|
|
| 370 |
if (built) Parent::clear(); |
|
| 371 |
Parent::build(digraph, nodeRef, arcRef); |
|
| 372 |
} |
|
| 373 |
|
|
| 374 |
/// \brief Build the digraph from an arc list. |
|
| 375 |
/// |
|
| 376 |
/// This function builds the digraph from the given arc list. |
|
| 377 |
/// It can be called more than once, but in such case, the whole |
|
| 378 |
/// structure and all maps will be cleared and rebuilt. |
|
| 379 |
/// |
|
| 380 |
/// The list of the arcs must be given in the range <tt>[begin, end)</tt> |
|
| 381 |
/// specified by STL compatible itartors whose \c value_type must be |
|
| 382 |
/// <tt>std::pair<int,int></tt>. |
|
| 383 |
/// Each arc must be specified by a pair of integer indices |
|
| 384 |
/// from the range <tt>[0..n-1]</tt>. <i>The pairs must be in a |
|
| 385 |
/// non-decreasing order with respect to their first values.</i> |
|
| 386 |
/// If the k-th pair in the list is <tt>(i,j)</tt>, then |
|
| 387 |
/// <tt>arc(k-1)</tt> will connect <tt>node(i)</tt> to <tt>node(j)</tt>. |
|
| 388 |
/// |
|
| 389 |
/// \param n The number of nodes. |
|
| 390 |
/// \param begin An iterator pointing to the beginning of the arc list. |
|
| 391 |
/// \param end An iterator pointing to the end of the arc list. |
|
| 392 |
/// |
|
| 393 |
/// For example, a simple digraph can be constructed like this. |
|
| 394 |
/// \code |
|
| 395 |
/// std::vector<std::pair<int,int> > arcs; |
|
| 396 |
/// arcs.push_back(std::make_pair(0,1)); |
|
| 397 |
/// arcs.push_back(std::make_pair(0,2)); |
|
| 398 |
/// arcs.push_back(std::make_pair(1,3)); |
|
| 399 |
/// arcs.push_back(std::make_pair(1,2)); |
|
| 400 |
/// arcs.push_back(std::make_pair(3,0)); |
|
| 401 |
/// StaticDigraph gr; |
|
| 402 |
/// gr.build(4, arcs.begin(), arcs.end()); |
|
| 403 |
/// \endcode |
|
| 404 |
template <typename ArcListIterator> |
|
| 405 |
void build(int n, ArcListIterator begin, ArcListIterator end) {
|
|
| 406 |
if (built) Parent::clear(); |
|
| 407 |
StaticDigraphBase::build(n, begin, end); |
|
| 408 |
notifier(Node()).build(); |
|
| 409 |
notifier(Arc()).build(); |
|
| 410 |
} |
|
| 411 |
|
|
| 412 |
/// \brief Clear the digraph. |
|
| 413 |
/// |
|
| 414 |
/// This function erases all nodes and arcs from the digraph. |
|
| 415 |
void clear() {
|
|
| 416 |
Parent::clear(); |
|
| 417 |
} |
|
| 418 |
|
|
| 419 |
protected: |
|
| 420 |
|
|
| 421 |
using Parent::fastFirstOut; |
|
| 422 |
using Parent::fastNextOut; |
|
| 423 |
using Parent::fastLastOut; |
|
| 424 |
|
|
| 425 |
public: |
|
| 426 |
|
|
| 427 |
class OutArcIt : public Arc {
|
|
| 428 |
public: |
|
| 429 |
|
|
| 430 |
OutArcIt() { }
|
|
| 431 |
|
|
| 432 |
OutArcIt(Invalid i) : Arc(i) { }
|
|
| 433 |
|
|
| 434 |
OutArcIt(const StaticDigraph& digraph, const Node& node) {
|
|
| 435 |
digraph.fastFirstOut(*this, node); |
|
| 436 |
digraph.fastLastOut(last, node); |
|
| 437 |
if (last == *this) *this = INVALID; |
|
| 438 |
} |
|
| 439 |
|
|
| 440 |
OutArcIt(const StaticDigraph& digraph, const Arc& arc) : Arc(arc) {
|
|
| 441 |
if (arc != INVALID) {
|
|
| 442 |
digraph.fastLastOut(last, digraph.source(arc)); |
|
| 443 |
} |
|
| 444 |
} |
|
| 445 |
|
|
| 446 |
OutArcIt& operator++() {
|
|
| 447 |
StaticDigraph::fastNextOut(*this); |
|
| 448 |
if (last == *this) *this = INVALID; |
|
| 449 |
return *this; |
|
| 450 |
} |
|
| 451 |
|
|
| 452 |
private: |
|
| 453 |
Arc last; |
|
| 454 |
}; |
|
| 455 |
|
|
| 456 |
Node baseNode(const OutArcIt &arc) const {
|
|
| 457 |
return Parent::source(static_cast<const Arc&>(arc)); |
|
| 458 |
} |
|
| 459 |
|
|
| 460 |
Node runningNode(const OutArcIt &arc) const {
|
|
| 461 |
return Parent::target(static_cast<const Arc&>(arc)); |
|
| 462 |
} |
|
| 463 |
|
|
| 464 |
Node baseNode(const InArcIt &arc) const {
|
|
| 465 |
return Parent::target(static_cast<const Arc&>(arc)); |
|
| 466 |
} |
|
| 467 |
|
|
| 468 |
Node runningNode(const InArcIt &arc) const {
|
|
| 469 |
return Parent::source(static_cast<const Arc&>(arc)); |
|
| 470 |
} |
|
| 471 |
|
|
| 472 |
}; |
|
| 473 |
|
|
| 474 |
} |
|
| 475 |
|
|
| 476 |
#endif |
| 1 |
#! /usr/bin/env python |
|
| 2 |
""" |
|
| 3 |
BibTeX to Doxygen converter |
|
| 4 |
Usage: python bib2dox.py bibfile.bib > bibfile.dox |
|
| 5 |
|
|
| 6 |
This file is a part of LEMON, a generic C++ optimization library. |
|
| 7 |
|
|
| 8 |
********************************************************************** |
|
| 9 |
|
|
| 10 |
This code is the modification of the BibTeX to XML converter |
|
| 11 |
by Vidar Bronken Gundersen et al. |
|
| 12 |
See the original copyright notices below. |
|
| 13 |
|
|
| 14 |
********************************************************************** |
|
| 15 |
|
|
| 16 |
Decoder for bibliographic data, BibTeX |
|
| 17 |
Usage: python bibtex2xml.py bibfile.bib > bibfile.xml |
|
| 18 |
|
|
| 19 |
v.8 |
|
| 20 |
(c)2002-06-23 Vidar Bronken Gundersen |
|
| 21 |
http://bibtexml.sf.net/ |
|
| 22 |
Reuse approved as long as this notification is kept. |
|
| 23 |
Licence: GPL. |
|
| 24 |
|
|
| 25 |
Contributions/thanks to: |
|
| 26 |
Egon Willighagen, http://sf.net/projects/jreferences/ |
|
| 27 |
Richard Mahoney (for providing a test case) |
|
| 28 |
|
|
| 29 |
Editted by Sara Sprenkle to be more robust and handle more bibtex features. |
|
| 30 |
(c) 2003-01-15 |
|
| 31 |
|
|
| 32 |
1. Changed bibtex: tags to bibxml: tags. |
|
| 33 |
2. Use xmlns:bibxml="http://bibtexml.sf.net/" |
|
| 34 |
3. Allow spaces between @type and first {
|
|
| 35 |
4. "author" fields with multiple authors split by " and " |
|
| 36 |
are put in separate xml "bibxml:author" tags. |
|
| 37 |
5. Option for Titles: words are capitalized |
|
| 38 |
only if first letter in title or capitalized inside braces |
|
| 39 |
6. Removes braces from within field values |
|
| 40 |
7. Ignores comments in bibtex file (including @comment{ or % )
|
|
| 41 |
8. Replaces some special latex tags, e.g., replaces ~ with ' ' |
|
| 42 |
9. Handles bibtex @string abbreviations |
|
| 43 |
--> includes bibtex's default abbreviations for months |
|
| 44 |
--> does concatenation of abbr # " more " and " more " # abbr |
|
| 45 |
10. Handles @type( ... ) or @type{ ... }
|
|
| 46 |
11. The keywords field is split on , or ; and put into separate xml |
|
| 47 |
"bibxml:keywords" tags |
|
| 48 |
12. Ignores @preamble |
|
| 49 |
|
|
| 50 |
Known Limitations |
|
| 51 |
1. Does not transform Latex encoding like math mode and special |
|
| 52 |
latex symbols. |
|
| 53 |
2. Does not parse author fields into first and last names. |
|
| 54 |
E.g., It does not do anything special to an author whose name is |
|
| 55 |
in the form LAST_NAME, FIRST_NAME |
|
| 56 |
In "author" tag, will show up as |
|
| 57 |
<bibxml:author>LAST_NAME, FIRST_NAME</bibxml:author> |
|
| 58 |
3. Does not handle "crossref" fields other than to print |
|
| 59 |
<bibxml:crossref>...</bibxml:crossref> |
|
| 60 |
4. Does not inform user of the input's format errors. You just won't |
|
| 61 |
be able to transform the file later with XSL |
|
| 62 |
|
|
| 63 |
You will have to manually edit the XML output if you need to handle |
|
| 64 |
these (and unknown) limitations. |
|
| 65 |
|
|
| 66 |
""" |
|
| 67 |
|
|
| 68 |
import string, re |
|
| 69 |
|
|
| 70 |
# set of valid name characters |
|
| 71 |
valid_name_chars = '[\w\-:]' |
|
| 72 |
|
|
| 73 |
# |
|
| 74 |
# define global regular expression variables |
|
| 75 |
# |
|
| 76 |
author_rex = re.compile('\s+and\s+')
|
|
| 77 |
rembraces_rex = re.compile('[{}]')
|
|
| 78 |
capitalize_rex = re.compile('({[^}]*})')
|
|
| 79 |
|
|
| 80 |
# used by bibtexkeywords(data) |
|
| 81 |
keywords_rex = re.compile('[,;]')
|
|
| 82 |
|
|
| 83 |
# used by concat_line(line) |
|
| 84 |
concatsplit_rex = re.compile('\s*#\s*')
|
|
| 85 |
|
|
| 86 |
# split on {, }, or " in verify_out_of_braces
|
|
| 87 |
delimiter_rex = re.compile('([{}"])',re.I)
|
|
| 88 |
|
|
| 89 |
field_rex = re.compile('\s*(\w*)\s*=\s*(.*)')
|
|
| 90 |
data_rex = re.compile('\s*(\w*)\s*=\s*([^,]*),?')
|
|
| 91 |
|
|
| 92 |
url_rex = re.compile('\\\url\{([^}]*)\}')
|
|
| 93 |
|
|
| 94 |
# |
|
| 95 |
# styles for html formatting |
|
| 96 |
# |
|
| 97 |
divstyle = 'margin-top: -4ex; margin-left: 8em;' |
|
| 98 |
|
|
| 99 |
# |
|
| 100 |
# return the string parameter without braces |
|
| 101 |
# |
|
| 102 |
def transformurls(str): |
|
| 103 |
return url_rex.sub(r'<a href="\1">\1</a>', str) |
|
| 104 |
|
|
| 105 |
# |
|
| 106 |
# return the string parameter without braces |
|
| 107 |
# |
|
| 108 |
def removebraces(str): |
|
| 109 |
return rembraces_rex.sub('', str)
|
|
| 110 |
|
|
| 111 |
# |
|
| 112 |
# latex-specific replacements |
|
| 113 |
# (do this after braces were removed) |
|
| 114 |
# |
|
| 115 |
def latexreplacements(line): |
|
| 116 |
line = string.replace(line, '~', ' ') |
|
| 117 |
line = string.replace(line, '\\\'a', 'á') |
|
| 118 |
line = string.replace(line, '\\"a', 'ä') |
|
| 119 |
line = string.replace(line, '\\\'e', 'é') |
|
| 120 |
line = string.replace(line, '\\"e', 'ë') |
|
| 121 |
line = string.replace(line, '\\\'i', 'í') |
|
| 122 |
line = string.replace(line, '\\"i', 'ï') |
|
| 123 |
line = string.replace(line, '\\\'o', 'ó') |
|
| 124 |
line = string.replace(line, '\\"o', 'ö') |
|
| 125 |
line = string.replace(line, '\\\'u', 'ú') |
|
| 126 |
line = string.replace(line, '\\"u', 'ü') |
|
| 127 |
line = string.replace(line, '\\H o', 'õ') |
|
| 128 |
line = string.replace(line, '\\H u', 'ü') # ũ does not exist |
|
| 129 |
line = string.replace(line, '\\\'A', 'Á') |
|
| 130 |
line = string.replace(line, '\\"A', 'Ä') |
|
| 131 |
line = string.replace(line, '\\\'E', 'É') |
|
| 132 |
line = string.replace(line, '\\"E', 'Ë') |
|
| 133 |
line = string.replace(line, '\\\'I', 'Í') |
|
| 134 |
line = string.replace(line, '\\"I', 'Ï') |
|
| 135 |
line = string.replace(line, '\\\'O', 'Ó') |
|
| 136 |
line = string.replace(line, '\\"O', 'Ö') |
|
| 137 |
line = string.replace(line, '\\\'U', 'Ú') |
|
| 138 |
line = string.replace(line, '\\"U', 'Ü') |
|
| 139 |
line = string.replace(line, '\\H O', 'Õ') |
|
| 140 |
line = string.replace(line, '\\H U', 'Ü') # Ũ does not exist |
|
| 141 |
|
|
| 142 |
return line |
|
| 143 |
|
|
| 144 |
# |
|
| 145 |
# copy characters form a string decoding html expressions (&xyz;) |
|
| 146 |
# |
|
| 147 |
def copychars(str, ifrom, count): |
|
| 148 |
result = '' |
|
| 149 |
i = ifrom |
|
| 150 |
c = 0 |
|
| 151 |
html_spec = False |
|
| 152 |
while (i < len(str)) and (c < count): |
|
| 153 |
if str[i] == '&': |
|
| 154 |
html_spec = True; |
|
| 155 |
if i+1 < len(str): |
|
| 156 |
result += str[i+1] |
|
| 157 |
c += 1 |
|
| 158 |
i += 2 |
|
| 159 |
else: |
|
| 160 |
if not html_spec: |
|
| 161 |
if ((str[i] >= 'A') and (str[i] <= 'Z')) or \ |
|
| 162 |
((str[i] >= 'a') and (str[i] <= 'z')): |
|
| 163 |
result += str[i] |
|
| 164 |
c += 1 |
|
| 165 |
elif str[i] == ';': |
|
| 166 |
html_spec = False; |
|
| 167 |
i += 1 |
|
| 168 |
|
|
| 169 |
return result |
|
| 170 |
|
|
| 171 |
|
|
| 172 |
# |
|
| 173 |
# Handle a list of authors (separated by 'and'). |
|
| 174 |
# It gives back an array of the follwing values: |
|
| 175 |
# - num: the number of authors, |
|
| 176 |
# - list: the list of the author names, |
|
| 177 |
# - text: the bibtex text (separated by commas and/or 'and') |
|
| 178 |
# - abbrev: abbreviation that can be used for indicate the |
|
| 179 |
# bibliography entries |
|
| 180 |
# |
|
| 181 |
def bibtexauthor(data): |
|
| 182 |
result = {}
|
|
| 183 |
bibtex = '' |
|
| 184 |
result['list'] = author_rex.split(data) |
|
| 185 |
result['num'] = len(result['list']) |
|
| 186 |
for i, author in enumerate(result['list']): |
|
| 187 |
# general transformations |
|
| 188 |
author = latexreplacements(removebraces(author.strip())) |
|
| 189 |
# transform "Xyz, A. B." to "A. B. Xyz" |
|
| 190 |
pos = author.find(',')
|
|
| 191 |
if pos != -1: |
|
| 192 |
author = author[pos+1:].strip() + ' ' + author[:pos].strip() |
|
| 193 |
result['list'][i] = author |
|
| 194 |
bibtex += author + '#' |
|
| 195 |
bibtex = bibtex[:-1] |
|
| 196 |
if result['num'] > 1: |
|
| 197 |
ix = bibtex.rfind('#')
|
|
| 198 |
if result['num'] == 2: |
|
| 199 |
bibtex = bibtex[:ix] + ' and ' + bibtex[ix+1:] |
|
| 200 |
else: |
|
| 201 |
bibtex = bibtex[:ix] + ', and ' + bibtex[ix+1:] |
|
| 202 |
bibtex = bibtex.replace('#', ', ')
|
|
| 203 |
result['text'] = bibtex |
|
| 204 |
|
|
| 205 |
result['abbrev'] = '' |
|
| 206 |
for author in result['list']: |
|
| 207 |
pos = author.rfind(' ') + 1
|
|
| 208 |
count = 1 |
|
| 209 |
if result['num'] == 1: |
|
| 210 |
count = 3 |
|
| 211 |
result['abbrev'] += copychars(author, pos, count) |
|
| 212 |
|
|
| 213 |
return result |
|
| 214 |
|
|
| 215 |
|
|
| 216 |
# |
|
| 217 |
# data = title string |
|
| 218 |
# @return the capitalized title (first letter is capitalized), rest are capitalized |
|
| 219 |
# only if capitalized inside braces |
|
| 220 |
# |
|
| 221 |
def capitalizetitle(data): |
|
| 222 |
title_list = capitalize_rex.split(data) |
|
| 223 |
title = '' |
|
| 224 |
count = 0 |
|
| 225 |
for phrase in title_list: |
|
| 226 |
check = string.lstrip(phrase) |
|
| 227 |
|
|
| 228 |
# keep phrase's capitalization the same |
|
| 229 |
if check.find('{') == 0:
|
|
| 230 |
title += removebraces(phrase) |
|
| 231 |
else: |
|
| 232 |
# first word --> capitalize first letter (after spaces) |
|
| 233 |
if count == 0: |
|
| 234 |
title += check.capitalize() |
|
| 235 |
else: |
|
| 236 |
title += phrase.lower() |
|
| 237 |
count = count + 1 |
|
| 238 |
|
|
| 239 |
return title |
|
| 240 |
|
|
| 241 |
|
|
| 242 |
# |
|
| 243 |
# @return the bibtex for the title |
|
| 244 |
# @param data --> title string |
|
| 245 |
# braces are removed from title |
|
| 246 |
# |
|
| 247 |
def bibtextitle(data, entrytype): |
|
| 248 |
if entrytype in ('book', 'inbook'):
|
|
| 249 |
title = removebraces(data.strip()) |
|
| 250 |
else: |
|
| 251 |
title = removebraces(capitalizetitle(data.strip())) |
|
| 252 |
bibtex = title |
|
| 253 |
return bibtex |
|
| 254 |
|
|
| 255 |
|
|
| 256 |
# |
|
| 257 |
# function to compare entry lists |
|
| 258 |
# |
|
| 259 |
def entry_cmp(x, y): |
|
| 260 |
return cmp(x[0], y[0]) |
|
| 261 |
|
|
| 262 |
|
|
| 263 |
# |
|
| 264 |
# print the XML for the transformed "filecont_source" |
|
| 265 |
# |
|
| 266 |
def bibtexdecoder(filecont_source): |
|
| 267 |
filecont = [] |
|
| 268 |
file = [] |
|
| 269 |
|
|
| 270 |
# want @<alphanumeric chars><spaces>{<spaces><any chars>,
|
|
| 271 |
pubtype_rex = re.compile('@(\w*)\s*{\s*(.*),')
|
|
| 272 |
endtype_rex = re.compile('}\s*$')
|
|
| 273 |
endtag_rex = re.compile('^\s*}\s*$')
|
|
| 274 |
|
|
| 275 |
bracefield_rex = re.compile('\s*(\w*)\s*=\s*(.*)')
|
|
| 276 |
bracedata_rex = re.compile('\s*(\w*)\s*=\s*{(.*)},?')
|
|
| 277 |
|
|
| 278 |
quotefield_rex = re.compile('\s*(\w*)\s*=\s*(.*)')
|
|
| 279 |
quotedata_rex = re.compile('\s*(\w*)\s*=\s*"(.*)",?')
|
|
| 280 |
|
|
| 281 |
for line in filecont_source: |
|
| 282 |
line = line[:-1] |
|
| 283 |
|
|
| 284 |
# encode character entities |
|
| 285 |
line = string.replace(line, '&', '&') |
|
| 286 |
line = string.replace(line, '<', '<') |
|
| 287 |
line = string.replace(line, '>', '>') |
|
| 288 |
|
|
| 289 |
# start entry: publication type (store for later use) |
|
| 290 |
if pubtype_rex.match(line): |
|
| 291 |
# want @<alphanumeric chars><spaces>{<spaces><any chars>,
|
|
| 292 |
entrycont = {}
|
|
| 293 |
entry = [] |
|
| 294 |
entrytype = pubtype_rex.sub('\g<1>',line)
|
|
| 295 |
entrytype = string.lower(entrytype) |
|
| 296 |
entryid = pubtype_rex.sub('\g<2>', line)
|
|
| 297 |
|
|
| 298 |
# end entry if just a } |
|
| 299 |
elif endtype_rex.match(line): |
|
| 300 |
# generate doxygen code for the entry |
|
| 301 |
|
|
| 302 |
# enty type related formattings |
|
| 303 |
if entrytype in ('book', 'inbook'):
|
|
| 304 |
entrycont['title'] = '<em>' + entrycont['title'] + '</em>' |
|
| 305 |
if not entrycont.has_key('author'):
|
|
| 306 |
entrycont['author'] = entrycont['editor'] |
|
| 307 |
entrycont['author']['text'] += ', editors' |
|
| 308 |
elif entrytype == 'article': |
|
| 309 |
entrycont['journal'] = '<em>' + entrycont['journal'] + '</em>' |
|
| 310 |
elif entrytype in ('inproceedings', 'incollection', 'conference'):
|
|
| 311 |
entrycont['booktitle'] = '<em>' + entrycont['booktitle'] + '</em>' |
|
| 312 |
elif entrytype == 'techreport': |
|
| 313 |
if not entrycont.has_key('type'):
|
|
| 314 |
entrycont['type'] = 'Technical report' |
|
| 315 |
elif entrytype == 'mastersthesis': |
|
| 316 |
entrycont['type'] = 'Master\'s thesis' |
|
| 317 |
elif entrytype == 'phdthesis': |
|
| 318 |
entrycont['type'] = 'PhD thesis' |
|
| 319 |
|
|
| 320 |
for eline in entrycont: |
|
| 321 |
if eline != '': |
|
| 322 |
eline = latexreplacements(eline) |
|
| 323 |
|
|
| 324 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''):
|
|
| 325 |
entrycont['pages'] = string.replace(entrycont['pages'], '--', '-') |
|
| 326 |
|
|
| 327 |
if entrycont.has_key('author') and (entrycont['author'] != ''):
|
|
| 328 |
entry.append(entrycont['author']['text'] + '.') |
|
| 329 |
if entrycont.has_key('title') and (entrycont['title'] != ''):
|
|
| 330 |
entry.append(entrycont['title'] + '.') |
|
| 331 |
if entrycont.has_key('journal') and (entrycont['journal'] != ''):
|
|
| 332 |
entry.append(entrycont['journal'] + ',') |
|
| 333 |
if entrycont.has_key('booktitle') and (entrycont['booktitle'] != ''):
|
|
| 334 |
entry.append('In ' + entrycont['booktitle'] + ',')
|
|
| 335 |
if entrycont.has_key('type') and (entrycont['type'] != ''):
|
|
| 336 |
eline = entrycont['type'] |
|
| 337 |
if entrycont.has_key('number') and (entrycont['number'] != ''):
|
|
| 338 |
eline += ' ' + entrycont['number'] |
|
| 339 |
eline += ',' |
|
| 340 |
entry.append(eline) |
|
| 341 |
if entrycont.has_key('institution') and (entrycont['institution'] != ''):
|
|
| 342 |
entry.append(entrycont['institution'] + ',') |
|
| 343 |
if entrycont.has_key('publisher') and (entrycont['publisher'] != ''):
|
|
| 344 |
entry.append(entrycont['publisher'] + ',') |
|
| 345 |
if entrycont.has_key('school') and (entrycont['school'] != ''):
|
|
| 346 |
entry.append(entrycont['school'] + ',') |
|
| 347 |
if entrycont.has_key('address') and (entrycont['address'] != ''):
|
|
| 348 |
entry.append(entrycont['address'] + ',') |
|
| 349 |
if entrycont.has_key('edition') and (entrycont['edition'] != ''):
|
|
| 350 |
entry.append(entrycont['edition'] + ' edition,') |
|
| 351 |
if entrycont.has_key('howpublished') and (entrycont['howpublished'] != ''):
|
|
| 352 |
entry.append(entrycont['howpublished'] + ',') |
|
| 353 |
if entrycont.has_key('volume') and (entrycont['volume'] != ''):
|
|
| 354 |
eline = entrycont['volume']; |
|
| 355 |
if entrycont.has_key('number') and (entrycont['number'] != ''):
|
|
| 356 |
eline += '(' + entrycont['number'] + ')'
|
|
| 357 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''):
|
|
| 358 |
eline += ':' + entrycont['pages'] |
|
| 359 |
eline += ',' |
|
| 360 |
entry.append(eline) |
|
| 361 |
else: |
|
| 362 |
if entrycont.has_key('pages') and (entrycont['pages'] != ''):
|
|
| 363 |
entry.append('pages ' + entrycont['pages'] + ',')
|
|
| 364 |
if entrycont.has_key('year') and (entrycont['year'] != ''):
|
|
| 365 |
if entrycont.has_key('month') and (entrycont['month'] != ''):
|
|
| 366 |
entry.append(entrycont['month'] + ' ' + entrycont['year'] + '.') |
|
| 367 |
else: |
|
| 368 |
entry.append(entrycont['year'] + '.') |
|
| 369 |
if entrycont.has_key('note') and (entrycont['note'] != ''):
|
|
| 370 |
entry.append(entrycont['note'] + '.') |
|
| 371 |
if entrycont.has_key('url') and (entrycont['url'] != ''):
|
|
| 372 |
entry.append(entrycont['url'] + '.') |
|
| 373 |
|
|
| 374 |
# generate keys for sorting and for the output |
|
| 375 |
sortkey = '' |
|
| 376 |
bibkey = '' |
|
| 377 |
if entrycont.has_key('author'):
|
|
| 378 |
for author in entrycont['author']['list']: |
|
| 379 |
sortkey += copychars(author, author.rfind(' ')+1, len(author))
|
|
| 380 |
bibkey = entrycont['author']['abbrev'] |
|
| 381 |
else: |
|
| 382 |
bibkey = 'x' |
|
| 383 |
if entrycont.has_key('year'):
|
|
| 384 |
sortkey += entrycont['year'] |
|
| 385 |
bibkey += entrycont['year'][-2:] |
|
| 386 |
if entrycont.has_key('title'):
|
|
| 387 |
sortkey += entrycont['title'] |
|
| 388 |
if entrycont.has_key('key'):
|
|
| 389 |
sortkey = entrycont['key'] + sortkey |
|
| 390 |
bibkey = entrycont['key'] |
|
| 391 |
entry.insert(0, sortkey) |
|
| 392 |
entry.insert(1, bibkey) |
|
| 393 |
entry.insert(2, entryid) |
|
| 394 |
|
|
| 395 |
# add the entry to the file contents |
|
| 396 |
filecont.append(entry) |
|
| 397 |
|
|
| 398 |
else: |
|
| 399 |
# field, publication info |
|
| 400 |
field = '' |
|
| 401 |
data = '' |
|
| 402 |
|
|
| 403 |
# field = {data} entries
|
|
| 404 |
if bracedata_rex.match(line): |
|
| 405 |
field = bracefield_rex.sub('\g<1>', line)
|
|
| 406 |
field = string.lower(field) |
|
| 407 |
data = bracedata_rex.sub('\g<2>', line)
|
|
| 408 |
|
|
| 409 |
# field = "data" entries |
|
| 410 |
elif quotedata_rex.match(line): |
|
| 411 |
field = quotefield_rex.sub('\g<1>', line)
|
|
| 412 |
field = string.lower(field) |
|
| 413 |
data = quotedata_rex.sub('\g<2>', line)
|
|
| 414 |
|
|
| 415 |
# field = data entries |
|
| 416 |
elif data_rex.match(line): |
|
| 417 |
field = field_rex.sub('\g<1>', line)
|
|
| 418 |
field = string.lower(field) |
|
| 419 |
data = data_rex.sub('\g<2>', line)
|
|
| 420 |
|
|
| 421 |
if field == 'url': |
|
| 422 |
data = '\\url{' + data.strip() + '}'
|
|
| 423 |
|
|
| 424 |
if field in ('author', 'editor'):
|
|
| 425 |
entrycont[field] = bibtexauthor(data) |
|
| 426 |
line = '' |
|
| 427 |
elif field == 'title': |
|
| 428 |
line = bibtextitle(data, entrytype) |
|
| 429 |
elif field != '': |
|
| 430 |
line = removebraces(transformurls(data.strip())) |
|
| 431 |
|
|
| 432 |
if line != '': |
|
| 433 |
line = latexreplacements(line) |
|
| 434 |
entrycont[field] = line |
|
| 435 |
|
|
| 436 |
|
|
| 437 |
# sort entries |
|
| 438 |
filecont.sort(entry_cmp) |
|
| 439 |
|
|
| 440 |
# count the bibtex keys |
|
| 441 |
keytable = {}
|
|
| 442 |
counttable = {}
|
|
| 443 |
for entry in filecont: |
|
| 444 |
bibkey = entry[1] |
|
| 445 |
if not keytable.has_key(bibkey): |
|
| 446 |
keytable[bibkey] = 1 |
|
| 447 |
else: |
|
| 448 |
keytable[bibkey] += 1 |
|
| 449 |
|
|
| 450 |
for bibkey in keytable.keys(): |
|
| 451 |
counttable[bibkey] = 0 |
|
| 452 |
|
|
| 453 |
# generate output |
|
| 454 |
for entry in filecont: |
|
| 455 |
# generate output key form the bibtex key |
|
| 456 |
bibkey = entry[1] |
|
| 457 |
entryid = entry[2] |
|
| 458 |
if keytable[bibkey] == 1: |
|
| 459 |
outkey = bibkey |
|
| 460 |
else: |
|
| 461 |
outkey = bibkey + chr(97 + counttable[bibkey]) |
|
| 462 |
counttable[bibkey] += 1 |
|
| 463 |
|
|
| 464 |
# append the entry code to the output |
|
| 465 |
file.append('\\section ' + entryid + ' [' + outkey + ']')
|
|
| 466 |
file.append('<div style="' + divstyle + '">')
|
|
| 467 |
for line in entry[3:]: |
|
| 468 |
file.append(line) |
|
| 469 |
file.append('</div>')
|
|
| 470 |
file.append('')
|
|
| 471 |
|
|
| 472 |
return file |
|
| 473 |
|
|
| 474 |
|
|
| 475 |
# |
|
| 476 |
# return 1 iff abbr is in line but not inside braces or quotes |
|
| 477 |
# assumes that abbr appears only once on the line (out of braces and quotes) |
|
| 478 |
# |
|
| 479 |
def verify_out_of_braces(line, abbr): |
|
| 480 |
|
|
| 481 |
phrase_split = delimiter_rex.split(line) |
|
| 482 |
|
|
| 483 |
abbr_rex = re.compile( '\\b' + abbr + '\\b', re.I) |
|
| 484 |
|
|
| 485 |
open_brace = 0 |
|
| 486 |
open_quote = 0 |
|
| 487 |
|
|
| 488 |
for phrase in phrase_split: |
|
| 489 |
if phrase == "{":
|
|
| 490 |
open_brace = open_brace + 1 |
|
| 491 |
elif phrase == "}": |
|
| 492 |
open_brace = open_brace - 1 |
|
| 493 |
elif phrase == '"': |
|
| 494 |
if open_quote == 1: |
|
| 495 |
open_quote = 0 |
|
| 496 |
else: |
|
| 497 |
open_quote = 1 |
|
| 498 |
elif abbr_rex.search(phrase): |
|
| 499 |
if open_brace == 0 and open_quote == 0: |
|
| 500 |
return 1 |
|
| 501 |
|
|
| 502 |
return 0 |
|
| 503 |
|
|
| 504 |
|
|
| 505 |
# |
|
| 506 |
# a line in the form phrase1 # phrase2 # ... # phrasen |
|
| 507 |
# is returned as phrase1 phrase2 ... phrasen |
|
| 508 |
# with the correct punctuation |
|
| 509 |
# Bug: Doesn't always work with multiple abbreviations plugged in |
|
| 510 |
# |
|
| 511 |
def concat_line(line): |
|
| 512 |
# only look at part after equals |
|
| 513 |
field = field_rex.sub('\g<1>',line)
|
|
| 514 |
rest = field_rex.sub('\g<2>',line)
|
|
| 515 |
|
|
| 516 |
concat_line = field + ' =' |
|
| 517 |
|
|
| 518 |
pound_split = concatsplit_rex.split(rest) |
|
| 519 |
|
|
| 520 |
phrase_count = 0 |
|
| 521 |
length = len(pound_split) |
|
| 522 |
|
|
| 523 |
for phrase in pound_split: |
|
| 524 |
phrase = phrase.strip() |
|
| 525 |
if phrase_count != 0: |
|
| 526 |
if phrase.startswith('"') or phrase.startswith('{'):
|
|
| 527 |
phrase = phrase[1:] |
|
| 528 |
elif phrase.startswith('"'):
|
|
| 529 |
phrase = phrase.replace('"','{',1)
|
|
| 530 |
|
|
| 531 |
if phrase_count != length-1: |
|
| 532 |
if phrase.endswith('"') or phrase.endswith('}'):
|
|
| 533 |
phrase = phrase[:-1] |
|
| 534 |
else: |
|
| 535 |
if phrase.endswith('"'):
|
|
| 536 |
phrase = phrase[:-1] |
|
| 537 |
phrase = phrase + "}" |
|
| 538 |
elif phrase.endswith('",'):
|
|
| 539 |
phrase = phrase[:-2] |
|
| 540 |
phrase = phrase + "}," |
|
| 541 |
|
|
| 542 |
# if phrase did have \#, add the \# back |
|
| 543 |
if phrase.endswith('\\'):
|
|
| 544 |
phrase = phrase + "#" |
|
| 545 |
concat_line = concat_line + ' ' + phrase |
|
| 546 |
|
|
| 547 |
phrase_count = phrase_count + 1 |
|
| 548 |
|
|
| 549 |
return concat_line |
|
| 550 |
|
|
| 551 |
|
|
| 552 |
# |
|
| 553 |
# substitute abbreviations into filecont |
|
| 554 |
# @param filecont_source - string of data from file |
|
| 555 |
# |
|
| 556 |
def bibtex_replace_abbreviations(filecont_source): |
|
| 557 |
filecont = filecont_source.splitlines() |
|
| 558 |
|
|
| 559 |
# These are defined in bibtex, so we'll define them too |
|
| 560 |
abbr_list = ['jan','feb','mar','apr','may','jun', |
|
| 561 |
'jul','aug','sep','oct','nov','dec'] |
|
| 562 |
value_list = ['January','February','March','April', |
|
| 563 |
'May','June','July','August','September', |
|
| 564 |
'October','November','December'] |
|
| 565 |
|
|
| 566 |
abbr_rex = [] |
|
| 567 |
total_abbr_count = 0 |
|
| 568 |
|
|
| 569 |
front = '\\b' |
|
| 570 |
back = '(,?)\\b' |
|
| 571 |
|
|
| 572 |
for x in abbr_list: |
|
| 573 |
abbr_rex.append( re.compile( front + abbr_list[total_abbr_count] + back, re.I ) ) |
|
| 574 |
total_abbr_count = total_abbr_count + 1 |
|
| 575 |
|
|
| 576 |
|
|
| 577 |
abbrdef_rex = re.compile('\s*@string\s*{\s*('+ valid_name_chars +'*)\s*=(.*)',
|
|
| 578 |
re.I) |
|
| 579 |
|
|
| 580 |
comment_rex = re.compile('@comment\s*{',re.I)
|
|
| 581 |
preamble_rex = re.compile('@preamble\s*{',re.I)
|
|
| 582 |
|
|
| 583 |
waiting_for_end_string = 0 |
|
| 584 |
i = 0 |
|
| 585 |
filecont2 = '' |
|
| 586 |
|
|
| 587 |
for line in filecont: |
|
| 588 |
if line == ' ' or line == '': |
|
| 589 |
continue |
|
| 590 |
|
|
| 591 |
if waiting_for_end_string: |
|
| 592 |
if re.search('}',line):
|
|
| 593 |
waiting_for_end_string = 0 |
|
| 594 |
continue |
|
| 595 |
|
|
| 596 |
if abbrdef_rex.search(line): |
|
| 597 |
abbr = abbrdef_rex.sub('\g<1>', line)
|
|
| 598 |
|
|
| 599 |
if abbr_list.count(abbr) == 0: |
|
| 600 |
val = abbrdef_rex.sub('\g<2>', line)
|
|
| 601 |
abbr_list.append(abbr) |
|
| 602 |
value_list.append(string.strip(val)) |
|
| 603 |
abbr_rex.append( re.compile( front + abbr_list[total_abbr_count] + back, re.I ) ) |
|
| 604 |
total_abbr_count = total_abbr_count + 1 |
|
| 605 |
waiting_for_end_string = 1 |
|
| 606 |
continue |
|
| 607 |
|
|
| 608 |
if comment_rex.search(line): |
|
| 609 |
waiting_for_end_string = 1 |
|
| 610 |
continue |
|
| 611 |
|
|
| 612 |
if preamble_rex.search(line): |
|
| 613 |
waiting_for_end_string = 1 |
|
| 614 |
continue |
|
| 615 |
|
|
| 616 |
|
|
| 617 |
# replace subsequent abbreviations with the value |
|
| 618 |
abbr_count = 0 |
|
| 619 |
|
|
| 620 |
for x in abbr_list: |
|
| 621 |
|
|
| 622 |
if abbr_rex[abbr_count].search(line): |
|
| 623 |
if verify_out_of_braces(line,abbr_list[abbr_count]) == 1: |
|
| 624 |
line = abbr_rex[abbr_count].sub( value_list[abbr_count] + '\g<1>', line) |
|
| 625 |
# Check for # concatenations |
|
| 626 |
if concatsplit_rex.search(line): |
|
| 627 |
line = concat_line(line) |
|
| 628 |
abbr_count = abbr_count + 1 |
|
| 629 |
|
|
| 630 |
|
|
| 631 |
filecont2 = filecont2 + line + '\n' |
|
| 632 |
i = i+1 |
|
| 633 |
|
|
| 634 |
|
|
| 635 |
# Do one final pass over file |
|
| 636 |
|
|
| 637 |
# make sure that didn't end up with {" or }" after the substitution
|
|
| 638 |
filecont2 = filecont2.replace('{"','{{')
|
|
| 639 |
filecont2 = filecont2.replace('"}','}}')
|
|
| 640 |
|
|
| 641 |
afterquotevalue_rex = re.compile('"\s*,\s*')
|
|
| 642 |
afterbrace_rex = re.compile('"\s*}')
|
|
| 643 |
afterbracevalue_rex = re.compile('(=\s*{[^=]*)},\s*')
|
|
| 644 |
|
|
| 645 |
# add new lines to data that changed because of abbreviation substitutions |
|
| 646 |
filecont2 = afterquotevalue_rex.sub('",\n', filecont2)
|
|
| 647 |
filecont2 = afterbrace_rex.sub('"\n}', filecont2)
|
|
| 648 |
filecont2 = afterbracevalue_rex.sub('\g<1>},\n', filecont2)
|
|
| 649 |
|
|
| 650 |
return filecont2 |
|
| 651 |
|
|
| 652 |
# |
|
| 653 |
# convert @type( ... ) to @type{ ... }
|
|
| 654 |
# |
|
| 655 |
def no_outer_parens(filecont): |
|
| 656 |
|
|
| 657 |
# do checking for open parens |
|
| 658 |
# will convert to braces |
|
| 659 |
paren_split = re.split('([(){}])',filecont)
|
|
| 660 |
|
|
| 661 |
open_paren_count = 0 |
|
| 662 |
open_type = 0 |
|
| 663 |
look_next = 0 |
|
| 664 |
|
|
| 665 |
# rebuild filecont |
|
| 666 |
filecont = '' |
|
| 667 |
|
|
| 668 |
at_rex = re.compile('@\w*')
|
|
| 669 |
|
|
| 670 |
for phrase in paren_split: |
|
| 671 |
if look_next == 1: |
|
| 672 |
if phrase == '(':
|
|
| 673 |
phrase = '{'
|
|
| 674 |
open_paren_count = open_paren_count + 1 |
|
| 675 |
else: |
|
| 676 |
open_type = 0 |
|
| 677 |
look_next = 0 |
|
| 678 |
|
|
| 679 |
if phrase == '(':
|
|
| 680 |
open_paren_count = open_paren_count + 1 |
|
| 681 |
|
|
| 682 |
elif phrase == ')': |
|
| 683 |
open_paren_count = open_paren_count - 1 |
|
| 684 |
if open_type == 1 and open_paren_count == 0: |
|
| 685 |
phrase = '}' |
|
| 686 |
open_type = 0 |
|
| 687 |
|
|
| 688 |
elif at_rex.search( phrase ): |
|
| 689 |
open_type = 1 |
|
| 690 |
look_next = 1 |
|
| 691 |
|
|
| 692 |
filecont = filecont + phrase |
|
| 693 |
|
|
| 694 |
return filecont |
|
| 695 |
|
|
| 696 |
|
|
| 697 |
# |
|
| 698 |
# make all whitespace into just one space |
|
| 699 |
# format the bibtex file into a usable form. |
|
| 700 |
# |
|
| 701 |
def bibtexwasher(filecont_source): |
|
| 702 |
|
|
| 703 |
space_rex = re.compile('\s+')
|
|
| 704 |
comment_rex = re.compile('\s*%')
|
|
| 705 |
|
|
| 706 |
filecont = [] |
|
| 707 |
|
|
| 708 |
# remove trailing and excessive whitespace |
|
| 709 |
# ignore comments |
|
| 710 |
for line in filecont_source: |
|
| 711 |
line = string.strip(line) |
|
| 712 |
line = space_rex.sub(' ', line)
|
|
| 713 |
# ignore comments |
|
| 714 |
if not comment_rex.match(line) and line != '': |
|
| 715 |
filecont.append(' '+ line)
|
|
| 716 |
|
|
| 717 |
filecont = string.join(filecont, '') |
|
| 718 |
|
|
| 719 |
# the file is in one long string |
|
| 720 |
|
|
| 721 |
filecont = no_outer_parens(filecont) |
|
| 722 |
|
|
| 723 |
# |
|
| 724 |
# split lines according to preferred syntax scheme |
|
| 725 |
# |
|
| 726 |
filecont = re.sub('(=\s*{[^=]*)},', '\g<1>},\n', filecont)
|
|
| 727 |
|
|
| 728 |
# add new lines after commas that are after values |
|
| 729 |
filecont = re.sub('"\s*,', '",\n', filecont)
|
|
| 730 |
filecont = re.sub('=\s*([\w\d]+)\s*,', '= \g<1>,\n', filecont)
|
|
| 731 |
filecont = re.sub('(@\w*)\s*({(\s*)[^,\s]*)\s*,',
|
|
| 732 |
'\n\n\g<1>\g<2>,\n', filecont) |
|
| 733 |
|
|
| 734 |
# add new lines after } |
|
| 735 |
filecont = re.sub('"\s*}','"\n}\n', filecont)
|
|
| 736 |
filecont = re.sub('}\s*,','},\n', filecont)
|
|
| 737 |
|
|
| 738 |
|
|
| 739 |
filecont = re.sub('@(\w*)', '\n@\g<1>', filecont)
|
|
| 740 |
|
|
| 741 |
# character encoding, reserved latex characters |
|
| 742 |
filecont = re.sub('{\\\&}', '&', filecont)
|
|
| 743 |
filecont = re.sub('\\\&', '&', filecont)
|
|
| 744 |
|
|
| 745 |
# do checking for open braces to get format correct |
|
| 746 |
open_brace_count = 0 |
|
| 747 |
brace_split = re.split('([{}])',filecont)
|
|
| 748 |
|
|
| 749 |
# rebuild filecont |
|
| 750 |
filecont = '' |
|
| 751 |
|
|
| 752 |
for phrase in brace_split: |
|
| 753 |
if phrase == '{':
|
|
| 754 |
open_brace_count = open_brace_count + 1 |
|
| 755 |
elif phrase == '}': |
|
| 756 |
open_brace_count = open_brace_count - 1 |
|
| 757 |
if open_brace_count == 0: |
|
| 758 |
filecont = filecont + '\n' |
|
| 759 |
|
|
| 760 |
filecont = filecont + phrase |
|
| 761 |
|
|
| 762 |
filecont2 = bibtex_replace_abbreviations(filecont) |
|
| 763 |
|
|
| 764 |
# gather |
|
| 765 |
filecont = filecont2.splitlines() |
|
| 766 |
i=0 |
|
| 767 |
j=0 # count the number of blank lines |
|
| 768 |
for line in filecont: |
|
| 769 |
# ignore blank lines |
|
| 770 |
if line == '' or line == ' ': |
|
| 771 |
j = j+1 |
|
| 772 |
continue |
|
| 773 |
filecont[i] = line + '\n' |
|
| 774 |
i = i+1 |
|
| 775 |
|
|
| 776 |
# get rid of the extra stuff at the end of the array |
|
| 777 |
# (The extra stuff are duplicates that are in the array because |
|
| 778 |
# blank lines were removed.) |
|
| 779 |
length = len( filecont) |
|
| 780 |
filecont[length-j:length] = [] |
|
| 781 |
|
|
| 782 |
return filecont |
|
| 783 |
|
|
| 784 |
|
|
| 785 |
def filehandler(filepath): |
|
| 786 |
try: |
|
| 787 |
fd = open(filepath, 'r') |
|
| 788 |
filecont_source = fd.readlines() |
|
| 789 |
fd.close() |
|
| 790 |
except: |
|
| 791 |
print 'Could not open file:', filepath |
|
| 792 |
washeddata = bibtexwasher(filecont_source) |
|
| 793 |
outdata = bibtexdecoder(washeddata) |
|
| 794 |
print '/**' |
|
| 795 |
print '\page references References' |
|
| 796 |
|
|
| 797 |
for line in outdata: |
|
| 798 |
print line |
|
| 799 |
print '*/' |
|
| 800 |
|
|
| 801 |
|
|
| 802 |
# main program |
|
| 803 |
|
|
| 804 |
def main(): |
|
| 805 |
import sys |
|
| 806 |
if sys.argv[1:]: |
|
| 807 |
filepath = sys.argv[1] |
|
| 808 |
else: |
|
| 809 |
print "No input file" |
|
| 810 |
sys.exit() |
|
| 811 |
filehandler(filepath) |
|
| 812 |
|
|
| 813 |
if __name__ == "__main__": main() |
|
| 814 |
|
|
| 815 |
|
|
| 816 |
# end python script |
| 1 |
#!/bin/bash |
|
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 16 |
|
|
| 17 |
|
|
| 18 |
if [ ! -f ~/.lemon-bootstrap ]; then |
|
| 19 |
echo 'Create ~/.lemon-bootstrap'. |
|
| 20 |
cat >~/.lemon-bootstrap <<EOF |
|
| 21 |
# |
|
| 22 |
# Default settings for bootstraping the LEMON source code repository |
|
| 23 |
# |
|
| 24 |
EOF |
|
| 25 |
fi |
|
| 26 |
|
|
| 27 |
source ~/.lemon-bootstrap |
|
| 28 |
if [ -f ../../../.lemon-bootstrap ]; then source ../../../.lemon-bootstrap; fi |
|
| 29 |
if [ -f ../../.lemon-bootstrap ]; then source ../../.lemon-bootstrap; fi |
|
| 30 |
if [ -f ../.lemon-bootstrap ]; then source ../.lemon-bootstrap; fi |
|
| 31 |
if [ -f ./.lemon-bootstrap ]; then source ./.lemon-bootstrap; fi |
|
| 32 |
|
|
| 33 |
|
|
| 34 |
function augment_config() {
|
|
| 35 |
if [ "x${!1}" == "x" ]; then
|
|
| 36 |
eval $1=$2 |
|
| 37 |
echo Add "'$1'" to '~/.lemon-bootstrap'. |
|
| 38 |
echo >>~/.lemon-bootstrap |
|
| 39 |
echo $3 >>~/.lemon-bootstrap |
|
| 40 |
echo $1=$2 >>~/.lemon-bootstrap |
|
| 41 |
fi |
|
| 42 |
} |
|
| 43 |
|
|
| 44 |
augment_config LEMON_INSTALL_PREFIX /usr/local \ |
|
| 45 |
"# LEMON installation prefix" |
|
| 46 |
|
|
| 47 |
augment_config GLPK_PREFIX /usr/local/ \ |
|
| 48 |
"# GLPK installation root prefix" |
|
| 49 |
|
|
| 50 |
augment_config COIN_OR_PREFIX /usr/local/coin-or \ |
|
| 51 |
"# COIN-OR installation root prefix (used for CLP/CBC)" |
|
| 52 |
|
|
| 53 |
augment_config SOPLEX_PREFIX /usr/local/soplex \ |
|
| 54 |
"# Soplex build prefix" |
|
| 55 |
|
|
| 56 |
|
|
| 57 |
function ask() {
|
|
| 58 |
echo -n "$1 [$2]? " |
|
| 59 |
read _an |
|
| 60 |
if [ "x$_an" == "x" ]; then |
|
| 61 |
ret="$2" |
|
| 62 |
else |
|
| 63 |
ret=$_an |
|
| 64 |
fi |
|
| 65 |
} |
|
| 66 |
|
|
| 67 |
function yesorno() {
|
|
| 68 |
ret='rossz' |
|
| 69 |
while [ "$ret" != "y" -a "$ret" != "n" -a "$ret" != "yes" -a "$ret" != "no" ]; do |
|
| 70 |
ask "$1" "$2" |
|
| 71 |
done |
|
| 72 |
if [ "$ret" != "y" -a "$ret" != "yes" ]; then |
|
| 73 |
return 1 |
|
| 74 |
else |
|
| 75 |
return 0 |
|
| 76 |
fi |
|
| 77 |
} |
|
| 78 |
|
|
| 79 |
if yesorno "External build" "n" |
|
| 80 |
then |
|
| 81 |
CONFIGURE_PATH=".." |
|
| 82 |
else |
|
| 83 |
CONFIGURE_PATH="." |
|
| 84 |
if yesorno "Autoreconf" "y" |
|
| 85 |
then |
|
| 86 |
AUTORE=yes |
|
| 87 |
else |
|
| 88 |
AUTORE=no |
|
| 89 |
fi |
|
| 90 |
fi |
|
| 91 |
|
|
| 92 |
if yesorno "Optimize" "n" |
|
| 93 |
then |
|
| 94 |
opt_flags=' -O2' |
|
| 95 |
else |
|
| 96 |
opt_flags='' |
|
| 97 |
fi |
|
| 98 |
|
|
| 99 |
if yesorno "Stop on warning" "y" |
|
| 100 |
then |
|
| 101 |
werror_flags=' -Werror' |
|
| 102 |
else |
|
| 103 |
werror_flags='' |
|
| 104 |
fi |
|
| 105 |
|
|
| 106 |
cxx_flags="CXXFLAGS=-ggdb$opt_flags$werror_flags" |
|
| 107 |
|
|
| 108 |
if yesorno "Check with valgrind" "n" |
|
| 109 |
then |
|
| 110 |
valgrind_flags=' --enable-valgrind' |
|
| 111 |
else |
|
| 112 |
valgrind_flags='' |
|
| 113 |
fi |
|
| 114 |
|
|
| 115 |
if [ -f ${GLPK_PREFIX}/include/glpk.h ]; then
|
|
| 116 |
if yesorno "Use GLPK" "y" |
|
| 117 |
then |
|
| 118 |
glpk_flag="--with-glpk=$GLPK_PREFIX" |
|
| 119 |
else |
|
| 120 |
glpk_flag="--without-glpk" |
|
| 121 |
fi |
|
| 122 |
else |
|
| 123 |
glpk_flag="--without-glpk" |
|
| 124 |
fi |
|
| 125 |
|
|
| 126 |
if [ -f ${COIN_OR_PREFIX}/include/coin/config_coinutils.h ]; then
|
|
| 127 |
if yesorno "Use COIN-OR (CBC/CLP)" "n" |
|
| 128 |
then |
|
| 129 |
coin_flag="--with-coin=$COIN_OR_PREFIX" |
|
| 130 |
else |
|
| 131 |
coin_flag="--without-coin" |
|
| 132 |
fi |
|
| 133 |
else |
|
| 134 |
coin_flag="--without-coin" |
|
| 135 |
fi |
|
| 136 |
|
|
| 137 |
if [ -f ${SOPLEX_PREFIX}/src/soplex.h ]; then
|
|
| 138 |
if yesorno "Use Soplex" "n" |
|
| 139 |
then |
|
| 140 |
soplex_flag="--with-soplex=$SOPLEX_PREFIX" |
|
| 141 |
else |
|
| 142 |
soplex_flag="--without-soplex" |
|
| 143 |
fi |
|
| 144 |
else |
|
| 145 |
soplex_flag="--without-soplex" |
|
| 146 |
fi |
|
| 147 |
|
|
| 148 |
if [ "x$AUTORE" == "xyes" ]; then |
|
| 149 |
autoreconf -vif; |
|
| 150 |
fi |
|
| 151 |
${CONFIGURE_PATH}/configure --prefix=$LEMON_INSTALL_PREFIX \
|
|
| 152 |
$valgrind_flags \ |
|
| 153 |
"$cxx_flags" \ |
|
| 154 |
$glpk_flag \ |
|
| 155 |
$coin_flag \ |
|
| 156 |
$soplex_flag \ |
|
| 157 |
$* |
| 1 |
#!/bin/sh |
|
| 2 |
|
|
| 3 |
# Run in valgrind, with leak checking enabled |
|
| 4 |
|
|
| 5 |
valgrind -q --leak-check=full "$@" 2> .valgrind-log |
|
| 6 |
|
|
| 7 |
# Save the test result |
|
| 8 |
|
|
| 9 |
result="$?" |
|
| 10 |
|
|
| 11 |
# Valgrind should generate no error messages |
|
| 12 |
|
|
| 13 |
log_contents="`cat .valgrind-log`" |
|
| 14 |
|
|
| 15 |
if [ "$log_contents" != "" ]; then |
|
| 16 |
cat .valgrind-log >&2 |
|
| 17 |
result=1 |
|
| 18 |
fi |
|
| 19 |
|
|
| 20 |
rm -f .valgrind-log |
|
| 21 |
|
|
| 22 |
exit $result |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <lemon/concepts/digraph.h> |
|
| 20 |
#include <lemon/smart_graph.h> |
|
| 21 |
#include <lemon/list_graph.h> |
|
| 22 |
#include <lemon/lgf_reader.h> |
|
| 23 |
#include <lemon/bellman_ford.h> |
|
| 24 |
#include <lemon/path.h> |
|
| 25 |
|
|
| 26 |
#include "graph_test.h" |
|
| 27 |
#include "test_tools.h" |
|
| 28 |
|
|
| 29 |
using namespace lemon; |
|
| 30 |
|
|
| 31 |
char test_lgf[] = |
|
| 32 |
"@nodes\n" |
|
| 33 |
"label\n" |
|
| 34 |
"0\n" |
|
| 35 |
"1\n" |
|
| 36 |
"2\n" |
|
| 37 |
"3\n" |
|
| 38 |
"4\n" |
|
| 39 |
"@arcs\n" |
|
| 40 |
" length\n" |
|
| 41 |
"0 1 3\n" |
|
| 42 |
"1 2 -3\n" |
|
| 43 |
"1 2 -5\n" |
|
| 44 |
"1 3 -2\n" |
|
| 45 |
"0 2 -1\n" |
|
| 46 |
"1 2 -4\n" |
|
| 47 |
"0 3 2\n" |
|
| 48 |
"4 2 -5\n" |
|
| 49 |
"2 3 1\n" |
|
| 50 |
"@attributes\n" |
|
| 51 |
"source 0\n" |
|
| 52 |
"target 3\n"; |
|
| 53 |
|
|
| 54 |
|
|
| 55 |
void checkBellmanFordCompile() |
|
| 56 |
{
|
|
| 57 |
typedef int Value; |
|
| 58 |
typedef concepts::Digraph Digraph; |
|
| 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
| 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
|
| 61 |
typedef Digraph::Node Node; |
|
| 62 |
typedef Digraph::Arc Arc; |
|
| 63 |
|
|
| 64 |
Digraph gr; |
|
| 65 |
Node s, t, n; |
|
| 66 |
Arc e; |
|
| 67 |
Value l; |
|
| 68 |
int k=3; |
|
| 69 |
bool b; |
|
| 70 |
BF::DistMap d(gr); |
|
| 71 |
BF::PredMap p(gr); |
|
| 72 |
LengthMap length; |
|
| 73 |
concepts::Path<Digraph> pp; |
|
| 74 |
|
|
| 75 |
{
|
|
| 76 |
BF bf_test(gr,length); |
|
| 77 |
const BF& const_bf_test = bf_test; |
|
| 78 |
|
|
| 79 |
bf_test.run(s); |
|
| 80 |
bf_test.run(s,k); |
|
| 81 |
|
|
| 82 |
bf_test.init(); |
|
| 83 |
bf_test.addSource(s); |
|
| 84 |
bf_test.addSource(s, 1); |
|
| 85 |
b = bf_test.processNextRound(); |
|
| 86 |
b = bf_test.processNextWeakRound(); |
|
| 87 |
|
|
| 88 |
bf_test.start(); |
|
| 89 |
bf_test.checkedStart(); |
|
| 90 |
bf_test.limitedStart(k); |
|
| 91 |
|
|
| 92 |
l = const_bf_test.dist(t); |
|
| 93 |
e = const_bf_test.predArc(t); |
|
| 94 |
s = const_bf_test.predNode(t); |
|
| 95 |
b = const_bf_test.reached(t); |
|
| 96 |
d = const_bf_test.distMap(); |
|
| 97 |
p = const_bf_test.predMap(); |
|
| 98 |
pp = const_bf_test.path(t); |
|
| 99 |
pp = const_bf_test.negativeCycle(); |
|
| 100 |
|
|
| 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
|
|
| 102 |
} |
|
| 103 |
{
|
|
| 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
| 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
|
| 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
|
| 107 |
::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > |
|
| 108 |
::Create bf_test(gr,length); |
|
| 109 |
|
|
| 110 |
LengthMap length_map; |
|
| 111 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
|
| 112 |
concepts::ReadWriteMap<Node,Value> dist_map; |
|
| 113 |
|
|
| 114 |
bf_test |
|
| 115 |
.lengthMap(length_map) |
|
| 116 |
.predMap(pred_map) |
|
| 117 |
.distMap(dist_map); |
|
| 118 |
|
|
| 119 |
bf_test.run(s); |
|
| 120 |
bf_test.run(s,k); |
|
| 121 |
|
|
| 122 |
bf_test.init(); |
|
| 123 |
bf_test.addSource(s); |
|
| 124 |
bf_test.addSource(s, 1); |
|
| 125 |
b = bf_test.processNextRound(); |
|
| 126 |
b = bf_test.processNextWeakRound(); |
|
| 127 |
|
|
| 128 |
bf_test.start(); |
|
| 129 |
bf_test.checkedStart(); |
|
| 130 |
bf_test.limitedStart(k); |
|
| 131 |
|
|
| 132 |
l = bf_test.dist(t); |
|
| 133 |
e = bf_test.predArc(t); |
|
| 134 |
s = bf_test.predNode(t); |
|
| 135 |
b = bf_test.reached(t); |
|
| 136 |
pp = bf_test.path(t); |
|
| 137 |
pp = bf_test.negativeCycle(); |
|
| 138 |
} |
|
| 139 |
} |
|
| 140 |
|
|
| 141 |
void checkBellmanFordFunctionCompile() |
|
| 142 |
{
|
|
| 143 |
typedef int Value; |
|
| 144 |
typedef concepts::Digraph Digraph; |
|
| 145 |
typedef Digraph::Arc Arc; |
|
| 146 |
typedef Digraph::Node Node; |
|
| 147 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
| 148 |
|
|
| 149 |
Digraph g; |
|
| 150 |
bool b; |
|
| 151 |
bellmanFord(g,LengthMap()).run(Node()); |
|
| 152 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
|
| 153 |
bellmanFord(g,LengthMap()) |
|
| 154 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
| 155 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
| 156 |
.run(Node()); |
|
| 157 |
b=bellmanFord(g,LengthMap()) |
|
| 158 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
| 159 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
| 160 |
.path(concepts::Path<Digraph>()) |
|
| 161 |
.dist(Value()) |
|
| 162 |
.run(Node(),Node()); |
|
| 163 |
} |
|
| 164 |
|
|
| 165 |
|
|
| 166 |
template <typename Digraph, typename Value> |
|
| 167 |
void checkBellmanFord() {
|
|
| 168 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 169 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
|
| 170 |
|
|
| 171 |
Digraph gr; |
|
| 172 |
Node s, t; |
|
| 173 |
LengthMap length(gr); |
|
| 174 |
|
|
| 175 |
std::istringstream input(test_lgf); |
|
| 176 |
digraphReader(gr, input). |
|
| 177 |
arcMap("length", length).
|
|
| 178 |
node("source", s).
|
|
| 179 |
node("target", t).
|
|
| 180 |
run(); |
|
| 181 |
|
|
| 182 |
BellmanFord<Digraph, LengthMap> |
|
| 183 |
bf(gr, length); |
|
| 184 |
bf.run(s); |
|
| 185 |
Path<Digraph> p = bf.path(t); |
|
| 186 |
|
|
| 187 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
|
| 188 |
check(p.length() == 3, "path() found a wrong path."); |
|
| 189 |
check(checkPath(gr, p), "path() found a wrong path."); |
|
| 190 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
|
| 191 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
|
| 192 |
|
|
| 193 |
ListPath<Digraph> path; |
|
| 194 |
Value dist; |
|
| 195 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
|
| 196 |
|
|
| 197 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
|
| 198 |
check(path.length() == 3, "path() found a wrong path."); |
|
| 199 |
check(checkPath(gr, path), "path() found a wrong path."); |
|
| 200 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
|
| 201 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
|
| 202 |
|
|
| 203 |
for(ArcIt e(gr); e!=INVALID; ++e) {
|
|
| 204 |
Node u=gr.source(e); |
|
| 205 |
Node v=gr.target(e); |
|
| 206 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
|
| 207 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
|
| 208 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
| 209 |
} |
|
| 210 |
|
|
| 211 |
for(NodeIt v(gr); v!=INVALID; ++v) {
|
|
| 212 |
if (bf.reached(v)) {
|
|
| 213 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
|
| 214 |
if (bf.predArc(v)!=INVALID ) {
|
|
| 215 |
Arc e=bf.predArc(v); |
|
| 216 |
Node u=gr.source(e); |
|
| 217 |
check(u==bf.predNode(v),"Wrong tree."); |
|
| 218 |
check(bf.dist(v) - bf.dist(u) == length[e], |
|
| 219 |
"Wrong distance! Difference: " << |
|
| 220 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
| 221 |
} |
|
| 222 |
} |
|
| 223 |
} |
|
| 224 |
} |
|
| 225 |
|
|
| 226 |
void checkBellmanFordNegativeCycle() {
|
|
| 227 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
| 228 |
|
|
| 229 |
SmartDigraph gr; |
|
| 230 |
IntArcMap length(gr); |
|
| 231 |
|
|
| 232 |
Node n1 = gr.addNode(); |
|
| 233 |
Node n2 = gr.addNode(); |
|
| 234 |
Node n3 = gr.addNode(); |
|
| 235 |
Node n4 = gr.addNode(); |
|
| 236 |
|
|
| 237 |
Arc a1 = gr.addArc(n1, n2); |
|
| 238 |
Arc a2 = gr.addArc(n2, n2); |
|
| 239 |
|
|
| 240 |
length[a1] = 2; |
|
| 241 |
length[a2] = -1; |
|
| 242 |
|
|
| 243 |
{
|
|
| 244 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 245 |
bf.run(n1); |
|
| 246 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
| 247 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
|
| 248 |
"Wrong negative cycle."); |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
length[a2] = 0; |
|
| 252 |
|
|
| 253 |
{
|
|
| 254 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 255 |
bf.run(n1); |
|
| 256 |
check(bf.negativeCycle().empty(), |
|
| 257 |
"Negative cycle should not be found."); |
|
| 258 |
} |
|
| 259 |
|
|
| 260 |
length[gr.addArc(n1, n3)] = 5; |
|
| 261 |
length[gr.addArc(n4, n3)] = 1; |
|
| 262 |
length[gr.addArc(n2, n4)] = 2; |
|
| 263 |
length[gr.addArc(n3, n2)] = -4; |
|
| 264 |
|
|
| 265 |
{
|
|
| 266 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 267 |
bf.init(); |
|
| 268 |
bf.addSource(n1); |
|
| 269 |
for (int i = 0; i < 4; ++i) {
|
|
| 270 |
check(bf.negativeCycle().empty(), |
|
| 271 |
"Negative cycle should not be found."); |
|
| 272 |
bf.processNextRound(); |
|
| 273 |
} |
|
| 274 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
| 275 |
check(p.length() == 3, "Wrong negative cycle."); |
|
| 276 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
|
| 277 |
"Wrong negative cycle."); |
|
| 278 |
} |
|
| 279 |
} |
|
| 280 |
|
|
| 281 |
int main() {
|
|
| 282 |
checkBellmanFord<ListDigraph, int>(); |
|
| 283 |
checkBellmanFord<SmartDigraph, double>(); |
|
| 284 |
checkBellmanFordNegativeCycle(); |
|
| 285 |
return 0; |
|
| 286 |
} |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <iostream> |
|
| 20 |
#include <sstream> |
|
| 21 |
#include <vector> |
|
| 22 |
#include <queue> |
|
| 23 |
#include <cstdlib> |
|
| 24 |
|
|
| 25 |
#include <lemon/fractional_matching.h> |
|
| 26 |
#include <lemon/smart_graph.h> |
|
| 27 |
#include <lemon/concepts/graph.h> |
|
| 28 |
#include <lemon/concepts/maps.h> |
|
| 29 |
#include <lemon/lgf_reader.h> |
|
| 30 |
#include <lemon/math.h> |
|
| 31 |
|
|
| 32 |
#include "test_tools.h" |
|
| 33 |
|
|
| 34 |
using namespace std; |
|
| 35 |
using namespace lemon; |
|
| 36 |
|
|
| 37 |
GRAPH_TYPEDEFS(SmartGraph); |
|
| 38 |
|
|
| 39 |
|
|
| 40 |
const int lgfn = 4; |
|
| 41 |
const std::string lgf[lgfn] = {
|
|
| 42 |
"@nodes\n" |
|
| 43 |
"label\n" |
|
| 44 |
"0\n" |
|
| 45 |
"1\n" |
|
| 46 |
"2\n" |
|
| 47 |
"3\n" |
|
| 48 |
"4\n" |
|
| 49 |
"5\n" |
|
| 50 |
"6\n" |
|
| 51 |
"7\n" |
|
| 52 |
"@edges\n" |
|
| 53 |
" label weight\n" |
|
| 54 |
"7 4 0 984\n" |
|
| 55 |
"0 7 1 73\n" |
|
| 56 |
"7 1 2 204\n" |
|
| 57 |
"2 3 3 583\n" |
|
| 58 |
"2 7 4 565\n" |
|
| 59 |
"2 1 5 582\n" |
|
| 60 |
"0 4 6 551\n" |
|
| 61 |
"2 5 7 385\n" |
|
| 62 |
"1 5 8 561\n" |
|
| 63 |
"5 3 9 484\n" |
|
| 64 |
"7 5 10 904\n" |
|
| 65 |
"3 6 11 47\n" |
|
| 66 |
"7 6 12 888\n" |
|
| 67 |
"3 0 13 747\n" |
|
| 68 |
"6 1 14 310\n", |
|
| 69 |
|
|
| 70 |
"@nodes\n" |
|
| 71 |
"label\n" |
|
| 72 |
"0\n" |
|
| 73 |
"1\n" |
|
| 74 |
"2\n" |
|
| 75 |
"3\n" |
|
| 76 |
"4\n" |
|
| 77 |
"5\n" |
|
| 78 |
"6\n" |
|
| 79 |
"7\n" |
|
| 80 |
"@edges\n" |
|
| 81 |
" label weight\n" |
|
| 82 |
"2 5 0 710\n" |
|
| 83 |
"0 5 1 241\n" |
|
| 84 |
"2 4 2 856\n" |
|
| 85 |
"2 6 3 762\n" |
|
| 86 |
"4 1 4 747\n" |
|
| 87 |
"6 1 5 962\n" |
|
| 88 |
"4 7 6 723\n" |
|
| 89 |
"1 7 7 661\n" |
|
| 90 |
"2 3 8 376\n" |
|
| 91 |
"1 0 9 416\n" |
|
| 92 |
"6 7 10 391\n", |
|
| 93 |
|
|
| 94 |
"@nodes\n" |
|
| 95 |
"label\n" |
|
| 96 |
"0\n" |
|
| 97 |
"1\n" |
|
| 98 |
"2\n" |
|
| 99 |
"3\n" |
|
| 100 |
"4\n" |
|
| 101 |
"5\n" |
|
| 102 |
"6\n" |
|
| 103 |
"7\n" |
|
| 104 |
"@edges\n" |
|
| 105 |
" label weight\n" |
|
| 106 |
"6 2 0 553\n" |
|
| 107 |
"0 7 1 653\n" |
|
| 108 |
"6 3 2 22\n" |
|
| 109 |
"4 7 3 846\n" |
|
| 110 |
"7 2 4 981\n" |
|
| 111 |
"7 6 5 250\n" |
|
| 112 |
"5 2 6 539\n", |
|
| 113 |
|
|
| 114 |
"@nodes\n" |
|
| 115 |
"label\n" |
|
| 116 |
"0\n" |
|
| 117 |
"@edges\n" |
|
| 118 |
" label weight\n" |
|
| 119 |
"0 0 0 100\n" |
|
| 120 |
}; |
|
| 121 |
|
|
| 122 |
void checkMaxFractionalMatchingCompile() |
|
| 123 |
{
|
|
| 124 |
typedef concepts::Graph Graph; |
|
| 125 |
typedef Graph::Node Node; |
|
| 126 |
typedef Graph::Edge Edge; |
|
| 127 |
|
|
| 128 |
Graph g; |
|
| 129 |
Node n; |
|
| 130 |
Edge e; |
|
| 131 |
|
|
| 132 |
MaxFractionalMatching<Graph> mat_test(g); |
|
| 133 |
const MaxFractionalMatching<Graph>& |
|
| 134 |
const_mat_test = mat_test; |
|
| 135 |
|
|
| 136 |
mat_test.init(); |
|
| 137 |
mat_test.start(); |
|
| 138 |
mat_test.start(true); |
|
| 139 |
mat_test.startPerfect(); |
|
| 140 |
mat_test.startPerfect(true); |
|
| 141 |
mat_test.run(); |
|
| 142 |
mat_test.run(true); |
|
| 143 |
mat_test.runPerfect(); |
|
| 144 |
mat_test.runPerfect(true); |
|
| 145 |
|
|
| 146 |
const_mat_test.matchingSize(); |
|
| 147 |
const_mat_test.matching(e); |
|
| 148 |
const_mat_test.matching(n); |
|
| 149 |
const MaxFractionalMatching<Graph>::MatchingMap& mmap = |
|
| 150 |
const_mat_test.matchingMap(); |
|
| 151 |
e = mmap[n]; |
|
| 152 |
|
|
| 153 |
const_mat_test.barrier(n); |
|
| 154 |
} |
|
| 155 |
|
|
| 156 |
void checkMaxWeightedFractionalMatchingCompile() |
|
| 157 |
{
|
|
| 158 |
typedef concepts::Graph Graph; |
|
| 159 |
typedef Graph::Node Node; |
|
| 160 |
typedef Graph::Edge Edge; |
|
| 161 |
typedef Graph::EdgeMap<int> WeightMap; |
|
| 162 |
|
|
| 163 |
Graph g; |
|
| 164 |
Node n; |
|
| 165 |
Edge e; |
|
| 166 |
WeightMap w(g); |
|
| 167 |
|
|
| 168 |
MaxWeightedFractionalMatching<Graph> mat_test(g, w); |
|
| 169 |
const MaxWeightedFractionalMatching<Graph>& |
|
| 170 |
const_mat_test = mat_test; |
|
| 171 |
|
|
| 172 |
mat_test.init(); |
|
| 173 |
mat_test.start(); |
|
| 174 |
mat_test.run(); |
|
| 175 |
|
|
| 176 |
const_mat_test.matchingWeight(); |
|
| 177 |
const_mat_test.matchingSize(); |
|
| 178 |
const_mat_test.matching(e); |
|
| 179 |
const_mat_test.matching(n); |
|
| 180 |
const MaxWeightedFractionalMatching<Graph>::MatchingMap& mmap = |
|
| 181 |
const_mat_test.matchingMap(); |
|
| 182 |
e = mmap[n]; |
|
| 183 |
|
|
| 184 |
const_mat_test.dualValue(); |
|
| 185 |
const_mat_test.nodeValue(n); |
|
| 186 |
} |
|
| 187 |
|
|
| 188 |
void checkMaxWeightedPerfectFractionalMatchingCompile() |
|
| 189 |
{
|
|
| 190 |
typedef concepts::Graph Graph; |
|
| 191 |
typedef Graph::Node Node; |
|
| 192 |
typedef Graph::Edge Edge; |
|
| 193 |
typedef Graph::EdgeMap<int> WeightMap; |
|
| 194 |
|
|
| 195 |
Graph g; |
|
| 196 |
Node n; |
|
| 197 |
Edge e; |
|
| 198 |
WeightMap w(g); |
|
| 199 |
|
|
| 200 |
MaxWeightedPerfectFractionalMatching<Graph> mat_test(g, w); |
|
| 201 |
const MaxWeightedPerfectFractionalMatching<Graph>& |
|
| 202 |
const_mat_test = mat_test; |
|
| 203 |
|
|
| 204 |
mat_test.init(); |
|
| 205 |
mat_test.start(); |
|
| 206 |
mat_test.run(); |
|
| 207 |
|
|
| 208 |
const_mat_test.matchingWeight(); |
|
| 209 |
const_mat_test.matching(e); |
|
| 210 |
const_mat_test.matching(n); |
|
| 211 |
const MaxWeightedPerfectFractionalMatching<Graph>::MatchingMap& mmap = |
|
| 212 |
const_mat_test.matchingMap(); |
|
| 213 |
e = mmap[n]; |
|
| 214 |
|
|
| 215 |
const_mat_test.dualValue(); |
|
| 216 |
const_mat_test.nodeValue(n); |
|
| 217 |
} |
|
| 218 |
|
|
| 219 |
void checkFractionalMatching(const SmartGraph& graph, |
|
| 220 |
const MaxFractionalMatching<SmartGraph>& mfm, |
|
| 221 |
bool allow_loops = true) {
|
|
| 222 |
int pv = 0; |
|
| 223 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 224 |
int indeg = 0; |
|
| 225 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 226 |
if (mfm.matching(graph.source(a)) == a) {
|
|
| 227 |
++indeg; |
|
| 228 |
} |
|
| 229 |
} |
|
| 230 |
if (mfm.matching(n) != INVALID) {
|
|
| 231 |
check(indeg == 1, "Invalid matching"); |
|
| 232 |
++pv; |
|
| 233 |
} else {
|
|
| 234 |
check(indeg == 0, "Invalid matching"); |
|
| 235 |
} |
|
| 236 |
} |
|
| 237 |
check(pv == mfm.matchingSize(), "Wrong matching size"); |
|
| 238 |
|
|
| 239 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 240 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 241 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 242 |
mfm.matching(e), "Invalid matching"); |
|
| 243 |
} |
|
| 244 |
|
|
| 245 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
| 246 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 247 |
if (processed[n]) continue; |
|
| 248 |
processed[n] = true; |
|
| 249 |
if (mfm.matching(n) == INVALID) continue; |
|
| 250 |
int num = 1; |
|
| 251 |
Node v = graph.target(mfm.matching(n)); |
|
| 252 |
while (v != n) {
|
|
| 253 |
processed[v] = true; |
|
| 254 |
++num; |
|
| 255 |
v = graph.target(mfm.matching(v)); |
|
| 256 |
} |
|
| 257 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
| 258 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
| 259 |
} |
|
| 260 |
|
|
| 261 |
int anum = 0, bnum = 0; |
|
| 262 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
|
| 263 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 264 |
if (!mfm.barrier(n)) continue; |
|
| 265 |
++anum; |
|
| 266 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 267 |
Node u = graph.source(a); |
|
| 268 |
if (!allow_loops && u == n) continue; |
|
| 269 |
if (!neighbours[u]) {
|
|
| 270 |
neighbours[u] = true; |
|
| 271 |
++bnum; |
|
| 272 |
} |
|
| 273 |
} |
|
| 274 |
} |
|
| 275 |
check(anum - bnum + mfm.matchingSize() == countNodes(graph), |
|
| 276 |
"Wrong barrier"); |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
void checkPerfectFractionalMatching(const SmartGraph& graph, |
|
| 280 |
const MaxFractionalMatching<SmartGraph>& mfm, |
|
| 281 |
bool perfect, bool allow_loops = true) {
|
|
| 282 |
if (perfect) {
|
|
| 283 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 284 |
int indeg = 0; |
|
| 285 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 286 |
if (mfm.matching(graph.source(a)) == a) {
|
|
| 287 |
++indeg; |
|
| 288 |
} |
|
| 289 |
} |
|
| 290 |
check(mfm.matching(n) != INVALID, "Invalid matching"); |
|
| 291 |
check(indeg == 1, "Invalid matching"); |
|
| 292 |
} |
|
| 293 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 294 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 295 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 296 |
mfm.matching(e), "Invalid matching"); |
|
| 297 |
} |
|
| 298 |
} else {
|
|
| 299 |
int anum = 0, bnum = 0; |
|
| 300 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
|
| 301 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 302 |
if (!mfm.barrier(n)) continue; |
|
| 303 |
++anum; |
|
| 304 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 305 |
Node u = graph.source(a); |
|
| 306 |
if (!allow_loops && u == n) continue; |
|
| 307 |
if (!neighbours[u]) {
|
|
| 308 |
neighbours[u] = true; |
|
| 309 |
++bnum; |
|
| 310 |
} |
|
| 311 |
} |
|
| 312 |
} |
|
| 313 |
check(anum - bnum > 0, "Wrong barrier"); |
|
| 314 |
} |
|
| 315 |
} |
|
| 316 |
|
|
| 317 |
void checkWeightedFractionalMatching(const SmartGraph& graph, |
|
| 318 |
const SmartGraph::EdgeMap<int>& weight, |
|
| 319 |
const MaxWeightedFractionalMatching<SmartGraph>& mwfm, |
|
| 320 |
bool allow_loops = true) {
|
|
| 321 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 322 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
|
| 323 |
int rw = mwfm.nodeValue(graph.u(e)) + mwfm.nodeValue(graph.v(e)) |
|
| 324 |
- weight[e] * mwfm.dualScale; |
|
| 325 |
|
|
| 326 |
check(rw >= 0, "Negative reduced weight"); |
|
| 327 |
check(rw == 0 || !mwfm.matching(e), |
|
| 328 |
"Non-zero reduced weight on matching edge"); |
|
| 329 |
} |
|
| 330 |
|
|
| 331 |
int pv = 0; |
|
| 332 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 333 |
int indeg = 0; |
|
| 334 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 335 |
if (mwfm.matching(graph.source(a)) == a) {
|
|
| 336 |
++indeg; |
|
| 337 |
} |
|
| 338 |
} |
|
| 339 |
check(indeg <= 1, "Invalid matching"); |
|
| 340 |
if (mwfm.matching(n) != INVALID) {
|
|
| 341 |
check(mwfm.nodeValue(n) >= 0, "Invalid node value"); |
|
| 342 |
check(indeg == 1, "Invalid matching"); |
|
| 343 |
pv += weight[mwfm.matching(n)]; |
|
| 344 |
SmartGraph::Node o = graph.target(mwfm.matching(n)); |
|
| 345 |
} else {
|
|
| 346 |
check(mwfm.nodeValue(n) == 0, "Invalid matching"); |
|
| 347 |
check(indeg == 0, "Invalid matching"); |
|
| 348 |
} |
|
| 349 |
} |
|
| 350 |
|
|
| 351 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 352 |
check((e == mwfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 353 |
(e == mwfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 354 |
mwfm.matching(e), "Invalid matching"); |
|
| 355 |
} |
|
| 356 |
|
|
| 357 |
int dv = 0; |
|
| 358 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 359 |
dv += mwfm.nodeValue(n); |
|
| 360 |
} |
|
| 361 |
|
|
| 362 |
check(pv * mwfm.dualScale == dv * 2, "Wrong duality"); |
|
| 363 |
|
|
| 364 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
| 365 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 366 |
if (processed[n]) continue; |
|
| 367 |
processed[n] = true; |
|
| 368 |
if (mwfm.matching(n) == INVALID) continue; |
|
| 369 |
int num = 1; |
|
| 370 |
Node v = graph.target(mwfm.matching(n)); |
|
| 371 |
while (v != n) {
|
|
| 372 |
processed[v] = true; |
|
| 373 |
++num; |
|
| 374 |
v = graph.target(mwfm.matching(v)); |
|
| 375 |
} |
|
| 376 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
| 377 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
| 378 |
} |
|
| 379 |
|
|
| 380 |
return; |
|
| 381 |
} |
|
| 382 |
|
|
| 383 |
void checkWeightedPerfectFractionalMatching(const SmartGraph& graph, |
|
| 384 |
const SmartGraph::EdgeMap<int>& weight, |
|
| 385 |
const MaxWeightedPerfectFractionalMatching<SmartGraph>& mwpfm, |
|
| 386 |
bool allow_loops = true) {
|
|
| 387 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 388 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
|
| 389 |
int rw = mwpfm.nodeValue(graph.u(e)) + mwpfm.nodeValue(graph.v(e)) |
|
| 390 |
- weight[e] * mwpfm.dualScale; |
|
| 391 |
|
|
| 392 |
check(rw >= 0, "Negative reduced weight"); |
|
| 393 |
check(rw == 0 || !mwpfm.matching(e), |
|
| 394 |
"Non-zero reduced weight on matching edge"); |
|
| 395 |
} |
|
| 396 |
|
|
| 397 |
int pv = 0; |
|
| 398 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 399 |
int indeg = 0; |
|
| 400 |
for (InArcIt a(graph, n); a != INVALID; ++a) {
|
|
| 401 |
if (mwpfm.matching(graph.source(a)) == a) {
|
|
| 402 |
++indeg; |
|
| 403 |
} |
|
| 404 |
} |
|
| 405 |
check(mwpfm.matching(n) != INVALID, "Invalid perfect matching"); |
|
| 406 |
check(indeg == 1, "Invalid perfect matching"); |
|
| 407 |
pv += weight[mwpfm.matching(n)]; |
|
| 408 |
SmartGraph::Node o = graph.target(mwpfm.matching(n)); |
|
| 409 |
} |
|
| 410 |
|
|
| 411 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 412 |
check((e == mwpfm.matching(graph.u(e)) ? 1 : 0) + |
|
| 413 |
(e == mwpfm.matching(graph.v(e)) ? 1 : 0) == |
|
| 414 |
mwpfm.matching(e), "Invalid matching"); |
|
| 415 |
} |
|
| 416 |
|
|
| 417 |
int dv = 0; |
|
| 418 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 419 |
dv += mwpfm.nodeValue(n); |
|
| 420 |
} |
|
| 421 |
|
|
| 422 |
check(pv * mwpfm.dualScale == dv * 2, "Wrong duality"); |
|
| 423 |
|
|
| 424 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
| 425 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 426 |
if (processed[n]) continue; |
|
| 427 |
processed[n] = true; |
|
| 428 |
if (mwpfm.matching(n) == INVALID) continue; |
|
| 429 |
int num = 1; |
|
| 430 |
Node v = graph.target(mwpfm.matching(n)); |
|
| 431 |
while (v != n) {
|
|
| 432 |
processed[v] = true; |
|
| 433 |
++num; |
|
| 434 |
v = graph.target(mwpfm.matching(v)); |
|
| 435 |
} |
|
| 436 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
| 437 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
| 438 |
} |
|
| 439 |
|
|
| 440 |
return; |
|
| 441 |
} |
|
| 442 |
|
|
| 443 |
|
|
| 444 |
int main() {
|
|
| 445 |
|
|
| 446 |
for (int i = 0; i < lgfn; ++i) {
|
|
| 447 |
SmartGraph graph; |
|
| 448 |
SmartGraph::EdgeMap<int> weight(graph); |
|
| 449 |
|
|
| 450 |
istringstream lgfs(lgf[i]); |
|
| 451 |
graphReader(graph, lgfs). |
|
| 452 |
edgeMap("weight", weight).run();
|
|
| 453 |
|
|
| 454 |
bool perfect_with_loops; |
|
| 455 |
{
|
|
| 456 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
|
| 457 |
mfm.run(); |
|
| 458 |
checkFractionalMatching(graph, mfm, true); |
|
| 459 |
perfect_with_loops = mfm.matchingSize() == countNodes(graph); |
|
| 460 |
} |
|
| 461 |
|
|
| 462 |
bool perfect_without_loops; |
|
| 463 |
{
|
|
| 464 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
|
| 465 |
mfm.run(); |
|
| 466 |
checkFractionalMatching(graph, mfm, false); |
|
| 467 |
perfect_without_loops = mfm.matchingSize() == countNodes(graph); |
|
| 468 |
} |
|
| 469 |
|
|
| 470 |
{
|
|
| 471 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
|
| 472 |
bool result = mfm.runPerfect(); |
|
| 473 |
checkPerfectFractionalMatching(graph, mfm, result, true); |
|
| 474 |
check(result == perfect_with_loops, "Wrong perfect matching"); |
|
| 475 |
} |
|
| 476 |
|
|
| 477 |
{
|
|
| 478 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
|
| 479 |
bool result = mfm.runPerfect(); |
|
| 480 |
checkPerfectFractionalMatching(graph, mfm, result, false); |
|
| 481 |
check(result == perfect_without_loops, "Wrong perfect matching"); |
|
| 482 |
} |
|
| 483 |
|
|
| 484 |
{
|
|
| 485 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, true); |
|
| 486 |
mwfm.run(); |
|
| 487 |
checkWeightedFractionalMatching(graph, weight, mwfm, true); |
|
| 488 |
} |
|
| 489 |
|
|
| 490 |
{
|
|
| 491 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, false); |
|
| 492 |
mwfm.run(); |
|
| 493 |
checkWeightedFractionalMatching(graph, weight, mwfm, false); |
|
| 494 |
} |
|
| 495 |
|
|
| 496 |
{
|
|
| 497 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
|
| 498 |
true); |
|
| 499 |
bool perfect = mwpfm.run(); |
|
| 500 |
check(perfect == (mwpfm.matchingSize() == countNodes(graph)), |
|
| 501 |
"Perfect matching found"); |
|
| 502 |
check(perfect == perfect_with_loops, "Wrong perfect matching"); |
|
| 503 |
|
|
| 504 |
if (perfect) {
|
|
| 505 |
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, true); |
|
| 506 |
} |
|
| 507 |
} |
|
| 508 |
|
|
| 509 |
{
|
|
| 510 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
|
| 511 |
false); |
|
| 512 |
bool perfect = mwpfm.run(); |
|
| 513 |
check(perfect == (mwpfm.matchingSize() == countNodes(graph)), |
|
| 514 |
"Perfect matching found"); |
|
| 515 |
check(perfect == perfect_without_loops, "Wrong perfect matching"); |
|
| 516 |
|
|
| 517 |
if (perfect) {
|
|
| 518 |
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, false); |
|
| 519 |
} |
|
| 520 |
} |
|
| 521 |
|
|
| 522 |
} |
|
| 523 |
|
|
| 524 |
return 0; |
|
| 525 |
} |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <iostream> |
|
| 20 |
#include <sstream> |
|
| 21 |
|
|
| 22 |
#include <lemon/smart_graph.h> |
|
| 23 |
#include <lemon/lgf_reader.h> |
|
| 24 |
#include <lemon/path.h> |
|
| 25 |
#include <lemon/concepts/digraph.h> |
|
| 26 |
#include <lemon/concept_check.h> |
|
| 27 |
|
|
| 28 |
#include <lemon/karp_mmc.h> |
|
| 29 |
#include <lemon/hartmann_orlin_mmc.h> |
|
| 30 |
#include <lemon/howard_mmc.h> |
|
| 31 |
|
|
| 32 |
#include "test_tools.h" |
|
| 33 |
|
|
| 34 |
using namespace lemon; |
|
| 35 |
|
|
| 36 |
char test_lgf[] = |
|
| 37 |
"@nodes\n" |
|
| 38 |
"label\n" |
|
| 39 |
"1\n" |
|
| 40 |
"2\n" |
|
| 41 |
"3\n" |
|
| 42 |
"4\n" |
|
| 43 |
"5\n" |
|
| 44 |
"6\n" |
|
| 45 |
"7\n" |
|
| 46 |
"@arcs\n" |
|
| 47 |
" len1 len2 len3 len4 c1 c2 c3 c4\n" |
|
| 48 |
"1 2 1 1 1 1 0 0 0 0\n" |
|
| 49 |
"2 4 5 5 5 5 1 0 0 0\n" |
|
| 50 |
"2 3 8 8 8 8 0 0 0 0\n" |
|
| 51 |
"3 2 -2 0 0 0 1 0 0 0\n" |
|
| 52 |
"3 4 4 4 4 4 0 0 0 0\n" |
|
| 53 |
"3 7 -4 -4 -4 -4 0 0 0 0\n" |
|
| 54 |
"4 1 2 2 2 2 0 0 0 0\n" |
|
| 55 |
"4 3 3 3 3 3 1 0 0 0\n" |
|
| 56 |
"4 4 3 3 0 0 0 0 1 0\n" |
|
| 57 |
"5 2 4 4 4 4 0 0 0 0\n" |
|
| 58 |
"5 6 3 3 3 3 0 1 0 0\n" |
|
| 59 |
"6 5 2 2 2 2 0 1 0 0\n" |
|
| 60 |
"6 4 -1 -1 -1 -1 0 0 0 0\n" |
|
| 61 |
"6 7 1 1 1 1 0 0 0 0\n" |
|
| 62 |
"7 7 4 4 4 -1 0 0 0 1\n"; |
|
| 63 |
|
|
| 64 |
|
|
| 65 |
// Check the interface of an MMC algorithm |
|
| 66 |
template <typename GR, typename Cost> |
|
| 67 |
struct MmcClassConcept |
|
| 68 |
{
|
|
| 69 |
template <typename MMC> |
|
| 70 |
struct Constraints {
|
|
| 71 |
void constraints() {
|
|
| 72 |
const Constraints& me = *this; |
|
| 73 |
|
|
| 74 |
typedef typename MMC |
|
| 75 |
::template SetPath<ListPath<GR> > |
|
| 76 |
::template SetLargeCost<Cost> |
|
| 77 |
::Create MmcAlg; |
|
| 78 |
MmcAlg mmc(me.g, me.cost); |
|
| 79 |
const MmcAlg& const_mmc = mmc; |
|
| 80 |
|
|
| 81 |
typename MmcAlg::Tolerance tol = const_mmc.tolerance(); |
|
| 82 |
mmc.tolerance(tol); |
|
| 83 |
|
|
| 84 |
b = mmc.cycle(p).run(); |
|
| 85 |
b = mmc.findCycleMean(); |
|
| 86 |
b = mmc.findCycle(); |
|
| 87 |
|
|
| 88 |
v = const_mmc.cycleCost(); |
|
| 89 |
i = const_mmc.cycleSize(); |
|
| 90 |
d = const_mmc.cycleMean(); |
|
| 91 |
p = const_mmc.cycle(); |
|
| 92 |
} |
|
| 93 |
|
|
| 94 |
typedef concepts::ReadMap<typename GR::Arc, Cost> CM; |
|
| 95 |
|
|
| 96 |
GR g; |
|
| 97 |
CM cost; |
|
| 98 |
ListPath<GR> p; |
|
| 99 |
Cost v; |
|
| 100 |
int i; |
|
| 101 |
double d; |
|
| 102 |
bool b; |
|
| 103 |
}; |
|
| 104 |
}; |
|
| 105 |
|
|
| 106 |
// Perform a test with the given parameters |
|
| 107 |
template <typename MMC> |
|
| 108 |
void checkMmcAlg(const SmartDigraph& gr, |
|
| 109 |
const SmartDigraph::ArcMap<int>& lm, |
|
| 110 |
const SmartDigraph::ArcMap<int>& cm, |
|
| 111 |
int cost, int size) {
|
|
| 112 |
MMC alg(gr, lm); |
|
| 113 |
alg.findCycleMean(); |
|
| 114 |
check(alg.cycleMean() == static_cast<double>(cost) / size, |
|
| 115 |
"Wrong cycle mean"); |
|
| 116 |
alg.findCycle(); |
|
| 117 |
check(alg.cycleCost() == cost && alg.cycleSize() == size, |
|
| 118 |
"Wrong path"); |
|
| 119 |
SmartDigraph::ArcMap<int> cycle(gr, 0); |
|
| 120 |
for (typename MMC::Path::ArcIt a(alg.cycle()); a != INVALID; ++a) {
|
|
| 121 |
++cycle[a]; |
|
| 122 |
} |
|
| 123 |
for (SmartDigraph::ArcIt a(gr); a != INVALID; ++a) {
|
|
| 124 |
check(cm[a] == cycle[a], "Wrong path"); |
|
| 125 |
} |
|
| 126 |
} |
|
| 127 |
|
|
| 128 |
// Class for comparing types |
|
| 129 |
template <typename T1, typename T2> |
|
| 130 |
struct IsSameType {
|
|
| 131 |
static const int result = 0; |
|
| 132 |
}; |
|
| 133 |
|
|
| 134 |
template <typename T> |
|
| 135 |
struct IsSameType<T,T> {
|
|
| 136 |
static const int result = 1; |
|
| 137 |
}; |
|
| 138 |
|
|
| 139 |
|
|
| 140 |
int main() {
|
|
| 141 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 142 |
typedef long long long_int; |
|
| 143 |
#else |
|
| 144 |
typedef long long_int; |
|
| 145 |
#endif |
|
| 146 |
|
|
| 147 |
// Check the interface |
|
| 148 |
{
|
|
| 149 |
typedef concepts::Digraph GR; |
|
| 150 |
|
|
| 151 |
// KarpMmc |
|
| 152 |
checkConcept< MmcClassConcept<GR, int>, |
|
| 153 |
KarpMmc<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
| 154 |
checkConcept< MmcClassConcept<GR, float>, |
|
| 155 |
KarpMmc<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
| 156 |
|
|
| 157 |
// HartmannOrlinMmc |
|
| 158 |
checkConcept< MmcClassConcept<GR, int>, |
|
| 159 |
HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
| 160 |
checkConcept< MmcClassConcept<GR, float>, |
|
| 161 |
HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
| 162 |
|
|
| 163 |
// HowardMmc |
|
| 164 |
checkConcept< MmcClassConcept<GR, int>, |
|
| 165 |
HowardMmc<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
| 166 |
checkConcept< MmcClassConcept<GR, float>, |
|
| 167 |
HowardMmc<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
| 168 |
|
|
| 169 |
check((IsSameType<HowardMmc<GR, concepts::ReadMap<GR::Arc, int> > |
|
| 170 |
::LargeCost, long_int>::result == 1), "Wrong LargeCost type"); |
|
| 171 |
check((IsSameType<HowardMmc<GR, concepts::ReadMap<GR::Arc, float> > |
|
| 172 |
::LargeCost, double>::result == 1), "Wrong LargeCost type"); |
|
| 173 |
} |
|
| 174 |
|
|
| 175 |
// Run various tests |
|
| 176 |
{
|
|
| 177 |
typedef SmartDigraph GR; |
|
| 178 |
DIGRAPH_TYPEDEFS(GR); |
|
| 179 |
|
|
| 180 |
GR gr; |
|
| 181 |
IntArcMap l1(gr), l2(gr), l3(gr), l4(gr); |
|
| 182 |
IntArcMap c1(gr), c2(gr), c3(gr), c4(gr); |
|
| 183 |
|
|
| 184 |
std::istringstream input(test_lgf); |
|
| 185 |
digraphReader(gr, input). |
|
| 186 |
arcMap("len1", l1).
|
|
| 187 |
arcMap("len2", l2).
|
|
| 188 |
arcMap("len3", l3).
|
|
| 189 |
arcMap("len4", l4).
|
|
| 190 |
arcMap("c1", c1).
|
|
| 191 |
arcMap("c2", c2).
|
|
| 192 |
arcMap("c3", c3).
|
|
| 193 |
arcMap("c4", c4).
|
|
| 194 |
run(); |
|
| 195 |
|
|
| 196 |
// Karp |
|
| 197 |
checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
| 198 |
checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
| 199 |
checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
| 200 |
checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
| 201 |
|
|
| 202 |
// HartmannOrlin |
|
| 203 |
checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
| 204 |
checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
| 205 |
checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
| 206 |
checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
| 207 |
|
|
| 208 |
// Howard |
|
| 209 |
checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
| 210 |
checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
| 211 |
checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
| 212 |
checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
| 213 |
} |
|
| 214 |
|
|
| 215 |
return 0; |
|
| 216 |
} |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <iostream> |
|
| 20 |
|
|
| 21 |
#include <lemon/planarity.h> |
|
| 22 |
|
|
| 23 |
#include <lemon/smart_graph.h> |
|
| 24 |
#include <lemon/lgf_reader.h> |
|
| 25 |
#include <lemon/connectivity.h> |
|
| 26 |
#include <lemon/dim2.h> |
|
| 27 |
|
|
| 28 |
#include "test_tools.h" |
|
| 29 |
|
|
| 30 |
using namespace lemon; |
|
| 31 |
using namespace lemon::dim2; |
|
| 32 |
|
|
| 33 |
const int lgfn = 4; |
|
| 34 |
const std::string lgf[lgfn] = {
|
|
| 35 |
"@nodes\n" |
|
| 36 |
"label\n" |
|
| 37 |
"0\n" |
|
| 38 |
"1\n" |
|
| 39 |
"2\n" |
|
| 40 |
"3\n" |
|
| 41 |
"4\n" |
|
| 42 |
"@edges\n" |
|
| 43 |
" label\n" |
|
| 44 |
"0 1 0\n" |
|
| 45 |
"0 2 0\n" |
|
| 46 |
"0 3 0\n" |
|
| 47 |
"0 4 0\n" |
|
| 48 |
"1 2 0\n" |
|
| 49 |
"1 3 0\n" |
|
| 50 |
"1 4 0\n" |
|
| 51 |
"2 3 0\n" |
|
| 52 |
"2 4 0\n" |
|
| 53 |
"3 4 0\n", |
|
| 54 |
|
|
| 55 |
"@nodes\n" |
|
| 56 |
"label\n" |
|
| 57 |
"0\n" |
|
| 58 |
"1\n" |
|
| 59 |
"2\n" |
|
| 60 |
"3\n" |
|
| 61 |
"4\n" |
|
| 62 |
"@edges\n" |
|
| 63 |
" label\n" |
|
| 64 |
"0 1 0\n" |
|
| 65 |
"0 2 0\n" |
|
| 66 |
"0 3 0\n" |
|
| 67 |
"0 4 0\n" |
|
| 68 |
"1 2 0\n" |
|
| 69 |
"1 3 0\n" |
|
| 70 |
"2 3 0\n" |
|
| 71 |
"2 4 0\n" |
|
| 72 |
"3 4 0\n", |
|
| 73 |
|
|
| 74 |
"@nodes\n" |
|
| 75 |
"label\n" |
|
| 76 |
"0\n" |
|
| 77 |
"1\n" |
|
| 78 |
"2\n" |
|
| 79 |
"3\n" |
|
| 80 |
"4\n" |
|
| 81 |
"5\n" |
|
| 82 |
"@edges\n" |
|
| 83 |
" label\n" |
|
| 84 |
"0 3 0\n" |
|
| 85 |
"0 4 0\n" |
|
| 86 |
"0 5 0\n" |
|
| 87 |
"1 3 0\n" |
|
| 88 |
"1 4 0\n" |
|
| 89 |
"1 5 0\n" |
|
| 90 |
"2 3 0\n" |
|
| 91 |
"2 4 0\n" |
|
| 92 |
"2 5 0\n", |
|
| 93 |
|
|
| 94 |
"@nodes\n" |
|
| 95 |
"label\n" |
|
| 96 |
"0\n" |
|
| 97 |
"1\n" |
|
| 98 |
"2\n" |
|
| 99 |
"3\n" |
|
| 100 |
"4\n" |
|
| 101 |
"5\n" |
|
| 102 |
"@edges\n" |
|
| 103 |
" label\n" |
|
| 104 |
"0 3 0\n" |
|
| 105 |
"0 4 0\n" |
|
| 106 |
"0 5 0\n" |
|
| 107 |
"1 3 0\n" |
|
| 108 |
"1 4 0\n" |
|
| 109 |
"1 5 0\n" |
|
| 110 |
"2 3 0\n" |
|
| 111 |
"2 5 0\n" |
|
| 112 |
}; |
|
| 113 |
|
|
| 114 |
|
|
| 115 |
|
|
| 116 |
typedef SmartGraph Graph; |
|
| 117 |
GRAPH_TYPEDEFS(Graph); |
|
| 118 |
|
|
| 119 |
typedef PlanarEmbedding<SmartGraph> PE; |
|
| 120 |
typedef PlanarDrawing<SmartGraph> PD; |
|
| 121 |
typedef PlanarColoring<SmartGraph> PC; |
|
| 122 |
|
|
| 123 |
void checkEmbedding(const Graph& graph, PE& pe) {
|
|
| 124 |
int face_num = 0; |
|
| 125 |
|
|
| 126 |
Graph::ArcMap<int> face(graph, -1); |
|
| 127 |
|
|
| 128 |
for (ArcIt a(graph); a != INVALID; ++a) {
|
|
| 129 |
if (face[a] == -1) {
|
|
| 130 |
Arc b = a; |
|
| 131 |
while (face[b] == -1) {
|
|
| 132 |
face[b] = face_num; |
|
| 133 |
b = pe.next(graph.oppositeArc(b)); |
|
| 134 |
} |
|
| 135 |
check(face[b] == face_num, "Wrong face"); |
|
| 136 |
++face_num; |
|
| 137 |
} |
|
| 138 |
} |
|
| 139 |
check(face_num + countNodes(graph) - countConnectedComponents(graph) == |
|
| 140 |
countEdges(graph) + 1, "Euler test does not passed"); |
|
| 141 |
} |
|
| 142 |
|
|
| 143 |
void checkKuratowski(const Graph& graph, PE& pe) {
|
|
| 144 |
std::map<int, int> degs; |
|
| 145 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 146 |
int deg = 0; |
|
| 147 |
for (IncEdgeIt e(graph, n); e != INVALID; ++e) {
|
|
| 148 |
if (pe.kuratowski(e)) {
|
|
| 149 |
++deg; |
|
| 150 |
} |
|
| 151 |
} |
|
| 152 |
++degs[deg]; |
|
| 153 |
} |
|
| 154 |
for (std::map<int, int>::iterator it = degs.begin(); it != degs.end(); ++it) {
|
|
| 155 |
check(it->first == 0 || it->first == 2 || |
|
| 156 |
(it->first == 3 && it->second == 6) || |
|
| 157 |
(it->first == 4 && it->second == 5), |
|
| 158 |
"Wrong degree in Kuratowski graph"); |
|
| 159 |
} |
|
| 160 |
|
|
| 161 |
// Not full test |
|
| 162 |
check((degs[3] == 0) != (degs[4] == 0), "Wrong Kuratowski graph"); |
|
| 163 |
} |
|
| 164 |
|
|
| 165 |
bool intersect(Point<int> e1, Point<int> e2, Point<int> f1, Point<int> f2) {
|
|
| 166 |
int l, r; |
|
| 167 |
if (std::min(e1.x, e2.x) > std::max(f1.x, f2.x)) return false; |
|
| 168 |
if (std::max(e1.x, e2.x) < std::min(f1.x, f2.x)) return false; |
|
| 169 |
if (std::min(e1.y, e2.y) > std::max(f1.y, f2.y)) return false; |
|
| 170 |
if (std::max(e1.y, e2.y) < std::min(f1.y, f2.y)) return false; |
|
| 171 |
|
|
| 172 |
l = (e2.x - e1.x) * (f1.y - e1.y) - (e2.y - e1.y) * (f1.x - e1.x); |
|
| 173 |
r = (e2.x - e1.x) * (f2.y - e1.y) - (e2.y - e1.y) * (f2.x - e1.x); |
|
| 174 |
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; |
|
| 175 |
l = (f2.x - f1.x) * (e1.y - f1.y) - (f2.y - f1.y) * (e1.x - f1.x); |
|
| 176 |
r = (f2.x - f1.x) * (e2.y - f1.y) - (f2.y - f1.y) * (e2.x - f1.x); |
|
| 177 |
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; |
|
| 178 |
return true; |
|
| 179 |
} |
|
| 180 |
|
|
| 181 |
bool collinear(Point<int> p, Point<int> q, Point<int> r) {
|
|
| 182 |
int v; |
|
| 183 |
v = (q.x - p.x) * (r.y - p.y) - (q.y - p.y) * (r.x - p.x); |
|
| 184 |
if (v != 0) return false; |
|
| 185 |
v = (q.x - p.x) * (r.x - p.x) + (q.y - p.y) * (r.y - p.y); |
|
| 186 |
if (v < 0) return false; |
|
| 187 |
return true; |
|
| 188 |
} |
|
| 189 |
|
|
| 190 |
void checkDrawing(const Graph& graph, PD& pd) {
|
|
| 191 |
for (Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 192 |
Graph::NodeIt m(n); |
|
| 193 |
for (++m; m != INVALID; ++m) {
|
|
| 194 |
check(pd[m] != pd[n], "Two nodes with identical coordinates"); |
|
| 195 |
} |
|
| 196 |
} |
|
| 197 |
|
|
| 198 |
for (Graph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 199 |
for (Graph::EdgeIt f(e); f != e; ++f) {
|
|
| 200 |
Point<int> e1 = pd[graph.u(e)]; |
|
| 201 |
Point<int> e2 = pd[graph.v(e)]; |
|
| 202 |
Point<int> f1 = pd[graph.u(f)]; |
|
| 203 |
Point<int> f2 = pd[graph.v(f)]; |
|
| 204 |
|
|
| 205 |
if (graph.u(e) == graph.u(f)) {
|
|
| 206 |
check(!collinear(e1, e2, f2), "Wrong drawing"); |
|
| 207 |
} else if (graph.u(e) == graph.v(f)) {
|
|
| 208 |
check(!collinear(e1, e2, f1), "Wrong drawing"); |
|
| 209 |
} else if (graph.v(e) == graph.u(f)) {
|
|
| 210 |
check(!collinear(e2, e1, f2), "Wrong drawing"); |
|
| 211 |
} else if (graph.v(e) == graph.v(f)) {
|
|
| 212 |
check(!collinear(e2, e1, f1), "Wrong drawing"); |
|
| 213 |
} else {
|
|
| 214 |
check(!intersect(e1, e2, f1, f2), "Wrong drawing"); |
|
| 215 |
} |
|
| 216 |
} |
|
| 217 |
} |
|
| 218 |
} |
|
| 219 |
|
|
| 220 |
void checkColoring(const Graph& graph, PC& pc, int num) {
|
|
| 221 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 222 |
check(pc.colorIndex(n) >= 0 && pc.colorIndex(n) < num, |
|
| 223 |
"Wrong coloring"); |
|
| 224 |
} |
|
| 225 |
for (EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 226 |
check(pc.colorIndex(graph.u(e)) != pc.colorIndex(graph.v(e)), |
|
| 227 |
"Wrong coloring"); |
|
| 228 |
} |
|
| 229 |
} |
|
| 230 |
|
|
| 231 |
int main() {
|
|
| 232 |
|
|
| 233 |
for (int i = 0; i < lgfn; ++i) {
|
|
| 234 |
std::istringstream lgfs(lgf[i]); |
|
| 235 |
|
|
| 236 |
SmartGraph graph; |
|
| 237 |
graphReader(graph, lgfs).run(); |
|
| 238 |
|
|
| 239 |
check(simpleGraph(graph), "Test graphs must be simple"); |
|
| 240 |
|
|
| 241 |
PE pe(graph); |
|
| 242 |
bool planar = pe.run(); |
|
| 243 |
check(checkPlanarity(graph) == planar, "Planarity checking failed"); |
|
| 244 |
|
|
| 245 |
if (planar) {
|
|
| 246 |
checkEmbedding(graph, pe); |
|
| 247 |
|
|
| 248 |
PlanarDrawing<Graph> pd(graph); |
|
| 249 |
pd.run(pe.embeddingMap()); |
|
| 250 |
checkDrawing(graph, pd); |
|
| 251 |
|
|
| 252 |
PlanarColoring<Graph> pc(graph); |
|
| 253 |
pc.runFiveColoring(pe.embeddingMap()); |
|
| 254 |
checkColoring(graph, pc, 5); |
|
| 255 |
|
|
| 256 |
} else {
|
|
| 257 |
checkKuratowski(graph, pe); |
|
| 258 |
} |
|
| 259 |
} |
|
| 260 |
|
|
| 261 |
return 0; |
|
| 262 |
} |
| ... | ... |
@@ -111,12 +111,14 @@ |
| 111 | 111 |
|
| 112 | 112 |
|
| 113 | 113 |
INCLUDE(CheckTypeSize) |
| 114 | 114 |
CHECK_TYPE_SIZE("long long" LONG_LONG)
|
| 115 | 115 |
SET(LEMON_HAVE_LONG_LONG ${HAVE_LONG_LONG})
|
| 116 | 116 |
|
| 117 |
INCLUDE(FindPythonInterp) |
|
| 118 |
|
|
| 117 | 119 |
ENABLE_TESTING() |
| 118 | 120 |
|
| 119 | 121 |
IF(${CMAKE_BUILD_TYPE} STREQUAL "Maintainer")
|
| 120 | 122 |
ADD_CUSTOM_TARGET(check ALL COMMAND ${CMAKE_CTEST_COMMAND})
|
| 121 | 123 |
ELSE() |
| 122 | 124 |
ADD_CUSTOM_TARGET(check COMMAND ${CMAKE_CTEST_COMMAND})
|
| ... | ... |
@@ -170,6 +170,28 @@ |
| 170 | 170 |
useful when the COIN-OR headers and libraries are not under the |
| 171 | 171 |
same prefix (which is unlikely). |
| 172 | 172 |
|
| 173 | 173 |
--without-coin |
| 174 | 174 |
|
| 175 | 175 |
Disable COIN-OR support. |
| 176 |
|
|
| 177 |
|
|
| 178 |
Makefile Variables |
|
| 179 |
================== |
|
| 180 |
|
|
| 181 |
Some Makefile variables are reserved by the GNU Coding Standards for |
|
| 182 |
the use of the "user" - the person building the package. For instance, |
|
| 183 |
CXX and CXXFLAGS are such variables, and have the same meaning as |
|
| 184 |
explained in the previous section. These variables can be set on the |
|
| 185 |
command line when invoking `make' like this: |
|
| 186 |
`make [VARIABLE=VALUE]...' |
|
| 187 |
|
|
| 188 |
WARNINGCXXFLAGS is a non-standard Makefile variable introduced by us |
|
| 189 |
to hold several compiler flags related to warnings. Its default value |
|
| 190 |
can be overridden when invoking `make'. For example to disable all |
|
| 191 |
warning flags use `make WARNINGCXXFLAGS='. |
|
| 192 |
|
|
| 193 |
In order to turn off a single flag from the default set of warning |
|
| 194 |
flags, you can use the CXXFLAGS variable, since this is passed after |
|
| 195 |
WARNINGCXXFLAGS. For example to turn off `-Wold-style-cast' (which is |
|
| 196 |
used by default when g++ is detected) you can use |
|
| 197 |
`make CXXFLAGS="-g -O2 -Wno-old-style-cast"'. |
| ... | ... |
@@ -41,12 +41,13 @@ |
| 41 | 41 |
XFAIL_TESTS = |
| 42 | 42 |
|
| 43 | 43 |
include lemon/Makefile.am |
| 44 | 44 |
include test/Makefile.am |
| 45 | 45 |
include doc/Makefile.am |
| 46 | 46 |
include tools/Makefile.am |
| 47 |
include scripts/Makefile.am |
|
| 47 | 48 |
|
| 48 | 49 |
DIST_SUBDIRS = demo |
| 49 | 50 |
|
| 50 | 51 |
demo: |
| 51 | 52 |
$(MAKE) $(AM_MAKEFLAGS) -C demo |
| 52 | 53 |
| ... | ... |
@@ -14,12 +14,16 @@ |
| 14 | 14 |
======== |
| 15 | 15 |
|
| 16 | 16 |
LICENSE |
| 17 | 17 |
|
| 18 | 18 |
Copying, distribution and modification conditions and terms. |
| 19 | 19 |
|
| 20 |
NEWS |
|
| 21 |
|
|
| 22 |
News and version history. |
|
| 23 |
|
|
| 20 | 24 |
INSTALL |
| 21 | 25 |
|
| 22 | 26 |
General building and installation instructions. |
| 23 | 27 |
|
| 24 | 28 |
lemon/ |
| 25 | 29 |
|
| ... | ... |
@@ -30,12 +34,16 @@ |
| 30 | 34 |
Documentation of LEMON. The starting page is doc/html/index.html. |
| 31 | 35 |
|
| 32 | 36 |
demo/ |
| 33 | 37 |
|
| 34 | 38 |
Some example programs to make you easier to get familiar with LEMON. |
| 35 | 39 |
|
| 40 |
scripts/ |
|
| 41 |
|
|
| 42 |
Scripts that make it easier to develop LEMON. |
|
| 43 |
|
|
| 36 | 44 |
test/ |
| 37 | 45 |
|
| 38 | 46 |
Programs to check the integrity and correctness of LEMON. |
| 39 | 47 |
|
| 40 | 48 |
tools/ |
| 41 | 49 |
| ... | ... |
@@ -38,12 +38,13 @@ |
| 38 | 38 |
AC_PROG_CXXCPP |
| 39 | 39 |
AC_PROG_INSTALL |
| 40 | 40 |
AC_DISABLE_SHARED |
| 41 | 41 |
AC_PROG_LIBTOOL |
| 42 | 42 |
|
| 43 | 43 |
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no]) |
| 44 |
AC_CHECK_PROG([python_found],[python],[yes],[no]) |
|
| 44 | 45 |
AC_CHECK_PROG([gs_found],[gs],[yes],[no]) |
| 45 | 46 |
|
| 46 | 47 |
dnl Detect Intel compiler. |
| 47 | 48 |
AC_MSG_CHECKING([whether we are using the Intel C++ compiler]) |
| 48 | 49 |
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER |
| 49 | 50 |
choke me |
| ... | ... |
@@ -79,12 +80,27 @@ |
| 79 | 80 |
AC_MSG_RESULT([yes]) |
| 80 | 81 |
else |
| 81 | 82 |
AC_MSG_RESULT([no]) |
| 82 | 83 |
fi |
| 83 | 84 |
AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"]) |
| 84 | 85 |
|
| 86 |
dnl Support for running test cases using valgrind. |
|
| 87 |
use_valgrind=no |
|
| 88 |
AC_ARG_ENABLE([valgrind], |
|
| 89 |
AS_HELP_STRING([--enable-valgrind], [use valgrind when running tests]), |
|
| 90 |
[use_valgrind=yes]) |
|
| 91 |
|
|
| 92 |
if [[ "$use_valgrind" = "yes" ]]; then |
|
| 93 |
AC_CHECK_PROG(HAVE_VALGRIND, valgrind, yes, no) |
|
| 94 |
|
|
| 95 |
if [[ "$HAVE_VALGRIND" = "no" ]]; then |
|
| 96 |
AC_MSG_ERROR([Valgrind not found in PATH.]) |
|
| 97 |
fi |
|
| 98 |
fi |
|
| 99 |
AM_CONDITIONAL(USE_VALGRIND, [test "$use_valgrind" = "yes"]) |
|
| 100 |
|
|
| 85 | 101 |
dnl Checks for header files. |
| 86 | 102 |
AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h) |
| 87 | 103 |
|
| 88 | 104 |
dnl Checks for typedefs, structures, and compiler characteristics. |
| 89 | 105 |
AC_C_CONST |
| 90 | 106 |
AC_C_INLINE |
| ... | ... |
@@ -125,12 +141,13 @@ |
| 125 | 141 |
echo CPLEX support................. : $lx_cplex_found |
| 126 | 142 |
echo SOPLEX support................ : $lx_soplex_found |
| 127 | 143 |
echo CLP support................... : $lx_clp_found |
| 128 | 144 |
echo CBC support................... : $lx_cbc_found |
| 129 | 145 |
echo |
| 130 | 146 |
echo Build additional tools........ : $enable_tools |
| 147 |
echo Use valgrind for tests........ : $use_valgrind |
|
| 131 | 148 |
echo |
| 132 | 149 |
echo The packace will be installed in |
| 133 | 150 |
echo -n ' ' |
| 134 | 151 |
echo $prefix. |
| 135 | 152 |
echo |
| 136 | 153 |
echo '*********************************************************************' |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -62,15 +62,24 @@ |
| 62 | 62 |
// Set the options of the group exclusive (only one option can be given) |
| 63 | 63 |
ap.onlyOneGroup("gr");
|
| 64 | 64 |
// Add non-parsed arguments (e.g. input files) |
| 65 | 65 |
ap.other("infile", "The input file.")
|
| 66 | 66 |
.other("...");
|
| 67 | 67 |
|
| 68 |
// Throw an exception when problems occurs. The default behavior is to |
|
| 69 |
// exit(1) on these cases, but this makes Valgrind falsely warn |
|
| 70 |
// about memory leaks. |
|
| 71 |
ap.throwOnProblems(); |
|
| 72 |
|
|
| 68 | 73 |
// Perform the parsing process |
| 69 | 74 |
// (in case of any error it terminates the program) |
| 70 |
ap. |
|
| 75 |
// The try {} construct is necessary only if the ap.trowOnProblems()
|
|
| 76 |
// setting is in use. |
|
| 77 |
try {
|
|
| 78 |
ap.parse(); |
|
| 79 |
} catch (ArgParserException &) { return 1; }
|
|
| 71 | 80 |
|
| 72 | 81 |
// Check each option if it has been given and print its value |
| 73 | 82 |
std::cout << "Parameters of '" << ap.commandName() << "':\n"; |
| 74 | 83 |
|
| 75 | 84 |
std::cout << " Value of -n: " << i << std::endl; |
| 76 | 85 |
if(ap.given("val")) std::cout << " Value of -val: " << d << std::endl;
|
| ... | ... |
@@ -14,31 +14,34 @@ |
| 14 | 14 |
CONFIGURE_FILE( |
| 15 | 15 |
${PROJECT_SOURCE_DIR}/doc/mainpage.dox.in
|
| 16 | 16 |
${PROJECT_BINARY_DIR}/doc/mainpage.dox
|
| 17 | 17 |
@ONLY |
| 18 | 18 |
) |
| 19 | 19 |
|
| 20 |
IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE) |
|
| 20 |
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE) |
|
| 21 | 21 |
FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
|
| 22 | 22 |
SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha) |
| 23 | 23 |
ADD_CUSTOM_TARGET(html |
| 24 | 24 |
COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images
|
| 25 | 25 |
COMMAND ${CMAKE_COMMAND} -E make_directory gen-images
|
| 26 | 26 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps
|
| 27 | 27 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_partitions.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_partitions.eps
|
| 28 | 28 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps
|
| 29 | 29 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps
|
| 30 | 30 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps
|
| 31 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/matching.eps
|
|
| 31 | 32 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps
|
| 32 | 33 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps
|
| 33 | 34 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
|
| 34 | 35 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
|
| 35 | 36 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
|
| 36 | 37 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
|
| 38 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/planar.png ${CMAKE_CURRENT_SOURCE_DIR}/images/planar.eps
|
|
| 37 | 39 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
|
| 38 | 40 |
COMMAND ${CMAKE_COMMAND} -E remove_directory html
|
| 41 |
COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
|
|
| 39 | 42 |
COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
|
| 40 | 43 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
|
| 41 | 44 |
) |
| 42 | 45 |
|
| 43 | 46 |
SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC) |
| 44 | 47 |
| ... | ... |
@@ -94,13 +94,14 @@ |
| 94 | 94 |
"@abs_top_srcdir@/lemon" \ |
| 95 | 95 |
"@abs_top_srcdir@/lemon/bits" \ |
| 96 | 96 |
"@abs_top_srcdir@/lemon/concepts" \ |
| 97 | 97 |
"@abs_top_srcdir@/demo" \ |
| 98 | 98 |
"@abs_top_srcdir@/tools" \ |
| 99 | 99 |
"@abs_top_srcdir@/test/test_tools.h" \ |
| 100 |
"@abs_top_builddir@/doc/mainpage.dox" |
|
| 100 |
"@abs_top_builddir@/doc/mainpage.dox" \ |
|
| 101 |
"@abs_top_builddir@/doc/references.dox" |
|
| 101 | 102 |
INPUT_ENCODING = UTF-8 |
| 102 | 103 |
FILE_PATTERNS = *.h \ |
| 103 | 104 |
*.cc \ |
| 104 | 105 |
*.dox |
| 105 | 106 |
RECURSIVE = NO |
| 106 | 107 |
EXCLUDE = |
| ... | ... |
@@ -24,13 +24,15 @@ |
| 24 | 24 |
|
| 25 | 25 |
DOC_EPS_IMAGES27 = \ |
| 26 | 26 |
bipartite_matching.eps \ |
| 27 | 27 |
bipartite_partitions.eps \ |
| 28 | 28 |
connected_components.eps \ |
| 29 | 29 |
edge_biconnected_components.eps \ |
| 30 |
matching.eps \ |
|
| 30 | 31 |
node_biconnected_components.eps \ |
| 32 |
planar.eps \ |
|
| 31 | 33 |
strongly_connected_components.eps |
| 32 | 34 |
|
| 33 | 35 |
DOC_EPS_IMAGES = \ |
| 34 | 36 |
$(DOC_EPS_IMAGES18) \ |
| 35 | 37 |
$(DOC_EPS_IMAGES27) |
| 36 | 38 |
|
| ... | ... |
@@ -63,13 +65,25 @@ |
| 63 | 65 |
echo; \ |
| 64 | 66 |
echo "Ghostscript not found."; \ |
| 65 | 67 |
echo; \ |
| 66 | 68 |
exit 1; \ |
| 67 | 69 |
fi |
| 68 | 70 |
|
| 69 |
|
|
| 71 |
references.dox: doc/references.bib |
|
| 72 |
if test ${python_found} = yes; then \
|
|
| 73 |
cd doc; \ |
|
| 74 |
python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \ |
|
| 75 |
cd ..; \ |
|
| 76 |
else \ |
|
| 77 |
echo; \ |
|
| 78 |
echo "Python not found."; \ |
|
| 79 |
echo; \ |
|
| 80 |
exit 1; \ |
|
| 81 |
fi |
|
| 82 |
|
|
| 83 |
html-local: $(DOC_PNG_IMAGES) references.dox |
|
| 70 | 84 |
if test ${doxygen_found} = yes; then \
|
| 71 | 85 |
cd doc; \ |
| 72 | 86 |
doxygen Doxyfile; \ |
| 73 | 87 |
cd ..; \ |
| 74 | 88 |
else \ |
| 75 | 89 |
echo; \ |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -223,45 +223,88 @@ |
| 223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
| 224 | 224 |
class. We use the implicit minimum time map as the length map of the |
| 225 | 225 |
\c Dijkstra algorithm. |
| 226 | 226 |
*/ |
| 227 | 227 |
|
| 228 | 228 |
/** |
| 229 |
@defgroup matrices Matrices |
|
| 230 |
@ingroup datas |
|
| 231 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 232 |
|
|
| 233 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 234 |
*/ |
|
| 235 |
|
|
| 236 |
/** |
|
| 237 | 229 |
@defgroup paths Path Structures |
| 238 | 230 |
@ingroup datas |
| 239 | 231 |
\brief %Path structures implemented in LEMON. |
| 240 | 232 |
|
| 241 | 233 |
This group contains the path structures implemented in LEMON. |
| 242 | 234 |
|
| 243 | 235 |
LEMON provides flexible data structures to work with paths. |
| 244 | 236 |
All of them have similar interfaces and they can be copied easily with |
| 245 | 237 |
assignment operators and copy constructors. This makes it easy and |
| 246 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 247 | 239 |
any kind of path structure. |
| 248 | 240 |
|
| 249 |
\sa |
|
| 241 |
\sa \ref concepts::Path "Path concept" |
|
| 242 |
*/ |
|
| 243 |
|
|
| 244 |
/** |
|
| 245 |
@defgroup heaps Heap Structures |
|
| 246 |
@ingroup datas |
|
| 247 |
\brief %Heap structures implemented in LEMON. |
|
| 248 |
|
|
| 249 |
This group contains the heap structures implemented in LEMON. |
|
| 250 |
|
|
| 251 |
LEMON provides several heap classes. They are efficient implementations |
|
| 252 |
of the abstract data type \e priority \e queue. They store items with |
|
| 253 |
specified values called \e priorities in such a way that finding and |
|
| 254 |
removing the item with minimum priority are efficient. |
|
| 255 |
The basic operations are adding and erasing items, changing the priority |
|
| 256 |
of an item, etc. |
|
| 257 |
|
|
| 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 259 |
The heap implementations have the same interface, thus any of them can be |
|
| 260 |
used easily in such algorithms. |
|
| 261 |
|
|
| 262 |
\sa \ref concepts::Heap "Heap concept" |
|
| 263 |
*/ |
|
| 264 |
|
|
| 265 |
/** |
|
| 266 |
@defgroup matrices Matrices |
|
| 267 |
@ingroup datas |
|
| 268 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 269 |
|
|
| 270 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 250 | 271 |
*/ |
| 251 | 272 |
|
| 252 | 273 |
/** |
| 253 | 274 |
@defgroup auxdat Auxiliary Data Structures |
| 254 | 275 |
@ingroup datas |
| 255 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
| 256 | 277 |
|
| 257 | 278 |
This group contains some data structures implemented in LEMON in |
| 258 | 279 |
order to make it easier to implement combinatorial algorithms. |
| 259 | 280 |
*/ |
| 260 | 281 |
|
| 261 | 282 |
/** |
| 283 |
@defgroup geomdat Geometric Data Structures |
|
| 284 |
@ingroup auxdat |
|
| 285 |
\brief Geometric data structures implemented in LEMON. |
|
| 286 |
|
|
| 287 |
This group contains geometric data structures implemented in LEMON. |
|
| 288 |
|
|
| 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
| 290 |
vector with the usual operations. |
|
| 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
| 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
| 293 |
"dim2::Point"'s. |
|
| 294 |
*/ |
|
| 295 |
|
|
| 296 |
/** |
|
| 297 |
@defgroup matrices Matrices |
|
| 298 |
@ingroup auxdat |
|
| 299 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 300 |
|
|
| 301 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 302 |
*/ |
|
| 303 |
|
|
| 304 |
/** |
|
| 262 | 305 |
@defgroup algs Algorithms |
| 263 | 306 |
\brief This group contains the several algorithms |
| 264 | 307 |
implemented in LEMON. |
| 265 | 308 |
|
| 266 | 309 |
This group contains the several algorithms |
| 267 | 310 |
implemented in LEMON. |
| ... | ... |
@@ -270,21 +313,23 @@ |
| 270 | 313 |
/** |
| 271 | 314 |
@defgroup search Graph Search |
| 272 | 315 |
@ingroup algs |
| 273 | 316 |
\brief Common graph search algorithms. |
| 274 | 317 |
|
| 275 | 318 |
This group contains the common graph search algorithms, namely |
| 276 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 320 |
\ref clrs01algorithms. |
|
| 277 | 321 |
*/ |
| 278 | 322 |
|
| 279 | 323 |
/** |
| 280 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
| 281 | 325 |
@ingroup algs |
| 282 | 326 |
\brief Algorithms for finding shortest paths. |
| 283 | 327 |
|
| 284 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 328 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 329 |
\ref clrs01algorithms. |
|
| 285 | 330 |
|
| 286 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 287 | 332 |
when all arc lengths are non-negative. |
| 288 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 289 | 334 |
from a source node when arc lenghts can be either positive or negative, |
| 290 | 335 |
but the digraph should not contain directed cycles with negative total |
| ... | ... |
@@ -295,18 +340,27 @@ |
| 295 | 340 |
not contain directed cycles with negative total length. |
| 296 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 297 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
| 298 | 343 |
*/ |
| 299 | 344 |
|
| 300 | 345 |
/** |
| 346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
| 347 |
@ingroup algs |
|
| 348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
| 349 |
|
|
| 350 |
This group contains the algorithms for finding minimum cost spanning |
|
| 351 |
trees and arborescences \ref clrs01algorithms. |
|
| 352 |
*/ |
|
| 353 |
|
|
| 354 |
/** |
|
| 301 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
| 302 | 356 |
@ingroup algs |
| 303 | 357 |
\brief Algorithms for finding maximum flows. |
| 304 | 358 |
|
| 305 | 359 |
This group contains the algorithms for finding maximum flows and |
| 306 |
feasible circulations. |
|
| 360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
|
| 307 | 361 |
|
| 308 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 309 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 310 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 311 | 365 |
\f$s, t \in V\f$ source and target nodes. |
| 312 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| ... | ... |
@@ -315,47 +369,53 @@ |
| 315 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 316 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 317 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 318 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 319 | 373 |
|
| 320 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
| 321 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
|
| 322 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
|
| 323 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
|
| 324 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
|
| 375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
|
| 376 |
\ref edmondskarp72theoretical. |
|
| 377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
|
| 378 |
\ref goldberg88newapproach. |
|
| 379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
|
| 380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
|
| 381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
|
| 382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
|
| 325 | 383 |
|
| 326 |
In most cases the \ref Preflow |
|
| 384 |
In most cases the \ref Preflow algorithm provides the |
|
| 327 | 385 |
fastest method for computing a maximum flow. All implementations |
| 328 | 386 |
also provide functions to query the minimum cut, which is the dual |
| 329 | 387 |
problem of maximum flow. |
| 330 | 388 |
|
| 331 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
| 389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
| 332 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
| 333 | 391 |
but it is strongly related to maximum flow. |
| 334 | 392 |
For more information, see \ref Circulation. |
| 335 | 393 |
*/ |
| 336 | 394 |
|
| 337 | 395 |
/** |
| 338 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 339 | 397 |
@ingroup algs |
| 340 | 398 |
|
| 341 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 342 | 400 |
|
| 343 | 401 |
This group contains the algorithms for finding minimum cost flows and |
| 344 |
circulations. For more information about this problem and its dual |
|
| 345 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
| 402 |
circulations \ref amo93networkflows. For more information about this |
|
| 403 |
problem and its dual solution, see \ref min_cost_flow |
|
| 404 |
"Minimum Cost Flow Problem". |
|
| 346 | 405 |
|
| 347 | 406 |
LEMON contains several algorithms for this problem. |
| 348 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 349 |
pivot strategies. |
|
| 350 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
| 351 |
cost scaling. |
|
| 352 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
| 353 |
capacity scaling. |
|
| 354 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
| 355 |
|
|
| 408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
|
| 409 |
- \ref CostScaling Cost Scaling algorithm based on push/augment and |
|
| 410 |
relabel operations \ref goldberg90approximation, \ref goldberg97efficient, |
|
| 411 |
\ref bunnagel98efficient. |
|
| 412 |
- \ref CapacityScaling Capacity Scaling algorithm based on the successive |
|
| 413 |
shortest path method \ref edmondskarp72theoretical. |
|
| 414 |
- \ref CycleCanceling Cycle-Canceling algorithms, two of which are |
|
| 415 |
strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling. |
|
| 356 | 416 |
|
| 357 | 417 |
In general NetworkSimplex is the most efficient implementation, |
| 358 | 418 |
but in special cases other algorithms could be faster. |
| 359 | 419 |
For example, if the total supply and/or capacities are rather small, |
| 360 | 420 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 361 | 421 |
*/ |
| ... | ... |
@@ -372,13 +432,13 @@ |
| 372 | 432 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 373 | 433 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 374 | 434 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 375 | 435 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 376 | 436 |
|
| 377 | 437 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 378 |
\sum_{uv\in A
|
|
| 438 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
|
| 379 | 439 |
|
| 380 | 440 |
LEMON contains several algorithms related to minimum cut problems: |
| 381 | 441 |
|
| 382 | 442 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 383 | 443 |
in directed graphs. |
| 384 | 444 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| ... | ... |
@@ -388,33 +448,46 @@ |
| 388 | 448 |
|
| 389 | 449 |
If you want to find minimum cut just between two distinict nodes, |
| 390 | 450 |
see the \ref max_flow "maximum flow problem". |
| 391 | 451 |
*/ |
| 392 | 452 |
|
| 393 | 453 |
/** |
| 394 |
@defgroup |
|
| 454 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
|
| 395 | 455 |
@ingroup algs |
| 396 |
\brief Algorithms for |
|
| 456 |
\brief Algorithms for finding minimum mean cycles. |
|
| 397 | 457 |
|
| 398 |
This group contains the algorithms for discovering the graph properties |
|
| 399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 458 |
This group contains the algorithms for finding minimum mean cycles |
|
| 459 |
\ref clrs01algorithms, \ref amo93networkflows. |
|
| 400 | 460 |
|
| 401 |
\image html edge_biconnected_components.png |
|
| 402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
| 403 |
|
|
| 461 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
|
| 462 |
of minimum mean length (cost) in a digraph. |
|
| 463 |
The mean length of a cycle is the average length of its arcs, i.e. the |
|
| 464 |
ratio between the total length of the cycle and the number of arcs on it. |
|
| 404 | 465 |
|
| 405 |
/** |
|
| 406 |
@defgroup planar Planarity Embedding and Drawing |
|
| 407 |
@ingroup algs |
|
| 408 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 466 |
This problem has an important connection to \e conservative \e length |
|
| 467 |
\e functions, too. A length function on the arcs of a digraph is called |
|
| 468 |
conservative if and only if there is no directed cycle of negative total |
|
| 469 |
length. For an arbitrary length function, the negative of the minimum |
|
| 470 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
|
| 471 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
|
| 472 |
function. |
|
| 409 | 473 |
|
| 410 |
This group contains the algorithms for planarity checking, |
|
| 411 |
embedding and drawing. |
|
| 474 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
|
| 475 |
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows, |
|
| 476 |
\ref dasdan98minmeancycle. |
|
| 477 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
|
| 478 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
|
| 479 |
- \ref Howard "Howard"'s policy iteration algorithm |
|
| 480 |
\ref dasdan98minmeancycle. |
|
| 412 | 481 |
|
| 413 |
\image html planar.png |
|
| 414 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 482 |
In practice, the Howard algorithm proved to be by far the most efficient |
|
| 483 |
one, though the best known theoretical bound on its running time is |
|
| 484 |
exponential. |
|
| 485 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
|
| 486 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
|
| 487 |
applied early termination scheme. |
|
| 415 | 488 |
*/ |
| 416 | 489 |
|
| 417 | 490 |
/** |
| 418 | 491 |
@defgroup matching Matching Algorithms |
| 419 | 492 |
@ingroup algs |
| 420 | 493 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| ... | ... |
@@ -446,61 +519,86 @@ |
| 446 | 519 |
maximum cardinality matching in general graphs. |
| 447 | 520 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 448 | 521 |
maximum weighted matching in general graphs. |
| 449 | 522 |
- \ref MaxWeightedPerfectMatching |
| 450 | 523 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 451 | 524 |
perfect matching in general graphs. |
| 525 |
- \ref MaxFractionalMatching Push-relabel algorithm for calculating |
|
| 526 |
maximum cardinality fractional matching in general graphs. |
|
| 527 |
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating |
|
| 528 |
maximum weighted fractional matching in general graphs. |
|
| 529 |
- \ref MaxWeightedPerfectFractionalMatching |
|
| 530 |
Augmenting path algorithm for calculating maximum weighted |
|
| 531 |
perfect fractional matching in general graphs. |
|
| 452 | 532 |
|
| 453 |
\image html bipartite_matching.png |
|
| 454 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
|
| 533 |
\image html matching.png |
|
| 534 |
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth |
|
| 455 | 535 |
*/ |
| 456 | 536 |
|
| 457 | 537 |
/** |
| 458 |
@defgroup |
|
| 538 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 459 | 539 |
@ingroup algs |
| 460 |
\brief Algorithms for |
|
| 540 |
\brief Algorithms for discovering the graph properties |
|
| 461 | 541 |
|
| 462 |
This group contains the algorithms for finding minimum cost spanning |
|
| 463 |
trees and arborescences. |
|
| 542 |
This group contains the algorithms for discovering the graph properties |
|
| 543 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 544 |
|
|
| 545 |
\image html connected_components.png |
|
| 546 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
| 547 |
*/ |
|
| 548 |
|
|
| 549 |
/** |
|
| 550 |
@defgroup planar Planarity Embedding and Drawing |
|
| 551 |
@ingroup algs |
|
| 552 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 553 |
|
|
| 554 |
This group contains the algorithms for planarity checking, |
|
| 555 |
embedding and drawing. |
|
| 556 |
|
|
| 557 |
\image html planar.png |
|
| 558 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 559 |
*/ |
|
| 560 |
|
|
| 561 |
/** |
|
| 562 |
@defgroup approx Approximation Algorithms |
|
| 563 |
@ingroup algs |
|
| 564 |
\brief Approximation algorithms. |
|
| 565 |
|
|
| 566 |
This group contains the approximation and heuristic algorithms |
|
| 567 |
implemented in LEMON. |
|
| 464 | 568 |
*/ |
| 465 | 569 |
|
| 466 | 570 |
/** |
| 467 | 571 |
@defgroup auxalg Auxiliary Algorithms |
| 468 | 572 |
@ingroup algs |
| 469 | 573 |
\brief Auxiliary algorithms implemented in LEMON. |
| 470 | 574 |
|
| 471 | 575 |
This group contains some algorithms implemented in LEMON |
| 472 | 576 |
in order to make it easier to implement complex algorithms. |
| 473 | 577 |
*/ |
| 474 | 578 |
|
| 475 | 579 |
/** |
| 476 |
@defgroup approx Approximation Algorithms |
|
| 477 |
@ingroup algs |
|
| 478 |
\brief Approximation algorithms. |
|
| 479 |
|
|
| 480 |
This group contains the approximation and heuristic algorithms |
|
| 481 |
implemented in LEMON. |
|
| 482 |
*/ |
|
| 483 |
|
|
| 484 |
/** |
|
| 485 | 580 |
@defgroup gen_opt_group General Optimization Tools |
| 486 | 581 |
\brief This group contains some general optimization frameworks |
| 487 | 582 |
implemented in LEMON. |
| 488 | 583 |
|
| 489 | 584 |
This group contains some general optimization frameworks |
| 490 | 585 |
implemented in LEMON. |
| 491 | 586 |
*/ |
| 492 | 587 |
|
| 493 | 588 |
/** |
| 494 |
@defgroup lp_group |
|
| 589 |
@defgroup lp_group LP and MIP Solvers |
|
| 495 | 590 |
@ingroup gen_opt_group |
| 496 |
\brief |
|
| 591 |
\brief LP and MIP solver interfaces for LEMON. |
|
| 497 | 592 |
|
| 498 |
This group contains Lp and Mip solver interfaces for LEMON. The |
|
| 499 |
various LP solvers could be used in the same manner with this |
|
| 500 |
|
|
| 593 |
This group contains LP and MIP solver interfaces for LEMON. |
|
| 594 |
Various LP solvers could be used in the same manner with this |
|
| 595 |
high-level interface. |
|
| 596 |
|
|
| 597 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
|
| 598 |
\ref cplex, \ref soplex. |
|
| 501 | 599 |
*/ |
| 502 | 600 |
|
| 503 | 601 |
/** |
| 504 | 602 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 505 | 603 |
@ingroup lp_group |
| 506 | 604 |
\brief Helper tools to the Lp and Mip solvers. |
| ... | ... |
@@ -584,13 +682,13 @@ |
| 584 | 682 |
|
| 585 | 683 |
This group contains general \c EPS drawing methods and special |
| 586 | 684 |
graph exporting tools. |
| 587 | 685 |
*/ |
| 588 | 686 |
|
| 589 | 687 |
/** |
| 590 |
@defgroup dimacs_group DIMACS |
|
| 688 |
@defgroup dimacs_group DIMACS Format |
|
| 591 | 689 |
@ingroup io_group |
| 592 | 690 |
\brief Read and write files in DIMACS format |
| 593 | 691 |
|
| 594 | 692 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 595 | 693 |
*/ |
| 596 | 694 |
|
| ... | ... |
@@ -633,40 +731,40 @@ |
| 633 | 731 |
|
| 634 | 732 |
/** |
| 635 | 733 |
@defgroup graph_concepts Graph Structure Concepts |
| 636 | 734 |
@ingroup concept |
| 637 | 735 |
\brief Skeleton and concept checking classes for graph structures |
| 638 | 736 |
|
| 639 |
This group contains the skeletons and concept checking classes of LEMON's |
|
| 640 |
graph structures and helper classes used to implement these. |
|
| 737 |
This group contains the skeletons and concept checking classes of |
|
| 738 |
graph structures. |
|
| 641 | 739 |
*/ |
| 642 | 740 |
|
| 643 | 741 |
/** |
| 644 | 742 |
@defgroup map_concepts Map Concepts |
| 645 | 743 |
@ingroup concept |
| 646 | 744 |
\brief Skeleton and concept checking classes for maps |
| 647 | 745 |
|
| 648 | 746 |
This group contains the skeletons and concept checking classes of maps. |
| 649 | 747 |
*/ |
| 650 | 748 |
|
| 651 | 749 |
/** |
| 750 |
@defgroup tools Standalone Utility Applications |
|
| 751 |
|
|
| 752 |
Some utility applications are listed here. |
|
| 753 |
|
|
| 754 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 755 |
them, as well. |
|
| 756 |
*/ |
|
| 757 |
|
|
| 758 |
/** |
|
| 652 | 759 |
\anchor demoprograms |
| 653 | 760 |
|
| 654 | 761 |
@defgroup demos Demo Programs |
| 655 | 762 |
|
| 656 | 763 |
Some demo programs are listed here. Their full source codes can be found in |
| 657 | 764 |
the \c demo subdirectory of the source tree. |
| 658 | 765 |
|
| 659 | 766 |
In order to compile them, use the <tt>make demo</tt> or the |
| 660 | 767 |
<tt>make check</tt> commands. |
| 661 | 768 |
*/ |
| 662 | 769 |
|
| 663 |
/** |
|
| 664 |
@defgroup tools Standalone Utility Applications |
|
| 665 |
|
|
| 666 |
Some utility applications are listed here. |
|
| 667 |
|
|
| 668 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 669 |
them, as well. |
|
| 670 |
*/ |
|
| 671 |
|
|
| 672 | 770 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -18,34 +18,44 @@ |
| 18 | 18 |
|
| 19 | 19 |
/** |
| 20 | 20 |
\mainpage @PACKAGE_NAME@ @PACKAGE_VERSION@ Documentation |
| 21 | 21 |
|
| 22 | 22 |
\section intro Introduction |
| 23 | 23 |
|
| 24 |
\subsection whatis What is LEMON |
|
| 25 |
|
|
| 26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
|
| 28 |
It is a C++ template |
|
| 29 |
library aimed at combinatorial optimization tasks which |
|
| 30 |
often involve in working |
|
| 31 |
with graphs. |
|
| 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
|
| 26 |
It is a C++ template library providing efficient implementations of common |
|
| 27 |
data structures and algorithms with focus on combinatorial optimization |
|
| 28 |
tasks connected mainly with graphs and networks. |
|
| 32 | 29 |
|
| 33 | 30 |
<b> |
| 34 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
| 35 | 32 |
project. |
| 36 | 33 |
You are free to use it in your commercial or |
| 37 | 34 |
non-commercial applications under very permissive |
| 38 | 35 |
\ref license "license terms". |
| 39 | 36 |
</b> |
| 40 | 37 |
|
| 41 |
|
|
| 38 |
The project is maintained by the |
|
| 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
|
| 40 |
Combinatorial Optimization</a> \ref egres |
|
| 41 |
at the Operations Research Department of the |
|
| 42 |
<a href="http://www.elte.hu/en/">Eötvös Loránd University</a>, |
|
| 43 |
Budapest, Hungary. |
|
| 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
|
| 45 |
initiative \ref coinor. |
|
| 46 |
|
|
| 47 |
\section howtoread How to Read the Documentation |
|
| 42 | 48 |
|
| 43 | 49 |
If you would like to get to know the library, see |
| 44 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
| 45 | 51 |
|
| 52 |
If you are interested in starting to use the library, see the <a class="el" |
|
| 53 |
href="http://lemon.cs.elte.hu/trac/lemon/wiki/InstallGuide/">Installation |
|
| 54 |
Guide</a>. |
|
| 55 |
|
|
| 46 | 56 |
If you know what you are looking for, then try to find it under the |
| 47 | 57 |
<a class="el" href="modules.html">Modules</a> section. |
| 48 | 58 |
|
| 49 | 59 |
If you are a user of the old (0.x) series of LEMON, please check out the |
| 50 | 60 |
\ref migration "Migration Guide" for the backward incompatibilities. |
| 51 | 61 |
*/ |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -23,13 +23,13 @@ |
| 23 | 23 |
|
| 24 | 24 |
\section mcf_def Definition (GEQ form) |
| 25 | 25 |
|
| 26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
| 29 |
and arc costs. |
|
| 29 |
and arc costs \ref amo93networkflows. |
|
| 30 | 30 |
|
| 31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
| 32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
| 33 | 33 |
upper bounds for the flow values on the arcs, for which |
| 34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
| 35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
| ... | ... |
@@ -75,16 +75,16 @@ |
| 75 | 75 |
|
| 76 | 76 |
- For all \f$uv\in A\f$ arcs: |
| 77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 80 | 80 |
- For all \f$u\in V\f$ nodes: |
| 81 |
- \f$\pi(u) |
|
| 81 |
- \f$\pi(u)\leq 0\f$; |
|
| 82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 83 | 83 |
then \f$\pi(u)=0\f$. |
| 84 |
|
|
| 84 |
|
|
| 85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
| 87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 88 | 88 |
|
| 89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
| 90 | 90 |
if an optimal flow is found. |
| ... | ... |
@@ -116,13 +116,13 @@ |
| 116 | 116 |
|
| 117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
| 119 | 119 |
sup(u) \quad \forall u\in V \f] |
| 120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 121 | 121 |
|
| 122 |
It means that the total demand must be less or equal to the |
|
| 122 |
It means that the total demand must be less or equal to the |
|
| 123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
| 124 | 124 |
positive) and all the demands have to be satisfied, but there |
| 125 | 125 |
could be supplies that are not carried out from the supply |
| 126 | 126 |
nodes. |
| 127 | 127 |
The equality form is also a special case of this form, of course. |
| 128 | 128 |
|
| ... | ... |
@@ -142,12 +142,12 @@ |
| 142 | 142 |
|
| 143 | 143 |
- For all \f$uv\in A\f$ arcs: |
| 144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 147 | 147 |
- For all \f$u\in V\f$ nodes: |
| 148 |
- \f$\pi(u) |
|
| 148 |
- \f$\pi(u)\geq 0\f$; |
|
| 149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 150 | 150 |
then \f$\pi(u)=0\f$. |
| 151 | 151 |
|
| 152 | 152 |
*/ |
| 153 | 153 |
} |
| ... | ... |
@@ -55,39 +55,49 @@ |
| 55 | 55 |
endif |
| 56 | 56 |
|
| 57 | 57 |
lemon_HEADERS += \ |
| 58 | 58 |
lemon/adaptors.h \ |
| 59 | 59 |
lemon/arg_parser.h \ |
| 60 | 60 |
lemon/assert.h \ |
| 61 |
lemon/bellman_ford.h \ |
|
| 61 | 62 |
lemon/bfs.h \ |
| 62 | 63 |
lemon/bin_heap.h \ |
| 64 |
lemon/binomial_heap.h \ |
|
| 63 | 65 |
lemon/bucket_heap.h \ |
| 66 |
lemon/capacity_scaling.h \ |
|
| 64 | 67 |
lemon/cbc.h \ |
| 65 | 68 |
lemon/circulation.h \ |
| 66 | 69 |
lemon/clp.h \ |
| 67 | 70 |
lemon/color.h \ |
| 68 | 71 |
lemon/concept_check.h \ |
| 69 | 72 |
lemon/connectivity.h \ |
| 73 |
lemon/core.h \ |
|
| 74 |
lemon/cost_scaling.h \ |
|
| 70 | 75 |
lemon/counter.h \ |
| 71 |
lemon/core.h \ |
|
| 72 | 76 |
lemon/cplex.h \ |
| 77 |
lemon/cycle_canceling.h \ |
|
| 73 | 78 |
lemon/dfs.h \ |
| 79 |
lemon/dheap.h \ |
|
| 74 | 80 |
lemon/dijkstra.h \ |
| 75 | 81 |
lemon/dim2.h \ |
| 76 | 82 |
lemon/dimacs.h \ |
| 77 | 83 |
lemon/edge_set.h \ |
| 78 | 84 |
lemon/elevator.h \ |
| 79 | 85 |
lemon/error.h \ |
| 80 | 86 |
lemon/euler.h \ |
| 81 | 87 |
lemon/fib_heap.h \ |
| 88 |
lemon/fractional_matching.h \ |
|
| 82 | 89 |
lemon/full_graph.h \ |
| 83 | 90 |
lemon/glpk.h \ |
| 84 | 91 |
lemon/gomory_hu.h \ |
| 85 | 92 |
lemon/graph_to_eps.h \ |
| 86 | 93 |
lemon/grid_graph.h \ |
| 94 |
lemon/hartmann_orlin_mmc.h \ |
|
| 95 |
lemon/howard_mmc.h \ |
|
| 87 | 96 |
lemon/hypercube_graph.h \ |
| 97 |
lemon/karp_mmc.h \ |
|
| 88 | 98 |
lemon/kruskal.h \ |
| 89 | 99 |
lemon/hao_orlin.h \ |
| 90 | 100 |
lemon/lgf_reader.h \ |
| 91 | 101 |
lemon/lgf_writer.h \ |
| 92 | 102 |
lemon/list_graph.h \ |
| 93 | 103 |
lemon/lp.h \ |
| ... | ... |
@@ -96,19 +106,23 @@ |
| 96 | 106 |
lemon/maps.h \ |
| 97 | 107 |
lemon/matching.h \ |
| 98 | 108 |
lemon/math.h \ |
| 99 | 109 |
lemon/min_cost_arborescence.h \ |
| 100 | 110 |
lemon/nauty_reader.h \ |
| 101 | 111 |
lemon/network_simplex.h \ |
| 112 |
lemon/pairing_heap.h \ |
|
| 102 | 113 |
lemon/path.h \ |
| 114 |
lemon/planarity.h \ |
|
| 103 | 115 |
lemon/preflow.h \ |
| 116 |
lemon/quad_heap.h \ |
|
| 104 | 117 |
lemon/radix_heap.h \ |
| 105 | 118 |
lemon/radix_sort.h \ |
| 106 | 119 |
lemon/random.h \ |
| 107 | 120 |
lemon/smart_graph.h \ |
| 108 | 121 |
lemon/soplex.h \ |
| 122 |
lemon/static_graph.h \ |
|
| 109 | 123 |
lemon/suurballe.h \ |
| 110 | 124 |
lemon/time_measure.h \ |
| 111 | 125 |
lemon/tolerance.h \ |
| 112 | 126 |
lemon/unionfind.h \ |
| 113 | 127 |
lemon/bits/windows.h |
| 114 | 128 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -357,12 +357,15 @@ |
| 357 | 357 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
| 358 | 358 |
/// |
| 359 | 359 |
/// The adapted digraph can also be modified through this adaptor |
| 360 | 360 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 361 | 361 |
/// parameter is set to be \c const. |
| 362 | 362 |
/// |
| 363 |
/// This class provides item counting in the same time as the adapted |
|
| 364 |
/// digraph structure. |
|
| 365 |
/// |
|
| 363 | 366 |
/// \tparam DGR The type of the adapted digraph. |
| 364 | 367 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 365 | 368 |
/// It can also be specified to be \c const. |
| 366 | 369 |
/// |
| 367 | 370 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 368 | 371 |
/// digraph are convertible to each other. |
| ... | ... |
@@ -415,13 +418,13 @@ |
| 415 | 418 |
SubDigraphBase() |
| 416 | 419 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 417 | 420 |
|
| 418 | 421 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 419 | 422 |
Parent::initialize(digraph); |
| 420 | 423 |
_node_filter = &node_filter; |
| 421 |
_arc_filter = &arc_filter; |
|
| 424 |
_arc_filter = &arc_filter; |
|
| 422 | 425 |
} |
| 423 | 426 |
|
| 424 | 427 |
public: |
| 425 | 428 |
|
| 426 | 429 |
typedef typename Parent::Node Node; |
| 427 | 430 |
typedef typename Parent::Arc Arc; |
| ... | ... |
@@ -502,17 +505,17 @@ |
| 502 | 505 |
return arc; |
| 503 | 506 |
} |
| 504 | 507 |
|
| 505 | 508 |
public: |
| 506 | 509 |
|
| 507 | 510 |
template <typename V> |
| 508 |
class NodeMap |
|
| 509 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
| 510 |
|
|
| 511 |
class NodeMap |
|
| 512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
| 513 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
|
| 511 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 512 |
|
|
| 515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
| 513 | 516 |
|
| 514 | 517 |
public: |
| 515 | 518 |
typedef V Value; |
| 516 | 519 |
|
| 517 | 520 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
| 518 | 521 |
: Parent(adaptor) {}
|
| ... | ... |
@@ -529,15 +532,15 @@ |
| 529 | 532 |
Parent::operator=(cmap); |
| 530 | 533 |
return *this; |
| 531 | 534 |
} |
| 532 | 535 |
}; |
| 533 | 536 |
|
| 534 | 537 |
template <typename V> |
| 535 |
class ArcMap |
|
| 538 |
class ArcMap |
|
| 536 | 539 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 537 |
|
|
| 540 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
|
| 538 | 541 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 539 | 542 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 540 | 543 |
|
| 541 | 544 |
public: |
| 542 | 545 |
typedef V Value; |
| 543 | 546 |
|
| ... | ... |
@@ -576,13 +579,13 @@ |
| 576 | 579 |
SubDigraphBase() |
| 577 | 580 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 578 | 581 |
|
| 579 | 582 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 580 | 583 |
Parent::initialize(digraph); |
| 581 | 584 |
_node_filter = &node_filter; |
| 582 |
_arc_filter = &arc_filter; |
|
| 585 |
_arc_filter = &arc_filter; |
|
| 583 | 586 |
} |
| 584 | 587 |
|
| 585 | 588 |
public: |
| 586 | 589 |
|
| 587 | 590 |
typedef typename Parent::Node Node; |
| 588 | 591 |
typedef typename Parent::Arc Arc; |
| ... | ... |
@@ -645,16 +648,16 @@ |
| 645 | 648 |
arc = Parent::findArc(source, target, arc); |
| 646 | 649 |
} |
| 647 | 650 |
return arc; |
| 648 | 651 |
} |
| 649 | 652 |
|
| 650 | 653 |
template <typename V> |
| 651 |
class NodeMap |
|
| 654 |
class NodeMap |
|
| 652 | 655 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 653 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
| 654 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
| 657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
| 655 | 658 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
| 656 | 659 |
|
| 657 | 660 |
public: |
| 658 | 661 |
typedef V Value; |
| 659 | 662 |
|
| 660 | 663 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
| ... | ... |
@@ -672,13 +675,13 @@ |
| 672 | 675 |
Parent::operator=(cmap); |
| 673 | 676 |
return *this; |
| 674 | 677 |
} |
| 675 | 678 |
}; |
| 676 | 679 |
|
| 677 | 680 |
template <typename V> |
| 678 |
class ArcMap |
|
| 681 |
class ArcMap |
|
| 679 | 682 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 680 | 683 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
| 681 | 684 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 682 | 685 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 683 | 686 |
|
| 684 | 687 |
public: |
| ... | ... |
@@ -716,12 +719,14 @@ |
| 716 | 719 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
| 717 | 720 |
/// |
| 718 | 721 |
/// The adapted digraph can also be modified through this adaptor |
| 719 | 722 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 720 | 723 |
/// parameter is set to be \c const. |
| 721 | 724 |
/// |
| 725 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 726 |
/// |
|
| 722 | 727 |
/// \tparam DGR The type of the adapted digraph. |
| 723 | 728 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 724 | 729 |
/// It can also be specified to be \c const. |
| 725 | 730 |
/// \tparam NF The type of the node filter map. |
| 726 | 731 |
/// It must be a \c bool (or convertible) node map of the |
| 727 | 732 |
/// adapted digraph. The default type is |
| ... | ... |
@@ -1013,16 +1018,16 @@ |
| 1013 | 1018 |
edge = Parent::findEdge(u, v, edge); |
| 1014 | 1019 |
} |
| 1015 | 1020 |
return edge; |
| 1016 | 1021 |
} |
| 1017 | 1022 |
|
| 1018 | 1023 |
template <typename V> |
| 1019 |
class NodeMap |
|
| 1024 |
class NodeMap |
|
| 1020 | 1025 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1021 | 1026 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1022 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1023 | 1028 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1024 | 1029 |
|
| 1025 | 1030 |
public: |
| 1026 | 1031 |
typedef V Value; |
| 1027 | 1032 |
|
| 1028 | 1033 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| ... | ... |
@@ -1040,16 +1045,16 @@ |
| 1040 | 1045 |
Parent::operator=(cmap); |
| 1041 | 1046 |
return *this; |
| 1042 | 1047 |
} |
| 1043 | 1048 |
}; |
| 1044 | 1049 |
|
| 1045 | 1050 |
template <typename V> |
| 1046 |
class ArcMap |
|
| 1051 |
class ArcMap |
|
| 1047 | 1052 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1048 | 1053 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1049 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1050 | 1055 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1051 | 1056 |
|
| 1052 | 1057 |
public: |
| 1053 | 1058 |
typedef V Value; |
| 1054 | 1059 |
|
| 1055 | 1060 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| ... | ... |
@@ -1067,16 +1072,16 @@ |
| 1067 | 1072 |
Parent::operator=(cmap); |
| 1068 | 1073 |
return *this; |
| 1069 | 1074 |
} |
| 1070 | 1075 |
}; |
| 1071 | 1076 |
|
| 1072 | 1077 |
template <typename V> |
| 1073 |
class EdgeMap |
|
| 1078 |
class EdgeMap |
|
| 1074 | 1079 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1075 | 1080 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1076 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1077 | 1082 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
| 1078 | 1083 |
|
| 1079 | 1084 |
public: |
| 1080 | 1085 |
typedef V Value; |
| 1081 | 1086 |
|
| 1082 | 1087 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| ... | ... |
@@ -1109,14 +1114,14 @@ |
| 1109 | 1114 |
typedef EF EdgeFilterMap; |
| 1110 | 1115 |
|
| 1111 | 1116 |
typedef SubGraphBase Adaptor; |
| 1112 | 1117 |
protected: |
| 1113 | 1118 |
NF* _node_filter; |
| 1114 | 1119 |
EF* _edge_filter; |
| 1115 |
SubGraphBase() |
|
| 1116 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
|
| 1120 |
SubGraphBase() |
|
| 1121 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
|
| 1117 | 1122 |
|
| 1118 | 1123 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
|
| 1119 | 1124 |
Parent::initialize(graph); |
| 1120 | 1125 |
_node_filter = &node_filter; |
| 1121 | 1126 |
_edge_filter = &edge_filter; |
| 1122 | 1127 |
} |
| ... | ... |
@@ -1211,16 +1216,16 @@ |
| 1211 | 1216 |
edge = Parent::findEdge(u, v, edge); |
| 1212 | 1217 |
} |
| 1213 | 1218 |
return edge; |
| 1214 | 1219 |
} |
| 1215 | 1220 |
|
| 1216 | 1221 |
template <typename V> |
| 1217 |
class NodeMap |
|
| 1222 |
class NodeMap |
|
| 1218 | 1223 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1219 | 1224 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1220 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1221 | 1226 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1222 | 1227 |
|
| 1223 | 1228 |
public: |
| 1224 | 1229 |
typedef V Value; |
| 1225 | 1230 |
|
| 1226 | 1231 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| ... | ... |
@@ -1238,16 +1243,16 @@ |
| 1238 | 1243 |
Parent::operator=(cmap); |
| 1239 | 1244 |
return *this; |
| 1240 | 1245 |
} |
| 1241 | 1246 |
}; |
| 1242 | 1247 |
|
| 1243 | 1248 |
template <typename V> |
| 1244 |
class ArcMap |
|
| 1249 |
class ArcMap |
|
| 1245 | 1250 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1246 | 1251 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1247 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1248 | 1253 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1249 | 1254 |
|
| 1250 | 1255 |
public: |
| 1251 | 1256 |
typedef V Value; |
| 1252 | 1257 |
|
| 1253 | 1258 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| ... | ... |
@@ -1265,17 +1270,17 @@ |
| 1265 | 1270 |
Parent::operator=(cmap); |
| 1266 | 1271 |
return *this; |
| 1267 | 1272 |
} |
| 1268 | 1273 |
}; |
| 1269 | 1274 |
|
| 1270 | 1275 |
template <typename V> |
| 1271 |
class EdgeMap |
|
| 1276 |
class EdgeMap |
|
| 1272 | 1277 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1273 | 1278 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1274 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1275 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
| 1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
| 1276 | 1281 |
|
| 1277 | 1282 |
public: |
| 1278 | 1283 |
typedef V Value; |
| 1279 | 1284 |
|
| 1280 | 1285 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1281 | 1286 |
: Parent(adaptor) {}
|
| ... | ... |
@@ -1311,12 +1316,14 @@ |
| 1311 | 1316 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 1312 | 1317 |
/// |
| 1313 | 1318 |
/// The adapted graph can also be modified through this adaptor |
| 1314 | 1319 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1315 | 1320 |
/// parameter is set to be \c const. |
| 1316 | 1321 |
/// |
| 1322 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
| 1323 |
/// |
|
| 1317 | 1324 |
/// \tparam GR The type of the adapted graph. |
| 1318 | 1325 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1319 | 1326 |
/// It can also be specified to be \c const. |
| 1320 | 1327 |
/// \tparam NF The type of the node filter map. |
| 1321 | 1328 |
/// It must be a \c bool (or convertible) node map of the |
| 1322 | 1329 |
/// adapted graph. The default type is |
| ... | ... |
@@ -1468,12 +1475,14 @@ |
| 1468 | 1475 |
/// depending on the \c GR template parameter. |
| 1469 | 1476 |
/// |
| 1470 | 1477 |
/// The adapted (di)graph can also be modified through this adaptor |
| 1471 | 1478 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
| 1472 | 1479 |
/// parameter is set to be \c const. |
| 1473 | 1480 |
/// |
| 1481 |
/// This class provides only linear time item counting. |
|
| 1482 |
/// |
|
| 1474 | 1483 |
/// \tparam GR The type of the adapted digraph or graph. |
| 1475 | 1484 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
| 1476 | 1485 |
/// or the \ref concepts::Graph "Graph" concept. |
| 1477 | 1486 |
/// It can also be specified to be \c const. |
| 1478 | 1487 |
/// \tparam NF The type of the node filter map. |
| 1479 | 1488 |
/// It must be a \c bool (or convertible) node map of the |
| ... | ... |
@@ -1492,13 +1501,13 @@ |
| 1492 | 1501 |
class FilterNodes : |
| 1493 | 1502 |
public DigraphAdaptorExtender< |
| 1494 | 1503 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
| 1495 | 1504 |
true> > {
|
| 1496 | 1505 |
#endif |
| 1497 | 1506 |
typedef DigraphAdaptorExtender< |
| 1498 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
| 1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
| 1499 | 1508 |
true> > Parent; |
| 1500 | 1509 |
|
| 1501 | 1510 |
public: |
| 1502 | 1511 |
|
| 1503 | 1512 |
typedef GR Digraph; |
| 1504 | 1513 |
typedef NF NodeFilterMap; |
| ... | ... |
@@ -1513,13 +1522,13 @@ |
| 1513 | 1522 |
public: |
| 1514 | 1523 |
|
| 1515 | 1524 |
/// \brief Constructor |
| 1516 | 1525 |
/// |
| 1517 | 1526 |
/// Creates a subgraph for the given digraph or graph with the |
| 1518 | 1527 |
/// given node filter map. |
| 1519 |
FilterNodes(GR& graph, NF& node_filter) |
|
| 1528 |
FilterNodes(GR& graph, NF& node_filter) |
|
| 1520 | 1529 |
: Parent(), const_true_map() |
| 1521 | 1530 |
{
|
| 1522 | 1531 |
Parent::initialize(graph, node_filter, const_true_map); |
| 1523 | 1532 |
} |
| 1524 | 1533 |
|
| 1525 | 1534 |
/// \brief Sets the status of the given node |
| ... | ... |
@@ -1551,17 +1560,17 @@ |
| 1551 | 1560 |
}; |
| 1552 | 1561 |
|
| 1553 | 1562 |
template<typename GR, typename NF> |
| 1554 | 1563 |
class FilterNodes<GR, NF, |
| 1555 | 1564 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
| 1556 | 1565 |
public GraphAdaptorExtender< |
| 1557 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1558 | 1567 |
true> > {
|
| 1559 | 1568 |
|
| 1560 | 1569 |
typedef GraphAdaptorExtender< |
| 1561 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1562 | 1571 |
true> > Parent; |
| 1563 | 1572 |
|
| 1564 | 1573 |
public: |
| 1565 | 1574 |
|
| 1566 | 1575 |
typedef GR Graph; |
| 1567 | 1576 |
typedef NF NodeFilterMap; |
| ... | ... |
@@ -1616,12 +1625,14 @@ |
| 1616 | 1625 |
/// "Digraph" concept. |
| 1617 | 1626 |
/// |
| 1618 | 1627 |
/// The adapted digraph can also be modified through this adaptor |
| 1619 | 1628 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 1620 | 1629 |
/// parameter is set to be \c const. |
| 1621 | 1630 |
/// |
| 1631 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 1632 |
/// |
|
| 1622 | 1633 |
/// \tparam DGR The type of the adapted digraph. |
| 1623 | 1634 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 1624 | 1635 |
/// It can also be specified to be \c const. |
| 1625 | 1636 |
/// \tparam AF The type of the arc filter map. |
| 1626 | 1637 |
/// It must be a \c bool (or convertible) arc map of the |
| 1627 | 1638 |
/// adapted digraph. The default type is |
| ... | ... |
@@ -1639,13 +1650,13 @@ |
| 1639 | 1650 |
class FilterArcs : |
| 1640 | 1651 |
public DigraphAdaptorExtender< |
| 1641 | 1652 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
| 1642 | 1653 |
AF, false> > {
|
| 1643 | 1654 |
#endif |
| 1644 | 1655 |
typedef DigraphAdaptorExtender< |
| 1645 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
| 1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
| 1646 | 1657 |
AF, false> > Parent; |
| 1647 | 1658 |
|
| 1648 | 1659 |
public: |
| 1649 | 1660 |
|
| 1650 | 1661 |
/// The type of the adapted digraph. |
| 1651 | 1662 |
typedef DGR Digraph; |
| ... | ... |
@@ -1726,12 +1737,14 @@ |
| 1726 | 1737 |
/// "Graph" concept. |
| 1727 | 1738 |
/// |
| 1728 | 1739 |
/// The adapted graph can also be modified through this adaptor |
| 1729 | 1740 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1730 | 1741 |
/// parameter is set to be \c const. |
| 1731 | 1742 |
/// |
| 1743 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
| 1744 |
/// |
|
| 1732 | 1745 |
/// \tparam GR The type of the adapted graph. |
| 1733 | 1746 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1734 | 1747 |
/// It can also be specified to be \c const. |
| 1735 | 1748 |
/// \tparam EF The type of the edge filter map. |
| 1736 | 1749 |
/// It must be a \c bool (or convertible) edge map of the |
| 1737 | 1750 |
/// adapted graph. The default type is |
| ... | ... |
@@ -1745,17 +1758,17 @@ |
| 1745 | 1758 |
class FilterEdges {
|
| 1746 | 1759 |
#else |
| 1747 | 1760 |
template<typename GR, |
| 1748 | 1761 |
typename EF = typename GR::template EdgeMap<bool> > |
| 1749 | 1762 |
class FilterEdges : |
| 1750 | 1763 |
public GraphAdaptorExtender< |
| 1751 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
| 1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
| 1752 | 1765 |
EF, false> > {
|
| 1753 | 1766 |
#endif |
| 1754 | 1767 |
typedef GraphAdaptorExtender< |
| 1755 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
| 1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
| 1756 | 1769 |
EF, false> > Parent; |
| 1757 | 1770 |
|
| 1758 | 1771 |
public: |
| 1759 | 1772 |
|
| 1760 | 1773 |
/// The type of the adapted graph. |
| 1761 | 1774 |
typedef GR Graph; |
| ... | ... |
@@ -1774,13 +1787,13 @@ |
| 1774 | 1787 |
public: |
| 1775 | 1788 |
|
| 1776 | 1789 |
/// \brief Constructor |
| 1777 | 1790 |
/// |
| 1778 | 1791 |
/// Creates a subgraph for the given graph with the given edge |
| 1779 | 1792 |
/// filter map. |
| 1780 |
FilterEdges(GR& graph, EF& edge_filter) |
|
| 1793 |
FilterEdges(GR& graph, EF& edge_filter) |
|
| 1781 | 1794 |
: Parent(), const_true_map() {
|
| 1782 | 1795 |
Parent::initialize(graph, const_true_map, edge_filter); |
| 1783 | 1796 |
} |
| 1784 | 1797 |
|
| 1785 | 1798 |
/// \brief Sets the status of the given edge |
| 1786 | 1799 |
/// |
| ... | ... |
@@ -1842,13 +1855,13 @@ |
| 1842 | 1855 |
class Arc {
|
| 1843 | 1856 |
friend class UndirectorBase; |
| 1844 | 1857 |
protected: |
| 1845 | 1858 |
Edge _edge; |
| 1846 | 1859 |
bool _forward; |
| 1847 | 1860 |
|
| 1848 |
Arc(const Edge& edge, bool forward) |
|
| 1861 |
Arc(const Edge& edge, bool forward) |
|
| 1849 | 1862 |
: _edge(edge), _forward(forward) {}
|
| 1850 | 1863 |
|
| 1851 | 1864 |
public: |
| 1852 | 1865 |
Arc() {}
|
| 1853 | 1866 |
|
| 1854 | 1867 |
Arc(Invalid) : _edge(INVALID), _forward(true) {}
|
| ... | ... |
@@ -2082,13 +2095,13 @@ |
| 2082 | 2095 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
| 2083 | 2096 |
|
| 2084 | 2097 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
| 2085 | 2098 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
|
| 2086 | 2099 |
|
| 2087 | 2100 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2088 |
: _forward(*adaptor._digraph, value), |
|
| 2101 |
: _forward(*adaptor._digraph, value), |
|
| 2089 | 2102 |
_backward(*adaptor._digraph, value) {}
|
| 2090 | 2103 |
|
| 2091 | 2104 |
void set(const Arc& a, const V& value) {
|
| 2092 | 2105 |
if (direction(a)) {
|
| 2093 | 2106 |
_forward.set(a, value); |
| 2094 | 2107 |
} else {
|
| ... | ... |
@@ -2200,13 +2213,13 @@ |
| 2200 | 2213 |
|
| 2201 | 2214 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
| 2202 | 2215 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
|
| 2203 | 2216 |
|
| 2204 | 2217 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
| 2205 | 2218 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
|
| 2206 |
|
|
| 2219 |
|
|
| 2207 | 2220 |
typedef EdgeNotifier ArcNotifier; |
| 2208 | 2221 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
|
| 2209 | 2222 |
|
| 2210 | 2223 |
protected: |
| 2211 | 2224 |
|
| 2212 | 2225 |
UndirectorBase() : _digraph(0) {}
|
| ... | ... |
@@ -2229,12 +2242,15 @@ |
| 2229 | 2242 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 2230 | 2243 |
/// |
| 2231 | 2244 |
/// The adapted digraph can also be modified through this adaptor |
| 2232 | 2245 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 2233 | 2246 |
/// parameter is set to be \c const. |
| 2234 | 2247 |
/// |
| 2248 |
/// This class provides item counting in the same time as the adapted |
|
| 2249 |
/// digraph structure. |
|
| 2250 |
/// |
|
| 2235 | 2251 |
/// \tparam DGR The type of the adapted digraph. |
| 2236 | 2252 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2237 | 2253 |
/// It can also be specified to be \c const. |
| 2238 | 2254 |
/// |
| 2239 | 2255 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2240 | 2256 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
| ... | ... |
@@ -2532,12 +2548,15 @@ |
| 2532 | 2548 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2533 | 2549 |
/// |
| 2534 | 2550 |
/// The adapted graph can also be modified through this adaptor |
| 2535 | 2551 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 2536 | 2552 |
/// parameter is set to be \c const. |
| 2537 | 2553 |
/// |
| 2554 |
/// This class provides item counting in the same time as the adapted |
|
| 2555 |
/// graph structure. |
|
| 2556 |
/// |
|
| 2538 | 2557 |
/// \tparam GR The type of the adapted graph. |
| 2539 | 2558 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 2540 | 2559 |
/// It can also be specified to be \c const. |
| 2541 | 2560 |
/// \tparam DM The type of the direction map. |
| 2542 | 2561 |
/// It must be a \c bool (or convertible) edge map of the |
| 2543 | 2562 |
/// adapted graph. The default type is |
| ... | ... |
@@ -2675,12 +2694,14 @@ |
| 2675 | 2694 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
|
| 2676 | 2695 |
/// multiplicities are counted, i.e. the adaptor has exactly |
| 2677 | 2696 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
|
| 2678 | 2697 |
/// arcs). |
| 2679 | 2698 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2680 | 2699 |
/// |
| 2700 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 2701 |
/// |
|
| 2681 | 2702 |
/// \tparam DGR The type of the adapted digraph. |
| 2682 | 2703 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2683 | 2704 |
/// It is implicitly \c const. |
| 2684 | 2705 |
/// \tparam CM The type of the capacity map. |
| 2685 | 2706 |
/// It must be an arc map of some numerical type, which defines |
| 2686 | 2707 |
/// the capacities in the flow problem. It is implicitly \c const. |
| ... | ... |
@@ -2704,13 +2725,13 @@ |
| 2704 | 2725 |
class ResidualDigraph |
| 2705 | 2726 |
#else |
| 2706 | 2727 |
template<typename DGR, |
| 2707 | 2728 |
typename CM = typename DGR::template ArcMap<int>, |
| 2708 | 2729 |
typename FM = CM, |
| 2709 | 2730 |
typename TL = Tolerance<typename CM::Value> > |
| 2710 |
class ResidualDigraph |
|
| 2731 |
class ResidualDigraph |
|
| 2711 | 2732 |
: public SubDigraph< |
| 2712 | 2733 |
Undirector<const DGR>, |
| 2713 | 2734 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
| 2714 | 2735 |
typename Undirector<const DGR>::template CombinedArcMap< |
| 2715 | 2736 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
| 2716 | 2737 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
| ... | ... |
@@ -2761,13 +2782,13 @@ |
| 2761 | 2782 |
/// \brief Constructor |
| 2762 | 2783 |
/// |
| 2763 | 2784 |
/// Constructor of the residual digraph adaptor. The parameters are the |
| 2764 | 2785 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
| 2765 | 2786 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
| 2766 | 2787 |
FM& flow, const TL& tolerance = Tolerance()) |
| 2767 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
| 2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
| 2768 | 2789 |
_graph(digraph), _node_filter(), |
| 2769 | 2790 |
_forward_filter(capacity, flow, tolerance), |
| 2770 | 2791 |
_backward_filter(capacity, flow, tolerance), |
| 2771 | 2792 |
_arc_filter(_forward_filter, _backward_filter) |
| 2772 | 2793 |
{
|
| 2773 | 2794 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
| ... | ... |
@@ -2843,13 +2864,13 @@ |
| 2843 | 2864 |
/// The key type of the map |
| 2844 | 2865 |
typedef Arc Key; |
| 2845 | 2866 |
/// The value type of the map |
| 2846 | 2867 |
typedef typename CapacityMap::Value Value; |
| 2847 | 2868 |
|
| 2848 | 2869 |
/// Constructor |
| 2849 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
| 2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
| 2850 | 2871 |
: _adaptor(&adaptor) {}
|
| 2851 | 2872 |
|
| 2852 | 2873 |
/// Returns the value associated with the given residual arc |
| 2853 | 2874 |
Value operator[](const Arc& a) const {
|
| 2854 | 2875 |
return _adaptor->residualCapacity(a); |
| 2855 | 2876 |
} |
| ... | ... |
@@ -3322,12 +3343,15 @@ |
| 3322 | 3343 |
/// costs or capacities if the algorithm considers only arc costs or |
| 3323 | 3344 |
/// capacities directly. |
| 3324 | 3345 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
| 3325 | 3346 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
| 3326 | 3347 |
/// in the adaptor. |
| 3327 | 3348 |
/// |
| 3349 |
/// This class provides item counting in the same time as the adapted |
|
| 3350 |
/// digraph structure. |
|
| 3351 |
/// |
|
| 3328 | 3352 |
/// \tparam DGR The type of the adapted digraph. |
| 3329 | 3353 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 3330 | 3354 |
/// It is implicitly \c const. |
| 3331 | 3355 |
/// |
| 3332 | 3356 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
| 3333 | 3357 |
/// type of the adapted digraph. |
| ... | ... |
@@ -3420,13 +3444,13 @@ |
| 3420 | 3444 |
|
| 3421 | 3445 |
/// \brief Node map combined from two original node maps |
| 3422 | 3446 |
/// |
| 3423 | 3447 |
/// This map adaptor class adapts two node maps of the original digraph |
| 3424 | 3448 |
/// to get a node map of the split digraph. |
| 3425 | 3449 |
/// Its value type is inherited from the first node map type (\c IN). |
| 3426 |
/// \tparam IN The type of the node map for the in-nodes. |
|
| 3450 |
/// \tparam IN The type of the node map for the in-nodes. |
|
| 3427 | 3451 |
/// \tparam OUT The type of the node map for the out-nodes. |
| 3428 | 3452 |
template <typename IN, typename OUT> |
| 3429 | 3453 |
class CombinedNodeMap {
|
| 3430 | 3454 |
public: |
| 3431 | 3455 |
|
| 3432 | 3456 |
/// The key type of the map |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -17,20 +17,29 @@ |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/arg_parser.h> |
| 20 | 20 |
|
| 21 | 21 |
namespace lemon {
|
| 22 | 22 |
|
| 23 |
void ArgParser::_terminate(ArgParserException::Reason reason) const |
|
| 24 |
{
|
|
| 25 |
if(_exit_on_problems) |
|
| 26 |
exit(1); |
|
| 27 |
else throw(ArgParserException(reason)); |
|
| 28 |
} |
|
| 29 |
|
|
| 30 |
|
|
| 23 | 31 |
void ArgParser::_showHelp(void *p) |
| 24 | 32 |
{
|
| 25 | 33 |
(static_cast<ArgParser*>(p))->showHelp(); |
| 26 |
|
|
| 34 |
(static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP); |
|
| 27 | 35 |
} |
| 28 | 36 |
|
| 29 | 37 |
ArgParser::ArgParser(int argc, const char * const *argv) |
| 30 |
:_argc(argc), _argv(argv), _command_name(argv[0]) |
|
| 38 |
:_argc(argc), _argv(argv), _command_name(argv[0]), |
|
| 39 |
_exit_on_problems(true) {
|
|
| 31 | 40 |
funcOption("-help","Print a short help message",_showHelp,this);
|
| 32 | 41 |
synonym("help","-help");
|
| 33 | 42 |
synonym("h","-help");
|
| 34 | 43 |
} |
| 35 | 44 |
|
| 36 | 45 |
ArgParser::~ArgParser() |
| ... | ... |
@@ -339,22 +348,22 @@ |
| 339 | 348 |
{
|
| 340 | 349 |
shortHelp(); |
| 341 | 350 |
std::cerr << "Where:\n"; |
| 342 | 351 |
for(std::vector<OtherArg>::const_iterator i=_others_help.begin(); |
| 343 | 352 |
i!=_others_help.end();++i) showHelp(i); |
| 344 | 353 |
for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i) showHelp(i); |
| 345 |
|
|
| 354 |
_terminate(ArgParserException::HELP); |
|
| 346 | 355 |
} |
| 347 | 356 |
|
| 348 | 357 |
|
| 349 | 358 |
void ArgParser::unknownOpt(std::string arg) const |
| 350 | 359 |
{
|
| 351 | 360 |
std::cerr << "\nUnknown option: " << arg << "\n"; |
| 352 | 361 |
std::cerr << "\nType '" << _command_name << |
| 353 | 362 |
" --help' to obtain a short summary on the usage.\n\n"; |
| 354 |
|
|
| 363 |
_terminate(ArgParserException::UNKNOWN_OPT); |
|
| 355 | 364 |
} |
| 356 | 365 |
|
| 357 | 366 |
void ArgParser::requiresValue(std::string arg, OptType t) const |
| 358 | 367 |
{
|
| 359 | 368 |
std::cerr << "Argument '" << arg << "' requires a"; |
| 360 | 369 |
switch(t) {
|
| ... | ... |
@@ -411,13 +420,13 @@ |
| 411 | 420 |
showHelp(_opts.find(*o)); |
| 412 | 421 |
} |
| 413 | 422 |
} |
| 414 | 423 |
if(!ok) {
|
| 415 | 424 |
std::cerr << "\nType '" << _command_name << |
| 416 | 425 |
" --help' to obtain a short summary on the usage.\n\n"; |
| 417 |
|
|
| 426 |
_terminate(ArgParserException::INVALID_OPT); |
|
| 418 | 427 |
} |
| 419 | 428 |
} |
| 420 | 429 |
|
| 421 | 430 |
ArgParser &ArgParser::parse() |
| 422 | 431 |
{
|
| 423 | 432 |
for(int ar=1; ar<_argc; ++ar) {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -31,12 +31,50 @@ |
| 31 | 31 |
///\ingroup misc |
| 32 | 32 |
///\file |
| 33 | 33 |
///\brief A tool to parse command line arguments. |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 |
///Exception used by ArgParser |
|
| 38 |
class ArgParserException : public Exception {
|
|
| 39 |
public: |
|
| 40 |
enum Reason {
|
|
| 41 |
HELP, /// <tt>--help</tt> option was given |
|
| 42 |
UNKNOWN_OPT, /// Unknown option was given |
|
| 43 |
INVALID_OPT /// Invalid combination of options |
|
| 44 |
}; |
|
| 45 |
|
|
| 46 |
private: |
|
| 47 |
Reason _reason; |
|
| 48 |
|
|
| 49 |
public: |
|
| 50 |
///Constructor |
|
| 51 |
ArgParserException(Reason r) throw() : _reason(r) {}
|
|
| 52 |
///Virtual destructor |
|
| 53 |
virtual ~ArgParserException() throw() {}
|
|
| 54 |
///A short description of the exception |
|
| 55 |
virtual const char* what() const throw() {
|
|
| 56 |
switch(_reason) |
|
| 57 |
{
|
|
| 58 |
case HELP: |
|
| 59 |
return "lemon::ArgParseException: ask for help"; |
|
| 60 |
break; |
|
| 61 |
case UNKNOWN_OPT: |
|
| 62 |
return "lemon::ArgParseException: unknown option"; |
|
| 63 |
break; |
|
| 64 |
case INVALID_OPT: |
|
| 65 |
return "lemon::ArgParseException: invalid combination of options"; |
|
| 66 |
break; |
|
| 67 |
} |
|
| 68 |
return ""; |
|
| 69 |
} |
|
| 70 |
///Return the reason for the failure |
|
| 71 |
Reason reason() const {return _reason; }
|
|
| 72 |
}; |
|
| 73 |
|
|
| 74 |
|
|
| 37 | 75 |
///Command line arguments parser |
| 38 | 76 |
|
| 39 | 77 |
///\ingroup misc |
| 40 | 78 |
///Command line arguments parser. |
| 41 | 79 |
/// |
| 42 | 80 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
| ... | ... |
@@ -113,12 +151,16 @@ |
| 113 | 151 |
// must be of type "void f(void *)" |
| 114 | 152 |
//\param data Data to be passed to \c func |
| 115 | 153 |
ArgParser &funcOption(const std::string &name, |
| 116 | 154 |
const std::string &help, |
| 117 | 155 |
void (*func)(void *),void *data); |
| 118 | 156 |
|
| 157 |
bool _exit_on_problems; |
|
| 158 |
|
|
| 159 |
void _terminate(ArgParserException::Reason reason) const; |
|
| 160 |
|
|
| 119 | 161 |
public: |
| 120 | 162 |
|
| 121 | 163 |
///Constructor |
| 122 | 164 |
ArgParser(int argc, const char * const *argv); |
| 123 | 165 |
|
| 124 | 166 |
~ArgParser(); |
| ... | ... |
@@ -377,10 +419,15 @@ |
| 377 | 419 |
///Give back the non-option type arguments. |
| 378 | 420 |
|
| 379 | 421 |
///Give back a reference to a vector consisting of the program arguments |
| 380 | 422 |
///not starting with a '-' character. |
| 381 | 423 |
const std::vector<std::string> &files() const { return _file_args; }
|
| 382 | 424 |
|
| 425 |
///Throw instead of exit in case of problems |
|
| 426 |
void throwOnProblems() |
|
| 427 |
{
|
|
| 428 |
_exit_on_problems=false; |
|
| 429 |
} |
|
| 383 | 430 |
}; |
| 384 | 431 |
} |
| 385 | 432 |
|
| 386 | 433 |
#endif // LEMON_ARG_PARSER_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -44,13 +44,13 @@ |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| ... | ... |
@@ -59,13 +59,14 @@ |
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default, it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap |
| ... | ... |
@@ -78,13 +79,14 @@ |
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to |
|
| 86 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 88 |
///Instantiates a \c ReachedMap. |
| 87 | 89 |
|
| 88 | 90 |
///This function instantiates a \ref ReachedMap. |
| 89 | 91 |
///\param g is the digraph, to which |
| 90 | 92 |
///we would like to define the \ref ReachedMap. |
| ... | ... |
@@ -93,13 +95,13 @@ |
| 93 | 95 |
return new ReachedMap(g); |
| 94 | 96 |
} |
| 95 | 97 |
|
| 96 | 98 |
///The type of the map that stores the distances of the nodes. |
| 97 | 99 |
|
| 98 | 100 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 101 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 103 |
///Instantiates a \c DistMap. |
| 102 | 104 |
|
| 103 | 105 |
///This function instantiates a \ref DistMap. |
| 104 | 106 |
///\param g is the digraph, to which we would like to define the |
| 105 | 107 |
///\ref DistMap. |
| ... | ... |
@@ -117,12 +119,17 @@ |
| 117 | 119 |
///There is also a \ref bfs() "function-type interface" for the BFS |
| 118 | 120 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 121 |
///used easier. |
| 120 | 122 |
/// |
| 121 | 123 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 124 |
///The default type is \ref ListDigraph. |
| 125 |
///\tparam TR The traits class that defines various types used by the |
|
| 126 |
///algorithm. By default, it is \ref BfsDefaultTraits |
|
| 127 |
///"BfsDefaultTraits<GR>". |
|
| 128 |
///In most cases, this parameter should not be set directly, |
|
| 129 |
///consider to use the named template parameters instead. |
|
| 123 | 130 |
#ifdef DOXYGEN |
| 124 | 131 |
template <typename GR, |
| 125 | 132 |
typename TR> |
| 126 | 133 |
#else |
| 127 | 134 |
template <typename GR=ListDigraph, |
| 128 | 135 |
typename TR=BfsDefaultTraits<GR> > |
| ... | ... |
@@ -222,13 +229,13 @@ |
| 222 | 229 |
}; |
| 223 | 230 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 224 | 231 |
///\c PredMap type. |
| 225 | 232 |
/// |
| 226 | 233 |
///\ref named-templ-param "Named parameter" for setting |
| 227 | 234 |
///\c PredMap type. |
| 228 |
///It must |
|
| 235 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 229 | 236 |
template <class T> |
| 230 | 237 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 231 | 238 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 232 | 239 |
}; |
| 233 | 240 |
|
| 234 | 241 |
template <class T> |
| ... | ... |
@@ -242,13 +249,13 @@ |
| 242 | 249 |
}; |
| 243 | 250 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 244 | 251 |
///\c DistMap type. |
| 245 | 252 |
/// |
| 246 | 253 |
///\ref named-templ-param "Named parameter" for setting |
| 247 | 254 |
///\c DistMap type. |
| 248 |
///It must |
|
| 255 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 249 | 256 |
template <class T> |
| 250 | 257 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 251 | 258 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 252 | 259 |
}; |
| 253 | 260 |
|
| 254 | 261 |
template <class T> |
| ... | ... |
@@ -262,13 +269,14 @@ |
| 262 | 269 |
}; |
| 263 | 270 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 264 | 271 |
///\c ReachedMap type. |
| 265 | 272 |
/// |
| 266 | 273 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 274 |
///\c ReachedMap type. |
| 268 |
///It must |
|
| 275 |
///It must conform to |
|
| 276 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 269 | 277 |
template <class T> |
| 270 | 278 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 271 | 279 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 272 | 280 |
}; |
| 273 | 281 |
|
| 274 | 282 |
template <class T> |
| ... | ... |
@@ -282,13 +290,13 @@ |
| 282 | 290 |
}; |
| 283 | 291 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 284 | 292 |
///\c ProcessedMap type. |
| 285 | 293 |
/// |
| 286 | 294 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 295 |
///\c ProcessedMap type. |
| 288 |
///It must |
|
| 296 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 289 | 297 |
template <class T> |
| 290 | 298 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 291 | 299 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 292 | 300 |
}; |
| 293 | 301 |
|
| 294 | 302 |
struct SetStandardProcessedMapTraits : public Traits {
|
| ... | ... |
@@ -410,14 +418,14 @@ |
| 410 | 418 |
|
| 411 | 419 |
public: |
| 412 | 420 |
|
| 413 | 421 |
///\name Execution Control |
| 414 | 422 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 415 | 423 |
///member functions called \ref run(Node) "run()".\n |
| 416 |
///If you need more control on the execution, first you have to call |
|
| 417 |
///\ref init(), then you can add several source nodes with |
|
| 424 |
///If you need better control on the execution, you have to call |
|
| 425 |
///\ref init() first, then you can add several source nodes with |
|
| 418 | 426 |
///\ref addSource(). Finally the actual path computation can be |
| 419 | 427 |
///performed with one of the \ref start() functions. |
| 420 | 428 |
|
| 421 | 429 |
///@{
|
| 422 | 430 |
|
| 423 | 431 |
///\brief Initializes the internal data structures. |
| ... | ... |
@@ -697,18 +705,14 @@ |
| 697 | 705 |
start(t); |
| 698 | 706 |
return reached(t); |
| 699 | 707 |
} |
| 700 | 708 |
|
| 701 | 709 |
///Runs the algorithm to visit all nodes in the digraph. |
| 702 | 710 |
|
| 703 |
///This method runs the %BFS algorithm in order to |
|
| 704 |
///compute the shortest path to each node. |
|
| 705 |
/// |
|
| 706 |
///The algorithm computes |
|
| 707 |
///- the shortest path tree (forest), |
|
| 708 |
///- the distance of each node from the root(s). |
|
| 711 |
///This method runs the %BFS algorithm in order to visit all nodes |
|
| 712 |
///in the digraph. |
|
| 709 | 713 |
/// |
| 710 | 714 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 711 | 715 |
///\code |
| 712 | 716 |
/// b.init(); |
| 713 | 717 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 714 | 718 |
/// if (!b.reached(n)) {
|
| ... | ... |
@@ -734,56 +738,58 @@ |
| 734 | 738 |
///functions.\n |
| 735 | 739 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 736 | 740 |
///before using them. |
| 737 | 741 |
|
| 738 | 742 |
///@{
|
| 739 | 743 |
|
| 740 |
///The shortest path to |
|
| 744 |
///The shortest path to the given node. |
|
| 741 | 745 |
|
| 742 |
///Returns the shortest path to |
|
| 746 |
///Returns the shortest path to the given node from the root(s). |
|
| 743 | 747 |
/// |
| 744 | 748 |
///\warning \c t should be reached from the root(s). |
| 745 | 749 |
/// |
| 746 | 750 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 751 |
///must be called before using this function. |
| 748 | 752 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 749 | 753 |
|
| 750 |
///The distance of |
|
| 754 |
///The distance of the given node from the root(s). |
|
| 751 | 755 |
|
| 752 |
///Returns the distance of |
|
| 756 |
///Returns the distance of the given node from the root(s). |
|
| 753 | 757 |
/// |
| 754 | 758 |
///\warning If node \c v is not reached from the root(s), then |
| 755 | 759 |
///the return value of this function is undefined. |
| 756 | 760 |
/// |
| 757 | 761 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 758 | 762 |
///must be called before using this function. |
| 759 | 763 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 760 | 764 |
|
| 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 762 |
|
|
| 765 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 766 |
///the given node. |
|
| 767 |
/// |
|
| 763 | 768 |
///This function returns the 'previous arc' of the shortest path |
| 764 | 769 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 765 | 770 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 766 | 771 |
///is not reached from the root(s) or if \c v is a root. |
| 767 | 772 |
/// |
| 768 | 773 |
///The shortest path tree used here is equal to the shortest path |
| 769 |
///tree used in \ref predNode(). |
|
| 774 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 770 | 775 |
/// |
| 771 | 776 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 772 | 777 |
///must be called before using this function. |
| 773 | 778 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 774 | 779 |
|
| 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 776 |
|
|
| 780 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 781 |
///the given node. |
|
| 782 |
/// |
|
| 777 | 783 |
///This function returns the 'previous node' of the shortest path |
| 778 | 784 |
///tree for the node \c v, i.e. it returns the last but one node |
| 779 |
/// |
|
| 785 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 780 | 786 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 781 | 787 |
/// |
| 782 | 788 |
///The shortest path tree used here is equal to the shortest path |
| 783 |
///tree used in \ref predArc(). |
|
| 789 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 784 | 790 |
/// |
| 785 | 791 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 786 | 792 |
///must be called before using this function. |
| 787 | 793 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 788 | 794 |
G->source((*_pred)[v]); } |
| 789 | 795 |
|
| ... | ... |
@@ -798,19 +804,19 @@ |
| 798 | 804 |
const DistMap &distMap() const { return *_dist;}
|
| 799 | 805 |
|
| 800 | 806 |
///\brief Returns a const reference to the node map that stores the |
| 801 | 807 |
///predecessor arcs. |
| 802 | 808 |
/// |
| 803 | 809 |
///Returns a const reference to the node map that stores the predecessor |
| 804 |
///arcs, which form the shortest path tree. |
|
| 810 |
///arcs, which form the shortest path tree (forest). |
|
| 805 | 811 |
/// |
| 806 | 812 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 807 | 813 |
///must be called before using this function. |
| 808 | 814 |
const PredMap &predMap() const { return *_pred;}
|
| 809 | 815 |
|
| 810 |
///Checks if |
|
| 816 |
///Checks if the given node is reached from the root(s). |
|
| 811 | 817 |
|
| 812 | 818 |
///Returns \c true if \c v is reached from the root(s). |
| 813 | 819 |
/// |
| 814 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 815 | 821 |
///must be called before using this function. |
| 816 | 822 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| ... | ... |
@@ -830,13 +836,13 @@ |
| 830 | 836 |
|
| 831 | 837 |
///\brief The type of the map that stores the predecessor |
| 832 | 838 |
///arcs of the shortest paths. |
| 833 | 839 |
/// |
| 834 | 840 |
///The type of the map that stores the predecessor |
| 835 | 841 |
///arcs of the shortest paths. |
| 836 |
///It must |
|
| 842 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 837 | 843 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 838 | 844 |
///Instantiates a PredMap. |
| 839 | 845 |
|
| 840 | 846 |
///This function instantiates a PredMap. |
| 841 | 847 |
///\param g is the digraph, to which we would like to define the |
| 842 | 848 |
///PredMap. |
| ... | ... |
@@ -845,14 +851,14 @@ |
| 845 | 851 |
return new PredMap(g); |
| 846 | 852 |
} |
| 847 | 853 |
|
| 848 | 854 |
///The type of the map that indicates which nodes are processed. |
| 849 | 855 |
|
| 850 | 856 |
///The type of the map that indicates which nodes are processed. |
| 851 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 852 |
///By default it is a NullMap. |
|
| 857 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 858 |
///By default, it is a NullMap. |
|
| 853 | 859 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 854 | 860 |
///Instantiates a ProcessedMap. |
| 855 | 861 |
|
| 856 | 862 |
///This function instantiates a ProcessedMap. |
| 857 | 863 |
///\param g is the digraph, to which |
| 858 | 864 |
///we would like to define the ProcessedMap. |
| ... | ... |
@@ -865,13 +871,14 @@ |
| 865 | 871 |
return new ProcessedMap(); |
| 866 | 872 |
} |
| 867 | 873 |
|
| 868 | 874 |
///The type of the map that indicates which nodes are reached. |
| 869 | 875 |
|
| 870 | 876 |
///The type of the map that indicates which nodes are reached. |
| 871 |
///It must |
|
| 877 |
///It must conform to |
|
| 878 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 872 | 879 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 873 | 880 |
///Instantiates a ReachedMap. |
| 874 | 881 |
|
| 875 | 882 |
///This function instantiates a ReachedMap. |
| 876 | 883 |
///\param g is the digraph, to which |
| 877 | 884 |
///we would like to define the ReachedMap. |
| ... | ... |
@@ -880,13 +887,13 @@ |
| 880 | 887 |
return new ReachedMap(g); |
| 881 | 888 |
} |
| 882 | 889 |
|
| 883 | 890 |
///The type of the map that stores the distances of the nodes. |
| 884 | 891 |
|
| 885 | 892 |
///The type of the map that stores the distances of the nodes. |
| 886 |
///It must |
|
| 893 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 887 | 894 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 888 | 895 |
///Instantiates a DistMap. |
| 889 | 896 |
|
| 890 | 897 |
///This function instantiates a DistMap. |
| 891 | 898 |
///\param g is the digraph, to which we would like to define |
| 892 | 899 |
///the DistMap |
| ... | ... |
@@ -895,24 +902,20 @@ |
| 895 | 902 |
return new DistMap(g); |
| 896 | 903 |
} |
| 897 | 904 |
|
| 898 | 905 |
///The type of the shortest paths. |
| 899 | 906 |
|
| 900 | 907 |
///The type of the shortest paths. |
| 901 |
///It must |
|
| 908 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 902 | 909 |
typedef lemon::Path<Digraph> Path; |
| 903 | 910 |
}; |
| 904 | 911 |
|
| 905 | 912 |
/// Default traits class used by BfsWizard |
| 906 | 913 |
|
| 907 |
/// To make it easier to use Bfs algorithm |
|
| 908 |
/// we have created a wizard class. |
|
| 909 |
/// This \ref BfsWizard class needs default traits, |
|
| 910 |
/// as well as the \ref Bfs class. |
|
| 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
| 912 |
/// \ref BfsWizard class. |
|
| 914 |
/// Default traits class used by BfsWizard. |
|
| 915 |
/// \tparam GR The type of the digraph. |
|
| 913 | 916 |
template<class GR> |
| 914 | 917 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 915 | 918 |
{
|
| 916 | 919 |
|
| 917 | 920 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 918 | 921 |
protected: |
| ... | ... |
@@ -934,13 +937,13 @@ |
| 934 | 937 |
//Pointer to the distance of the target node. |
| 935 | 938 |
int *_di; |
| 936 | 939 |
|
| 937 | 940 |
public: |
| 938 | 941 |
/// Constructor. |
| 939 | 942 |
|
| 940 |
/// This constructor does not require parameters, |
|
| 943 |
/// This constructor does not require parameters, it initiates |
|
| 941 | 944 |
/// all of the attributes to \c 0. |
| 942 | 945 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 943 | 946 |
_dist(0), _path(0), _di(0) {}
|
| 944 | 947 |
|
| 945 | 948 |
/// Constructor. |
| 946 | 949 |
|
| ... | ... |
@@ -959,35 +962,31 @@ |
| 959 | 962 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 960 | 963 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 961 | 964 |
/// functions and features of the plain \ref Bfs. |
| 962 | 965 |
/// |
| 963 | 966 |
/// This class should only be used through the \ref bfs() function, |
| 964 | 967 |
/// which makes it easier to use the algorithm. |
| 968 |
/// |
|
| 969 |
/// \tparam TR The traits class that defines various types used by the |
|
| 970 |
/// algorithm. |
|
| 965 | 971 |
template<class TR> |
| 966 | 972 |
class BfsWizard : public TR |
| 967 | 973 |
{
|
| 968 | 974 |
typedef TR Base; |
| 969 | 975 |
|
| 970 |
///The type of the digraph the algorithm runs on. |
|
| 971 | 976 |
typedef typename TR::Digraph Digraph; |
| 972 | 977 |
|
| 973 | 978 |
typedef typename Digraph::Node Node; |
| 974 | 979 |
typedef typename Digraph::NodeIt NodeIt; |
| 975 | 980 |
typedef typename Digraph::Arc Arc; |
| 976 | 981 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 977 | 982 |
|
| 978 |
///\brief The type of the map that stores the predecessor |
|
| 979 |
///arcs of the shortest paths. |
|
| 980 | 983 |
typedef typename TR::PredMap PredMap; |
| 981 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 982 | 984 |
typedef typename TR::DistMap DistMap; |
| 983 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 984 | 985 |
typedef typename TR::ReachedMap ReachedMap; |
| 985 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 986 | 986 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 987 |
///The type of the shortest paths |
|
| 988 | 987 |
typedef typename TR::Path Path; |
| 989 | 988 |
|
| 990 | 989 |
public: |
| 991 | 990 |
|
| 992 | 991 |
/// Constructor. |
| 993 | 992 |
BfsWizard() : TR() {}
|
| ... | ... |
@@ -1051,30 +1050,31 @@ |
| 1051 | 1050 |
*Base::_di = alg.dist(t); |
| 1052 | 1051 |
return alg.reached(t); |
| 1053 | 1052 |
} |
| 1054 | 1053 |
|
| 1055 | 1054 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1056 | 1055 |
|
| 1057 |
///This method runs BFS algorithm in order to compute |
|
| 1058 |
///the shortest path to each node. |
|
| 1056 |
///This method runs BFS algorithm in order to visit all nodes |
|
| 1057 |
///in the digraph. |
|
| 1059 | 1058 |
void run() |
| 1060 | 1059 |
{
|
| 1061 | 1060 |
run(INVALID); |
| 1062 | 1061 |
} |
| 1063 | 1062 |
|
| 1064 | 1063 |
template<class T> |
| 1065 | 1064 |
struct SetPredMapBase : public Base {
|
| 1066 | 1065 |
typedef T PredMap; |
| 1067 | 1066 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1067 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1068 |
}; |
| 1070 |
///\brief \ref named-func-param "Named parameter" |
|
| 1071 |
///for setting PredMap object. |
|
| 1069 |
|
|
| 1070 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1071 |
///the predecessor map. |
|
| 1072 | 1072 |
/// |
| 1073 |
///\ref named-func-param "Named parameter" |
|
| 1074 |
///for setting PredMap object. |
|
| 1073 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1074 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1075 | 1075 |
template<class T> |
| 1076 | 1076 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1077 | 1077 |
{
|
| 1078 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1079 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1080 |
} |
| ... | ... |
@@ -1082,17 +1082,18 @@ |
| 1082 | 1082 |
template<class T> |
| 1083 | 1083 |
struct SetReachedMapBase : public Base {
|
| 1084 | 1084 |
typedef T ReachedMap; |
| 1085 | 1085 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1086 | 1086 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1087 | 1087 |
}; |
| 1088 |
///\brief \ref named-func-param "Named parameter" |
|
| 1089 |
///for setting ReachedMap object. |
|
| 1088 |
|
|
| 1089 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1090 |
///the reached map. |
|
| 1090 | 1091 |
/// |
| 1091 |
/// \ref named-func-param "Named parameter" |
|
| 1092 |
///for setting ReachedMap object. |
|
| 1092 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1093 |
///the map that indicates which nodes are reached. |
|
| 1093 | 1094 |
template<class T> |
| 1094 | 1095 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1095 | 1096 |
{
|
| 1096 | 1097 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1097 | 1098 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1098 | 1099 |
} |
| ... | ... |
@@ -1100,17 +1101,19 @@ |
| 1100 | 1101 |
template<class T> |
| 1101 | 1102 |
struct SetDistMapBase : public Base {
|
| 1102 | 1103 |
typedef T DistMap; |
| 1103 | 1104 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1104 | 1105 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1105 | 1106 |
}; |
| 1106 |
///\brief \ref named-func-param "Named parameter" |
|
| 1107 |
///for setting DistMap object. |
|
| 1107 |
|
|
| 1108 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1109 |
///the distance map. |
|
| 1108 | 1110 |
/// |
| 1109 |
/// \ref named-func-param "Named parameter" |
|
| 1110 |
///for setting DistMap object. |
|
| 1111 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1112 |
///the map that stores the distances of the nodes calculated |
|
| 1113 |
///by the algorithm. |
|
| 1111 | 1114 |
template<class T> |
| 1112 | 1115 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1113 | 1116 |
{
|
| 1114 | 1117 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1115 | 1118 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1116 | 1119 |
} |
| ... | ... |
@@ -1118,17 +1121,18 @@ |
| 1118 | 1121 |
template<class T> |
| 1119 | 1122 |
struct SetProcessedMapBase : public Base {
|
| 1120 | 1123 |
typedef T ProcessedMap; |
| 1121 | 1124 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1122 | 1125 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1123 | 1126 |
}; |
| 1124 |
///\brief \ref named-func-param "Named parameter" |
|
| 1125 |
///for setting ProcessedMap object. |
|
| 1127 |
|
|
| 1128 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1129 |
///the processed map. |
|
| 1126 | 1130 |
/// |
| 1127 |
/// \ref named-func-param "Named parameter" |
|
| 1128 |
///for setting ProcessedMap object. |
|
| 1131 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1132 |
///the map that indicates which nodes are processed. |
|
| 1129 | 1133 |
template<class T> |
| 1130 | 1134 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1131 | 1135 |
{
|
| 1132 | 1136 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1133 | 1137 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1134 | 1138 |
} |
| ... | ... |
@@ -1261,13 +1265,14 @@ |
| 1261 | 1265 |
/// \brief The type of the digraph the algorithm runs on. |
| 1262 | 1266 |
typedef GR Digraph; |
| 1263 | 1267 |
|
| 1264 | 1268 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1265 | 1269 |
/// |
| 1266 | 1270 |
/// The type of the map that indicates which nodes are reached. |
| 1267 |
/// It must |
|
| 1271 |
/// It must conform to |
|
| 1272 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1268 | 1273 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1269 | 1274 |
|
| 1270 | 1275 |
/// \brief Instantiates a ReachedMap. |
| 1271 | 1276 |
/// |
| 1272 | 1277 |
/// This function instantiates a ReachedMap. |
| 1273 | 1278 |
/// \param digraph is the digraph, to which |
| ... | ... |
@@ -1299,17 +1304,17 @@ |
| 1299 | 1304 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1300 | 1305 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
| 1301 | 1306 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1302 | 1307 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
| 1303 | 1308 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1304 | 1309 |
/// events, you should implement your own visitor class. |
| 1305 |
/// \tparam TR Traits class to set various data types used by the |
|
| 1306 |
/// algorithm. The default traits class is |
|
| 1307 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
|
| 1308 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
|
| 1309 |
/// |
|
| 1310 |
/// \tparam TR The traits class that defines various types used by the |
|
| 1311 |
/// algorithm. By default, it is \ref BfsVisitDefaultTraits |
|
| 1312 |
/// "BfsVisitDefaultTraits<GR>". |
|
| 1313 |
/// In most cases, this parameter should not be set directly, |
|
| 1314 |
/// consider to use the named template parameters instead. |
|
| 1310 | 1315 |
#ifdef DOXYGEN |
| 1311 | 1316 |
template <typename GR, typename VS, typename TR> |
| 1312 | 1317 |
#else |
| 1313 | 1318 |
template <typename GR = ListDigraph, |
| 1314 | 1319 |
typename VS = BfsVisitor<GR>, |
| 1315 | 1320 |
typename TR = BfsVisitDefaultTraits<GR> > |
| ... | ... |
@@ -1422,14 +1427,14 @@ |
| 1422 | 1427 |
|
| 1423 | 1428 |
public: |
| 1424 | 1429 |
|
| 1425 | 1430 |
/// \name Execution Control |
| 1426 | 1431 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1427 | 1432 |
/// member functions called \ref run(Node) "run()".\n |
| 1428 |
/// If you need more control on the execution, first you have to call |
|
| 1429 |
/// \ref init(), then you can add several source nodes with |
|
| 1433 |
/// If you need better control on the execution, you have to call |
|
| 1434 |
/// \ref init() first, then you can add several source nodes with |
|
| 1430 | 1435 |
/// \ref addSource(). Finally the actual path computation can be |
| 1431 | 1436 |
/// performed with one of the \ref start() functions. |
| 1432 | 1437 |
|
| 1433 | 1438 |
/// @{
|
| 1434 | 1439 |
|
| 1435 | 1440 |
/// \brief Initializes the internal data structures. |
| ... | ... |
@@ -1695,18 +1700,14 @@ |
| 1695 | 1700 |
start(t); |
| 1696 | 1701 |
return reached(t); |
| 1697 | 1702 |
} |
| 1698 | 1703 |
|
| 1699 | 1704 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1700 | 1705 |
/// |
| 1701 |
/// This method runs the %BFS algorithm in order to |
|
| 1702 |
/// compute the shortest path to each node. |
|
| 1703 |
/// |
|
| 1704 |
/// The algorithm computes |
|
| 1705 |
/// - the shortest path tree (forest), |
|
| 1706 |
/// - the distance of each node from the root(s). |
|
| 1706 |
/// This method runs the %BFS algorithm in order to visit all nodes |
|
| 1707 |
/// in the digraph. |
|
| 1707 | 1708 |
/// |
| 1708 | 1709 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1709 | 1710 |
///\code |
| 1710 | 1711 |
/// b.init(); |
| 1711 | 1712 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1712 | 1713 |
/// if (!b.reached(n)) {
|
| ... | ... |
@@ -1732,13 +1733,13 @@ |
| 1732 | 1733 |
/// functions.\n |
| 1733 | 1734 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1734 | 1735 |
/// before using them. |
| 1735 | 1736 |
|
| 1736 | 1737 |
///@{
|
| 1737 | 1738 |
|
| 1738 |
/// \brief Checks if |
|
| 1739 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1739 | 1740 |
/// |
| 1740 | 1741 |
/// Returns \c true if \c v is reached from the root(s). |
| 1741 | 1742 |
/// |
| 1742 | 1743 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1743 | 1744 |
/// must be called before using this function. |
| 1744 | 1745 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| ... | ... |
@@ -16,61 +16,57 @@ |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Binary |
|
| 24 |
///\brief Binary heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 |
///\ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 |
///\brief |
|
| 34 |
/// \brief Binary heap data structure. |
|
| 35 | 35 |
/// |
| 36 |
///This class implements the \e binary \e heap data structure. |
|
| 36 |
/// This class implements the \e binary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 37 | 38 |
/// |
| 38 |
///A \e heap is a data structure for storing items with specified values |
|
| 39 |
///called \e priorities in such a way that finding the item with minimum |
|
| 40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
| 41 |
///In a heap one can change the priority of an item, add or erase an |
|
| 42 |
///item, etc. |
|
| 43 |
/// |
|
| 44 |
///\tparam PR Type of the priority of the items. |
|
| 45 |
///\tparam IM A read and writable item map with int values, used internally |
|
| 46 |
///to handle the cross references. |
|
| 47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
| 48 |
///The default is \c std::less<PR>. |
|
| 49 |
/// |
|
| 50 |
///\sa FibHeap |
|
| 51 |
///\sa Dijkstra |
|
| 39 |
/// \tparam PR Type of the priorities of the items. |
|
| 40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 41 |
/// internally to handle the cross references. |
|
| 42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 43 |
/// The default is \c std::less<PR>. |
|
| 44 |
#ifdef DOXYGEN |
|
| 45 |
template <typename PR, typename IM, typename CMP> |
|
| 46 |
#else |
|
| 52 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 48 |
#endif |
|
| 53 | 49 |
class BinHeap {
|
| 50 |
public: |
|
| 54 | 51 |
|
| 55 |
public: |
|
| 56 |
///\e |
|
| 52 |
/// Type of the item-int map. |
|
| 57 | 53 |
typedef IM ItemIntMap; |
| 58 |
/// |
|
| 54 |
/// Type of the priorities. |
|
| 59 | 55 |
typedef PR Prio; |
| 60 |
/// |
|
| 56 |
/// Type of the items stored in the heap. |
|
| 61 | 57 |
typedef typename ItemIntMap::Key Item; |
| 62 |
/// |
|
| 58 |
/// Type of the item-priority pairs. |
|
| 63 | 59 |
typedef std::pair<Item,Prio> Pair; |
| 64 |
/// |
|
| 60 |
/// Functor type for comparing the priorities. |
|
| 65 | 61 |
typedef CMP Compare; |
| 66 | 62 |
|
| 67 |
/// \brief Type to represent the |
|
| 63 |
/// \brief Type to represent the states of the items. |
|
| 68 | 64 |
/// |
| 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 65 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 | 67 |
/// heap's point of view, but may be useful to the user. |
| 72 | 68 |
/// |
| 73 | 69 |
/// The item-int map must be initialized in such way that it assigns |
| 74 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 75 | 71 |
enum State {
|
| 76 | 72 |
IN_HEAP = 0, ///< = 0. |
| ... | ... |
@@ -81,82 +77,83 @@ |
| 81 | 77 |
private: |
| 82 | 78 |
std::vector<Pair> _data; |
| 83 | 79 |
Compare _comp; |
| 84 | 80 |
ItemIntMap &_iim; |
| 85 | 81 |
|
| 86 | 82 |
public: |
| 87 |
|
|
| 83 |
|
|
| 84 |
/// \brief Constructor. |
|
| 88 | 85 |
/// |
| 89 |
/// The constructor. |
|
| 90 |
/// \param map should be given to the constructor, since it is used |
|
| 91 |
/// internally to handle the cross references. The value of the map |
|
| 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
| 86 |
/// Constructor. |
|
| 87 |
/// \param map A map that assigns \c int values to the items. |
|
| 88 |
/// It is used internally to handle the cross references. |
|
| 89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
|
| 94 | 91 |
|
| 95 |
/// \brief |
|
| 92 |
/// \brief Constructor. |
|
| 96 | 93 |
/// |
| 97 |
/// The constructor. |
|
| 98 |
/// \param map should be given to the constructor, since it is used |
|
| 99 |
/// internally to handle the cross references. The value of the map |
|
| 100 |
/// should be PRE_HEAP (-1) for each element. |
|
| 101 |
/// |
|
| 102 |
/// \param comp The comparator function object. |
|
| 94 |
/// Constructor. |
|
| 95 |
/// \param map A map that assigns \c int values to the items. |
|
| 96 |
/// It is used internally to handle the cross references. |
|
| 97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 98 |
/// \param comp The function object used for comparing the priorities. |
|
| 103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
| 104 | 100 |
: _iim(map), _comp(comp) {}
|
| 105 | 101 |
|
| 106 | 102 |
|
| 107 |
/// The number of items stored in the heap. |
|
| 103 |
/// \brief The number of items stored in the heap. |
|
| 108 | 104 |
/// |
| 109 |
/// |
|
| 105 |
/// This function returns the number of items stored in the heap. |
|
| 110 | 106 |
int size() const { return _data.size(); }
|
| 111 | 107 |
|
| 112 |
/// \brief |
|
| 108 |
/// \brief Check if the heap is empty. |
|
| 113 | 109 |
/// |
| 114 |
/// |
|
| 110 |
/// This function returns \c true if the heap is empty. |
|
| 115 | 111 |
bool empty() const { return _data.empty(); }
|
| 116 | 112 |
|
| 117 |
/// \brief Make |
|
| 113 |
/// \brief Make the heap empty. |
|
| 118 | 114 |
/// |
| 119 |
/// Make empty this heap. It does not change the cross reference map. |
|
| 120 |
/// If you want to reuse what is not surely empty you should first clear |
|
| 121 |
/// the heap and after that you should set the cross reference map for |
|
| 122 |
/// each item to \c PRE_HEAP. |
|
| 115 |
/// This functon makes the heap empty. |
|
| 116 |
/// It does not change the cross reference map. If you want to reuse |
|
| 117 |
/// a heap that is not surely empty, you should first clear it and |
|
| 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 119 |
/// for each item. |
|
| 123 | 120 |
void clear() {
|
| 124 | 121 |
_data.clear(); |
| 125 | 122 |
} |
| 126 | 123 |
|
| 127 | 124 |
private: |
| 128 | 125 |
static int parent(int i) { return (i-1)/2; }
|
| 129 | 126 |
|
| 130 |
static int |
|
| 127 |
static int secondChild(int i) { return 2*i+2; }
|
|
| 131 | 128 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 132 | 129 |
return _comp(p1.second, p2.second); |
| 133 | 130 |
} |
| 134 | 131 |
|
| 135 |
int |
|
| 132 |
int bubbleUp(int hole, Pair p) {
|
|
| 136 | 133 |
int par = parent(hole); |
| 137 | 134 |
while( hole>0 && less(p,_data[par]) ) {
|
| 138 | 135 |
move(_data[par],hole); |
| 139 | 136 |
hole = par; |
| 140 | 137 |
par = parent(hole); |
| 141 | 138 |
} |
| 142 | 139 |
move(p, hole); |
| 143 | 140 |
return hole; |
| 144 | 141 |
} |
| 145 | 142 |
|
| 146 |
int bubble_down(int hole, Pair p, int length) {
|
|
| 147 |
int child = second_child(hole); |
|
| 143 |
int bubbleDown(int hole, Pair p, int length) {
|
|
| 144 |
int child = secondChild(hole); |
|
| 148 | 145 |
while(child < length) {
|
| 149 | 146 |
if( less(_data[child-1], _data[child]) ) {
|
| 150 | 147 |
--child; |
| 151 | 148 |
} |
| 152 | 149 |
if( !less(_data[child], p) ) |
| 153 | 150 |
goto ok; |
| 154 | 151 |
move(_data[child], hole); |
| 155 | 152 |
hole = child; |
| 156 |
child = |
|
| 153 |
child = secondChild(hole); |
|
| 157 | 154 |
} |
| 158 | 155 |
child--; |
| 159 | 156 |
if( child<length && less(_data[child], p) ) {
|
| 160 | 157 |
move(_data[child], hole); |
| 161 | 158 |
hole=child; |
| 162 | 159 |
} |
| ... | ... |
@@ -168,152 +165,154 @@ |
| 168 | 165 |
void move(const Pair &p, int i) {
|
| 169 | 166 |
_data[i] = p; |
| 170 | 167 |
_iim.set(p.first, i); |
| 171 | 168 |
} |
| 172 | 169 |
|
| 173 | 170 |
public: |
| 171 |
|
|
| 174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
| 175 | 173 |
/// |
| 176 |
/// |
|
| 174 |
/// This function inserts \c p.first to the heap with priority |
|
| 175 |
/// \c p.second. |
|
| 177 | 176 |
/// \param p The pair to insert. |
| 177 |
/// \pre \c p.first must not be stored in the heap. |
|
| 178 | 178 |
void push(const Pair &p) {
|
| 179 | 179 |
int n = _data.size(); |
| 180 | 180 |
_data.resize(n+1); |
| 181 |
|
|
| 181 |
bubbleUp(n, p); |
|
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 |
/// \brief Insert an item into the heap with the given |
|
| 184 |
/// \brief Insert an item into the heap with the given priority. |
|
| 185 | 185 |
/// |
| 186 |
/// |
|
| 186 |
/// This function inserts the given item into the heap with the |
|
| 187 |
/// given priority. |
|
| 187 | 188 |
/// \param i The item to insert. |
| 188 | 189 |
/// \param p The priority of the item. |
| 190 |
/// \pre \e i must not be stored in the heap. |
|
| 189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
| 190 | 192 |
|
| 191 |
/// \brief |
|
| 193 |
/// \brief Return the item having minimum priority. |
|
| 192 | 194 |
/// |
| 193 |
/// This method returns the item with minimum priority relative to \c |
|
| 194 |
/// Compare. |
|
| 195 |
/// |
|
| 195 |
/// This function returns the item having minimum priority. |
|
| 196 |
/// \pre The heap must be non-empty. |
|
| 196 | 197 |
Item top() const {
|
| 197 | 198 |
return _data[0].first; |
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 |
/// \brief |
|
| 201 |
/// \brief The minimum priority. |
|
| 201 | 202 |
/// |
| 202 |
/// It returns the minimum priority relative to \c Compare. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 203 |
/// This function returns the minimum priority. |
|
| 204 |
/// \pre The heap must be non-empty. |
|
| 204 | 205 |
Prio prio() const {
|
| 205 | 206 |
return _data[0].second; |
| 206 | 207 |
} |
| 207 | 208 |
|
| 208 |
/// \brief |
|
| 209 |
/// \brief Remove the item having minimum priority. |
|
| 209 | 210 |
/// |
| 210 |
/// This method deletes the item with minimum priority relative to \c |
|
| 211 |
/// Compare from the heap. |
|
| 211 |
/// This function removes the item having minimum priority. |
|
| 212 | 212 |
/// \pre The heap must be non-empty. |
| 213 | 213 |
void pop() {
|
| 214 | 214 |
int n = _data.size()-1; |
| 215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
| 216 | 216 |
if (n > 0) {
|
| 217 |
|
|
| 217 |
bubbleDown(0, _data[n], n); |
|
| 218 | 218 |
} |
| 219 | 219 |
_data.pop_back(); |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 |
/// \brief |
|
| 222 |
/// \brief Remove the given item from the heap. |
|
| 223 | 223 |
/// |
| 224 |
/// This method deletes item \c i from the heap. |
|
| 225 |
/// \param i The item to erase. |
|
| 226 |
/// |
|
| 224 |
/// This function removes the given item from the heap if it is |
|
| 225 |
/// already stored. |
|
| 226 |
/// \param i The item to delete. |
|
| 227 |
/// \pre \e i must be in the heap. |
|
| 227 | 228 |
void erase(const Item &i) {
|
| 228 | 229 |
int h = _iim[i]; |
| 229 | 230 |
int n = _data.size()-1; |
| 230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
| 231 | 232 |
if( h < n ) {
|
| 232 |
if ( bubble_up(h, _data[n]) == h) {
|
|
| 233 |
bubble_down(h, _data[n], n); |
|
| 233 |
if ( bubbleUp(h, _data[n]) == h) {
|
|
| 234 |
bubbleDown(h, _data[n], n); |
|
| 234 | 235 |
} |
| 235 | 236 |
} |
| 236 | 237 |
_data.pop_back(); |
| 237 | 238 |
} |
| 238 | 239 |
|
| 239 |
|
|
| 240 |
/// \brief Returns the priority of \c i. |
|
| 240 |
/// \brief The priority of the given item. |
|
| 241 | 241 |
/// |
| 242 |
/// This function returns the priority of |
|
| 242 |
/// This function returns the priority of the given item. |
|
| 243 | 243 |
/// \param i The item. |
| 244 |
/// \pre \ |
|
| 244 |
/// \pre \e i must be in the heap. |
|
| 245 | 245 |
Prio operator[](const Item &i) const {
|
| 246 | 246 |
int idx = _iim[i]; |
| 247 | 247 |
return _data[idx].second; |
| 248 | 248 |
} |
| 249 | 249 |
|
| 250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 251 |
/// if \c i was already there. |
|
| 250 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 251 |
/// not stored in the heap. |
|
| 252 | 252 |
/// |
| 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 253 |
/// This method sets the priority of the given item if it is |
|
| 254 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 255 |
/// item into the heap with the given priority. |
|
| 255 | 256 |
/// \param i The item. |
| 256 | 257 |
/// \param p The priority. |
| 257 | 258 |
void set(const Item &i, const Prio &p) {
|
| 258 | 259 |
int idx = _iim[i]; |
| 259 | 260 |
if( idx < 0 ) {
|
| 260 | 261 |
push(i,p); |
| 261 | 262 |
} |
| 262 | 263 |
else if( _comp(p, _data[idx].second) ) {
|
| 263 |
|
|
| 264 |
bubbleUp(idx, Pair(i,p)); |
|
| 264 | 265 |
} |
| 265 | 266 |
else {
|
| 266 |
|
|
| 267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 267 | 268 |
} |
| 268 | 269 |
} |
| 269 | 270 |
|
| 270 |
/// \brief |
|
| 271 |
/// \brief Decrease the priority of an item to the given value. |
|
| 271 | 272 |
/// |
| 272 |
/// This |
|
| 273 |
/// This function decreases the priority of an item to the given value. |
|
| 273 | 274 |
/// \param i The item. |
| 274 | 275 |
/// \param p The priority. |
| 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 276 |
/// p relative to \c Compare. |
|
| 276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 277 | 277 |
void decrease(const Item &i, const Prio &p) {
|
| 278 | 278 |
int idx = _iim[i]; |
| 279 |
|
|
| 279 |
bubbleUp(idx, Pair(i,p)); |
|
| 280 | 280 |
} |
| 281 | 281 |
|
| 282 |
/// \brief |
|
| 282 |
/// \brief Increase the priority of an item to the given value. |
|
| 283 | 283 |
/// |
| 284 |
/// This |
|
| 284 |
/// This function increases the priority of an item to the given value. |
|
| 285 | 285 |
/// \param i The item. |
| 286 | 286 |
/// \param p The priority. |
| 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 288 |
/// p relative to \c Compare. |
|
| 287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 289 | 288 |
void increase(const Item &i, const Prio &p) {
|
| 290 | 289 |
int idx = _iim[i]; |
| 291 |
|
|
| 290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 292 | 291 |
} |
| 293 | 292 |
|
| 294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 295 |
/// never been in the heap. |
|
| 293 |
/// \brief Return the state of an item. |
|
| 296 | 294 |
/// |
| 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 299 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 300 |
/// get back to the heap again. |
|
| 295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 297 |
/// and \c POST_HEAP otherwise. |
|
| 298 |
/// In the latter case it is possible that the item will get back |
|
| 299 |
/// to the heap again. |
|
| 301 | 300 |
/// \param i The item. |
| 302 | 301 |
State state(const Item &i) const {
|
| 303 | 302 |
int s = _iim[i]; |
| 304 | 303 |
if( s>=0 ) |
| 305 | 304 |
s=0; |
| 306 | 305 |
return State(s); |
| 307 | 306 |
} |
| 308 | 307 |
|
| 309 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 310 | 309 |
/// |
| 311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 312 |
/// manually clear the heap when it is important to achive the |
|
| 313 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 314 | 313 |
/// \param i The item. |
| 315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| 316 | 315 |
void state(const Item& i, State st) {
|
| 317 | 316 |
switch (st) {
|
| 318 | 317 |
case POST_HEAP: |
| 319 | 318 |
case PRE_HEAP: |
| ... | ... |
@@ -324,18 +323,19 @@ |
| 324 | 323 |
break; |
| 325 | 324 |
case IN_HEAP: |
| 326 | 325 |
break; |
| 327 | 326 |
} |
| 328 | 327 |
} |
| 329 | 328 |
|
| 330 |
/// \brief |
|
| 329 |
/// \brief Replace an item in the heap. |
|
| 331 | 330 |
/// |
| 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
| 333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
| 334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
| 335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
| 331 |
/// This function replaces item \c i with item \c j. |
|
| 332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 333 |
/// After calling this method, item \c i will be out of the |
|
| 334 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 335 |
/// as item \c i had before. |
|
| 336 | 336 |
void replace(const Item& i, const Item& j) {
|
| 337 | 337 |
int idx = _iim[i]; |
| 338 | 338 |
_iim.set(i, _iim[j]); |
| 339 | 339 |
_iim.set(j, idx); |
| 340 | 340 |
_data[idx].first = j; |
| 341 | 341 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -67,13 +67,13 @@ |
| 67 | 67 |
typedef ArrayMap Map; |
| 68 | 68 |
|
| 69 | 69 |
// The notifier type. |
| 70 | 70 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
| 71 | 71 |
|
| 72 | 72 |
private: |
| 73 |
|
|
| 73 |
|
|
| 74 | 74 |
// The MapBase of the Map which imlements the core regisitry function. |
| 75 | 75 |
typedef typename Notifier::ObserverBase Parent; |
| 76 | 76 |
|
| 77 | 77 |
typedef std::allocator<Value> Allocator; |
| 78 | 78 |
|
| 79 | 79 |
public: |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -154,13 +154,13 @@ |
| 154 | 154 |
class DefaultMap |
| 155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map {
|
| 156 | 156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
| 157 | 157 |
|
| 158 | 158 |
public: |
| 159 | 159 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
| 160 |
|
|
| 160 |
|
|
| 161 | 161 |
typedef typename Parent::GraphType GraphType; |
| 162 | 162 |
typedef typename Parent::Value Value; |
| 163 | 163 |
|
| 164 | 164 |
explicit DefaultMap(const GraphType& graph) : Parent(graph) {}
|
| 165 | 165 |
DefaultMap(const GraphType& graph, const Value& value) |
| 166 | 166 |
: Parent(graph, value) {}
|
| 1 |
/* -*- C++ -*- |
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 | 2 |
* |
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -60,17 +60,17 @@ |
| 60 | 60 |
Arc fromId(int id, Arc) const {
|
| 61 | 61 |
return Parent::arcFromId(id); |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const {
|
| 65 | 65 |
if (n == Parent::source(e)) |
| 66 |
|
|
| 66 |
return Parent::target(e); |
|
| 67 | 67 |
else if(n==Parent::target(e)) |
| 68 |
|
|
| 68 |
return Parent::source(e); |
|
| 69 | 69 |
else |
| 70 |
|
|
| 70 |
return INVALID; |
|
| 71 | 71 |
} |
| 72 | 72 |
|
| 73 | 73 |
|
| 74 | 74 |
// Alteration notifier extensions |
| 75 | 75 |
|
| 76 | 76 |
// The arc observer registry. |
| ... | ... |
@@ -88,101 +88,101 @@ |
| 88 | 88 |
ArcNotifier& notifier(Arc) const {
|
| 89 | 89 |
return arc_notifier; |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
// Iterable extensions |
| 93 | 93 |
|
| 94 |
class NodeIt : public Node {
|
|
| 94 |
class NodeIt : public Node {
|
|
| 95 | 95 |
const Digraph* digraph; |
| 96 | 96 |
public: |
| 97 | 97 |
|
| 98 | 98 |
NodeIt() {}
|
| 99 | 99 |
|
| 100 | 100 |
NodeIt(Invalid i) : Node(i) { }
|
| 101 | 101 |
|
| 102 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 103 |
|
|
| 103 |
_graph.first(static_cast<Node&>(*this)); |
|
| 104 | 104 |
} |
| 105 | 105 |
|
| 106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
| 107 |
: Node(node), digraph(&_graph) {}
|
|
| 106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
| 107 |
: Node(node), digraph(&_graph) {}
|
|
| 108 | 108 |
|
| 109 |
NodeIt& operator++() {
|
|
| 110 |
digraph->next(*this); |
|
| 111 |
|
|
| 109 |
NodeIt& operator++() {
|
|
| 110 |
digraph->next(*this); |
|
| 111 |
return *this; |
|
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
}; |
| 115 | 115 |
|
| 116 | 116 |
|
| 117 |
class ArcIt : public Arc {
|
|
| 117 |
class ArcIt : public Arc {
|
|
| 118 | 118 |
const Digraph* digraph; |
| 119 | 119 |
public: |
| 120 | 120 |
|
| 121 | 121 |
ArcIt() { }
|
| 122 | 122 |
|
| 123 | 123 |
ArcIt(Invalid i) : Arc(i) { }
|
| 124 | 124 |
|
| 125 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 126 |
|
|
| 126 |
_graph.first(static_cast<Arc&>(*this)); |
|
| 127 | 127 |
} |
| 128 | 128 |
|
| 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
| 130 |
Arc(e), digraph(&_graph) { }
|
|
| 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
| 130 |
Arc(e), digraph(&_graph) { }
|
|
| 131 | 131 |
|
| 132 |
ArcIt& operator++() {
|
|
| 133 |
digraph->next(*this); |
|
| 134 |
|
|
| 132 |
ArcIt& operator++() {
|
|
| 133 |
digraph->next(*this); |
|
| 134 |
return *this; |
|
| 135 | 135 |
} |
| 136 | 136 |
|
| 137 | 137 |
}; |
| 138 | 138 |
|
| 139 | 139 |
|
| 140 |
class OutArcIt : public Arc {
|
|
| 140 |
class OutArcIt : public Arc {
|
|
| 141 | 141 |
const Digraph* digraph; |
| 142 | 142 |
public: |
| 143 | 143 |
|
| 144 | 144 |
OutArcIt() { }
|
| 145 | 145 |
|
| 146 | 146 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 147 | 147 |
|
| 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
| 149 |
: digraph(&_graph) {
|
|
| 150 |
|
|
| 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
| 149 |
: digraph(&_graph) {
|
|
| 150 |
_graph.firstOut(*this, node); |
|
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
| 154 |
: Arc(arc), digraph(&_graph) {}
|
|
| 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
| 154 |
: Arc(arc), digraph(&_graph) {}
|
|
| 155 | 155 |
|
| 156 |
OutArcIt& operator++() {
|
|
| 157 |
digraph->nextOut(*this); |
|
| 158 |
|
|
| 156 |
OutArcIt& operator++() {
|
|
| 157 |
digraph->nextOut(*this); |
|
| 158 |
return *this; |
|
| 159 | 159 |
} |
| 160 | 160 |
|
| 161 | 161 |
}; |
| 162 | 162 |
|
| 163 | 163 |
|
| 164 |
class InArcIt : public Arc {
|
|
| 164 |
class InArcIt : public Arc {
|
|
| 165 | 165 |
const Digraph* digraph; |
| 166 | 166 |
public: |
| 167 | 167 |
|
| 168 | 168 |
InArcIt() { }
|
| 169 | 169 |
|
| 170 | 170 |
InArcIt(Invalid i) : Arc(i) { }
|
| 171 | 171 |
|
| 172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
| 173 |
: digraph(&_graph) {
|
|
| 174 |
|
|
| 172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
| 173 |
: digraph(&_graph) {
|
|
| 174 |
_graph.firstIn(*this, node); |
|
| 175 | 175 |
} |
| 176 | 176 |
|
| 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
| 178 |
Arc(arc), digraph(&_graph) {}
|
|
| 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
| 178 |
Arc(arc), digraph(&_graph) {}
|
|
| 179 | 179 |
|
| 180 |
InArcIt& operator++() {
|
|
| 181 |
digraph->nextIn(*this); |
|
| 182 |
|
|
| 180 |
InArcIt& operator++() {
|
|
| 181 |
digraph->nextIn(*this); |
|
| 182 |
return *this; |
|
| 183 | 183 |
} |
| 184 | 184 |
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
// \brief Base node of the iterator |
| 188 | 188 |
// |
| ... | ... |
@@ -212,45 +212,45 @@ |
| 212 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
| 213 | 213 |
} |
| 214 | 214 |
|
| 215 | 215 |
using Parent::first; |
| 216 | 216 |
|
| 217 | 217 |
// Mappable extension |
| 218 |
|
|
| 218 |
|
|
| 219 | 219 |
template <typename _Value> |
| 220 |
class ArcMap |
|
| 220 |
class ArcMap |
|
| 221 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 223 | 223 |
|
| 224 | 224 |
public: |
| 225 |
explicit ArcMap(const Digraph& _g) |
|
| 226 |
: Parent(_g) {}
|
|
| 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
| 228 |
: Parent(_g, _v) {}
|
|
| 225 |
explicit ArcMap(const Digraph& _g) |
|
| 226 |
: Parent(_g) {}
|
|
| 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
| 228 |
: Parent(_g, _v) {}
|
|
| 229 | 229 |
|
| 230 | 230 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 231 |
|
|
| 231 |
return operator=<ArcMap>(cmap); |
|
| 232 | 232 |
} |
| 233 | 233 |
|
| 234 | 234 |
template <typename CMap> |
| 235 | 235 |
ArcMap& operator=(const CMap& cmap) {
|
| 236 | 236 |
Parent::operator=(cmap); |
| 237 |
|
|
| 237 |
return *this; |
|
| 238 | 238 |
} |
| 239 | 239 |
|
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
|
| 243 | 243 |
// Alteration extension |
| 244 | 244 |
|
| 245 | 245 |
Arc addArc(const Node& from, const Node& to) {
|
| 246 | 246 |
Arc arc = Parent::addArc(from, to); |
| 247 | 247 |
notifier(Arc()).add(arc); |
| 248 | 248 |
return arc; |
| 249 | 249 |
} |
| 250 |
|
|
| 250 |
|
|
| 251 | 251 |
void clear() {
|
| 252 | 252 |
notifier(Arc()).clear(); |
| 253 | 253 |
Parent::clear(); |
| 254 | 254 |
} |
| 255 | 255 |
|
| 256 | 256 |
void erase(const Arc& arc) {
|
| ... | ... |
@@ -309,17 +309,17 @@ |
| 309 | 309 |
Edge fromId(int id, Edge) const {
|
| 310 | 310 |
return Parent::edgeFromId(id); |
| 311 | 311 |
} |
| 312 | 312 |
|
| 313 | 313 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 314 | 314 |
if( n == Parent::u(e)) |
| 315 |
|
|
| 315 |
return Parent::v(e); |
|
| 316 | 316 |
else if( n == Parent::v(e)) |
| 317 |
|
|
| 317 |
return Parent::u(e); |
|
| 318 | 318 |
else |
| 319 |
|
|
| 319 |
return INVALID; |
|
| 320 | 320 |
} |
| 321 | 321 |
|
| 322 | 322 |
Arc oppositeArc(const Arc &e) const {
|
| 323 | 323 |
return Parent::direct(e, !Parent::direction(e)); |
| 324 | 324 |
} |
| 325 | 325 |
|
| ... | ... |
@@ -337,134 +337,134 @@ |
| 337 | 337 |
mutable ArcNotifier arc_notifier; |
| 338 | 338 |
mutable EdgeNotifier edge_notifier; |
| 339 | 339 |
|
| 340 | 340 |
public: |
| 341 | 341 |
|
| 342 | 342 |
using Parent::notifier; |
| 343 |
|
|
| 343 |
|
|
| 344 | 344 |
ArcNotifier& notifier(Arc) const {
|
| 345 | 345 |
return arc_notifier; |
| 346 | 346 |
} |
| 347 | 347 |
|
| 348 | 348 |
EdgeNotifier& notifier(Edge) const {
|
| 349 | 349 |
return edge_notifier; |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
|
| 353 |
class NodeIt : public Node {
|
|
| 353 |
class NodeIt : public Node {
|
|
| 354 | 354 |
const Graph* graph; |
| 355 | 355 |
public: |
| 356 | 356 |
|
| 357 | 357 |
NodeIt() {}
|
| 358 | 358 |
|
| 359 | 359 |
NodeIt(Invalid i) : Node(i) { }
|
| 360 | 360 |
|
| 361 | 361 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) {
|
| 362 |
|
|
| 362 |
_graph.first(static_cast<Node&>(*this)); |
|
| 363 | 363 |
} |
| 364 | 364 |
|
| 365 |
NodeIt(const Graph& _graph, const Node& node) |
|
| 366 |
: Node(node), graph(&_graph) {}
|
|
| 365 |
NodeIt(const Graph& _graph, const Node& node) |
|
| 366 |
: Node(node), graph(&_graph) {}
|
|
| 367 | 367 |
|
| 368 |
NodeIt& operator++() {
|
|
| 369 |
graph->next(*this); |
|
| 370 |
|
|
| 368 |
NodeIt& operator++() {
|
|
| 369 |
graph->next(*this); |
|
| 370 |
return *this; |
|
| 371 | 371 |
} |
| 372 | 372 |
|
| 373 | 373 |
}; |
| 374 | 374 |
|
| 375 | 375 |
|
| 376 |
class ArcIt : public Arc {
|
|
| 376 |
class ArcIt : public Arc {
|
|
| 377 | 377 |
const Graph* graph; |
| 378 | 378 |
public: |
| 379 | 379 |
|
| 380 | 380 |
ArcIt() { }
|
| 381 | 381 |
|
| 382 | 382 |
ArcIt(Invalid i) : Arc(i) { }
|
| 383 | 383 |
|
| 384 | 384 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) {
|
| 385 |
|
|
| 385 |
_graph.first(static_cast<Arc&>(*this)); |
|
| 386 | 386 |
} |
| 387 | 387 |
|
| 388 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
| 389 |
Arc(e), graph(&_graph) { }
|
|
| 388 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
| 389 |
Arc(e), graph(&_graph) { }
|
|
| 390 | 390 |
|
| 391 |
ArcIt& operator++() {
|
|
| 392 |
graph->next(*this); |
|
| 393 |
|
|
| 391 |
ArcIt& operator++() {
|
|
| 392 |
graph->next(*this); |
|
| 393 |
return *this; |
|
| 394 | 394 |
} |
| 395 | 395 |
|
| 396 | 396 |
}; |
| 397 | 397 |
|
| 398 | 398 |
|
| 399 |
class OutArcIt : public Arc {
|
|
| 399 |
class OutArcIt : public Arc {
|
|
| 400 | 400 |
const Graph* graph; |
| 401 | 401 |
public: |
| 402 | 402 |
|
| 403 | 403 |
OutArcIt() { }
|
| 404 | 404 |
|
| 405 | 405 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 406 | 406 |
|
| 407 |
OutArcIt(const Graph& _graph, const Node& node) |
|
| 408 |
: graph(&_graph) {
|
|
| 409 |
|
|
| 407 |
OutArcIt(const Graph& _graph, const Node& node) |
|
| 408 |
: graph(&_graph) {
|
|
| 409 |
_graph.firstOut(*this, node); |
|
| 410 | 410 |
} |
| 411 | 411 |
|
| 412 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
| 413 |
: Arc(arc), graph(&_graph) {}
|
|
| 412 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
| 413 |
: Arc(arc), graph(&_graph) {}
|
|
| 414 | 414 |
|
| 415 |
OutArcIt& operator++() {
|
|
| 416 |
graph->nextOut(*this); |
|
| 417 |
|
|
| 415 |
OutArcIt& operator++() {
|
|
| 416 |
graph->nextOut(*this); |
|
| 417 |
return *this; |
|
| 418 | 418 |
} |
| 419 | 419 |
|
| 420 | 420 |
}; |
| 421 | 421 |
|
| 422 | 422 |
|
| 423 |
class InArcIt : public Arc {
|
|
| 423 |
class InArcIt : public Arc {
|
|
| 424 | 424 |
const Graph* graph; |
| 425 | 425 |
public: |
| 426 | 426 |
|
| 427 | 427 |
InArcIt() { }
|
| 428 | 428 |
|
| 429 | 429 |
InArcIt(Invalid i) : Arc(i) { }
|
| 430 | 430 |
|
| 431 |
InArcIt(const Graph& _graph, const Node& node) |
|
| 432 |
: graph(&_graph) {
|
|
| 433 |
|
|
| 431 |
InArcIt(const Graph& _graph, const Node& node) |
|
| 432 |
: graph(&_graph) {
|
|
| 433 |
_graph.firstIn(*this, node); |
|
| 434 | 434 |
} |
| 435 | 435 |
|
| 436 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
| 437 |
Arc(arc), graph(&_graph) {}
|
|
| 436 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
| 437 |
Arc(arc), graph(&_graph) {}
|
|
| 438 | 438 |
|
| 439 |
InArcIt& operator++() {
|
|
| 440 |
graph->nextIn(*this); |
|
| 441 |
|
|
| 439 |
InArcIt& operator++() {
|
|
| 440 |
graph->nextIn(*this); |
|
| 441 |
return *this; |
|
| 442 | 442 |
} |
| 443 | 443 |
|
| 444 | 444 |
}; |
| 445 | 445 |
|
| 446 | 446 |
|
| 447 |
class EdgeIt : public Parent::Edge {
|
|
| 447 |
class EdgeIt : public Parent::Edge {
|
|
| 448 | 448 |
const Graph* graph; |
| 449 | 449 |
public: |
| 450 | 450 |
|
| 451 | 451 |
EdgeIt() { }
|
| 452 | 452 |
|
| 453 | 453 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 454 | 454 |
|
| 455 | 455 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) {
|
| 456 |
|
|
| 456 |
_graph.first(static_cast<Edge&>(*this)); |
|
| 457 | 457 |
} |
| 458 | 458 |
|
| 459 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
| 460 |
Edge(e), graph(&_graph) { }
|
|
| 459 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
| 460 |
Edge(e), graph(&_graph) { }
|
|
| 461 | 461 |
|
| 462 |
EdgeIt& operator++() {
|
|
| 463 |
graph->next(*this); |
|
| 464 |
|
|
| 462 |
EdgeIt& operator++() {
|
|
| 463 |
graph->next(*this); |
|
| 464 |
return *this; |
|
| 465 | 465 |
} |
| 466 | 466 |
|
| 467 | 467 |
}; |
| 468 | 468 |
|
| 469 | 469 |
class IncEdgeIt : public Parent::Edge {
|
| 470 | 470 |
friend class EdgeSetExtender; |
| ... | ... |
@@ -474,23 +474,23 @@ |
| 474 | 474 |
|
| 475 | 475 |
IncEdgeIt() { }
|
| 476 | 476 |
|
| 477 | 477 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
|
| 478 | 478 |
|
| 479 | 479 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) {
|
| 480 |
|
|
| 480 |
_graph.firstInc(*this, direction, n); |
|
| 481 | 481 |
} |
| 482 | 482 |
|
| 483 | 483 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
| 484 |
: graph(&_graph), Edge(ue) {
|
|
| 485 |
direction = (_graph.source(ue) == n); |
|
| 484 |
: graph(&_graph), Edge(ue) {
|
|
| 485 |
direction = (_graph.source(ue) == n); |
|
| 486 | 486 |
} |
| 487 | 487 |
|
| 488 | 488 |
IncEdgeIt& operator++() {
|
| 489 |
graph->nextInc(*this, direction); |
|
| 490 |
return *this; |
|
| 489 |
graph->nextInc(*this, direction); |
|
| 490 |
return *this; |
|
| 491 | 491 |
} |
| 492 | 492 |
}; |
| 493 | 493 |
|
| 494 | 494 |
// \brief Base node of the iterator |
| 495 | 495 |
// |
| 496 | 496 |
// Returns the base node (ie. the source in this case) of the iterator |
| ... | ... |
@@ -531,55 +531,55 @@ |
| 531 | 531 |
Node runningNode(const IncEdgeIt &e) const {
|
| 532 | 532 |
return e.direction ? v(e) : u(e); |
| 533 | 533 |
} |
| 534 | 534 |
|
| 535 | 535 |
|
| 536 | 536 |
template <typename _Value> |
| 537 |
class ArcMap |
|
| 537 |
class ArcMap |
|
| 538 | 538 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > {
|
| 539 | 539 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
| 540 | 540 |
|
| 541 | 541 |
public: |
| 542 |
explicit ArcMap(const Graph& _g) |
|
| 543 |
: Parent(_g) {}
|
|
| 544 |
ArcMap(const Graph& _g, const _Value& _v) |
|
| 545 |
: Parent(_g, _v) {}
|
|
| 542 |
explicit ArcMap(const Graph& _g) |
|
| 543 |
: Parent(_g) {}
|
|
| 544 |
ArcMap(const Graph& _g, const _Value& _v) |
|
| 545 |
: Parent(_g, _v) {}
|
|
| 546 | 546 |
|
| 547 | 547 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 548 |
|
|
| 548 |
return operator=<ArcMap>(cmap); |
|
| 549 | 549 |
} |
| 550 | 550 |
|
| 551 | 551 |
template <typename CMap> |
| 552 | 552 |
ArcMap& operator=(const CMap& cmap) {
|
| 553 | 553 |
Parent::operator=(cmap); |
| 554 |
|
|
| 554 |
return *this; |
|
| 555 | 555 |
} |
| 556 | 556 |
|
| 557 | 557 |
}; |
| 558 | 558 |
|
| 559 | 559 |
|
| 560 | 560 |
template <typename _Value> |
| 561 |
class EdgeMap |
|
| 561 |
class EdgeMap |
|
| 562 | 562 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > {
|
| 563 | 563 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
| 564 | 564 |
|
| 565 | 565 |
public: |
| 566 |
explicit EdgeMap(const Graph& _g) |
|
| 567 |
: Parent(_g) {}
|
|
| 566 |
explicit EdgeMap(const Graph& _g) |
|
| 567 |
: Parent(_g) {}
|
|
| 568 | 568 |
|
| 569 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
| 570 |
: Parent(_g, _v) {}
|
|
| 569 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
| 570 |
: Parent(_g, _v) {}
|
|
| 571 | 571 |
|
| 572 | 572 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 573 |
|
|
| 573 |
return operator=<EdgeMap>(cmap); |
|
| 574 | 574 |
} |
| 575 | 575 |
|
| 576 | 576 |
template <typename CMap> |
| 577 | 577 |
EdgeMap& operator=(const CMap& cmap) {
|
| 578 | 578 |
Parent::operator=(cmap); |
| 579 |
|
|
| 579 |
return *this; |
|
| 580 | 580 |
} |
| 581 | 581 |
|
| 582 | 582 |
}; |
| 583 | 583 |
|
| 584 | 584 |
|
| 585 | 585 |
// Alteration extension |
| ... | ... |
@@ -590,13 +590,13 @@ |
| 590 | 590 |
std::vector<Arc> arcs; |
| 591 | 591 |
arcs.push_back(Parent::direct(edge, true)); |
| 592 | 592 |
arcs.push_back(Parent::direct(edge, false)); |
| 593 | 593 |
notifier(Arc()).add(arcs); |
| 594 | 594 |
return edge; |
| 595 | 595 |
} |
| 596 |
|
|
| 596 |
|
|
| 597 | 597 |
void clear() {
|
| 598 | 598 |
notifier(Arc()).clear(); |
| 599 | 599 |
notifier(Edge()).clear(); |
| 600 | 600 |
Parent::clear(); |
| 601 | 601 |
} |
| 602 | 602 |
|
| ... | ... |
@@ -616,12 +616,12 @@ |
| 616 | 616 |
} |
| 617 | 617 |
|
| 618 | 618 |
~EdgeSetExtender() {
|
| 619 | 619 |
edge_notifier.clear(); |
| 620 | 620 |
arc_notifier.clear(); |
| 621 | 621 |
} |
| 622 |
|
|
| 622 |
|
|
| 623 | 623 |
}; |
| 624 | 624 |
|
| 625 | 625 |
} |
| 626 | 626 |
|
| 627 | 627 |
#endif |
| ... | ... |
@@ -53,17 +53,17 @@ |
| 53 | 53 |
} |
| 54 | 54 |
|
| 55 | 55 |
int maxId(Arc) const {
|
| 56 | 56 |
return Parent::maxArcId(); |
| 57 | 57 |
} |
| 58 | 58 |
|
| 59 |
Node fromId(int id, Node) |
|
| 59 |
static Node fromId(int id, Node) {
|
|
| 60 | 60 |
return Parent::nodeFromId(id); |
| 61 | 61 |
} |
| 62 | 62 |
|
| 63 |
Arc fromId(int id, Arc) |
|
| 63 |
static Arc fromId(int id, Arc) {
|
|
| 64 | 64 |
return Parent::arcFromId(id); |
| 65 | 65 |
} |
| 66 | 66 |
|
| 67 | 67 |
Node oppositeNode(const Node &node, const Arc &arc) const {
|
| 68 | 68 |
if (node == Parent::source(arc)) |
| 69 | 69 |
return Parent::target(arc); |
| ... | ... |
@@ -352,21 +352,21 @@ |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
int maxId(Edge) const {
|
| 355 | 355 |
return Parent::maxEdgeId(); |
| 356 | 356 |
} |
| 357 | 357 |
|
| 358 |
Node fromId(int id, Node) |
|
| 358 |
static Node fromId(int id, Node) {
|
|
| 359 | 359 |
return Parent::nodeFromId(id); |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 |
Arc fromId(int id, Arc) |
|
| 362 |
static Arc fromId(int id, Arc) {
|
|
| 363 | 363 |
return Parent::arcFromId(id); |
| 364 | 364 |
} |
| 365 | 365 |
|
| 366 |
Edge fromId(int id, Edge) |
|
| 366 |
static Edge fromId(int id, Edge) {
|
|
| 367 | 367 |
return Parent::edgeFromId(id); |
| 368 | 368 |
} |
| 369 | 369 |
|
| 370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 371 | 371 |
if( n == Parent::u(e)) |
| 372 | 372 |
return Parent::v(e); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -95,13 +95,13 @@ |
| 95 | 95 |
{
|
| 96 | 96 |
std::ostringstream os; |
| 97 | 97 |
#ifdef WIN32 |
| 98 | 98 |
SYSTEMTIME time; |
| 99 | 99 |
GetSystemTime(&time); |
| 100 | 100 |
char buf1[11], buf2[9], buf3[5]; |
| 101 |
|
|
| 101 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
|
| 102 | 102 |
("ddd MMM dd"), buf1, 11) &&
|
| 103 | 103 |
GetTimeFormat(MY_LOCALE, 0, &time, |
| 104 | 104 |
("HH':'mm':'ss"), buf2, 9) &&
|
| 105 | 105 |
GetDateFormat(MY_LOCALE, 0, &time, |
| 106 | 106 |
("yyyy"), buf3, 5)) {
|
| 107 | 107 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -16,15 +16,15 @@ |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
| 20 | 20 |
#define LEMON_BUCKET_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Bucket |
|
| 24 |
///\brief Bucket heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| ... | ... |
@@ -50,94 +50,102 @@ |
| 50 | 50 |
--value; |
| 51 | 51 |
} |
| 52 | 52 |
}; |
| 53 | 53 |
|
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 |
/// \ingroup |
|
| 56 |
/// \ingroup heaps |
|
| 57 | 57 |
/// |
| 58 |
/// \brief |
|
| 58 |
/// \brief Bucket heap data structure. |
|
| 59 | 59 |
/// |
| 60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
| 61 |
/// is a data structure for storing items with specified values called \e |
|
| 62 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
| 64 |
/// only integer priorities and it stores for each priority in the |
|
| 65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
| 66 |
/// the |
|
| 60 |
/// This class implements the \e bucket \e heap data structure. |
|
| 61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
| 62 |
/// but it has some limitations. |
|
| 67 | 63 |
/// |
| 68 |
/// \param IM A read and write Item int map, used internally |
|
| 69 |
/// to handle the cross references. |
|
| 70 |
/// \param MIN If the given parameter is false then instead of the |
|
| 71 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 72 |
/// |
|
| 64 |
/// The bucket heap is a very simple structure. It can store only |
|
| 65 |
/// \c int priorities and it maintains a list of items for each priority |
|
| 66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
| 67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
| 68 |
/// |
|
| 69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 70 |
/// internally to handle the cross references. |
|
| 71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 74 |
/// functions deal with the item having maximum priority instead of the |
|
| 75 |
/// minimum. |
|
| 76 |
/// |
|
| 77 |
/// \sa SimpleBucketHeap |
|
| 73 | 78 |
template <typename IM, bool MIN = true> |
| 74 | 79 |
class BucketHeap {
|
| 75 | 80 |
|
| 76 | 81 |
public: |
| 77 |
/// \e |
|
| 78 |
typedef typename IM::Key Item; |
|
| 79 |
|
|
| 82 |
|
|
| 83 |
/// Type of the item-int map. |
|
| 84 |
typedef IM ItemIntMap; |
|
| 85 |
/// Type of the priorities. |
|
| 80 | 86 |
typedef int Prio; |
| 81 |
/// \e |
|
| 82 |
typedef std::pair<Item, Prio> Pair; |
|
| 83 |
/// \e |
|
| 84 |
typedef IM ItemIntMap; |
|
| 87 |
/// Type of the items stored in the heap. |
|
| 88 |
typedef typename ItemIntMap::Key Item; |
|
| 89 |
/// Type of the item-priority pairs. |
|
| 90 |
typedef std::pair<Item,Prio> Pair; |
|
| 85 | 91 |
|
| 86 | 92 |
private: |
| 87 | 93 |
|
| 88 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 89 | 95 |
|
| 90 | 96 |
public: |
| 91 | 97 |
|
| 92 |
/// \brief Type to represent the |
|
| 98 |
/// \brief Type to represent the states of the items. |
|
| 93 | 99 |
/// |
| 94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 100 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 96 | 102 |
/// heap's point of view, but may be useful to the user. |
| 97 | 103 |
/// |
| 98 | 104 |
/// The item-int map must be initialized in such way that it assigns |
| 99 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 100 | 106 |
enum State {
|
| 101 | 107 |
IN_HEAP = 0, ///< = 0. |
| 102 | 108 |
PRE_HEAP = -1, ///< = -1. |
| 103 | 109 |
POST_HEAP = -2 ///< = -2. |
| 104 | 110 |
}; |
| 105 | 111 |
|
| 106 | 112 |
public: |
| 107 |
|
|
| 113 |
|
|
| 114 |
/// \brief Constructor. |
|
| 108 | 115 |
/// |
| 109 |
/// The constructor. |
|
| 110 |
/// \param map should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 116 |
/// Constructor. |
|
| 117 |
/// \param map A map that assigns \c int values to the items. |
|
| 118 |
/// It is used internally to handle the cross references. |
|
| 119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 113 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
|
| 114 | 121 |
|
| 115 |
/// The number of items stored in the heap. |
|
| 122 |
/// \brief The number of items stored in the heap. |
|
| 116 | 123 |
/// |
| 117 |
/// |
|
| 124 |
/// This function returns the number of items stored in the heap. |
|
| 118 | 125 |
int size() const { return _data.size(); }
|
| 119 | 126 |
|
| 120 |
/// \brief |
|
| 127 |
/// \brief Check if the heap is empty. |
|
| 121 | 128 |
/// |
| 122 |
/// |
|
| 129 |
/// This function returns \c true if the heap is empty. |
|
| 123 | 130 |
bool empty() const { return _data.empty(); }
|
| 124 | 131 |
|
| 125 |
/// \brief Make |
|
| 132 |
/// \brief Make the heap empty. |
|
| 126 | 133 |
/// |
| 127 |
/// Make empty this heap. It does not change the cross reference |
|
| 128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 129 |
/// should first clear the heap and after that you should set the |
|
| 130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 134 |
/// This functon makes the heap empty. |
|
| 135 |
/// It does not change the cross reference map. If you want to reuse |
|
| 136 |
/// a heap that is not surely empty, you should first clear it and |
|
| 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 138 |
/// for each item. |
|
| 131 | 139 |
void clear() {
|
| 132 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
| 133 | 141 |
} |
| 134 | 142 |
|
| 135 | 143 |
private: |
| 136 | 144 |
|
| 137 |
void |
|
| 145 |
void relocateLast(int idx) {
|
|
| 138 | 146 |
if (idx + 1 < int(_data.size())) {
|
| 139 | 147 |
_data[idx] = _data.back(); |
| 140 | 148 |
if (_data[idx].prev != -1) {
|
| 141 | 149 |
_data[_data[idx].prev].next = idx; |
| 142 | 150 |
} else {
|
| 143 | 151 |
_first[_data[idx].value] = idx; |
| ... | ... |
@@ -171,99 +179,105 @@ |
| 171 | 179 |
} |
| 172 | 180 |
_first[_data[idx].value] = idx; |
| 173 | 181 |
_data[idx].prev = -1; |
| 174 | 182 |
} |
| 175 | 183 |
|
| 176 | 184 |
public: |
| 185 |
|
|
| 177 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
| 178 | 187 |
/// |
| 179 |
/// |
|
| 188 |
/// This function inserts \c p.first to the heap with priority |
|
| 189 |
/// \c p.second. |
|
| 180 | 190 |
/// \param p The pair to insert. |
| 191 |
/// \pre \c p.first must not be stored in the heap. |
|
| 181 | 192 |
void push(const Pair& p) {
|
| 182 | 193 |
push(p.first, p.second); |
| 183 | 194 |
} |
| 184 | 195 |
|
| 185 | 196 |
/// \brief Insert an item into the heap with the given priority. |
| 186 | 197 |
/// |
| 187 |
/// |
|
| 198 |
/// This function inserts the given item into the heap with the |
|
| 199 |
/// given priority. |
|
| 188 | 200 |
/// \param i The item to insert. |
| 189 | 201 |
/// \param p The priority of the item. |
| 202 |
/// \pre \e i must not be stored in the heap. |
|
| 190 | 203 |
void push(const Item &i, const Prio &p) {
|
| 191 | 204 |
int idx = _data.size(); |
| 192 | 205 |
_iim[i] = idx; |
| 193 | 206 |
_data.push_back(BucketItem(i, p)); |
| 194 | 207 |
lace(idx); |
| 195 | 208 |
if (Direction::less(p, _minimum)) {
|
| 196 | 209 |
_minimum = p; |
| 197 | 210 |
} |
| 198 | 211 |
} |
| 199 | 212 |
|
| 200 |
/// \brief |
|
| 213 |
/// \brief Return the item having minimum priority. |
|
| 201 | 214 |
/// |
| 202 |
/// This method returns the item with minimum priority. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 215 |
/// This function returns the item having minimum priority. |
|
| 216 |
/// \pre The heap must be non-empty. |
|
| 204 | 217 |
Item top() const {
|
| 205 | 218 |
while (_first[_minimum] == -1) {
|
| 206 | 219 |
Direction::increase(_minimum); |
| 207 | 220 |
} |
| 208 | 221 |
return _data[_first[_minimum]].item; |
| 209 | 222 |
} |
| 210 | 223 |
|
| 211 |
/// \brief |
|
| 224 |
/// \brief The minimum priority. |
|
| 212 | 225 |
/// |
| 213 |
/// It returns the minimum priority. |
|
| 214 |
/// \pre The heap must be nonempty. |
|
| 226 |
/// This function returns the minimum priority. |
|
| 227 |
/// \pre The heap must be non-empty. |
|
| 215 | 228 |
Prio prio() const {
|
| 216 | 229 |
while (_first[_minimum] == -1) {
|
| 217 | 230 |
Direction::increase(_minimum); |
| 218 | 231 |
} |
| 219 | 232 |
return _minimum; |
| 220 | 233 |
} |
| 221 | 234 |
|
| 222 |
/// \brief |
|
| 235 |
/// \brief Remove the item having minimum priority. |
|
| 223 | 236 |
/// |
| 224 |
/// This |
|
| 237 |
/// This function removes the item having minimum priority. |
|
| 225 | 238 |
/// \pre The heap must be non-empty. |
| 226 | 239 |
void pop() {
|
| 227 | 240 |
while (_first[_minimum] == -1) {
|
| 228 | 241 |
Direction::increase(_minimum); |
| 229 | 242 |
} |
| 230 | 243 |
int idx = _first[_minimum]; |
| 231 | 244 |
_iim[_data[idx].item] = -2; |
| 232 | 245 |
unlace(idx); |
| 233 |
|
|
| 246 |
relocateLast(idx); |
|
| 234 | 247 |
} |
| 235 | 248 |
|
| 236 |
/// \brief |
|
| 249 |
/// \brief Remove the given item from the heap. |
|
| 237 | 250 |
/// |
| 238 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 239 |
/// already stored in the heap. |
|
| 240 |
/// |
|
| 251 |
/// This function removes the given item from the heap if it is |
|
| 252 |
/// already stored. |
|
| 253 |
/// \param i The item to delete. |
|
| 254 |
/// \pre \e i must be in the heap. |
|
| 241 | 255 |
void erase(const Item &i) {
|
| 242 | 256 |
int idx = _iim[i]; |
| 243 | 257 |
_iim[_data[idx].item] = -2; |
| 244 | 258 |
unlace(idx); |
| 245 |
|
|
| 259 |
relocateLast(idx); |
|
| 246 | 260 |
} |
| 247 | 261 |
|
| 248 |
|
|
| 249 |
/// \brief Returns the priority of \c i. |
|
| 262 |
/// \brief The priority of the given item. |
|
| 250 | 263 |
/// |
| 251 |
/// This function returns the priority of item \c i. |
|
| 252 |
/// \pre \c i must be in the heap. |
|
| 264 |
/// This function returns the priority of the given item. |
|
| 253 | 265 |
/// \param i The item. |
| 266 |
/// \pre \e i must be in the heap. |
|
| 254 | 267 |
Prio operator[](const Item &i) const {
|
| 255 | 268 |
int idx = _iim[i]; |
| 256 | 269 |
return _data[idx].value; |
| 257 | 270 |
} |
| 258 | 271 |
|
| 259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 260 |
/// if \c i was already there. |
|
| 272 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 273 |
/// not stored in the heap. |
|
| 261 | 274 |
/// |
| 262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 275 |
/// This method sets the priority of the given item if it is |
|
| 276 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 277 |
/// item into the heap with the given priority. |
|
| 264 | 278 |
/// \param i The item. |
| 265 | 279 |
/// \param p The priority. |
| 266 | 280 |
void set(const Item &i, const Prio &p) {
|
| 267 | 281 |
int idx = _iim[i]; |
| 268 | 282 |
if (idx < 0) {
|
| 269 | 283 |
push(i, p); |
| ... | ... |
@@ -271,62 +285,60 @@ |
| 271 | 285 |
decrease(i, p); |
| 272 | 286 |
} else {
|
| 273 | 287 |
increase(i, p); |
| 274 | 288 |
} |
| 275 | 289 |
} |
| 276 | 290 |
|
| 277 |
/// \brief |
|
| 291 |
/// \brief Decrease the priority of an item to the given value. |
|
| 278 | 292 |
/// |
| 279 |
/// This method decreases the priority of item \c i to \c p. |
|
| 280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 281 |
/// |
|
| 293 |
/// This function decreases the priority of an item to the given value. |
|
| 282 | 294 |
/// \param i The item. |
| 283 | 295 |
/// \param p The priority. |
| 296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 284 | 297 |
void decrease(const Item &i, const Prio &p) {
|
| 285 | 298 |
int idx = _iim[i]; |
| 286 | 299 |
unlace(idx); |
| 287 | 300 |
_data[idx].value = p; |
| 288 | 301 |
if (Direction::less(p, _minimum)) {
|
| 289 | 302 |
_minimum = p; |
| 290 | 303 |
} |
| 291 | 304 |
lace(idx); |
| 292 | 305 |
} |
| 293 | 306 |
|
| 294 |
/// \brief |
|
| 307 |
/// \brief Increase the priority of an item to the given value. |
|
| 295 | 308 |
/// |
| 296 |
/// This method sets the priority of item \c i to \c p. |
|
| 297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 298 |
/// |
|
| 309 |
/// This function increases the priority of an item to the given value. |
|
| 299 | 310 |
/// \param i The item. |
| 300 | 311 |
/// \param p The priority. |
| 312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 301 | 313 |
void increase(const Item &i, const Prio &p) {
|
| 302 | 314 |
int idx = _iim[i]; |
| 303 | 315 |
unlace(idx); |
| 304 | 316 |
_data[idx].value = p; |
| 305 | 317 |
lace(idx); |
| 306 | 318 |
} |
| 307 | 319 |
|
| 308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 309 |
/// never been in the heap. |
|
| 320 |
/// \brief Return the state of an item. |
|
| 310 | 321 |
/// |
| 311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 313 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 314 |
/// get back to the heap again. |
|
| 322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 324 |
/// and \c POST_HEAP otherwise. |
|
| 325 |
/// In the latter case it is possible that the item will get back |
|
| 326 |
/// to the heap again. |
|
| 315 | 327 |
/// \param i The item. |
| 316 | 328 |
State state(const Item &i) const {
|
| 317 | 329 |
int idx = _iim[i]; |
| 318 | 330 |
if (idx >= 0) idx = 0; |
| 319 | 331 |
return State(idx); |
| 320 | 332 |
} |
| 321 | 333 |
|
| 322 |
/// \brief |
|
| 334 |
/// \brief Set the state of an item in the heap. |
|
| 323 | 335 |
/// |
| 324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 325 |
/// manually clear the heap when it is important to achive the |
|
| 326 |
/// |
|
| 336 |
/// This function sets the state of the given item in the heap. |
|
| 337 |
/// It can be used to manually clear the heap when it is important |
|
| 338 |
/// to achive better time complexity. |
|
| 327 | 339 |
/// \param i The item. |
| 328 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
| 329 | 341 |
void state(const Item& i, State st) {
|
| 330 | 342 |
switch (st) {
|
| 331 | 343 |
case POST_HEAP: |
| 332 | 344 |
case PRE_HEAP: |
| ... | ... |
@@ -356,104 +368,120 @@ |
| 356 | 368 |
std::vector<int> _first; |
| 357 | 369 |
std::vector<BucketItem> _data; |
| 358 | 370 |
mutable int _minimum; |
| 359 | 371 |
|
| 360 | 372 |
}; // class BucketHeap |
| 361 | 373 |
|
| 362 |
/// \ingroup |
|
| 374 |
/// \ingroup heaps |
|
| 363 | 375 |
/// |
| 364 |
/// \brief |
|
| 376 |
/// \brief Simplified bucket heap data structure. |
|
| 365 | 377 |
/// |
| 366 | 378 |
/// This class implements a simplified \e bucket \e heap data |
| 367 |
/// structure. It does not provide some functionality but it faster |
|
| 368 |
/// and simplier data structure than the BucketHeap. The main |
|
| 369 |
/// difference is that the BucketHeap stores for every key a double |
|
| 370 |
/// linked list while this class stores just simple lists. In the |
|
| 371 |
/// other way it does not support erasing each elements just the |
|
| 372 |
/// minimal and it does not supports key increasing, decreasing. |
|
| 379 |
/// structure. It does not provide some functionality, but it is |
|
| 380 |
/// faster and simpler than BucketHeap. The main difference is |
|
| 381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
| 382 |
/// this class stores only simply-linked lists. It supports erasing |
|
| 383 |
/// only for the item having minimum priority and it does not support |
|
| 384 |
/// key increasing and decreasing. |
|
| 373 | 385 |
/// |
| 374 |
/// \param IM A read and write Item int map, used internally |
|
| 375 |
/// to handle the cross references. |
|
| 376 |
/// \param MIN If the given parameter is false then instead of the |
|
| 377 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 378 |
/// |
|
| 386 |
/// Note that this implementation does not conform to the |
|
| 387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
| 388 |
/// functionality. |
|
| 389 |
/// |
|
| 390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 391 |
/// internally to handle the cross references. |
|
| 392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 395 |
/// functions deal with the item having maximum priority instead of the |
|
| 396 |
/// minimum. |
|
| 379 | 397 |
/// |
| 380 | 398 |
/// \sa BucketHeap |
| 381 | 399 |
template <typename IM, bool MIN = true > |
| 382 | 400 |
class SimpleBucketHeap {
|
| 383 | 401 |
|
| 384 | 402 |
public: |
| 385 |
|
|
| 403 |
|
|
| 404 |
/// Type of the item-int map. |
|
| 405 |
typedef IM ItemIntMap; |
|
| 406 |
/// Type of the priorities. |
|
| 386 | 407 |
typedef int Prio; |
| 387 |
typedef std::pair<Item, Prio> Pair; |
|
| 388 |
typedef IM ItemIntMap; |
|
| 408 |
/// Type of the items stored in the heap. |
|
| 409 |
typedef typename ItemIntMap::Key Item; |
|
| 410 |
/// Type of the item-priority pairs. |
|
| 411 |
typedef std::pair<Item,Prio> Pair; |
|
| 389 | 412 |
|
| 390 | 413 |
private: |
| 391 | 414 |
|
| 392 | 415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 393 | 416 |
|
| 394 | 417 |
public: |
| 395 | 418 |
|
| 396 |
/// \brief Type to represent the |
|
| 419 |
/// \brief Type to represent the states of the items. |
|
| 397 | 420 |
/// |
| 398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 421 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 400 | 423 |
/// heap's point of view, but may be useful to the user. |
| 401 | 424 |
/// |
| 402 | 425 |
/// The item-int map must be initialized in such way that it assigns |
| 403 | 426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 404 | 427 |
enum State {
|
| 405 | 428 |
IN_HEAP = 0, ///< = 0. |
| 406 | 429 |
PRE_HEAP = -1, ///< = -1. |
| 407 | 430 |
POST_HEAP = -2 ///< = -2. |
| 408 | 431 |
}; |
| 409 | 432 |
|
| 410 | 433 |
public: |
| 411 | 434 |
|
| 412 |
/// \brief |
|
| 435 |
/// \brief Constructor. |
|
| 413 | 436 |
/// |
| 414 |
/// The constructor. |
|
| 415 |
/// \param map should be given to the constructor, since it is used |
|
| 416 |
/// internally to handle the cross references. The value of the map |
|
| 417 |
/// should be PRE_HEAP (-1) for each element. |
|
| 437 |
/// Constructor. |
|
| 438 |
/// \param map A map that assigns \c int values to the items. |
|
| 439 |
/// It is used internally to handle the cross references. |
|
| 440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 418 | 441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
| 419 | 442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {}
|
| 420 | 443 |
|
| 421 |
/// \brief |
|
| 444 |
/// \brief The number of items stored in the heap. |
|
| 422 | 445 |
/// |
| 423 |
/// |
|
| 446 |
/// This function returns the number of items stored in the heap. |
|
| 424 | 447 |
int size() const { return _num; }
|
| 425 | 448 |
|
| 426 |
/// \brief |
|
| 449 |
/// \brief Check if the heap is empty. |
|
| 427 | 450 |
/// |
| 428 |
/// |
|
| 451 |
/// This function returns \c true if the heap is empty. |
|
| 429 | 452 |
bool empty() const { return _num == 0; }
|
| 430 | 453 |
|
| 431 |
/// \brief Make |
|
| 454 |
/// \brief Make the heap empty. |
|
| 432 | 455 |
/// |
| 433 |
/// Make empty this heap. It does not change the cross reference |
|
| 434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 435 |
/// should first clear the heap and after that you should set the |
|
| 436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 456 |
/// This functon makes the heap empty. |
|
| 457 |
/// It does not change the cross reference map. If you want to reuse |
|
| 458 |
/// a heap that is not surely empty, you should first clear it and |
|
| 459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 460 |
/// for each item. |
|
| 437 | 461 |
void clear() {
|
| 438 | 462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
| 439 | 463 |
} |
| 440 | 464 |
|
| 441 | 465 |
/// \brief Insert a pair of item and priority into the heap. |
| 442 | 466 |
/// |
| 443 |
/// |
|
| 467 |
/// This function inserts \c p.first to the heap with priority |
|
| 468 |
/// \c p.second. |
|
| 444 | 469 |
/// \param p The pair to insert. |
| 470 |
/// \pre \c p.first must not be stored in the heap. |
|
| 445 | 471 |
void push(const Pair& p) {
|
| 446 | 472 |
push(p.first, p.second); |
| 447 | 473 |
} |
| 448 | 474 |
|
| 449 | 475 |
/// \brief Insert an item into the heap with the given priority. |
| 450 | 476 |
/// |
| 451 |
/// |
|
| 477 |
/// This function inserts the given item into the heap with the |
|
| 478 |
/// given priority. |
|
| 452 | 479 |
/// \param i The item to insert. |
| 453 | 480 |
/// \param p The priority of the item. |
| 481 |
/// \pre \e i must not be stored in the heap. |
|
| 454 | 482 |
void push(const Item &i, const Prio &p) {
|
| 455 | 483 |
int idx; |
| 456 | 484 |
if (_free == -1) {
|
| 457 | 485 |
idx = _data.size(); |
| 458 | 486 |
_data.push_back(BucketItem(i)); |
| 459 | 487 |
} else {
|
| ... | ... |
@@ -468,37 +496,37 @@ |
| 468 | 496 |
if (Direction::less(p, _minimum)) {
|
| 469 | 497 |
_minimum = p; |
| 470 | 498 |
} |
| 471 | 499 |
++_num; |
| 472 | 500 |
} |
| 473 | 501 |
|
| 474 |
/// \brief |
|
| 502 |
/// \brief Return the item having minimum priority. |
|
| 475 | 503 |
/// |
| 476 |
/// This method returns the item with minimum priority. |
|
| 477 |
/// \pre The heap must be nonempty. |
|
| 504 |
/// This function returns the item having minimum priority. |
|
| 505 |
/// \pre The heap must be non-empty. |
|
| 478 | 506 |
Item top() const {
|
| 479 | 507 |
while (_first[_minimum] == -1) {
|
| 480 | 508 |
Direction::increase(_minimum); |
| 481 | 509 |
} |
| 482 | 510 |
return _data[_first[_minimum]].item; |
| 483 | 511 |
} |
| 484 | 512 |
|
| 485 |
/// \brief |
|
| 513 |
/// \brief The minimum priority. |
|
| 486 | 514 |
/// |
| 487 |
/// It returns the minimum priority. |
|
| 488 |
/// \pre The heap must be nonempty. |
|
| 515 |
/// This function returns the minimum priority. |
|
| 516 |
/// \pre The heap must be non-empty. |
|
| 489 | 517 |
Prio prio() const {
|
| 490 | 518 |
while (_first[_minimum] == -1) {
|
| 491 | 519 |
Direction::increase(_minimum); |
| 492 | 520 |
} |
| 493 | 521 |
return _minimum; |
| 494 | 522 |
} |
| 495 | 523 |
|
| 496 |
/// \brief |
|
| 524 |
/// \brief Remove the item having minimum priority. |
|
| 497 | 525 |
/// |
| 498 |
/// This |
|
| 526 |
/// This function removes the item having minimum priority. |
|
| 499 | 527 |
/// \pre The heap must be non-empty. |
| 500 | 528 |
void pop() {
|
| 501 | 529 |
while (_first[_minimum] == -1) {
|
| 502 | 530 |
Direction::increase(_minimum); |
| 503 | 531 |
} |
| 504 | 532 |
int idx = _first[_minimum]; |
| ... | ... |
@@ -506,40 +534,39 @@ |
| 506 | 534 |
_first[_minimum] = _data[idx].next; |
| 507 | 535 |
_data[idx].next = _free; |
| 508 | 536 |
_free = idx; |
| 509 | 537 |
--_num; |
| 510 | 538 |
} |
| 511 | 539 |
|
| 512 |
/// \brief |
|
| 540 |
/// \brief The priority of the given item. |
|
| 513 | 541 |
/// |
| 514 |
/// This function returns the priority of item \c i. |
|
| 515 |
/// \warning This operator is not a constant time function |
|
| 516 |
/// because it scans the whole data structure to find the proper |
|
| 517 |
/// value. |
|
| 518 |
/// |
|
| 542 |
/// This function returns the priority of the given item. |
|
| 519 | 543 |
/// \param i The item. |
| 544 |
/// \pre \e i must be in the heap. |
|
| 545 |
/// \warning This operator is not a constant time function because |
|
| 546 |
/// it scans the whole data structure to find the proper value. |
|
| 520 | 547 |
Prio operator[](const Item &i) const {
|
| 521 |
for (int k = 0; k < _first.size(); ++k) {
|
|
| 548 |
for (int k = 0; k < int(_first.size()); ++k) {
|
|
| 522 | 549 |
int idx = _first[k]; |
| 523 | 550 |
while (idx != -1) {
|
| 524 | 551 |
if (_data[idx].item == i) {
|
| 525 | 552 |
return k; |
| 526 | 553 |
} |
| 527 | 554 |
idx = _data[idx].next; |
| 528 | 555 |
} |
| 529 | 556 |
} |
| 530 | 557 |
return -1; |
| 531 | 558 |
} |
| 532 | 559 |
|
| 533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 534 |
/// never been in the heap. |
|
| 560 |
/// \brief Return the state of an item. |
|
| 535 | 561 |
/// |
| 536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 538 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 539 |
/// get back to the heap again. |
|
| 562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 564 |
/// and \c POST_HEAP otherwise. |
|
| 565 |
/// In the latter case it is possible that the item will get back |
|
| 566 |
/// to the heap again. |
|
| 540 | 567 |
/// \param i The item. |
| 541 | 568 |
State state(const Item &i) const {
|
| 542 | 569 |
int idx = _iim[i]; |
| 543 | 570 |
if (idx >= 0) idx = 0; |
| 544 | 571 |
return State(idx); |
| 545 | 572 |
} |
| ... | ... |
@@ -91,12 +91,24 @@ |
| 91 | 91 |
|
| 92 | 92 |
int CbcMip::_addRow() {
|
| 93 | 93 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 94 | 94 |
return _prob->numberRows() - 1; |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 |
int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 98 |
std::vector<int> indexes; |
|
| 99 |
std::vector<Value> values; |
|
| 100 |
|
|
| 101 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 102 |
indexes.push_back(it->first); |
|
| 103 |
values.push_back(it->second); |
|
| 104 |
} |
|
| 105 |
|
|
| 106 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 107 |
return _prob->numberRows() - 1; |
|
| 108 |
} |
|
| 97 | 109 |
|
| 98 | 110 |
void CbcMip::_eraseCol(int i) {
|
| 99 | 111 |
_prob->deleteColumn(i); |
| 100 | 112 |
} |
| 101 | 113 |
|
| 102 | 114 |
void CbcMip::_eraseRow(int i) {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -59,12 +59,13 @@ |
| 59 | 59 |
protected: |
| 60 | 60 |
|
| 61 | 61 |
virtual const char* _solverName() const; |
| 62 | 62 |
|
| 63 | 63 |
virtual int _addCol(); |
| 64 | 64 |
virtual int _addRow(); |
| 65 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 65 | 66 |
|
| 66 | 67 |
virtual void _eraseCol(int i); |
| 67 | 68 |
virtual void _eraseRow(int i); |
| 68 | 69 |
|
| 69 | 70 |
virtual void _eraseColId(int i); |
| 70 | 71 |
virtual void _eraseRowId(int i); |
| ... | ... |
@@ -117,13 +118,13 @@ |
| 117 | 118 |
|
| 118 | 119 |
virtual void _messageLevel(MessageLevel level); |
| 119 | 120 |
void _applyMessageLevel(); |
| 120 | 121 |
|
| 121 | 122 |
int _message_level; |
| 122 | 123 |
|
| 123 |
|
|
| 124 |
|
|
| 124 | 125 |
|
| 125 | 126 |
}; |
| 126 | 127 |
|
| 127 | 128 |
} |
| 128 | 129 |
|
| 129 | 130 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -56,26 +56,30 @@ |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 |
/// The type of the map that stores the signed supply values of the |
|
| 63 |
/// nodes. |
|
| 62 |
/// The type of the map that stores the signed supply values of the |
|
| 63 |
/// nodes. |
|
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 77 |
#else |
|
| 75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 |
#endif |
|
| 76 | 80 |
|
| 77 | 81 |
/// \brief Instantiates a FlowMap. |
| 78 | 82 |
/// |
| 79 | 83 |
/// This function instantiates a \ref FlowMap. |
| 80 | 84 |
/// \param digraph The digraph for which we would like to define |
| 81 | 85 |
/// the flow map. |
| ... | ... |
@@ -84,15 +88,18 @@ |
| 84 | 88 |
} |
| 85 | 89 |
|
| 86 | 90 |
/// \brief The elevator type used by the algorithm. |
| 87 | 91 |
/// |
| 88 | 92 |
/// The elevator type used by the algorithm. |
| 89 | 93 |
/// |
| 90 |
/// \sa Elevator |
|
| 91 |
/// \sa LinkedElevator |
|
| 94 |
/// \sa Elevator, LinkedElevator |
|
| 95 |
#ifdef DOXYGEN |
|
| 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 97 |
#else |
|
| 92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 |
#endif |
|
| 93 | 100 |
|
| 94 | 101 |
/// \brief Instantiates an Elevator. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This function instantiates an \ref Elevator. |
| 97 | 104 |
/// \param digraph The digraph for which we would like to define |
| 98 | 105 |
/// the elevator. |
| ... | ... |
@@ -131,23 +138,23 @@ |
| 131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 132 | 139 |
solution of the following problem. |
| 133 | 140 |
|
| 134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
| 136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 137 |
|
|
| 144 |
|
|
| 138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
| 140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
| 141 | 148 |
It means that the total demand must be greater or equal to the total |
| 142 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
| 143 | 150 |
but there could be demands that are not satisfied. |
| 144 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 145 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
| 146 | 153 |
have to be satisfied and all supplies have to be used. |
| 147 |
|
|
| 154 |
|
|
| 148 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
| 149 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
| 150 | 157 |
have to be satisfied while there could be supplies that are not used), |
| 151 | 158 |
then you could easily transform the problem to the above form by reversing |
| 152 | 159 |
the direction of the arcs and taking the negative of the supply values |
| 153 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| ... | ... |
@@ -163,12 +170,17 @@ |
| 163 | 170 |
\tparam LM The type of the lower bound map. The default |
| 164 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 165 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
| 166 | 173 |
The default map type is \c LM. |
| 167 | 174 |
\tparam SM The type of the supply map. The default map type is |
| 168 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 176 |
\tparam TR The traits class that defines various types used by the |
|
| 177 |
algorithm. By default, it is \ref CirculationDefaultTraits |
|
| 178 |
"CirculationDefaultTraits<GR, LM, UM, SM>". |
|
| 179 |
In most cases, this parameter should not be set directly, |
|
| 180 |
consider to use the named template parameters instead. |
|
| 169 | 181 |
*/ |
| 170 | 182 |
#ifdef DOXYGEN |
| 171 | 183 |
template< typename GR, |
| 172 | 184 |
typename LM, |
| 173 | 185 |
typename UM, |
| 174 | 186 |
typename SM, |
| ... | ... |
@@ -296,13 +308,13 @@ |
| 296 | 308 |
/// |
| 297 | 309 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 298 | 310 |
/// type with automatic allocation. |
| 299 | 311 |
/// The Elevator should have standard constructor interface to be |
| 300 | 312 |
/// able to automatically created by the algorithm (i.e. the |
| 301 | 313 |
/// digraph and the maximum level should be passed to it). |
| 302 |
/// However an external elevator object could also be passed to the |
|
| 314 |
/// However, an external elevator object could also be passed to the |
|
| 303 | 315 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 304 | 316 |
/// before calling \ref run() or \ref init(). |
| 305 | 317 |
/// \sa SetElevator |
| 306 | 318 |
template <typename T> |
| 307 | 319 |
struct SetStandardElevator |
| 308 | 320 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| ... | ... |
@@ -322,13 +334,13 @@ |
| 322 | 334 |
/// Constructor. |
| 323 | 335 |
|
| 324 | 336 |
/// The constructor of the class. |
| 325 | 337 |
/// |
| 326 | 338 |
/// \param graph The digraph the algorithm runs on. |
| 327 | 339 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 328 |
/// \param upper The upper bounds (capacities) for the flow values |
|
| 340 |
/// \param upper The upper bounds (capacities) for the flow values |
|
| 329 | 341 |
/// on the arcs. |
| 330 | 342 |
/// \param supply The signed supply values of the nodes. |
| 331 | 343 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 332 | 344 |
const UpperMap &upper, const SupplyMap &supply) |
| 333 | 345 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 334 | 346 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| ... | ... |
@@ -447,31 +459,33 @@ |
| 447 | 459 |
/// \pre Either \ref run() or \ref init() must be called before |
| 448 | 460 |
/// using this function. |
| 449 | 461 |
const Elevator& elevator() const {
|
| 450 | 462 |
return *_level; |
| 451 | 463 |
} |
| 452 | 464 |
|
| 453 |
/// \brief Sets the tolerance used by algorithm. |
|
| 465 |
/// \brief Sets the tolerance used by the algorithm. |
|
| 454 | 466 |
/// |
| 455 |
/// Sets the tolerance used by algorithm. |
|
| 467 |
/// Sets the tolerance object used by the algorithm. |
|
| 468 |
/// \return <tt>(*this)</tt> |
|
| 456 | 469 |
Circulation& tolerance(const Tolerance& tolerance) {
|
| 457 | 470 |
_tol = tolerance; |
| 458 | 471 |
return *this; |
| 459 | 472 |
} |
| 460 | 473 |
|
| 461 | 474 |
/// \brief Returns a const reference to the tolerance. |
| 462 | 475 |
/// |
| 463 |
/// Returns a const reference to the tolerance |
|
| 476 |
/// Returns a const reference to the tolerance object used by |
|
| 477 |
/// the algorithm. |
|
| 464 | 478 |
const Tolerance& tolerance() const {
|
| 465 | 479 |
return _tol; |
| 466 | 480 |
} |
| 467 | 481 |
|
| 468 | 482 |
/// \name Execution Control |
| 469 | 483 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 470 |
/// If you need more control on the initial solution or the execution, |
|
| 471 |
/// first you have to call one of the \ref init() functions, then |
|
| 484 |
/// If you need better control on the initial solution or the execution, |
|
| 485 |
/// you have to call one of the \ref init() functions first, then |
|
| 472 | 486 |
/// the \ref start() function. |
| 473 | 487 |
|
| 474 | 488 |
///@{
|
| 475 | 489 |
|
| 476 | 490 |
/// Initializes the internal data structures. |
| 477 | 491 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -75,12 +75,25 @@ |
| 75 | 75 |
|
| 76 | 76 |
int ClpLp::_addRow() {
|
| 77 | 77 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 78 | 78 |
return _prob->numberRows() - 1; |
| 79 | 79 |
} |
| 80 | 80 |
|
| 81 |
int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 86 |
indexes.push_back(it->first); |
|
| 87 |
values.push_back(it->second); |
|
| 88 |
} |
|
| 89 |
|
|
| 90 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 91 |
return _prob->numberRows() - 1; |
|
| 92 |
} |
|
| 93 |
|
|
| 81 | 94 |
|
| 82 | 95 |
void ClpLp::_eraseCol(int c) {
|
| 83 | 96 |
_col_names_ref.erase(_prob->getColumnName(c)); |
| 84 | 97 |
_prob->deleteColumns(1, &c); |
| 85 | 98 |
} |
| 86 | 99 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -72,12 +72,13 @@ |
| 72 | 72 |
protected: |
| 73 | 73 |
|
| 74 | 74 |
virtual const char* _solverName() const; |
| 75 | 75 |
|
| 76 | 76 |
virtual int _addCol(); |
| 77 | 77 |
virtual int _addRow(); |
| 78 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 78 | 79 |
|
| 79 | 80 |
virtual void _eraseCol(int i); |
| 80 | 81 |
virtual void _eraseRow(int i); |
| 81 | 82 |
|
| 82 | 83 |
virtual void _eraseColId(int i); |
| 83 | 84 |
virtual void _eraseRowId(int i); |
| ... | ... |
@@ -134,13 +135,13 @@ |
| 134 | 135 |
virtual ProblemType _getPrimalType() const; |
| 135 | 136 |
virtual ProblemType _getDualType() const; |
| 136 | 137 |
|
| 137 | 138 |
virtual void _clear(); |
| 138 | 139 |
|
| 139 | 140 |
virtual void _messageLevel(MessageLevel); |
| 140 |
|
|
| 141 |
|
|
| 141 | 142 |
public: |
| 142 | 143 |
|
| 143 | 144 |
///Solves LP with primal simplex method. |
| 144 | 145 |
SolveExitStatus solvePrimal(); |
| 145 | 146 |
|
| 146 | 147 |
///Solves LP with dual simplex method. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -32,344 +32,342 @@ |
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of directed graphs. |
| 37 | 37 |
/// |
| 38 |
/// This class describes the \ref concept "concept" of the |
|
| 39 |
/// immutable directed digraphs. |
|
| 38 |
/// This class describes the common interface of all directed |
|
| 39 |
/// graphs (digraphs). |
|
| 40 | 40 |
/// |
| 41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
|
| 42 |
/// @ref SmartDigraph may have several additional functionality. |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// directed graphs should compile with this class, but it will not |
|
| 44 |
/// run properly, of course. |
|
| 45 |
/// An actual digraph implementation like \ref ListDigraph or |
|
| 46 |
/// \ref SmartDigraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// \sa |
|
| 48 |
/// \sa Graph |
|
| 45 | 49 |
class Digraph {
|
| 46 | 50 |
private: |
| 47 |
/// |
|
| 51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 52 |
Digraph(const Digraph &) {}
|
|
| 53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 54 |
/// Use DigraphCopy instead. |
|
| 55 |
void operator=(const Digraph &) {}
|
|
| 48 | 56 |
|
| 49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
|
| 50 |
/// |
|
| 51 |
Digraph(const Digraph &) {};
|
|
| 52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 53 |
|
|
| 57 |
public: |
|
| 58 |
/// Default constructor. |
|
| 59 |
Digraph() { }
|
|
| 54 | 60 |
|
| 55 |
///Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 56 |
///\e not allowed. Use DigraphCopy() instead. |
|
| 57 |
|
|
| 58 |
void operator=(const Digraph &) {}
|
|
| 59 |
public: |
|
| 60 |
///\e |
|
| 61 |
|
|
| 62 |
/// Defalult constructor. |
|
| 63 |
|
|
| 64 |
/// Defalult constructor. |
|
| 65 |
/// |
|
| 66 |
Digraph() { }
|
|
| 67 |
/// |
|
| 61 |
/// The node type of the digraph |
|
| 68 | 62 |
|
| 69 | 63 |
/// This class identifies a node of the digraph. It also serves |
| 70 | 64 |
/// as a base class of the node iterators, |
| 71 |
/// thus they |
|
| 65 |
/// thus they convert to this type. |
|
| 72 | 66 |
class Node {
|
| 73 | 67 |
public: |
| 74 | 68 |
/// Default constructor |
| 75 | 69 |
|
| 76 |
/// @warning The default constructor sets the iterator |
|
| 77 |
/// to an undefined value. |
|
| 70 |
/// Default constructor. |
|
| 71 |
/// \warning It sets the object to an undefined value. |
|
| 78 | 72 |
Node() { }
|
| 79 | 73 |
/// Copy constructor. |
| 80 | 74 |
|
| 81 | 75 |
/// Copy constructor. |
| 82 | 76 |
/// |
| 83 | 77 |
Node(const Node&) { }
|
| 84 | 78 |
|
| 85 |
/// Invalid constructor \& conversion. |
|
| 79 |
/// %Invalid constructor \& conversion. |
|
| 86 | 80 |
|
| 87 |
/// |
|
| 81 |
/// Initializes the object to be invalid. |
|
| 88 | 82 |
/// \sa Invalid for more details. |
| 89 | 83 |
Node(Invalid) { }
|
| 90 | 84 |
/// Equality operator |
| 91 | 85 |
|
| 86 |
/// Equality operator. |
|
| 87 |
/// |
|
| 92 | 88 |
/// Two iterators are equal if and only if they point to the |
| 93 |
/// same object or both are |
|
| 89 |
/// same object or both are \c INVALID. |
|
| 94 | 90 |
bool operator==(Node) const { return true; }
|
| 95 | 91 |
|
| 96 | 92 |
/// Inequality operator |
| 97 | 93 |
|
| 98 |
/// \sa operator==(Node n) |
|
| 99 |
/// |
|
| 94 |
/// Inequality operator. |
|
| 100 | 95 |
bool operator!=(Node) const { return true; }
|
| 101 | 96 |
|
| 102 | 97 |
/// Artificial ordering operator. |
| 103 | 98 |
|
| 104 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 105 |
/// similar associative container we require this. |
|
| 99 |
/// Artificial ordering operator. |
|
| 106 | 100 |
/// |
| 107 |
/// \note This operator only have to define some strict ordering of |
|
| 108 |
/// the items; this order has nothing to do with the iteration |
|
| 109 |
/// ordering of |
|
| 101 |
/// \note This operator only has to define some strict ordering of |
|
| 102 |
/// the nodes; this order has nothing to do with the iteration |
|
| 103 |
/// ordering of the nodes. |
|
| 110 | 104 |
bool operator<(Node) const { return false; }
|
| 111 |
|
|
| 112 | 105 |
}; |
| 113 | 106 |
|
| 114 |
/// |
|
| 107 |
/// Iterator class for the nodes. |
|
| 115 | 108 |
|
| 116 |
/// This iterator goes through each node. |
|
| 117 |
/// Its usage is quite simple, for example you can count the number |
|
| 118 |
/// |
|
| 109 |
/// This iterator goes through each node of the digraph. |
|
| 110 |
/// Its usage is quite simple, for example, you can count the number |
|
| 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
|
| 119 | 112 |
///\code |
| 120 | 113 |
/// int count=0; |
| 121 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 122 | 115 |
///\endcode |
| 123 | 116 |
class NodeIt : public Node {
|
| 124 | 117 |
public: |
| 125 | 118 |
/// Default constructor |
| 126 | 119 |
|
| 127 |
/// @warning The default constructor sets the iterator |
|
| 128 |
/// to an undefined value. |
|
| 120 |
/// Default constructor. |
|
| 121 |
/// \warning It sets the iterator to an undefined value. |
|
| 129 | 122 |
NodeIt() { }
|
| 130 | 123 |
/// Copy constructor. |
| 131 | 124 |
|
| 132 | 125 |
/// Copy constructor. |
| 133 | 126 |
/// |
| 134 | 127 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 135 |
/// Invalid constructor \& conversion. |
|
| 128 |
/// %Invalid constructor \& conversion. |
|
| 136 | 129 |
|
| 137 |
/// |
|
| 130 |
/// Initializes the iterator to be invalid. |
|
| 138 | 131 |
/// \sa Invalid for more details. |
| 139 | 132 |
NodeIt(Invalid) { }
|
| 140 | 133 |
/// Sets the iterator to the first node. |
| 141 | 134 |
|
| 142 |
/// Sets the iterator to the first node of |
|
| 135 |
/// Sets the iterator to the first node of the given digraph. |
|
| 143 | 136 |
/// |
| 144 |
NodeIt(const Digraph&) { }
|
|
| 145 |
/// Node -> NodeIt conversion. |
|
| 137 |
explicit NodeIt(const Digraph&) { }
|
|
| 138 |
/// Sets the iterator to the given node. |
|
| 146 | 139 |
|
| 147 |
/// Sets the iterator to the node of \c the digraph pointed by |
|
| 148 |
/// the trivial iterator. |
|
| 149 |
/// This feature necessitates that each time we |
|
| 150 |
/// iterate the arc-set, the iteration order is the same. |
|
| 140 |
/// Sets the iterator to the given node of the given digraph. |
|
| 141 |
/// |
|
| 151 | 142 |
NodeIt(const Digraph&, const Node&) { }
|
| 152 | 143 |
/// Next node. |
| 153 | 144 |
|
| 154 | 145 |
/// Assign the iterator to the next node. |
| 155 | 146 |
/// |
| 156 | 147 |
NodeIt& operator++() { return *this; }
|
| 157 | 148 |
}; |
| 158 | 149 |
|
| 159 | 150 |
|
| 160 |
/// |
|
| 151 |
/// The arc type of the digraph |
|
| 161 | 152 |
|
| 162 | 153 |
/// This class identifies an arc of the digraph. It also serves |
| 163 | 154 |
/// as a base class of the arc iterators, |
| 164 | 155 |
/// thus they will convert to this type. |
| 165 | 156 |
class Arc {
|
| 166 | 157 |
public: |
| 167 | 158 |
/// Default constructor |
| 168 | 159 |
|
| 169 |
/// @warning The default constructor sets the iterator |
|
| 170 |
/// to an undefined value. |
|
| 160 |
/// Default constructor. |
|
| 161 |
/// \warning It sets the object to an undefined value. |
|
| 171 | 162 |
Arc() { }
|
| 172 | 163 |
/// Copy constructor. |
| 173 | 164 |
|
| 174 | 165 |
/// Copy constructor. |
| 175 | 166 |
/// |
| 176 | 167 |
Arc(const Arc&) { }
|
| 177 |
/// |
|
| 168 |
/// %Invalid constructor \& conversion. |
|
| 178 | 169 |
|
| 179 |
/// Initialize the iterator to be invalid. |
|
| 180 |
/// |
|
| 170 |
/// Initializes the object to be invalid. |
|
| 171 |
/// \sa Invalid for more details. |
|
| 181 | 172 |
Arc(Invalid) { }
|
| 182 | 173 |
/// Equality operator |
| 183 | 174 |
|
| 175 |
/// Equality operator. |
|
| 176 |
/// |
|
| 184 | 177 |
/// Two iterators are equal if and only if they point to the |
| 185 |
/// same object or both are |
|
| 178 |
/// same object or both are \c INVALID. |
|
| 186 | 179 |
bool operator==(Arc) const { return true; }
|
| 187 | 180 |
/// Inequality operator |
| 188 | 181 |
|
| 189 |
/// \sa operator==(Arc n) |
|
| 190 |
/// |
|
| 182 |
/// Inequality operator. |
|
| 191 | 183 |
bool operator!=(Arc) const { return true; }
|
| 192 | 184 |
|
| 193 | 185 |
/// Artificial ordering operator. |
| 194 | 186 |
|
| 195 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 196 |
/// similar associative container we require this. |
|
| 187 |
/// Artificial ordering operator. |
|
| 197 | 188 |
/// |
| 198 |
/// \note This operator only have to define some strict ordering of |
|
| 199 |
/// the items; this order has nothing to do with the iteration |
|
| 200 |
/// ordering of |
|
| 189 |
/// \note This operator only has to define some strict ordering of |
|
| 190 |
/// the arcs; this order has nothing to do with the iteration |
|
| 191 |
/// ordering of the arcs. |
|
| 201 | 192 |
bool operator<(Arc) const { return false; }
|
| 202 | 193 |
}; |
| 203 | 194 |
|
| 204 |
/// |
|
| 195 |
/// Iterator class for the outgoing arcs of a node. |
|
| 205 | 196 |
|
| 206 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 207 | 198 |
/// of a digraph. |
| 208 |
/// Its usage is quite simple, for example you can count the number |
|
| 199 |
/// Its usage is quite simple, for example, you can count the number |
|
| 209 | 200 |
/// of outgoing arcs of a node \c n |
| 210 |
/// in digraph \c g of type \c Digraph as follows. |
|
| 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 211 | 202 |
///\code |
| 212 | 203 |
/// int count=0; |
| 213 |
/// for (Digraph::OutArcIt |
|
| 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 214 | 205 |
///\endcode |
| 215 |
|
|
| 216 | 206 |
class OutArcIt : public Arc {
|
| 217 | 207 |
public: |
| 218 | 208 |
/// Default constructor |
| 219 | 209 |
|
| 220 |
/// @warning The default constructor sets the iterator |
|
| 221 |
/// to an undefined value. |
|
| 210 |
/// Default constructor. |
|
| 211 |
/// \warning It sets the iterator to an undefined value. |
|
| 222 | 212 |
OutArcIt() { }
|
| 223 | 213 |
/// Copy constructor. |
| 224 | 214 |
|
| 225 | 215 |
/// Copy constructor. |
| 226 | 216 |
/// |
| 227 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 228 |
/// |
|
| 218 |
/// %Invalid constructor \& conversion. |
|
| 229 | 219 |
|
| 230 |
/// |
|
| 220 |
/// Initializes the iterator to be invalid. |
|
| 221 |
/// \sa Invalid for more details. |
|
| 222 |
OutArcIt(Invalid) { }
|
|
| 223 |
/// Sets the iterator to the first outgoing arc. |
|
| 224 |
|
|
| 225 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 231 | 226 |
/// |
| 232 |
OutArcIt(Invalid) { }
|
|
| 233 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 227 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 228 |
/// Sets the iterator to the given arc. |
|
| 234 | 229 |
|
| 235 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 236 |
/// the node. |
|
| 237 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 238 |
/// Arc -> OutArcIt conversion |
|
| 239 |
|
|
| 240 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 241 |
/// This feature necessitates that each time we |
|
| 242 |
/// iterate the arc-set, the iteration order is the same. |
|
| 230 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 231 |
/// |
|
| 243 | 232 |
OutArcIt(const Digraph&, const Arc&) { }
|
| 244 |
///Next outgoing arc |
|
| 233 |
/// Next outgoing arc |
|
| 245 | 234 |
|
| 246 | 235 |
/// Assign the iterator to the next |
| 247 | 236 |
/// outgoing arc of the corresponding node. |
| 248 | 237 |
OutArcIt& operator++() { return *this; }
|
| 249 | 238 |
}; |
| 250 | 239 |
|
| 251 |
/// |
|
| 240 |
/// Iterator class for the incoming arcs of a node. |
|
| 252 | 241 |
|
| 253 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 254 | 243 |
/// of a digraph. |
| 255 |
/// Its usage is quite simple, for example you can count the number |
|
| 256 |
/// of outgoing arcs of a node \c n |
|
| 257 |
/// |
|
| 244 |
/// Its usage is quite simple, for example, you can count the number |
|
| 245 |
/// of incoming arcs of a node \c n |
|
| 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 258 | 247 |
///\code |
| 259 | 248 |
/// int count=0; |
| 260 |
/// for(Digraph::InArcIt |
|
| 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 261 | 250 |
///\endcode |
| 262 |
|
|
| 263 | 251 |
class InArcIt : public Arc {
|
| 264 | 252 |
public: |
| 265 | 253 |
/// Default constructor |
| 266 | 254 |
|
| 267 |
/// @warning The default constructor sets the iterator |
|
| 268 |
/// to an undefined value. |
|
| 255 |
/// Default constructor. |
|
| 256 |
/// \warning It sets the iterator to an undefined value. |
|
| 269 | 257 |
InArcIt() { }
|
| 270 | 258 |
/// Copy constructor. |
| 271 | 259 |
|
| 272 | 260 |
/// Copy constructor. |
| 273 | 261 |
/// |
| 274 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 275 |
/// |
|
| 263 |
/// %Invalid constructor \& conversion. |
|
| 276 | 264 |
|
| 277 |
/// |
|
| 265 |
/// Initializes the iterator to be invalid. |
|
| 266 |
/// \sa Invalid for more details. |
|
| 267 |
InArcIt(Invalid) { }
|
|
| 268 |
/// Sets the iterator to the first incoming arc. |
|
| 269 |
|
|
| 270 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 278 | 271 |
/// |
| 279 |
InArcIt(Invalid) { }
|
|
| 280 |
/// This constructor sets the iterator to first incoming arc. |
|
| 272 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 273 |
/// Sets the iterator to the given arc. |
|
| 281 | 274 |
|
| 282 |
/// This constructor set the iterator to the first incoming arc of |
|
| 283 |
/// the node. |
|
| 284 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 285 |
/// Arc -> InArcIt conversion |
|
| 286 |
|
|
| 287 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 288 |
/// This feature necessitates that each time we |
|
| 289 |
/// iterate the arc-set, the iteration order is the same. |
|
| 275 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 276 |
/// |
|
| 290 | 277 |
InArcIt(const Digraph&, const Arc&) { }
|
| 291 | 278 |
/// Next incoming arc |
| 292 | 279 |
|
| 293 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 294 |
/// |
|
| 280 |
/// Assign the iterator to the next |
|
| 281 |
/// incoming arc of the corresponding node. |
|
| 295 | 282 |
InArcIt& operator++() { return *this; }
|
| 296 | 283 |
}; |
| 297 |
/// This iterator goes through each arc. |
|
| 298 | 284 |
|
| 299 |
/// This iterator goes through each arc of a digraph. |
|
| 300 |
/// Its usage is quite simple, for example you can count the number |
|
| 301 |
/// |
|
| 285 |
/// Iterator class for the arcs. |
|
| 286 |
|
|
| 287 |
/// This iterator goes through each arc of the digraph. |
|
| 288 |
/// Its usage is quite simple, for example, you can count the number |
|
| 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
|
| 302 | 290 |
///\code |
| 303 | 291 |
/// int count=0; |
| 304 |
/// for(Digraph::ArcIt |
|
| 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 305 | 293 |
///\endcode |
| 306 | 294 |
class ArcIt : public Arc {
|
| 307 | 295 |
public: |
| 308 | 296 |
/// Default constructor |
| 309 | 297 |
|
| 310 |
/// @warning The default constructor sets the iterator |
|
| 311 |
/// to an undefined value. |
|
| 298 |
/// Default constructor. |
|
| 299 |
/// \warning It sets the iterator to an undefined value. |
|
| 312 | 300 |
ArcIt() { }
|
| 313 | 301 |
/// Copy constructor. |
| 314 | 302 |
|
| 315 | 303 |
/// Copy constructor. |
| 316 | 304 |
/// |
| 317 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 318 |
/// |
|
| 306 |
/// %Invalid constructor \& conversion. |
|
| 319 | 307 |
|
| 320 |
/// |
|
| 308 |
/// Initializes the iterator to be invalid. |
|
| 309 |
/// \sa Invalid for more details. |
|
| 310 |
ArcIt(Invalid) { }
|
|
| 311 |
/// Sets the iterator to the first arc. |
|
| 312 |
|
|
| 313 |
/// Sets the iterator to the first arc of the given digraph. |
|
| 321 | 314 |
/// |
| 322 |
ArcIt(Invalid) { }
|
|
| 323 |
/// This constructor sets the iterator to the first arc. |
|
| 315 |
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 316 |
/// Sets the iterator to the given arc. |
|
| 324 | 317 |
|
| 325 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 326 |
///@param g the digraph |
|
| 327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 328 |
/// Arc -> ArcIt conversion |
|
| 329 |
|
|
| 330 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 331 |
/// This feature necessitates that each time we |
|
| 332 |
/// iterate the arc-set, the iteration order is the same. |
|
| 318 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 319 |
/// |
|
| 333 | 320 |
ArcIt(const Digraph&, const Arc&) { }
|
| 334 |
///Next arc |
|
| 321 |
/// Next arc |
|
| 335 | 322 |
|
| 336 | 323 |
/// Assign the iterator to the next arc. |
| 324 |
/// |
|
| 337 | 325 |
ArcIt& operator++() { return *this; }
|
| 338 | 326 |
}; |
| 339 |
///Gives back the target node of an arc. |
|
| 340 | 327 |
|
| 341 |
/// |
|
| 328 |
/// \brief The source node of the arc. |
|
| 342 | 329 |
/// |
| 343 |
Node target(Arc) const { return INVALID; }
|
|
| 344 |
///Gives back the source node of an arc. |
|
| 345 |
|
|
| 346 |
///Gives back the source node of an arc. |
|
| 347 |
/// |
|
| 330 |
/// Returns the source node of the given arc. |
|
| 348 | 331 |
Node source(Arc) const { return INVALID; }
|
| 349 | 332 |
|
| 350 |
/// \brief |
|
| 333 |
/// \brief The target node of the arc. |
|
| 334 |
/// |
|
| 335 |
/// Returns the target node of the given arc. |
|
| 336 |
Node target(Arc) const { return INVALID; }
|
|
| 337 |
|
|
| 338 |
/// \brief The ID of the node. |
|
| 339 |
/// |
|
| 340 |
/// Returns the ID of the given node. |
|
| 351 | 341 |
int id(Node) const { return -1; }
|
| 352 | 342 |
|
| 353 |
/// \brief |
|
| 343 |
/// \brief The ID of the arc. |
|
| 344 |
/// |
|
| 345 |
/// Returns the ID of the given arc. |
|
| 354 | 346 |
int id(Arc) const { return -1; }
|
| 355 | 347 |
|
| 356 |
/// \brief |
|
| 348 |
/// \brief The node with the given ID. |
|
| 357 | 349 |
/// |
| 358 |
/// |
|
| 350 |
/// Returns the node with the given ID. |
|
| 351 |
/// \pre The argument should be a valid node ID in the digraph. |
|
| 359 | 352 |
Node nodeFromId(int) const { return INVALID; }
|
| 360 | 353 |
|
| 361 |
/// \brief |
|
| 354 |
/// \brief The arc with the given ID. |
|
| 362 | 355 |
/// |
| 363 |
/// |
|
| 356 |
/// Returns the arc with the given ID. |
|
| 357 |
/// \pre The argument should be a valid arc ID in the digraph. |
|
| 364 | 358 |
Arc arcFromId(int) const { return INVALID; }
|
| 365 | 359 |
|
| 366 |
/// \brief |
|
| 360 |
/// \brief An upper bound on the node IDs. |
|
| 361 |
/// |
|
| 362 |
/// Returns an upper bound on the node IDs. |
|
| 367 | 363 |
int maxNodeId() const { return -1; }
|
| 368 | 364 |
|
| 369 |
/// \brief |
|
| 365 |
/// \brief An upper bound on the arc IDs. |
|
| 366 |
/// |
|
| 367 |
/// Returns an upper bound on the arc IDs. |
|
| 370 | 368 |
int maxArcId() const { return -1; }
|
| 371 | 369 |
|
| 372 | 370 |
void first(Node&) const {}
|
| 373 | 371 |
void next(Node&) const {}
|
| 374 | 372 |
|
| 375 | 373 |
void first(Arc&) const {}
|
| ... | ... |
@@ -389,76 +387,79 @@ |
| 389 | 387 |
|
| 390 | 388 |
// Dummy parameter. |
| 391 | 389 |
int maxId(Node) const { return -1; }
|
| 392 | 390 |
// Dummy parameter. |
| 393 | 391 |
int maxId(Arc) const { return -1; }
|
| 394 | 392 |
|
| 393 |
/// \brief The opposite node on the arc. |
|
| 394 |
/// |
|
| 395 |
/// Returns the opposite node on the given arc. |
|
| 396 |
Node oppositeNode(Node, Arc) const { return INVALID; }
|
|
| 397 |
|
|
| 395 | 398 |
/// \brief The base node of the iterator. |
| 396 | 399 |
/// |
| 397 |
/// Gives back the base node of the iterator. |
|
| 398 |
/// It is always the target of the pointed arc. |
|
| 399 |
|
|
| 400 |
/// Returns the base node of the given outgoing arc iterator |
|
| 401 |
/// (i.e. the source node of the corresponding arc). |
|
| 402 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 400 | 403 |
|
| 401 | 404 |
/// \brief The running node of the iterator. |
| 402 | 405 |
/// |
| 403 |
/// Gives back the running node of the iterator. |
|
| 404 |
/// It is always the source of the pointed arc. |
|
| 405 |
|
|
| 406 |
/// Returns the running node of the given outgoing arc iterator |
|
| 407 |
/// (i.e. the target node of the corresponding arc). |
|
| 408 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 406 | 409 |
|
| 407 | 410 |
/// \brief The base node of the iterator. |
| 408 | 411 |
/// |
| 409 |
/// Gives back the base node of the iterator. |
|
| 410 |
/// It is always the source of the pointed arc. |
|
| 411 |
|
|
| 412 |
/// Returns the base node of the given incomming arc iterator |
|
| 413 |
/// (i.e. the target node of the corresponding arc). |
|
| 414 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 412 | 415 |
|
| 413 | 416 |
/// \brief The running node of the iterator. |
| 414 | 417 |
/// |
| 415 |
/// Gives back the running node of the iterator. |
|
| 416 |
/// It is always the target of the pointed arc. |
|
| 417 |
|
|
| 418 |
/// Returns the running node of the given incomming arc iterator |
|
| 419 |
/// (i.e. the source node of the corresponding arc). |
|
| 420 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 418 | 421 |
|
| 419 |
/// \brief |
|
| 422 |
/// \brief Standard graph map type for the nodes. |
|
| 420 | 423 |
/// |
| 421 |
/// Gives back the opposite node on the given arc. |
|
| 422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
|
|
| 423 |
|
|
| 424 |
/// \brief Reference map of the nodes to type \c T. |
|
| 425 |
/// |
|
| 426 |
/// Reference map of the nodes to type \c T. |
|
| 424 |
/// Standard graph map type for the nodes. |
|
| 425 |
/// It conforms to the ReferenceMap concept. |
|
| 427 | 426 |
template<class T> |
| 428 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
| 429 | 428 |
public: |
| 430 | 429 |
|
| 431 |
///\e |
|
| 432 |
NodeMap(const Digraph&) { }
|
|
| 433 |
/// |
|
| 430 |
/// Constructor |
|
| 431 |
explicit NodeMap(const Digraph&) { }
|
|
| 432 |
/// Constructor with given initial value |
|
| 434 | 433 |
NodeMap(const Digraph&, T) { }
|
| 435 | 434 |
|
| 436 | 435 |
private: |
| 437 | 436 |
///Copy constructor |
| 438 |
NodeMap(const NodeMap& nm) : |
|
| 437 |
NodeMap(const NodeMap& nm) : |
|
| 439 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 440 | 439 |
///Assignment operator |
| 441 | 440 |
template <typename CMap> |
| 442 | 441 |
NodeMap& operator=(const CMap&) {
|
| 443 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 444 | 443 |
return *this; |
| 445 | 444 |
} |
| 446 | 445 |
}; |
| 447 | 446 |
|
| 448 |
/// \brief |
|
| 447 |
/// \brief Standard graph map type for the arcs. |
|
| 449 | 448 |
/// |
| 450 |
/// |
|
| 449 |
/// Standard graph map type for the arcs. |
|
| 450 |
/// It conforms to the ReferenceMap concept. |
|
| 451 | 451 |
template<class T> |
| 452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
| 453 | 453 |
public: |
| 454 | 454 |
|
| 455 |
///\e |
|
| 456 |
ArcMap(const Digraph&) { }
|
|
| 457 |
/// |
|
| 455 |
/// Constructor |
|
| 456 |
explicit ArcMap(const Digraph&) { }
|
|
| 457 |
/// Constructor with given initial value |
|
| 458 | 458 |
ArcMap(const Digraph&, T) { }
|
| 459 |
|
|
| 459 | 460 |
private: |
| 460 | 461 |
///Copy constructor |
| 461 | 462 |
ArcMap(const ArcMap& em) : |
| 462 | 463 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 463 | 464 |
///Assignment operator |
| 464 | 465 |
template <typename CMap> |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -15,504 +15,511 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 |
///\brief The concept of |
|
| 21 |
///\brief The concept of undirected graphs. |
|
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concepts/graph_components.h> |
| 27 |
#include <lemon/concepts/maps.h> |
|
| 28 |
#include <lemon/concept_check.h> |
|
| 27 | 29 |
#include <lemon/core.h> |
| 28 | 30 |
|
| 29 | 31 |
namespace lemon {
|
| 30 | 32 |
namespace concepts {
|
| 31 | 33 |
|
| 32 | 34 |
/// \ingroup graph_concepts |
| 33 | 35 |
/// |
| 34 |
/// \brief Class describing the concept of |
|
| 36 |
/// \brief Class describing the concept of undirected graphs. |
|
| 35 | 37 |
/// |
| 36 |
/// This class describes the common interface of all Undirected |
|
| 37 |
/// Graphs. |
|
| 38 |
/// This class describes the common interface of all undirected |
|
| 39 |
/// graphs. |
|
| 38 | 40 |
/// |
| 39 |
/// As all concept describing classes it provides only interface |
|
| 40 |
/// without any sensible implementation. So any algorithm for |
|
| 41 |
/// |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// undirected graphs should compile with this class, but it will not |
|
| 42 | 44 |
/// run properly, of course. |
| 45 |
/// An actual graph implementation like \ref ListGraph or |
|
| 46 |
/// \ref SmartGraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// The LEMON undirected graphs also fulfill the concept of |
|
| 45 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
|
| 46 |
/// Concept"). Each edges can be seen as two opposite |
|
| 47 |
/// directed arc and consequently the undirected graph can be |
|
| 48 |
/// seen as the direceted graph of these directed arcs. The |
|
| 49 |
/// Graph has the Edge inner class for the edges and |
|
| 50 |
/// the Arc type for the directed arcs. The Arc type is |
|
| 51 |
/// convertible to Edge or inherited from it so from a directed |
|
| 52 |
/// |
|
| 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
|
| 49 |
/// "directed graphs", since each edge can also be regarded as two |
|
| 50 |
/// oppositely directed arcs. |
|
| 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
|
| 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
|
| 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
|
| 54 |
/// obtained from an arc. |
|
| 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
|
| 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
|
| 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
|
| 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
|
| 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
|
| 60 |
/// only to Edge. |
|
| 53 | 61 |
/// |
| 54 |
/// In the sense of the LEMON each edge has a default |
|
| 55 |
/// direction (it should be in every computer implementation, |
|
| 56 |
/// because the order of edge's nodes defines an |
|
| 57 |
/// orientation). With the default orientation we can define that |
|
| 58 |
/// the directed arc is forward or backward directed. With the \c |
|
| 59 |
/// direction() and \c direct() function we can get the direction |
|
| 60 |
/// |
|
| 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
|
| 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
|
| 64 |
/// an undirected graph with respect to this default oriantation of |
|
| 65 |
/// the represented edge. |
|
| 66 |
/// With the direction() and direct() functions the direction |
|
| 67 |
/// of an arc can be obtained and set, respectively. |
|
| 61 | 68 |
/// |
| 62 |
/// The EdgeIt is an iterator for the edges. We can use |
|
| 63 |
/// the EdgeMap to map values for the edges. The InArcIt and |
|
| 64 |
/// OutArcIt iterates on the same edges but with opposite |
|
| 65 |
/// direction. The IncEdgeIt iterates also on the same edges |
|
| 66 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
|
| 67 |
/// to Edge. |
|
| 69 |
/// Only nodes and edges can be added to or removed from an undirected |
|
| 70 |
/// graph and the corresponding arcs are added or removed automatically. |
|
| 71 |
/// |
|
| 72 |
/// \sa Digraph |
|
| 68 | 73 |
class Graph {
|
| 74 |
private: |
|
| 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 76 |
Graph(const Graph&) {}
|
|
| 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 78 |
/// Use DigraphCopy instead. |
|
| 79 |
void operator=(const Graph&) {}
|
|
| 80 |
|
|
| 69 | 81 |
public: |
| 70 |
/// \brief The undirected graph should be tagged by the |
|
| 71 |
/// UndirectedTag. |
|
| 82 |
/// Default constructor. |
|
| 83 |
Graph() {}
|
|
| 84 |
|
|
| 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
|
| 72 | 86 |
/// |
| 73 |
/// The undirected graph should be tagged by the UndirectedTag. This |
|
| 74 |
/// tag helps the enable_if technics to make compile time |
|
| 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
|
| 88 |
/// |
|
| 89 |
/// This tag helps the \c enable_if technics to make compile time |
|
| 75 | 90 |
/// specializations for undirected graphs. |
| 76 | 91 |
typedef True UndirectedTag; |
| 77 | 92 |
|
| 78 |
/// \brief The base type of node iterators, |
|
| 79 |
/// or in other words, the trivial node iterator. |
|
| 80 |
/// |
|
| 81 |
/// This is the base type of each node iterator, |
|
| 82 |
/// thus each kind of node iterator converts to this. |
|
| 83 |
/// More precisely each kind of node iterator should be inherited |
|
| 84 |
/// |
|
| 93 |
/// The node type of the graph |
|
| 94 |
|
|
| 95 |
/// This class identifies a node of the graph. It also serves |
|
| 96 |
/// as a base class of the node iterators, |
|
| 97 |
/// thus they convert to this type. |
|
| 85 | 98 |
class Node {
|
| 86 | 99 |
public: |
| 87 | 100 |
/// Default constructor |
| 88 | 101 |
|
| 89 |
/// @warning The default constructor sets the iterator |
|
| 90 |
/// to an undefined value. |
|
| 102 |
/// Default constructor. |
|
| 103 |
/// \warning It sets the object to an undefined value. |
|
| 91 | 104 |
Node() { }
|
| 92 | 105 |
/// Copy constructor. |
| 93 | 106 |
|
| 94 | 107 |
/// Copy constructor. |
| 95 | 108 |
/// |
| 96 | 109 |
Node(const Node&) { }
|
| 97 | 110 |
|
| 98 |
/// Invalid constructor \& conversion. |
|
| 111 |
/// %Invalid constructor \& conversion. |
|
| 99 | 112 |
|
| 100 |
/// |
|
| 113 |
/// Initializes the object to be invalid. |
|
| 101 | 114 |
/// \sa Invalid for more details. |
| 102 | 115 |
Node(Invalid) { }
|
| 103 | 116 |
/// Equality operator |
| 104 | 117 |
|
| 118 |
/// Equality operator. |
|
| 119 |
/// |
|
| 105 | 120 |
/// Two iterators are equal if and only if they point to the |
| 106 |
/// same object or both are |
|
| 121 |
/// same object or both are \c INVALID. |
|
| 107 | 122 |
bool operator==(Node) const { return true; }
|
| 108 | 123 |
|
| 109 | 124 |
/// Inequality operator |
| 110 | 125 |
|
| 111 |
/// \sa operator==(Node n) |
|
| 112 |
/// |
|
| 126 |
/// Inequality operator. |
|
| 113 | 127 |
bool operator!=(Node) const { return true; }
|
| 114 | 128 |
|
| 115 | 129 |
/// Artificial ordering operator. |
| 116 | 130 |
|
| 117 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 118 |
/// similar associative container we require this. |
|
| 131 |
/// Artificial ordering operator. |
|
| 119 | 132 |
/// |
| 120 |
/// \note This operator only |
|
| 133 |
/// \note This operator only has to define some strict ordering of |
|
| 121 | 134 |
/// the items; this order has nothing to do with the iteration |
| 122 | 135 |
/// ordering of the items. |
| 123 | 136 |
bool operator<(Node) const { return false; }
|
| 124 | 137 |
|
| 125 | 138 |
}; |
| 126 | 139 |
|
| 127 |
/// |
|
| 140 |
/// Iterator class for the nodes. |
|
| 128 | 141 |
|
| 129 |
/// This iterator goes through each node. |
|
| 130 |
/// Its usage is quite simple, for example you can count the number |
|
| 131 |
/// |
|
| 142 |
/// This iterator goes through each node of the graph. |
|
| 143 |
/// Its usage is quite simple, for example, you can count the number |
|
| 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
|
| 132 | 145 |
///\code |
| 133 | 146 |
/// int count=0; |
| 134 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 135 | 148 |
///\endcode |
| 136 | 149 |
class NodeIt : public Node {
|
| 137 | 150 |
public: |
| 138 | 151 |
/// Default constructor |
| 139 | 152 |
|
| 140 |
/// @warning The default constructor sets the iterator |
|
| 141 |
/// to an undefined value. |
|
| 153 |
/// Default constructor. |
|
| 154 |
/// \warning It sets the iterator to an undefined value. |
|
| 142 | 155 |
NodeIt() { }
|
| 143 | 156 |
/// Copy constructor. |
| 144 | 157 |
|
| 145 | 158 |
/// Copy constructor. |
| 146 | 159 |
/// |
| 147 | 160 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 148 |
/// Invalid constructor \& conversion. |
|
| 161 |
/// %Invalid constructor \& conversion. |
|
| 149 | 162 |
|
| 150 |
/// |
|
| 163 |
/// Initializes the iterator to be invalid. |
|
| 151 | 164 |
/// \sa Invalid for more details. |
| 152 | 165 |
NodeIt(Invalid) { }
|
| 153 | 166 |
/// Sets the iterator to the first node. |
| 154 | 167 |
|
| 155 |
/// Sets the iterator to the first node of |
|
| 168 |
/// Sets the iterator to the first node of the given digraph. |
|
| 156 | 169 |
/// |
| 157 |
NodeIt(const Graph&) { }
|
|
| 158 |
/// Node -> NodeIt conversion. |
|
| 170 |
explicit NodeIt(const Graph&) { }
|
|
| 171 |
/// Sets the iterator to the given node. |
|
| 159 | 172 |
|
| 160 |
/// Sets the iterator to the node of \c the graph pointed by |
|
| 161 |
/// the trivial iterator. |
|
| 162 |
/// This feature necessitates that each time we |
|
| 163 |
/// iterate the arc-set, the iteration order is the same. |
|
| 173 |
/// Sets the iterator to the given node of the given digraph. |
|
| 174 |
/// |
|
| 164 | 175 |
NodeIt(const Graph&, const Node&) { }
|
| 165 | 176 |
/// Next node. |
| 166 | 177 |
|
| 167 | 178 |
/// Assign the iterator to the next node. |
| 168 | 179 |
/// |
| 169 | 180 |
NodeIt& operator++() { return *this; }
|
| 170 | 181 |
}; |
| 171 | 182 |
|
| 172 | 183 |
|
| 173 |
/// The |
|
| 184 |
/// The edge type of the graph |
|
| 174 | 185 |
|
| 175 |
/// The base type of the edge iterators. |
|
| 176 |
/// |
|
| 186 |
/// This class identifies an edge of the graph. It also serves |
|
| 187 |
/// as a base class of the edge iterators, |
|
| 188 |
/// thus they will convert to this type. |
|
| 177 | 189 |
class Edge {
|
| 178 | 190 |
public: |
| 179 | 191 |
/// Default constructor |
| 180 | 192 |
|
| 181 |
/// @warning The default constructor sets the iterator |
|
| 182 |
/// to an undefined value. |
|
| 193 |
/// Default constructor. |
|
| 194 |
/// \warning It sets the object to an undefined value. |
|
| 183 | 195 |
Edge() { }
|
| 184 | 196 |
/// Copy constructor. |
| 185 | 197 |
|
| 186 | 198 |
/// Copy constructor. |
| 187 | 199 |
/// |
| 188 | 200 |
Edge(const Edge&) { }
|
| 189 |
/// |
|
| 201 |
/// %Invalid constructor \& conversion. |
|
| 190 | 202 |
|
| 191 |
/// Initialize the iterator to be invalid. |
|
| 192 |
/// |
|
| 203 |
/// Initializes the object to be invalid. |
|
| 204 |
/// \sa Invalid for more details. |
|
| 193 | 205 |
Edge(Invalid) { }
|
| 194 | 206 |
/// Equality operator |
| 195 | 207 |
|
| 208 |
/// Equality operator. |
|
| 209 |
/// |
|
| 196 | 210 |
/// Two iterators are equal if and only if they point to the |
| 197 |
/// same object or both are |
|
| 211 |
/// same object or both are \c INVALID. |
|
| 198 | 212 |
bool operator==(Edge) const { return true; }
|
| 199 | 213 |
/// Inequality operator |
| 200 | 214 |
|
| 201 |
/// \sa operator==(Edge n) |
|
| 202 |
/// |
|
| 215 |
/// Inequality operator. |
|
| 203 | 216 |
bool operator!=(Edge) const { return true; }
|
| 204 | 217 |
|
| 205 | 218 |
/// Artificial ordering operator. |
| 206 | 219 |
|
| 207 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 208 |
/// similar associative container we require this. |
|
| 220 |
/// Artificial ordering operator. |
|
| 209 | 221 |
/// |
| 210 |
/// \note This operator only have to define some strict ordering of |
|
| 211 |
/// the items; this order has nothing to do with the iteration |
|
| 212 |
/// ordering of |
|
| 222 |
/// \note This operator only has to define some strict ordering of |
|
| 223 |
/// the edges; this order has nothing to do with the iteration |
|
| 224 |
/// ordering of the edges. |
|
| 213 | 225 |
bool operator<(Edge) const { return false; }
|
| 214 | 226 |
}; |
| 215 | 227 |
|
| 216 |
/// |
|
| 228 |
/// Iterator class for the edges. |
|
| 217 | 229 |
|
| 218 |
/// This iterator goes through each edge of a graph. |
|
| 219 |
/// Its usage is quite simple, for example you can count the number |
|
| 220 |
/// |
|
| 230 |
/// This iterator goes through each edge of the graph. |
|
| 231 |
/// Its usage is quite simple, for example, you can count the number |
|
| 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
|
| 221 | 233 |
///\code |
| 222 | 234 |
/// int count=0; |
| 223 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
| 224 | 236 |
///\endcode |
| 225 | 237 |
class EdgeIt : public Edge {
|
| 226 | 238 |
public: |
| 227 | 239 |
/// Default constructor |
| 228 | 240 |
|
| 229 |
/// @warning The default constructor sets the iterator |
|
| 230 |
/// to an undefined value. |
|
| 241 |
/// Default constructor. |
|
| 242 |
/// \warning It sets the iterator to an undefined value. |
|
| 231 | 243 |
EdgeIt() { }
|
| 232 | 244 |
/// Copy constructor. |
| 233 | 245 |
|
| 234 | 246 |
/// Copy constructor. |
| 235 | 247 |
/// |
| 236 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { }
|
| 237 |
/// |
|
| 249 |
/// %Invalid constructor \& conversion. |
|
| 238 | 250 |
|
| 239 |
/// |
|
| 251 |
/// Initializes the iterator to be invalid. |
|
| 252 |
/// \sa Invalid for more details. |
|
| 253 |
EdgeIt(Invalid) { }
|
|
| 254 |
/// Sets the iterator to the first edge. |
|
| 255 |
|
|
| 256 |
/// Sets the iterator to the first edge of the given graph. |
|
| 240 | 257 |
/// |
| 241 |
EdgeIt(Invalid) { }
|
|
| 242 |
/// This constructor sets the iterator to the first edge. |
|
| 258 |
explicit EdgeIt(const Graph&) { }
|
|
| 259 |
/// Sets the iterator to the given edge. |
|
| 243 | 260 |
|
| 244 |
/// This constructor sets the iterator to the first edge. |
|
| 245 |
EdgeIt(const Graph&) { }
|
|
| 246 |
/// Edge -> EdgeIt conversion |
|
| 247 |
|
|
| 248 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 249 |
/// This feature necessitates that each time we |
|
| 250 |
/// iterate the edge-set, the iteration order is the |
|
| 251 |
/// same. |
|
| 261 |
/// Sets the iterator to the given edge of the given graph. |
|
| 262 |
/// |
|
| 252 | 263 |
EdgeIt(const Graph&, const Edge&) { }
|
| 253 | 264 |
/// Next edge |
| 254 | 265 |
|
| 255 | 266 |
/// Assign the iterator to the next edge. |
| 267 |
/// |
|
| 256 | 268 |
EdgeIt& operator++() { return *this; }
|
| 257 | 269 |
}; |
| 258 | 270 |
|
| 259 |
/// \brief This iterator goes trough the incident undirected |
|
| 260 |
/// arcs of a node. |
|
| 261 |
/// |
|
| 262 |
/// This iterator goes trough the incident edges |
|
| 263 |
/// of a certain node of a graph. You should assume that the |
|
| 264 |
/// loop arcs will be iterated twice. |
|
| 265 |
/// |
|
| 266 |
/// Its usage is quite simple, for example you can compute the |
|
| 267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
|
| 268 |
/// in graph \c g of type \c Graph as follows. |
|
| 271 |
/// Iterator class for the incident edges of a node. |
|
| 272 |
|
|
| 273 |
/// This iterator goes trough the incident undirected edges |
|
| 274 |
/// of a certain node of a graph. |
|
| 275 |
/// Its usage is quite simple, for example, you can compute the |
|
| 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
|
| 277 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 269 | 278 |
/// |
| 270 | 279 |
///\code |
| 271 | 280 |
/// int count=0; |
| 272 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
| 273 | 282 |
///\endcode |
| 283 |
/// |
|
| 284 |
/// \warning Loop edges will be iterated twice. |
|
| 274 | 285 |
class IncEdgeIt : public Edge {
|
| 275 | 286 |
public: |
| 276 | 287 |
/// Default constructor |
| 277 | 288 |
|
| 278 |
/// @warning The default constructor sets the iterator |
|
| 279 |
/// to an undefined value. |
|
| 289 |
/// Default constructor. |
|
| 290 |
/// \warning It sets the iterator to an undefined value. |
|
| 280 | 291 |
IncEdgeIt() { }
|
| 281 | 292 |
/// Copy constructor. |
| 282 | 293 |
|
| 283 | 294 |
/// Copy constructor. |
| 284 | 295 |
/// |
| 285 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
|
| 286 |
/// |
|
| 297 |
/// %Invalid constructor \& conversion. |
|
| 287 | 298 |
|
| 288 |
/// |
|
| 299 |
/// Initializes the iterator to be invalid. |
|
| 300 |
/// \sa Invalid for more details. |
|
| 301 |
IncEdgeIt(Invalid) { }
|
|
| 302 |
/// Sets the iterator to the first incident edge. |
|
| 303 |
|
|
| 304 |
/// Sets the iterator to the first incident edge of the given node. |
|
| 289 | 305 |
/// |
| 290 |
IncEdgeIt(Invalid) { }
|
|
| 291 |
/// This constructor sets the iterator to first incident arc. |
|
| 306 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 307 |
/// Sets the iterator to the given edge. |
|
| 292 | 308 |
|
| 293 |
/// This constructor set the iterator to the first incident arc of |
|
| 294 |
/// the node. |
|
| 295 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 296 |
/// Edge -> IncEdgeIt conversion |
|
| 309 |
/// Sets the iterator to the given edge of the given graph. |
|
| 310 |
/// |
|
| 311 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 312 |
/// Next incident edge |
|
| 297 | 313 |
|
| 298 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 299 |
/// This feature necessitates that each time we |
|
| 300 |
/// iterate the arc-set, the iteration order is the same. |
|
| 301 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 302 |
/// Next incident arc |
|
| 303 |
|
|
| 304 |
/// Assign the iterator to the next incident |
|
| 314 |
/// Assign the iterator to the next incident edge |
|
| 305 | 315 |
/// of the corresponding node. |
| 306 | 316 |
IncEdgeIt& operator++() { return *this; }
|
| 307 | 317 |
}; |
| 308 | 318 |
|
| 309 |
/// The |
|
| 319 |
/// The arc type of the graph |
|
| 310 | 320 |
|
| 311 |
/// The directed arc type. It can be converted to the |
|
| 312 |
/// edge or it should be inherited from the undirected |
|
| 313 |
/// |
|
| 321 |
/// This class identifies a directed arc of the graph. It also serves |
|
| 322 |
/// as a base class of the arc iterators, |
|
| 323 |
/// thus they will convert to this type. |
|
| 314 | 324 |
class Arc {
|
| 315 | 325 |
public: |
| 316 | 326 |
/// Default constructor |
| 317 | 327 |
|
| 318 |
/// @warning The default constructor sets the iterator |
|
| 319 |
/// to an undefined value. |
|
| 328 |
/// Default constructor. |
|
| 329 |
/// \warning It sets the object to an undefined value. |
|
| 320 | 330 |
Arc() { }
|
| 321 | 331 |
/// Copy constructor. |
| 322 | 332 |
|
| 323 | 333 |
/// Copy constructor. |
| 324 | 334 |
/// |
| 325 | 335 |
Arc(const Arc&) { }
|
| 326 |
/// |
|
| 336 |
/// %Invalid constructor \& conversion. |
|
| 327 | 337 |
|
| 328 |
/// Initialize the iterator to be invalid. |
|
| 329 |
/// |
|
| 338 |
/// Initializes the object to be invalid. |
|
| 339 |
/// \sa Invalid for more details. |
|
| 330 | 340 |
Arc(Invalid) { }
|
| 331 | 341 |
/// Equality operator |
| 332 | 342 |
|
| 343 |
/// Equality operator. |
|
| 344 |
/// |
|
| 333 | 345 |
/// Two iterators are equal if and only if they point to the |
| 334 |
/// same object or both are |
|
| 346 |
/// same object or both are \c INVALID. |
|
| 335 | 347 |
bool operator==(Arc) const { return true; }
|
| 336 | 348 |
/// Inequality operator |
| 337 | 349 |
|
| 338 |
/// \sa operator==(Arc n) |
|
| 339 |
/// |
|
| 350 |
/// Inequality operator. |
|
| 340 | 351 |
bool operator!=(Arc) const { return true; }
|
| 341 | 352 |
|
| 342 | 353 |
/// Artificial ordering operator. |
| 343 | 354 |
|
| 344 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 345 |
/// similar associative container we require this. |
|
| 355 |
/// Artificial ordering operator. |
|
| 346 | 356 |
/// |
| 347 |
/// \note This operator only have to define some strict ordering of |
|
| 348 |
/// the items; this order has nothing to do with the iteration |
|
| 349 |
/// ordering of |
|
| 357 |
/// \note This operator only has to define some strict ordering of |
|
| 358 |
/// the arcs; this order has nothing to do with the iteration |
|
| 359 |
/// ordering of the arcs. |
|
| 350 | 360 |
bool operator<(Arc) const { return false; }
|
| 351 | 361 |
|
| 352 |
/// Converison to Edge |
|
| 362 |
/// Converison to \c Edge |
|
| 363 |
|
|
| 364 |
/// Converison to \c Edge. |
|
| 365 |
/// |
|
| 353 | 366 |
operator Edge() const { return Edge(); }
|
| 354 | 367 |
}; |
| 355 |
/// This iterator goes through each directed arc. |
|
| 356 | 368 |
|
| 357 |
/// This iterator goes through each arc of a graph. |
|
| 358 |
/// Its usage is quite simple, for example you can count the number |
|
| 359 |
/// |
|
| 369 |
/// Iterator class for the arcs. |
|
| 370 |
|
|
| 371 |
/// This iterator goes through each directed arc of the graph. |
|
| 372 |
/// Its usage is quite simple, for example, you can count the number |
|
| 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
|
| 360 | 374 |
///\code |
| 361 | 375 |
/// int count=0; |
| 362 |
/// for(Graph::ArcIt |
|
| 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 363 | 377 |
///\endcode |
| 364 | 378 |
class ArcIt : public Arc {
|
| 365 | 379 |
public: |
| 366 | 380 |
/// Default constructor |
| 367 | 381 |
|
| 368 |
/// @warning The default constructor sets the iterator |
|
| 369 |
/// to an undefined value. |
|
| 382 |
/// Default constructor. |
|
| 383 |
/// \warning It sets the iterator to an undefined value. |
|
| 370 | 384 |
ArcIt() { }
|
| 371 | 385 |
/// Copy constructor. |
| 372 | 386 |
|
| 373 | 387 |
/// Copy constructor. |
| 374 | 388 |
/// |
| 375 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 376 |
/// |
|
| 390 |
/// %Invalid constructor \& conversion. |
|
| 377 | 391 |
|
| 378 |
/// |
|
| 392 |
/// Initializes the iterator to be invalid. |
|
| 393 |
/// \sa Invalid for more details. |
|
| 394 |
ArcIt(Invalid) { }
|
|
| 395 |
/// Sets the iterator to the first arc. |
|
| 396 |
|
|
| 397 |
/// Sets the iterator to the first arc of the given graph. |
|
| 379 | 398 |
/// |
| 380 |
ArcIt(Invalid) { }
|
|
| 381 |
/// This constructor sets the iterator to the first arc. |
|
| 399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 400 |
/// Sets the iterator to the given arc. |
|
| 382 | 401 |
|
| 383 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 384 |
///@param g the graph |
|
| 385 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 386 |
/// Arc -> ArcIt conversion |
|
| 387 |
|
|
| 388 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 389 |
/// This feature necessitates that each time we |
|
| 390 |
/// iterate the arc-set, the iteration order is the same. |
|
| 402 |
/// Sets the iterator to the given arc of the given graph. |
|
| 403 |
/// |
|
| 391 | 404 |
ArcIt(const Graph&, const Arc&) { }
|
| 392 |
///Next arc |
|
| 405 |
/// Next arc |
|
| 393 | 406 |
|
| 394 | 407 |
/// Assign the iterator to the next arc. |
| 408 |
/// |
|
| 395 | 409 |
ArcIt& operator++() { return *this; }
|
| 396 | 410 |
}; |
| 397 | 411 |
|
| 398 |
/// |
|
| 412 |
/// Iterator class for the outgoing arcs of a node. |
|
| 399 | 413 |
|
| 400 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
|
| 401 |
/// of a graph. |
|
| 402 |
/// |
|
| 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
|
| 415 |
/// certain node of a graph. |
|
| 416 |
/// Its usage is quite simple, for example, you can count the number |
|
| 403 | 417 |
/// of outgoing arcs of a node \c n |
| 404 |
/// in graph \c g of type \c Graph as follows. |
|
| 418 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 405 | 419 |
///\code |
| 406 | 420 |
/// int count=0; |
| 407 |
/// for ( |
|
| 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 408 | 422 |
///\endcode |
| 409 |
|
|
| 410 | 423 |
class OutArcIt : public Arc {
|
| 411 | 424 |
public: |
| 412 | 425 |
/// Default constructor |
| 413 | 426 |
|
| 414 |
/// @warning The default constructor sets the iterator |
|
| 415 |
/// to an undefined value. |
|
| 427 |
/// Default constructor. |
|
| 428 |
/// \warning It sets the iterator to an undefined value. |
|
| 416 | 429 |
OutArcIt() { }
|
| 417 | 430 |
/// Copy constructor. |
| 418 | 431 |
|
| 419 | 432 |
/// Copy constructor. |
| 420 | 433 |
/// |
| 421 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 422 |
/// |
|
| 435 |
/// %Invalid constructor \& conversion. |
|
| 423 | 436 |
|
| 424 |
/// |
|
| 437 |
/// Initializes the iterator to be invalid. |
|
| 438 |
/// \sa Invalid for more details. |
|
| 439 |
OutArcIt(Invalid) { }
|
|
| 440 |
/// Sets the iterator to the first outgoing arc. |
|
| 441 |
|
|
| 442 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 425 | 443 |
/// |
| 426 |
OutArcIt(Invalid) { }
|
|
| 427 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 428 |
|
|
| 429 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 430 |
/// the node. |
|
| 431 |
///@param n the node |
|
| 432 |
///@param g the graph |
|
| 433 | 444 |
OutArcIt(const Graph& n, const Node& g) {
|
| 434 | 445 |
ignore_unused_variable_warning(n); |
| 435 | 446 |
ignore_unused_variable_warning(g); |
| 436 | 447 |
} |
| 437 |
/// |
|
| 448 |
/// Sets the iterator to the given arc. |
|
| 438 | 449 |
|
| 439 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 440 |
/// This feature necessitates that each time we |
|
| 441 |
/// |
|
| 450 |
/// Sets the iterator to the given arc of the given graph. |
|
| 451 |
/// |
|
| 442 | 452 |
OutArcIt(const Graph&, const Arc&) { }
|
| 443 |
///Next outgoing arc |
|
| 453 |
/// Next outgoing arc |
|
| 444 | 454 |
|
| 445 | 455 |
/// Assign the iterator to the next |
| 446 | 456 |
/// outgoing arc of the corresponding node. |
| 447 | 457 |
OutArcIt& operator++() { return *this; }
|
| 448 | 458 |
}; |
| 449 | 459 |
|
| 450 |
/// |
|
| 460 |
/// Iterator class for the incoming arcs of a node. |
|
| 451 | 461 |
|
| 452 |
/// This iterator goes trough the \e incoming arcs of a certain node |
|
| 453 |
/// of a graph. |
|
| 454 |
/// Its usage is quite simple, for example you can count the number |
|
| 455 |
/// of outgoing arcs of a node \c n |
|
| 456 |
/// |
|
| 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
|
| 463 |
/// certain node of a graph. |
|
| 464 |
/// Its usage is quite simple, for example, you can count the number |
|
| 465 |
/// of incoming arcs of a node \c n |
|
| 466 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 457 | 467 |
///\code |
| 458 | 468 |
/// int count=0; |
| 459 |
/// for( |
|
| 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 460 | 470 |
///\endcode |
| 461 |
|
|
| 462 | 471 |
class InArcIt : public Arc {
|
| 463 | 472 |
public: |
| 464 | 473 |
/// Default constructor |
| 465 | 474 |
|
| 466 |
/// @warning The default constructor sets the iterator |
|
| 467 |
/// to an undefined value. |
|
| 475 |
/// Default constructor. |
|
| 476 |
/// \warning It sets the iterator to an undefined value. |
|
| 468 | 477 |
InArcIt() { }
|
| 469 | 478 |
/// Copy constructor. |
| 470 | 479 |
|
| 471 | 480 |
/// Copy constructor. |
| 472 | 481 |
/// |
| 473 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 474 |
/// |
|
| 483 |
/// %Invalid constructor \& conversion. |
|
| 475 | 484 |
|
| 476 |
/// |
|
| 485 |
/// Initializes the iterator to be invalid. |
|
| 486 |
/// \sa Invalid for more details. |
|
| 487 |
InArcIt(Invalid) { }
|
|
| 488 |
/// Sets the iterator to the first incoming arc. |
|
| 489 |
|
|
| 490 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 477 | 491 |
/// |
| 478 |
InArcIt(Invalid) { }
|
|
| 479 |
/// This constructor sets the iterator to first incoming arc. |
|
| 480 |
|
|
| 481 |
/// This constructor set the iterator to the first incoming arc of |
|
| 482 |
/// the node. |
|
| 483 |
///@param n the node |
|
| 484 |
///@param g the graph |
|
| 485 | 492 |
InArcIt(const Graph& g, const Node& n) {
|
| 486 | 493 |
ignore_unused_variable_warning(n); |
| 487 | 494 |
ignore_unused_variable_warning(g); |
| 488 | 495 |
} |
| 489 |
/// |
|
| 496 |
/// Sets the iterator to the given arc. |
|
| 490 | 497 |
|
| 491 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 492 |
/// This feature necessitates that each time we |
|
| 493 |
/// |
|
| 498 |
/// Sets the iterator to the given arc of the given graph. |
|
| 499 |
/// |
|
| 494 | 500 |
InArcIt(const Graph&, const Arc&) { }
|
| 495 | 501 |
/// Next incoming arc |
| 496 | 502 |
|
| 497 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 498 |
/// |
|
| 503 |
/// Assign the iterator to the next |
|
| 504 |
/// incoming arc of the corresponding node. |
|
| 499 | 505 |
InArcIt& operator++() { return *this; }
|
| 500 | 506 |
}; |
| 501 | 507 |
|
| 502 |
/// \brief |
|
| 508 |
/// \brief Standard graph map type for the nodes. |
|
| 503 | 509 |
/// |
| 504 |
/// |
|
| 510 |
/// Standard graph map type for the nodes. |
|
| 511 |
/// It conforms to the ReferenceMap concept. |
|
| 505 | 512 |
template<class T> |
| 506 | 513 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
| 507 | 514 |
{
|
| 508 | 515 |
public: |
| 509 | 516 |
|
| 510 |
///\e |
|
| 511 |
NodeMap(const Graph&) { }
|
|
| 512 |
/// |
|
| 517 |
/// Constructor |
|
| 518 |
explicit NodeMap(const Graph&) { }
|
|
| 519 |
/// Constructor with given initial value |
|
| 513 | 520 |
NodeMap(const Graph&, T) { }
|
| 514 | 521 |
|
| 515 | 522 |
private: |
| 516 | 523 |
///Copy constructor |
| 517 | 524 |
NodeMap(const NodeMap& nm) : |
| 518 | 525 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| ... | ... |
@@ -521,161 +528,182 @@ |
| 521 | 528 |
NodeMap& operator=(const CMap&) {
|
| 522 | 529 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 523 | 530 |
return *this; |
| 524 | 531 |
} |
| 525 | 532 |
}; |
| 526 | 533 |
|
| 527 |
/// \brief |
|
| 534 |
/// \brief Standard graph map type for the arcs. |
|
| 528 | 535 |
/// |
| 529 |
/// |
|
| 536 |
/// Standard graph map type for the arcs. |
|
| 537 |
/// It conforms to the ReferenceMap concept. |
|
| 530 | 538 |
template<class T> |
| 531 | 539 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
| 532 | 540 |
{
|
| 533 | 541 |
public: |
| 534 | 542 |
|
| 535 |
///\e |
|
| 536 |
ArcMap(const Graph&) { }
|
|
| 537 |
/// |
|
| 543 |
/// Constructor |
|
| 544 |
explicit ArcMap(const Graph&) { }
|
|
| 545 |
/// Constructor with given initial value |
|
| 538 | 546 |
ArcMap(const Graph&, T) { }
|
| 547 |
|
|
| 539 | 548 |
private: |
| 540 | 549 |
///Copy constructor |
| 541 | 550 |
ArcMap(const ArcMap& em) : |
| 542 | 551 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 543 | 552 |
///Assignment operator |
| 544 | 553 |
template <typename CMap> |
| 545 | 554 |
ArcMap& operator=(const CMap&) {
|
| 546 | 555 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 547 | 556 |
return *this; |
| 548 | 557 |
} |
| 549 | 558 |
}; |
| 550 | 559 |
|
| 551 |
/// Reference map of the edges to type \c T. |
|
| 552 |
|
|
| 553 |
/// |
|
| 560 |
/// \brief Standard graph map type for the edges. |
|
| 561 |
/// |
|
| 562 |
/// Standard graph map type for the edges. |
|
| 563 |
/// It conforms to the ReferenceMap concept. |
|
| 554 | 564 |
template<class T> |
| 555 | 565 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
| 556 | 566 |
{
|
| 557 | 567 |
public: |
| 558 | 568 |
|
| 559 |
///\e |
|
| 560 |
EdgeMap(const Graph&) { }
|
|
| 561 |
/// |
|
| 569 |
/// Constructor |
|
| 570 |
explicit EdgeMap(const Graph&) { }
|
|
| 571 |
/// Constructor with given initial value |
|
| 562 | 572 |
EdgeMap(const Graph&, T) { }
|
| 573 |
|
|
| 563 | 574 |
private: |
| 564 | 575 |
///Copy constructor |
| 565 | 576 |
EdgeMap(const EdgeMap& em) : |
| 566 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {}
|
| 567 | 578 |
///Assignment operator |
| 568 | 579 |
template <typename CMap> |
| 569 | 580 |
EdgeMap& operator=(const CMap&) {
|
| 570 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
| 571 | 582 |
return *this; |
| 572 | 583 |
} |
| 573 | 584 |
}; |
| 574 | 585 |
|
| 575 |
/// \brief |
|
| 586 |
/// \brief The first node of the edge. |
|
| 576 | 587 |
/// |
| 577 |
/// Direct the given edge. The returned arc source |
|
| 578 |
/// will be the given node. |
|
| 579 |
Arc direct(const Edge&, const Node&) const {
|
|
| 580 |
return INVALID; |
|
| 581 |
} |
|
| 582 |
|
|
| 583 |
/// |
|
| 588 |
/// Returns the first node of the given edge. |
|
| 584 | 589 |
/// |
| 585 |
/// Direct the given edge. The returned arc |
|
| 586 |
/// represents the given edge and the direction comes |
|
| 587 |
/// from the bool parameter. The source of the edge and |
|
| 588 |
/// the directed arc is the same when the given bool is true. |
|
| 589 |
Arc direct(const Edge&, bool) const {
|
|
| 590 |
return INVALID; |
|
| 591 |
} |
|
| 592 |
|
|
| 593 |
/// \brief Returns true if the arc has default orientation. |
|
| 594 |
/// |
|
| 595 |
/// Returns whether the given directed arc is same orientation as |
|
| 596 |
/// the corresponding edge's default orientation. |
|
| 597 |
bool direction(Arc) const { return true; }
|
|
| 598 |
|
|
| 599 |
/// \brief Returns the opposite directed arc. |
|
| 600 |
/// |
|
| 601 |
/// Returns the opposite directed arc. |
|
| 602 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 603 |
|
|
| 604 |
/// \brief Opposite node on an arc |
|
| 605 |
/// |
|
| 606 |
/// \return The opposite of the given node on the given edge. |
|
| 607 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 608 |
|
|
| 609 |
/// \brief First node of the edge. |
|
| 610 |
/// |
|
| 611 |
/// \return The first node of the given edge. |
|
| 612 |
/// |
|
| 613 |
/// Naturally edges don't have direction and thus |
|
| 614 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 615 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 616 |
/// arc which arises this way is called the inherent direction of the |
|
| 617 |
/// edge, and is used to define the "default" direction |
|
| 618 |
/// of the directed versions of the arcs. |
|
| 590 |
/// Edges don't have source and target nodes, however, methods |
|
| 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 592 |
/// The orientation of an edge that arises this way is called |
|
| 593 |
/// the inherent direction, it is used to define the default |
|
| 594 |
/// direction for the corresponding arcs. |
|
| 619 | 595 |
/// \sa v() |
| 620 | 596 |
/// \sa direction() |
| 621 | 597 |
Node u(Edge) const { return INVALID; }
|
| 622 | 598 |
|
| 623 |
/// \brief |
|
| 599 |
/// \brief The second node of the edge. |
|
| 624 | 600 |
/// |
| 625 |
/// |
|
| 601 |
/// Returns the second node of the given edge. |
|
| 626 | 602 |
/// |
| 627 |
/// Naturally edges don't have direction and thus |
|
| 628 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 629 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 630 |
/// arc which arises this way is called the inherent direction of the |
|
| 631 |
/// edge, and is used to define the "default" direction |
|
| 632 |
/// of the directed versions of the arcs. |
|
| 603 |
/// Edges don't have source and target nodes, however, methods |
|
| 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 605 |
/// The orientation of an edge that arises this way is called |
|
| 606 |
/// the inherent direction, it is used to define the default |
|
| 607 |
/// direction for the corresponding arcs. |
|
| 633 | 608 |
/// \sa u() |
| 634 | 609 |
/// \sa direction() |
| 635 | 610 |
Node v(Edge) const { return INVALID; }
|
| 636 | 611 |
|
| 637 |
/// \brief |
|
| 612 |
/// \brief The source node of the arc. |
|
| 613 |
/// |
|
| 614 |
/// Returns the source node of the given arc. |
|
| 638 | 615 |
Node source(Arc) const { return INVALID; }
|
| 639 | 616 |
|
| 640 |
/// \brief |
|
| 617 |
/// \brief The target node of the arc. |
|
| 618 |
/// |
|
| 619 |
/// Returns the target node of the given arc. |
|
| 641 | 620 |
Node target(Arc) const { return INVALID; }
|
| 642 | 621 |
|
| 643 |
/// \brief |
|
| 622 |
/// \brief The ID of the node. |
|
| 623 |
/// |
|
| 624 |
/// Returns the ID of the given node. |
|
| 644 | 625 |
int id(Node) const { return -1; }
|
| 645 | 626 |
|
| 646 |
/// \brief |
|
| 627 |
/// \brief The ID of the edge. |
|
| 628 |
/// |
|
| 629 |
/// Returns the ID of the given edge. |
|
| 647 | 630 |
int id(Edge) const { return -1; }
|
| 648 | 631 |
|
| 649 |
/// \brief |
|
| 632 |
/// \brief The ID of the arc. |
|
| 633 |
/// |
|
| 634 |
/// Returns the ID of the given arc. |
|
| 650 | 635 |
int id(Arc) const { return -1; }
|
| 651 | 636 |
|
| 652 |
/// \brief |
|
| 637 |
/// \brief The node with the given ID. |
|
| 653 | 638 |
/// |
| 654 |
/// |
|
| 639 |
/// Returns the node with the given ID. |
|
| 640 |
/// \pre The argument should be a valid node ID in the graph. |
|
| 655 | 641 |
Node nodeFromId(int) const { return INVALID; }
|
| 656 | 642 |
|
| 657 |
/// \brief |
|
| 643 |
/// \brief The edge with the given ID. |
|
| 658 | 644 |
/// |
| 659 |
/// |
|
| 645 |
/// Returns the edge with the given ID. |
|
| 646 |
/// \pre The argument should be a valid edge ID in the graph. |
|
| 660 | 647 |
Edge edgeFromId(int) const { return INVALID; }
|
| 661 | 648 |
|
| 662 |
/// \brief |
|
| 649 |
/// \brief The arc with the given ID. |
|
| 663 | 650 |
/// |
| 664 |
/// |
|
| 651 |
/// Returns the arc with the given ID. |
|
| 652 |
/// \pre The argument should be a valid arc ID in the graph. |
|
| 665 | 653 |
Arc arcFromId(int) const { return INVALID; }
|
| 666 | 654 |
|
| 667 |
/// \brief |
|
| 655 |
/// \brief An upper bound on the node IDs. |
|
| 656 |
/// |
|
| 657 |
/// Returns an upper bound on the node IDs. |
|
| 668 | 658 |
int maxNodeId() const { return -1; }
|
| 669 | 659 |
|
| 670 |
/// \brief |
|
| 660 |
/// \brief An upper bound on the edge IDs. |
|
| 661 |
/// |
|
| 662 |
/// Returns an upper bound on the edge IDs. |
|
| 671 | 663 |
int maxEdgeId() const { return -1; }
|
| 672 | 664 |
|
| 673 |
/// \brief |
|
| 665 |
/// \brief An upper bound on the arc IDs. |
|
| 666 |
/// |
|
| 667 |
/// Returns an upper bound on the arc IDs. |
|
| 674 | 668 |
int maxArcId() const { return -1; }
|
| 675 | 669 |
|
| 670 |
/// \brief The direction of the arc. |
|
| 671 |
/// |
|
| 672 |
/// Returns \c true if the direction of the given arc is the same as |
|
| 673 |
/// the inherent orientation of the represented edge. |
|
| 674 |
bool direction(Arc) const { return true; }
|
|
| 675 |
|
|
| 676 |
/// \brief Direct the edge. |
|
| 677 |
/// |
|
| 678 |
/// Direct the given edge. The returned arc |
|
| 679 |
/// represents the given edge and its direction comes |
|
| 680 |
/// from the bool parameter. If it is \c true, then the direction |
|
| 681 |
/// of the arc is the same as the inherent orientation of the edge. |
|
| 682 |
Arc direct(Edge, bool) const {
|
|
| 683 |
return INVALID; |
|
| 684 |
} |
|
| 685 |
|
|
| 686 |
/// \brief Direct the edge. |
|
| 687 |
/// |
|
| 688 |
/// Direct the given edge. The returned arc represents the given |
|
| 689 |
/// edge and its source node is the given node. |
|
| 690 |
Arc direct(Edge, Node) const {
|
|
| 691 |
return INVALID; |
|
| 692 |
} |
|
| 693 |
|
|
| 694 |
/// \brief The oppositely directed arc. |
|
| 695 |
/// |
|
| 696 |
/// Returns the oppositely directed arc representing the same edge. |
|
| 697 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 698 |
|
|
| 699 |
/// \brief The opposite node on the edge. |
|
| 700 |
/// |
|
| 701 |
/// Returns the opposite node on the given edge. |
|
| 702 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 703 |
|
|
| 676 | 704 |
void first(Node&) const {}
|
| 677 | 705 |
void next(Node&) const {}
|
| 678 | 706 |
|
| 679 | 707 |
void first(Edge&) const {}
|
| 680 | 708 |
void next(Edge&) const {}
|
| 681 | 709 |
|
| ... | ... |
@@ -702,53 +730,45 @@ |
| 702 | 730 |
int maxId(Node) const { return -1; }
|
| 703 | 731 |
// Dummy parameter. |
| 704 | 732 |
int maxId(Edge) const { return -1; }
|
| 705 | 733 |
// Dummy parameter. |
| 706 | 734 |
int maxId(Arc) const { return -1; }
|
| 707 | 735 |
|
| 708 |
/// \brief |
|
| 736 |
/// \brief The base node of the iterator. |
|
| 709 | 737 |
/// |
| 710 |
/// Returns the base node (the source in this case) of the iterator |
|
| 711 |
Node baseNode(OutArcIt e) const {
|
|
| 712 |
return source(e); |
|
| 713 |
} |
|
| 714 |
/// |
|
| 738 |
/// Returns the base node of the given incident edge iterator. |
|
| 739 |
Node baseNode(IncEdgeIt) const { return INVALID; }
|
|
| 740 |
|
|
| 741 |
/// \brief The running node of the iterator. |
|
| 715 | 742 |
/// |
| 716 |
/// Returns the running node (the target in this case) of the |
|
| 717 |
/// iterator |
|
| 718 |
Node runningNode(OutArcIt e) const {
|
|
| 719 |
return target(e); |
|
| 720 |
|
|
| 743 |
/// Returns the running node of the given incident edge iterator. |
|
| 744 |
Node runningNode(IncEdgeIt) const { return INVALID; }
|
|
| 721 | 745 |
|
| 722 |
/// \brief |
|
| 746 |
/// \brief The base node of the iterator. |
|
| 723 | 747 |
/// |
| 724 |
/// Returns the base node (the target in this case) of the iterator |
|
| 725 |
Node baseNode(InArcIt e) const {
|
|
| 726 |
return target(e); |
|
| 727 |
} |
|
| 728 |
/// |
|
| 748 |
/// Returns the base node of the given outgoing arc iterator |
|
| 749 |
/// (i.e. the source node of the corresponding arc). |
|
| 750 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 751 |
|
|
| 752 |
/// \brief The running node of the iterator. |
|
| 729 | 753 |
/// |
| 730 |
/// Returns the running node (the source in this case) of the |
|
| 731 |
/// iterator |
|
| 732 |
Node runningNode(InArcIt e) const {
|
|
| 733 |
return source(e); |
|
| 734 |
|
|
| 754 |
/// Returns the running node of the given outgoing arc iterator |
|
| 755 |
/// (i.e. the target node of the corresponding arc). |
|
| 756 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 735 | 757 |
|
| 736 |
/// \brief |
|
| 758 |
/// \brief The base node of the iterator. |
|
| 737 | 759 |
/// |
| 738 |
/// Returns the base node of the iterator |
|
| 739 |
Node baseNode(IncEdgeIt) const {
|
|
| 740 |
return INVALID; |
|
| 741 |
} |
|
| 760 |
/// Returns the base node of the given incomming arc iterator |
|
| 761 |
/// (i.e. the target node of the corresponding arc). |
|
| 762 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 742 | 763 |
|
| 743 |
/// \brief |
|
| 764 |
/// \brief The running node of the iterator. |
|
| 744 | 765 |
/// |
| 745 |
/// Returns the running node of the iterator |
|
| 746 |
Node runningNode(IncEdgeIt) const {
|
|
| 747 |
return INVALID; |
|
| 748 |
} |
|
| 766 |
/// Returns the running node of the given incomming arc iterator |
|
| 767 |
/// (i.e. the source node of the corresponding arc). |
|
| 768 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 749 | 769 |
|
| 750 | 770 |
template <typename _Graph> |
| 751 | 771 |
struct Constraints {
|
| 752 | 772 |
void constraints() {
|
| 753 | 773 |
checkConcept<BaseGraphComponent, _Graph>(); |
| 754 | 774 |
checkConcept<IterableGraphComponent<>, _Graph>(); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -15,13 +15,13 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 |
///\brief The |
|
| 21 |
///\brief The concepts of graph components. |
|
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| ... | ... |
@@ -35,13 +35,13 @@ |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
| 37 | 37 |
/// subtypes of digraph and graph types. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \note This class is a template class so that we can use it to |
| 40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
| 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
| 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
| 42 | 42 |
/// base class. For \c Node you should instantiate it with character |
| 43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
| 44 | 44 |
#ifndef DOXYGEN |
| 45 | 45 |
template <char sel = '0'> |
| 46 | 46 |
#endif |
| 47 | 47 |
class GraphItem {
|
| ... | ... |
@@ -86,16 +86,16 @@ |
| 86 | 86 |
/// Inequality operator. |
| 87 | 87 |
bool operator!=(const GraphItem&) const { return false; }
|
| 88 | 88 |
|
| 89 | 89 |
/// \brief Ordering operator. |
| 90 | 90 |
/// |
| 91 | 91 |
/// This operator defines an ordering of the items. |
| 92 |
/// It makes possible to use graph item types as key types in |
|
| 92 |
/// It makes possible to use graph item types as key types in |
|
| 93 | 93 |
/// associative containers (e.g. \c std::map). |
| 94 | 94 |
/// |
| 95 |
/// \note This operator only |
|
| 95 |
/// \note This operator only has to define some strict ordering of |
|
| 96 | 96 |
/// the items; this order has nothing to do with the iteration |
| 97 | 97 |
/// ordering of the items. |
| 98 | 98 |
bool operator<(const GraphItem&) const { return false; }
|
| 99 | 99 |
|
| 100 | 100 |
template<typename _GraphItem> |
| 101 | 101 |
struct Constraints {
|
| ... | ... |
@@ -119,13 +119,13 @@ |
| 119 | 119 |
}; |
| 120 | 120 |
|
| 121 | 121 |
/// \brief Base skeleton class for directed graphs. |
| 122 | 122 |
/// |
| 123 | 123 |
/// This class describes the base interface of directed graph types. |
| 124 | 124 |
/// All digraph %concepts have to conform to this class. |
| 125 |
/// It just provides types for nodes and arcs and functions |
|
| 125 |
/// It just provides types for nodes and arcs and functions |
|
| 126 | 126 |
/// to get the source and the target nodes of arcs. |
| 127 | 127 |
class BaseDigraphComponent {
|
| 128 | 128 |
public: |
| 129 | 129 |
|
| 130 | 130 |
typedef BaseDigraphComponent Digraph; |
| 131 | 131 |
|
| ... | ... |
@@ -423,13 +423,13 @@ |
| 423 | 423 |
const _Graph& graph; |
| 424 | 424 |
}; |
| 425 | 425 |
}; |
| 426 | 426 |
|
| 427 | 427 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
| 428 | 428 |
/// |
| 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
| 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
| 430 | 430 |
/// \c EdgeIt subtypes of digraph and graph types. |
| 431 | 431 |
template <typename GR, typename Item> |
| 432 | 432 |
class GraphItemIt : public Item {
|
| 433 | 433 |
public: |
| 434 | 434 |
/// \brief Default constructor. |
| 435 | 435 |
/// |
| ... | ... |
@@ -463,13 +463,13 @@ |
| 463 | 463 |
|
| 464 | 464 |
/// \brief Increment the iterator. |
| 465 | 465 |
/// |
| 466 | 466 |
/// This operator increments the iterator, i.e. assigns it to the |
| 467 | 467 |
/// next item. |
| 468 | 468 |
GraphItemIt& operator++() { return *this; }
|
| 469 |
|
|
| 469 |
|
|
| 470 | 470 |
/// \brief Equality operator |
| 471 | 471 |
/// |
| 472 | 472 |
/// Equality operator. |
| 473 | 473 |
/// Two iterators are equal if and only if they point to the |
| 474 | 474 |
/// same object or both are invalid. |
| 475 | 475 |
bool operator==(const GraphItemIt&) const { return true;}
|
| ... | ... |
@@ -498,21 +498,21 @@ |
| 498 | 498 |
bi = it2; |
| 499 | 499 |
} |
| 500 | 500 |
const GR& g; |
| 501 | 501 |
}; |
| 502 | 502 |
}; |
| 503 | 503 |
|
| 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
| 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
| 505 | 505 |
/// \c IncEdgeIt types. |
| 506 | 506 |
/// |
| 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
| 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
| 508 | 508 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
| 509 | 509 |
/// |
| 510 | 510 |
/// \note Since these iterator classes do not inherit from the same |
| 511 | 511 |
/// base class, there is an additional template parameter (selector) |
| 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
| 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
| 513 | 513 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
| 514 | 514 |
template <typename GR, |
| 515 | 515 |
typename Item = typename GR::Arc, |
| 516 | 516 |
typename Base = typename GR::Node, |
| 517 | 517 |
char sel = '0'> |
| 518 | 518 |
class GraphIncIt : public Item {
|
| ... | ... |
@@ -527,16 +527,16 @@ |
| 527 | 527 |
|
| 528 | 528 |
/// \brief Copy constructor. |
| 529 | 529 |
/// |
| 530 | 530 |
/// Copy constructor. |
| 531 | 531 |
GraphIncIt(const GraphIncIt& it) : Item(it) {}
|
| 532 | 532 |
|
| 533 |
/// \brief Constructor that sets the iterator to the first |
|
| 533 |
/// \brief Constructor that sets the iterator to the first |
|
| 534 | 534 |
/// incoming or outgoing arc. |
| 535 | 535 |
/// |
| 536 |
/// Constructor that sets the iterator to the first arc |
|
| 536 |
/// Constructor that sets the iterator to the first arc |
|
| 537 | 537 |
/// incoming to or outgoing from the given node. |
| 538 | 538 |
explicit GraphIncIt(const GR&, const Base&) {}
|
| 539 | 539 |
|
| 540 | 540 |
/// \brief Constructor for conversion from \c INVALID. |
| 541 | 541 |
/// |
| 542 | 542 |
/// Constructor for conversion from \c INVALID. |
| ... | ... |
@@ -801,22 +801,22 @@ |
| 801 | 801 |
/// |
| 802 | 802 |
/// This function gives back the next edge in the iteration order. |
| 803 | 803 |
void next(Edge&) const {}
|
| 804 | 804 |
|
| 805 | 805 |
/// \brief Return the first edge incident to the given node. |
| 806 | 806 |
/// |
| 807 |
/// This function gives back the first edge incident to the given |
|
| 807 |
/// This function gives back the first edge incident to the given |
|
| 808 | 808 |
/// node. The bool parameter gives back the direction for which the |
| 809 |
/// source node of the directed arc representing the edge is the |
|
| 809 |
/// source node of the directed arc representing the edge is the |
|
| 810 | 810 |
/// given node. |
| 811 | 811 |
void firstInc(Edge&, bool&, const Node&) const {}
|
| 812 | 812 |
|
| 813 | 813 |
/// \brief Gives back the next of the edges from the |
| 814 | 814 |
/// given node. |
| 815 | 815 |
/// |
| 816 |
/// This function gives back the next edge incident to the given |
|
| 816 |
/// This function gives back the next edge incident to the given |
|
| 817 | 817 |
/// node. The bool parameter should be used as \c firstInc() use it. |
| 818 | 818 |
void nextInc(Edge&, bool&) const {}
|
| 819 | 819 |
|
| 820 | 820 |
using IterableDigraphComponent<Base>::baseNode; |
| 821 | 821 |
using IterableDigraphComponent<Base>::runningNode; |
| 822 | 822 |
|
| ... | ... |
@@ -987,13 +987,13 @@ |
| 987 | 987 |
}; |
| 988 | 988 |
}; |
| 989 | 989 |
|
| 990 | 990 |
/// \brief Concept class for standard graph maps. |
| 991 | 991 |
/// |
| 992 | 992 |
/// This class describes the concept of standard graph maps, i.e. |
| 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
| 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
| 994 | 994 |
/// graph types, which can be used for associating data to graph items. |
| 995 | 995 |
/// The standard graph maps must conform to the ReferenceMap concept. |
| 996 | 996 |
template <typename GR, typename K, typename V> |
| 997 | 997 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
|
| 998 | 998 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
| 999 | 999 |
|
| ... | ... |
@@ -1042,13 +1042,13 @@ |
| 1042 | 1042 |
struct Constraints {
|
| 1043 | 1043 |
void constraints() {
|
| 1044 | 1044 |
checkConcept |
| 1045 | 1045 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
| 1046 | 1046 |
_Map m1(g); |
| 1047 | 1047 |
_Map m2(g,t); |
| 1048 |
|
|
| 1048 |
|
|
| 1049 | 1049 |
// Copy constructor |
| 1050 | 1050 |
// _Map m3(m); |
| 1051 | 1051 |
|
| 1052 | 1052 |
// Assignment operator |
| 1053 | 1053 |
// ReadMap<Key, Value> cmap; |
| 1054 | 1054 |
// m3 = cmap; |
| ... | ... |
@@ -1065,13 +1065,13 @@ |
| 1065 | 1065 |
|
| 1066 | 1066 |
}; |
| 1067 | 1067 |
|
| 1068 | 1068 |
/// \brief Skeleton class for mappable directed graphs. |
| 1069 | 1069 |
/// |
| 1070 | 1070 |
/// This class describes the interface of mappable directed graphs. |
| 1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
| 1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
| 1072 | 1072 |
/// map classes, namely \c NodeMap and \c ArcMap. |
| 1073 | 1073 |
/// This concept is part of the Digraph concept. |
| 1074 | 1074 |
template <typename BAS = BaseDigraphComponent> |
| 1075 | 1075 |
class MappableDigraphComponent : public BAS {
|
| 1076 | 1076 |
public: |
| 1077 | 1077 |
|
| ... | ... |
@@ -1202,13 +1202,13 @@ |
| 1202 | 1202 |
}; |
| 1203 | 1203 |
}; |
| 1204 | 1204 |
|
| 1205 | 1205 |
/// \brief Skeleton class for mappable undirected graphs. |
| 1206 | 1206 |
/// |
| 1207 | 1207 |
/// This class describes the interface of mappable undirected graphs. |
| 1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
| 1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
| 1209 | 1209 |
/// map class for edges (\c EdgeMap). |
| 1210 | 1210 |
/// This concept is part of the Graph concept. |
| 1211 | 1211 |
template <typename BAS = BaseGraphComponent> |
| 1212 | 1212 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
|
| 1213 | 1213 |
public: |
| 1214 | 1214 |
|
| ... | ... |
@@ -1287,13 +1287,13 @@ |
| 1287 | 1287 |
}; |
| 1288 | 1288 |
}; |
| 1289 | 1289 |
|
| 1290 | 1290 |
/// \brief Skeleton class for extendable directed graphs. |
| 1291 | 1291 |
/// |
| 1292 | 1292 |
/// This class describes the interface of extendable directed graphs. |
| 1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
| 1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
| 1294 | 1294 |
/// nodes and arcs to the digraph. |
| 1295 | 1295 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1296 | 1296 |
template <typename BAS = BaseDigraphComponent> |
| 1297 | 1297 |
class ExtendableDigraphComponent : public BAS {
|
| 1298 | 1298 |
public: |
| 1299 | 1299 |
typedef BAS Base; |
| ... | ... |
@@ -1331,13 +1331,13 @@ |
| 1331 | 1331 |
}; |
| 1332 | 1332 |
}; |
| 1333 | 1333 |
|
| 1334 | 1334 |
/// \brief Skeleton class for extendable undirected graphs. |
| 1335 | 1335 |
/// |
| 1336 | 1336 |
/// This class describes the interface of extendable undirected graphs. |
| 1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
| 1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
| 1338 | 1338 |
/// nodes and edges to the graph. |
| 1339 | 1339 |
/// This concept requires \ref AlterableGraphComponent. |
| 1340 | 1340 |
template <typename BAS = BaseGraphComponent> |
| 1341 | 1341 |
class ExtendableGraphComponent : public BAS {
|
| 1342 | 1342 |
public: |
| 1343 | 1343 |
|
| ... | ... |
@@ -1375,26 +1375,26 @@ |
| 1375 | 1375 |
}; |
| 1376 | 1376 |
}; |
| 1377 | 1377 |
|
| 1378 | 1378 |
/// \brief Skeleton class for erasable directed graphs. |
| 1379 | 1379 |
/// |
| 1380 | 1380 |
/// This class describes the interface of erasable directed graphs. |
| 1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
| 1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
| 1382 | 1382 |
/// nodes and arcs from the digraph. |
| 1383 | 1383 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1384 | 1384 |
template <typename BAS = BaseDigraphComponent> |
| 1385 | 1385 |
class ErasableDigraphComponent : public BAS {
|
| 1386 | 1386 |
public: |
| 1387 | 1387 |
|
| 1388 | 1388 |
typedef BAS Base; |
| 1389 | 1389 |
typedef typename Base::Node Node; |
| 1390 | 1390 |
typedef typename Base::Arc Arc; |
| 1391 | 1391 |
|
| 1392 | 1392 |
/// \brief Erase a node from the digraph. |
| 1393 | 1393 |
/// |
| 1394 |
/// This function erases the given node from the digraph and all arcs |
|
| 1394 |
/// This function erases the given node from the digraph and all arcs |
|
| 1395 | 1395 |
/// connected to the node. |
| 1396 | 1396 |
void erase(const Node&) {}
|
| 1397 | 1397 |
|
| 1398 | 1398 |
/// \brief Erase an arc from the digraph. |
| 1399 | 1399 |
/// |
| 1400 | 1400 |
/// This function erases the given arc from the digraph. |
| ... | ... |
@@ -1414,13 +1414,13 @@ |
| 1414 | 1414 |
}; |
| 1415 | 1415 |
}; |
| 1416 | 1416 |
|
| 1417 | 1417 |
/// \brief Skeleton class for erasable undirected graphs. |
| 1418 | 1418 |
/// |
| 1419 | 1419 |
/// This class describes the interface of erasable undirected graphs. |
| 1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
| 1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
| 1421 | 1421 |
/// nodes and edges from the graph. |
| 1422 | 1422 |
/// This concept requires \ref AlterableGraphComponent. |
| 1423 | 1423 |
template <typename BAS = BaseGraphComponent> |
| 1424 | 1424 |
class ErasableGraphComponent : public BAS {
|
| 1425 | 1425 |
public: |
| 1426 | 1426 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -13,46 +13,52 @@ |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 20 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 21 |
|
|
| 19 | 22 |
///\ingroup concept |
| 20 | 23 |
///\file |
| 21 | 24 |
///\brief The concept of heaps. |
| 22 | 25 |
|
| 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 24 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 25 |
|
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| 38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
| 39 |
/// is a data structure for storing items with specified values called |
|
| 40 |
/// \e priorities in such a way that finding the item with minimum |
|
| 41 |
/// priority is efficient. In a heap one can change the priority of an |
|
| 42 |
/// |
|
| 38 |
/// This concept class describes the main interface of heaps. |
|
| 39 |
/// The various \ref heaps "heap structures" are efficient |
|
| 40 |
/// implementations of the abstract data type \e priority \e queue. |
|
| 41 |
/// They store items with specified values called \e priorities |
|
| 42 |
/// in such a way that finding and removing the item with minimum |
|
| 43 |
/// priority are efficient. The basic operations are adding and |
|
| 44 |
/// erasing items, changing the priority of an item, etc. |
|
| 43 | 45 |
/// |
| 44 |
/// \tparam PR Type of the priority of the items. |
|
| 45 |
/// \tparam IM A read and writable item map with int values, used |
|
| 46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 47 |
/// Any class that conforms to this concept can be used easily in such |
|
| 48 |
/// algorithms. |
|
| 49 |
/// |
|
| 50 |
/// \tparam PR Type of the priorities of the items. |
|
| 51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 | 52 |
/// internally to handle the cross references. |
| 47 |
/// \tparam |
|
| 53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 | 54 |
/// The default is \c std::less<PR>. |
| 49 | 55 |
#ifdef DOXYGEN |
| 50 |
template <typename PR, typename IM, typename |
|
| 56 |
template <typename PR, typename IM, typename CMP> |
|
| 51 | 57 |
#else |
| 52 |
template <typename PR, typename IM> |
|
| 58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 53 | 59 |
#endif |
| 54 | 60 |
class Heap {
|
| 55 | 61 |
public: |
| 56 | 62 |
|
| 57 | 63 |
/// Type of the item-int map. |
| 58 | 64 |
typedef IM ItemIntMap; |
| ... | ... |
@@ -61,132 +67,188 @@ |
| 61 | 67 |
/// Type of the items stored in the heap. |
| 62 | 68 |
typedef typename ItemIntMap::Key Item; |
| 63 | 69 |
|
| 64 | 70 |
/// \brief Type to represent the states of the items. |
| 65 | 71 |
/// |
| 66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
| 67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
| 68 |
/// from the point of view of the heap, but may be useful for |
|
| 69 |
/// |
|
| 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 |
/// heap's point of view, but may be useful to the user. |
|
| 70 | 75 |
/// |
| 71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
| 72 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 73 | 78 |
enum State {
|
| 74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
| 75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
| 76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
| 80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
| 81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
| 77 | 82 |
}; |
| 78 | 83 |
|
| 79 |
/// \brief |
|
| 84 |
/// \brief Constructor. |
|
| 80 | 85 |
/// |
| 81 |
/// |
|
| 86 |
/// Constructor. |
|
| 82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
| 83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
| 84 | 89 |
/// handle the cross references. The assigned value must be |
| 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
| 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 91 |
#ifdef DOXYGEN |
|
| 86 | 92 |
explicit Heap(ItemIntMap &map) {}
|
| 93 |
#else |
|
| 94 |
explicit Heap(ItemIntMap&) {}
|
|
| 95 |
#endif |
|
| 96 |
|
|
| 97 |
/// \brief Constructor. |
|
| 98 |
/// |
|
| 99 |
/// Constructor. |
|
| 100 |
/// \param map A map that assigns \c int values to keys of type |
|
| 101 |
/// \c Item. It is used internally by the heap implementations to |
|
| 102 |
/// handle the cross references. The assigned value must be |
|
| 103 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 104 |
/// \param comp The function object used for comparing the priorities. |
|
| 105 |
#ifdef DOXYGEN |
|
| 106 |
explicit Heap(ItemIntMap &map, const CMP &comp) {}
|
|
| 107 |
#else |
|
| 108 |
explicit Heap(ItemIntMap&, const CMP&) {}
|
|
| 109 |
#endif |
|
| 87 | 110 |
|
| 88 | 111 |
/// \brief The number of items stored in the heap. |
| 89 | 112 |
/// |
| 90 |
/// |
|
| 113 |
/// This function returns the number of items stored in the heap. |
|
| 91 | 114 |
int size() const { return 0; }
|
| 92 | 115 |
|
| 93 |
/// \brief |
|
| 116 |
/// \brief Check if the heap is empty. |
|
| 94 | 117 |
/// |
| 95 |
/// |
|
| 118 |
/// This function returns \c true if the heap is empty. |
|
| 96 | 119 |
bool empty() const { return false; }
|
| 97 | 120 |
|
| 98 |
/// \brief |
|
| 121 |
/// \brief Make the heap empty. |
|
| 99 | 122 |
/// |
| 100 |
/// Makes the heap empty. |
|
| 101 |
void clear(); |
|
| 123 |
/// This functon makes the heap empty. |
|
| 124 |
/// It does not change the cross reference map. If you want to reuse |
|
| 125 |
/// a heap that is not surely empty, you should first clear it and |
|
| 126 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 127 |
/// for each item. |
|
| 128 |
void clear() {}
|
|
| 102 | 129 |
|
| 103 |
/// \brief |
|
| 130 |
/// \brief Insert an item into the heap with the given priority. |
|
| 104 | 131 |
/// |
| 105 |
/// |
|
| 132 |
/// This function inserts the given item into the heap with the |
|
| 133 |
/// given priority. |
|
| 106 | 134 |
/// \param i The item to insert. |
| 107 | 135 |
/// \param p The priority of the item. |
| 136 |
/// \pre \e i must not be stored in the heap. |
|
| 137 |
#ifdef DOXYGEN |
|
| 108 | 138 |
void push(const Item &i, const Prio &p) {}
|
| 139 |
#else |
|
| 140 |
void push(const Item&, const Prio&) {}
|
|
| 141 |
#endif |
|
| 109 | 142 |
|
| 110 |
/// \brief |
|
| 143 |
/// \brief Return the item having minimum priority. |
|
| 111 | 144 |
/// |
| 112 |
/// |
|
| 145 |
/// This function returns the item having minimum priority. |
|
| 113 | 146 |
/// \pre The heap must be non-empty. |
| 114 |
Item top() const {}
|
|
| 147 |
Item top() const { return Item(); }
|
|
| 115 | 148 |
|
| 116 | 149 |
/// \brief The minimum priority. |
| 117 | 150 |
/// |
| 118 |
/// |
|
| 151 |
/// This function returns the minimum priority. |
|
| 119 | 152 |
/// \pre The heap must be non-empty. |
| 120 |
Prio prio() const {}
|
|
| 153 |
Prio prio() const { return Prio(); }
|
|
| 121 | 154 |
|
| 122 |
/// \brief |
|
| 155 |
/// \brief Remove the item having minimum priority. |
|
| 123 | 156 |
/// |
| 124 |
/// |
|
| 157 |
/// This function removes the item having minimum priority. |
|
| 125 | 158 |
/// \pre The heap must be non-empty. |
| 126 | 159 |
void pop() {}
|
| 127 | 160 |
|
| 128 |
/// \brief |
|
| 161 |
/// \brief Remove the given item from the heap. |
|
| 129 | 162 |
/// |
| 130 |
/// |
|
| 163 |
/// This function removes the given item from the heap if it is |
|
| 164 |
/// already stored. |
|
| 131 | 165 |
/// \param i The item to delete. |
| 166 |
/// \pre \e i must be in the heap. |
|
| 167 |
#ifdef DOXYGEN |
|
| 132 | 168 |
void erase(const Item &i) {}
|
| 169 |
#else |
|
| 170 |
void erase(const Item&) {}
|
|
| 171 |
#endif |
|
| 133 | 172 |
|
| 134 |
/// \brief The priority of |
|
| 173 |
/// \brief The priority of the given item. |
|
| 135 | 174 |
/// |
| 136 |
/// |
|
| 175 |
/// This function returns the priority of the given item. |
|
| 137 | 176 |
/// \param i The item. |
| 138 |
/// \pre \ |
|
| 177 |
/// \pre \e i must be in the heap. |
|
| 178 |
#ifdef DOXYGEN |
|
| 139 | 179 |
Prio operator[](const Item &i) const {}
|
| 180 |
#else |
|
| 181 |
Prio operator[](const Item&) const { return Prio(); }
|
|
| 182 |
#endif |
|
| 140 | 183 |
|
| 141 |
/// \brief |
|
| 184 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 142 | 185 |
/// not stored in the heap. |
| 143 | 186 |
/// |
| 144 | 187 |
/// This method sets the priority of the given item if it is |
| 145 |
/// already stored in the heap. |
|
| 146 |
/// Otherwise it inserts the given item with the given priority. |
|
| 188 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 189 |
/// item into the heap with the given priority. |
|
| 147 | 190 |
/// |
| 148 | 191 |
/// \param i The item. |
| 149 | 192 |
/// \param p The priority. |
| 193 |
#ifdef DOXYGEN |
|
| 150 | 194 |
void set(const Item &i, const Prio &p) {}
|
| 195 |
#else |
|
| 196 |
void set(const Item&, const Prio&) {}
|
|
| 197 |
#endif |
|
| 151 | 198 |
|
| 152 |
/// \brief |
|
| 199 |
/// \brief Decrease the priority of an item to the given value. |
|
| 153 | 200 |
/// |
| 154 |
/// |
|
| 201 |
/// This function decreases the priority of an item to the given value. |
|
| 155 | 202 |
/// \param i The item. |
| 156 | 203 |
/// \param p The priority. |
| 157 |
/// \pre \ |
|
| 204 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 205 |
#ifdef DOXYGEN |
|
| 158 | 206 |
void decrease(const Item &i, const Prio &p) {}
|
| 207 |
#else |
|
| 208 |
void decrease(const Item&, const Prio&) {}
|
|
| 209 |
#endif |
|
| 159 | 210 |
|
| 160 |
/// \brief |
|
| 211 |
/// \brief Increase the priority of an item to the given value. |
|
| 161 | 212 |
/// |
| 162 |
/// |
|
| 213 |
/// This function increases the priority of an item to the given value. |
|
| 163 | 214 |
/// \param i The item. |
| 164 | 215 |
/// \param p The priority. |
| 165 |
/// \pre \ |
|
| 216 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 217 |
#ifdef DOXYGEN |
|
| 166 | 218 |
void increase(const Item &i, const Prio &p) {}
|
| 219 |
#else |
|
| 220 |
void increase(const Item&, const Prio&) {}
|
|
| 221 |
#endif |
|
| 167 | 222 |
|
| 168 |
/// \brief Returns if an item is in, has already been in, or has |
|
| 169 |
/// never been in the heap. |
|
| 223 |
/// \brief Return the state of an item. |
|
| 170 | 224 |
/// |
| 171 | 225 |
/// This method returns \c PRE_HEAP if the given item has never |
| 172 | 226 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 173 | 227 |
/// and \c POST_HEAP otherwise. |
| 174 | 228 |
/// In the latter case it is possible that the item will get back |
| 175 | 229 |
/// to the heap again. |
| 176 | 230 |
/// \param i The item. |
| 231 |
#ifdef DOXYGEN |
|
| 177 | 232 |
State state(const Item &i) const {}
|
| 233 |
#else |
|
| 234 |
State state(const Item&) const { return PRE_HEAP; }
|
|
| 235 |
#endif |
|
| 178 | 236 |
|
| 179 |
/// \brief |
|
| 237 |
/// \brief Set the state of an item in the heap. |
|
| 180 | 238 |
/// |
| 181 |
/// Sets the state of the given item in the heap. It can be used |
|
| 182 |
/// to manually clear the heap when it is important to achive the |
|
| 183 |
/// |
|
| 239 |
/// This function sets the state of the given item in the heap. |
|
| 240 |
/// It can be used to manually clear the heap when it is important |
|
| 241 |
/// to achive better time complexity. |
|
| 184 | 242 |
/// \param i The item. |
| 185 | 243 |
/// \param st The state. It should not be \c IN_HEAP. |
| 244 |
#ifdef DOXYGEN |
|
| 186 | 245 |
void state(const Item& i, State st) {}
|
| 246 |
#else |
|
| 247 |
void state(const Item&, State) {}
|
|
| 248 |
#endif |
|
| 187 | 249 |
|
| 188 | 250 |
|
| 189 | 251 |
template <typename _Heap> |
| 190 | 252 |
struct Constraints {
|
| 191 | 253 |
public: |
| 192 | 254 |
void constraints() {
|
| ... | ... |
@@ -15,13 +15,13 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 |
///\brief |
|
| 21 |
///\brief The concept of paths |
|
| 22 | 22 |
/// |
| 23 | 23 |
|
| 24 | 24 |
#ifndef LEMON_CONCEPTS_PATH_H |
| 25 | 25 |
#define LEMON_CONCEPTS_PATH_H |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| ... | ... |
@@ -35,19 +35,28 @@ |
| 35 | 35 |
|
| 36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
| 37 | 37 |
/// a digraph. |
| 38 | 38 |
/// |
| 39 | 39 |
/// A skeleton structure for representing directed paths in a |
| 40 | 40 |
/// digraph. |
| 41 |
/// In a sense, a path can be treated as a list of arcs. |
|
| 42 |
/// LEMON path types just store this list. As a consequence, they cannot |
|
| 43 |
/// enumerate the nodes on the path directly and a zero length path |
|
| 44 |
/// cannot store its source node. |
|
| 45 |
/// |
|
| 46 |
/// The arcs of a path should be stored in the order of their directions, |
|
| 47 |
/// i.e. the target node of each arc should be the same as the source |
|
| 48 |
/// node of the next arc. This consistency could be checked using |
|
| 49 |
/// \ref checkPath(). |
|
| 50 |
/// The source and target nodes of a (consistent) path can be obtained |
|
| 51 |
/// using \ref pathSource() and \ref pathTarget(). |
|
| 52 |
/// |
|
| 53 |
/// A path can be constructed from another path of any type using the |
|
| 54 |
/// copy constructor or the assignment operator. |
|
| 55 |
/// |
|
| 41 | 56 |
/// \tparam GR The digraph type in which the path is. |
| 42 |
/// |
|
| 43 |
/// In a sense, the path can be treated as a list of arcs. The |
|
| 44 |
/// lemon path type stores just this list. As a consequence it |
|
| 45 |
/// cannot enumerate the nodes in the path and the zero length |
|
| 46 |
/// paths cannot store the source. |
|
| 47 |
/// |
|
| 48 | 57 |
template <typename GR> |
| 49 | 58 |
class Path {
|
| 50 | 59 |
public: |
| 51 | 60 |
|
| 52 | 61 |
/// Type of the underlying digraph. |
| 53 | 62 |
typedef GR Digraph; |
| ... | ... |
@@ -56,45 +65,45 @@ |
| 56 | 65 |
|
| 57 | 66 |
class ArcIt; |
| 58 | 67 |
|
| 59 | 68 |
/// \brief Default constructor |
| 60 | 69 |
Path() {}
|
| 61 | 70 |
|
| 62 |
/// \brief Template constructor |
|
| 71 |
/// \brief Template copy constructor |
|
| 63 | 72 |
template <typename CPath> |
| 64 | 73 |
Path(const CPath& cpath) {}
|
| 65 | 74 |
|
| 66 |
/// \brief Template assigment |
|
| 75 |
/// \brief Template assigment operator |
|
| 67 | 76 |
template <typename CPath> |
| 68 | 77 |
Path& operator=(const CPath& cpath) {
|
| 69 | 78 |
ignore_unused_variable_warning(cpath); |
| 70 | 79 |
return *this; |
| 71 | 80 |
} |
| 72 | 81 |
|
| 73 |
/// Length of the path |
|
| 82 |
/// Length of the path, i.e. the number of arcs on the path. |
|
| 74 | 83 |
int length() const { return 0;}
|
| 75 | 84 |
|
| 76 | 85 |
/// Returns whether the path is empty. |
| 77 | 86 |
bool empty() const { return true;}
|
| 78 | 87 |
|
| 79 | 88 |
/// Resets the path to an empty path. |
| 80 | 89 |
void clear() {}
|
| 81 | 90 |
|
| 82 |
/// \brief LEMON style iterator for |
|
| 91 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
| 83 | 92 |
/// |
| 84 |
/// |
|
| 93 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
| 85 | 94 |
class ArcIt {
|
| 86 | 95 |
public: |
| 87 | 96 |
/// Default constructor |
| 88 | 97 |
ArcIt() {}
|
| 89 | 98 |
/// Invalid constructor |
| 90 | 99 |
ArcIt(Invalid) {}
|
| 91 |
/// |
|
| 100 |
/// Sets the iterator to the first arc of the given path |
|
| 92 | 101 |
ArcIt(const Path &) {}
|
| 93 | 102 |
|
| 94 |
/// Conversion to Arc |
|
| 103 |
/// Conversion to \c Arc |
|
| 95 | 104 |
operator Arc() const { return INVALID; }
|
| 96 | 105 |
|
| 97 | 106 |
/// Next arc |
| 98 | 107 |
ArcIt& operator++() {return *this;}
|
| 99 | 108 |
|
| 100 | 109 |
/// Comparison operator |
| ... | ... |
@@ -189,66 +198,59 @@ |
| 189 | 198 |
} |
| 190 | 199 |
|
| 191 | 200 |
|
| 192 | 201 |
/// \brief A skeleton structure for path dumpers. |
| 193 | 202 |
/// |
| 194 | 203 |
/// A skeleton structure for path dumpers. The path dumpers are |
| 195 |
/// the generalization of the paths. The path dumpers can |
|
| 196 |
/// enumerate the arcs of the path wheter in forward or in |
|
| 197 |
/// backward order. In most time these classes are not used |
|
| 198 |
/// directly rather it used to assign a dumped class to a real |
|
| 199 |
/// |
|
| 204 |
/// the generalization of the paths, they can enumerate the arcs |
|
| 205 |
/// of the path either in forward or in backward order. |
|
| 206 |
/// These classes are typically not used directly, they are rather |
|
| 207 |
/// used to be assigned to a real path type. |
|
| 200 | 208 |
/// |
| 201 | 209 |
/// The main purpose of this concept is that the shortest path |
| 202 |
/// algorithms can enumerate easily the arcs in reverse order. |
|
| 203 |
/// If we would like to give back a real path from these |
|
| 204 |
/// algorithms then we should create a temporarly path object. In |
|
| 205 |
/// LEMON such algorithms gives back a path dumper what can |
|
| 206 |
/// |
|
| 210 |
/// algorithms can enumerate the arcs easily in reverse order. |
|
| 211 |
/// In LEMON, such algorithms give back a (reverse) path dumper that |
|
| 212 |
/// can be assigned to a real path. The dumpers can be implemented as |
|
| 207 | 213 |
/// an adaptor class to the predecessor map. |
| 208 | 214 |
/// |
| 209 | 215 |
/// \tparam GR The digraph type in which the path is. |
| 210 |
/// |
|
| 211 |
/// The paths can be constructed from any path type by a |
|
| 212 |
/// template constructor or a template assignment operator. |
|
| 213 | 216 |
template <typename GR> |
| 214 | 217 |
class PathDumper {
|
| 215 | 218 |
public: |
| 216 | 219 |
|
| 217 | 220 |
/// Type of the underlying digraph. |
| 218 | 221 |
typedef GR Digraph; |
| 219 | 222 |
/// Arc type of the underlying digraph. |
| 220 | 223 |
typedef typename Digraph::Arc Arc; |
| 221 | 224 |
|
| 222 |
/// Length of the path |
|
| 225 |
/// Length of the path, i.e. the number of arcs on the path. |
|
| 223 | 226 |
int length() const { return 0;}
|
| 224 | 227 |
|
| 225 | 228 |
/// Returns whether the path is empty. |
| 226 | 229 |
bool empty() const { return true;}
|
| 227 | 230 |
|
| 228 | 231 |
/// \brief Forward or reverse dumping |
| 229 | 232 |
/// |
| 230 |
/// If the RevPathTag is defined and true then reverse dumping |
|
| 231 |
/// is provided in the path dumper. In this case instead of the |
|
| 232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
|
| 233 |
/// dumper. |
|
| 233 |
/// If this tag is defined to be \c True, then reverse dumping |
|
| 234 |
/// is provided in the path dumper. In this case, \c RevArcIt |
|
| 235 |
/// iterator should be implemented instead of \c ArcIt iterator. |
|
| 234 | 236 |
typedef False RevPathTag; |
| 235 | 237 |
|
| 236 |
/// \brief LEMON style iterator for |
|
| 238 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
| 237 | 239 |
/// |
| 238 |
/// |
|
| 240 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
| 239 | 241 |
class ArcIt {
|
| 240 | 242 |
public: |
| 241 | 243 |
/// Default constructor |
| 242 | 244 |
ArcIt() {}
|
| 243 | 245 |
/// Invalid constructor |
| 244 | 246 |
ArcIt(Invalid) {}
|
| 245 |
/// |
|
| 247 |
/// Sets the iterator to the first arc of the given path |
|
| 246 | 248 |
ArcIt(const PathDumper&) {}
|
| 247 | 249 |
|
| 248 |
/// Conversion to Arc |
|
| 250 |
/// Conversion to \c Arc |
|
| 249 | 251 |
operator Arc() const { return INVALID; }
|
| 250 | 252 |
|
| 251 | 253 |
/// Next arc |
| 252 | 254 |
ArcIt& operator++() {return *this;}
|
| 253 | 255 |
|
| 254 | 256 |
/// Comparison operator |
| ... | ... |
@@ -257,26 +259,27 @@ |
| 257 | 259 |
bool operator!=(const ArcIt&) const {return true;}
|
| 258 | 260 |
/// Comparison operator |
| 259 | 261 |
bool operator<(const ArcIt&) const {return false;}
|
| 260 | 262 |
|
| 261 | 263 |
}; |
| 262 | 264 |
|
| 263 |
/// \brief LEMON style iterator for |
|
| 265 |
/// \brief LEMON style iterator for enumerating the arcs of a path |
|
| 266 |
/// in reverse direction. |
|
| 264 | 267 |
/// |
| 265 |
/// This class is used to iterate on the arcs of the paths in |
|
| 266 |
/// reverse direction. |
|
| 268 |
/// LEMON style iterator class for enumerating the arcs of a path |
|
| 269 |
/// in reverse direction. |
|
| 267 | 270 |
class RevArcIt {
|
| 268 | 271 |
public: |
| 269 | 272 |
/// Default constructor |
| 270 | 273 |
RevArcIt() {}
|
| 271 | 274 |
/// Invalid constructor |
| 272 | 275 |
RevArcIt(Invalid) {}
|
| 273 |
/// |
|
| 276 |
/// Sets the iterator to the last arc of the given path |
|
| 274 | 277 |
RevArcIt(const PathDumper &) {}
|
| 275 | 278 |
|
| 276 |
/// Conversion to Arc |
|
| 279 |
/// Conversion to \c Arc |
|
| 277 | 280 |
operator Arc() const { return INVALID; }
|
| 278 | 281 |
|
| 279 | 282 |
/// Next arc |
| 280 | 283 |
RevArcIt& operator++() {return *this;}
|
| 281 | 284 |
|
| 282 | 285 |
/// Comparison operator |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -255,13 +255,13 @@ |
| 255 | 255 |
/// This function checks whether the given directed graph is strongly |
| 256 | 256 |
/// connected, i.e. any two nodes of the digraph are |
| 257 | 257 |
/// connected with directed paths in both direction. |
| 258 | 258 |
/// |
| 259 | 259 |
/// \return \c true if the digraph is strongly connected. |
| 260 | 260 |
/// \note By definition, the empty digraph is strongly connected. |
| 261 |
/// |
|
| 261 |
/// |
|
| 262 | 262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
| 263 | 263 |
/// \see connected() |
| 264 | 264 |
template <typename Digraph> |
| 265 | 265 |
bool stronglyConnected(const Digraph& digraph) {
|
| 266 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
| 267 | 267 |
|
| ... | ... |
@@ -307,13 +307,13 @@ |
| 307 | 307 |
|
| 308 | 308 |
return true; |
| 309 | 309 |
} |
| 310 | 310 |
|
| 311 | 311 |
/// \ingroup graph_properties |
| 312 | 312 |
/// |
| 313 |
/// \brief Count the number of strongly connected components of a |
|
| 313 |
/// \brief Count the number of strongly connected components of a |
|
| 314 | 314 |
/// directed graph |
| 315 | 315 |
/// |
| 316 | 316 |
/// This function counts the number of strongly connected components of |
| 317 | 317 |
/// the given directed graph. |
| 318 | 318 |
/// |
| 319 | 319 |
/// The strongly connected components are the classes of an |
| ... | ... |
@@ -741,13 +741,13 @@ |
| 741 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
| 742 | 742 |
|
| 743 | 743 |
/// \ingroup graph_properties |
| 744 | 744 |
/// |
| 745 | 745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
| 746 | 746 |
/// |
| 747 |
/// This function checks whether the given undirected graph is |
|
| 747 |
/// This function checks whether the given undirected graph is |
|
| 748 | 748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
| 749 | 749 |
/// |
| 750 | 750 |
/// \return \c true if the graph bi-node-connected. |
| 751 | 751 |
/// \note By definition, the empty graph is bi-node-connected. |
| 752 | 752 |
/// |
| 753 | 753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
| ... | ... |
@@ -755,13 +755,13 @@ |
| 755 | 755 |
bool biNodeConnected(const Graph& graph) {
|
| 756 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
| 757 | 757 |
} |
| 758 | 758 |
|
| 759 | 759 |
/// \ingroup graph_properties |
| 760 | 760 |
/// |
| 761 |
/// \brief Count the number of bi-node-connected components of an |
|
| 761 |
/// \brief Count the number of bi-node-connected components of an |
|
| 762 | 762 |
/// undirected graph. |
| 763 | 763 |
/// |
| 764 | 764 |
/// This function counts the number of bi-node-connected components of |
| 765 | 765 |
/// the given undirected graph. |
| 766 | 766 |
/// |
| 767 | 767 |
/// The bi-node-connected components are the classes of an equivalence |
| ... | ... |
@@ -809,13 +809,13 @@ |
| 809 | 809 |
/// \image html node_biconnected_components.png |
| 810 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
| 811 | 811 |
/// |
| 812 | 812 |
/// \param graph The undirected graph. |
| 813 | 813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
| 814 | 814 |
/// to the number of the bi-node-connected components minus one. Each |
| 815 |
/// value of the map will be set exactly once, and the values of a |
|
| 815 |
/// value of the map will be set exactly once, and the values of a |
|
| 816 | 816 |
/// certain component will be set continuously. |
| 817 | 817 |
/// \return The number of bi-node-connected components. |
| 818 | 818 |
/// |
| 819 | 819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
| 820 | 820 |
template <typename Graph, typename EdgeMap> |
| 821 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
| ... | ... |
@@ -855,13 +855,13 @@ |
| 855 | 855 |
/// relation on the edges of a undirected graph. Two edges are in the |
| 856 | 856 |
/// same class if they are on same circle. |
| 857 | 857 |
/// The bi-node-connected components are separted by the cut nodes of |
| 858 | 858 |
/// the components. |
| 859 | 859 |
/// |
| 860 | 860 |
/// \param graph The undirected graph. |
| 861 |
/// \retval cutMap A writable node map. The values will be set to |
|
| 861 |
/// \retval cutMap A writable node map. The values will be set to |
|
| 862 | 862 |
/// \c true for the nodes that separate two or more components |
| 863 | 863 |
/// (exactly once for each cut node), and will not be changed for |
| 864 | 864 |
/// other nodes. |
| 865 | 865 |
/// \return The number of the cut nodes. |
| 866 | 866 |
/// |
| 867 | 867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
| ... | ... |
@@ -1082,13 +1082,13 @@ |
| 1082 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
| 1083 | 1083 |
|
| 1084 | 1084 |
/// \ingroup graph_properties |
| 1085 | 1085 |
/// |
| 1086 | 1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
| 1087 | 1087 |
/// |
| 1088 |
/// This function checks whether the given undirected graph is |
|
| 1088 |
/// This function checks whether the given undirected graph is |
|
| 1089 | 1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
| 1090 | 1090 |
/// two edge-disjoint paths. |
| 1091 | 1091 |
/// |
| 1092 | 1092 |
/// \return \c true if the graph is bi-edge-connected. |
| 1093 | 1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
| 1094 | 1094 |
/// |
| ... | ... |
@@ -1189,13 +1189,13 @@ |
| 1189 | 1189 |
|
| 1190 | 1190 |
/// \ingroup graph_properties |
| 1191 | 1191 |
/// |
| 1192 | 1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
| 1193 | 1193 |
/// |
| 1194 | 1194 |
/// This function finds the bi-edge-connected cut edges in the given |
| 1195 |
/// undirected graph. |
|
| 1195 |
/// undirected graph. |
|
| 1196 | 1196 |
/// |
| 1197 | 1197 |
/// The bi-edge-connected components are the classes of an equivalence |
| 1198 | 1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
| 1199 | 1199 |
/// same class if they are connected with at least two edge-disjoint |
| 1200 | 1200 |
/// paths. |
| 1201 | 1201 |
/// The bi-edge-connected components are separted by the cut edges of |
| ... | ... |
@@ -1346,13 +1346,13 @@ |
| 1346 | 1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
| 1347 | 1347 |
/// into topolgical order and also checks whether the given digraph |
| 1348 | 1348 |
/// is DAG. |
| 1349 | 1349 |
/// |
| 1350 | 1350 |
/// \param digraph The digraph. |
| 1351 | 1351 |
/// \retval order A readable and writable node map. The values will be |
| 1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
| 1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
| 1353 | 1353 |
/// Each value of the map will be set exactly once, and the values will |
| 1354 | 1354 |
/// be set descending order. |
| 1355 | 1355 |
/// \return \c false if the digraph is not DAG. |
| 1356 | 1356 |
/// |
| 1357 | 1357 |
/// \see dag(), topologicalSort() |
| 1358 | 1358 |
template <typename Digraph, typename NodeMap> |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -1238,13 +1238,14 @@ |
| 1238 | 1238 |
|
| 1239 | 1239 |
/// The Digraph type |
| 1240 | 1240 |
typedef GR Digraph; |
| 1241 | 1241 |
|
| 1242 | 1242 |
protected: |
| 1243 | 1243 |
|
| 1244 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type |
|
| 1244 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type |
|
| 1245 |
{
|
|
| 1245 | 1246 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
| 1246 | 1247 |
|
| 1247 | 1248 |
public: |
| 1248 | 1249 |
|
| 1249 | 1250 |
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
|
| 1250 | 1251 |
|
| ... | ... |
@@ -1277,13 +1278,13 @@ |
| 1277 | 1278 |
bool operator()(Arc a,Arc b) const |
| 1278 | 1279 |
{
|
| 1279 | 1280 |
return g.target(a)<g.target(b); |
| 1280 | 1281 |
} |
| 1281 | 1282 |
}; |
| 1282 | 1283 |
|
| 1283 |
protected: |
|
| 1284 |
protected: |
|
| 1284 | 1285 |
|
| 1285 | 1286 |
const Digraph &_g; |
| 1286 | 1287 |
AutoNodeMap _head; |
| 1287 | 1288 |
typename Digraph::template ArcMap<Arc> _parent; |
| 1288 | 1289 |
typename Digraph::template ArcMap<Arc> _left; |
| 1289 | 1290 |
typename Digraph::template ArcMap<Arc> _right; |
| ... | ... |
@@ -209,13 +209,13 @@ |
| 209 | 209 |
/// Returns the value of the counter. |
| 210 | 210 |
operator int() {return count;}
|
| 211 | 211 |
}; |
| 212 | 212 |
|
| 213 | 213 |
/// 'Do nothing' version of Counter. |
| 214 | 214 |
|
| 215 |
/// This class can be used in the same way as \ref Counter |
|
| 215 |
/// This class can be used in the same way as \ref Counter, but it |
|
| 216 | 216 |
/// does not count at all and does not print report on destruction. |
| 217 | 217 |
/// |
| 218 | 218 |
/// Replacing a \ref Counter with a \ref NoCounter makes it possible |
| 219 | 219 |
/// to turn off all counting and reporting (SubCounters should also |
| 220 | 220 |
/// be replaced with NoSubCounters), so it does not affect the |
| 221 | 221 |
/// efficiency of the program at all. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -108,12 +108,45 @@ |
| 108 | 108 |
const double ub = INF; |
| 109 | 109 |
const char s = 'L'; |
| 110 | 110 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
| 111 | 111 |
return i; |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
|
| 115 |
ExprIterator e, Value ub) {
|
|
| 116 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
|
| 117 |
if (lb == -INF) {
|
|
| 118 |
const char s = 'L'; |
|
| 119 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
|
| 120 |
} else if (ub == INF) {
|
|
| 121 |
const char s = 'G'; |
|
| 122 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 123 |
} else if (lb == ub){
|
|
| 124 |
const char s = 'E'; |
|
| 125 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 126 |
} else {
|
|
| 127 |
const char s = 'R'; |
|
| 128 |
double len = ub - lb; |
|
| 129 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0); |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
std::vector<int> indices; |
|
| 133 |
std::vector<int> rowlist; |
|
| 134 |
std::vector<Value> values; |
|
| 135 |
|
|
| 136 |
for(ExprIterator it=b; it!=e; ++it) {
|
|
| 137 |
indices.push_back(it->first); |
|
| 138 |
values.push_back(it->second); |
|
| 139 |
rowlist.push_back(i); |
|
| 140 |
} |
|
| 141 |
|
|
| 142 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
|
| 143 |
&rowlist.front(), &indices.front(), &values.front()); |
|
| 144 |
|
|
| 145 |
return i; |
|
| 146 |
} |
|
| 114 | 147 |
|
| 115 | 148 |
void CplexBase::_eraseCol(int i) {
|
| 116 | 149 |
CPXdelcols(cplexEnv(), _prob, i, i); |
| 117 | 150 |
} |
| 118 | 151 |
|
| 119 | 152 |
void CplexBase::_eraseRow(int i) {
|
| ... | ... |
@@ -453,13 +486,13 @@ |
| 453 | 486 |
_message_enabled = true; |
| 454 | 487 |
break; |
| 455 | 488 |
} |
| 456 | 489 |
} |
| 457 | 490 |
|
| 458 | 491 |
void CplexBase::_applyMessageLevel() {
|
| 459 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
| 492 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
| 460 | 493 |
_message_enabled ? CPX_ON : CPX_OFF); |
| 461 | 494 |
} |
| 462 | 495 |
|
| 463 | 496 |
// CplexLp members |
| 464 | 497 |
|
| 465 | 498 |
CplexLp::CplexLp() |
| ... | ... |
@@ -90,12 +90,13 @@ |
| 90 | 90 |
CplexBase(const CplexEnv&); |
| 91 | 91 |
CplexBase(const CplexBase &); |
| 92 | 92 |
virtual ~CplexBase(); |
| 93 | 93 |
|
| 94 | 94 |
virtual int _addCol(); |
| 95 | 95 |
virtual int _addRow(); |
| 96 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 96 | 97 |
|
| 97 | 98 |
virtual void _eraseCol(int i); |
| 98 | 99 |
virtual void _eraseRow(int i); |
| 99 | 100 |
|
| 100 | 101 |
virtual void _eraseColId(int i); |
| 101 | 102 |
virtual void _eraseRowId(int i); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -44,13 +44,13 @@ |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| ... | ... |
@@ -59,13 +59,14 @@ |
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default, it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap. |
| ... | ... |
@@ -78,13 +79,14 @@ |
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to |
|
| 86 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 88 |
///Instantiates a \c ReachedMap. |
| 87 | 89 |
|
| 88 | 90 |
///This function instantiates a \ref ReachedMap. |
| 89 | 91 |
///\param g is the digraph, to which |
| 90 | 92 |
///we would like to define the \ref ReachedMap. |
| ... | ... |
@@ -93,13 +95,13 @@ |
| 93 | 95 |
return new ReachedMap(g); |
| 94 | 96 |
} |
| 95 | 97 |
|
| 96 | 98 |
///The type of the map that stores the distances of the nodes. |
| 97 | 99 |
|
| 98 | 100 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 101 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 103 |
///Instantiates a \c DistMap. |
| 102 | 104 |
|
| 103 | 105 |
///This function instantiates a \ref DistMap. |
| 104 | 106 |
///\param g is the digraph, to which we would like to define the |
| 105 | 107 |
///\ref DistMap. |
| ... | ... |
@@ -117,12 +119,17 @@ |
| 117 | 119 |
///There is also a \ref dfs() "function-type interface" for the DFS |
| 118 | 120 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 121 |
///used easier. |
| 120 | 122 |
/// |
| 121 | 123 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 124 |
///The default type is \ref ListDigraph. |
| 125 |
///\tparam TR The traits class that defines various types used by the |
|
| 126 |
///algorithm. By default, it is \ref DfsDefaultTraits |
|
| 127 |
///"DfsDefaultTraits<GR>". |
|
| 128 |
///In most cases, this parameter should not be set directly, |
|
| 129 |
///consider to use the named template parameters instead. |
|
| 123 | 130 |
#ifdef DOXYGEN |
| 124 | 131 |
template <typename GR, |
| 125 | 132 |
typename TR> |
| 126 | 133 |
#else |
| 127 | 134 |
template <typename GR=ListDigraph, |
| 128 | 135 |
typename TR=DfsDefaultTraits<GR> > |
| ... | ... |
@@ -221,13 +228,13 @@ |
| 221 | 228 |
}; |
| 222 | 229 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 223 | 230 |
///\c PredMap type. |
| 224 | 231 |
/// |
| 225 | 232 |
///\ref named-templ-param "Named parameter" for setting |
| 226 | 233 |
///\c PredMap type. |
| 227 |
///It must |
|
| 234 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 228 | 235 |
template <class T> |
| 229 | 236 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 230 | 237 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 231 | 238 |
}; |
| 232 | 239 |
|
| 233 | 240 |
template <class T> |
| ... | ... |
@@ -241,13 +248,13 @@ |
| 241 | 248 |
}; |
| 242 | 249 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 243 | 250 |
///\c DistMap type. |
| 244 | 251 |
/// |
| 245 | 252 |
///\ref named-templ-param "Named parameter" for setting |
| 246 | 253 |
///\c DistMap type. |
| 247 |
///It must |
|
| 254 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 248 | 255 |
template <class T> |
| 249 | 256 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 250 | 257 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 251 | 258 |
}; |
| 252 | 259 |
|
| 253 | 260 |
template <class T> |
| ... | ... |
@@ -261,13 +268,14 @@ |
| 261 | 268 |
}; |
| 262 | 269 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 263 | 270 |
///\c ReachedMap type. |
| 264 | 271 |
/// |
| 265 | 272 |
///\ref named-templ-param "Named parameter" for setting |
| 266 | 273 |
///\c ReachedMap type. |
| 267 |
///It must |
|
| 274 |
///It must conform to |
|
| 275 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 268 | 276 |
template <class T> |
| 269 | 277 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 270 | 278 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 271 | 279 |
}; |
| 272 | 280 |
|
| 273 | 281 |
template <class T> |
| ... | ... |
@@ -281,13 +289,13 @@ |
| 281 | 289 |
}; |
| 282 | 290 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 283 | 291 |
///\c ProcessedMap type. |
| 284 | 292 |
/// |
| 285 | 293 |
///\ref named-templ-param "Named parameter" for setting |
| 286 | 294 |
///\c ProcessedMap type. |
| 287 |
///It must |
|
| 295 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 288 | 296 |
template <class T> |
| 289 | 297 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 290 | 298 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 291 | 299 |
}; |
| 292 | 300 |
|
| 293 | 301 |
struct SetStandardProcessedMapTraits : public Traits {
|
| ... | ... |
@@ -408,14 +416,14 @@ |
| 408 | 416 |
|
| 409 | 417 |
public: |
| 410 | 418 |
|
| 411 | 419 |
///\name Execution Control |
| 412 | 420 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 421 |
///member functions called \ref run(Node) "run()".\n |
| 414 |
///If you need more control on the execution, first you have to call |
|
| 415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
| 422 |
///If you need better control on the execution, you have to call |
|
| 423 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
| 416 | 424 |
///and perform the actual computation with \ref start(). |
| 417 | 425 |
///This procedure can be repeated if there are nodes that have not |
| 418 | 426 |
///been reached. |
| 419 | 427 |
|
| 420 | 428 |
///@{
|
| 421 | 429 |
|
| ... | ... |
@@ -629,18 +637,14 @@ |
| 629 | 637 |
start(t); |
| 630 | 638 |
return reached(t); |
| 631 | 639 |
} |
| 632 | 640 |
|
| 633 | 641 |
///Runs the algorithm to visit all nodes in the digraph. |
| 634 | 642 |
|
| 635 |
///This method runs the %DFS algorithm in order to compute the |
|
| 636 |
///%DFS path to each node. |
|
| 637 |
/// |
|
| 638 |
///The algorithm computes |
|
| 639 |
///- the %DFS tree (forest), |
|
| 640 |
///- the distance of each node from the root(s) in the %DFS tree. |
|
| 643 |
///This method runs the %DFS algorithm in order to visit all nodes |
|
| 644 |
///in the digraph. |
|
| 641 | 645 |
/// |
| 642 | 646 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 643 | 647 |
///\code |
| 644 | 648 |
/// d.init(); |
| 645 | 649 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 646 | 650 |
/// if (!d.reached(n)) {
|
| ... | ... |
@@ -666,56 +670,56 @@ |
| 666 | 670 |
///functions.\n |
| 667 | 671 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 668 | 672 |
///before using them. |
| 669 | 673 |
|
| 670 | 674 |
///@{
|
| 671 | 675 |
|
| 672 |
///The DFS path to |
|
| 676 |
///The DFS path to the given node. |
|
| 673 | 677 |
|
| 674 |
///Returns the DFS path to |
|
| 678 |
///Returns the DFS path to the given node from the root(s). |
|
| 675 | 679 |
/// |
| 676 | 680 |
///\warning \c t should be reached from the root(s). |
| 677 | 681 |
/// |
| 678 | 682 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 679 | 683 |
///must be called before using this function. |
| 680 | 684 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 681 | 685 |
|
| 682 |
///The distance of |
|
| 686 |
///The distance of the given node from the root(s). |
|
| 683 | 687 |
|
| 684 |
///Returns the distance of |
|
| 688 |
///Returns the distance of the given node from the root(s). |
|
| 685 | 689 |
/// |
| 686 | 690 |
///\warning If node \c v is not reached from the root(s), then |
| 687 | 691 |
///the return value of this function is undefined. |
| 688 | 692 |
/// |
| 689 | 693 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 690 | 694 |
///must be called before using this function. |
| 691 | 695 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 692 | 696 |
|
| 693 |
///Returns the 'previous arc' of the %DFS tree for |
|
| 697 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
| 694 | 698 |
|
| 695 | 699 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 696 | 700 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 697 | 701 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 698 | 702 |
///root(s) or if \c v is a root. |
| 699 | 703 |
/// |
| 700 | 704 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 701 |
///\ref predNode(). |
|
| 705 |
///\ref predNode() and \ref predMap(). |
|
| 702 | 706 |
/// |
| 703 | 707 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 704 | 708 |
///must be called before using this function. |
| 705 | 709 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 706 | 710 |
|
| 707 |
///Returns the 'previous node' of the %DFS tree. |
|
| 711 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
| 708 | 712 |
|
| 709 | 713 |
///This function returns the 'previous node' of the %DFS |
| 710 | 714 |
///tree for the node \c v, i.e. it returns the last but one node |
| 711 |
/// |
|
| 715 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
| 712 | 716 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 713 | 717 |
/// |
| 714 | 718 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 715 |
///\ref predArc(). |
|
| 719 |
///\ref predArc() and \ref predMap(). |
|
| 716 | 720 |
/// |
| 717 | 721 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 718 | 722 |
///must be called before using this function. |
| 719 | 723 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 720 | 724 |
G->source((*_pred)[v]); } |
| 721 | 725 |
|
| ... | ... |
@@ -730,19 +734,19 @@ |
| 730 | 734 |
const DistMap &distMap() const { return *_dist;}
|
| 731 | 735 |
|
| 732 | 736 |
///\brief Returns a const reference to the node map that stores the |
| 733 | 737 |
///predecessor arcs. |
| 734 | 738 |
/// |
| 735 | 739 |
///Returns a const reference to the node map that stores the predecessor |
| 736 |
///arcs, which form the DFS tree. |
|
| 740 |
///arcs, which form the DFS tree (forest). |
|
| 737 | 741 |
/// |
| 738 | 742 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 739 | 743 |
///must be called before using this function. |
| 740 | 744 |
const PredMap &predMap() const { return *_pred;}
|
| 741 | 745 |
|
| 742 |
///Checks if |
|
| 746 |
///Checks if the given node. node is reached from the root(s). |
|
| 743 | 747 |
|
| 744 | 748 |
///Returns \c true if \c v is reached from the root(s). |
| 745 | 749 |
/// |
| 746 | 750 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 751 |
///must be called before using this function. |
| 748 | 752 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| ... | ... |
@@ -762,13 +766,13 @@ |
| 762 | 766 |
|
| 763 | 767 |
///\brief The type of the map that stores the predecessor |
| 764 | 768 |
///arcs of the %DFS paths. |
| 765 | 769 |
/// |
| 766 | 770 |
///The type of the map that stores the predecessor |
| 767 | 771 |
///arcs of the %DFS paths. |
| 768 |
///It must |
|
| 772 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 769 | 773 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 770 | 774 |
///Instantiates a PredMap. |
| 771 | 775 |
|
| 772 | 776 |
///This function instantiates a PredMap. |
| 773 | 777 |
///\param g is the digraph, to which we would like to define the |
| 774 | 778 |
///PredMap. |
| ... | ... |
@@ -777,14 +781,14 @@ |
| 777 | 781 |
return new PredMap(g); |
| 778 | 782 |
} |
| 779 | 783 |
|
| 780 | 784 |
///The type of the map that indicates which nodes are processed. |
| 781 | 785 |
|
| 782 | 786 |
///The type of the map that indicates which nodes are processed. |
| 783 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 784 |
///By default it is a NullMap. |
|
| 787 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 788 |
///By default, it is a NullMap. |
|
| 785 | 789 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 786 | 790 |
///Instantiates a ProcessedMap. |
| 787 | 791 |
|
| 788 | 792 |
///This function instantiates a ProcessedMap. |
| 789 | 793 |
///\param g is the digraph, to which |
| 790 | 794 |
///we would like to define the ProcessedMap. |
| ... | ... |
@@ -797,13 +801,14 @@ |
| 797 | 801 |
return new ProcessedMap(); |
| 798 | 802 |
} |
| 799 | 803 |
|
| 800 | 804 |
///The type of the map that indicates which nodes are reached. |
| 801 | 805 |
|
| 802 | 806 |
///The type of the map that indicates which nodes are reached. |
| 803 |
///It must |
|
| 807 |
///It must conform to |
|
| 808 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 804 | 809 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 805 | 810 |
///Instantiates a ReachedMap. |
| 806 | 811 |
|
| 807 | 812 |
///This function instantiates a ReachedMap. |
| 808 | 813 |
///\param g is the digraph, to which |
| 809 | 814 |
///we would like to define the ReachedMap. |
| ... | ... |
@@ -812,13 +817,13 @@ |
| 812 | 817 |
return new ReachedMap(g); |
| 813 | 818 |
} |
| 814 | 819 |
|
| 815 | 820 |
///The type of the map that stores the distances of the nodes. |
| 816 | 821 |
|
| 817 | 822 |
///The type of the map that stores the distances of the nodes. |
| 818 |
///It must |
|
| 823 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 819 | 824 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 820 | 825 |
///Instantiates a DistMap. |
| 821 | 826 |
|
| 822 | 827 |
///This function instantiates a DistMap. |
| 823 | 828 |
///\param g is the digraph, to which we would like to define |
| 824 | 829 |
///the DistMap |
| ... | ... |
@@ -827,24 +832,20 @@ |
| 827 | 832 |
return new DistMap(g); |
| 828 | 833 |
} |
| 829 | 834 |
|
| 830 | 835 |
///The type of the DFS paths. |
| 831 | 836 |
|
| 832 | 837 |
///The type of the DFS paths. |
| 833 |
///It must |
|
| 838 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 834 | 839 |
typedef lemon::Path<Digraph> Path; |
| 835 | 840 |
}; |
| 836 | 841 |
|
| 837 | 842 |
/// Default traits class used by DfsWizard |
| 838 | 843 |
|
| 839 |
/// To make it easier to use Dfs algorithm |
|
| 840 |
/// we have created a wizard class. |
|
| 841 |
/// This \ref DfsWizard class needs default traits, |
|
| 842 |
/// as well as the \ref Dfs class. |
|
| 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
| 844 |
/// \ref DfsWizard class. |
|
| 844 |
/// Default traits class used by DfsWizard. |
|
| 845 |
/// \tparam GR The type of the digraph. |
|
| 845 | 846 |
template<class GR> |
| 846 | 847 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 847 | 848 |
{
|
| 848 | 849 |
|
| 849 | 850 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 850 | 851 |
protected: |
| ... | ... |
@@ -866,13 +867,13 @@ |
| 866 | 867 |
//Pointer to the distance of the target node. |
| 867 | 868 |
int *_di; |
| 868 | 869 |
|
| 869 | 870 |
public: |
| 870 | 871 |
/// Constructor. |
| 871 | 872 |
|
| 872 |
/// This constructor does not require parameters, |
|
| 873 |
/// This constructor does not require parameters, it initiates |
|
| 873 | 874 |
/// all of the attributes to \c 0. |
| 874 | 875 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 875 | 876 |
_dist(0), _path(0), _di(0) {}
|
| 876 | 877 |
|
| 877 | 878 |
/// Constructor. |
| 878 | 879 |
|
| ... | ... |
@@ -891,35 +892,31 @@ |
| 891 | 892 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 892 | 893 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 893 | 894 |
/// functions and features of the plain \ref Dfs. |
| 894 | 895 |
/// |
| 895 | 896 |
/// This class should only be used through the \ref dfs() function, |
| 896 | 897 |
/// which makes it easier to use the algorithm. |
| 898 |
/// |
|
| 899 |
/// \tparam TR The traits class that defines various types used by the |
|
| 900 |
/// algorithm. |
|
| 897 | 901 |
template<class TR> |
| 898 | 902 |
class DfsWizard : public TR |
| 899 | 903 |
{
|
| 900 | 904 |
typedef TR Base; |
| 901 | 905 |
|
| 902 |
///The type of the digraph the algorithm runs on. |
|
| 903 | 906 |
typedef typename TR::Digraph Digraph; |
| 904 | 907 |
|
| 905 | 908 |
typedef typename Digraph::Node Node; |
| 906 | 909 |
typedef typename Digraph::NodeIt NodeIt; |
| 907 | 910 |
typedef typename Digraph::Arc Arc; |
| 908 | 911 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 909 | 912 |
|
| 910 |
///\brief The type of the map that stores the predecessor |
|
| 911 |
///arcs of the DFS paths. |
|
| 912 | 913 |
typedef typename TR::PredMap PredMap; |
| 913 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 914 | 914 |
typedef typename TR::DistMap DistMap; |
| 915 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 916 | 915 |
typedef typename TR::ReachedMap ReachedMap; |
| 917 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 918 | 916 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 919 |
///The type of the DFS paths |
|
| 920 | 917 |
typedef typename TR::Path Path; |
| 921 | 918 |
|
| 922 | 919 |
public: |
| 923 | 920 |
|
| 924 | 921 |
/// Constructor. |
| 925 | 922 |
DfsWizard() : TR() {}
|
| ... | ... |
@@ -983,30 +980,31 @@ |
| 983 | 980 |
*Base::_di = alg.dist(t); |
| 984 | 981 |
return alg.reached(t); |
| 985 | 982 |
} |
| 986 | 983 |
|
| 987 | 984 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 988 | 985 |
|
| 989 |
///This method runs DFS algorithm in order to compute |
|
| 990 |
///the DFS path to each node. |
|
| 986 |
///This method runs DFS algorithm in order to visit all nodes |
|
| 987 |
///in the digraph. |
|
| 991 | 988 |
void run() |
| 992 | 989 |
{
|
| 993 | 990 |
run(INVALID); |
| 994 | 991 |
} |
| 995 | 992 |
|
| 996 | 993 |
template<class T> |
| 997 | 994 |
struct SetPredMapBase : public Base {
|
| 998 | 995 |
typedef T PredMap; |
| 999 | 996 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1000 | 997 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1001 | 998 |
}; |
| 1002 |
///\brief \ref named-func-param "Named parameter" |
|
| 1003 |
///for setting PredMap object. |
|
| 999 |
|
|
| 1000 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1001 |
///the predecessor map. |
|
| 1004 | 1002 |
/// |
| 1005 |
///\ref named-func-param "Named parameter" |
|
| 1006 |
///for setting PredMap object. |
|
| 1003 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1004 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1007 | 1005 |
template<class T> |
| 1008 | 1006 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1009 | 1007 |
{
|
| 1010 | 1008 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1011 | 1009 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 1012 | 1010 |
} |
| ... | ... |
@@ -1014,17 +1012,18 @@ |
| 1014 | 1012 |
template<class T> |
| 1015 | 1013 |
struct SetReachedMapBase : public Base {
|
| 1016 | 1014 |
typedef T ReachedMap; |
| 1017 | 1015 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1018 | 1016 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1019 | 1017 |
}; |
| 1020 |
///\brief \ref named-func-param "Named parameter" |
|
| 1021 |
///for setting ReachedMap object. |
|
| 1018 |
|
|
| 1019 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1020 |
///the reached map. |
|
| 1022 | 1021 |
/// |
| 1023 |
/// \ref named-func-param "Named parameter" |
|
| 1024 |
///for setting ReachedMap object. |
|
| 1022 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1023 |
///the map that indicates which nodes are reached. |
|
| 1025 | 1024 |
template<class T> |
| 1026 | 1025 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1027 | 1026 |
{
|
| 1028 | 1027 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1029 | 1028 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1030 | 1029 |
} |
| ... | ... |
@@ -1032,17 +1031,19 @@ |
| 1032 | 1031 |
template<class T> |
| 1033 | 1032 |
struct SetDistMapBase : public Base {
|
| 1034 | 1033 |
typedef T DistMap; |
| 1035 | 1034 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1036 | 1035 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1037 | 1036 |
}; |
| 1038 |
///\brief \ref named-func-param "Named parameter" |
|
| 1039 |
///for setting DistMap object. |
|
| 1037 |
|
|
| 1038 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1039 |
///the distance map. |
|
| 1040 | 1040 |
/// |
| 1041 |
/// \ref named-func-param "Named parameter" |
|
| 1042 |
///for setting DistMap object. |
|
| 1041 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1042 |
///the map that stores the distances of the nodes calculated |
|
| 1043 |
///by the algorithm. |
|
| 1043 | 1044 |
template<class T> |
| 1044 | 1045 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1045 | 1046 |
{
|
| 1046 | 1047 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1047 | 1048 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1048 | 1049 |
} |
| ... | ... |
@@ -1050,17 +1051,18 @@ |
| 1050 | 1051 |
template<class T> |
| 1051 | 1052 |
struct SetProcessedMapBase : public Base {
|
| 1052 | 1053 |
typedef T ProcessedMap; |
| 1053 | 1054 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1054 | 1055 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1055 | 1056 |
}; |
| 1056 |
///\brief \ref named-func-param "Named parameter" |
|
| 1057 |
///for setting ProcessedMap object. |
|
| 1057 |
|
|
| 1058 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1059 |
///the processed map. |
|
| 1058 | 1060 |
/// |
| 1059 |
/// \ref named-func-param "Named parameter" |
|
| 1060 |
///for setting ProcessedMap object. |
|
| 1061 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1062 |
///the map that indicates which nodes are processed. |
|
| 1061 | 1063 |
template<class T> |
| 1062 | 1064 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1063 | 1065 |
{
|
| 1064 | 1066 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1065 | 1067 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1066 | 1068 |
} |
| ... | ... |
@@ -1205,13 +1207,14 @@ |
| 1205 | 1207 |
/// \brief The type of the digraph the algorithm runs on. |
| 1206 | 1208 |
typedef GR Digraph; |
| 1207 | 1209 |
|
| 1208 | 1210 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1209 | 1211 |
/// |
| 1210 | 1212 |
/// The type of the map that indicates which nodes are reached. |
| 1211 |
/// It must |
|
| 1213 |
/// It must conform to the |
|
| 1214 |
/// \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1212 | 1215 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1213 | 1216 |
|
| 1214 | 1217 |
/// \brief Instantiates a ReachedMap. |
| 1215 | 1218 |
/// |
| 1216 | 1219 |
/// This function instantiates a ReachedMap. |
| 1217 | 1220 |
/// \param digraph is the digraph, to which |
| ... | ... |
@@ -1243,17 +1246,17 @@ |
| 1243 | 1246 |
/// The value of GR is not used directly by \ref DfsVisit, |
| 1244 | 1247 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
| 1245 | 1248 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1246 | 1249 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
| 1247 | 1250 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1248 | 1251 |
/// events, you should implement your own visitor class. |
| 1249 |
/// \tparam TR Traits class to set various data types used by the |
|
| 1250 |
/// algorithm. The default traits class is |
|
| 1251 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
|
| 1252 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
|
| 1253 |
/// |
|
| 1252 |
/// \tparam TR The traits class that defines various types used by the |
|
| 1253 |
/// algorithm. By default, it is \ref DfsVisitDefaultTraits |
|
| 1254 |
/// "DfsVisitDefaultTraits<GR>". |
|
| 1255 |
/// In most cases, this parameter should not be set directly, |
|
| 1256 |
/// consider to use the named template parameters instead. |
|
| 1254 | 1257 |
#ifdef DOXYGEN |
| 1255 | 1258 |
template <typename GR, typename VS, typename TR> |
| 1256 | 1259 |
#else |
| 1257 | 1260 |
template <typename GR = ListDigraph, |
| 1258 | 1261 |
typename VS = DfsVisitor<GR>, |
| 1259 | 1262 |
typename TR = DfsVisitDefaultTraits<GR> > |
| ... | ... |
@@ -1366,14 +1369,14 @@ |
| 1366 | 1369 |
|
| 1367 | 1370 |
public: |
| 1368 | 1371 |
|
| 1369 | 1372 |
/// \name Execution Control |
| 1370 | 1373 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1371 | 1374 |
/// member functions called \ref run(Node) "run()".\n |
| 1372 |
/// If you need more control on the execution, first you have to call |
|
| 1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
| 1375 |
/// If you need better control on the execution, you have to call |
|
| 1376 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
| 1374 | 1377 |
/// and perform the actual computation with \ref start(). |
| 1375 | 1378 |
/// This procedure can be repeated if there are nodes that have not |
| 1376 | 1379 |
/// been reached. |
| 1377 | 1380 |
|
| 1378 | 1381 |
/// @{
|
| 1379 | 1382 |
|
| ... | ... |
@@ -1580,18 +1583,14 @@ |
| 1580 | 1583 |
start(t); |
| 1581 | 1584 |
return reached(t); |
| 1582 | 1585 |
} |
| 1583 | 1586 |
|
| 1584 | 1587 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1585 | 1588 |
|
| 1586 |
/// This method runs the %DFS algorithm in order to |
|
| 1587 |
/// compute the %DFS path to each node. |
|
| 1588 |
/// |
|
| 1589 |
/// The algorithm computes |
|
| 1590 |
/// - the %DFS tree (forest), |
|
| 1591 |
/// - the distance of each node from the root(s) in the %DFS tree. |
|
| 1589 |
/// This method runs the %DFS algorithm in order to visit all nodes |
|
| 1590 |
/// in the digraph. |
|
| 1592 | 1591 |
/// |
| 1593 | 1592 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1594 | 1593 |
///\code |
| 1595 | 1594 |
/// d.init(); |
| 1596 | 1595 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1597 | 1596 |
/// if (!d.reached(n)) {
|
| ... | ... |
@@ -1617,13 +1616,13 @@ |
| 1617 | 1616 |
/// functions.\n |
| 1618 | 1617 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1619 | 1618 |
/// before using them. |
| 1620 | 1619 |
|
| 1621 | 1620 |
///@{
|
| 1622 | 1621 |
|
| 1623 |
/// \brief Checks if |
|
| 1622 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1624 | 1623 |
/// |
| 1625 | 1624 |
/// Returns \c true if \c v is reached from the root(s). |
| 1626 | 1625 |
/// |
| 1627 | 1626 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1628 | 1627 |
/// must be called before using this function. |
| 1629 | 1628 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -67,15 +67,15 @@ |
| 67 | 67 |
///The type of the digraph the algorithm runs on. |
| 68 | 68 |
typedef GR Digraph; |
| 69 | 69 |
|
| 70 | 70 |
///The type of the map that stores the arc lengths. |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 |
///It must |
|
| 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 74 | 74 |
typedef LEN LengthMap; |
| 75 |
///The type of the |
|
| 75 |
///The type of the arc lengths. |
|
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
| 79 | 79 |
|
| 80 | 80 |
/// This class defines the operations that are used in the algorithm. |
| 81 | 81 |
/// \see DijkstraDefaultOperationTraits |
| ... | ... |
@@ -113,13 +113,13 @@ |
| 113 | 113 |
|
| 114 | 114 |
///\brief The type of the map that stores the predecessor |
| 115 | 115 |
///arcs of the shortest paths. |
| 116 | 116 |
/// |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 |
///It must |
|
| 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| 122 | 122 |
|
| 123 | 123 |
///This function instantiates a \ref PredMap. |
| 124 | 124 |
///\param g is the digraph, to which we would like to define the |
| 125 | 125 |
///\ref PredMap. |
| ... | ... |
@@ -128,14 +128,14 @@ |
| 128 | 128 |
return new PredMap(g); |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
///The type of the map that indicates which nodes are processed. |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 |
///By default it is a NullMap. |
|
| 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 |
///By default, it is a NullMap. |
|
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 137 | 137 |
///Instantiates a \c ProcessedMap. |
| 138 | 138 |
|
| 139 | 139 |
///This function instantiates a \ref ProcessedMap. |
| 140 | 140 |
///\param g is the digraph, to which |
| 141 | 141 |
///we would like to define the \ref ProcessedMap. |
| ... | ... |
@@ -148,13 +148,13 @@ |
| 148 | 148 |
return new ProcessedMap(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
///The type of the map that stores the distances of the nodes. |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 |
///It must |
|
| 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| 157 | 157 |
|
| 158 | 158 |
///This function instantiates a \ref DistMap. |
| 159 | 159 |
///\param g is the digraph, to which we would like to define |
| 160 | 160 |
///the \ref DistMap. |
| ... | ... |
@@ -166,12 +166,16 @@ |
| 166 | 166 |
|
| 167 | 167 |
///%Dijkstra algorithm class. |
| 168 | 168 |
|
| 169 | 169 |
/// \ingroup shortest_path |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
| 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
| 174 |
///the BellmanFord algorithm should be used instead. |
|
| 175 |
/// |
|
| 172 | 176 |
///The arc lengths are passed to the algorithm using a |
| 173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
| 174 | 178 |
///so it is easy to change it to any kind of length. |
| 175 | 179 |
///The type of the length is determined by the |
| 176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 177 | 181 |
///It is also possible to change the underlying priority heap. |
| ... | ... |
@@ -185,12 +189,17 @@ |
| 185 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 186 | 190 |
///the lengths of the arcs. |
| 187 | 191 |
///It is read once for each arc, so the map may involve in |
| 188 | 192 |
///relatively time consuming process to compute the arc lengths if |
| 189 | 193 |
///it is necessary. The default map type is \ref |
| 190 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 195 |
///\tparam TR The traits class that defines various types used by the |
|
| 196 |
///algorithm. By default, it is \ref DijkstraDefaultTraits |
|
| 197 |
///"DijkstraDefaultTraits<GR, LEN>". |
|
| 198 |
///In most cases, this parameter should not be set directly, |
|
| 199 |
///consider to use the named template parameters instead. |
|
| 191 | 200 |
#ifdef DOXYGEN |
| 192 | 201 |
template <typename GR, typename LEN, typename TR> |
| 193 | 202 |
#else |
| 194 | 203 |
template <typename GR=ListDigraph, |
| 195 | 204 |
typename LEN=typename GR::template ArcMap<int>, |
| 196 | 205 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
| ... | ... |
@@ -198,14 +207,14 @@ |
| 198 | 207 |
class Dijkstra {
|
| 199 | 208 |
public: |
| 200 | 209 |
|
| 201 | 210 |
///The type of the digraph the algorithm runs on. |
| 202 | 211 |
typedef typename TR::Digraph Digraph; |
| 203 | 212 |
|
| 204 |
///The type of the length of the arcs. |
|
| 205 |
typedef typename TR::LengthMap::Value Value; |
|
| 213 |
///The type of the arc lengths. |
|
| 214 |
typedef typename TR::Value Value; |
|
| 206 | 215 |
///The type of the map that stores the arc lengths. |
| 207 | 216 |
typedef typename TR::LengthMap LengthMap; |
| 208 | 217 |
///\brief The type of the map that stores the predecessor arcs of the |
| 209 | 218 |
///shortest paths. |
| 210 | 219 |
typedef typename TR::PredMap PredMap; |
| 211 | 220 |
///The type of the map that stores the distances of the nodes. |
| ... | ... |
@@ -301,13 +310,13 @@ |
| 301 | 310 |
}; |
| 302 | 311 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 312 |
///\c PredMap type. |
| 304 | 313 |
/// |
| 305 | 314 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 315 |
///\c PredMap type. |
| 307 |
///It must |
|
| 316 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 308 | 317 |
template <class T> |
| 309 | 318 |
struct SetPredMap |
| 310 | 319 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 311 | 320 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 312 | 321 |
}; |
| 313 | 322 |
|
| ... | ... |
@@ -322,13 +331,13 @@ |
| 322 | 331 |
}; |
| 323 | 332 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 324 | 333 |
///\c DistMap type. |
| 325 | 334 |
/// |
| 326 | 335 |
///\ref named-templ-param "Named parameter" for setting |
| 327 | 336 |
///\c DistMap type. |
| 328 |
///It must |
|
| 337 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 329 | 338 |
template <class T> |
| 330 | 339 |
struct SetDistMap |
| 331 | 340 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 332 | 341 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 333 | 342 |
}; |
| 334 | 343 |
|
| ... | ... |
@@ -343,13 +352,13 @@ |
| 343 | 352 |
}; |
| 344 | 353 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 345 | 354 |
///\c ProcessedMap type. |
| 346 | 355 |
/// |
| 347 | 356 |
///\ref named-templ-param "Named parameter" for setting |
| 348 | 357 |
///\c ProcessedMap type. |
| 349 |
///It must |
|
| 358 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 350 | 359 |
template <class T> |
| 351 | 360 |
struct SetProcessedMap |
| 352 | 361 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 353 | 362 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 354 | 363 |
}; |
| 355 | 364 |
|
| ... | ... |
@@ -419,13 +428,13 @@ |
| 419 | 428 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 420 | 429 |
///reference types with automatic allocation. |
| 421 | 430 |
///They should have standard constructor interfaces to be able to |
| 422 | 431 |
///automatically created by the algorithm (i.e. the digraph should be |
| 423 | 432 |
///passed to the constructor of the cross reference and the cross |
| 424 | 433 |
///reference should be passed to the constructor of the heap). |
| 425 |
///However external heap and cross reference objects could also be |
|
| 434 |
///However, external heap and cross reference objects could also be |
|
| 426 | 435 |
///passed to the algorithm using the \ref heap() function before |
| 427 | 436 |
///calling \ref run(Node) "run()" or \ref init(). |
| 428 | 437 |
///\sa SetHeap |
| 429 | 438 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 430 | 439 |
struct SetStandardHeap |
| 431 | 440 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| ... | ... |
@@ -440,12 +449,13 @@ |
| 440 | 449 |
|
| 441 | 450 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 442 | 451 |
///\c OperationTraits type |
| 443 | 452 |
/// |
| 444 | 453 |
///\ref named-templ-param "Named parameter" for setting |
| 445 | 454 |
///\c OperationTraits type. |
| 455 |
/// For more information, see \ref DijkstraDefaultOperationTraits. |
|
| 446 | 456 |
template <class T> |
| 447 | 457 |
struct SetOperationTraits |
| 448 | 458 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 449 | 459 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 450 | 460 |
Create; |
| 451 | 461 |
}; |
| ... | ... |
@@ -581,14 +591,14 @@ |
| 581 | 591 |
|
| 582 | 592 |
public: |
| 583 | 593 |
|
| 584 | 594 |
///\name Execution Control |
| 585 | 595 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 596 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 |
///If you need more control on the execution, first you have to call |
|
| 588 |
///\ref init(), then you can add several source nodes with |
|
| 597 |
///If you need better control on the execution, you have to call |
|
| 598 |
///\ref init() first, then you can add several source nodes with |
|
| 589 | 599 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 600 |
///performed with one of the \ref start() functions. |
| 591 | 601 |
|
| 592 | 602 |
///@{
|
| 593 | 603 |
|
| 594 | 604 |
///\brief Initializes the internal data structures. |
| ... | ... |
@@ -798,61 +808,63 @@ |
| 798 | 808 |
|
| 799 | 809 |
///@} |
| 800 | 810 |
|
| 801 | 811 |
///\name Query Functions |
| 802 | 812 |
///The results of the %Dijkstra algorithm can be obtained using these |
| 803 | 813 |
///functions.\n |
| 804 |
///Either \ref run(Node) "run()" or \ref |
|
| 814 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
| 805 | 815 |
///before using them. |
| 806 | 816 |
|
| 807 | 817 |
///@{
|
| 808 | 818 |
|
| 809 |
///The shortest path to |
|
| 819 |
///The shortest path to the given node. |
|
| 810 | 820 |
|
| 811 |
///Returns the shortest path to |
|
| 821 |
///Returns the shortest path to the given node from the root(s). |
|
| 812 | 822 |
/// |
| 813 | 823 |
///\warning \c t should be reached from the root(s). |
| 814 | 824 |
/// |
| 815 | 825 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 816 | 826 |
///must be called before using this function. |
| 817 | 827 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 818 | 828 |
|
| 819 |
///The distance of |
|
| 829 |
///The distance of the given node from the root(s). |
|
| 820 | 830 |
|
| 821 |
///Returns the distance of |
|
| 831 |
///Returns the distance of the given node from the root(s). |
|
| 822 | 832 |
/// |
| 823 | 833 |
///\warning If node \c v is not reached from the root(s), then |
| 824 | 834 |
///the return value of this function is undefined. |
| 825 | 835 |
/// |
| 826 | 836 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 827 | 837 |
///must be called before using this function. |
| 828 | 838 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 829 | 839 |
|
| 830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 831 |
|
|
| 840 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 841 |
///the given node. |
|
| 842 |
/// |
|
| 832 | 843 |
///This function returns the 'previous arc' of the shortest path |
| 833 | 844 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 834 | 845 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 835 | 846 |
///is not reached from the root(s) or if \c v is a root. |
| 836 | 847 |
/// |
| 837 | 848 |
///The shortest path tree used here is equal to the shortest path |
| 838 |
///tree used in \ref predNode(). |
|
| 849 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 839 | 850 |
/// |
| 840 | 851 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 841 | 852 |
///must be called before using this function. |
| 842 | 853 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 843 | 854 |
|
| 844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 845 |
|
|
| 855 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 856 |
///the given node. |
|
| 857 |
/// |
|
| 846 | 858 |
///This function returns the 'previous node' of the shortest path |
| 847 | 859 |
///tree for the node \c v, i.e. it returns the last but one node |
| 848 |
/// |
|
| 860 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 849 | 861 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 850 | 862 |
/// |
| 851 | 863 |
///The shortest path tree used here is equal to the shortest path |
| 852 |
///tree used in \ref predArc(). |
|
| 864 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 853 | 865 |
/// |
| 854 | 866 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 855 | 867 |
///must be called before using this function. |
| 856 | 868 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 857 | 869 |
G->source((*_pred)[v]); } |
| 858 | 870 |
|
| ... | ... |
@@ -867,19 +879,19 @@ |
| 867 | 879 |
const DistMap &distMap() const { return *_dist;}
|
| 868 | 880 |
|
| 869 | 881 |
///\brief Returns a const reference to the node map that stores the |
| 870 | 882 |
///predecessor arcs. |
| 871 | 883 |
/// |
| 872 | 884 |
///Returns a const reference to the node map that stores the predecessor |
| 873 |
///arcs, which form the shortest path tree. |
|
| 885 |
///arcs, which form the shortest path tree (forest). |
|
| 874 | 886 |
/// |
| 875 | 887 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 876 | 888 |
///must be called before using this function. |
| 877 | 889 |
const PredMap &predMap() const { return *_pred;}
|
| 878 | 890 |
|
| 879 |
///Checks if |
|
| 891 |
///Checks if the given node is reached from the root(s). |
|
| 880 | 892 |
|
| 881 | 893 |
///Returns \c true if \c v is reached from the root(s). |
| 882 | 894 |
/// |
| 883 | 895 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 884 | 896 |
///must be called before using this function. |
| 885 | 897 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| ... | ... |
@@ -892,15 +904,15 @@ |
| 892 | 904 |
/// |
| 893 | 905 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 894 | 906 |
///must be called before using this function. |
| 895 | 907 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 896 | 908 |
Heap::POST_HEAP; } |
| 897 | 909 |
|
| 898 |
///The current distance of |
|
| 910 |
///The current distance of the given node from the root(s). |
|
| 899 | 911 |
|
| 900 |
///Returns the current distance of |
|
| 912 |
///Returns the current distance of the given node from the root(s). |
|
| 901 | 913 |
///It may be decreased in the following processes. |
| 902 | 914 |
/// |
| 903 | 915 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 904 | 916 |
///must be called before using this function and |
| 905 | 917 |
///node \c v must be reached but not necessarily processed. |
| 906 | 918 |
Value currentDist(Node v) const {
|
| ... | ... |
@@ -921,15 +933,15 @@ |
| 921 | 933 |
{
|
| 922 | 934 |
///The type of the digraph the algorithm runs on. |
| 923 | 935 |
typedef GR Digraph; |
| 924 | 936 |
///The type of the map that stores the arc lengths. |
| 925 | 937 |
|
| 926 | 938 |
///The type of the map that stores the arc lengths. |
| 927 |
///It must |
|
| 939 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 928 | 940 |
typedef LEN LengthMap; |
| 929 |
///The type of the |
|
| 941 |
///The type of the arc lengths. |
|
| 930 | 942 |
typedef typename LEN::Value Value; |
| 931 | 943 |
|
| 932 | 944 |
/// Operation traits for Dijkstra algorithm. |
| 933 | 945 |
|
| 934 | 946 |
/// This class defines the operations that are used in the algorithm. |
| 935 | 947 |
/// \see DijkstraDefaultOperationTraits |
| ... | ... |
@@ -970,13 +982,13 @@ |
| 970 | 982 |
|
| 971 | 983 |
///\brief The type of the map that stores the predecessor |
| 972 | 984 |
///arcs of the shortest paths. |
| 973 | 985 |
/// |
| 974 | 986 |
///The type of the map that stores the predecessor |
| 975 | 987 |
///arcs of the shortest paths. |
| 976 |
///It must |
|
| 988 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 977 | 989 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 978 | 990 |
///Instantiates a PredMap. |
| 979 | 991 |
|
| 980 | 992 |
///This function instantiates a PredMap. |
| 981 | 993 |
///\param g is the digraph, to which we would like to define the |
| 982 | 994 |
///PredMap. |
| ... | ... |
@@ -985,14 +997,14 @@ |
| 985 | 997 |
return new PredMap(g); |
| 986 | 998 |
} |
| 987 | 999 |
|
| 988 | 1000 |
///The type of the map that indicates which nodes are processed. |
| 989 | 1001 |
|
| 990 | 1002 |
///The type of the map that indicates which nodes are processed. |
| 991 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 992 |
///By default it is a NullMap. |
|
| 1003 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 1004 |
///By default, it is a NullMap. |
|
| 993 | 1005 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 994 | 1006 |
///Instantiates a ProcessedMap. |
| 995 | 1007 |
|
| 996 | 1008 |
///This function instantiates a ProcessedMap. |
| 997 | 1009 |
///\param g is the digraph, to which |
| 998 | 1010 |
///we would like to define the ProcessedMap. |
| ... | ... |
@@ -1005,13 +1017,13 @@ |
| 1005 | 1017 |
return new ProcessedMap(); |
| 1006 | 1018 |
} |
| 1007 | 1019 |
|
| 1008 | 1020 |
///The type of the map that stores the distances of the nodes. |
| 1009 | 1021 |
|
| 1010 | 1022 |
///The type of the map that stores the distances of the nodes. |
| 1011 |
///It must |
|
| 1023 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 1012 | 1024 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 1013 | 1025 |
///Instantiates a DistMap. |
| 1014 | 1026 |
|
| 1015 | 1027 |
///This function instantiates a DistMap. |
| 1016 | 1028 |
///\param g is the digraph, to which we would like to define |
| 1017 | 1029 |
///the DistMap |
| ... | ... |
@@ -1020,24 +1032,21 @@ |
| 1020 | 1032 |
return new DistMap(g); |
| 1021 | 1033 |
} |
| 1022 | 1034 |
|
| 1023 | 1035 |
///The type of the shortest paths. |
| 1024 | 1036 |
|
| 1025 | 1037 |
///The type of the shortest paths. |
| 1026 |
///It must |
|
| 1038 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 1027 | 1039 |
typedef lemon::Path<Digraph> Path; |
| 1028 | 1040 |
}; |
| 1029 | 1041 |
|
| 1030 | 1042 |
/// Default traits class used by DijkstraWizard |
| 1031 | 1043 |
|
| 1032 |
/// To make it easier to use Dijkstra algorithm |
|
| 1033 |
/// we have created a wizard class. |
|
| 1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
| 1035 |
/// as well as the \ref Dijkstra class. |
|
| 1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
| 1037 |
/// \ref DijkstraWizard class. |
|
| 1044 |
/// Default traits class used by DijkstraWizard. |
|
| 1045 |
/// \tparam GR The type of the digraph. |
|
| 1046 |
/// \tparam LEN The type of the length map. |
|
| 1038 | 1047 |
template<typename GR, typename LEN> |
| 1039 | 1048 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
| 1040 | 1049 |
{
|
| 1041 | 1050 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
| 1042 | 1051 |
protected: |
| 1043 | 1052 |
//The type of the nodes in the digraph. |
| ... | ... |
@@ -1085,39 +1094,33 @@ |
| 1085 | 1094 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
| 1086 | 1095 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 1087 | 1096 |
/// functions and features of the plain \ref Dijkstra. |
| 1088 | 1097 |
/// |
| 1089 | 1098 |
/// This class should only be used through the \ref dijkstra() function, |
| 1090 | 1099 |
/// which makes it easier to use the algorithm. |
| 1100 |
/// |
|
| 1101 |
/// \tparam TR The traits class that defines various types used by the |
|
| 1102 |
/// algorithm. |
|
| 1091 | 1103 |
template<class TR> |
| 1092 | 1104 |
class DijkstraWizard : public TR |
| 1093 | 1105 |
{
|
| 1094 | 1106 |
typedef TR Base; |
| 1095 | 1107 |
|
| 1096 |
///The type of the digraph the algorithm runs on. |
|
| 1097 | 1108 |
typedef typename TR::Digraph Digraph; |
| 1098 | 1109 |
|
| 1099 | 1110 |
typedef typename Digraph::Node Node; |
| 1100 | 1111 |
typedef typename Digraph::NodeIt NodeIt; |
| 1101 | 1112 |
typedef typename Digraph::Arc Arc; |
| 1102 | 1113 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1103 | 1114 |
|
| 1104 |
///The type of the map that stores the arc lengths. |
|
| 1105 | 1115 |
typedef typename TR::LengthMap LengthMap; |
| 1106 |
///The type of the length of the arcs. |
|
| 1107 | 1116 |
typedef typename LengthMap::Value Value; |
| 1108 |
///\brief The type of the map that stores the predecessor |
|
| 1109 |
///arcs of the shortest paths. |
|
| 1110 | 1117 |
typedef typename TR::PredMap PredMap; |
| 1111 |
///The type of the map that stores the distances of the nodes. |
|
| 1112 | 1118 |
typedef typename TR::DistMap DistMap; |
| 1113 |
///The type of the map that indicates which nodes are processed. |
|
| 1114 | 1119 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1115 |
///The type of the shortest paths |
|
| 1116 | 1120 |
typedef typename TR::Path Path; |
| 1117 |
///The heap type used by the dijkstra algorithm. |
|
| 1118 | 1121 |
typedef typename TR::Heap Heap; |
| 1119 | 1122 |
|
| 1120 | 1123 |
public: |
| 1121 | 1124 |
|
| 1122 | 1125 |
/// Constructor. |
| 1123 | 1126 |
DijkstraWizard() : TR() {}
|
| ... | ... |
@@ -1183,17 +1186,18 @@ |
| 1183 | 1186 |
template<class T> |
| 1184 | 1187 |
struct SetPredMapBase : public Base {
|
| 1185 | 1188 |
typedef T PredMap; |
| 1186 | 1189 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1187 | 1190 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1188 | 1191 |
}; |
| 1189 |
///\brief \ref named-func-param "Named parameter" |
|
| 1190 |
///for setting PredMap object. |
|
| 1192 |
|
|
| 1193 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1194 |
///the predecessor map. |
|
| 1191 | 1195 |
/// |
| 1192 |
///\ref named-func-param "Named parameter" |
|
| 1193 |
///for setting PredMap object. |
|
| 1196 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1197 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1194 | 1198 |
template<class T> |
| 1195 | 1199 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1196 | 1200 |
{
|
| 1197 | 1201 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1198 | 1202 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
| 1199 | 1203 |
} |
| ... | ... |
@@ -1201,17 +1205,19 @@ |
| 1201 | 1205 |
template<class T> |
| 1202 | 1206 |
struct SetDistMapBase : public Base {
|
| 1203 | 1207 |
typedef T DistMap; |
| 1204 | 1208 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1205 | 1209 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1206 | 1210 |
}; |
| 1207 |
///\brief \ref named-func-param "Named parameter" |
|
| 1208 |
///for setting DistMap object. |
|
| 1211 |
|
|
| 1212 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1213 |
///the distance map. |
|
| 1209 | 1214 |
/// |
| 1210 |
///\ref named-func-param "Named parameter" |
|
| 1211 |
///for setting DistMap object. |
|
| 1215 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1216 |
///the map that stores the distances of the nodes calculated |
|
| 1217 |
///by the algorithm. |
|
| 1212 | 1218 |
template<class T> |
| 1213 | 1219 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1214 | 1220 |
{
|
| 1215 | 1221 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1216 | 1222 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
| 1217 | 1223 |
} |
| ... | ... |
@@ -1219,29 +1225,31 @@ |
| 1219 | 1225 |
template<class T> |
| 1220 | 1226 |
struct SetProcessedMapBase : public Base {
|
| 1221 | 1227 |
typedef T ProcessedMap; |
| 1222 | 1228 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1223 | 1229 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1224 | 1230 |
}; |
| 1225 |
///\brief \ref named-func-param "Named parameter" |
|
| 1226 |
///for setting ProcessedMap object. |
|
| 1231 |
|
|
| 1232 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1233 |
///the processed map. |
|
| 1227 | 1234 |
/// |
| 1228 |
/// \ref named-func-param "Named parameter" |
|
| 1229 |
///for setting ProcessedMap object. |
|
| 1235 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1236 |
///the map that indicates which nodes are processed. |
|
| 1230 | 1237 |
template<class T> |
| 1231 | 1238 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1232 | 1239 |
{
|
| 1233 | 1240 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1234 | 1241 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
| 1235 | 1242 |
} |
| 1236 | 1243 |
|
| 1237 | 1244 |
template<class T> |
| 1238 | 1245 |
struct SetPathBase : public Base {
|
| 1239 | 1246 |
typedef T Path; |
| 1240 | 1247 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1241 | 1248 |
}; |
| 1249 |
|
|
| 1242 | 1250 |
///\brief \ref named-func-param "Named parameter" |
| 1243 | 1251 |
///for getting the shortest path to the target node. |
| 1244 | 1252 |
/// |
| 1245 | 1253 |
///\ref named-func-param "Named parameter" |
| 1246 | 1254 |
///for getting the shortest path to the target node. |
| 1247 | 1255 |
template<class T> |
| ... | ... |
@@ -18,32 +18,25 @@ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIM2_H |
| 20 | 20 |
#define LEMON_DIM2_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iostream> |
| 23 | 23 |
|
| 24 |
///\ingroup |
|
| 24 |
///\ingroup geomdat |
|
| 25 | 25 |
///\file |
| 26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
| 27 |
/// |
|
| 28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
| 29 |
/// a two dimensional vector with the usual operations. |
|
| 30 |
/// |
|
| 31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
| 32 |
/// the rectangular bounding box of a set of |
|
| 33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
| 34 | 27 |
|
| 35 | 28 |
namespace lemon {
|
| 36 | 29 |
|
| 37 | 30 |
///Tools for handling two dimensional coordinates |
| 38 | 31 |
|
| 39 | 32 |
///This namespace is a storage of several |
| 40 | 33 |
///tools for handling two dimensional coordinates |
| 41 | 34 |
namespace dim2 {
|
| 42 | 35 |
|
| 43 |
/// \addtogroup |
|
| 36 |
/// \addtogroup geomdat |
|
| 44 | 37 |
/// @{
|
| 45 | 38 |
|
| 46 | 39 |
/// Two dimensional vector (plain vector) |
| 47 | 40 |
|
| 48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
| 49 | 42 |
/// with the usual vector operations. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -58,13 +58,13 @@ |
| 58 | 58 |
DimacsDescriptor() : type(NONE) {}
|
| 59 | 59 |
}; |
| 60 | 60 |
|
| 61 | 61 |
///Discover the type of a DIMACS file |
| 62 | 62 |
|
| 63 | 63 |
///This function starts seeking the beginning of the given file for the |
| 64 |
///problem type and size info. |
|
| 64 |
///problem type and size info. |
|
| 65 | 65 |
///The found data is returned in a special struct that can be evaluated |
| 66 | 66 |
///and passed to the appropriate reader function. |
| 67 | 67 |
DimacsDescriptor dimacsType(std::istream& is) |
| 68 | 68 |
{
|
| 69 | 69 |
DimacsDescriptor r; |
| 70 | 70 |
std::string problem,str; |
| ... | ... |
@@ -209,13 +209,13 @@ |
| 209 | 209 |
typedef typename CapacityMap::Value Capacity; |
| 210 | 210 |
|
| 211 | 211 |
if(infty==0) |
| 212 | 212 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
| 213 | 213 |
std::numeric_limits<Capacity>::infinity() : |
| 214 | 214 |
std::numeric_limits<Capacity>::max(); |
| 215 |
|
|
| 215 |
|
|
| 216 | 216 |
while (is >> c) {
|
| 217 | 217 |
switch (c) {
|
| 218 | 218 |
case 'c': // comment line |
| 219 | 219 |
getline(is, str); |
| 220 | 220 |
break; |
| 221 | 221 |
case 'n': // node definition line |
| ... | ... |
@@ -234,13 +234,13 @@ |
| 234 | 234 |
case 'a': // arc definition line |
| 235 | 235 |
if (desc.type==DimacsDescriptor::SP) {
|
| 236 | 236 |
is >> i >> j >> _cap; |
| 237 | 237 |
getline(is, str); |
| 238 | 238 |
e = g.addArc(nodes[i], nodes[j]); |
| 239 | 239 |
capacity.set(e, _cap); |
| 240 |
} |
|
| 240 |
} |
|
| 241 | 241 |
else if (desc.type==DimacsDescriptor::MAX) {
|
| 242 | 242 |
is >> i >> j >> _cap; |
| 243 | 243 |
getline(is, str); |
| 244 | 244 |
e = g.addArc(nodes[i], nodes[j]); |
| 245 | 245 |
if (_cap >= 0) |
| 246 | 246 |
capacity.set(e, _cap); |
| ... | ... |
@@ -359,17 +359,17 @@ |
| 359 | 359 |
typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
| 360 | 360 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
| 361 | 361 |
dummy<1> = 1) |
| 362 | 362 |
{
|
| 363 | 363 |
g.addArc(s,t); |
| 364 | 364 |
} |
| 365 |
|
|
| 365 |
|
|
| 366 | 366 |
/// \brief DIMACS plain (di)graph reader function. |
| 367 | 367 |
/// |
| 368 | 368 |
/// This function reads a plain (di)graph without any designated nodes |
| 369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
| 369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
| 370 | 370 |
/// DIMACS files having a line starting with |
| 371 | 371 |
/// \code |
| 372 | 372 |
/// p mat |
| 373 | 373 |
/// \endcode |
| 374 | 374 |
/// At the beginning, \c g is cleared by \c g.clear(). |
| 375 | 375 |
/// |
| ... | ... |
@@ -389,13 +389,13 @@ |
| 389 | 389 |
int i, j; |
| 390 | 390 |
std::string str; |
| 391 | 391 |
nodes.resize(desc.nodeNum + 1); |
| 392 | 392 |
for (int k = 1; k <= desc.nodeNum; ++k) {
|
| 393 | 393 |
nodes[k] = g.addNode(); |
| 394 | 394 |
} |
| 395 |
|
|
| 395 |
|
|
| 396 | 396 |
while (is >> c) {
|
| 397 | 397 |
switch (c) {
|
| 398 | 398 |
case 'c': // comment line |
| 399 | 399 |
getline(is, str); |
| 400 | 400 |
break; |
| 401 | 401 |
case 'n': // node definition line |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -252,19 +252,20 @@ |
| 252 | 252 |
/// This implementation is based on doubly-linked lists, from each |
| 253 | 253 |
/// node the outgoing and the incoming arcs make up lists, therefore |
| 254 | 254 |
/// one arc can be erased in constant time. It also makes possible, |
| 255 | 255 |
/// that node can be removed from the underlying graph, in this case |
| 256 | 256 |
/// all arcs incident to the given node is erased from the arc set. |
| 257 | 257 |
/// |
| 258 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 259 |
/// "Digraph" concept. |
|
| 260 |
/// It provides only linear time counting for nodes and arcs. |
|
| 261 |
/// |
|
| 258 | 262 |
/// \param GR The type of the graph which shares its node set with |
| 259 | 263 |
/// this class. Its interface must conform to the |
| 260 | 264 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 261 | 265 |
/// concept. |
| 262 |
/// |
|
| 263 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 264 |
/// "Digraph" concept. |
|
| 265 | 266 |
template <typename GR> |
| 266 | 267 |
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > {
|
| 267 | 268 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
| 268 | 269 |
|
| 269 | 270 |
public: |
| 270 | 271 |
|
| ... | ... |
@@ -682,19 +683,20 @@ |
| 682 | 683 |
/// This implementation is based on doubly-linked lists, from each |
| 683 | 684 |
/// node the incident edges make up lists, therefore one edge can be |
| 684 | 685 |
/// erased in constant time. It also makes possible, that node can |
| 685 | 686 |
/// be removed from the underlying graph, in this case all edges |
| 686 | 687 |
/// incident to the given node is erased from the arc set. |
| 687 | 688 |
/// |
| 689 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 690 |
/// concept. |
|
| 691 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
| 692 |
/// |
|
| 688 | 693 |
/// \param GR The type of the graph which shares its node set |
| 689 | 694 |
/// with this class. Its interface must conform to the |
| 690 | 695 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 691 | 696 |
/// concept. |
| 692 |
/// |
|
| 693 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 694 |
/// concept. |
|
| 695 | 697 |
template <typename GR> |
| 696 | 698 |
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > {
|
| 697 | 699 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
| 698 | 700 |
|
| 699 | 701 |
public: |
| 700 | 702 |
|
| ... | ... |
@@ -864,13 +866,13 @@ |
| 864 | 866 |
} |
| 865 | 867 |
|
| 866 | 868 |
void first(Arc& arc) const {
|
| 867 | 869 |
arc.id = arcs.size() - 1; |
| 868 | 870 |
} |
| 869 | 871 |
|
| 870 |
void next(Arc& arc) |
|
| 872 |
static void next(Arc& arc) {
|
|
| 871 | 873 |
--arc.id; |
| 872 | 874 |
} |
| 873 | 875 |
|
| 874 | 876 |
void firstOut(Arc& arc, const Node& node) const {
|
| 875 | 877 |
arc.id = (*_nodes)[node].first_out; |
| 876 | 878 |
} |
| ... | ... |
@@ -951,19 +953,20 @@ |
| 951 | 953 |
/// |
| 952 | 954 |
/// This implementation is slightly faster than the \c ListArcSet, |
| 953 | 955 |
/// because it uses continuous storage for arcs and it uses just |
| 954 | 956 |
/// single-linked lists for enumerate outgoing and incoming |
| 955 | 957 |
/// arcs. Therefore the arcs cannot be erased from the arc sets. |
| 956 | 958 |
/// |
| 959 |
/// This class fully conforms to the \ref concepts::Digraph "Digraph" |
|
| 960 |
/// concept. |
|
| 961 |
/// It provides only linear time counting for nodes and arcs. |
|
| 962 |
/// |
|
| 957 | 963 |
/// \warning If a node is erased from the underlying graph and this |
| 958 | 964 |
/// node is the source or target of one arc in the arc set, then |
| 959 | 965 |
/// the arc set is invalidated, and it cannot be used anymore. The |
| 960 | 966 |
/// validity can be checked with the \c valid() member function. |
| 961 |
/// |
|
| 962 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 963 |
/// "Digraph" concept. |
|
| 964 | 967 |
template <typename GR> |
| 965 | 968 |
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > {
|
| 966 | 969 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
| 967 | 970 |
|
| 968 | 971 |
public: |
| 969 | 972 |
|
| ... | ... |
@@ -1170,21 +1173,21 @@ |
| 1170 | 1173 |
} |
| 1171 | 1174 |
|
| 1172 | 1175 |
void first(Arc& arc) const {
|
| 1173 | 1176 |
arc.id = arcs.size() - 1; |
| 1174 | 1177 |
} |
| 1175 | 1178 |
|
| 1176 |
void next(Arc& arc) |
|
| 1179 |
static void next(Arc& arc) {
|
|
| 1177 | 1180 |
--arc.id; |
| 1178 | 1181 |
} |
| 1179 | 1182 |
|
| 1180 | 1183 |
void first(Edge& arc) const {
|
| 1181 | 1184 |
arc.id = arcs.size() / 2 - 1; |
| 1182 | 1185 |
} |
| 1183 | 1186 |
|
| 1184 |
void next(Edge& arc) |
|
| 1187 |
static void next(Edge& arc) {
|
|
| 1185 | 1188 |
--arc.id; |
| 1186 | 1189 |
} |
| 1187 | 1190 |
|
| 1188 | 1191 |
void firstOut(Arc& arc, const Node& node) const {
|
| 1189 | 1192 |
arc.id = (*_nodes)[node].first_out; |
| 1190 | 1193 |
} |
| ... | ... |
@@ -1301,19 +1304,20 @@ |
| 1301 | 1304 |
/// |
| 1302 | 1305 |
/// This implementation is slightly faster than the \c ListEdgeSet, |
| 1303 | 1306 |
/// because it uses continuous storage for edges and it uses just |
| 1304 | 1307 |
/// single-linked lists for enumerate incident edges. Therefore the |
| 1305 | 1308 |
/// edges cannot be erased from the edge sets. |
| 1306 | 1309 |
/// |
| 1310 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 1311 |
/// concept. |
|
| 1312 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
| 1313 |
/// |
|
| 1307 | 1314 |
/// \warning If a node is erased from the underlying graph and this |
| 1308 | 1315 |
/// node is incident to one edge in the edge set, then the edge set |
| 1309 | 1316 |
/// is invalidated, and it cannot be used anymore. The validity can |
| 1310 | 1317 |
/// be checked with the \c valid() member function. |
| 1311 |
/// |
|
| 1312 |
/// This class fully conforms to the \ref concepts::Graph |
|
| 1313 |
/// "Graph" concept. |
|
| 1314 | 1318 |
template <typename GR> |
| 1315 | 1319 |
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > {
|
| 1316 | 1320 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
| 1317 | 1321 |
|
| 1318 | 1322 |
public: |
| 1319 | 1323 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -23,13 +23,13 @@ |
| 23 | 23 |
#include<lemon/adaptors.h> |
| 24 | 24 |
#include<lemon/connectivity.h> |
| 25 | 25 |
#include <list> |
| 26 | 26 |
|
| 27 | 27 |
/// \ingroup graph_properties |
| 28 | 28 |
/// \file |
| 29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
| 29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
| 30 | 30 |
/// property. |
| 31 | 31 |
/// |
| 32 | 32 |
///This file provides Euler tour iterators and a function to check |
| 33 | 33 |
///if a (di)graph is \e Eulerian. |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| ... | ... |
@@ -38,13 +38,13 @@ |
| 38 | 38 |
|
| 39 | 39 |
/// \ingroup graph_prop |
| 40 | 40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
| 41 | 41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
| 42 | 42 |
/// |
| 43 | 43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
| 44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
| 44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
| 45 | 45 |
///for all nodes), then the following code will put the arcs of \c g |
| 46 | 46 |
///to the vector \c et according to an Euler tour of \c g. |
| 47 | 47 |
///\code |
| 48 | 48 |
/// std::vector<ListDigraph::Arc> et; |
| 49 | 49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
| 50 | 50 |
/// et.push_back(e); |
| ... | ... |
@@ -135,22 +135,22 @@ |
| 135 | 135 |
|
| 136 | 136 |
/// \ingroup graph_properties |
| 137 | 137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
| 138 | 138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
| 139 | 139 |
///and \c Edge types of the graph. |
| 140 | 140 |
/// |
| 141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
| 141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
| 142 | 142 |
///non-trivial component and the degree of each node is even), |
| 143 | 143 |
///the following code will print the arc IDs according to an |
| 144 | 144 |
///Euler tour of \c g. |
| 145 | 145 |
///\code |
| 146 | 146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
|
| 147 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
| 148 | 148 |
/// } |
| 149 | 149 |
///\endcode |
| 150 |
///Although this iterator is for undirected graphs, it still returns |
|
| 150 |
///Although this iterator is for undirected graphs, it still returns |
|
| 151 | 151 |
///arcs in order to indicate the direction of the tour. |
| 152 | 152 |
///(But arcs convert to edges, of course.) |
| 153 | 153 |
/// |
| 154 | 154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
| 155 | 155 |
///or not contain all edges. |
| 156 | 156 |
template<typename GR> |
| ... | ... |
@@ -230,13 +230,13 @@ |
| 230 | 230 |
} |
| 231 | 231 |
|
| 232 | 232 |
///Postfix incrementation |
| 233 | 233 |
|
| 234 | 234 |
/// Postfix incrementation. |
| 235 | 235 |
/// |
| 236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
| 236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
| 237 | 237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
| 238 | 238 |
Arc operator++(int) |
| 239 | 239 |
{
|
| 240 | 240 |
Arc e=*this; |
| 241 | 241 |
++(*this); |
| 242 | 242 |
return e; |
| ... | ... |
@@ -17,59 +17,55 @@ |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_FIB_HEAP_H |
| 20 | 20 |
#define LEMON_FIB_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 |
///\ingroup auxdat |
|
| 24 |
///\brief Fibonacci Heap implementation. |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Fibonacci heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 |
#include <utility> |
|
| 27 | 28 |
#include <functional> |
| 28 | 29 |
#include <lemon/math.h> |
| 29 | 30 |
|
| 30 | 31 |
namespace lemon {
|
| 31 | 32 |
|
| 32 |
/// \ingroup |
|
| 33 |
/// \ingroup heaps |
|
| 33 | 34 |
/// |
| 34 |
///\brief Fibonacci |
|
| 35 |
/// \brief Fibonacci heap data structure. |
|
| 35 | 36 |
/// |
| 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
| 37 |
///is a data structure for storing items with specified values called \e |
|
| 38 |
///priorities in such a way that finding the item with minimum priority is |
|
| 39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
| 40 |
/// |
|
| 37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 41 | 39 |
/// |
| 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
| 43 |
///heap. In case of many calls to these operations, it is better to use a |
|
| 44 |
///\ref |
|
| 40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
| 41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
| 42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
| 45 | 43 |
/// |
| 46 |
///\param PRIO Type of the priority of the items. |
|
| 47 |
///\param IM A read and writable Item int map, used internally |
|
| 48 |
///to handle the cross references. |
|
| 49 |
///\param CMP A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<PRIO>. |
|
| 51 |
/// |
|
| 52 |
///\sa BinHeap |
|
| 53 |
///\sa Dijkstra |
|
| 44 |
/// \tparam PR Type of the priorities of the items. |
|
| 45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 |
/// internally to handle the cross references. |
|
| 47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 |
/// The default is \c std::less<PR>. |
|
| 54 | 49 |
#ifdef DOXYGEN |
| 55 |
template <typename |
|
| 50 |
template <typename PR, typename IM, typename CMP> |
|
| 56 | 51 |
#else |
| 57 |
template <typename |
|
| 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 58 | 53 |
#endif |
| 59 | 54 |
class FibHeap {
|
| 60 | 55 |
public: |
| 61 |
|
|
| 56 |
|
|
| 57 |
/// Type of the item-int map. |
|
| 62 | 58 |
typedef IM ItemIntMap; |
| 63 |
///\e |
|
| 64 |
typedef PRIO Prio; |
|
| 65 |
/// |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 61 |
/// Type of the items stored in the heap. |
|
| 66 | 62 |
typedef typename ItemIntMap::Key Item; |
| 67 |
/// |
|
| 63 |
/// Type of the item-priority pairs. |
|
| 68 | 64 |
typedef std::pair<Item,Prio> Pair; |
| 69 |
/// |
|
| 65 |
/// Functor type for comparing the priorities. |
|
| 70 | 66 |
typedef CMP Compare; |
| 71 | 67 |
|
| 72 | 68 |
private: |
| 73 | 69 |
class Store; |
| 74 | 70 |
|
| 75 | 71 |
std::vector<Store> _data; |
| ... | ... |
@@ -77,80 +73,74 @@ |
| 77 | 73 |
ItemIntMap &_iim; |
| 78 | 74 |
Compare _comp; |
| 79 | 75 |
int _num; |
| 80 | 76 |
|
| 81 | 77 |
public: |
| 82 | 78 |
|
| 83 |
/// \brief Type to represent the |
|
| 79 |
/// \brief Type to represent the states of the items. |
|
| 84 | 80 |
/// |
| 85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 81 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 87 | 83 |
/// heap's point of view, but may be useful to the user. |
| 88 | 84 |
/// |
| 89 | 85 |
/// The item-int map must be initialized in such way that it assigns |
| 90 | 86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 91 | 87 |
enum State {
|
| 92 | 88 |
IN_HEAP = 0, ///< = 0. |
| 93 | 89 |
PRE_HEAP = -1, ///< = -1. |
| 94 | 90 |
POST_HEAP = -2 ///< = -2. |
| 95 | 91 |
}; |
| 96 | 92 |
|
| 97 |
/// \brief |
|
| 93 |
/// \brief Constructor. |
|
| 98 | 94 |
/// |
| 99 |
/// \c map should be given to the constructor, since it is |
|
| 100 |
/// used internally to handle the cross references. |
|
| 95 |
/// Constructor. |
|
| 96 |
/// \param map A map that assigns \c int values to the items. |
|
| 97 |
/// It is used internally to handle the cross references. |
|
| 98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 101 | 99 |
explicit FibHeap(ItemIntMap &map) |
| 102 | 100 |
: _minimum(0), _iim(map), _num() {}
|
| 103 | 101 |
|
| 104 |
/// \brief |
|
| 102 |
/// \brief Constructor. |
|
| 105 | 103 |
/// |
| 106 |
/// \c map should be given to the constructor, since it is used |
|
| 107 |
/// internally to handle the cross references. \c comp is an |
|
| 108 |
/// |
|
| 104 |
/// Constructor. |
|
| 105 |
/// \param map A map that assigns \c int values to the items. |
|
| 106 |
/// It is used internally to handle the cross references. |
|
| 107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 108 |
/// \param comp The function object used for comparing the priorities. |
|
| 109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
| 110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
| 111 | 111 |
|
| 112 | 112 |
/// \brief The number of items stored in the heap. |
| 113 | 113 |
/// |
| 114 |
/// |
|
| 114 |
/// This function returns the number of items stored in the heap. |
|
| 115 | 115 |
int size() const { return _num; }
|
| 116 | 116 |
|
| 117 |
/// \brief |
|
| 117 |
/// \brief Check if the heap is empty. |
|
| 118 | 118 |
/// |
| 119 |
/// |
|
| 119 |
/// This function returns \c true if the heap is empty. |
|
| 120 | 120 |
bool empty() const { return _num==0; }
|
| 121 | 121 |
|
| 122 |
/// \brief Make |
|
| 122 |
/// \brief Make the heap empty. |
|
| 123 | 123 |
/// |
| 124 |
/// Make empty this heap. It does not change the cross reference |
|
| 125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 126 |
/// should first clear the heap and after that you should set the |
|
| 127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 124 |
/// This functon makes the heap empty. |
|
| 125 |
/// It does not change the cross reference map. If you want to reuse |
|
| 126 |
/// a heap that is not surely empty, you should first clear it and |
|
| 127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 128 |
/// for each item. |
|
| 128 | 129 |
void clear() {
|
| 129 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
| 130 | 131 |
} |
| 131 | 132 |
|
| 132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
| 133 |
/// if \c item was already there. |
|
| 133 |
/// \brief Insert an item into the heap with the given priority. |
|
| 134 | 134 |
/// |
| 135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
| 136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
| 137 |
/// \ref increase(\c item, \c value) otherwise. |
|
| 138 |
void set (const Item& item, const Prio& value) {
|
|
| 139 |
int i=_iim[item]; |
|
| 140 |
if ( i >= 0 && _data[i].in ) {
|
|
| 141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 143 |
} else push(item, value); |
|
| 144 |
} |
|
| 145 |
|
|
| 146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
| 147 |
/// |
|
| 148 |
/// Adds \c item to the heap with priority \c value. |
|
| 149 |
/// \pre \c item must not be stored in the heap. |
|
| 150 |
void push (const Item& item, const Prio& value) {
|
|
| 135 |
/// This function inserts the given item into the heap with the |
|
| 136 |
/// given priority. |
|
| 137 |
/// \param item The item to insert. |
|
| 138 |
/// \param prio The priority of the item. |
|
| 139 |
/// \pre \e item must not be stored in the heap. |
|
| 140 |
void push (const Item& item, const Prio& prio) {
|
|
| 151 | 141 |
int i=_iim[item]; |
| 152 | 142 |
if ( i < 0 ) {
|
| 153 | 143 |
int s=_data.size(); |
| 154 | 144 |
_iim.set( item, s ); |
| 155 | 145 |
Store st; |
| 156 | 146 |
st.name=item; |
| ... | ... |
@@ -165,82 +155,74 @@ |
| 165 | 155 |
|
| 166 | 156 |
if ( _num ) {
|
| 167 | 157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
| 168 | 158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
| 169 | 159 |
_data[_minimum].right_neighbor=i; |
| 170 | 160 |
_data[i].left_neighbor=_minimum; |
| 171 |
if ( _comp( |
|
| 161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
| 172 | 162 |
} else {
|
| 173 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
| 174 | 164 |
_minimum=i; |
| 175 | 165 |
} |
| 176 |
_data[i].prio= |
|
| 166 |
_data[i].prio=prio; |
|
| 177 | 167 |
++_num; |
| 178 | 168 |
} |
| 179 | 169 |
|
| 180 |
/// \brief |
|
| 170 |
/// \brief Return the item having minimum priority. |
|
| 181 | 171 |
/// |
| 182 |
/// This method returns the item with minimum priority relative to \c |
|
| 183 |
/// Compare. |
|
| 184 |
/// |
|
| 172 |
/// This function returns the item having minimum priority. |
|
| 173 |
/// \pre The heap must be non-empty. |
|
| 185 | 174 |
Item top() const { return _data[_minimum].name; }
|
| 186 | 175 |
|
| 187 |
/// \brief |
|
| 176 |
/// \brief The minimum priority. |
|
| 188 | 177 |
/// |
| 189 |
/// It returns the minimum priority relative to \c Compare. |
|
| 190 |
/// \pre The heap must be nonempty. |
|
| 191 |
|
|
| 178 |
/// This function returns the minimum priority. |
|
| 179 |
/// \pre The heap must be non-empty. |
|
| 180 |
Prio prio() const { return _data[_minimum].prio; }
|
|
| 192 | 181 |
|
| 193 |
/// \brief |
|
| 182 |
/// \brief Remove the item having minimum priority. |
|
| 194 | 183 |
/// |
| 195 |
/// It returns the priority of \c item. |
|
| 196 |
/// \pre \c item must be in the heap. |
|
| 197 |
const Prio& operator[](const Item& item) const {
|
|
| 198 |
return _data[_iim[item]].prio; |
|
| 199 |
} |
|
| 200 |
|
|
| 201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
| 202 |
/// |
|
| 203 |
/// This method deletes the item with minimum priority relative to \c |
|
| 204 |
/// Compare from the heap. |
|
| 184 |
/// This function removes the item having minimum priority. |
|
| 205 | 185 |
/// \pre The heap must be non-empty. |
| 206 | 186 |
void pop() {
|
| 207 | 187 |
/*The first case is that there are only one root.*/ |
| 208 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) {
|
| 209 | 189 |
_data[_minimum].in=false; |
| 210 | 190 |
if ( _data[_minimum].degree!=0 ) {
|
| 211 |
|
|
| 191 |
makeRoot(_data[_minimum].child); |
|
| 212 | 192 |
_minimum=_data[_minimum].child; |
| 213 | 193 |
balance(); |
| 214 | 194 |
} |
| 215 | 195 |
} else {
|
| 216 | 196 |
int right=_data[_minimum].right_neighbor; |
| 217 | 197 |
unlace(_minimum); |
| 218 | 198 |
_data[_minimum].in=false; |
| 219 | 199 |
if ( _data[_minimum].degree > 0 ) {
|
| 220 | 200 |
int left=_data[_minimum].left_neighbor; |
| 221 | 201 |
int child=_data[_minimum].child; |
| 222 | 202 |
int last_child=_data[child].left_neighbor; |
| 223 | 203 |
|
| 224 |
|
|
| 204 |
makeRoot(child); |
|
| 225 | 205 |
|
| 226 | 206 |
_data[left].right_neighbor=child; |
| 227 | 207 |
_data[child].left_neighbor=left; |
| 228 | 208 |
_data[right].left_neighbor=last_child; |
| 229 | 209 |
_data[last_child].right_neighbor=right; |
| 230 | 210 |
} |
| 231 | 211 |
_minimum=right; |
| 232 | 212 |
balance(); |
| 233 | 213 |
} // the case where there are more roots |
| 234 | 214 |
--_num; |
| 235 | 215 |
} |
| 236 | 216 |
|
| 237 |
/// \brief |
|
| 217 |
/// \brief Remove the given item from the heap. |
|
| 238 | 218 |
/// |
| 239 |
/// This method deletes \c item from the heap, if \c item was already |
|
| 240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
| 219 |
/// This function removes the given item from the heap if it is |
|
| 220 |
/// already stored. |
|
| 221 |
/// \param item The item to delete. |
|
| 222 |
/// \pre \e item must be in the heap. |
|
| 241 | 223 |
void erase (const Item& item) {
|
| 242 | 224 |
int i=_iim[item]; |
| 243 | 225 |
|
| 244 | 226 |
if ( i >= 0 && _data[i].in ) {
|
| 245 | 227 |
if ( _data[i].parent!=-1 ) {
|
| 246 | 228 |
int p=_data[i].parent; |
| ... | ... |
@@ -249,63 +231,88 @@ |
| 249 | 231 |
} |
| 250 | 232 |
_minimum=i; //As if its prio would be -infinity |
| 251 | 233 |
pop(); |
| 252 | 234 |
} |
| 253 | 235 |
} |
| 254 | 236 |
|
| 255 |
/// \brief |
|
| 237 |
/// \brief The priority of the given item. |
|
| 256 | 238 |
/// |
| 257 |
/// This method decreases the priority of \c item to \c value. |
|
| 258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
| 259 |
/// value relative to \c Compare. |
|
| 260 |
void decrease (Item item, const Prio& value) {
|
|
| 239 |
/// This function returns the priority of the given item. |
|
| 240 |
/// \param item The item. |
|
| 241 |
/// \pre \e item must be in the heap. |
|
| 242 |
Prio operator[](const Item& item) const {
|
|
| 243 |
return _data[_iim[item]].prio; |
|
| 244 |
} |
|
| 245 |
|
|
| 246 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 247 |
/// not stored in the heap. |
|
| 248 |
/// |
|
| 249 |
/// This method sets the priority of the given item if it is |
|
| 250 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 251 |
/// item into the heap with the given priority. |
|
| 252 |
/// \param item The item. |
|
| 253 |
/// \param prio The priority. |
|
| 254 |
void set (const Item& item, const Prio& prio) {
|
|
| 261 | 255 |
int i=_iim[item]; |
| 262 |
_data[i]. |
|
| 256 |
if ( i >= 0 && _data[i].in ) {
|
|
| 257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
| 258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
| 259 |
} else push(item, prio); |
|
| 260 |
} |
|
| 261 |
|
|
| 262 |
/// \brief Decrease the priority of an item to the given value. |
|
| 263 |
/// |
|
| 264 |
/// This function decreases the priority of an item to the given value. |
|
| 265 |
/// \param item The item. |
|
| 266 |
/// \param prio The priority. |
|
| 267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
| 268 |
void decrease (const Item& item, const Prio& prio) {
|
|
| 269 |
int i=_iim[item]; |
|
| 270 |
_data[i].prio=prio; |
|
| 263 | 271 |
int p=_data[i].parent; |
| 264 | 272 |
|
| 265 |
if ( p!=-1 && _comp( |
|
| 273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) {
|
|
| 266 | 274 |
cut(i,p); |
| 267 | 275 |
cascade(p); |
| 268 | 276 |
} |
| 269 |
if ( _comp( |
|
| 277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
| 270 | 278 |
} |
| 271 | 279 |
|
| 272 |
/// \brief |
|
| 280 |
/// \brief Increase the priority of an item to the given value. |
|
| 273 | 281 |
/// |
| 274 |
/// This method sets the priority of \c item to \c value. Though |
|
| 275 |
/// there is no precondition on the priority of \c item, this |
|
| 276 |
/// method should be used only if it is indeed necessary to increase |
|
| 277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
| 278 |
/// method is inefficient. |
|
| 279 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
/// This function increases the priority of an item to the given value. |
|
| 283 |
/// \param item The item. |
|
| 284 |
/// \param prio The priority. |
|
| 285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
| 286 |
void increase (const Item& item, const Prio& prio) {
|
|
| 280 | 287 |
erase(item); |
| 281 |
push(item, |
|
| 288 |
push(item, prio); |
|
| 282 | 289 |
} |
| 283 | 290 |
|
| 284 |
|
|
| 285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
| 286 |
/// |
|
| 291 |
/// \brief Return the state of an item. |
|
| 287 | 292 |
/// |
| 288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 290 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 291 |
/// get back to the heap again. |
|
| 293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 295 |
/// and \c POST_HEAP otherwise. |
|
| 296 |
/// In the latter case it is possible that the item will get back |
|
| 297 |
/// to the heap again. |
|
| 298 |
/// \param item The item. |
|
| 292 | 299 |
State state(const Item &item) const {
|
| 293 | 300 |
int i=_iim[item]; |
| 294 | 301 |
if( i>=0 ) {
|
| 295 | 302 |
if ( _data[i].in ) i=0; |
| 296 | 303 |
else i=-2; |
| 297 | 304 |
} |
| 298 | 305 |
return State(i); |
| 299 | 306 |
} |
| 300 | 307 |
|
| 301 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 302 | 309 |
/// |
| 303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 304 |
/// manually clear the heap when it is important to achive the |
|
| 305 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 306 | 313 |
/// \param i The item. |
| 307 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| 308 | 315 |
void state(const Item& i, State st) {
|
| 309 | 316 |
switch (st) {
|
| 310 | 317 |
case POST_HEAP: |
| 311 | 318 |
case PRE_HEAP: |
| ... | ... |
@@ -362,13 +369,13 @@ |
| 362 | 369 |
do {
|
| 363 | 370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
| 364 | 371 |
s=_data[s].right_neighbor; |
| 365 | 372 |
} while ( s != m ); |
| 366 | 373 |
} |
| 367 | 374 |
|
| 368 |
void |
|
| 375 |
void makeRoot(int c) {
|
|
| 369 | 376 |
int s=c; |
| 370 | 377 |
do {
|
| 371 | 378 |
_data[s].parent=-1; |
| 372 | 379 |
s=_data[s].right_neighbor; |
| 373 | 380 |
} while ( s != c ); |
| 374 | 381 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -21,13 +21,13 @@ |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/graph_extender.h> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup graphs |
| 26 | 26 |
///\file |
| 27 |
///\brief |
|
| 27 |
///\brief FullDigraph and FullGraph classes. |
|
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
class FullDigraphBase {
|
| 32 | 32 |
public: |
| 33 | 33 |
|
| ... | ... |
@@ -48,13 +48,13 @@ |
| 48 | 48 |
public: |
| 49 | 49 |
|
| 50 | 50 |
typedef True NodeNumTag; |
| 51 | 51 |
typedef True ArcNumTag; |
| 52 | 52 |
|
| 53 | 53 |
Node operator()(int ix) const { return Node(ix); }
|
| 54 |
int index(const Node& node) |
|
| 54 |
static int index(const Node& node) { return node._id; }
|
|
| 55 | 55 |
|
| 56 | 56 |
Arc arc(const Node& s, const Node& t) const {
|
| 57 | 57 |
return Arc(s._id * _node_num + t._id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
int nodeNum() const { return _node_num; }
|
| ... | ... |
@@ -145,79 +145,87 @@ |
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
| 148 | 148 |
|
| 149 | 149 |
/// \ingroup graphs |
| 150 | 150 |
/// |
| 151 |
/// \brief A full |
|
| 151 |
/// \brief A directed full graph class. |
|
| 152 | 152 |
/// |
| 153 |
/// This is a simple and fast directed full graph implementation. |
|
| 154 |
/// From each node go arcs to each node (including the source node), |
|
| 155 |
/// therefore the number of the arcs in the digraph is the square of |
|
| 156 |
/// the node number. This digraph type is completely static, so you |
|
| 157 |
/// can neither add nor delete either arcs or nodes, and it needs |
|
| 158 |
/// constant space in memory. |
|
| 153 |
/// FullDigraph is a simple and fast implmenetation of directed full |
|
| 154 |
/// (complete) graphs. It contains an arc from each node to each node |
|
| 155 |
/// (including a loop for each node), therefore the number of arcs |
|
| 156 |
/// is the square of the number of nodes. |
|
| 157 |
/// This class is completely static and it needs constant memory space. |
|
| 158 |
/// Thus you can neither add nor delete nodes or arcs, however |
|
| 159 |
/// the structure can be resized using resize(). |
|
| 159 | 160 |
/// |
| 160 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 161 |
/// "Digraph concept". |
|
| 161 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
| 162 |
/// Most of its member functions and nested classes are documented |
|
| 163 |
/// only in the concept class. |
|
| 162 | 164 |
/// |
| 163 |
/// |
|
| 165 |
/// This class provides constant time counting for nodes and arcs. |
|
| 166 |
/// |
|
| 167 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 164 | 168 |
/// but there are two differences. While this class conforms only |
| 165 |
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph |
|
| 166 |
/// class conforms to the \ref concepts::Graph "Graph" concept, |
|
| 167 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 168 |
/// node as \c FullDigraph does. |
|
| 169 |
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
|
| 170 |
/// conforms to the \ref concepts::Graph "Graph" concept, |
|
| 171 |
/// moreover FullGraph does not contain a loop for each |
|
| 172 |
/// node as this class does. |
|
| 169 | 173 |
/// |
| 170 | 174 |
/// \sa FullGraph |
| 171 | 175 |
class FullDigraph : public ExtendedFullDigraphBase {
|
| 172 | 176 |
typedef ExtendedFullDigraphBase Parent; |
| 173 | 177 |
|
| 174 | 178 |
public: |
| 175 | 179 |
|
| 176 |
/// \brief |
|
| 180 |
/// \brief Default constructor. |
|
| 181 |
/// |
|
| 182 |
/// Default constructor. The number of nodes and arcs will be zero. |
|
| 177 | 183 |
FullDigraph() { construct(0); }
|
| 178 | 184 |
|
| 179 | 185 |
/// \brief Constructor |
| 180 | 186 |
/// |
| 181 | 187 |
/// Constructor. |
| 182 | 188 |
/// \param n The number of the nodes. |
| 183 | 189 |
FullDigraph(int n) { construct(n); }
|
| 184 | 190 |
|
| 185 | 191 |
/// \brief Resizes the digraph |
| 186 | 192 |
/// |
| 187 |
/// Resizes the digraph. The function will fully destroy and |
|
| 188 |
/// rebuild the digraph. This cause that the maps of the digraph will |
|
| 193 |
/// This function resizes the digraph. It fully destroys and |
|
| 194 |
/// rebuilds the structure, therefore the maps of the digraph will be |
|
| 189 | 195 |
/// reallocated automatically and the previous values will be lost. |
| 190 | 196 |
void resize(int n) {
|
| 191 | 197 |
Parent::notifier(Arc()).clear(); |
| 192 | 198 |
Parent::notifier(Node()).clear(); |
| 193 | 199 |
construct(n); |
| 194 | 200 |
Parent::notifier(Node()).build(); |
| 195 | 201 |
Parent::notifier(Arc()).build(); |
| 196 | 202 |
} |
| 197 | 203 |
|
| 198 | 204 |
/// \brief Returns the node with the given index. |
| 199 | 205 |
/// |
| 200 |
/// Returns the node with the given index. Since it is a static |
|
| 201 |
/// digraph its nodes can be indexed with integers from the range |
|
| 202 |
/// |
|
| 206 |
/// Returns the node with the given index. Since this structure is |
|
| 207 |
/// completely static, the nodes can be indexed with integers from |
|
| 208 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 209 |
/// The index of a node is the same as its ID. |
|
| 203 | 210 |
/// \sa index() |
| 204 | 211 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 205 | 212 |
|
| 206 | 213 |
/// \brief Returns the index of the given node. |
| 207 | 214 |
/// |
| 208 |
/// Returns the index of the given node. Since it is a static |
|
| 209 |
/// digraph its nodes can be indexed with integers from the range |
|
| 210 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 211 |
/// \sa operator() |
|
| 212 |
|
|
| 215 |
/// Returns the index of the given node. Since this structure is |
|
| 216 |
/// completely static, the nodes can be indexed with integers from |
|
| 217 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 218 |
/// The index of a node is the same as its ID. |
|
| 219 |
/// \sa operator()() |
|
| 220 |
static int index(const Node& node) { return Parent::index(node); }
|
|
| 213 | 221 |
|
| 214 | 222 |
/// \brief Returns the arc connecting the given nodes. |
| 215 | 223 |
/// |
| 216 | 224 |
/// Returns the arc connecting the given nodes. |
| 217 |
Arc arc( |
|
| 225 |
Arc arc(Node u, Node v) const {
|
|
| 218 | 226 |
return Parent::arc(u, v); |
| 219 | 227 |
} |
| 220 | 228 |
|
| 221 | 229 |
/// \brief Number of nodes. |
| 222 | 230 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 223 | 231 |
/// \brief Number of arcs. |
| ... | ... |
@@ -280,13 +288,13 @@ |
| 280 | 288 |
} |
| 281 | 289 |
} |
| 282 | 290 |
|
| 283 | 291 |
public: |
| 284 | 292 |
|
| 285 | 293 |
Node operator()(int ix) const { return Node(ix); }
|
| 286 |
int index(const Node& node) |
|
| 294 |
static int index(const Node& node) { return node._id; }
|
|
| 287 | 295 |
|
| 288 | 296 |
Edge edge(const Node& u, const Node& v) const {
|
| 289 | 297 |
if (u._id < v._id) {
|
| 290 | 298 |
return Edge(_eid(u._id, v._id)); |
| 291 | 299 |
} else if (u._id != v._id) {
|
| 292 | 300 |
return Edge(_eid(v._id, u._id)); |
| ... | ... |
@@ -517,47 +525,53 @@ |
| 517 | 525 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
| 518 | 526 |
|
| 519 | 527 |
/// \ingroup graphs |
| 520 | 528 |
/// |
| 521 | 529 |
/// \brief An undirected full graph class. |
| 522 | 530 |
/// |
| 523 |
/// This is a simple and fast undirected full graph |
|
| 524 |
/// implementation. From each node go edge to each other node, |
|
| 525 |
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$. |
|
| 526 |
/// This graph type is completely static, so you can neither |
|
| 527 |
/// add nor delete either edges or nodes, and it needs constant |
|
| 528 |
/// space in memory. |
|
| 531 |
/// FullGraph is a simple and fast implmenetation of undirected full |
|
| 532 |
/// (complete) graphs. It contains an edge between every distinct pair |
|
| 533 |
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
|
| 534 |
/// This class is completely static and it needs constant memory space. |
|
| 535 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 536 |
/// the structure can be resized using resize(). |
|
| 529 | 537 |
/// |
| 530 |
/// This |
|
| 538 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 539 |
/// Most of its member functions and nested classes are documented |
|
| 540 |
/// only in the concept class. |
|
| 531 | 541 |
/// |
| 532 |
/// The \c FullGraph and \c FullDigraph classes are very similar, |
|
| 533 |
/// but there are two differences. While the \c FullDigraph class |
|
| 542 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 543 |
/// |
|
| 544 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 545 |
/// but there are two differences. While FullDigraph |
|
| 534 | 546 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
| 535 | 547 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
| 536 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 537 |
/// node as \c FullDigraph does. |
|
| 548 |
/// moreover this class does not contain a loop for each |
|
| 549 |
/// node as FullDigraph does. |
|
| 538 | 550 |
/// |
| 539 | 551 |
/// \sa FullDigraph |
| 540 | 552 |
class FullGraph : public ExtendedFullGraphBase {
|
| 541 | 553 |
typedef ExtendedFullGraphBase Parent; |
| 542 | 554 |
|
| 543 | 555 |
public: |
| 544 | 556 |
|
| 545 |
/// \brief |
|
| 557 |
/// \brief Default constructor. |
|
| 558 |
/// |
|
| 559 |
/// Default constructor. The number of nodes and edges will be zero. |
|
| 546 | 560 |
FullGraph() { construct(0); }
|
| 547 | 561 |
|
| 548 | 562 |
/// \brief Constructor |
| 549 | 563 |
/// |
| 550 | 564 |
/// Constructor. |
| 551 | 565 |
/// \param n The number of the nodes. |
| 552 | 566 |
FullGraph(int n) { construct(n); }
|
| 553 | 567 |
|
| 554 | 568 |
/// \brief Resizes the graph |
| 555 | 569 |
/// |
| 556 |
/// Resizes the graph. The function will fully destroy and |
|
| 557 |
/// rebuild the graph. This cause that the maps of the graph will |
|
| 570 |
/// This function resizes the graph. It fully destroys and |
|
| 571 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 558 | 572 |
/// reallocated automatically and the previous values will be lost. |
| 559 | 573 |
void resize(int n) {
|
| 560 | 574 |
Parent::notifier(Arc()).clear(); |
| 561 | 575 |
Parent::notifier(Edge()).clear(); |
| 562 | 576 |
Parent::notifier(Node()).clear(); |
| 563 | 577 |
construct(n); |
| ... | ... |
@@ -565,37 +579,39 @@ |
| 565 | 579 |
Parent::notifier(Edge()).build(); |
| 566 | 580 |
Parent::notifier(Arc()).build(); |
| 567 | 581 |
} |
| 568 | 582 |
|
| 569 | 583 |
/// \brief Returns the node with the given index. |
| 570 | 584 |
/// |
| 571 |
/// Returns the node with the given index. Since it is a static |
|
| 572 |
/// graph its nodes can be indexed with integers from the range |
|
| 573 |
/// |
|
| 585 |
/// Returns the node with the given index. Since this structure is |
|
| 586 |
/// completely static, the nodes can be indexed with integers from |
|
| 587 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 588 |
/// The index of a node is the same as its ID. |
|
| 574 | 589 |
/// \sa index() |
| 575 | 590 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 576 | 591 |
|
| 577 | 592 |
/// \brief Returns the index of the given node. |
| 578 | 593 |
/// |
| 579 |
/// Returns the index of the given node. Since it is a static |
|
| 580 |
/// graph its nodes can be indexed with integers from the range |
|
| 581 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 582 |
/// \sa operator() |
|
| 583 |
|
|
| 594 |
/// Returns the index of the given node. Since this structure is |
|
| 595 |
/// completely static, the nodes can be indexed with integers from |
|
| 596 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 597 |
/// The index of a node is the same as its ID. |
|
| 598 |
/// \sa operator()() |
|
| 599 |
static int index(const Node& node) { return Parent::index(node); }
|
|
| 584 | 600 |
|
| 585 | 601 |
/// \brief Returns the arc connecting the given nodes. |
| 586 | 602 |
/// |
| 587 | 603 |
/// Returns the arc connecting the given nodes. |
| 588 |
Arc arc( |
|
| 604 |
Arc arc(Node s, Node t) const {
|
|
| 589 | 605 |
return Parent::arc(s, t); |
| 590 | 606 |
} |
| 591 | 607 |
|
| 592 |
/// \brief Returns the edge |
|
| 608 |
/// \brief Returns the edge connecting the given nodes. |
|
| 593 | 609 |
/// |
| 594 |
/// Returns the edge connects the given nodes. |
|
| 595 |
Edge edge(const Node& u, const Node& v) const {
|
|
| 610 |
/// Returns the edge connecting the given nodes. |
|
| 611 |
Edge edge(Node u, Node v) const {
|
|
| 596 | 612 |
return Parent::edge(u, v); |
| 597 | 613 |
} |
| 598 | 614 |
|
| 599 | 615 |
/// \brief Number of nodes. |
| 600 | 616 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 601 | 617 |
/// \brief Number of arcs. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -56,12 +56,48 @@ |
| 56 | 56 |
int GlpkBase::_addRow() {
|
| 57 | 57 |
int i = glp_add_rows(lp, 1); |
| 58 | 58 |
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); |
| 59 | 59 |
return i; |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 |
int GlpkBase::_addRow(Value lo, ExprIterator b, |
|
| 63 |
ExprIterator e, Value up) {
|
|
| 64 |
int i = glp_add_rows(lp, 1); |
|
| 65 |
|
|
| 66 |
if (lo == -INF) {
|
|
| 67 |
if (up == INF) {
|
|
| 68 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
|
| 69 |
} else {
|
|
| 70 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
|
| 71 |
} |
|
| 72 |
} else {
|
|
| 73 |
if (up == INF) {
|
|
| 74 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
|
| 75 |
} else if (lo != up) {
|
|
| 76 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
|
| 77 |
} else {
|
|
| 78 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
|
| 79 |
} |
|
| 80 |
} |
|
| 81 |
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
indexes.push_back(0); |
|
| 86 |
values.push_back(0); |
|
| 87 |
|
|
| 88 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 89 |
indexes.push_back(it->first); |
|
| 90 |
values.push_back(it->second); |
|
| 91 |
} |
|
| 92 |
|
|
| 93 |
glp_set_mat_row(lp, i, values.size() - 1, |
|
| 94 |
&indexes.front(), &values.front()); |
|
| 95 |
return i; |
|
| 96 |
} |
|
| 97 |
|
|
| 62 | 98 |
void GlpkBase::_eraseCol(int i) {
|
| 63 | 99 |
int ca[2]; |
| 64 | 100 |
ca[1] = i; |
| 65 | 101 |
glp_del_cols(lp, 1, ca); |
| 66 | 102 |
} |
| 67 | 103 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -27,22 +27,22 @@ |
| 27 | 27 |
|
| 28 | 28 |
namespace lemon {
|
| 29 | 29 |
|
| 30 | 30 |
namespace _solver_bits {
|
| 31 | 31 |
class VoidPtr {
|
| 32 | 32 |
private: |
| 33 |
void *_ptr; |
|
| 33 |
void *_ptr; |
|
| 34 | 34 |
public: |
| 35 | 35 |
VoidPtr() : _ptr(0) {}
|
| 36 | 36 |
|
| 37 | 37 |
template <typename T> |
| 38 | 38 |
VoidPtr(T* ptr) : _ptr(reinterpret_cast<void*>(ptr)) {}
|
| 39 | 39 |
|
| 40 | 40 |
template <typename T> |
| 41 |
VoidPtr& operator=(T* ptr) {
|
|
| 42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
| 41 |
VoidPtr& operator=(T* ptr) {
|
|
| 42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
| 43 | 43 |
return *this; |
| 44 | 44 |
} |
| 45 | 45 |
|
| 46 | 46 |
template <typename T> |
| 47 | 47 |
operator T*() const { return reinterpret_cast<T*>(_ptr); }
|
| 48 | 48 |
}; |
| ... | ... |
@@ -62,12 +62,13 @@ |
| 62 | 62 |
virtual ~GlpkBase(); |
| 63 | 63 |
|
| 64 | 64 |
protected: |
| 65 | 65 |
|
| 66 | 66 |
virtual int _addCol(); |
| 67 | 67 |
virtual int _addRow(); |
| 68 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 68 | 69 |
|
| 69 | 70 |
virtual void _eraseCol(int i); |
| 70 | 71 |
virtual void _eraseRow(int i); |
| 71 | 72 |
|
| 72 | 73 |
virtual void _eraseColId(int i); |
| 73 | 74 |
virtual void _eraseRowId(int i); |
| ... | ... |
@@ -120,19 +121,19 @@ |
| 120 | 121 |
|
| 121 | 122 |
struct FreeEnvHelper {
|
| 122 | 123 |
~FreeEnvHelper() {
|
| 123 | 124 |
freeEnv(); |
| 124 | 125 |
} |
| 125 | 126 |
}; |
| 126 |
|
|
| 127 |
|
|
| 127 | 128 |
static FreeEnvHelper freeEnvHelper; |
| 128 | 129 |
|
| 129 | 130 |
protected: |
| 130 |
|
|
| 131 |
|
|
| 131 | 132 |
int _message_level; |
| 132 |
|
|
| 133 |
|
|
| 133 | 134 |
public: |
| 134 | 135 |
|
| 135 | 136 |
///Pointer to the underlying GLPK data structure. |
| 136 | 137 |
_solver_bits::VoidPtr lpx() {return lp;}
|
| 137 | 138 |
///Const pointer to the underlying GLPK data structure. |
| 138 | 139 |
_solver_bits::VoidPtr lpx() const {return lp;}
|
| 1 |
/* -*- C++ -*- |
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 | 2 |
* |
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -24,30 +24,30 @@ |
| 24 | 24 |
#include <lemon/core.h> |
| 25 | 25 |
#include <lemon/preflow.h> |
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
/// \ingroup min_cut |
| 30 |
/// \file |
|
| 30 |
/// \file |
|
| 31 | 31 |
/// \brief Gomory-Hu cut tree in graphs. |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \ingroup min_cut |
| 36 | 36 |
/// |
| 37 | 37 |
/// \brief Gomory-Hu cut tree algorithm |
| 38 | 38 |
/// |
| 39 | 39 |
/// The Gomory-Hu tree is a tree on the node set of a given graph, but it |
| 40 | 40 |
/// may contain edges which are not in the original graph. It has the |
| 41 |
/// property that the minimum capacity edge of the path between two nodes |
|
| 41 |
/// property that the minimum capacity edge of the path between two nodes |
|
| 42 | 42 |
/// in this tree has the same weight as the minimum cut in the graph |
| 43 | 43 |
/// between these nodes. Moreover the components obtained by removing |
| 44 | 44 |
/// this edge from the tree determine the corresponding minimum cut. |
| 45 | 45 |
/// Therefore once this tree is computed, the minimum cut between any pair |
| 46 | 46 |
/// of nodes can easily be obtained. |
| 47 |
/// |
|
| 47 |
/// |
|
| 48 | 48 |
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with |
| 49 | 49 |
/// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall
|
| 50 | 50 |
/// time complexity. It calculates a rooted Gomory-Hu tree. |
| 51 | 51 |
/// The structure of the tree and the edge weights can be |
| 52 | 52 |
/// obtained using \c predNode(), \c predValue() and \c rootDist(). |
| 53 | 53 |
/// The functions \c minCutMap() and \c minCutValue() calculate |
| ... | ... |
@@ -57,27 +57,27 @@ |
| 57 | 57 |
/// |
| 58 | 58 |
/// \tparam GR The type of the undirected graph the algorithm runs on. |
| 59 | 59 |
/// \tparam CAP The type of the edge map containing the capacities. |
| 60 | 60 |
/// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 61 | 61 |
#ifdef DOXYGEN |
| 62 | 62 |
template <typename GR, |
| 63 |
|
|
| 63 |
typename CAP> |
|
| 64 | 64 |
#else |
| 65 | 65 |
template <typename GR, |
| 66 |
|
|
| 66 |
typename CAP = typename GR::template EdgeMap<int> > |
|
| 67 | 67 |
#endif |
| 68 | 68 |
class GomoryHu {
|
| 69 | 69 |
public: |
| 70 | 70 |
|
| 71 | 71 |
/// The graph type of the algorithm |
| 72 | 72 |
typedef GR Graph; |
| 73 | 73 |
/// The capacity map type of the algorithm |
| 74 | 74 |
typedef CAP Capacity; |
| 75 | 75 |
/// The value type of capacities |
| 76 | 76 |
typedef typename Capacity::Value Value; |
| 77 |
|
|
| 77 |
|
|
| 78 | 78 |
private: |
| 79 | 79 |
|
| 80 | 80 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 81 | 81 |
|
| 82 | 82 |
const Graph& _graph; |
| 83 | 83 |
const Capacity& _capacity; |
| ... | ... |
@@ -86,44 +86,44 @@ |
| 86 | 86 |
typename Graph::template NodeMap<Node>* _pred; |
| 87 | 87 |
typename Graph::template NodeMap<Value>* _weight; |
| 88 | 88 |
typename Graph::template NodeMap<int>* _order; |
| 89 | 89 |
|
| 90 | 90 |
void createStructures() {
|
| 91 | 91 |
if (!_pred) {
|
| 92 |
|
|
| 92 |
_pred = new typename Graph::template NodeMap<Node>(_graph); |
|
| 93 | 93 |
} |
| 94 | 94 |
if (!_weight) {
|
| 95 |
|
|
| 95 |
_weight = new typename Graph::template NodeMap<Value>(_graph); |
|
| 96 | 96 |
} |
| 97 | 97 |
if (!_order) {
|
| 98 |
|
|
| 98 |
_order = new typename Graph::template NodeMap<int>(_graph); |
|
| 99 | 99 |
} |
| 100 | 100 |
} |
| 101 | 101 |
|
| 102 | 102 |
void destroyStructures() {
|
| 103 | 103 |
if (_pred) {
|
| 104 |
|
|
| 104 |
delete _pred; |
|
| 105 | 105 |
} |
| 106 | 106 |
if (_weight) {
|
| 107 |
|
|
| 107 |
delete _weight; |
|
| 108 | 108 |
} |
| 109 | 109 |
if (_order) {
|
| 110 |
|
|
| 110 |
delete _order; |
|
| 111 | 111 |
} |
| 112 | 112 |
} |
| 113 |
|
|
| 113 |
|
|
| 114 | 114 |
public: |
| 115 | 115 |
|
| 116 | 116 |
/// \brief Constructor |
| 117 | 117 |
/// |
| 118 | 118 |
/// Constructor. |
| 119 | 119 |
/// \param graph The undirected graph the algorithm runs on. |
| 120 | 120 |
/// \param capacity The edge capacity map. |
| 121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
| 121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
| 122 | 122 |
: _graph(graph), _capacity(capacity), |
| 123 |
|
|
| 123 |
_pred(0), _weight(0), _order(0) |
|
| 124 | 124 |
{
|
| 125 | 125 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
| 126 | 126 |
} |
| 127 | 127 |
|
| 128 | 128 |
|
| 129 | 129 |
/// \brief Destructor |
| ... | ... |
@@ -131,86 +131,86 @@ |
| 131 | 131 |
/// Destructor. |
| 132 | 132 |
~GomoryHu() {
|
| 133 | 133 |
destroyStructures(); |
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
private: |
| 137 |
|
|
| 137 |
|
|
| 138 | 138 |
// Initialize the internal data structures |
| 139 | 139 |
void init() {
|
| 140 | 140 |
createStructures(); |
| 141 | 141 |
|
| 142 | 142 |
_root = NodeIt(_graph); |
| 143 | 143 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 144 | 144 |
(*_pred)[n] = _root; |
| 145 | 145 |
(*_order)[n] = -1; |
| 146 | 146 |
} |
| 147 | 147 |
(*_pred)[_root] = INVALID; |
| 148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
| 148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
|
| 152 | 152 |
// Start the algorithm |
| 153 | 153 |
void start() {
|
| 154 | 154 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
| 155 | 155 |
|
| 156 | 156 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 157 |
|
|
| 157 |
if (n == _root) continue; |
|
| 158 | 158 |
|
| 159 |
Node pn = (*_pred)[n]; |
|
| 160 |
fa.source(n); |
|
| 161 |
|
|
| 159 |
Node pn = (*_pred)[n]; |
|
| 160 |
fa.source(n); |
|
| 161 |
fa.target(pn); |
|
| 162 | 162 |
|
| 163 |
|
|
| 163 |
fa.runMinCut(); |
|
| 164 | 164 |
|
| 165 |
|
|
| 165 |
(*_weight)[n] = fa.flowValue(); |
|
| 166 | 166 |
|
| 167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) {
|
|
| 168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
|
|
| 169 |
(*_pred)[nn] = n; |
|
| 170 |
} |
|
| 171 |
} |
|
| 172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
|
|
| 173 |
(*_pred)[n] = (*_pred)[pn]; |
|
| 174 |
(*_pred)[pn] = n; |
|
| 175 |
(*_weight)[n] = (*_weight)[pn]; |
|
| 176 |
(*_weight)[pn] = fa.flowValue(); |
|
| 177 |
|
|
| 167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) {
|
|
| 168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
|
|
| 169 |
(*_pred)[nn] = n; |
|
| 170 |
} |
|
| 171 |
} |
|
| 172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
|
|
| 173 |
(*_pred)[n] = (*_pred)[pn]; |
|
| 174 |
(*_pred)[pn] = n; |
|
| 175 |
(*_weight)[n] = (*_weight)[pn]; |
|
| 176 |
(*_weight)[pn] = fa.flowValue(); |
|
| 177 |
} |
|
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
(*_order)[_root] = 0; |
| 181 | 181 |
int index = 1; |
| 182 | 182 |
|
| 183 | 183 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 184 |
std::vector<Node> st; |
|
| 185 |
Node nn = n; |
|
| 186 |
while ((*_order)[nn] == -1) {
|
|
| 187 |
st.push_back(nn); |
|
| 188 |
nn = (*_pred)[nn]; |
|
| 189 |
} |
|
| 190 |
while (!st.empty()) {
|
|
| 191 |
(*_order)[st.back()] = index++; |
|
| 192 |
st.pop_back(); |
|
| 193 |
} |
|
| 184 |
std::vector<Node> st; |
|
| 185 |
Node nn = n; |
|
| 186 |
while ((*_order)[nn] == -1) {
|
|
| 187 |
st.push_back(nn); |
|
| 188 |
nn = (*_pred)[nn]; |
|
| 189 |
} |
|
| 190 |
while (!st.empty()) {
|
|
| 191 |
(*_order)[st.back()] = index++; |
|
| 192 |
st.pop_back(); |
|
| 193 |
} |
|
| 194 | 194 |
} |
| 195 | 195 |
} |
| 196 | 196 |
|
| 197 | 197 |
public: |
| 198 | 198 |
|
| 199 | 199 |
///\name Execution Control |
| 200 |
|
|
| 200 |
|
|
| 201 | 201 |
///@{
|
| 202 | 202 |
|
| 203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
| 204 | 204 |
/// |
| 205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
| 206 | 206 |
void run() {
|
| 207 | 207 |
init(); |
| 208 | 208 |
start(); |
| 209 | 209 |
} |
| 210 |
|
|
| 210 |
|
|
| 211 | 211 |
/// @} |
| 212 | 212 |
|
| 213 | 213 |
///\name Query Functions |
| 214 | 214 |
///The results of the algorithm can be obtained using these |
| 215 | 215 |
///functions.\n |
| 216 | 216 |
///\ref run() should be called before using them.\n |
| ... | ... |
@@ -229,13 +229,13 @@ |
| 229 | 229 |
return (*_pred)[node]; |
| 230 | 230 |
} |
| 231 | 231 |
|
| 232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
| 233 | 233 |
/// Gomory-Hu tree. |
| 234 | 234 |
/// |
| 235 |
/// This function returns the weight of the predecessor edge of the |
|
| 235 |
/// This function returns the weight of the predecessor edge of the |
|
| 236 | 236 |
/// given node in the Gomory-Hu tree. |
| 237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
| 238 | 238 |
/// |
| 239 | 239 |
/// \pre \ref run() must be called before using this function. |
| 240 | 240 |
Value predValue(const Node& node) const {
|
| 241 | 241 |
return (*_weight)[node]; |
| ... | ... |
@@ -251,30 +251,30 @@ |
| 251 | 251 |
return (*_order)[node]; |
| 252 | 252 |
} |
| 253 | 253 |
|
| 254 | 254 |
/// \brief Return the minimum cut value between two nodes |
| 255 | 255 |
/// |
| 256 | 256 |
/// This function returns the minimum cut value between the nodes |
| 257 |
/// \c s and \c t. |
|
| 257 |
/// \c s and \c t. |
|
| 258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
| 259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
| 260 | 260 |
/// paths to the ancestor. |
| 261 | 261 |
/// |
| 262 | 262 |
/// \pre \ref run() must be called before using this function. |
| 263 | 263 |
Value minCutValue(const Node& s, const Node& t) const {
|
| 264 | 264 |
Node sn = s, tn = t; |
| 265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
| 266 |
|
|
| 266 |
|
|
| 267 | 267 |
while (sn != tn) {
|
| 268 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
| 270 |
tn = (*_pred)[tn]; |
|
| 271 |
} else {
|
|
| 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
| 273 |
sn = (*_pred)[sn]; |
|
| 274 |
|
|
| 268 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
| 270 |
tn = (*_pred)[tn]; |
|
| 271 |
} else {
|
|
| 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
| 273 |
sn = (*_pred)[sn]; |
|
| 274 |
} |
|
| 275 | 275 |
} |
| 276 | 276 |
return value; |
| 277 | 277 |
} |
| 278 | 278 |
|
| 279 | 279 |
/// \brief Return the minimum cut between two nodes |
| 280 | 280 |
/// |
| ... | ... |
@@ -291,81 +291,79 @@ |
| 291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
| 292 | 292 |
/// |
| 293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
| 294 | 294 |
/// |
| 295 | 295 |
/// \pre \ref run() must be called before using this function. |
| 296 | 296 |
template <typename CutMap> |
| 297 |
Value minCutMap(const Node& s, |
|
| 297 |
Value minCutMap(const Node& s, |
|
| 298 | 298 |
const Node& t, |
| 299 |
///< |
|
| 300 | 299 |
CutMap& cutMap |
| 301 |
///< |
|
| 302 | 300 |
) const {
|
| 303 | 301 |
Node sn = s, tn = t; |
| 304 | 302 |
bool s_root=false; |
| 305 | 303 |
Node rn = INVALID; |
| 306 | 304 |
Value value = std::numeric_limits<Value>::max(); |
| 307 |
|
|
| 305 |
|
|
| 308 | 306 |
while (sn != tn) {
|
| 309 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 310 |
if ((*_weight)[tn] <= value) {
|
|
| 311 |
|
|
| 307 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 308 |
if ((*_weight)[tn] <= value) {
|
|
| 309 |
rn = tn; |
|
| 312 | 310 |
s_root = false; |
| 313 |
value = (*_weight)[tn]; |
|
| 314 |
} |
|
| 315 |
tn = (*_pred)[tn]; |
|
| 316 |
} else {
|
|
| 317 |
if ((*_weight)[sn] <= value) {
|
|
| 318 |
rn = sn; |
|
| 311 |
value = (*_weight)[tn]; |
|
| 312 |
} |
|
| 313 |
tn = (*_pred)[tn]; |
|
| 314 |
} else {
|
|
| 315 |
if ((*_weight)[sn] <= value) {
|
|
| 316 |
rn = sn; |
|
| 319 | 317 |
s_root = true; |
| 320 |
value = (*_weight)[sn]; |
|
| 321 |
} |
|
| 322 |
sn = (*_pred)[sn]; |
|
| 323 |
} |
|
| 318 |
value = (*_weight)[sn]; |
|
| 319 |
} |
|
| 320 |
sn = (*_pred)[sn]; |
|
| 321 |
} |
|
| 324 | 322 |
} |
| 325 | 323 |
|
| 326 | 324 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
| 327 | 325 |
reached[_root] = true; |
| 328 | 326 |
cutMap.set(_root, !s_root); |
| 329 | 327 |
reached[rn] = true; |
| 330 | 328 |
cutMap.set(rn, s_root); |
| 331 | 329 |
|
| 332 | 330 |
std::vector<Node> st; |
| 333 | 331 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 334 |
|
|
| 332 |
st.clear(); |
|
| 335 | 333 |
Node nn = n; |
| 336 |
while (!reached[nn]) {
|
|
| 337 |
st.push_back(nn); |
|
| 338 |
nn = (*_pred)[nn]; |
|
| 339 |
} |
|
| 340 |
while (!st.empty()) {
|
|
| 341 |
cutMap.set(st.back(), cutMap[nn]); |
|
| 342 |
st.pop_back(); |
|
| 343 |
} |
|
| 334 |
while (!reached[nn]) {
|
|
| 335 |
st.push_back(nn); |
|
| 336 |
nn = (*_pred)[nn]; |
|
| 337 |
} |
|
| 338 |
while (!st.empty()) {
|
|
| 339 |
cutMap.set(st.back(), cutMap[nn]); |
|
| 340 |
st.pop_back(); |
|
| 341 |
} |
|
| 344 | 342 |
} |
| 345 |
|
|
| 343 |
|
|
| 346 | 344 |
return value; |
| 347 | 345 |
} |
| 348 | 346 |
|
| 349 | 347 |
///@} |
| 350 | 348 |
|
| 351 | 349 |
friend class MinCutNodeIt; |
| 352 | 350 |
|
| 353 | 351 |
/// Iterate on the nodes of a minimum cut |
| 354 |
|
|
| 352 |
|
|
| 355 | 353 |
/// This iterator class lists the nodes of a minimum cut found by |
| 356 | 354 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 357 | 355 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 358 | 356 |
/// |
| 359 | 357 |
/// This example counts the nodes in the minimum cut separating \c s from |
| 360 | 358 |
/// \c t. |
| 361 | 359 |
/// \code |
| 362 |
/// |
|
| 360 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 363 | 361 |
/// gom.run(); |
| 364 | 362 |
/// int cnt=0; |
| 365 |
/// for( |
|
| 363 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
| 366 | 364 |
/// \endcode |
| 367 | 365 |
class MinCutNodeIt |
| 368 | 366 |
{
|
| 369 | 367 |
bool _side; |
| 370 | 368 |
typename Graph::NodeIt _node_it; |
| 371 | 369 |
typename Graph::template NodeMap<bool> _cut; |
| ... | ... |
@@ -391,13 +389,13 @@ |
| 391 | 389 |
/// \endcode |
| 392 | 390 |
/// and |
| 393 | 391 |
/// \code |
| 394 | 392 |
/// MinCutNodeIt(gomory, t, s, false); |
| 395 | 393 |
/// \endcode |
| 396 | 394 |
/// does not necessarily give the same set of nodes. |
| 397 |
/// However it is ensured that |
|
| 395 |
/// However, it is ensured that |
|
| 398 | 396 |
/// \code |
| 399 | 397 |
/// MinCutNodeIt(gomory, s, t, true); |
| 400 | 398 |
/// \endcode |
| 401 | 399 |
/// and |
| 402 | 400 |
/// \code |
| 403 | 401 |
/// MinCutNodeIt(gomory, s, t, false); |
| ... | ... |
@@ -441,28 +439,28 @@ |
| 441 | 439 |
{
|
| 442 | 440 |
typename Graph::Node n=*this; |
| 443 | 441 |
++(*this); |
| 444 | 442 |
return n; |
| 445 | 443 |
} |
| 446 | 444 |
}; |
| 447 |
|
|
| 445 |
|
|
| 448 | 446 |
friend class MinCutEdgeIt; |
| 449 |
|
|
| 447 |
|
|
| 450 | 448 |
/// Iterate on the edges of a minimum cut |
| 451 |
|
|
| 449 |
|
|
| 452 | 450 |
/// This iterator class lists the edges of a minimum cut found by |
| 453 | 451 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 454 | 452 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 455 | 453 |
/// |
| 456 | 454 |
/// This example computes the value of the minimum cut separating \c s from |
| 457 | 455 |
/// \c t. |
| 458 | 456 |
/// \code |
| 459 |
/// |
|
| 457 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 460 | 458 |
/// gom.run(); |
| 461 | 459 |
/// int value=0; |
| 462 |
/// for( |
|
| 460 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
| 463 | 461 |
/// value+=capacities[e]; |
| 464 | 462 |
/// \endcode |
| 465 | 463 |
/// The result will be the same as the value returned by |
| 466 | 464 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
| 467 | 465 |
class MinCutEdgeIt |
| 468 | 466 |
{
|
| ... | ... |
@@ -478,13 +476,13 @@ |
| 478 | 476 |
{
|
| 479 | 477 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
|
| 480 | 478 |
if(_node_it!=INVALID) |
| 481 | 479 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
| 482 | 480 |
} |
| 483 | 481 |
} |
| 484 |
|
|
| 482 |
|
|
| 485 | 483 |
public: |
| 486 | 484 |
/// Constructor |
| 487 | 485 |
|
| 488 | 486 |
/// Constructor. |
| 489 | 487 |
/// |
| 490 | 488 |
MinCutEdgeIt(GomoryHu const &gomory, |
| ... | ... |
@@ -547,13 +545,13 @@ |
| 547 | 545 |
{
|
| 548 | 546 |
step(); |
| 549 | 547 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
| 550 | 548 |
return *this; |
| 551 | 549 |
} |
| 552 | 550 |
/// Postfix incrementation |
| 553 |
|
|
| 551 |
|
|
| 554 | 552 |
/// Postfix incrementation. |
| 555 | 553 |
/// |
| 556 | 554 |
/// \warning This incrementation |
| 557 | 555 |
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. |
| 558 | 556 |
typename Graph::Arc operator++(int) |
| 559 | 557 |
{
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -139,13 +139,13 @@ |
| 139 | 139 |
bool _preScale; |
| 140 | 140 |
///Constructor |
| 141 | 141 |
|
| 142 | 142 |
///Constructor |
| 143 | 143 |
///\param gr Reference to the graph to be printed. |
| 144 | 144 |
///\param ost Reference to the output stream. |
| 145 |
///By default it is <tt>std::cout</tt>. |
|
| 145 |
///By default, it is <tt>std::cout</tt>. |
|
| 146 | 146 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
| 147 | 147 |
///will be explicitly deallocated by the destructor. |
| 148 | 148 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
| 149 | 149 |
bool pros = false) : |
| 150 | 150 |
g(gr), os(ost), |
| 151 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
| ... | ... |
@@ -509,13 +509,13 @@ |
| 509 | 509 |
GraphToEps<T> &negateY(bool b=true) {
|
| 510 | 510 |
_negY=b;return *this; |
| 511 | 511 |
} |
| 512 | 512 |
|
| 513 | 513 |
///Turn on/off pre-scaling |
| 514 | 514 |
|
| 515 |
///By default graphToEps() rescales the whole image in order to avoid |
|
| 515 |
///By default, graphToEps() rescales the whole image in order to avoid |
|
| 516 | 516 |
///very big or very small bounding boxes. |
| 517 | 517 |
/// |
| 518 | 518 |
///This (p)rescaling can be turned off with this function. |
| 519 | 519 |
/// |
| 520 | 520 |
GraphToEps<T> &preScale(bool b=true) {
|
| 521 | 521 |
_preScale=b;return *this; |
| ... | ... |
@@ -1111,25 +1111,25 @@ |
| 1111 | 1111 |
///Generates an EPS file from a graph |
| 1112 | 1112 |
|
| 1113 | 1113 |
///\ingroup eps_io |
| 1114 | 1114 |
///Generates an EPS file from a graph. |
| 1115 | 1115 |
///\param g Reference to the graph to be printed. |
| 1116 | 1116 |
///\param os Reference to the output stream. |
| 1117 |
///By default it is <tt>std::cout</tt>. |
|
| 1117 |
///By default, it is <tt>std::cout</tt>. |
|
| 1118 | 1118 |
/// |
| 1119 | 1119 |
///This function also has a lot of |
| 1120 | 1120 |
///\ref named-templ-func-param "named parameters", |
| 1121 | 1121 |
///they are declared as the members of class \ref GraphToEps. The following |
| 1122 | 1122 |
///example shows how to use these parameters. |
| 1123 | 1123 |
///\code |
| 1124 | 1124 |
/// graphToEps(g,os).scale(10).coords(coords) |
| 1125 | 1125 |
/// .nodeScale(2).nodeSizes(sizes) |
| 1126 | 1126 |
/// .arcWidthScale(.4).run(); |
| 1127 | 1127 |
///\endcode |
| 1128 | 1128 |
/// |
| 1129 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
|
| 1129 |
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file. |
|
| 1130 | 1130 |
/// |
| 1131 | 1131 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
| 1132 | 1132 |
///to the end of the parameter list. |
| 1133 | 1133 |
///\sa GraphToEps |
| 1134 | 1134 |
///\sa graphToEps(GR &g, const char *file_name) |
| 1135 | 1135 |
template<class GR> |
| ... | ... |
@@ -467,24 +467,28 @@ |
| 467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
| 468 | 468 |
|
| 469 | 469 |
/// \ingroup graphs |
| 470 | 470 |
/// |
| 471 | 471 |
/// \brief Grid graph class |
| 472 | 472 |
/// |
| 473 |
/// This class implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer \c (i,j) value where \c i is |
|
| 475 |
/// in the \c [0..width()-1] range and j is in the \c |
|
| 476 |
/// [0..height()-1] range. Two nodes are connected in the graph if |
|
| 477 |
/// the indexes differ exactly on one position and exactly one is |
|
| 478 |
/// the difference. The nodes of the graph can be indexed by position |
|
| 479 |
/// with the \c operator()() function. The positions of the nodes can be |
|
| 480 |
/// get with \c pos(), \c col() and \c row() members. The outgoing |
|
| 473 |
/// GridGraph implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer values \c (i,j) where \c i is |
|
| 475 |
/// in the range <tt>[0..width()-1]</tt> and j is in the range |
|
| 476 |
/// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if |
|
| 477 |
/// the indices differ exactly on one position and the difference is |
|
| 478 |
/// also exactly one. The nodes of the graph can be obtained by position |
|
| 479 |
/// using the \c operator()() function and the indices of the nodes can |
|
| 480 |
/// be obtained using \c pos(), \c col() and \c row() members. The outgoing |
|
| 481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
| 482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
| 483 | 483 |
/// origin. |
| 484 | 484 |
/// |
| 485 |
/// This class is completely static and it needs constant memory space. |
|
| 486 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 487 |
/// the structure can be resized using resize(). |
|
| 488 |
/// |
|
| 485 | 489 |
/// \image html grid_graph.png |
| 486 | 490 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
| 487 | 491 |
/// |
| 488 | 492 |
/// A short example about the basic usage: |
| 489 | 493 |
///\code |
| 490 | 494 |
/// GridGraph graph(rows, cols); |
| ... | ... |
@@ -493,37 +497,38 @@ |
| 493 | 497 |
/// for (int j = 0; j < graph.height(); ++j) {
|
| 494 | 498 |
/// val[graph(i, j)] = i + j; |
| 495 | 499 |
/// } |
| 496 | 500 |
/// } |
| 497 | 501 |
///\endcode |
| 498 | 502 |
/// |
| 499 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
| 500 |
/// "Graph concept". |
|
| 503 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 504 |
/// Most of its member functions and nested classes are documented |
|
| 505 |
/// only in the concept class. |
|
| 506 |
/// |
|
| 507 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 501 | 508 |
class GridGraph : public ExtendedGridGraphBase {
|
| 502 | 509 |
typedef ExtendedGridGraphBase Parent; |
| 503 | 510 |
|
| 504 | 511 |
public: |
| 505 | 512 |
|
| 506 |
/// \brief Map to get the indices of the nodes as dim2::Point |
|
| 513 |
/// \brief Map to get the indices of the nodes as \ref dim2::Point |
|
| 514 |
/// "dim2::Point<int>". |
|
| 507 | 515 |
/// |
| 508 |
/// Map to get the indices of the nodes as dim2::Point |
|
| 516 |
/// Map to get the indices of the nodes as \ref dim2::Point |
|
| 517 |
/// "dim2::Point<int>". |
|
| 509 | 518 |
class IndexMap {
|
| 510 | 519 |
public: |
| 511 | 520 |
/// \brief The key type of the map |
| 512 | 521 |
typedef GridGraph::Node Key; |
| 513 | 522 |
/// \brief The value type of the map |
| 514 | 523 |
typedef dim2::Point<int> Value; |
| 515 | 524 |
|
| 516 | 525 |
/// \brief Constructor |
| 517 |
/// |
|
| 518 |
/// Constructor |
|
| 519 | 526 |
IndexMap(const GridGraph& graph) : _graph(graph) {}
|
| 520 | 527 |
|
| 521 | 528 |
/// \brief The subscript operator |
| 522 |
/// |
|
| 523 |
/// The subscript operator. |
|
| 524 | 529 |
Value operator[](Key key) const {
|
| 525 | 530 |
return _graph.pos(key); |
| 526 | 531 |
} |
| 527 | 532 |
|
| 528 | 533 |
private: |
| 529 | 534 |
const GridGraph& _graph; |
| ... | ... |
@@ -537,19 +542,15 @@ |
| 537 | 542 |
/// \brief The key type of the map |
| 538 | 543 |
typedef GridGraph::Node Key; |
| 539 | 544 |
/// \brief The value type of the map |
| 540 | 545 |
typedef int Value; |
| 541 | 546 |
|
| 542 | 547 |
/// \brief Constructor |
| 543 |
/// |
|
| 544 |
/// Constructor |
|
| 545 | 548 |
ColMap(const GridGraph& graph) : _graph(graph) {}
|
| 546 | 549 |
|
| 547 | 550 |
/// \brief The subscript operator |
| 548 |
/// |
|
| 549 |
/// The subscript operator. |
|
| 550 | 551 |
Value operator[](Key key) const {
|
| 551 | 552 |
return _graph.col(key); |
| 552 | 553 |
} |
| 553 | 554 |
|
| 554 | 555 |
private: |
| 555 | 556 |
const GridGraph& _graph; |
| ... | ... |
@@ -563,38 +564,33 @@ |
| 563 | 564 |
/// \brief The key type of the map |
| 564 | 565 |
typedef GridGraph::Node Key; |
| 565 | 566 |
/// \brief The value type of the map |
| 566 | 567 |
typedef int Value; |
| 567 | 568 |
|
| 568 | 569 |
/// \brief Constructor |
| 569 |
/// |
|
| 570 |
/// Constructor |
|
| 571 | 570 |
RowMap(const GridGraph& graph) : _graph(graph) {}
|
| 572 | 571 |
|
| 573 | 572 |
/// \brief The subscript operator |
| 574 |
/// |
|
| 575 |
/// The subscript operator. |
|
| 576 | 573 |
Value operator[](Key key) const {
|
| 577 | 574 |
return _graph.row(key); |
| 578 | 575 |
} |
| 579 | 576 |
|
| 580 | 577 |
private: |
| 581 | 578 |
const GridGraph& _graph; |
| 582 | 579 |
}; |
| 583 | 580 |
|
| 584 | 581 |
/// \brief Constructor |
| 585 | 582 |
/// |
| 586 |
/// Construct a grid graph with given size. |
|
| 583 |
/// Construct a grid graph with the given size. |
|
| 587 | 584 |
GridGraph(int width, int height) { construct(width, height); }
|
| 588 | 585 |
|
| 589 |
/// \brief |
|
| 586 |
/// \brief Resizes the graph |
|
| 590 | 587 |
/// |
| 591 |
/// Resize the graph. The function will fully destroy and rebuild |
|
| 592 |
/// the graph. This cause that the maps of the graph will |
|
| 593 |
/// reallocated automatically and the previous values will be |
|
| 594 |
/// lost. |
|
| 588 |
/// This function resizes the graph. It fully destroys and |
|
| 589 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 590 |
/// reallocated automatically and the previous values will be lost. |
|
| 595 | 591 |
void resize(int width, int height) {
|
| 596 | 592 |
Parent::notifier(Arc()).clear(); |
| 597 | 593 |
Parent::notifier(Edge()).clear(); |
| 598 | 594 |
Parent::notifier(Node()).clear(); |
| 599 | 595 |
construct(width, height); |
| 600 | 596 |
Parent::notifier(Node()).build(); |
| ... | ... |
@@ -606,72 +602,72 @@ |
| 606 | 602 |
/// |
| 607 | 603 |
/// Gives back the node on the given position. |
| 608 | 604 |
Node operator()(int i, int j) const {
|
| 609 | 605 |
return Parent::operator()(i, j); |
| 610 | 606 |
} |
| 611 | 607 |
|
| 612 |
/// \brief |
|
| 608 |
/// \brief The column index of the node. |
|
| 613 | 609 |
/// |
| 614 | 610 |
/// Gives back the column index of the node. |
| 615 | 611 |
int col(Node n) const {
|
| 616 | 612 |
return Parent::col(n); |
| 617 | 613 |
} |
| 618 | 614 |
|
| 619 |
/// \brief |
|
| 615 |
/// \brief The row index of the node. |
|
| 620 | 616 |
/// |
| 621 | 617 |
/// Gives back the row index of the node. |
| 622 | 618 |
int row(Node n) const {
|
| 623 | 619 |
return Parent::row(n); |
| 624 | 620 |
} |
| 625 | 621 |
|
| 626 |
/// \brief |
|
| 622 |
/// \brief The position of the node. |
|
| 627 | 623 |
/// |
| 628 | 624 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
| 629 | 625 |
dim2::Point<int> pos(Node n) const {
|
| 630 | 626 |
return Parent::pos(n); |
| 631 | 627 |
} |
| 632 | 628 |
|
| 633 |
/// \brief |
|
| 629 |
/// \brief The number of the columns. |
|
| 634 | 630 |
/// |
| 635 | 631 |
/// Gives back the number of the columns. |
| 636 | 632 |
int width() const {
|
| 637 | 633 |
return Parent::width(); |
| 638 | 634 |
} |
| 639 | 635 |
|
| 640 |
/// \brief |
|
| 636 |
/// \brief The number of the rows. |
|
| 641 | 637 |
/// |
| 642 | 638 |
/// Gives back the number of the rows. |
| 643 | 639 |
int height() const {
|
| 644 | 640 |
return Parent::height(); |
| 645 | 641 |
} |
| 646 | 642 |
|
| 647 |
/// \brief |
|
| 643 |
/// \brief The arc goes right from the node. |
|
| 648 | 644 |
/// |
| 649 | 645 |
/// Gives back the arc goes right from the node. If there is not |
| 650 | 646 |
/// outgoing arc then it gives back INVALID. |
| 651 | 647 |
Arc right(Node n) const {
|
| 652 | 648 |
return Parent::right(n); |
| 653 | 649 |
} |
| 654 | 650 |
|
| 655 |
/// \brief |
|
| 651 |
/// \brief The arc goes left from the node. |
|
| 656 | 652 |
/// |
| 657 | 653 |
/// Gives back the arc goes left from the node. If there is not |
| 658 | 654 |
/// outgoing arc then it gives back INVALID. |
| 659 | 655 |
Arc left(Node n) const {
|
| 660 | 656 |
return Parent::left(n); |
| 661 | 657 |
} |
| 662 | 658 |
|
| 663 |
/// \brief |
|
| 659 |
/// \brief The arc goes up from the node. |
|
| 664 | 660 |
/// |
| 665 | 661 |
/// Gives back the arc goes up from the node. If there is not |
| 666 | 662 |
/// outgoing arc then it gives back INVALID. |
| 667 | 663 |
Arc up(Node n) const {
|
| 668 | 664 |
return Parent::up(n); |
| 669 | 665 |
} |
| 670 | 666 |
|
| 671 |
/// \brief |
|
| 667 |
/// \brief The arc goes down from the node. |
|
| 672 | 668 |
/// |
| 673 | 669 |
/// Gives back the arc goes down from the node. If there is not |
| 674 | 670 |
/// outgoing arc then it gives back INVALID. |
| 675 | 671 |
Arc down(Node n) const {
|
| 676 | 672 |
return Parent::down(n); |
| 677 | 673 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -28,23 +28,23 @@ |
| 28 | 28 |
#include <lemon/tolerance.h> |
| 29 | 29 |
|
| 30 | 30 |
/// \file |
| 31 | 31 |
/// \ingroup min_cut |
| 32 | 32 |
/// \brief Implementation of the Hao-Orlin algorithm. |
| 33 | 33 |
/// |
| 34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
|
| 34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
|
| 35 | 35 |
/// in a digraph. |
| 36 | 36 |
|
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
/// \ingroup min_cut |
| 40 | 40 |
/// |
| 41 | 41 |
/// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph. |
| 42 | 42 |
/// |
| 43 | 43 |
/// This class implements the Hao-Orlin algorithm for finding a minimum |
| 44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
|
| 44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
|
| 45 | 45 |
/// It takes a fixed node \f$ source \in V \f$ and |
| 46 | 46 |
/// consists of two phases: in the first phase it determines a |
| 47 | 47 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
| 48 | 48 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing |
| 49 | 49 |
/// capacity) and in the second phase it determines a minimum cut |
| 50 | 50 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
| ... | ... |
@@ -55,13 +55,13 @@ |
| 55 | 55 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
|
| 56 | 56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
| 57 | 57 |
/// purpose of such algorithm is e.g. testing network reliability. |
| 58 | 58 |
/// |
| 59 | 59 |
/// For an undirected graph you can run just the first phase of the |
| 60 | 60 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
| 61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
|
| 61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
|
| 62 | 62 |
/// time. It is implemented in the NagamochiIbaraki algorithm class. |
| 63 | 63 |
/// |
| 64 | 64 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 65 | 65 |
/// \tparam CAP The type of the arc map containing the capacities, |
| 66 | 66 |
/// which can be any numreric type. The default map type is |
| 67 | 67 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| ... | ... |
@@ -73,13 +73,13 @@ |
| 73 | 73 |
template <typename GR, |
| 74 | 74 |
typename CAP = typename GR::template ArcMap<int>, |
| 75 | 75 |
typename TOL = Tolerance<typename CAP::Value> > |
| 76 | 76 |
#endif |
| 77 | 77 |
class HaoOrlin {
|
| 78 | 78 |
public: |
| 79 |
|
|
| 79 |
|
|
| 80 | 80 |
/// The digraph type of the algorithm |
| 81 | 81 |
typedef GR Digraph; |
| 82 | 82 |
/// The capacity map type of the algorithm |
| 83 | 83 |
typedef CAP CapacityMap; |
| 84 | 84 |
/// The tolerance type of the algorithm |
| 85 | 85 |
typedef TOL Tolerance; |
| ... | ... |
@@ -162,12 +162,29 @@ |
| 162 | 162 |
} |
| 163 | 163 |
if (_flow) {
|
| 164 | 164 |
delete _flow; |
| 165 | 165 |
} |
| 166 | 166 |
} |
| 167 | 167 |
|
| 168 |
/// \brief Set the tolerance used by the algorithm. |
|
| 169 |
/// |
|
| 170 |
/// This function sets the tolerance object used by the algorithm. |
|
| 171 |
/// \return <tt>(*this)</tt> |
|
| 172 |
HaoOrlin& tolerance(const Tolerance& tolerance) {
|
|
| 173 |
_tolerance = tolerance; |
|
| 174 |
return *this; |
|
| 175 |
} |
|
| 176 |
|
|
| 177 |
/// \brief Returns a const reference to the tolerance. |
|
| 178 |
/// |
|
| 179 |
/// This function returns a const reference to the tolerance object |
|
| 180 |
/// used by the algorithm. |
|
| 181 |
const Tolerance& tolerance() const {
|
|
| 182 |
return _tolerance; |
|
| 183 |
} |
|
| 184 |
|
|
| 168 | 185 |
private: |
| 169 | 186 |
|
| 170 | 187 |
void activate(const Node& i) {
|
| 171 | 188 |
(*_active)[i] = true; |
| 172 | 189 |
|
| 173 | 190 |
int bucket = (*_bucket)[i]; |
| ... | ... |
@@ -844,13 +861,13 @@ |
| 844 | 861 |
init(NodeIt(_graph)); |
| 845 | 862 |
} |
| 846 | 863 |
|
| 847 | 864 |
/// \brief Initialize the internal data structures. |
| 848 | 865 |
/// |
| 849 | 866 |
/// This function initializes the internal data structures. It creates |
| 850 |
/// the maps and some bucket structures for the algorithm. |
|
| 867 |
/// the maps and some bucket structures for the algorithm. |
|
| 851 | 868 |
/// The given node is used as the source node for the push-relabel |
| 852 | 869 |
/// algorithm. |
| 853 | 870 |
void init(const Node& source) {
|
| 854 | 871 |
_source = source; |
| 855 | 872 |
|
| 856 | 873 |
_node_num = countNodes(_graph); |
| ... | ... |
@@ -924,13 +941,13 @@ |
| 924 | 941 |
calculateOut(); |
| 925 | 942 |
calculateIn(); |
| 926 | 943 |
} |
| 927 | 944 |
|
| 928 | 945 |
/// \brief Run the algorithm. |
| 929 | 946 |
/// |
| 930 |
/// This function runs the algorithm. It uses the given \c source node, |
|
| 947 |
/// This function runs the algorithm. It uses the given \c source node, |
|
| 931 | 948 |
/// finds a proper \c target node and then calls the \ref init(), |
| 932 | 949 |
/// \ref calculateOut() and \ref calculateIn(). |
| 933 | 950 |
void run(const Node& s) {
|
| 934 | 951 |
init(s); |
| 935 | 952 |
calculateOut(); |
| 936 | 953 |
calculateIn(); |
| ... | ... |
@@ -938,22 +955,22 @@ |
| 938 | 955 |
|
| 939 | 956 |
/// @} |
| 940 | 957 |
|
| 941 | 958 |
/// \name Query Functions |
| 942 | 959 |
/// The result of the %HaoOrlin algorithm |
| 943 | 960 |
/// can be obtained using these functions.\n |
| 944 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
|
| 961 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
|
| 945 | 962 |
/// should be called before using them. |
| 946 | 963 |
|
| 947 | 964 |
/// @{
|
| 948 | 965 |
|
| 949 | 966 |
/// \brief Return the value of the minimum cut. |
| 950 | 967 |
/// |
| 951 | 968 |
/// This function returns the value of the minimum cut. |
| 952 | 969 |
/// |
| 953 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
| 970 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
| 954 | 971 |
/// must be called before using this function. |
| 955 | 972 |
Value minCutValue() const {
|
| 956 | 973 |
return _min_cut; |
| 957 | 974 |
} |
| 958 | 975 |
|
| 959 | 976 |
|
| ... | ... |
@@ -966,13 +983,13 @@ |
| 966 | 983 |
/// |
| 967 | 984 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with |
| 968 | 985 |
/// \c bool (or convertible) value type. |
| 969 | 986 |
/// |
| 970 | 987 |
/// \return The value of the minimum cut. |
| 971 | 988 |
/// |
| 972 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
| 989 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
| 973 | 990 |
/// must be called before using this function. |
| 974 | 991 |
template <typename CutMap> |
| 975 | 992 |
Value minCutMap(CutMap& cutMap) const {
|
| 976 | 993 |
for (NodeIt it(_graph); it != INVALID; ++it) {
|
| 977 | 994 |
cutMap.set(it, (*_min_cut_map)[it]); |
| 978 | 995 |
} |
| ... | ... |
@@ -259,13 +259,13 @@ |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
int dimension(Arc arc) const {
|
| 262 | 262 |
return arc._id >> _dim; |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 |
int index(Node node) |
|
| 265 |
static int index(Node node) {
|
|
| 266 | 266 |
return node._id; |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
Node operator()(int ix) const {
|
| 270 | 270 |
return Node(ix); |
| 271 | 271 |
} |
| ... | ... |
@@ -279,33 +279,54 @@ |
| 279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
| 280 | 280 |
|
| 281 | 281 |
/// \ingroup graphs |
| 282 | 282 |
/// |
| 283 | 283 |
/// \brief Hypercube graph class |
| 284 | 284 |
/// |
| 285 |
/// This class implements a special graph type. The nodes of the graph |
|
| 286 |
/// are indiced with integers with at most \c dim binary digits. |
|
| 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
|
| 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
|
| 287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
| 288 | 288 |
/// differ only on one position in the binary form. |
| 289 |
/// This class is completely static and it needs constant memory space. |
|
| 290 |
/// Thus you can neither add nor delete nodes or edges, however, |
|
| 291 |
/// the structure can be resized using resize(). |
|
| 292 |
/// |
|
| 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 294 |
/// Most of its member functions and nested classes are documented |
|
| 295 |
/// only in the concept class. |
|
| 296 |
/// |
|
| 297 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 289 | 298 |
/// |
| 290 | 299 |
/// \note The type of the indices is chosen to \c int for efficiency |
| 291 | 300 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
| 292 | 301 |
/// (assuming that the size of \c int is 32 bit). |
| 293 |
/// |
|
| 294 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
| 295 |
/// "Graph concept". |
|
| 296 | 302 |
class HypercubeGraph : public ExtendedHypercubeGraphBase {
|
| 297 | 303 |
typedef ExtendedHypercubeGraphBase Parent; |
| 298 | 304 |
|
| 299 | 305 |
public: |
| 300 | 306 |
|
| 301 | 307 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
| 302 | 308 |
/// |
| 303 | 309 |
/// Constructs a hypercube graph with \c dim dimensions. |
| 304 | 310 |
HypercubeGraph(int dim) { construct(dim); }
|
| 305 | 311 |
|
| 312 |
/// \brief Resizes the graph |
|
| 313 |
/// |
|
| 314 |
/// This function resizes the graph. It fully destroys and |
|
| 315 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 316 |
/// reallocated automatically and the previous values will be lost. |
|
| 317 |
void resize(int dim) {
|
|
| 318 |
Parent::notifier(Arc()).clear(); |
|
| 319 |
Parent::notifier(Edge()).clear(); |
|
| 320 |
Parent::notifier(Node()).clear(); |
|
| 321 |
construct(dim); |
|
| 322 |
Parent::notifier(Node()).build(); |
|
| 323 |
Parent::notifier(Edge()).build(); |
|
| 324 |
Parent::notifier(Arc()).build(); |
|
| 325 |
} |
|
| 326 |
|
|
| 306 | 327 |
/// \brief The number of dimensions. |
| 307 | 328 |
/// |
| 308 | 329 |
/// Gives back the number of dimensions. |
| 309 | 330 |
int dimension() const {
|
| 310 | 331 |
return Parent::dimension(); |
| 311 | 332 |
} |
| ... | ... |
@@ -317,30 +338,30 @@ |
| 317 | 338 |
return Parent::projection(node, n); |
| 318 | 339 |
} |
| 319 | 340 |
|
| 320 | 341 |
/// \brief The dimension id of an edge. |
| 321 | 342 |
/// |
| 322 | 343 |
/// Gives back the dimension id of the given edge. |
| 323 |
/// It is in the [0..dim-1] |
|
| 344 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
| 324 | 345 |
int dimension(Edge edge) const {
|
| 325 | 346 |
return Parent::dimension(edge); |
| 326 | 347 |
} |
| 327 | 348 |
|
| 328 | 349 |
/// \brief The dimension id of an arc. |
| 329 | 350 |
/// |
| 330 | 351 |
/// Gives back the dimension id of the given arc. |
| 331 |
/// It is in the [0..dim-1] |
|
| 352 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
| 332 | 353 |
int dimension(Arc arc) const {
|
| 333 | 354 |
return Parent::dimension(arc); |
| 334 | 355 |
} |
| 335 | 356 |
|
| 336 | 357 |
/// \brief The index of a node. |
| 337 | 358 |
/// |
| 338 | 359 |
/// Gives back the index of the given node. |
| 339 | 360 |
/// The lower bits of the integer describes the node. |
| 340 |
int index(Node node) |
|
| 361 |
static int index(Node node) {
|
|
| 341 | 362 |
return Parent::index(node); |
| 342 | 363 |
} |
| 343 | 364 |
|
| 344 | 365 |
/// \brief Gives back a node by its index. |
| 345 | 366 |
/// |
| 346 | 367 |
/// Gives back a node by its index. |
| ... | ... |
@@ -424,13 +424,13 @@ |
| 424 | 424 |
/// node("source", src).
|
| 425 | 425 |
/// node("target", trg).
|
| 426 | 426 |
/// attribute("caption", caption).
|
| 427 | 427 |
/// run(); |
| 428 | 428 |
///\endcode |
| 429 | 429 |
/// |
| 430 |
/// By default the reader uses the first section in the file of the |
|
| 430 |
/// By default, the reader uses the first section in the file of the |
|
| 431 | 431 |
/// proper type. If a section has an optional name, then it can be |
| 432 | 432 |
/// selected for reading by giving an optional name parameter to the |
| 433 | 433 |
/// \c nodes(), \c arcs() or \c attributes() functions. |
| 434 | 434 |
/// |
| 435 | 435 |
/// The \c useNodes() and \c useArcs() functions are used to tell the reader |
| 436 | 436 |
/// that the nodes or arcs should not be constructed (added to the |
| ... | ... |
@@ -559,13 +559,13 @@ |
| 559 | 559 |
|
| 560 | 560 |
private: |
| 561 | 561 |
|
| 562 | 562 |
template <typename TDGR> |
| 563 | 563 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is); |
| 564 | 564 |
template <typename TDGR> |
| 565 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, |
|
| 565 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, |
|
| 566 | 566 |
const std::string& fn); |
| 567 | 567 |
template <typename TDGR> |
| 568 | 568 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, const char *fn); |
| 569 | 569 |
|
| 570 | 570 |
DigraphReader(DigraphReader& other) |
| 571 | 571 |
: _is(other._is), local_is(other.local_is), _digraph(other._digraph), |
| ... | ... |
@@ -1191,20 +1191,20 @@ |
| 1191 | 1191 |
|
| 1192 | 1192 |
} |
| 1193 | 1193 |
|
| 1194 | 1194 |
/// @} |
| 1195 | 1195 |
|
| 1196 | 1196 |
}; |
| 1197 |
|
|
| 1197 |
|
|
| 1198 | 1198 |
/// \ingroup lemon_io |
| 1199 | 1199 |
/// |
| 1200 | 1200 |
/// \brief Return a \ref DigraphReader class |
| 1201 | 1201 |
/// |
| 1202 | 1202 |
/// This function just returns a \ref DigraphReader class. |
| 1203 | 1203 |
/// |
| 1204 |
/// With this function a digraph can be read from an |
|
| 1204 |
/// With this function a digraph can be read from an |
|
| 1205 | 1205 |
/// \ref lgf-format "LGF" file or input stream with several maps and |
| 1206 | 1206 |
/// attributes. For example, there is network flow problem on a |
| 1207 | 1207 |
/// digraph, i.e. a digraph with a \e capacity map on the arcs and |
| 1208 | 1208 |
/// \e source and \e target nodes. This digraph can be read with the |
| 1209 | 1209 |
/// following code: |
| 1210 | 1210 |
/// |
| ... | ... |
@@ -1253,13 +1253,13 @@ |
| 1253 | 1253 |
DigraphReader<TDGR> tmp(digraph, fn); |
| 1254 | 1254 |
return tmp; |
| 1255 | 1255 |
} |
| 1256 | 1256 |
|
| 1257 | 1257 |
template <typename GR> |
| 1258 | 1258 |
class GraphReader; |
| 1259 |
|
|
| 1259 |
|
|
| 1260 | 1260 |
template <typename TGR> |
| 1261 | 1261 |
GraphReader<TGR> graphReader(TGR& graph, std::istream& is = std::cin); |
| 1262 | 1262 |
template <typename TGR> |
| 1263 | 1263 |
GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
| 1264 | 1264 |
template <typename TGR> |
| 1265 | 1265 |
GraphReader<TGR> graphReader(TGR& graph, const char *fn); |
| ... | ... |
@@ -1390,13 +1390,13 @@ |
| 1390 | 1390 |
} |
| 1391 | 1391 |
|
| 1392 | 1392 |
private: |
| 1393 | 1393 |
template <typename TGR> |
| 1394 | 1394 |
friend GraphReader<TGR> graphReader(TGR& graph, std::istream& is); |
| 1395 | 1395 |
template <typename TGR> |
| 1396 |
friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
|
| 1396 |
friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
|
| 1397 | 1397 |
template <typename TGR> |
| 1398 | 1398 |
friend GraphReader<TGR> graphReader(TGR& graph, const char *fn); |
| 1399 | 1399 |
|
| 1400 | 1400 |
GraphReader(GraphReader& other) |
| 1401 | 1401 |
: _is(other._is), local_is(other.local_is), _graph(other._graph), |
| 1402 | 1402 |
_use_nodes(other._use_nodes), _use_edges(other._use_edges), |
| ... | ... |
@@ -2074,15 +2074,15 @@ |
| 2074 | 2074 |
}; |
| 2075 | 2075 |
|
| 2076 | 2076 |
/// \ingroup lemon_io |
| 2077 | 2077 |
/// |
| 2078 | 2078 |
/// \brief Return a \ref GraphReader class |
| 2079 | 2079 |
/// |
| 2080 |
/// This function just returns a \ref GraphReader class. |
|
| 2080 |
/// This function just returns a \ref GraphReader class. |
|
| 2081 | 2081 |
/// |
| 2082 |
/// With this function a graph can be read from an |
|
| 2082 |
/// With this function a graph can be read from an |
|
| 2083 | 2083 |
/// \ref lgf-format "LGF" file or input stream with several maps and |
| 2084 | 2084 |
/// attributes. For example, there is weighted matching problem on a |
| 2085 | 2085 |
/// graph, i.e. a graph with a \e weight map on the edges. This |
| 2086 | 2086 |
/// graph can be read with the following code: |
| 2087 | 2087 |
/// |
| 2088 | 2088 |
///\code |
| ... | ... |
@@ -2232,13 +2232,13 @@ |
| 2232 | 2232 |
/// second is a functor, which takes just one \c std::string |
| 2233 | 2233 |
/// parameter. At the reading process, each line of the section |
| 2234 | 2234 |
/// will be given to the functor object. However, the empty lines |
| 2235 | 2235 |
/// and the comment lines are filtered out, and the leading |
| 2236 | 2236 |
/// whitespaces are trimmed from each processed string. |
| 2237 | 2237 |
/// |
| 2238 |
/// For example let's see a section, which contain several |
|
| 2238 |
/// For example, let's see a section, which contain several |
|
| 2239 | 2239 |
/// integers, which should be inserted into a vector. |
| 2240 | 2240 |
///\code |
| 2241 | 2241 |
/// @numbers |
| 2242 | 2242 |
/// 12 45 23 |
| 2243 | 2243 |
/// 4 |
| 2244 | 2244 |
/// 23 6 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -348,13 +348,13 @@ |
| 348 | 348 |
} |
| 349 | 349 |
|
| 350 | 350 |
template <typename DGR> |
| 351 | 351 |
class DigraphWriter; |
| 352 | 352 |
|
| 353 | 353 |
template <typename TDGR> |
| 354 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
| 354 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
| 355 | 355 |
std::ostream& os = std::cout); |
| 356 | 356 |
template <typename TDGR> |
| 357 | 357 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const std::string& fn); |
| 358 | 358 |
|
| 359 | 359 |
template <typename TDGR> |
| 360 | 360 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const char* fn); |
| ... | ... |
@@ -501,13 +501,13 @@ |
| 501 | 501 |
} |
| 502 | 502 |
} |
| 503 | 503 |
|
| 504 | 504 |
private: |
| 505 | 505 |
|
| 506 | 506 |
template <typename TDGR> |
| 507 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
| 507 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
| 508 | 508 |
std::ostream& os); |
| 509 | 509 |
template <typename TDGR> |
| 510 | 510 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
| 511 | 511 |
const std::string& fn); |
| 512 | 512 |
template <typename TDGR> |
| 513 | 513 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
| ... | ... |
@@ -914,13 +914,13 @@ |
| 914 | 914 |
}; |
| 915 | 915 |
|
| 916 | 916 |
/// \ingroup lemon_io |
| 917 | 917 |
/// |
| 918 | 918 |
/// \brief Return a \ref DigraphWriter class |
| 919 | 919 |
/// |
| 920 |
/// This function just returns a \ref DigraphWriter class. |
|
| 920 |
/// This function just returns a \ref DigraphWriter class. |
|
| 921 | 921 |
/// |
| 922 | 922 |
/// With this function a digraph can be write to a file or output |
| 923 | 923 |
/// stream in \ref lgf-format "LGF" format with several maps and |
| 924 | 924 |
/// attributes. For example, with the following code a network flow |
| 925 | 925 |
/// problem can be written to the standard output, i.e. a digraph |
| 926 | 926 |
/// with a \e capacity map on the arcs and \e source and \e target |
| ... | ... |
@@ -954,13 +954,13 @@ |
| 954 | 954 |
/// \brief Return a \ref DigraphWriter class |
| 955 | 955 |
/// |
| 956 | 956 |
/// This function just returns a \ref DigraphWriter class. |
| 957 | 957 |
/// \relates DigraphWriter |
| 958 | 958 |
/// \sa digraphWriter(const TDGR& digraph, std::ostream& os) |
| 959 | 959 |
template <typename TDGR> |
| 960 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
| 960 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
| 961 | 961 |
const std::string& fn) {
|
| 962 | 962 |
DigraphWriter<TDGR> tmp(digraph, fn); |
| 963 | 963 |
return tmp; |
| 964 | 964 |
} |
| 965 | 965 |
|
| 966 | 966 |
/// \brief Return a \ref DigraphWriter class |
| ... | ... |
@@ -1098,17 +1098,17 @@ |
| 1098 | 1098 |
|
| 1099 | 1099 |
private: |
| 1100 | 1100 |
|
| 1101 | 1101 |
template <typename TGR> |
| 1102 | 1102 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, std::ostream& os); |
| 1103 | 1103 |
template <typename TGR> |
| 1104 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, |
|
| 1104 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, |
|
| 1105 | 1105 |
const std::string& fn); |
| 1106 | 1106 |
template <typename TGR> |
| 1107 | 1107 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, const char *fn); |
| 1108 |
|
|
| 1108 |
|
|
| 1109 | 1109 |
GraphWriter(GraphWriter& other) |
| 1110 | 1110 |
: _os(other._os), local_os(other.local_os), _graph(other._graph), |
| 1111 | 1111 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) {
|
| 1112 | 1112 |
|
| 1113 | 1113 |
other._os = 0; |
| 1114 | 1114 |
other.local_os = false; |
| ... | ... |
@@ -1553,13 +1553,13 @@ |
| 1553 | 1553 |
}; |
| 1554 | 1554 |
|
| 1555 | 1555 |
/// \ingroup lemon_io |
| 1556 | 1556 |
/// |
| 1557 | 1557 |
/// \brief Return a \ref GraphWriter class |
| 1558 | 1558 |
/// |
| 1559 |
/// This function just returns a \ref GraphWriter class. |
|
| 1559 |
/// This function just returns a \ref GraphWriter class. |
|
| 1560 | 1560 |
/// |
| 1561 | 1561 |
/// With this function a graph can be write to a file or output |
| 1562 | 1562 |
/// stream in \ref lgf-format "LGF" format with several maps and |
| 1563 | 1563 |
/// attributes. For example, with the following code a weighted |
| 1564 | 1564 |
/// matching problem can be written to the standard output, i.e. a |
| 1565 | 1565 |
/// graph with a \e weight map on the edges: |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -18,23 +18,25 @@ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
| 20 | 20 |
#define LEMON_LIST_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graphs |
| 23 | 23 |
///\file |
| 24 |
///\brief ListDigraph |
|
| 24 |
///\brief ListDigraph and ListGraph classes. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
#include <lemon/bits/graph_extender.h> |
| 29 | 29 |
|
| 30 | 30 |
#include <vector> |
| 31 | 31 |
#include <list> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 |
class ListDigraph; |
|
| 36 |
|
|
| 35 | 37 |
class ListDigraphBase {
|
| 36 | 38 |
|
| 37 | 39 |
protected: |
| 38 | 40 |
struct NodeT {
|
| 39 | 41 |
int first_in, first_out; |
| 40 | 42 |
int prev, next; |
| ... | ... |
@@ -59,12 +61,13 @@ |
| 59 | 61 |
public: |
| 60 | 62 |
|
| 61 | 63 |
typedef ListDigraphBase Digraph; |
| 62 | 64 |
|
| 63 | 65 |
class Node {
|
| 64 | 66 |
friend class ListDigraphBase; |
| 67 |
friend class ListDigraph; |
|
| 65 | 68 |
protected: |
| 66 | 69 |
|
| 67 | 70 |
int id; |
| 68 | 71 |
explicit Node(int pid) { id = pid;}
|
| 69 | 72 |
|
| 70 | 73 |
public: |
| ... | ... |
@@ -74,12 +77,13 @@ |
| 74 | 77 |
bool operator!=(const Node& node) const {return id != node.id;}
|
| 75 | 78 |
bool operator<(const Node& node) const {return id < node.id;}
|
| 76 | 79 |
}; |
| 77 | 80 |
|
| 78 | 81 |
class Arc {
|
| 79 | 82 |
friend class ListDigraphBase; |
| 83 |
friend class ListDigraph; |
|
| 80 | 84 |
protected: |
| 81 | 85 |
|
| 82 | 86 |
int id; |
| 83 | 87 |
explicit Arc(int pid) { id = pid;}
|
| 84 | 88 |
|
| 85 | 89 |
public: |
| ... | ... |
@@ -113,26 +117,26 @@ |
| 113 | 117 |
} |
| 114 | 118 |
|
| 115 | 119 |
|
| 116 | 120 |
void first(Arc& arc) const {
|
| 117 | 121 |
int n; |
| 118 | 122 |
for(n = first_node; |
| 119 |
n!=-1 && nodes[n]. |
|
| 123 |
n != -1 && nodes[n].first_out == -1; |
|
| 120 | 124 |
n = nodes[n].next) {}
|
| 121 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
| 125 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
| 122 | 126 |
} |
| 123 | 127 |
|
| 124 | 128 |
void next(Arc& arc) const {
|
| 125 |
if (arcs[arc.id].next_in != -1) {
|
|
| 126 |
arc.id = arcs[arc.id].next_in; |
|
| 129 |
if (arcs[arc.id].next_out != -1) {
|
|
| 130 |
arc.id = arcs[arc.id].next_out; |
|
| 127 | 131 |
} else {
|
| 128 | 132 |
int n; |
| 129 |
for(n = nodes[arcs[arc.id].target].next; |
|
| 130 |
n!=-1 && nodes[n].first_in == -1; |
|
| 133 |
for(n = nodes[arcs[arc.id].source].next; |
|
| 134 |
n != -1 && nodes[n].first_out == -1; |
|
| 131 | 135 |
n = nodes[n].next) {}
|
| 132 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
| 136 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
| 133 | 137 |
} |
| 134 | 138 |
} |
| 135 | 139 |
|
| 136 | 140 |
void firstOut(Arc &e, const Node& v) const {
|
| 137 | 141 |
e.id = nodes[v.id].first_out; |
| 138 | 142 |
} |
| ... | ... |
@@ -308,241 +312,258 @@ |
| 308 | 312 |
|
| 309 | 313 |
/// \addtogroup graphs |
| 310 | 314 |
/// @{
|
| 311 | 315 |
|
| 312 | 316 |
///A general directed graph structure. |
| 313 | 317 |
|
| 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
|
| 315 |
///implementation based on static linked lists that are stored in |
|
| 318 |
///\ref ListDigraph is a versatile and fast directed graph |
|
| 319 |
///implementation based on linked lists that are stored in |
|
| 316 | 320 |
///\c std::vector structures. |
| 317 | 321 |
/// |
| 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
|
| 319 |
///also provides several useful additional functionalities. |
|
| 320 |
/// |
|
| 322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
|
| 323 |
///and it also provides several useful additional functionalities. |
|
| 324 |
///Most of its member functions and nested classes are documented |
|
| 321 | 325 |
///only in the concept class. |
| 322 | 326 |
/// |
| 327 |
///This class provides only linear time counting for nodes and arcs. |
|
| 328 |
/// |
|
| 323 | 329 |
///\sa concepts::Digraph |
| 324 |
|
|
| 330 |
///\sa ListGraph |
|
| 325 | 331 |
class ListDigraph : public ExtendedListDigraphBase {
|
| 326 | 332 |
typedef ExtendedListDigraphBase Parent; |
| 327 | 333 |
|
| 328 | 334 |
private: |
| 329 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
| 330 |
|
|
| 331 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
| 332 |
/// |
|
| 335 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 333 | 336 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
|
| 334 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
|
| 335 |
///Use copyDigraph() instead. |
|
| 336 |
|
|
| 337 |
///Assignment of ListDigraph to another one is \e not allowed. |
|
| 338 |
/// |
|
| 337 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 338 |
/// Use DigraphCopy instead. |
|
| 339 | 339 |
void operator=(const ListDigraph &) {}
|
| 340 | 340 |
public: |
| 341 | 341 |
|
| 342 | 342 |
/// Constructor |
| 343 | 343 |
|
| 344 | 344 |
/// Constructor. |
| 345 | 345 |
/// |
| 346 | 346 |
ListDigraph() {}
|
| 347 | 347 |
|
| 348 | 348 |
///Add a new node to the digraph. |
| 349 | 349 |
|
| 350 |
/// |
|
| 350 |
///This function adds a new node to the digraph. |
|
| 351 | 351 |
///\return The new node. |
| 352 | 352 |
Node addNode() { return Parent::addNode(); }
|
| 353 | 353 |
|
| 354 | 354 |
///Add a new arc to the digraph. |
| 355 | 355 |
|
| 356 |
/// |
|
| 356 |
///This function adds a new arc to the digraph with source node \c s |
|
| 357 | 357 |
///and target node \c t. |
| 358 | 358 |
///\return The new arc. |
| 359 |
Arc addArc( |
|
| 359 |
Arc addArc(Node s, Node t) {
|
|
| 360 | 360 |
return Parent::addArc(s, t); |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
///\brief Erase a node from the digraph. |
| 364 | 364 |
/// |
| 365 |
/// |
|
| 365 |
///This function erases the given node along with its outgoing and |
|
| 366 |
///incoming arcs from the digraph. |
|
| 366 | 367 |
/// |
| 367 |
|
|
| 368 |
///\note All iterators referencing the removed node or the connected |
|
| 369 |
///arcs are invalidated, of course. |
|
| 370 |
void erase(Node n) { Parent::erase(n); }
|
|
| 368 | 371 |
|
| 369 | 372 |
///\brief Erase an arc from the digraph. |
| 370 | 373 |
/// |
| 371 |
/// |
|
| 374 |
///This function erases the given arc from the digraph. |
|
| 372 | 375 |
/// |
| 373 |
|
|
| 376 |
///\note All iterators referencing the removed arc are invalidated, |
|
| 377 |
///of course. |
|
| 378 |
void erase(Arc a) { Parent::erase(a); }
|
|
| 374 | 379 |
|
| 375 | 380 |
/// Node validity check |
| 376 | 381 |
|
| 377 |
/// This function gives back true if the given node is valid, |
|
| 378 |
/// ie. it is a real node of the graph. |
|
| 382 |
/// This function gives back \c true if the given node is valid, |
|
| 383 |
/// i.e. it is a real node of the digraph. |
|
| 379 | 384 |
/// |
| 380 |
/// \warning A Node pointing to a removed item |
|
| 381 |
/// could become valid again later if new nodes are |
|
| 382 |
/// |
|
| 385 |
/// \warning A removed node could become valid again if new nodes are |
|
| 386 |
/// added to the digraph. |
|
| 383 | 387 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 384 | 388 |
|
| 385 | 389 |
/// Arc validity check |
| 386 | 390 |
|
| 387 |
/// This function gives back true if the given arc is valid, |
|
| 388 |
/// ie. it is a real arc of the graph. |
|
| 391 |
/// This function gives back \c true if the given arc is valid, |
|
| 392 |
/// i.e. it is a real arc of the digraph. |
|
| 389 | 393 |
/// |
| 390 |
/// \warning An Arc pointing to a removed item |
|
| 391 |
/// could become valid again later if new nodes are |
|
| 392 |
/// |
|
| 394 |
/// \warning A removed arc could become valid again if new arcs are |
|
| 395 |
/// added to the digraph. |
|
| 393 | 396 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 394 | 397 |
|
| 395 |
/// Change the target of |
|
| 398 |
/// Change the target node of an arc |
|
| 396 | 399 |
|
| 397 |
/// |
|
| 400 |
/// This function changes the target node of the given arc \c a to \c n. |
|
| 398 | 401 |
/// |
| 399 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
|
| 400 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
|
| 401 |
/// |
|
| 402 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
|
| 403 |
///arc remain valid, but \c InArcIt iterators are invalidated. |
|
| 402 | 404 |
/// |
| 403 | 405 |
///\warning This functionality cannot be used together with the Snapshot |
| 404 | 406 |
///feature. |
| 405 | 407 |
void changeTarget(Arc a, Node n) {
|
| 406 | 408 |
Parent::changeTarget(a,n); |
| 407 | 409 |
} |
| 408 |
/// Change the source of |
|
| 410 |
/// Change the source node of an arc |
|
| 409 | 411 |
|
| 410 |
/// |
|
| 412 |
/// This function changes the source node of the given arc \c a to \c n. |
|
| 411 | 413 |
/// |
| 412 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
|
| 413 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
|
| 414 |
/// |
|
| 414 |
///\note \c InArcIt iterators referencing the changed arc remain |
|
| 415 |
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated. |
|
| 415 | 416 |
/// |
| 416 | 417 |
///\warning This functionality cannot be used together with the Snapshot |
| 417 | 418 |
///feature. |
| 418 | 419 |
void changeSource(Arc a, Node n) {
|
| 419 | 420 |
Parent::changeSource(a,n); |
| 420 | 421 |
} |
| 421 | 422 |
|
| 422 |
/// |
|
| 423 |
/// Reverse the direction of an arc. |
|
| 423 | 424 |
|
| 424 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
|
| 425 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
|
| 426 |
/// |
|
| 425 |
/// This function reverses the direction of the given arc. |
|
| 426 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
|
| 427 |
///the changed arc are invalidated. |
|
| 427 | 428 |
/// |
| 428 | 429 |
///\warning This functionality cannot be used together with the Snapshot |
| 429 | 430 |
///feature. |
| 430 |
void reverseArc(Arc e) {
|
|
| 431 |
Node t=target(e); |
|
| 432 |
changeTarget(e,source(e)); |
|
| 433 |
changeSource(e,t); |
|
| 431 |
void reverseArc(Arc a) {
|
|
| 432 |
Node t=target(a); |
|
| 433 |
changeTarget(a,source(a)); |
|
| 434 |
changeSource(a,t); |
|
| 434 | 435 |
} |
| 435 | 436 |
|
| 436 |
/// Reserve memory for nodes. |
|
| 437 |
|
|
| 438 |
/// Using this function it is possible to avoid the superfluous memory |
|
| 439 |
/// allocation: if you know that the digraph you want to build will |
|
| 440 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 441 |
/// then it is worth reserving space for this amount before starting |
|
| 442 |
/// to build the digraph. |
|
| 443 |
/// \sa reserveArc |
|
| 444 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 445 |
|
|
| 446 |
/// Reserve memory for arcs. |
|
| 447 |
|
|
| 448 |
/// Using this function it is possible to avoid the superfluous memory |
|
| 449 |
/// allocation: if you know that the digraph you want to build will |
|
| 450 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 451 |
/// then it is worth reserving space for this amount before starting |
|
| 452 |
/// to build the digraph. |
|
| 453 |
/// \sa reserveNode |
|
| 454 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 455 |
|
|
| 456 | 437 |
///Contract two nodes. |
| 457 | 438 |
|
| 458 |
///This function contracts two nodes. |
|
| 459 |
///Node \p b will be removed but instead of deleting |
|
| 460 |
///incident arcs, they will be joined to \p a. |
|
| 461 |
///The last parameter \p r controls whether to remove loops. \c true |
|
| 462 |
/// |
|
| 439 |
///This function contracts the given two nodes. |
|
| 440 |
///Node \c v is removed, but instead of deleting its |
|
| 441 |
///incident arcs, they are joined to node \c u. |
|
| 442 |
///If the last parameter \c r is \c true (this is the default value), |
|
| 443 |
///then the newly created loops are removed. |
|
| 463 | 444 |
/// |
| 464 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 465 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
|
| 466 |
/// |
|
| 445 |
///\note The moved arcs are joined to node \c u using changeSource() |
|
| 446 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
|
| 447 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
|
| 448 |
///iterators are invalidated for the incomming arcs of \c v. |
|
| 449 |
///Moreover all iterators referencing node \c v or the removed |
|
| 450 |
///loops are also invalidated. Other iterators remain valid. |
|
| 467 | 451 |
/// |
| 468 | 452 |
///\warning This functionality cannot be used together with the Snapshot |
| 469 | 453 |
///feature. |
| 470 |
void contract(Node |
|
| 454 |
void contract(Node u, Node v, bool r = true) |
|
| 471 | 455 |
{
|
| 472 |
for(OutArcIt e(*this, |
|
| 456 |
for(OutArcIt e(*this,v);e!=INVALID;) {
|
|
| 473 | 457 |
OutArcIt f=e; |
| 474 | 458 |
++f; |
| 475 |
if(r && target(e)==a) erase(e); |
|
| 476 |
else changeSource(e,a); |
|
| 459 |
if(r && target(e)==u) erase(e); |
|
| 460 |
else changeSource(e,u); |
|
| 477 | 461 |
e=f; |
| 478 | 462 |
} |
| 479 |
for(InArcIt e(*this, |
|
| 463 |
for(InArcIt e(*this,v);e!=INVALID;) {
|
|
| 480 | 464 |
InArcIt f=e; |
| 481 | 465 |
++f; |
| 482 |
if(r && source(e)==a) erase(e); |
|
| 483 |
else changeTarget(e,a); |
|
| 466 |
if(r && source(e)==u) erase(e); |
|
| 467 |
else changeTarget(e,u); |
|
| 484 | 468 |
e=f; |
| 485 | 469 |
} |
| 486 |
erase( |
|
| 470 |
erase(v); |
|
| 487 | 471 |
} |
| 488 | 472 |
|
| 489 | 473 |
///Split a node. |
| 490 | 474 |
|
| 491 |
///This function splits a node. First a new node is added to the digraph, |
|
| 492 |
///then the source of each outgoing arc of \c n is moved to this new node. |
|
| 493 |
///If \c connect is \c true (this is the default value), then a new arc |
|
| 494 |
///from \c n to the newly created node is also added. |
|
| 475 |
///This function splits the given node. First, a new node is added |
|
| 476 |
///to the digraph, then the source of each outgoing arc of node \c n |
|
| 477 |
///is moved to this new node. |
|
| 478 |
///If the second parameter \c connect is \c true (this is the default |
|
| 479 |
///value), then a new arc from node \c n to the newly created node |
|
| 480 |
///is also added. |
|
| 495 | 481 |
///\return The newly created node. |
| 496 | 482 |
/// |
| 497 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 498 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
|
| 499 |
/// |
|
| 483 |
///\note All iterators remain valid. |
|
| 500 | 484 |
/// |
| 501 |
///\warning This functionality cannot be used |
|
| 485 |
///\warning This functionality cannot be used together with the |
|
| 502 | 486 |
///Snapshot feature. |
| 503 | 487 |
Node split(Node n, bool connect = true) {
|
| 504 | 488 |
Node b = addNode(); |
| 505 |
for(OutArcIt e(*this,n);e!=INVALID;) {
|
|
| 506 |
OutArcIt f=e; |
|
| 507 |
++f; |
|
| 508 |
changeSource(e,b); |
|
| 509 |
|
|
| 489 |
nodes[b.id].first_out=nodes[n.id].first_out; |
|
| 490 |
nodes[n.id].first_out=-1; |
|
| 491 |
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
|
|
| 492 |
arcs[i].source=b.id; |
|
| 510 | 493 |
} |
| 511 | 494 |
if (connect) addArc(n,b); |
| 512 | 495 |
return b; |
| 513 | 496 |
} |
| 514 | 497 |
|
| 515 | 498 |
///Split an arc. |
| 516 | 499 |
|
| 517 |
///This function splits an arc. First a new node \c b is added to |
|
| 518 |
///the digraph, then the original arc is re-targeted to \c |
|
| 519 |
/// |
|
| 500 |
///This function splits the given arc. First, a new node \c v is |
|
| 501 |
///added to the digraph, then the target node of the original arc |
|
| 502 |
///is set to \c v. Finally, an arc from \c v to the original target |
|
| 503 |
///is added. |
|
| 504 |
///\return The newly created node. |
|
| 520 | 505 |
/// |
| 521 |
///\ |
|
| 506 |
///\note \c InArcIt iterators referencing the original arc are |
|
| 507 |
///invalidated. Other iterators remain valid. |
|
| 522 | 508 |
/// |
| 523 | 509 |
///\warning This functionality cannot be used together with the |
| 524 | 510 |
///Snapshot feature. |
| 525 |
Node split(Arc e) {
|
|
| 526 |
Node b = addNode(); |
|
| 527 |
addArc(b,target(e)); |
|
| 528 |
changeTarget(e,b); |
|
| 529 |
|
|
| 511 |
Node split(Arc a) {
|
|
| 512 |
Node v = addNode(); |
|
| 513 |
addArc(v,target(a)); |
|
| 514 |
changeTarget(a,v); |
|
| 515 |
return v; |
|
| 530 | 516 |
} |
| 531 | 517 |
|
| 518 |
///Clear the digraph. |
|
| 519 |
|
|
| 520 |
///This function erases all nodes and arcs from the digraph. |
|
| 521 |
/// |
|
| 522 |
///\note All iterators of the digraph are invalidated, of course. |
|
| 523 |
void clear() {
|
|
| 524 |
Parent::clear(); |
|
| 525 |
} |
|
| 526 |
|
|
| 527 |
/// Reserve memory for nodes. |
|
| 528 |
|
|
| 529 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 530 |
/// allocation: if you know that the digraph you want to build will |
|
| 531 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 532 |
/// then it is worth reserving space for this amount before starting |
|
| 533 |
/// to build the digraph. |
|
| 534 |
/// \sa reserveArc() |
|
| 535 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 536 |
|
|
| 537 |
/// Reserve memory for arcs. |
|
| 538 |
|
|
| 539 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 540 |
/// allocation: if you know that the digraph you want to build will |
|
| 541 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 542 |
/// then it is worth reserving space for this amount before starting |
|
| 543 |
/// to build the digraph. |
|
| 544 |
/// \sa reserveNode() |
|
| 545 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 546 |
|
|
| 532 | 547 |
/// \brief Class to make a snapshot of the digraph and restore |
| 533 | 548 |
/// it later. |
| 534 | 549 |
/// |
| 535 | 550 |
/// Class to make a snapshot of the digraph and restore it later. |
| 536 | 551 |
/// |
| 537 | 552 |
/// The newly added nodes and arcs can be removed using the |
| 538 | 553 |
/// restore() function. |
| 539 | 554 |
/// |
| 540 |
/// \warning Arc and node deletions and other modifications (e.g. |
|
| 541 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
|
| 555 |
/// \note After a state is restored, you cannot restore a later state, |
|
| 556 |
/// i.e. you cannot add the removed nodes and arcs again using |
|
| 557 |
/// another Snapshot instance. |
|
| 558 |
/// |
|
| 559 |
/// \warning Node and arc deletions and other modifications (e.g. |
|
| 560 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
|
| 542 | 561 |
/// restored. These events invalidate the snapshot. |
| 562 |
/// However, the arcs and nodes that were added to the digraph after |
|
| 563 |
/// making the current snapshot can be removed without invalidating it. |
|
| 543 | 564 |
class Snapshot {
|
| 544 | 565 |
protected: |
| 545 | 566 |
|
| 546 | 567 |
typedef Parent::NodeNotifier NodeNotifier; |
| 547 | 568 |
|
| 548 | 569 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| ... | ... |
@@ -706,45 +727,46 @@ |
| 706 | 727 |
|
| 707 | 728 |
public: |
| 708 | 729 |
|
| 709 | 730 |
/// \brief Default constructor. |
| 710 | 731 |
/// |
| 711 | 732 |
/// Default constructor. |
| 712 |
/// |
|
| 733 |
/// You have to call save() to actually make a snapshot. |
|
| 713 | 734 |
Snapshot() |
| 714 | 735 |
: digraph(0), node_observer_proxy(*this), |
| 715 | 736 |
arc_observer_proxy(*this) {}
|
| 716 | 737 |
|
| 717 | 738 |
/// \brief Constructor that immediately makes a snapshot. |
| 718 | 739 |
/// |
| 719 |
/// This constructor immediately makes a snapshot of the digraph. |
|
| 720 |
/// \param _digraph The digraph we make a snapshot of. |
|
| 721 |
|
|
| 740 |
/// This constructor immediately makes a snapshot of the given digraph. |
|
| 741 |
Snapshot(ListDigraph &gr) |
|
| 722 | 742 |
: node_observer_proxy(*this), |
| 723 | 743 |
arc_observer_proxy(*this) {
|
| 724 |
attach( |
|
| 744 |
attach(gr); |
|
| 725 | 745 |
} |
| 726 | 746 |
|
| 727 | 747 |
/// \brief Make a snapshot. |
| 728 | 748 |
/// |
| 729 |
/// Make a snapshot of the digraph. |
|
| 730 |
/// |
|
| 731 |
/// This function |
|
| 749 |
/// This function makes a snapshot of the given digraph. |
|
| 750 |
/// It can be called more than once. In case of a repeated |
|
| 732 | 751 |
/// call, the previous snapshot gets lost. |
| 733 |
/// \param _digraph The digraph we make the snapshot of. |
|
| 734 |
void save(ListDigraph &_digraph) {
|
|
| 752 |
void save(ListDigraph &gr) {
|
|
| 735 | 753 |
if (attached()) {
|
| 736 | 754 |
detach(); |
| 737 | 755 |
clear(); |
| 738 | 756 |
} |
| 739 |
attach( |
|
| 757 |
attach(gr); |
|
| 740 | 758 |
} |
| 741 | 759 |
|
| 742 | 760 |
/// \brief Undo the changes until the last snapshot. |
| 743 |
// |
|
| 744 |
/// Undo the changes until the last snapshot created by save(). |
|
| 761 |
/// |
|
| 762 |
/// This function undos the changes until the last snapshot |
|
| 763 |
/// created by save() or Snapshot(ListDigraph&). |
|
| 764 |
/// |
|
| 765 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
| 766 |
/// restoring is not supported unless you call save() again. |
|
| 745 | 767 |
void restore() {
|
| 746 | 768 |
detach(); |
| 747 | 769 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
| 748 | 770 |
it != added_arcs.end(); ++it) {
|
| 749 | 771 |
digraph->erase(*it); |
| 750 | 772 |
} |
| ... | ... |
@@ -752,15 +774,15 @@ |
| 752 | 774 |
it != added_nodes.end(); ++it) {
|
| 753 | 775 |
digraph->erase(*it); |
| 754 | 776 |
} |
| 755 | 777 |
clear(); |
| 756 | 778 |
} |
| 757 | 779 |
|
| 758 |
/// \brief |
|
| 780 |
/// \brief Returns \c true if the snapshot is valid. |
|
| 759 | 781 |
/// |
| 760 |
/// |
|
| 782 |
/// This function returns \c true if the snapshot is valid. |
|
| 761 | 783 |
bool valid() const {
|
| 762 | 784 |
return attached(); |
| 763 | 785 |
} |
| 764 | 786 |
}; |
| 765 | 787 |
|
| 766 | 788 |
}; |
| ... | ... |
@@ -792,16 +814,12 @@ |
| 792 | 814 |
int first_free_arc; |
| 793 | 815 |
|
| 794 | 816 |
public: |
| 795 | 817 |
|
| 796 | 818 |
typedef ListGraphBase Graph; |
| 797 | 819 |
|
| 798 |
class Node; |
|
| 799 |
class Arc; |
|
| 800 |
class Edge; |
|
| 801 |
|
|
| 802 | 820 |
class Node {
|
| 803 | 821 |
friend class ListGraphBase; |
| 804 | 822 |
protected: |
| 805 | 823 |
|
| 806 | 824 |
int id; |
| 807 | 825 |
explicit Node(int pid) { id = pid;}
|
| ... | ... |
@@ -845,14 +863,12 @@ |
| 845 | 863 |
Arc (Invalid) { id = -1; }
|
| 846 | 864 |
bool operator==(const Arc& arc) const {return id == arc.id;}
|
| 847 | 865 |
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
| 848 | 866 |
bool operator<(const Arc& arc) const {return id < arc.id;}
|
| 849 | 867 |
}; |
| 850 | 868 |
|
| 851 |
|
|
| 852 |
|
|
| 853 | 869 |
ListGraphBase() |
| 854 | 870 |
: nodes(), first_node(-1), |
| 855 | 871 |
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
| 856 | 872 |
|
| 857 | 873 |
|
| 858 | 874 |
int maxNodeId() const { return nodes.size()-1; }
|
| ... | ... |
@@ -1161,137 +1177,141 @@ |
| 1161 | 1177 |
|
| 1162 | 1178 |
/// \addtogroup graphs |
| 1163 | 1179 |
/// @{
|
| 1164 | 1180 |
|
| 1165 | 1181 |
///A general undirected graph structure. |
| 1166 | 1182 |
|
| 1167 |
///\ref ListGraph is a simple and fast <em>undirected graph</em> |
|
| 1168 |
///implementation based on static linked lists that are stored in |
|
| 1183 |
///\ref ListGraph is a versatile and fast undirected graph |
|
| 1184 |
///implementation based on linked lists that are stored in |
|
| 1169 | 1185 |
///\c std::vector structures. |
| 1170 | 1186 |
/// |
| 1171 |
///It conforms to the \ref concepts::Graph "Graph concept" and it |
|
| 1172 |
///also provides several useful additional functionalities. |
|
| 1173 |
/// |
|
| 1187 |
///This type fully conforms to the \ref concepts::Graph "Graph concept" |
|
| 1188 |
///and it also provides several useful additional functionalities. |
|
| 1189 |
///Most of its member functions and nested classes are documented |
|
| 1174 | 1190 |
///only in the concept class. |
| 1175 | 1191 |
/// |
| 1192 |
///This class provides only linear time counting for nodes, edges and arcs. |
|
| 1193 |
/// |
|
| 1176 | 1194 |
///\sa concepts::Graph |
| 1177 |
|
|
| 1195 |
///\sa ListDigraph |
|
| 1178 | 1196 |
class ListGraph : public ExtendedListGraphBase {
|
| 1179 | 1197 |
typedef ExtendedListGraphBase Parent; |
| 1180 | 1198 |
|
| 1181 | 1199 |
private: |
| 1182 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
| 1183 |
|
|
| 1184 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
| 1185 |
/// |
|
| 1200 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
|
| 1186 | 1201 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
|
| 1187 |
///\brief Assignment of ListGraph to another one is \e not allowed. |
|
| 1188 |
///Use copyGraph() instead. |
|
| 1189 |
|
|
| 1190 |
///Assignment of ListGraph to another one is \e not allowed. |
|
| 1191 |
/// |
|
| 1202 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 1203 |
/// Use GraphCopy instead. |
|
| 1192 | 1204 |
void operator=(const ListGraph &) {}
|
| 1193 | 1205 |
public: |
| 1194 | 1206 |
/// Constructor |
| 1195 | 1207 |
|
| 1196 | 1208 |
/// Constructor. |
| 1197 | 1209 |
/// |
| 1198 | 1210 |
ListGraph() {}
|
| 1199 | 1211 |
|
| 1200 | 1212 |
typedef Parent::OutArcIt IncEdgeIt; |
| 1201 | 1213 |
|
| 1202 | 1214 |
/// \brief Add a new node to the graph. |
| 1203 | 1215 |
/// |
| 1204 |
/// |
|
| 1216 |
/// This function adds a new node to the graph. |
|
| 1205 | 1217 |
/// \return The new node. |
| 1206 | 1218 |
Node addNode() { return Parent::addNode(); }
|
| 1207 | 1219 |
|
| 1208 | 1220 |
/// \brief Add a new edge to the graph. |
| 1209 | 1221 |
/// |
| 1210 |
/// Add a new edge to the graph with source node \c s |
|
| 1211 |
/// and target node \c t. |
|
| 1222 |
/// This function adds a new edge to the graph between nodes |
|
| 1223 |
/// \c u and \c v with inherent orientation from node \c u to |
|
| 1224 |
/// node \c v. |
|
| 1212 | 1225 |
/// \return The new edge. |
| 1213 |
Edge addEdge(const Node& s, const Node& t) {
|
|
| 1214 |
return Parent::addEdge(s, t); |
|
| 1226 |
Edge addEdge(Node u, Node v) {
|
|
| 1227 |
return Parent::addEdge(u, v); |
|
| 1215 | 1228 |
} |
| 1216 | 1229 |
|
| 1217 |
/// |
|
| 1230 |
///\brief Erase a node from the graph. |
|
| 1218 | 1231 |
/// |
| 1219 |
/// |
|
| 1232 |
/// This function erases the given node along with its incident arcs |
|
| 1233 |
/// from the graph. |
|
| 1220 | 1234 |
/// |
| 1221 |
|
|
| 1235 |
/// \note All iterators referencing the removed node or the incident |
|
| 1236 |
/// edges are invalidated, of course. |
|
| 1237 |
void erase(Node n) { Parent::erase(n); }
|
|
| 1222 | 1238 |
|
| 1223 |
/// |
|
| 1239 |
///\brief Erase an edge from the graph. |
|
| 1224 | 1240 |
/// |
| 1225 |
/// |
|
| 1241 |
/// This function erases the given edge from the graph. |
|
| 1226 | 1242 |
/// |
| 1227 |
|
|
| 1243 |
/// \note All iterators referencing the removed edge are invalidated, |
|
| 1244 |
/// of course. |
|
| 1245 |
void erase(Edge e) { Parent::erase(e); }
|
|
| 1228 | 1246 |
/// Node validity check |
| 1229 | 1247 |
|
| 1230 |
/// This function gives back true if the given node is valid, |
|
| 1231 |
/// ie. it is a real node of the graph. |
|
| 1248 |
/// This function gives back \c true if the given node is valid, |
|
| 1249 |
/// i.e. it is a real node of the graph. |
|
| 1232 | 1250 |
/// |
| 1233 |
/// \warning A Node pointing to a removed item |
|
| 1234 |
/// could become valid again later if new nodes are |
|
| 1251 |
/// \warning A removed node could become valid again if new nodes are |
|
| 1235 | 1252 |
/// added to the graph. |
| 1236 | 1253 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 1254 |
/// Edge validity check |
|
| 1255 |
|
|
| 1256 |
/// This function gives back \c true if the given edge is valid, |
|
| 1257 |
/// i.e. it is a real edge of the graph. |
|
| 1258 |
/// |
|
| 1259 |
/// \warning A removed edge could become valid again if new edges are |
|
| 1260 |
/// added to the graph. |
|
| 1261 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 1237 | 1262 |
/// Arc validity check |
| 1238 | 1263 |
|
| 1239 |
/// This function gives back true if the given arc is valid, |
|
| 1240 |
/// ie. it is a real arc of the graph. |
|
| 1264 |
/// This function gives back \c true if the given arc is valid, |
|
| 1265 |
/// i.e. it is a real arc of the graph. |
|
| 1241 | 1266 |
/// |
| 1242 |
/// \warning An Arc pointing to a removed item |
|
| 1243 |
/// could become valid again later if new edges are |
|
| 1267 |
/// \warning A removed arc could become valid again if new edges are |
|
| 1244 | 1268 |
/// added to the graph. |
| 1245 | 1269 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 1246 |
/// Edge validity check |
|
| 1247 | 1270 |
|
| 1248 |
/// This function gives back true if the given edge is valid, |
|
| 1249 |
/// ie. it is a real arc of the graph. |
|
| 1271 |
/// \brief Change the first node of an edge. |
|
| 1250 | 1272 |
/// |
| 1251 |
/// \warning A Edge pointing to a removed item |
|
| 1252 |
/// could become valid again later if new edges are |
|
| 1253 |
/// added to the graph. |
|
| 1254 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 1255 |
/// |
|
| 1273 |
/// This function changes the first node of the given edge \c e to \c n. |
|
| 1256 | 1274 |
/// |
| 1257 |
/// This function changes the end \c u of \c e to node \c n. |
|
| 1258 |
/// |
|
| 1259 |
///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the |
|
| 1260 |
///changed edge are invalidated and if the changed node is the |
|
| 1261 |
///base node of an iterator then this iterator is also |
|
| 1262 |
///invalidated. |
|
| 1275 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
|
| 1276 |
///changed edge are invalidated and all other iterators whose |
|
| 1277 |
///base node is the changed node are also invalidated. |
|
| 1263 | 1278 |
/// |
| 1264 | 1279 |
///\warning This functionality cannot be used together with the |
| 1265 | 1280 |
///Snapshot feature. |
| 1266 | 1281 |
void changeU(Edge e, Node n) {
|
| 1267 | 1282 |
Parent::changeU(e,n); |
| 1268 | 1283 |
} |
| 1269 |
/// \brief Change the |
|
| 1284 |
/// \brief Change the second node of an edge. |
|
| 1270 | 1285 |
/// |
| 1271 |
/// This function changes the |
|
| 1286 |
/// This function changes the second node of the given edge \c e to \c n. |
|
| 1272 | 1287 |
/// |
| 1273 |
///\note The <tt>EdgeIt</tt>s referencing the changed edge remain |
|
| 1274 |
///valid, however <tt>ArcIt</tt>s and if the changed node is the |
|
| 1275 |
/// |
|
| 1288 |
///\note \c EdgeIt iterators referencing the changed edge remain |
|
| 1289 |
///valid, but \c ArcIt iterators referencing the changed edge and |
|
| 1290 |
///all other iterators whose base node is the changed node are also |
|
| 1291 |
///invalidated. |
|
| 1276 | 1292 |
/// |
| 1277 | 1293 |
///\warning This functionality cannot be used together with the |
| 1278 | 1294 |
///Snapshot feature. |
| 1279 | 1295 |
void changeV(Edge e, Node n) {
|
| 1280 | 1296 |
Parent::changeV(e,n); |
| 1281 | 1297 |
} |
| 1298 |
|
|
| 1282 | 1299 |
/// \brief Contract two nodes. |
| 1283 | 1300 |
/// |
| 1284 |
/// This function contracts two nodes. |
|
| 1285 |
/// Node \p b will be removed but instead of deleting |
|
| 1286 |
/// its neighboring arcs, they will be joined to \p a. |
|
| 1287 |
/// The last parameter \p r controls whether to remove loops. \c true |
|
| 1288 |
/// |
|
| 1301 |
/// This function contracts the given two nodes. |
|
| 1302 |
/// Node \c b is removed, but instead of deleting |
|
| 1303 |
/// its incident edges, they are joined to node \c a. |
|
| 1304 |
/// If the last parameter \c r is \c true (this is the default value), |
|
| 1305 |
/// then the newly created loops are removed. |
|
| 1289 | 1306 |
/// |
| 1290 |
/// \note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 1291 |
/// valid. |
|
| 1307 |
/// \note The moved edges are joined to node \c a using changeU() |
|
| 1308 |
/// or changeV(), thus all edge and arc iterators whose base node is |
|
| 1309 |
/// \c b are invalidated. |
|
| 1310 |
/// Moreover all iterators referencing node \c b or the removed |
|
| 1311 |
/// loops are also invalidated. Other iterators remain valid. |
|
| 1292 | 1312 |
/// |
| 1293 | 1313 |
///\warning This functionality cannot be used together with the |
| 1294 | 1314 |
///Snapshot feature. |
| 1295 | 1315 |
void contract(Node a, Node b, bool r = true) {
|
| 1296 | 1316 |
for(IncEdgeIt e(*this, b); e!=INVALID;) {
|
| 1297 | 1317 |
IncEdgeIt f = e; ++f; |
| ... | ... |
@@ -1304,24 +1324,58 @@ |
| 1304 | 1324 |
} |
| 1305 | 1325 |
e = f; |
| 1306 | 1326 |
} |
| 1307 | 1327 |
erase(b); |
| 1308 | 1328 |
} |
| 1309 | 1329 |
|
| 1330 |
///Clear the graph. |
|
| 1331 |
|
|
| 1332 |
///This function erases all nodes and arcs from the graph. |
|
| 1333 |
/// |
|
| 1334 |
///\note All iterators of the graph are invalidated, of course. |
|
| 1335 |
void clear() {
|
|
| 1336 |
Parent::clear(); |
|
| 1337 |
} |
|
| 1338 |
|
|
| 1339 |
/// Reserve memory for nodes. |
|
| 1340 |
|
|
| 1341 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 1342 |
/// allocation: if you know that the graph you want to build will |
|
| 1343 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 1344 |
/// then it is worth reserving space for this amount before starting |
|
| 1345 |
/// to build the graph. |
|
| 1346 |
/// \sa reserveEdge() |
|
| 1347 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 1348 |
|
|
| 1349 |
/// Reserve memory for edges. |
|
| 1350 |
|
|
| 1351 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 1352 |
/// allocation: if you know that the graph you want to build will |
|
| 1353 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 1354 |
/// then it is worth reserving space for this amount before starting |
|
| 1355 |
/// to build the graph. |
|
| 1356 |
/// \sa reserveNode() |
|
| 1357 |
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
|
| 1310 | 1358 |
|
| 1311 | 1359 |
/// \brief Class to make a snapshot of the graph and restore |
| 1312 | 1360 |
/// it later. |
| 1313 | 1361 |
/// |
| 1314 | 1362 |
/// Class to make a snapshot of the graph and restore it later. |
| 1315 | 1363 |
/// |
| 1316 | 1364 |
/// The newly added nodes and edges can be removed |
| 1317 | 1365 |
/// using the restore() function. |
| 1318 | 1366 |
/// |
| 1319 |
/// \warning Edge and node deletions and other modifications |
|
| 1320 |
/// (e.g. changing nodes of edges, contracting nodes) cannot be |
|
| 1321 |
/// restored |
|
| 1367 |
/// \note After a state is restored, you cannot restore a later state, |
|
| 1368 |
/// i.e. you cannot add the removed nodes and edges again using |
|
| 1369 |
/// another Snapshot instance. |
|
| 1370 |
/// |
|
| 1371 |
/// \warning Node and edge deletions and other modifications |
|
| 1372 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
|
| 1373 |
/// cannot be restored. These events invalidate the snapshot. |
|
| 1374 |
/// However, the edges and nodes that were added to the graph after |
|
| 1375 |
/// making the current snapshot can be removed without invalidating it. |
|
| 1322 | 1376 |
class Snapshot {
|
| 1323 | 1377 |
protected: |
| 1324 | 1378 |
|
| 1325 | 1379 |
typedef Parent::NodeNotifier NodeNotifier; |
| 1326 | 1380 |
|
| 1327 | 1381 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| ... | ... |
@@ -1485,45 +1539,46 @@ |
| 1485 | 1539 |
|
| 1486 | 1540 |
public: |
| 1487 | 1541 |
|
| 1488 | 1542 |
/// \brief Default constructor. |
| 1489 | 1543 |
/// |
| 1490 | 1544 |
/// Default constructor. |
| 1491 |
/// |
|
| 1545 |
/// You have to call save() to actually make a snapshot. |
|
| 1492 | 1546 |
Snapshot() |
| 1493 | 1547 |
: graph(0), node_observer_proxy(*this), |
| 1494 | 1548 |
edge_observer_proxy(*this) {}
|
| 1495 | 1549 |
|
| 1496 | 1550 |
/// \brief Constructor that immediately makes a snapshot. |
| 1497 | 1551 |
/// |
| 1498 |
/// This constructor immediately makes a snapshot of the graph. |
|
| 1499 |
/// \param _graph The graph we make a snapshot of. |
|
| 1500 |
|
|
| 1552 |
/// This constructor immediately makes a snapshot of the given graph. |
|
| 1553 |
Snapshot(ListGraph &gr) |
|
| 1501 | 1554 |
: node_observer_proxy(*this), |
| 1502 | 1555 |
edge_observer_proxy(*this) {
|
| 1503 |
attach( |
|
| 1556 |
attach(gr); |
|
| 1504 | 1557 |
} |
| 1505 | 1558 |
|
| 1506 | 1559 |
/// \brief Make a snapshot. |
| 1507 | 1560 |
/// |
| 1508 |
/// Make a snapshot of the graph. |
|
| 1509 |
/// |
|
| 1510 |
/// This function |
|
| 1561 |
/// This function makes a snapshot of the given graph. |
|
| 1562 |
/// It can be called more than once. In case of a repeated |
|
| 1511 | 1563 |
/// call, the previous snapshot gets lost. |
| 1512 |
/// \param _graph The graph we make the snapshot of. |
|
| 1513 |
void save(ListGraph &_graph) {
|
|
| 1564 |
void save(ListGraph &gr) {
|
|
| 1514 | 1565 |
if (attached()) {
|
| 1515 | 1566 |
detach(); |
| 1516 | 1567 |
clear(); |
| 1517 | 1568 |
} |
| 1518 |
attach( |
|
| 1569 |
attach(gr); |
|
| 1519 | 1570 |
} |
| 1520 | 1571 |
|
| 1521 | 1572 |
/// \brief Undo the changes until the last snapshot. |
| 1522 |
// |
|
| 1523 |
/// Undo the changes until the last snapshot created by save(). |
|
| 1573 |
/// |
|
| 1574 |
/// This function undos the changes until the last snapshot |
|
| 1575 |
/// created by save() or Snapshot(ListGraph&). |
|
| 1576 |
/// |
|
| 1577 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
| 1578 |
/// restoring is not supported unless you call save() again. |
|
| 1524 | 1579 |
void restore() {
|
| 1525 | 1580 |
detach(); |
| 1526 | 1581 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
| 1527 | 1582 |
it != added_edges.end(); ++it) {
|
| 1528 | 1583 |
graph->erase(*it); |
| 1529 | 1584 |
} |
| ... | ... |
@@ -1531,15 +1586,15 @@ |
| 1531 | 1586 |
it != added_nodes.end(); ++it) {
|
| 1532 | 1587 |
graph->erase(*it); |
| 1533 | 1588 |
} |
| 1534 | 1589 |
clear(); |
| 1535 | 1590 |
} |
| 1536 | 1591 |
|
| 1537 |
/// \brief |
|
| 1592 |
/// \brief Returns \c true if the snapshot is valid. |
|
| 1538 | 1593 |
/// |
| 1539 |
/// |
|
| 1594 |
/// This function returns \c true if the snapshot is valid. |
|
| 1540 | 1595 |
bool valid() const {
|
| 1541 | 1596 |
return attached(); |
| 1542 | 1597 |
} |
| 1543 | 1598 |
}; |
| 1544 | 1599 |
}; |
| 1545 | 1600 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -81,13 +81,13 @@ |
| 81 | 81 |
typedef CplexMip Mip; |
| 82 | 82 |
#elif LEMON_HAVE_SOPLEX |
| 83 | 83 |
# define DEFAULT_LP SOPLEX |
| 84 | 84 |
typedef SoplexLp Lp; |
| 85 | 85 |
#elif LEMON_HAVE_CLP |
| 86 | 86 |
# define DEFAULT_LP CLP |
| 87 |
typedef ClpLp Lp; |
|
| 87 |
typedef ClpLp Lp; |
|
| 88 | 88 |
#endif |
| 89 | 89 |
#endif |
| 90 | 90 |
|
| 91 | 91 |
} //namespace lemon |
| 92 | 92 |
|
| 93 | 93 |
#endif //LEMON_LP_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -79,13 +79,13 @@ |
| 79 | 79 |
MESSAGE_WARNING, |
| 80 | 80 |
/// Normal output. |
| 81 | 81 |
MESSAGE_NORMAL, |
| 82 | 82 |
/// Verbose output. |
| 83 | 83 |
MESSAGE_VERBOSE |
| 84 | 84 |
}; |
| 85 |
|
|
| 85 |
|
|
| 86 | 86 |
|
| 87 | 87 |
///The floating point type used by the solver |
| 88 | 88 |
typedef double Value; |
| 89 | 89 |
///The infinity constant |
| 90 | 90 |
static const Value INF; |
| 91 | 91 |
///The not a number constant |
| ... | ... |
@@ -111,20 +111,20 @@ |
| 111 | 111 |
int _id; |
| 112 | 112 |
explicit Col(int id) : _id(id) {}
|
| 113 | 113 |
public: |
| 114 | 114 |
typedef Value ExprValue; |
| 115 | 115 |
typedef True LpCol; |
| 116 | 116 |
/// Default constructor |
| 117 |
|
|
| 117 |
|
|
| 118 | 118 |
/// \warning The default constructor sets the Col to an |
| 119 | 119 |
/// undefined value. |
| 120 | 120 |
Col() {}
|
| 121 | 121 |
/// Invalid constructor \& conversion. |
| 122 |
|
|
| 122 |
|
|
| 123 | 123 |
/// This constructor initializes the Col to be invalid. |
| 124 |
/// \sa Invalid for more details. |
|
| 124 |
/// \sa Invalid for more details. |
|
| 125 | 125 |
Col(const Invalid&) : _id(-1) {}
|
| 126 | 126 |
/// Equality operator |
| 127 | 127 |
|
| 128 | 128 |
/// Two \ref Col "Col"s are equal if and only if they point to |
| 129 | 129 |
/// the same LP column or both are invalid. |
| 130 | 130 |
bool operator==(Col c) const {return _id == c._id;}
|
| ... | ... |
@@ -143,41 +143,41 @@ |
| 143 | 143 |
/// ordering of the items. |
| 144 | 144 |
bool operator<(Col c) const {return _id < c._id;}
|
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
///Iterator for iterate over the columns of an LP problem |
| 148 | 148 |
|
| 149 |
/// Its usage is quite simple, for example you can count the number |
|
| 149 |
/// Its usage is quite simple, for example, you can count the number |
|
| 150 | 150 |
/// of columns in an LP \c lp: |
| 151 | 151 |
///\code |
| 152 | 152 |
/// int count=0; |
| 153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
| 154 | 154 |
///\endcode |
| 155 | 155 |
class ColIt : public Col {
|
| 156 | 156 |
const LpBase *_solver; |
| 157 | 157 |
public: |
| 158 | 158 |
/// Default constructor |
| 159 |
|
|
| 159 |
|
|
| 160 | 160 |
/// \warning The default constructor sets the iterator |
| 161 | 161 |
/// to an undefined value. |
| 162 | 162 |
ColIt() {}
|
| 163 | 163 |
/// Sets the iterator to the first Col |
| 164 |
|
|
| 164 |
|
|
| 165 | 165 |
/// Sets the iterator to the first Col. |
| 166 | 166 |
/// |
| 167 | 167 |
ColIt(const LpBase &solver) : _solver(&solver) |
| 168 | 168 |
{
|
| 169 | 169 |
_solver->cols.firstItem(_id); |
| 170 | 170 |
} |
| 171 | 171 |
/// Invalid constructor \& conversion |
| 172 |
|
|
| 172 |
|
|
| 173 | 173 |
/// Initialize the iterator to be invalid. |
| 174 | 174 |
/// \sa Invalid for more details. |
| 175 | 175 |
ColIt(const Invalid&) : Col(INVALID) {}
|
| 176 | 176 |
/// Next column |
| 177 |
|
|
| 177 |
|
|
| 178 | 178 |
/// Assign the iterator to the next column. |
| 179 | 179 |
/// |
| 180 | 180 |
ColIt &operator++() |
| 181 | 181 |
{
|
| 182 | 182 |
_solver->cols.nextItem(_id); |
| 183 | 183 |
return *this; |
| ... | ... |
@@ -206,28 +206,28 @@ |
| 206 | 206 |
int _id; |
| 207 | 207 |
explicit Row(int id) : _id(id) {}
|
| 208 | 208 |
public: |
| 209 | 209 |
typedef Value ExprValue; |
| 210 | 210 |
typedef True LpRow; |
| 211 | 211 |
/// Default constructor |
| 212 |
|
|
| 212 |
|
|
| 213 | 213 |
/// \warning The default constructor sets the Row to an |
| 214 | 214 |
/// undefined value. |
| 215 | 215 |
Row() {}
|
| 216 | 216 |
/// Invalid constructor \& conversion. |
| 217 |
|
|
| 217 |
|
|
| 218 | 218 |
/// This constructor initializes the Row to be invalid. |
| 219 |
/// \sa Invalid for more details. |
|
| 219 |
/// \sa Invalid for more details. |
|
| 220 | 220 |
Row(const Invalid&) : _id(-1) {}
|
| 221 | 221 |
/// Equality operator |
| 222 | 222 |
|
| 223 | 223 |
/// Two \ref Row "Row"s are equal if and only if they point to |
| 224 | 224 |
/// the same LP row or both are invalid. |
| 225 | 225 |
bool operator==(Row r) const {return _id == r._id;}
|
| 226 | 226 |
/// Inequality operator |
| 227 |
|
|
| 227 |
|
|
| 228 | 228 |
/// \sa operator==(Row r) |
| 229 | 229 |
/// |
| 230 | 230 |
bool operator!=(Row r) const {return _id != r._id;}
|
| 231 | 231 |
/// Artificial ordering operator. |
| 232 | 232 |
|
| 233 | 233 |
/// To allow the use of this object in std::map or similar |
| ... | ... |
@@ -238,41 +238,41 @@ |
| 238 | 238 |
/// ordering of the items. |
| 239 | 239 |
bool operator<(Row r) const {return _id < r._id;}
|
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
///Iterator for iterate over the rows of an LP problem |
| 243 | 243 |
|
| 244 |
/// Its usage is quite simple, for example you can count the number |
|
| 244 |
/// Its usage is quite simple, for example, you can count the number |
|
| 245 | 245 |
/// of rows in an LP \c lp: |
| 246 | 246 |
///\code |
| 247 | 247 |
/// int count=0; |
| 248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
| 249 | 249 |
///\endcode |
| 250 | 250 |
class RowIt : public Row {
|
| 251 | 251 |
const LpBase *_solver; |
| 252 | 252 |
public: |
| 253 | 253 |
/// Default constructor |
| 254 |
|
|
| 254 |
|
|
| 255 | 255 |
/// \warning The default constructor sets the iterator |
| 256 | 256 |
/// to an undefined value. |
| 257 | 257 |
RowIt() {}
|
| 258 | 258 |
/// Sets the iterator to the first Row |
| 259 |
|
|
| 259 |
|
|
| 260 | 260 |
/// Sets the iterator to the first Row. |
| 261 | 261 |
/// |
| 262 | 262 |
RowIt(const LpBase &solver) : _solver(&solver) |
| 263 | 263 |
{
|
| 264 | 264 |
_solver->rows.firstItem(_id); |
| 265 | 265 |
} |
| 266 | 266 |
/// Invalid constructor \& conversion |
| 267 |
|
|
| 267 |
|
|
| 268 | 268 |
/// Initialize the iterator to be invalid. |
| 269 | 269 |
/// \sa Invalid for more details. |
| 270 | 270 |
RowIt(const Invalid&) : Row(INVALID) {}
|
| 271 | 271 |
/// Next row |
| 272 |
|
|
| 272 |
|
|
| 273 | 273 |
/// Assign the iterator to the next row. |
| 274 | 274 |
/// |
| 275 | 275 |
RowIt &operator++() |
| 276 | 276 |
{
|
| 277 | 277 |
_solver->rows.nextItem(_id); |
| 278 | 278 |
return *this; |
| ... | ... |
@@ -344,13 +344,13 @@ |
| 344 | 344 |
Value const_comp; |
| 345 | 345 |
std::map<int, Value> comps; |
| 346 | 346 |
|
| 347 | 347 |
public: |
| 348 | 348 |
typedef True SolverExpr; |
| 349 | 349 |
/// Default constructor |
| 350 |
|
|
| 350 |
|
|
| 351 | 351 |
/// Construct an empty expression, the coefficients and |
| 352 | 352 |
/// the constant component are initialized to zero. |
| 353 | 353 |
Expr() : const_comp(0) {}
|
| 354 | 354 |
/// Construct an expression from a column |
| 355 | 355 |
|
| 356 | 356 |
/// Construct an expression, which has a term with \c c variable |
| ... | ... |
@@ -445,15 +445,15 @@ |
| 445 | 445 |
it->second/=c; |
| 446 | 446 |
const_comp/=c; |
| 447 | 447 |
return *this; |
| 448 | 448 |
} |
| 449 | 449 |
|
| 450 | 450 |
///Iterator over the expression |
| 451 |
|
|
| 452 |
///The iterator iterates over the terms of the expression. |
|
| 453 |
|
|
| 451 |
|
|
| 452 |
///The iterator iterates over the terms of the expression. |
|
| 453 |
/// |
|
| 454 | 454 |
///\code |
| 455 | 455 |
///double s=0; |
| 456 | 456 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
| 457 | 457 |
/// s+= *i * primal(i); |
| 458 | 458 |
///\endcode |
| 459 | 459 |
class CoeffIt {
|
| ... | ... |
@@ -461,13 +461,13 @@ |
| 461 | 461 |
|
| 462 | 462 |
std::map<int, Value>::iterator _it, _end; |
| 463 | 463 |
|
| 464 | 464 |
public: |
| 465 | 465 |
|
| 466 | 466 |
/// Sets the iterator to the first term |
| 467 |
|
|
| 467 |
|
|
| 468 | 468 |
/// Sets the iterator to the first term of the expression. |
| 469 | 469 |
/// |
| 470 | 470 |
CoeffIt(Expr& e) |
| 471 | 471 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 472 | 472 |
|
| 473 | 473 |
/// Convert the iterator to the column of the term |
| ... | ... |
@@ -478,27 +478,27 @@ |
| 478 | 478 |
/// Returns the coefficient of the term |
| 479 | 479 |
Value& operator*() { return _it->second; }
|
| 480 | 480 |
|
| 481 | 481 |
/// Returns the coefficient of the term |
| 482 | 482 |
const Value& operator*() const { return _it->second; }
|
| 483 | 483 |
/// Next term |
| 484 |
|
|
| 484 |
|
|
| 485 | 485 |
/// Assign the iterator to the next term. |
| 486 | 486 |
/// |
| 487 | 487 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 488 | 488 |
|
| 489 | 489 |
/// Equality operator |
| 490 | 490 |
bool operator==(Invalid) const { return _it == _end; }
|
| 491 | 491 |
/// Inequality operator |
| 492 | 492 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 493 | 493 |
}; |
| 494 | 494 |
|
| 495 | 495 |
/// Const iterator over the expression |
| 496 |
|
|
| 497 |
///The iterator iterates over the terms of the expression. |
|
| 498 |
|
|
| 496 |
|
|
| 497 |
///The iterator iterates over the terms of the expression. |
|
| 498 |
/// |
|
| 499 | 499 |
///\code |
| 500 | 500 |
///double s=0; |
| 501 | 501 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 502 | 502 |
/// s+=*i * primal(i); |
| 503 | 503 |
///\endcode |
| 504 | 504 |
class ConstCoeffIt {
|
| ... | ... |
@@ -506,13 +506,13 @@ |
| 506 | 506 |
|
| 507 | 507 |
std::map<int, Value>::const_iterator _it, _end; |
| 508 | 508 |
|
| 509 | 509 |
public: |
| 510 | 510 |
|
| 511 | 511 |
/// Sets the iterator to the first term |
| 512 |
|
|
| 512 |
|
|
| 513 | 513 |
/// Sets the iterator to the first term of the expression. |
| 514 | 514 |
/// |
| 515 | 515 |
ConstCoeffIt(const Expr& e) |
| 516 | 516 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 517 | 517 |
|
| 518 | 518 |
/// Convert the iterator to the column of the term |
| ... | ... |
@@ -521,13 +521,13 @@ |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
/// Returns the coefficient of the term |
| 524 | 524 |
const Value& operator*() const { return _it->second; }
|
| 525 | 525 |
|
| 526 | 526 |
/// Next term |
| 527 |
|
|
| 527 |
|
|
| 528 | 528 |
/// Assign the iterator to the next term. |
| 529 | 529 |
/// |
| 530 | 530 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 531 | 531 |
|
| 532 | 532 |
/// Equality operator |
| 533 | 533 |
bool operator==(Invalid) const { return _it == _end; }
|
| ... | ... |
@@ -670,13 +670,13 @@ |
| 670 | 670 |
protected: |
| 671 | 671 |
std::map<int, Value> comps; |
| 672 | 672 |
|
| 673 | 673 |
public: |
| 674 | 674 |
typedef True SolverExpr; |
| 675 | 675 |
/// Default constructor |
| 676 |
|
|
| 676 |
|
|
| 677 | 677 |
/// Construct an empty expression, the coefficients are |
| 678 | 678 |
/// initialized to zero. |
| 679 | 679 |
DualExpr() {}
|
| 680 | 680 |
/// Construct an expression from a row |
| 681 | 681 |
|
| 682 | 682 |
/// Construct an expression, which has a term with \c r dual |
| ... | ... |
@@ -705,13 +705,13 @@ |
| 705 | 705 |
comps.insert(pair_type(id(r), v)); |
| 706 | 706 |
} else {
|
| 707 | 707 |
comps.erase(id(r)); |
| 708 | 708 |
} |
| 709 | 709 |
} |
| 710 | 710 |
/// \brief Removes the coefficients which's absolute value does |
| 711 |
/// not exceed \c epsilon. |
|
| 711 |
/// not exceed \c epsilon. |
|
| 712 | 712 |
void simplify(Value epsilon = 0.0) {
|
| 713 | 713 |
std::map<int, Value>::iterator it=comps.begin(); |
| 714 | 714 |
while (it != comps.end()) {
|
| 715 | 715 |
std::map<int, Value>::iterator jt=it; |
| 716 | 716 |
++jt; |
| 717 | 717 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
| ... | ... |
@@ -754,15 +754,15 @@ |
| 754 | 754 |
it!=comps.end(); ++it) |
| 755 | 755 |
it->second/=v; |
| 756 | 756 |
return *this; |
| 757 | 757 |
} |
| 758 | 758 |
|
| 759 | 759 |
///Iterator over the expression |
| 760 |
|
|
| 761 |
///The iterator iterates over the terms of the expression. |
|
| 762 |
|
|
| 760 |
|
|
| 761 |
///The iterator iterates over the terms of the expression. |
|
| 762 |
/// |
|
| 763 | 763 |
///\code |
| 764 | 764 |
///double s=0; |
| 765 | 765 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
| 766 | 766 |
/// s+= *i * dual(i); |
| 767 | 767 |
///\endcode |
| 768 | 768 |
class CoeffIt {
|
| ... | ... |
@@ -770,13 +770,13 @@ |
| 770 | 770 |
|
| 771 | 771 |
std::map<int, Value>::iterator _it, _end; |
| 772 | 772 |
|
| 773 | 773 |
public: |
| 774 | 774 |
|
| 775 | 775 |
/// Sets the iterator to the first term |
| 776 |
|
|
| 776 |
|
|
| 777 | 777 |
/// Sets the iterator to the first term of the expression. |
| 778 | 778 |
/// |
| 779 | 779 |
CoeffIt(DualExpr& e) |
| 780 | 780 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 781 | 781 |
|
| 782 | 782 |
/// Convert the iterator to the row of the term |
| ... | ... |
@@ -788,27 +788,27 @@ |
| 788 | 788 |
Value& operator*() { return _it->second; }
|
| 789 | 789 |
|
| 790 | 790 |
/// Returns the coefficient of the term |
| 791 | 791 |
const Value& operator*() const { return _it->second; }
|
| 792 | 792 |
|
| 793 | 793 |
/// Next term |
| 794 |
|
|
| 794 |
|
|
| 795 | 795 |
/// Assign the iterator to the next term. |
| 796 | 796 |
/// |
| 797 | 797 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 798 | 798 |
|
| 799 | 799 |
/// Equality operator |
| 800 | 800 |
bool operator==(Invalid) const { return _it == _end; }
|
| 801 | 801 |
/// Inequality operator |
| 802 | 802 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 803 | 803 |
}; |
| 804 | 804 |
|
| 805 | 805 |
///Iterator over the expression |
| 806 |
|
|
| 807 |
///The iterator iterates over the terms of the expression. |
|
| 808 |
|
|
| 806 |
|
|
| 807 |
///The iterator iterates over the terms of the expression. |
|
| 808 |
/// |
|
| 809 | 809 |
///\code |
| 810 | 810 |
///double s=0; |
| 811 | 811 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 812 | 812 |
/// s+= *i * dual(i); |
| 813 | 813 |
///\endcode |
| 814 | 814 |
class ConstCoeffIt {
|
| ... | ... |
@@ -816,13 +816,13 @@ |
| 816 | 816 |
|
| 817 | 817 |
std::map<int, Value>::const_iterator _it, _end; |
| 818 | 818 |
|
| 819 | 819 |
public: |
| 820 | 820 |
|
| 821 | 821 |
/// Sets the iterator to the first term |
| 822 |
|
|
| 822 |
|
|
| 823 | 823 |
/// Sets the iterator to the first term of the expression. |
| 824 | 824 |
/// |
| 825 | 825 |
ConstCoeffIt(const DualExpr& e) |
| 826 | 826 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 827 | 827 |
|
| 828 | 828 |
/// Convert the iterator to the row of the term |
| ... | ... |
@@ -831,13 +831,13 @@ |
| 831 | 831 |
} |
| 832 | 832 |
|
| 833 | 833 |
/// Returns the coefficient of the term |
| 834 | 834 |
const Value& operator*() const { return _it->second; }
|
| 835 | 835 |
|
| 836 | 836 |
/// Next term |
| 837 |
|
|
| 837 |
|
|
| 838 | 838 |
/// Assign the iterator to the next term. |
| 839 | 839 |
/// |
| 840 | 840 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 841 | 841 |
|
| 842 | 842 |
/// Equality operator |
| 843 | 843 |
bool operator==(Invalid) const { return _it == _end; }
|
| ... | ... |
@@ -940,12 +940,20 @@ |
| 940 | 940 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); }
|
| 941 | 941 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
|
| 942 | 942 |
|
| 943 | 943 |
virtual int _addCol() = 0; |
| 944 | 944 |
virtual int _addRow() = 0; |
| 945 | 945 |
|
| 946 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 947 |
int row = _addRow(); |
|
| 948 |
_setRowCoeffs(row, b, e); |
|
| 949 |
_setRowLowerBound(row, l); |
|
| 950 |
_setRowUpperBound(row, u); |
|
| 951 |
return row; |
|
| 952 |
} |
|
| 953 |
|
|
| 946 | 954 |
virtual void _eraseCol(int col) = 0; |
| 947 | 955 |
virtual void _eraseRow(int row) = 0; |
| 948 | 956 |
|
| 949 | 957 |
virtual void _getColName(int col, std::string& name) const = 0; |
| 950 | 958 |
virtual void _setColName(int col, const std::string& name) = 0; |
| 951 | 959 |
virtual int _colByName(const std::string& name) const = 0; |
| ... | ... |
@@ -1204,24 +1212,30 @@ |
| 1204 | 1212 |
|
| 1205 | 1213 |
///\param l is the lower bound (-\ref INF means no bound) |
| 1206 | 1214 |
///\param e is a linear expression (see \ref Expr) |
| 1207 | 1215 |
///\param u is the upper bound (\ref INF means no bound) |
| 1208 | 1216 |
///\return The created row. |
| 1209 | 1217 |
Row addRow(Value l,const Expr &e, Value u) {
|
| 1210 |
Row r=addRow(); |
|
| 1211 |
row(r,l,e,u); |
|
| 1218 |
Row r; |
|
| 1219 |
e.simplify(); |
|
| 1220 |
r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols), |
|
| 1221 |
ExprIterator(e.comps.end(), cols), u - *e)); |
|
| 1212 | 1222 |
return r; |
| 1213 | 1223 |
} |
| 1214 | 1224 |
|
| 1215 | 1225 |
///Add a new row (i.e a new constraint) to the LP |
| 1216 | 1226 |
|
| 1217 | 1227 |
///\param c is a linear expression (see \ref Constr) |
| 1218 | 1228 |
///\return The created row. |
| 1219 | 1229 |
Row addRow(const Constr &c) {
|
| 1220 |
Row r=addRow(); |
|
| 1221 |
row(r,c); |
|
| 1230 |
Row r; |
|
| 1231 |
c.expr().simplify(); |
|
| 1232 |
r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, |
|
| 1233 |
ExprIterator(c.expr().comps.begin(), cols), |
|
| 1234 |
ExprIterator(c.expr().comps.end(), cols), |
|
| 1235 |
c.upperBounded()?c.upperBound()-*c.expr():INF)); |
|
| 1222 | 1236 |
return r; |
| 1223 | 1237 |
} |
| 1224 | 1238 |
///Erase a column (i.e a variable) from the LP |
| 1225 | 1239 |
|
| 1226 | 1240 |
///\param c is the column to be deleted |
| 1227 | 1241 |
void erase(Col c) {
|
| ... | ... |
@@ -1800,16 +1814,16 @@ |
| 1800 | 1814 |
UNBOUNDED = 4 |
| 1801 | 1815 |
}; |
| 1802 | 1816 |
|
| 1803 | 1817 |
///The basis status of variables |
| 1804 | 1818 |
enum VarStatus {
|
| 1805 | 1819 |
/// The variable is in the basis |
| 1806 |
BASIC, |
|
| 1820 |
BASIC, |
|
| 1807 | 1821 |
/// The variable is free, but not basic |
| 1808 | 1822 |
FREE, |
| 1809 |
/// The variable has active lower bound |
|
| 1823 |
/// The variable has active lower bound |
|
| 1810 | 1824 |
LOWER, |
| 1811 | 1825 |
/// The variable has active upper bound |
| 1812 | 1826 |
UPPER, |
| 1813 | 1827 |
/// The variable is non-basic and fixed |
| 1814 | 1828 |
FIXED |
| 1815 | 1829 |
}; |
| ... | ... |
@@ -1882,13 +1896,13 @@ |
| 1882 | 1896 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
|
| 1883 | 1897 |
res += *c * primal(c); |
| 1884 | 1898 |
} |
| 1885 | 1899 |
return res; |
| 1886 | 1900 |
} |
| 1887 | 1901 |
/// Returns a component of the primal ray |
| 1888 |
|
|
| 1902 |
|
|
| 1889 | 1903 |
/// The primal ray is solution of the modified primal problem, |
| 1890 | 1904 |
/// where we change each finite bound to 0, and we looking for a |
| 1891 | 1905 |
/// negative objective value in case of minimization, and positive |
| 1892 | 1906 |
/// objective value for maximization. If there is such solution, |
| 1893 | 1907 |
/// that proofs the unsolvability of the dual problem, and if a |
| 1894 | 1908 |
/// feasible primal solution exists, then the unboundness of |
| ... | ... |
@@ -1916,13 +1930,13 @@ |
| 1916 | 1930 |
res += *r * dual(r); |
| 1917 | 1931 |
} |
| 1918 | 1932 |
return res; |
| 1919 | 1933 |
} |
| 1920 | 1934 |
|
| 1921 | 1935 |
/// Returns a component of the dual ray |
| 1922 |
|
|
| 1936 |
|
|
| 1923 | 1937 |
/// The dual ray is solution of the modified primal problem, where |
| 1924 | 1938 |
/// we change each finite bound to 0 (i.e. the objective function |
| 1925 | 1939 |
/// coefficients in the primal problem), and we looking for a |
| 1926 | 1940 |
/// ositive objective value. If there is such solution, that |
| 1927 | 1941 |
/// proofs the unsolvability of the primal problem, and if a |
| 1928 | 1942 |
/// feasible dual solution exists, then the unboundness of |
| ... | ... |
@@ -2058,13 +2072,13 @@ |
| 2058 | 2072 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
|
| 2059 | 2073 |
res += *c * sol(c); |
| 2060 | 2074 |
} |
| 2061 | 2075 |
return res; |
| 2062 | 2076 |
} |
| 2063 | 2077 |
///The value of the objective function |
| 2064 |
|
|
| 2078 |
|
|
| 2065 | 2079 |
///\return |
| 2066 | 2080 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
| 2067 | 2081 |
/// of the problem, depending on whether we minimize or maximize. |
| 2068 | 2082 |
///- \ref NaN if no primal solution is found. |
| 2069 | 2083 |
///- The (finite) objective value if an optimal solution is found. |
| 2070 | 2084 |
Value solValue() const { return _getSolValue()+obj_const_comp;}
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -29,12 +29,17 @@ |
| 29 | 29 |
|
| 30 | 30 |
int SkeletonSolverBase::_addRow() |
| 31 | 31 |
{
|
| 32 | 32 |
return ++row_num; |
| 33 | 33 |
} |
| 34 | 34 |
|
| 35 |
int SkeletonSolverBase::_addRow(Value, ExprIterator, ExprIterator, Value) |
|
| 36 |
{
|
|
| 37 |
return ++row_num; |
|
| 38 |
} |
|
| 39 |
|
|
| 35 | 40 |
void SkeletonSolverBase::_eraseCol(int) {}
|
| 36 | 41 |
void SkeletonSolverBase::_eraseRow(int) {}
|
| 37 | 42 |
|
| 38 | 43 |
void SkeletonSolverBase::_getColName(int, std::string &) const {}
|
| 39 | 44 |
void SkeletonSolverBase::_setColName(int, const std::string &) {}
|
| 40 | 45 |
int SkeletonSolverBase::_colByName(const std::string&) const { return -1; }
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -20,19 +20,19 @@ |
| 20 | 20 |
#define LEMON_LP_SKELETON_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/lp_base.h> |
| 23 | 23 |
|
| 24 | 24 |
///\file |
| 25 | 25 |
///\brief Skeleton file to implement LP/MIP solver interfaces |
| 26 |
/// |
|
| 26 |
/// |
|
| 27 | 27 |
///The classes in this file do nothing, but they can serve as skeletons when |
| 28 | 28 |
///implementing an interface to new solvers. |
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
///A skeleton class to implement LP/MIP solver base interface |
| 32 |
|
|
| 32 |
|
|
| 33 | 33 |
///This class does nothing, but it can serve as a skeleton when |
| 34 | 34 |
///implementing an interface to new solvers. |
| 35 | 35 |
class SkeletonSolverBase : public virtual LpBase {
|
| 36 | 36 |
int col_num,row_num; |
| 37 | 37 |
|
| 38 | 38 |
protected: |
| ... | ... |
@@ -42,12 +42,14 @@ |
| 42 | 42 |
|
| 43 | 43 |
/// \e |
| 44 | 44 |
virtual int _addCol(); |
| 45 | 45 |
/// \e |
| 46 | 46 |
virtual int _addRow(); |
| 47 | 47 |
/// \e |
| 48 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 49 |
/// \e |
|
| 48 | 50 |
virtual void _eraseCol(int i); |
| 49 | 51 |
/// \e |
| 50 | 52 |
virtual void _eraseRow(int i); |
| 51 | 53 |
|
| 52 | 54 |
/// \e |
| 53 | 55 |
virtual void _getColName(int col, std::string& name) const; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -19,21 +19,20 @@ |
| 19 | 19 |
#ifndef LEMON_MAPS_H |
| 20 | 20 |
#define LEMON_MAPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
#include <functional> |
| 24 | 24 |
#include <vector> |
| 25 |
#include <map> |
|
| 25 | 26 |
|
| 26 | 27 |
#include <lemon/core.h> |
| 27 | 28 |
|
| 28 | 29 |
///\file |
| 29 | 30 |
///\ingroup maps |
| 30 | 31 |
///\brief Miscellaneous property maps |
| 31 | 32 |
|
| 32 |
#include <map> |
|
| 33 |
|
|
| 34 | 33 |
namespace lemon {
|
| 35 | 34 |
|
| 36 | 35 |
/// \addtogroup maps |
| 37 | 36 |
/// @{
|
| 38 | 37 |
|
| 39 | 38 |
/// Base class of maps. |
| ... | ... |
@@ -54,13 +53,13 @@ |
| 54 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
| 55 | 54 |
|
| 56 | 55 |
/// This map can be used if you have to provide a map only for |
| 57 | 56 |
/// its type definitions, or if you have to provide a writable map, |
| 58 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
| 59 | 58 |
/// <tt>/dev/null</tt>). |
| 60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 59 |
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 61 | 60 |
/// |
| 62 | 61 |
/// \sa ConstMap |
| 63 | 62 |
template<typename K, typename V> |
| 64 | 63 |
class NullMap : public MapBase<K, V> {
|
| 65 | 64 |
public: |
| 66 | 65 |
///\e |
| ... | ... |
@@ -87,13 +86,13 @@ |
| 87 | 86 |
/// Constant map. |
| 88 | 87 |
|
| 89 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 90 | 89 |
/// value to each key. |
| 91 | 90 |
/// |
| 92 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
| 93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 92 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 94 | 93 |
/// concept, but it absorbs the data written to it. |
| 95 | 94 |
/// |
| 96 | 95 |
/// The simplest way of using this map is through the constMap() |
| 97 | 96 |
/// function. |
| 98 | 97 |
/// |
| 99 | 98 |
/// \sa NullMap |
| ... | ... |
@@ -156,13 +155,13 @@ |
| 156 | 155 |
/// Constant map with inlined constant value. |
| 157 | 156 |
|
| 158 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 159 | 158 |
/// value to each key. |
| 160 | 159 |
/// |
| 161 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
| 162 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 163 | 162 |
/// concept, but it absorbs the data written to it. |
| 164 | 163 |
/// |
| 165 | 164 |
/// The simplest way of using this map is through the constMap() |
| 166 | 165 |
/// function. |
| 167 | 166 |
/// |
| 168 | 167 |
/// \sa NullMap |
| ... | ... |
@@ -228,15 +227,15 @@ |
| 228 | 227 |
|
| 229 | 228 |
/// \brief Map for storing values for integer keys from the range |
| 230 | 229 |
/// <tt>[0..size-1]</tt>. |
| 231 | 230 |
/// |
| 232 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
| 233 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
| 234 |
/// It can be used with some data structures, for example |
|
| 235 |
/// \c UnionFind, \c BinHeap, when the used items are small |
|
| 236 |
/// |
|
| 233 |
/// It can be used together with some data structures, e.g. |
|
| 234 |
/// heap types and \c UnionFind, when the used items are small |
|
| 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
|
| 237 | 236 |
/// "ReferenceMap" concept. |
| 238 | 237 |
/// |
| 239 | 238 |
/// The simplest way of using this map is through the rangeMap() |
| 240 | 239 |
/// function. |
| 241 | 240 |
template <typename V> |
| 242 | 241 |
class RangeMap : public MapBase<int, V> {
|
| ... | ... |
@@ -338,23 +337,23 @@ |
| 338 | 337 |
/// Map type based on \c std::map |
| 339 | 338 |
|
| 340 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
| 341 | 340 |
/// that you can specify a default value for the keys that are not |
| 342 | 341 |
/// stored actually. This value can be different from the default |
| 343 | 342 |
/// contructed value (i.e. \c %Value()). |
| 344 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
| 343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
|
| 345 | 344 |
/// concept. |
| 346 | 345 |
/// |
| 347 | 346 |
/// This map is useful if a default value should be assigned to most of |
| 348 | 347 |
/// the keys and different values should be assigned only to a few |
| 349 | 348 |
/// keys (i.e. the map is "sparse"). |
| 350 | 349 |
/// The name of this type also refers to this important usage. |
| 351 | 350 |
/// |
| 352 |
/// Apart form that this map can be used in many other cases since it |
|
| 351 |
/// Apart form that, this map can be used in many other cases since it |
|
| 353 | 352 |
/// is based on \c std::map, which is a general associative container. |
| 354 |
/// However keep in mind that it is usually not as efficient as other |
|
| 353 |
/// However, keep in mind that it is usually not as efficient as other |
|
| 355 | 354 |
/// maps. |
| 356 | 355 |
/// |
| 357 | 356 |
/// The simplest way of using this map is through the sparseMap() |
| 358 | 357 |
/// function. |
| 359 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
| 360 | 359 |
class SparseMap : public MapBase<K, V> {
|
| ... | ... |
@@ -704,13 +703,13 @@ |
| 704 | 703 |
/// another type using the default conversion. |
| 705 | 704 |
|
| 706 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
| 707 | 706 |
/// "readable map" to another type using the default conversion. |
| 708 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
| 709 | 708 |
/// type is \c V. |
| 710 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
| 709 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 711 | 710 |
/// |
| 712 | 711 |
/// The simplest way of using this map is through the convertMap() |
| 713 | 712 |
/// function. |
| 714 | 713 |
template <typename M, typename V> |
| 715 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
| 716 | 715 |
const M &_m; |
| ... | ... |
@@ -1783,28 +1782,28 @@ |
| 1783 | 1782 |
/// Returns a \c LoggerBoolMap class |
| 1784 | 1783 |
|
| 1785 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
| 1786 | 1785 |
/// |
| 1787 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
| 1788 | 1787 |
/// that were marked \c true by an algorithm. |
| 1789 |
/// For example it makes easier to store the nodes in the processing |
|
| 1788 |
/// For example, it makes easier to store the nodes in the processing |
|
| 1790 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
| 1791 | 1790 |
/// \code |
| 1792 | 1791 |
/// std::vector<Node> v; |
| 1793 |
/// dfs(g |
|
| 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
| 1794 | 1793 |
/// \endcode |
| 1795 | 1794 |
/// \code |
| 1796 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
| 1797 |
/// dfs(g |
|
| 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
| 1798 | 1797 |
/// \endcode |
| 1799 | 1798 |
/// |
| 1800 | 1799 |
/// \note The container of the iterator must contain enough space |
| 1801 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
| 1802 | 1801 |
/// |
| 1803 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
| 1804 |
/// it cannot be used when a readable map is needed, for example as |
|
| 1803 |
/// it cannot be used when a readable map is needed, for example, as |
|
| 1805 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
| 1806 | 1805 |
/// |
| 1807 | 1806 |
/// \relates LoggerBoolMap |
| 1808 | 1807 |
template<typename Iterator> |
| 1809 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
| 1810 | 1809 |
return LoggerBoolMap<Iterator>(it); |
| ... | ... |
@@ -1815,21 +1814,21 @@ |
| 1815 | 1814 |
/// \addtogroup graph_maps |
| 1816 | 1815 |
/// @{
|
| 1817 | 1816 |
|
| 1818 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
| 1819 | 1818 |
/// |
| 1820 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
| 1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
| 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
| 1822 | 1821 |
/// - \b unique: different items get different ids, |
| 1823 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
| 1824 | 1823 |
/// delete other nodes). |
| 1825 | 1824 |
/// |
| 1826 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
| 1827 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
| 1828 | 1827 |
/// function of the graph. This map can be inverted with its member |
| 1829 |
/// class \c InverseMap or with the \c operator() member. |
|
| 1828 |
/// class \c InverseMap or with the \c operator()() member. |
|
| 1830 | 1829 |
/// |
| 1831 | 1830 |
/// \tparam GR The graph type. |
| 1832 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1833 | 1832 |
/// \c GR::Edge). |
| 1834 | 1833 |
/// |
| 1835 | 1834 |
/// \see RangeIdMap |
| ... | ... |
@@ -1863,15 +1862,17 @@ |
| 1863 | 1862 |
|
| 1864 | 1863 |
private: |
| 1865 | 1864 |
const Graph* _graph; |
| 1866 | 1865 |
|
| 1867 | 1866 |
public: |
| 1868 | 1867 |
|
| 1869 |
/// \brief |
|
| 1868 |
/// \brief The inverse map type of IdMap. |
|
| 1870 | 1869 |
/// |
| 1871 |
/// |
|
| 1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
|
| 1871 |
/// an item by its id. |
|
| 1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 1872 | 1873 |
/// \see inverse() |
| 1873 | 1874 |
class InverseMap {
|
| 1874 | 1875 |
public: |
| 1875 | 1876 |
|
| 1876 | 1877 |
/// \brief Constructor. |
| 1877 | 1878 |
/// |
| ... | ... |
@@ -1880,35 +1881,52 @@ |
| 1880 | 1881 |
|
| 1881 | 1882 |
/// \brief Constructor. |
| 1882 | 1883 |
/// |
| 1883 | 1884 |
/// Constructor for creating an id-to-item map. |
| 1884 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1885 | 1886 |
|
| 1886 |
/// \brief Gives back |
|
| 1887 |
/// \brief Gives back an item by its id. |
|
| 1887 | 1888 |
/// |
| 1888 |
/// Gives back |
|
| 1889 |
/// Gives back an item by its id. |
|
| 1889 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1890 | 1891 |
|
| 1891 | 1892 |
private: |
| 1892 | 1893 |
const Graph* _graph; |
| 1893 | 1894 |
}; |
| 1894 | 1895 |
|
| 1895 | 1896 |
/// \brief Gives back the inverse of the map. |
| 1896 | 1897 |
/// |
| 1897 | 1898 |
/// Gives back the inverse of the IdMap. |
| 1898 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1899 | 1900 |
}; |
| 1900 | 1901 |
|
| 1902 |
/// \brief Returns an \c IdMap class. |
|
| 1903 |
/// |
|
| 1904 |
/// This function just returns an \c IdMap class. |
|
| 1905 |
/// \relates IdMap |
|
| 1906 |
template <typename K, typename GR> |
|
| 1907 |
inline IdMap<GR, K> idMap(const GR& graph) {
|
|
| 1908 |
return IdMap<GR, K>(graph); |
|
| 1909 |
} |
|
| 1901 | 1910 |
|
| 1902 | 1911 |
/// \brief General cross reference graph map type. |
| 1903 | 1912 |
|
| 1904 | 1913 |
/// This class provides simple invertable graph maps. |
| 1905 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
| 1906 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
| 1907 |
/// The values of the map can be accessed |
|
| 1908 |
/// with stl compatible forward iterator. |
|
| 1916 |
/// The graph items can be accessed by their values either using |
|
| 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
|
| 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
|
| 1919 |
/// |
|
| 1920 |
/// This map is intended to be used when all associated values are |
|
| 1921 |
/// different (the map is actually invertable) or there are only a few |
|
| 1922 |
/// items with the same value. |
|
| 1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
| 1924 |
/// suitable and more efficient for such cases. It provides iterators |
|
| 1925 |
/// to traverse the items with the same associated value, but |
|
| 1926 |
/// it does not have \c InverseMap. |
|
| 1909 | 1927 |
/// |
| 1910 | 1928 |
/// This type is not reference map, so it cannot be modified with |
| 1911 | 1929 |
/// the subscript operator. |
| 1912 | 1930 |
/// |
| 1913 | 1931 |
/// \tparam GR The graph type. |
| 1914 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| ... | ... |
@@ -1943,62 +1961,72 @@ |
| 1943 | 1961 |
/// |
| 1944 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
| 1945 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
| 1946 | 1964 |
|
| 1947 | 1965 |
/// \brief Forward iterator for values. |
| 1948 | 1966 |
/// |
| 1949 |
/// This iterator is an |
|
| 1967 |
/// This iterator is an STL compatible forward |
|
| 1950 | 1968 |
/// iterator on the values of the map. The values can |
| 1951 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
| 1952 | 1970 |
/// They are considered with multiplicity, so each value is |
| 1953 | 1971 |
/// traversed for each item it is assigned to. |
| 1954 |
class |
|
| 1972 |
class ValueIt |
|
| 1955 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1956 | 1974 |
friend class CrossRefMap; |
| 1957 | 1975 |
private: |
| 1958 |
|
|
| 1976 |
ValueIt(typename Container::const_iterator _it) |
|
| 1959 | 1977 |
: it(_it) {}
|
| 1960 | 1978 |
public: |
| 1961 | 1979 |
|
| 1962 |
ValueIterator() {}
|
|
| 1963 |
|
|
| 1964 |
ValueIterator& operator++() { ++it; return *this; }
|
|
| 1965 |
ValueIterator operator++(int) {
|
|
| 1966 |
|
|
| 1980 |
/// Constructor |
|
| 1981 |
ValueIt() {}
|
|
| 1982 |
|
|
| 1983 |
/// \e |
|
| 1984 |
ValueIt& operator++() { ++it; return *this; }
|
|
| 1985 |
/// \e |
|
| 1986 |
ValueIt operator++(int) {
|
|
| 1987 |
ValueIt tmp(*this); |
|
| 1967 | 1988 |
operator++(); |
| 1968 | 1989 |
return tmp; |
| 1969 | 1990 |
} |
| 1970 | 1991 |
|
| 1992 |
/// \e |
|
| 1971 | 1993 |
const Value& operator*() const { return it->first; }
|
| 1994 |
/// \e |
|
| 1972 | 1995 |
const Value* operator->() const { return &(it->first); }
|
| 1973 | 1996 |
|
| 1974 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
|
| 1975 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
|
| 1997 |
/// \e |
|
| 1998 |
bool operator==(ValueIt jt) const { return it == jt.it; }
|
|
| 1999 |
/// \e |
|
| 2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; }
|
|
| 1976 | 2001 |
|
| 1977 | 2002 |
private: |
| 1978 | 2003 |
typename Container::const_iterator it; |
| 1979 | 2004 |
}; |
| 1980 | 2005 |
|
| 2006 |
/// Alias for \c ValueIt |
|
| 2007 |
typedef ValueIt ValueIterator; |
|
| 2008 |
|
|
| 1981 | 2009 |
/// \brief Returns an iterator to the first value. |
| 1982 | 2010 |
/// |
| 1983 |
/// Returns an |
|
| 2011 |
/// Returns an STL compatible iterator to the |
|
| 1984 | 2012 |
/// first value of the map. The values of the |
| 1985 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1986 | 2014 |
/// range. |
| 1987 |
ValueIterator beginValue() const {
|
|
| 1988 |
return ValueIterator(_inv_map.begin()); |
|
| 2015 |
ValueIt beginValue() const {
|
|
| 2016 |
return ValueIt(_inv_map.begin()); |
|
| 1989 | 2017 |
} |
| 1990 | 2018 |
|
| 1991 | 2019 |
/// \brief Returns an iterator after the last value. |
| 1992 | 2020 |
/// |
| 1993 |
/// Returns an |
|
| 2021 |
/// Returns an STL compatible iterator after the |
|
| 1994 | 2022 |
/// last value of the map. The values of the |
| 1995 | 2023 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1996 | 2024 |
/// range. |
| 1997 |
ValueIterator endValue() const {
|
|
| 1998 |
return ValueIterator(_inv_map.end()); |
|
| 2025 |
ValueIt endValue() const {
|
|
| 2026 |
return ValueIt(_inv_map.end()); |
|
| 1999 | 2027 |
} |
| 2000 | 2028 |
|
| 2001 | 2029 |
/// \brief Sets the value associated with the given key. |
| 2002 | 2030 |
/// |
| 2003 | 2031 |
/// Sets the value associated with the given key. |
| 2004 | 2032 |
void set(const Key& key, const Value& val) {
|
| ... | ... |
@@ -2031,12 +2059,20 @@ |
| 2031 | 2059 |
/// only one of them is returned. |
| 2032 | 2060 |
Key operator()(const Value& val) const {
|
| 2033 | 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
| 2034 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
| 2035 | 2063 |
} |
| 2036 | 2064 |
|
| 2065 |
/// \brief Returns the number of items with the given value. |
|
| 2066 |
/// |
|
| 2067 |
/// This function returns the number of items with the given value |
|
| 2068 |
/// associated with it. |
|
| 2069 |
int count(const Value &val) const {
|
|
| 2070 |
return _inv_map.count(val); |
|
| 2071 |
} |
|
| 2072 |
|
|
| 2037 | 2073 |
protected: |
| 2038 | 2074 |
|
| 2039 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
| 2040 | 2076 |
/// |
| 2041 | 2077 |
/// Erase the key from the map and the inverse map. It is called by the |
| 2042 | 2078 |
/// \c AlterationNotifier. |
| ... | ... |
@@ -2080,16 +2116,18 @@ |
| 2080 | 2116 |
_inv_map.clear(); |
| 2081 | 2117 |
Map::clear(); |
| 2082 | 2118 |
} |
| 2083 | 2119 |
|
| 2084 | 2120 |
public: |
| 2085 | 2121 |
|
| 2086 |
/// \brief The inverse map type. |
|
| 2122 |
/// \brief The inverse map type of CrossRefMap. |
|
| 2087 | 2123 |
/// |
| 2088 |
/// The inverse of this map. The subscript operator of the map |
|
| 2089 |
/// gives back the item that was last assigned to the value. |
|
| 2124 |
/// The inverse map type of CrossRefMap. The subscript operator gives |
|
| 2125 |
/// back an item by its value. |
|
| 2126 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 2127 |
/// \see inverse() |
|
| 2090 | 2128 |
class InverseMap {
|
| 2091 | 2129 |
public: |
| 2092 | 2130 |
/// \brief Constructor |
| 2093 | 2131 |
/// |
| 2094 | 2132 |
/// Constructor of the InverseMap. |
| 2095 | 2133 |
explicit InverseMap(const CrossRefMap& inverted) |
| ... | ... |
@@ -2110,37 +2148,37 @@ |
| 2110 | 2148 |
} |
| 2111 | 2149 |
|
| 2112 | 2150 |
private: |
| 2113 | 2151 |
const CrossRefMap& _inverted; |
| 2114 | 2152 |
}; |
| 2115 | 2153 |
|
| 2116 |
/// \brief |
|
| 2154 |
/// \brief Gives back the inverse of the map. |
|
| 2117 | 2155 |
/// |
| 2118 |
/// |
|
| 2156 |
/// Gives back the inverse of the CrossRefMap. |
|
| 2119 | 2157 |
InverseMap inverse() const {
|
| 2120 | 2158 |
return InverseMap(*this); |
| 2121 | 2159 |
} |
| 2122 | 2160 |
|
| 2123 | 2161 |
}; |
| 2124 | 2162 |
|
| 2125 |
/// \brief Provides continuous and unique |
|
| 2163 |
/// \brief Provides continuous and unique id for the |
|
| 2126 | 2164 |
/// items of a graph. |
| 2127 | 2165 |
/// |
| 2128 | 2166 |
/// RangeIdMap provides a unique and continuous |
| 2129 |
/// |
|
| 2167 |
/// id for each item of a given type (\c Node, \c Arc or |
|
| 2130 | 2168 |
/// \c Edge) in a graph. This id is |
| 2131 | 2169 |
/// - \b unique: different items get different ids, |
| 2132 | 2170 |
/// - \b continuous: the range of the ids is the set of integers |
| 2133 | 2171 |
/// between 0 and \c n-1, where \c n is the number of the items of |
| 2134 | 2172 |
/// this type (\c Node, \c Arc or \c Edge). |
| 2135 | 2173 |
/// - So, the ids can change when deleting an item of the same type. |
| 2136 | 2174 |
/// |
| 2137 | 2175 |
/// Thus this id is not (necessarily) the same as what can get using |
| 2138 | 2176 |
/// the \c id() function of the graph or \ref IdMap. |
| 2139 | 2177 |
/// This map can be inverted with its member class \c InverseMap, |
| 2140 |
/// or with the \c operator() member. |
|
| 2178 |
/// or with the \c operator()() member. |
|
| 2141 | 2179 |
/// |
| 2142 | 2180 |
/// \tparam GR The graph type. |
| 2143 | 2181 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 2144 | 2182 |
/// \c GR::Edge). |
| 2145 | 2183 |
/// |
| 2146 | 2184 |
/// \see IdMap |
| ... | ... |
@@ -2262,22 +2300,22 @@ |
| 2262 | 2300 |
Map::set(p, qi); |
| 2263 | 2301 |
_inv_map[qi] = p; |
| 2264 | 2302 |
Map::set(q, pi); |
| 2265 | 2303 |
_inv_map[pi] = q; |
| 2266 | 2304 |
} |
| 2267 | 2305 |
|
| 2268 |
/// \brief Gives back the \e |
|
| 2306 |
/// \brief Gives back the \e range \e id of the item |
|
| 2269 | 2307 |
/// |
| 2270 |
/// Gives back the \e |
|
| 2308 |
/// Gives back the \e range \e id of the item. |
|
| 2271 | 2309 |
int operator[](const Item& item) const {
|
| 2272 | 2310 |
return Map::operator[](item); |
| 2273 | 2311 |
} |
| 2274 | 2312 |
|
| 2275 |
/// \brief Gives back the item belonging to a \e RangeId |
|
| 2276 |
/// |
|
| 2277 |
/// Gives back the item belonging to a \e |
|
| 2313 |
/// \brief Gives back the item belonging to a \e range \e id |
|
| 2314 |
/// |
|
| 2315 |
/// Gives back the item belonging to the given \e range \e id. |
|
| 2278 | 2316 |
Item operator()(int id) const {
|
| 2279 | 2317 |
return _inv_map[id]; |
| 2280 | 2318 |
} |
| 2281 | 2319 |
|
| 2282 | 2320 |
private: |
| 2283 | 2321 |
|
| ... | ... |
@@ -2285,13 +2323,15 @@ |
| 2285 | 2323 |
Container _inv_map; |
| 2286 | 2324 |
|
| 2287 | 2325 |
public: |
| 2288 | 2326 |
|
| 2289 | 2327 |
/// \brief The inverse map type of RangeIdMap. |
| 2290 | 2328 |
/// |
| 2291 |
/// The inverse map type of RangeIdMap. |
|
| 2329 |
/// The inverse map type of RangeIdMap. The subscript operator gives |
|
| 2330 |
/// back an item by its \e range \e id. |
|
| 2331 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 2292 | 2332 |
class InverseMap {
|
| 2293 | 2333 |
public: |
| 2294 | 2334 |
/// \brief Constructor |
| 2295 | 2335 |
/// |
| 2296 | 2336 |
/// Constructor of the InverseMap. |
| 2297 | 2337 |
explicit InverseMap(const RangeIdMap& inverted) |
| ... | ... |
@@ -2303,13 +2343,13 @@ |
| 2303 | 2343 |
/// The key type of the InverseMap. |
| 2304 | 2344 |
typedef typename RangeIdMap::Value Key; |
| 2305 | 2345 |
|
| 2306 | 2346 |
/// \brief Subscript operator. |
| 2307 | 2347 |
/// |
| 2308 | 2348 |
/// Subscript operator. It gives back the item |
| 2309 |
/// that the |
|
| 2349 |
/// that the given \e range \e id currently belongs to. |
|
| 2310 | 2350 |
Value operator[](const Key& key) const {
|
| 2311 | 2351 |
return _inverted(key); |
| 2312 | 2352 |
} |
| 2313 | 2353 |
|
| 2314 | 2354 |
/// \brief Size of the map. |
| 2315 | 2355 |
/// |
| ... | ... |
@@ -2321,31 +2361,951 @@ |
| 2321 | 2361 |
private: |
| 2322 | 2362 |
const RangeIdMap& _inverted; |
| 2323 | 2363 |
}; |
| 2324 | 2364 |
|
| 2325 | 2365 |
/// \brief Gives back the inverse of the map. |
| 2326 | 2366 |
/// |
| 2327 |
/// Gives back the inverse of the |
|
| 2367 |
/// Gives back the inverse of the RangeIdMap. |
|
| 2328 | 2368 |
const InverseMap inverse() const {
|
| 2329 | 2369 |
return InverseMap(*this); |
| 2330 | 2370 |
} |
| 2331 | 2371 |
}; |
| 2332 | 2372 |
|
| 2373 |
/// \brief Returns a \c RangeIdMap class. |
|
| 2374 |
/// |
|
| 2375 |
/// This function just returns an \c RangeIdMap class. |
|
| 2376 |
/// \relates RangeIdMap |
|
| 2377 |
template <typename K, typename GR> |
|
| 2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
|
|
| 2379 |
return RangeIdMap<GR, K>(graph); |
|
| 2380 |
} |
|
| 2381 |
|
|
| 2382 |
/// \brief Dynamic iterable \c bool map. |
|
| 2383 |
/// |
|
| 2384 |
/// This class provides a special graph map type which can store a |
|
| 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2386 |
/// For both \c true and \c false values it is possible to iterate on |
|
| 2387 |
/// the keys mapped to the value. |
|
| 2388 |
/// |
|
| 2389 |
/// This type is a reference map, so it can be modified with the |
|
| 2390 |
/// subscript operator. |
|
| 2391 |
/// |
|
| 2392 |
/// \tparam GR The graph type. |
|
| 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2394 |
/// \c GR::Edge). |
|
| 2395 |
/// |
|
| 2396 |
/// \see IterableIntMap, IterableValueMap |
|
| 2397 |
/// \see CrossRefMap |
|
| 2398 |
template <typename GR, typename K> |
|
| 2399 |
class IterableBoolMap |
|
| 2400 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
|
| 2401 |
private: |
|
| 2402 |
typedef GR Graph; |
|
| 2403 |
|
|
| 2404 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
| 2405 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
| 2406 |
|
|
| 2407 |
std::vector<K> _array; |
|
| 2408 |
int _sep; |
|
| 2409 |
|
|
| 2410 |
public: |
|
| 2411 |
|
|
| 2412 |
/// Indicates that the map is reference map. |
|
| 2413 |
typedef True ReferenceMapTag; |
|
| 2414 |
|
|
| 2415 |
/// The key type |
|
| 2416 |
typedef K Key; |
|
| 2417 |
/// The value type |
|
| 2418 |
typedef bool Value; |
|
| 2419 |
/// The const reference type. |
|
| 2420 |
typedef const Value& ConstReference; |
|
| 2421 |
|
|
| 2422 |
private: |
|
| 2423 |
|
|
| 2424 |
int position(const Key& key) const {
|
|
| 2425 |
return Parent::operator[](key); |
|
| 2426 |
} |
|
| 2427 |
|
|
| 2428 |
public: |
|
| 2429 |
|
|
| 2430 |
/// \brief Reference to the value of the map. |
|
| 2431 |
/// |
|
| 2432 |
/// This class is similar to the \c bool type. It can be converted to |
|
| 2433 |
/// \c bool and it provides the same operators. |
|
| 2434 |
class Reference {
|
|
| 2435 |
friend class IterableBoolMap; |
|
| 2436 |
private: |
|
| 2437 |
Reference(IterableBoolMap& map, const Key& key) |
|
| 2438 |
: _key(key), _map(map) {}
|
|
| 2439 |
public: |
|
| 2440 |
|
|
| 2441 |
Reference& operator=(const Reference& value) {
|
|
| 2442 |
_map.set(_key, static_cast<bool>(value)); |
|
| 2443 |
return *this; |
|
| 2444 |
} |
|
| 2445 |
|
|
| 2446 |
operator bool() const {
|
|
| 2447 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
| 2448 |
} |
|
| 2449 |
|
|
| 2450 |
Reference& operator=(bool value) {
|
|
| 2451 |
_map.set(_key, value); |
|
| 2452 |
return *this; |
|
| 2453 |
} |
|
| 2454 |
Reference& operator&=(bool value) {
|
|
| 2455 |
_map.set(_key, _map[_key] & value); |
|
| 2456 |
return *this; |
|
| 2457 |
} |
|
| 2458 |
Reference& operator|=(bool value) {
|
|
| 2459 |
_map.set(_key, _map[_key] | value); |
|
| 2460 |
return *this; |
|
| 2461 |
} |
|
| 2462 |
Reference& operator^=(bool value) {
|
|
| 2463 |
_map.set(_key, _map[_key] ^ value); |
|
| 2464 |
return *this; |
|
| 2465 |
} |
|
| 2466 |
private: |
|
| 2467 |
Key _key; |
|
| 2468 |
IterableBoolMap& _map; |
|
| 2469 |
}; |
|
| 2470 |
|
|
| 2471 |
/// \brief Constructor of the map with a default value. |
|
| 2472 |
/// |
|
| 2473 |
/// Constructor of the map with a default value. |
|
| 2474 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
| 2475 |
: Parent(graph) {
|
|
| 2476 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2477 |
Key it; |
|
| 2478 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2479 |
Parent::set(it, _array.size()); |
|
| 2480 |
_array.push_back(it); |
|
| 2481 |
} |
|
| 2482 |
_sep = (def ? _array.size() : 0); |
|
| 2483 |
} |
|
| 2484 |
|
|
| 2485 |
/// \brief Const subscript operator of the map. |
|
| 2486 |
/// |
|
| 2487 |
/// Const subscript operator of the map. |
|
| 2488 |
bool operator[](const Key& key) const {
|
|
| 2489 |
return position(key) < _sep; |
|
| 2490 |
} |
|
| 2491 |
|
|
| 2492 |
/// \brief Subscript operator of the map. |
|
| 2493 |
/// |
|
| 2494 |
/// Subscript operator of the map. |
|
| 2495 |
Reference operator[](const Key& key) {
|
|
| 2496 |
return Reference(*this, key); |
|
| 2497 |
} |
|
| 2498 |
|
|
| 2499 |
/// \brief Set operation of the map. |
|
| 2500 |
/// |
|
| 2501 |
/// Set operation of the map. |
|
| 2502 |
void set(const Key& key, bool value) {
|
|
| 2503 |
int pos = position(key); |
|
| 2504 |
if (value) {
|
|
| 2505 |
if (pos < _sep) return; |
|
| 2506 |
Key tmp = _array[_sep]; |
|
| 2507 |
_array[_sep] = key; |
|
| 2508 |
Parent::set(key, _sep); |
|
| 2509 |
_array[pos] = tmp; |
|
| 2510 |
Parent::set(tmp, pos); |
|
| 2511 |
++_sep; |
|
| 2512 |
} else {
|
|
| 2513 |
if (pos >= _sep) return; |
|
| 2514 |
--_sep; |
|
| 2515 |
Key tmp = _array[_sep]; |
|
| 2516 |
_array[_sep] = key; |
|
| 2517 |
Parent::set(key, _sep); |
|
| 2518 |
_array[pos] = tmp; |
|
| 2519 |
Parent::set(tmp, pos); |
|
| 2520 |
} |
|
| 2521 |
} |
|
| 2522 |
|
|
| 2523 |
/// \brief Set all items. |
|
| 2524 |
/// |
|
| 2525 |
/// Set all items in the map. |
|
| 2526 |
/// \note Constant time operation. |
|
| 2527 |
void setAll(bool value) {
|
|
| 2528 |
_sep = (value ? _array.size() : 0); |
|
| 2529 |
} |
|
| 2530 |
|
|
| 2531 |
/// \brief Returns the number of the keys mapped to \c true. |
|
| 2532 |
/// |
|
| 2533 |
/// Returns the number of the keys mapped to \c true. |
|
| 2534 |
int trueNum() const {
|
|
| 2535 |
return _sep; |
|
| 2536 |
} |
|
| 2537 |
|
|
| 2538 |
/// \brief Returns the number of the keys mapped to \c false. |
|
| 2539 |
/// |
|
| 2540 |
/// Returns the number of the keys mapped to \c false. |
|
| 2541 |
int falseNum() const {
|
|
| 2542 |
return _array.size() - _sep; |
|
| 2543 |
} |
|
| 2544 |
|
|
| 2545 |
/// \brief Iterator for the keys mapped to \c true. |
|
| 2546 |
/// |
|
| 2547 |
/// Iterator for the keys mapped to \c true. It works |
|
| 2548 |
/// like a graph item iterator, it can be converted to |
|
| 2549 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2550 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2551 |
/// \c INVALID. |
|
| 2552 |
class TrueIt : public Key {
|
|
| 2553 |
public: |
|
| 2554 |
typedef Key Parent; |
|
| 2555 |
|
|
| 2556 |
/// \brief Creates an iterator. |
|
| 2557 |
/// |
|
| 2558 |
/// Creates an iterator. It iterates on the |
|
| 2559 |
/// keys mapped to \c true. |
|
| 2560 |
/// \param map The IterableBoolMap. |
|
| 2561 |
explicit TrueIt(const IterableBoolMap& map) |
|
| 2562 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
| 2563 |
_map(&map) {}
|
|
| 2564 |
|
|
| 2565 |
/// \brief Invalid constructor \& conversion. |
|
| 2566 |
/// |
|
| 2567 |
/// This constructor initializes the iterator to be invalid. |
|
| 2568 |
/// \sa Invalid for more details. |
|
| 2569 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2570 |
|
|
| 2571 |
/// \brief Increment operator. |
|
| 2572 |
/// |
|
| 2573 |
/// Increment operator. |
|
| 2574 |
TrueIt& operator++() {
|
|
| 2575 |
int pos = _map->position(*this); |
|
| 2576 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
| 2577 |
return *this; |
|
| 2578 |
} |
|
| 2579 |
|
|
| 2580 |
private: |
|
| 2581 |
const IterableBoolMap* _map; |
|
| 2582 |
}; |
|
| 2583 |
|
|
| 2584 |
/// \brief Iterator for the keys mapped to \c false. |
|
| 2585 |
/// |
|
| 2586 |
/// Iterator for the keys mapped to \c false. It works |
|
| 2587 |
/// like a graph item iterator, it can be converted to |
|
| 2588 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2589 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2590 |
/// \c INVALID. |
|
| 2591 |
class FalseIt : public Key {
|
|
| 2592 |
public: |
|
| 2593 |
typedef Key Parent; |
|
| 2594 |
|
|
| 2595 |
/// \brief Creates an iterator. |
|
| 2596 |
/// |
|
| 2597 |
/// Creates an iterator. It iterates on the |
|
| 2598 |
/// keys mapped to \c false. |
|
| 2599 |
/// \param map The IterableBoolMap. |
|
| 2600 |
explicit FalseIt(const IterableBoolMap& map) |
|
| 2601 |
: Parent(map._sep < int(map._array.size()) ? |
|
| 2602 |
map._array.back() : INVALID), _map(&map) {}
|
|
| 2603 |
|
|
| 2604 |
/// \brief Invalid constructor \& conversion. |
|
| 2605 |
/// |
|
| 2606 |
/// This constructor initializes the iterator to be invalid. |
|
| 2607 |
/// \sa Invalid for more details. |
|
| 2608 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2609 |
|
|
| 2610 |
/// \brief Increment operator. |
|
| 2611 |
/// |
|
| 2612 |
/// Increment operator. |
|
| 2613 |
FalseIt& operator++() {
|
|
| 2614 |
int pos = _map->position(*this); |
|
| 2615 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
| 2616 |
return *this; |
|
| 2617 |
} |
|
| 2618 |
|
|
| 2619 |
private: |
|
| 2620 |
const IterableBoolMap* _map; |
|
| 2621 |
}; |
|
| 2622 |
|
|
| 2623 |
/// \brief Iterator for the keys mapped to a given value. |
|
| 2624 |
/// |
|
| 2625 |
/// Iterator for the keys mapped to a given value. It works |
|
| 2626 |
/// like a graph item iterator, it can be converted to |
|
| 2627 |
/// the key type of the map, incremented with \c ++ operator, and |
|
| 2628 |
/// if the iterator leaves the last valid key, it will be equal to |
|
| 2629 |
/// \c INVALID. |
|
| 2630 |
class ItemIt : public Key {
|
|
| 2631 |
public: |
|
| 2632 |
typedef Key Parent; |
|
| 2633 |
|
|
| 2634 |
/// \brief Creates an iterator with a value. |
|
| 2635 |
/// |
|
| 2636 |
/// Creates an iterator with a value. It iterates on the |
|
| 2637 |
/// keys mapped to the given value. |
|
| 2638 |
/// \param map The IterableBoolMap. |
|
| 2639 |
/// \param value The value. |
|
| 2640 |
ItemIt(const IterableBoolMap& map, bool value) |
|
| 2641 |
: Parent(value ? |
|
| 2642 |
(map._sep > 0 ? |
|
| 2643 |
map._array[map._sep - 1] : INVALID) : |
|
| 2644 |
(map._sep < int(map._array.size()) ? |
|
| 2645 |
map._array.back() : INVALID)), _map(&map) {}
|
|
| 2646 |
|
|
| 2647 |
/// \brief Invalid constructor \& conversion. |
|
| 2648 |
/// |
|
| 2649 |
/// This constructor initializes the iterator to be invalid. |
|
| 2650 |
/// \sa Invalid for more details. |
|
| 2651 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2652 |
|
|
| 2653 |
/// \brief Increment operator. |
|
| 2654 |
/// |
|
| 2655 |
/// Increment operator. |
|
| 2656 |
ItemIt& operator++() {
|
|
| 2657 |
int pos = _map->position(*this); |
|
| 2658 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
| 2659 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
| 2660 |
return *this; |
|
| 2661 |
} |
|
| 2662 |
|
|
| 2663 |
private: |
|
| 2664 |
const IterableBoolMap* _map; |
|
| 2665 |
}; |
|
| 2666 |
|
|
| 2667 |
protected: |
|
| 2668 |
|
|
| 2669 |
virtual void add(const Key& key) {
|
|
| 2670 |
Parent::add(key); |
|
| 2671 |
Parent::set(key, _array.size()); |
|
| 2672 |
_array.push_back(key); |
|
| 2673 |
} |
|
| 2674 |
|
|
| 2675 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 2676 |
Parent::add(keys); |
|
| 2677 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2678 |
Parent::set(keys[i], _array.size()); |
|
| 2679 |
_array.push_back(keys[i]); |
|
| 2680 |
} |
|
| 2681 |
} |
|
| 2682 |
|
|
| 2683 |
virtual void erase(const Key& key) {
|
|
| 2684 |
int pos = position(key); |
|
| 2685 |
if (pos < _sep) {
|
|
| 2686 |
--_sep; |
|
| 2687 |
Parent::set(_array[_sep], pos); |
|
| 2688 |
_array[pos] = _array[_sep]; |
|
| 2689 |
Parent::set(_array.back(), _sep); |
|
| 2690 |
_array[_sep] = _array.back(); |
|
| 2691 |
_array.pop_back(); |
|
| 2692 |
} else {
|
|
| 2693 |
Parent::set(_array.back(), pos); |
|
| 2694 |
_array[pos] = _array.back(); |
|
| 2695 |
_array.pop_back(); |
|
| 2696 |
} |
|
| 2697 |
Parent::erase(key); |
|
| 2698 |
} |
|
| 2699 |
|
|
| 2700 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 2701 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 2702 |
int pos = position(keys[i]); |
|
| 2703 |
if (pos < _sep) {
|
|
| 2704 |
--_sep; |
|
| 2705 |
Parent::set(_array[_sep], pos); |
|
| 2706 |
_array[pos] = _array[_sep]; |
|
| 2707 |
Parent::set(_array.back(), _sep); |
|
| 2708 |
_array[_sep] = _array.back(); |
|
| 2709 |
_array.pop_back(); |
|
| 2710 |
} else {
|
|
| 2711 |
Parent::set(_array.back(), pos); |
|
| 2712 |
_array[pos] = _array.back(); |
|
| 2713 |
_array.pop_back(); |
|
| 2714 |
} |
|
| 2715 |
} |
|
| 2716 |
Parent::erase(keys); |
|
| 2717 |
} |
|
| 2718 |
|
|
| 2719 |
virtual void build() {
|
|
| 2720 |
Parent::build(); |
|
| 2721 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
| 2722 |
Key it; |
|
| 2723 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
|
| 2724 |
Parent::set(it, _array.size()); |
|
| 2725 |
_array.push_back(it); |
|
| 2726 |
} |
|
| 2727 |
_sep = 0; |
|
| 2728 |
} |
|
| 2729 |
|
|
| 2730 |
virtual void clear() {
|
|
| 2731 |
_array.clear(); |
|
| 2732 |
_sep = 0; |
|
| 2733 |
Parent::clear(); |
|
| 2734 |
} |
|
| 2735 |
|
|
| 2736 |
}; |
|
| 2737 |
|
|
| 2738 |
|
|
| 2739 |
namespace _maps_bits {
|
|
| 2740 |
template <typename Item> |
|
| 2741 |
struct IterableIntMapNode {
|
|
| 2742 |
IterableIntMapNode() : value(-1) {}
|
|
| 2743 |
IterableIntMapNode(int _value) : value(_value) {}
|
|
| 2744 |
Item prev, next; |
|
| 2745 |
int value; |
|
| 2746 |
}; |
|
| 2747 |
} |
|
| 2748 |
|
|
| 2749 |
/// \brief Dynamic iterable integer map. |
|
| 2750 |
/// |
|
| 2751 |
/// This class provides a special graph map type which can store an |
|
| 2752 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
| 2753 |
/// For each non-negative value it is possible to iterate on the keys |
|
| 2754 |
/// mapped to the value. |
|
| 2755 |
/// |
|
| 2756 |
/// This map is intended to be used with small integer values, for which |
|
| 2757 |
/// it is efficient, and supports iteration only for non-negative values. |
|
| 2758 |
/// If you need large values and/or iteration for negative integers, |
|
| 2759 |
/// consider to use \ref IterableValueMap instead. |
|
| 2760 |
/// |
|
| 2761 |
/// This type is a reference map, so it can be modified with the |
|
| 2762 |
/// subscript operator. |
|
| 2763 |
/// |
|
| 2764 |
/// \note The size of the data structure depends on the largest |
|
| 2765 |
/// value in the map. |
|
| 2766 |
/// |
|
| 2767 |
/// \tparam GR The graph type. |
|
| 2768 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 2769 |
/// \c GR::Edge). |
|
| 2770 |
/// |
|
| 2771 |
/// \see IterableBoolMap, IterableValueMap |
|
| 2772 |
/// \see CrossRefMap |
|
| 2773 |
template <typename GR, typename K> |
|
| 2774 |
class IterableIntMap |
|
| 2775 |
: protected ItemSetTraits<GR, K>:: |
|
| 2776 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
|
|
| 2777 |
public: |
|
| 2778 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 2779 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
| 2780 |
|
|
| 2781 |
/// The key type |
|
| 2782 |
typedef K Key; |
|
| 2783 |
/// The value type |
|
| 2784 |
typedef int Value; |
|
| 2785 |
/// The graph type |
|
| 2786 |
typedef GR Graph; |
|
| 2787 |
|
|
| 2788 |
/// \brief Constructor of the map. |
|
| 2789 |
/// |
|
| 2790 |
/// Constructor of the map. It sets all values to -1. |
|
| 2791 |
explicit IterableIntMap(const Graph& graph) |
|
| 2792 |
: Parent(graph) {}
|
|
| 2793 |
|
|
| 2794 |
/// \brief Constructor of the map with a given value. |
|
| 2795 |
/// |
|
| 2796 |
/// Constructor of the map with a given value. |
|
| 2797 |
explicit IterableIntMap(const Graph& graph, int value) |
|
| 2798 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
|
|
| 2799 |
if (value >= 0) {
|
|
| 2800 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 2801 |
lace(it); |
|
| 2802 |
} |
|
| 2803 |
} |
|
| 2804 |
} |
|
| 2805 |
|
|
| 2806 |
private: |
|
| 2807 |
|
|
| 2808 |
void unlace(const Key& key) {
|
|
| 2809 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2810 |
if (node.value < 0) return; |
|
| 2811 |
if (node.prev != INVALID) {
|
|
| 2812 |
Parent::operator[](node.prev).next = node.next; |
|
| 2813 |
} else {
|
|
| 2814 |
_first[node.value] = node.next; |
|
| 2815 |
} |
|
| 2816 |
if (node.next != INVALID) {
|
|
| 2817 |
Parent::operator[](node.next).prev = node.prev; |
|
| 2818 |
} |
|
| 2819 |
while (!_first.empty() && _first.back() == INVALID) {
|
|
| 2820 |
_first.pop_back(); |
|
| 2821 |
} |
|
| 2822 |
} |
|
| 2823 |
|
|
| 2824 |
void lace(const Key& key) {
|
|
| 2825 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 2826 |
if (node.value < 0) return; |
|
| 2827 |
if (node.value >= int(_first.size())) {
|
|
| 2828 |
_first.resize(node.value + 1, INVALID); |
|
| 2829 |
} |
|
| 2830 |
node.prev = INVALID; |
|
| 2831 |
node.next = _first[node.value]; |
|
| 2832 |
if (node.next != INVALID) {
|
|
| 2833 |
Parent::operator[](node.next).prev = key; |
|
| 2834 |
} |
|
| 2835 |
_first[node.value] = key; |
|
| 2836 |
} |
|
| 2837 |
|
|
| 2838 |
public: |
|
| 2839 |
|
|
| 2840 |
/// Indicates that the map is reference map. |
|
| 2841 |
typedef True ReferenceMapTag; |
|
| 2842 |
|
|
| 2843 |
/// \brief Reference to the value of the map. |
|
| 2844 |
/// |
|
| 2845 |
/// This class is similar to the \c int type. It can |
|
| 2846 |
/// be converted to \c int and it has the same operators. |
|
| 2847 |
class Reference {
|
|
| 2848 |
friend class IterableIntMap; |
|
| 2849 |
private: |
|
| 2850 |
Reference(IterableIntMap& map, const Key& key) |
|
| 2851 |
: _key(key), _map(map) {}
|
|
| 2852 |
public: |
|
| 2853 |
|
|
| 2854 |
Reference& operator=(const Reference& value) {
|
|
| 2855 |
_map.set(_key, static_cast<const int&>(value)); |
|
| 2856 |
return *this; |
|
| 2857 |
} |
|
| 2858 |
|
|
| 2859 |
operator const int&() const {
|
|
| 2860 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
| 2861 |
} |
|
| 2862 |
|
|
| 2863 |
Reference& operator=(int value) {
|
|
| 2864 |
_map.set(_key, value); |
|
| 2865 |
return *this; |
|
| 2866 |
} |
|
| 2867 |
Reference& operator++() {
|
|
| 2868 |
_map.set(_key, _map[_key] + 1); |
|
| 2869 |
return *this; |
|
| 2870 |
} |
|
| 2871 |
int operator++(int) {
|
|
| 2872 |
int value = _map[_key]; |
|
| 2873 |
_map.set(_key, value + 1); |
|
| 2874 |
return value; |
|
| 2875 |
} |
|
| 2876 |
Reference& operator--() {
|
|
| 2877 |
_map.set(_key, _map[_key] - 1); |
|
| 2878 |
return *this; |
|
| 2879 |
} |
|
| 2880 |
int operator--(int) {
|
|
| 2881 |
int value = _map[_key]; |
|
| 2882 |
_map.set(_key, value - 1); |
|
| 2883 |
return value; |
|
| 2884 |
} |
|
| 2885 |
Reference& operator+=(int value) {
|
|
| 2886 |
_map.set(_key, _map[_key] + value); |
|
| 2887 |
return *this; |
|
| 2888 |
} |
|
| 2889 |
Reference& operator-=(int value) {
|
|
| 2890 |
_map.set(_key, _map[_key] - value); |
|
| 2891 |
return *this; |
|
| 2892 |
} |
|
| 2893 |
Reference& operator*=(int value) {
|
|
| 2894 |
_map.set(_key, _map[_key] * value); |
|
| 2895 |
return *this; |
|
| 2896 |
} |
|
| 2897 |
Reference& operator/=(int value) {
|
|
| 2898 |
_map.set(_key, _map[_key] / value); |
|
| 2899 |
return *this; |
|
| 2900 |
} |
|
| 2901 |
Reference& operator%=(int value) {
|
|
| 2902 |
_map.set(_key, _map[_key] % value); |
|
| 2903 |
return *this; |
|
| 2904 |
} |
|
| 2905 |
Reference& operator&=(int value) {
|
|
| 2906 |
_map.set(_key, _map[_key] & value); |
|
| 2907 |
return *this; |
|
| 2908 |
} |
|
| 2909 |
Reference& operator|=(int value) {
|
|
| 2910 |
_map.set(_key, _map[_key] | value); |
|
| 2911 |
return *this; |
|
| 2912 |
} |
|
| 2913 |
Reference& operator^=(int value) {
|
|
| 2914 |
_map.set(_key, _map[_key] ^ value); |
|
| 2915 |
return *this; |
|
| 2916 |
} |
|
| 2917 |
Reference& operator<<=(int value) {
|
|
| 2918 |
_map.set(_key, _map[_key] << value); |
|
| 2919 |
return *this; |
|
| 2920 |
} |
|
| 2921 |
Reference& operator>>=(int value) {
|
|
| 2922 |
_map.set(_key, _map[_key] >> value); |
|
| 2923 |
return *this; |
|
| 2924 |
} |
|
| 2925 |
|
|
| 2926 |
private: |
|
| 2927 |
Key _key; |
|
| 2928 |
IterableIntMap& _map; |
|
| 2929 |
}; |
|
| 2930 |
|
|
| 2931 |
/// The const reference type. |
|
| 2932 |
typedef const Value& ConstReference; |
|
| 2933 |
|
|
| 2934 |
/// \brief Gives back the maximal value plus one. |
|
| 2935 |
/// |
|
| 2936 |
/// Gives back the maximal value plus one. |
|
| 2937 |
int size() const {
|
|
| 2938 |
return _first.size(); |
|
| 2939 |
} |
|
| 2940 |
|
|
| 2941 |
/// \brief Set operation of the map. |
|
| 2942 |
/// |
|
| 2943 |
/// Set operation of the map. |
|
| 2944 |
void set(const Key& key, const Value& value) {
|
|
| 2945 |
unlace(key); |
|
| 2946 |
Parent::operator[](key).value = value; |
|
| 2947 |
lace(key); |
|
| 2948 |
} |
|
| 2949 |
|
|
| 2950 |
/// \brief Const subscript operator of the map. |
|
| 2951 |
/// |
|
| 2952 |
/// Const subscript operator of the map. |
|
| 2953 |
const Value& operator[](const Key& key) const {
|
|
| 2954 |
return Parent::operator[](key).value; |
|
| 2955 |
} |
|
| 2956 |
|
|
| 2957 |
/// \brief Subscript operator of the map. |
|
| 2958 |
/// |
|
| 2959 |
/// Subscript operator of the map. |
|
| 2960 |
Reference operator[](const Key& key) {
|
|
| 2961 |
return Reference(*this, key); |
|
| 2962 |
} |
|
| 2963 |
|
|
| 2964 |
/// \brief Iterator for the keys with the same value. |
|
| 2965 |
/// |
|
| 2966 |
/// Iterator for the keys with the same value. It works |
|
| 2967 |
/// like a graph item iterator, it can be converted to |
|
| 2968 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 2969 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 2970 |
/// \c INVALID. |
|
| 2971 |
class ItemIt : public Key {
|
|
| 2972 |
public: |
|
| 2973 |
typedef Key Parent; |
|
| 2974 |
|
|
| 2975 |
/// \brief Invalid constructor \& conversion. |
|
| 2976 |
/// |
|
| 2977 |
/// This constructor initializes the iterator to be invalid. |
|
| 2978 |
/// \sa Invalid for more details. |
|
| 2979 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 2980 |
|
|
| 2981 |
/// \brief Creates an iterator with a value. |
|
| 2982 |
/// |
|
| 2983 |
/// Creates an iterator with a value. It iterates on the |
|
| 2984 |
/// keys mapped to the given value. |
|
| 2985 |
/// \param map The IterableIntMap. |
|
| 2986 |
/// \param value The value. |
|
| 2987 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) {
|
|
| 2988 |
if (value < 0 || value >= int(_map->_first.size())) {
|
|
| 2989 |
Parent::operator=(INVALID); |
|
| 2990 |
} else {
|
|
| 2991 |
Parent::operator=(_map->_first[value]); |
|
| 2992 |
} |
|
| 2993 |
} |
|
| 2994 |
|
|
| 2995 |
/// \brief Increment operator. |
|
| 2996 |
/// |
|
| 2997 |
/// Increment operator. |
|
| 2998 |
ItemIt& operator++() {
|
|
| 2999 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
| 3000 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 3001 |
return *this; |
|
| 3002 |
} |
|
| 3003 |
|
|
| 3004 |
private: |
|
| 3005 |
const IterableIntMap* _map; |
|
| 3006 |
}; |
|
| 3007 |
|
|
| 3008 |
protected: |
|
| 3009 |
|
|
| 3010 |
virtual void erase(const Key& key) {
|
|
| 3011 |
unlace(key); |
|
| 3012 |
Parent::erase(key); |
|
| 3013 |
} |
|
| 3014 |
|
|
| 3015 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 3016 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3017 |
unlace(keys[i]); |
|
| 3018 |
} |
|
| 3019 |
Parent::erase(keys); |
|
| 3020 |
} |
|
| 3021 |
|
|
| 3022 |
virtual void clear() {
|
|
| 3023 |
_first.clear(); |
|
| 3024 |
Parent::clear(); |
|
| 3025 |
} |
|
| 3026 |
|
|
| 3027 |
private: |
|
| 3028 |
std::vector<Key> _first; |
|
| 3029 |
}; |
|
| 3030 |
|
|
| 3031 |
namespace _maps_bits {
|
|
| 3032 |
template <typename Item, typename Value> |
|
| 3033 |
struct IterableValueMapNode {
|
|
| 3034 |
IterableValueMapNode(Value _value = Value()) : value(_value) {}
|
|
| 3035 |
Item prev, next; |
|
| 3036 |
Value value; |
|
| 3037 |
}; |
|
| 3038 |
} |
|
| 3039 |
|
|
| 3040 |
/// \brief Dynamic iterable map for comparable values. |
|
| 3041 |
/// |
|
| 3042 |
/// This class provides a special graph map type which can store a |
|
| 3043 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
| 3044 |
/// For each value it is possible to iterate on the keys mapped to |
|
| 3045 |
/// the value (\c ItemIt), and the values of the map can be accessed |
|
| 3046 |
/// with an STL compatible forward iterator (\c ValueIt). |
|
| 3047 |
/// The map stores a linked list for each value, which contains |
|
| 3048 |
/// the items mapped to the value, and the used values are stored |
|
| 3049 |
/// in balanced binary tree (\c std::map). |
|
| 3050 |
/// |
|
| 3051 |
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
|
| 3052 |
/// specialized for \c bool and \c int values, respectively. |
|
| 3053 |
/// |
|
| 3054 |
/// This type is not reference map, so it cannot be modified with |
|
| 3055 |
/// the subscript operator. |
|
| 3056 |
/// |
|
| 3057 |
/// \tparam GR The graph type. |
|
| 3058 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
| 3059 |
/// \c GR::Edge). |
|
| 3060 |
/// \tparam V The value type of the map. It can be any comparable |
|
| 3061 |
/// value type. |
|
| 3062 |
/// |
|
| 3063 |
/// \see IterableBoolMap, IterableIntMap |
|
| 3064 |
/// \see CrossRefMap |
|
| 3065 |
template <typename GR, typename K, typename V> |
|
| 3066 |
class IterableValueMap |
|
| 3067 |
: protected ItemSetTraits<GR, K>:: |
|
| 3068 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
|
|
| 3069 |
public: |
|
| 3070 |
typedef typename ItemSetTraits<GR, K>:: |
|
| 3071 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
| 3072 |
|
|
| 3073 |
/// The key type |
|
| 3074 |
typedef K Key; |
|
| 3075 |
/// The value type |
|
| 3076 |
typedef V Value; |
|
| 3077 |
/// The graph type |
|
| 3078 |
typedef GR Graph; |
|
| 3079 |
|
|
| 3080 |
public: |
|
| 3081 |
|
|
| 3082 |
/// \brief Constructor of the map with a given value. |
|
| 3083 |
/// |
|
| 3084 |
/// Constructor of the map with a given value. |
|
| 3085 |
explicit IterableValueMap(const Graph& graph, |
|
| 3086 |
const Value& value = Value()) |
|
| 3087 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
|
|
| 3088 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3089 |
lace(it); |
|
| 3090 |
} |
|
| 3091 |
} |
|
| 3092 |
|
|
| 3093 |
protected: |
|
| 3094 |
|
|
| 3095 |
void unlace(const Key& key) {
|
|
| 3096 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3097 |
if (node.prev != INVALID) {
|
|
| 3098 |
Parent::operator[](node.prev).next = node.next; |
|
| 3099 |
} else {
|
|
| 3100 |
if (node.next != INVALID) {
|
|
| 3101 |
_first[node.value] = node.next; |
|
| 3102 |
} else {
|
|
| 3103 |
_first.erase(node.value); |
|
| 3104 |
} |
|
| 3105 |
} |
|
| 3106 |
if (node.next != INVALID) {
|
|
| 3107 |
Parent::operator[](node.next).prev = node.prev; |
|
| 3108 |
} |
|
| 3109 |
} |
|
| 3110 |
|
|
| 3111 |
void lace(const Key& key) {
|
|
| 3112 |
typename Parent::Value& node = Parent::operator[](key); |
|
| 3113 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
| 3114 |
if (it == _first.end()) {
|
|
| 3115 |
node.prev = node.next = INVALID; |
|
| 3116 |
_first.insert(std::make_pair(node.value, key)); |
|
| 3117 |
} else {
|
|
| 3118 |
node.prev = INVALID; |
|
| 3119 |
node.next = it->second; |
|
| 3120 |
if (node.next != INVALID) {
|
|
| 3121 |
Parent::operator[](node.next).prev = key; |
|
| 3122 |
} |
|
| 3123 |
it->second = key; |
|
| 3124 |
} |
|
| 3125 |
} |
|
| 3126 |
|
|
| 3127 |
public: |
|
| 3128 |
|
|
| 3129 |
/// \brief Forward iterator for values. |
|
| 3130 |
/// |
|
| 3131 |
/// This iterator is an STL compatible forward |
|
| 3132 |
/// iterator on the values of the map. The values can |
|
| 3133 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
| 3134 |
class ValueIt |
|
| 3135 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
|
| 3136 |
friend class IterableValueMap; |
|
| 3137 |
private: |
|
| 3138 |
ValueIt(typename std::map<Value, Key>::const_iterator _it) |
|
| 3139 |
: it(_it) {}
|
|
| 3140 |
public: |
|
| 3141 |
|
|
| 3142 |
/// Constructor |
|
| 3143 |
ValueIt() {}
|
|
| 3144 |
|
|
| 3145 |
/// \e |
|
| 3146 |
ValueIt& operator++() { ++it; return *this; }
|
|
| 3147 |
/// \e |
|
| 3148 |
ValueIt operator++(int) {
|
|
| 3149 |
ValueIt tmp(*this); |
|
| 3150 |
operator++(); |
|
| 3151 |
return tmp; |
|
| 3152 |
} |
|
| 3153 |
|
|
| 3154 |
/// \e |
|
| 3155 |
const Value& operator*() const { return it->first; }
|
|
| 3156 |
/// \e |
|
| 3157 |
const Value* operator->() const { return &(it->first); }
|
|
| 3158 |
|
|
| 3159 |
/// \e |
|
| 3160 |
bool operator==(ValueIt jt) const { return it == jt.it; }
|
|
| 3161 |
/// \e |
|
| 3162 |
bool operator!=(ValueIt jt) const { return it != jt.it; }
|
|
| 3163 |
|
|
| 3164 |
private: |
|
| 3165 |
typename std::map<Value, Key>::const_iterator it; |
|
| 3166 |
}; |
|
| 3167 |
|
|
| 3168 |
/// \brief Returns an iterator to the first value. |
|
| 3169 |
/// |
|
| 3170 |
/// Returns an STL compatible iterator to the |
|
| 3171 |
/// first value of the map. The values of the |
|
| 3172 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3173 |
/// range. |
|
| 3174 |
ValueIt beginValue() const {
|
|
| 3175 |
return ValueIt(_first.begin()); |
|
| 3176 |
} |
|
| 3177 |
|
|
| 3178 |
/// \brief Returns an iterator after the last value. |
|
| 3179 |
/// |
|
| 3180 |
/// Returns an STL compatible iterator after the |
|
| 3181 |
/// last value of the map. The values of the |
|
| 3182 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
| 3183 |
/// range. |
|
| 3184 |
ValueIt endValue() const {
|
|
| 3185 |
return ValueIt(_first.end()); |
|
| 3186 |
} |
|
| 3187 |
|
|
| 3188 |
/// \brief Set operation of the map. |
|
| 3189 |
/// |
|
| 3190 |
/// Set operation of the map. |
|
| 3191 |
void set(const Key& key, const Value& value) {
|
|
| 3192 |
unlace(key); |
|
| 3193 |
Parent::operator[](key).value = value; |
|
| 3194 |
lace(key); |
|
| 3195 |
} |
|
| 3196 |
|
|
| 3197 |
/// \brief Const subscript operator of the map. |
|
| 3198 |
/// |
|
| 3199 |
/// Const subscript operator of the map. |
|
| 3200 |
const Value& operator[](const Key& key) const {
|
|
| 3201 |
return Parent::operator[](key).value; |
|
| 3202 |
} |
|
| 3203 |
|
|
| 3204 |
/// \brief Iterator for the keys with the same value. |
|
| 3205 |
/// |
|
| 3206 |
/// Iterator for the keys with the same value. It works |
|
| 3207 |
/// like a graph item iterator, it can be converted to |
|
| 3208 |
/// the item type of the map, incremented with \c ++ operator, and |
|
| 3209 |
/// if the iterator leaves the last valid item, it will be equal to |
|
| 3210 |
/// \c INVALID. |
|
| 3211 |
class ItemIt : public Key {
|
|
| 3212 |
public: |
|
| 3213 |
typedef Key Parent; |
|
| 3214 |
|
|
| 3215 |
/// \brief Invalid constructor \& conversion. |
|
| 3216 |
/// |
|
| 3217 |
/// This constructor initializes the iterator to be invalid. |
|
| 3218 |
/// \sa Invalid for more details. |
|
| 3219 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
|
|
| 3220 |
|
|
| 3221 |
/// \brief Creates an iterator with a value. |
|
| 3222 |
/// |
|
| 3223 |
/// Creates an iterator with a value. It iterates on the |
|
| 3224 |
/// keys which have the given value. |
|
| 3225 |
/// \param map The IterableValueMap |
|
| 3226 |
/// \param value The value |
|
| 3227 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
|
|
| 3228 |
typename std::map<Value, Key>::const_iterator it = |
|
| 3229 |
map._first.find(value); |
|
| 3230 |
if (it == map._first.end()) {
|
|
| 3231 |
Parent::operator=(INVALID); |
|
| 3232 |
} else {
|
|
| 3233 |
Parent::operator=(it->second); |
|
| 3234 |
} |
|
| 3235 |
} |
|
| 3236 |
|
|
| 3237 |
/// \brief Increment operator. |
|
| 3238 |
/// |
|
| 3239 |
/// Increment Operator. |
|
| 3240 |
ItemIt& operator++() {
|
|
| 3241 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
| 3242 |
operator[](static_cast<Parent&>(*this)).next); |
|
| 3243 |
return *this; |
|
| 3244 |
} |
|
| 3245 |
|
|
| 3246 |
|
|
| 3247 |
private: |
|
| 3248 |
const IterableValueMap* _map; |
|
| 3249 |
}; |
|
| 3250 |
|
|
| 3251 |
protected: |
|
| 3252 |
|
|
| 3253 |
virtual void add(const Key& key) {
|
|
| 3254 |
Parent::add(key); |
|
| 3255 |
lace(key); |
|
| 3256 |
} |
|
| 3257 |
|
|
| 3258 |
virtual void add(const std::vector<Key>& keys) {
|
|
| 3259 |
Parent::add(keys); |
|
| 3260 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3261 |
lace(keys[i]); |
|
| 3262 |
} |
|
| 3263 |
} |
|
| 3264 |
|
|
| 3265 |
virtual void erase(const Key& key) {
|
|
| 3266 |
unlace(key); |
|
| 3267 |
Parent::erase(key); |
|
| 3268 |
} |
|
| 3269 |
|
|
| 3270 |
virtual void erase(const std::vector<Key>& keys) {
|
|
| 3271 |
for (int i = 0; i < int(keys.size()); ++i) {
|
|
| 3272 |
unlace(keys[i]); |
|
| 3273 |
} |
|
| 3274 |
Parent::erase(keys); |
|
| 3275 |
} |
|
| 3276 |
|
|
| 3277 |
virtual void build() {
|
|
| 3278 |
Parent::build(); |
|
| 3279 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
|
|
| 3280 |
lace(it); |
|
| 3281 |
} |
|
| 3282 |
} |
|
| 3283 |
|
|
| 3284 |
virtual void clear() {
|
|
| 3285 |
_first.clear(); |
|
| 3286 |
Parent::clear(); |
|
| 3287 |
} |
|
| 3288 |
|
|
| 3289 |
private: |
|
| 3290 |
std::map<Value, Key> _first; |
|
| 3291 |
}; |
|
| 3292 |
|
|
| 2333 | 3293 |
/// \brief Map of the source nodes of arcs in a digraph. |
| 2334 | 3294 |
/// |
| 2335 | 3295 |
/// SourceMap provides access for the source node of each arc in a digraph, |
| 2336 | 3296 |
/// which is returned by the \c source() function of the digraph. |
| 2337 | 3297 |
/// \tparam GR The digraph type. |
| 2338 | 3298 |
/// \see TargetMap |
| 2339 | 3299 |
template <typename GR> |
| 2340 | 3300 |
class SourceMap {
|
| 2341 | 3301 |
public: |
| 2342 | 3302 |
|
| 2343 |
///\ |
|
| 3303 |
/// The key type (the \c Arc type of the digraph). |
|
| 2344 | 3304 |
typedef typename GR::Arc Key; |
| 2345 |
///\ |
|
| 3305 |
/// The value type (the \c Node type of the digraph). |
|
| 2346 | 3306 |
typedef typename GR::Node Value; |
| 2347 | 3307 |
|
| 2348 | 3308 |
/// \brief Constructor |
| 2349 | 3309 |
/// |
| 2350 | 3310 |
/// Constructor. |
| 2351 | 3311 |
/// \param digraph The digraph that the map belongs to. |
| ... | ... |
@@ -2378,15 +3338,15 @@ |
| 2378 | 3338 |
/// \tparam GR The digraph type. |
| 2379 | 3339 |
/// \see SourceMap |
| 2380 | 3340 |
template <typename GR> |
| 2381 | 3341 |
class TargetMap {
|
| 2382 | 3342 |
public: |
| 2383 | 3343 |
|
| 2384 |
///\ |
|
| 3344 |
/// The key type (the \c Arc type of the digraph). |
|
| 2385 | 3345 |
typedef typename GR::Arc Key; |
| 2386 |
///\ |
|
| 3346 |
/// The value type (the \c Node type of the digraph). |
|
| 2387 | 3347 |
typedef typename GR::Node Value; |
| 2388 | 3348 |
|
| 2389 | 3349 |
/// \brief Constructor |
| 2390 | 3350 |
/// |
| 2391 | 3351 |
/// Constructor. |
| 2392 | 3352 |
/// \param digraph The digraph that the map belongs to. |
| ... | ... |
@@ -2420,14 +3380,16 @@ |
| 2420 | 3380 |
/// \tparam GR The graph type. |
| 2421 | 3381 |
/// \see BackwardMap |
| 2422 | 3382 |
template <typename GR> |
| 2423 | 3383 |
class ForwardMap {
|
| 2424 | 3384 |
public: |
| 2425 | 3385 |
|
| 3386 |
/// The key type (the \c Edge type of the digraph). |
|
| 3387 |
typedef typename GR::Edge Key; |
|
| 3388 |
/// The value type (the \c Arc type of the digraph). |
|
| 2426 | 3389 |
typedef typename GR::Arc Value; |
| 2427 |
typedef typename GR::Edge Key; |
|
| 2428 | 3390 |
|
| 2429 | 3391 |
/// \brief Constructor |
| 2430 | 3392 |
/// |
| 2431 | 3393 |
/// Constructor. |
| 2432 | 3394 |
/// \param graph The graph that the map belongs to. |
| 2433 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
| ... | ... |
@@ -2460,14 +3422,16 @@ |
| 2460 | 3422 |
/// \tparam GR The graph type. |
| 2461 | 3423 |
/// \see ForwardMap |
| 2462 | 3424 |
template <typename GR> |
| 2463 | 3425 |
class BackwardMap {
|
| 2464 | 3426 |
public: |
| 2465 | 3427 |
|
| 3428 |
/// The key type (the \c Edge type of the digraph). |
|
| 3429 |
typedef typename GR::Edge Key; |
|
| 3430 |
/// The value type (the \c Arc type of the digraph). |
|
| 2466 | 3431 |
typedef typename GR::Arc Value; |
| 2467 |
typedef typename GR::Edge Key; |
|
| 2468 | 3432 |
|
| 2469 | 3433 |
/// \brief Constructor |
| 2470 | 3434 |
/// |
| 2471 | 3435 |
/// Constructor. |
| 2472 | 3436 |
/// \param graph The graph that the map belongs to. |
| 2473 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
| ... | ... |
@@ -2496,29 +3460,29 @@ |
| 2496 | 3460 |
/// |
| 2497 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
| 2498 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2499 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
| 2500 | 3464 |
/// whenever the digraph changes. |
| 2501 | 3465 |
/// |
| 2502 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 2503 | 3467 |
/// may provide alternative ways to modify the digraph. |
| 2504 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
| 2505 |
/// features are used. For example the functions |
|
| 3469 |
/// features are used. For example, the functions |
|
| 2506 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2507 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2508 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2509 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2510 | 3474 |
/// |
| 2511 | 3475 |
/// \sa OutDegMap |
| 2512 | 3476 |
template <typename GR> |
| 2513 | 3477 |
class InDegMap |
| 2514 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 2515 | 3479 |
::ItemNotifier::ObserverBase {
|
| 2516 | 3480 |
|
| 2517 | 3481 |
public: |
| 2518 |
|
|
| 3482 |
|
|
| 2519 | 3483 |
/// The graph type of InDegMap |
| 2520 | 3484 |
typedef GR Graph; |
| 2521 | 3485 |
typedef GR Digraph; |
| 2522 | 3486 |
/// The key type |
| 2523 | 3487 |
typedef typename Digraph::Node Key; |
| 2524 | 3488 |
/// The value type |
| ... | ... |
@@ -2626,16 +3590,16 @@ |
| 2626 | 3590 |
/// |
| 2627 | 3591 |
/// This map returns the out-degree of a node. Once it is constructed, |
| 2628 | 3592 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2629 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
| 2630 | 3594 |
/// whenever the digraph changes. |
| 2631 | 3595 |
/// |
| 2632 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
| 2633 | 3597 |
/// may provide alternative ways to modify the digraph. |
| 2634 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
| 2635 |
/// features are used. For example the functions |
|
| 3599 |
/// features are used. For example, the functions |
|
| 2636 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2637 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2638 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2639 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2640 | 3604 |
/// |
| 2641 | 3605 |
/// \sa InDegMap |
| ... | ... |
@@ -2797,10 +3761,297 @@ |
| 2797 | 3761 |
template <typename GR, typename POT> |
| 2798 | 3762 |
PotentialDifferenceMap<GR, POT> |
| 2799 | 3763 |
potentialDifferenceMap(const GR& gr, const POT& potential) {
|
| 2800 | 3764 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
| 2801 | 3765 |
} |
| 2802 | 3766 |
|
| 3767 |
|
|
| 3768 |
/// \brief Copy the values of a graph map to another map. |
|
| 3769 |
/// |
|
| 3770 |
/// This function copies the values of a graph map to another graph map. |
|
| 3771 |
/// \c To::Key must be equal or convertible to \c From::Key and |
|
| 3772 |
/// \c From::Value must be equal or convertible to \c To::Value. |
|
| 3773 |
/// |
|
| 3774 |
/// For example, an edge map of \c int value type can be copied to |
|
| 3775 |
/// an arc map of \c double value type in an undirected graph, but |
|
| 3776 |
/// an arc map cannot be copied to an edge map. |
|
| 3777 |
/// Note that even a \ref ConstMap can be copied to a standard graph map, |
|
| 3778 |
/// but \ref mapFill() can also be used for this purpose. |
|
| 3779 |
/// |
|
| 3780 |
/// \param gr The graph for which the maps are defined. |
|
| 3781 |
/// \param from The map from which the values have to be copied. |
|
| 3782 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 3783 |
/// \param to The map to which the values have to be copied. |
|
| 3784 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 3785 |
template <typename GR, typename From, typename To> |
|
| 3786 |
void mapCopy(const GR& gr, const From& from, To& to) {
|
|
| 3787 |
typedef typename To::Key Item; |
|
| 3788 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 3789 |
|
|
| 3790 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 3791 |
to.set(it, from[it]); |
|
| 3792 |
} |
|
| 3793 |
} |
|
| 3794 |
|
|
| 3795 |
/// \brief Compare two graph maps. |
|
| 3796 |
/// |
|
| 3797 |
/// This function compares the values of two graph maps. It returns |
|
| 3798 |
/// \c true if the maps assign the same value for all items in the graph. |
|
| 3799 |
/// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal |
|
| 3800 |
/// and their \c Value types must be comparable using \c %operator==(). |
|
| 3801 |
/// |
|
| 3802 |
/// \param gr The graph for which the maps are defined. |
|
| 3803 |
/// \param map1 The first map. |
|
| 3804 |
/// \param map2 The second map. |
|
| 3805 |
template <typename GR, typename Map1, typename Map2> |
|
| 3806 |
bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
|
|
| 3807 |
typedef typename Map2::Key Item; |
|
| 3808 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 3809 |
|
|
| 3810 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 3811 |
if (!(map1[it] == map2[it])) return false; |
|
| 3812 |
} |
|
| 3813 |
return true; |
|
| 3814 |
} |
|
| 3815 |
|
|
| 3816 |
/// \brief Return an item having minimum value of a graph map. |
|
| 3817 |
/// |
|
| 3818 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
| 3819 |
/// minimum value of the given graph map. |
|
| 3820 |
/// If the item set is empty, it returns \c INVALID. |
|
| 3821 |
/// |
|
| 3822 |
/// \param gr The graph for which the map is defined. |
|
| 3823 |
/// \param map The graph map. |
|
| 3824 |
template <typename GR, typename Map> |
|
| 3825 |
typename Map::Key mapMin(const GR& gr, const Map& map) {
|
|
| 3826 |
return mapMin(gr, map, std::less<typename Map::Value>()); |
|
| 3827 |
} |
|
| 3828 |
|
|
| 3829 |
/// \brief Return an item having minimum value of a graph map. |
|
| 3830 |
/// |
|
| 3831 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
| 3832 |
/// minimum value of the given graph map. |
|
| 3833 |
/// If the item set is empty, it returns \c INVALID. |
|
| 3834 |
/// |
|
| 3835 |
/// \param gr The graph for which the map is defined. |
|
| 3836 |
/// \param map The graph map. |
|
| 3837 |
/// \param comp Comparison function object. |
|
| 3838 |
template <typename GR, typename Map, typename Comp> |
|
| 3839 |
typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
|
|
| 3840 |
typedef typename Map::Key Item; |
|
| 3841 |
typedef typename Map::Value Value; |
|
| 3842 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 3843 |
|
|
| 3844 |
ItemIt min_item(gr); |
|
| 3845 |
if (min_item == INVALID) return INVALID; |
|
| 3846 |
Value min = map[min_item]; |
|
| 3847 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 3848 |
if (comp(map[it], min)) {
|
|
| 3849 |
min = map[it]; |
|
| 3850 |
min_item = it; |
|
| 3851 |
} |
|
| 3852 |
} |
|
| 3853 |
return min_item; |
|
| 3854 |
} |
|
| 3855 |
|
|
| 3856 |
/// \brief Return an item having maximum value of a graph map. |
|
| 3857 |
/// |
|
| 3858 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
| 3859 |
/// maximum value of the given graph map. |
|
| 3860 |
/// If the item set is empty, it returns \c INVALID. |
|
| 3861 |
/// |
|
| 3862 |
/// \param gr The graph for which the map is defined. |
|
| 3863 |
/// \param map The graph map. |
|
| 3864 |
template <typename GR, typename Map> |
|
| 3865 |
typename Map::Key mapMax(const GR& gr, const Map& map) {
|
|
| 3866 |
return mapMax(gr, map, std::less<typename Map::Value>()); |
|
| 3867 |
} |
|
| 3868 |
|
|
| 3869 |
/// \brief Return an item having maximum value of a graph map. |
|
| 3870 |
/// |
|
| 3871 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
| 3872 |
/// maximum value of the given graph map. |
|
| 3873 |
/// If the item set is empty, it returns \c INVALID. |
|
| 3874 |
/// |
|
| 3875 |
/// \param gr The graph for which the map is defined. |
|
| 3876 |
/// \param map The graph map. |
|
| 3877 |
/// \param comp Comparison function object. |
|
| 3878 |
template <typename GR, typename Map, typename Comp> |
|
| 3879 |
typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
|
|
| 3880 |
typedef typename Map::Key Item; |
|
| 3881 |
typedef typename Map::Value Value; |
|
| 3882 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 3883 |
|
|
| 3884 |
ItemIt max_item(gr); |
|
| 3885 |
if (max_item == INVALID) return INVALID; |
|
| 3886 |
Value max = map[max_item]; |
|
| 3887 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 3888 |
if (comp(max, map[it])) {
|
|
| 3889 |
max = map[it]; |
|
| 3890 |
max_item = it; |
|
| 3891 |
} |
|
| 3892 |
} |
|
| 3893 |
return max_item; |
|
| 3894 |
} |
|
| 3895 |
|
|
| 3896 |
/// \brief Return the minimum value of a graph map. |
|
| 3897 |
/// |
|
| 3898 |
/// This function returns the minimum value of the given graph map. |
|
| 3899 |
/// The corresponding item set of the graph must not be empty. |
|
| 3900 |
/// |
|
| 3901 |
/// \param gr The graph for which the map is defined. |
|
| 3902 |
/// \param map The graph map. |
|
| 3903 |
template <typename GR, typename Map> |
|
| 3904 |
typename Map::Value mapMinValue(const GR& gr, const Map& map) {
|
|
| 3905 |
return map[mapMin(gr, map, std::less<typename Map::Value>())]; |
|
| 3906 |
} |
|
| 3907 |
|
|
| 3908 |
/// \brief Return the minimum value of a graph map. |
|
| 3909 |
/// |
|
| 3910 |
/// This function returns the minimum value of the given graph map. |
|
| 3911 |
/// The corresponding item set of the graph must not be empty. |
|
| 3912 |
/// |
|
| 3913 |
/// \param gr The graph for which the map is defined. |
|
| 3914 |
/// \param map The graph map. |
|
| 3915 |
/// \param comp Comparison function object. |
|
| 3916 |
template <typename GR, typename Map, typename Comp> |
|
| 3917 |
typename Map::Value |
|
| 3918 |
mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
|
|
| 3919 |
return map[mapMin(gr, map, comp)]; |
|
| 3920 |
} |
|
| 3921 |
|
|
| 3922 |
/// \brief Return the maximum value of a graph map. |
|
| 3923 |
/// |
|
| 3924 |
/// This function returns the maximum value of the given graph map. |
|
| 3925 |
/// The corresponding item set of the graph must not be empty. |
|
| 3926 |
/// |
|
| 3927 |
/// \param gr The graph for which the map is defined. |
|
| 3928 |
/// \param map The graph map. |
|
| 3929 |
template <typename GR, typename Map> |
|
| 3930 |
typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
|
|
| 3931 |
return map[mapMax(gr, map, std::less<typename Map::Value>())]; |
|
| 3932 |
} |
|
| 3933 |
|
|
| 3934 |
/// \brief Return the maximum value of a graph map. |
|
| 3935 |
/// |
|
| 3936 |
/// This function returns the maximum value of the given graph map. |
|
| 3937 |
/// The corresponding item set of the graph must not be empty. |
|
| 3938 |
/// |
|
| 3939 |
/// \param gr The graph for which the map is defined. |
|
| 3940 |
/// \param map The graph map. |
|
| 3941 |
/// \param comp Comparison function object. |
|
| 3942 |
template <typename GR, typename Map, typename Comp> |
|
| 3943 |
typename Map::Value |
|
| 3944 |
mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
|
|
| 3945 |
return map[mapMax(gr, map, comp)]; |
|
| 3946 |
} |
|
| 3947 |
|
|
| 3948 |
/// \brief Return an item having a specified value in a graph map. |
|
| 3949 |
/// |
|
| 3950 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
| 3951 |
/// the specified assigned value in the given graph map. |
|
| 3952 |
/// If no such item exists, it returns \c INVALID. |
|
| 3953 |
/// |
|
| 3954 |
/// \param gr The graph for which the map is defined. |
|
| 3955 |
/// \param map The graph map. |
|
| 3956 |
/// \param val The value that have to be found. |
|
| 3957 |
template <typename GR, typename Map> |
|
| 3958 |
typename Map::Key |
|
| 3959 |
mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
|
|
| 3960 |
typedef typename Map::Key Item; |
|
| 3961 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 3962 |
|
|
| 3963 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 3964 |
if (map[it] == val) return it; |
|
| 3965 |
} |
|
| 3966 |
return INVALID; |
|
| 3967 |
} |
|
| 3968 |
|
|
| 3969 |
/// \brief Return an item having value for which a certain predicate is |
|
| 3970 |
/// true in a graph map. |
|
| 3971 |
/// |
|
| 3972 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
|
| 3973 |
/// such assigned value for which the specified predicate is true |
|
| 3974 |
/// in the given graph map. |
|
| 3975 |
/// If no such item exists, it returns \c INVALID. |
|
| 3976 |
/// |
|
| 3977 |
/// \param gr The graph for which the map is defined. |
|
| 3978 |
/// \param map The graph map. |
|
| 3979 |
/// \param pred The predicate function object. |
|
| 3980 |
template <typename GR, typename Map, typename Pred> |
|
| 3981 |
typename Map::Key |
|
| 3982 |
mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
|
|
| 3983 |
typedef typename Map::Key Item; |
|
| 3984 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 3985 |
|
|
| 3986 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 3987 |
if (pred(map[it])) return it; |
|
| 3988 |
} |
|
| 3989 |
return INVALID; |
|
| 3990 |
} |
|
| 3991 |
|
|
| 3992 |
/// \brief Return the number of items having a specified value in a |
|
| 3993 |
/// graph map. |
|
| 3994 |
/// |
|
| 3995 |
/// This function returns the number of items (\c Node, \c Arc or \c Edge) |
|
| 3996 |
/// having the specified assigned value in the given graph map. |
|
| 3997 |
/// |
|
| 3998 |
/// \param gr The graph for which the map is defined. |
|
| 3999 |
/// \param map The graph map. |
|
| 4000 |
/// \param val The value that have to be counted. |
|
| 4001 |
template <typename GR, typename Map> |
|
| 4002 |
int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
|
|
| 4003 |
typedef typename Map::Key Item; |
|
| 4004 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 4005 |
|
|
| 4006 |
int cnt = 0; |
|
| 4007 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 4008 |
if (map[it] == val) ++cnt; |
|
| 4009 |
} |
|
| 4010 |
return cnt; |
|
| 4011 |
} |
|
| 4012 |
|
|
| 4013 |
/// \brief Return the number of items having values for which a certain |
|
| 4014 |
/// predicate is true in a graph map. |
|
| 4015 |
/// |
|
| 4016 |
/// This function returns the number of items (\c Node, \c Arc or \c Edge) |
|
| 4017 |
/// having such assigned values for which the specified predicate is true |
|
| 4018 |
/// in the given graph map. |
|
| 4019 |
/// |
|
| 4020 |
/// \param gr The graph for which the map is defined. |
|
| 4021 |
/// \param map The graph map. |
|
| 4022 |
/// \param pred The predicate function object. |
|
| 4023 |
template <typename GR, typename Map, typename Pred> |
|
| 4024 |
int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
|
|
| 4025 |
typedef typename Map::Key Item; |
|
| 4026 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 4027 |
|
|
| 4028 |
int cnt = 0; |
|
| 4029 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 4030 |
if (pred(map[it])) ++cnt; |
|
| 4031 |
} |
|
| 4032 |
return cnt; |
|
| 4033 |
} |
|
| 4034 |
|
|
| 4035 |
/// \brief Fill a graph map with a certain value. |
|
| 4036 |
/// |
|
| 4037 |
/// This function sets the specified value for all items (\c Node, |
|
| 4038 |
/// \c Arc or \c Edge) in the given graph map. |
|
| 4039 |
/// |
|
| 4040 |
/// \param gr The graph for which the map is defined. |
|
| 4041 |
/// \param map The graph map. It must conform to the |
|
| 4042 |
/// \ref concepts::WriteMap "WriteMap" concept. |
|
| 4043 |
/// \param val The value. |
|
| 4044 |
template <typename GR, typename Map> |
|
| 4045 |
void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
|
|
| 4046 |
typedef typename Map::Key Item; |
|
| 4047 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
|
| 4048 |
|
|
| 4049 |
for (ItemIt it(gr); it != INVALID; ++it) {
|
|
| 4050 |
map.set(it, val); |
|
| 4051 |
} |
|
| 4052 |
} |
|
| 4053 |
|
|
| 2803 | 4054 |
/// @} |
| 2804 | 4055 |
} |
| 2805 | 4056 |
|
| 2806 | 4057 |
#endif // LEMON_MAPS_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -13,24 +13,25 @@ |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_MAX_MATCHING_H |
|
| 20 |
#define LEMON_MAX_MATCHING_H |
|
| 19 |
#ifndef LEMON_MATCHING_H |
|
| 20 |
#define LEMON_MATCHING_H |
|
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <queue> |
| 24 | 24 |
#include <set> |
| 25 | 25 |
#include <limits> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/unionfind.h> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 |
#include <lemon/fractional_matching.h> |
|
| 31 | 32 |
|
| 32 | 33 |
///\ingroup matching |
| 33 | 34 |
///\file |
| 34 | 35 |
///\brief Maximum matching algorithms in general graphs. |
| 35 | 36 |
|
| 36 | 37 |
namespace lemon {
|
| ... | ... |
@@ -38,13 +39,13 @@ |
| 38 | 39 |
/// \ingroup matching |
| 39 | 40 |
/// |
| 40 | 41 |
/// \brief Maximum cardinality matching in general graphs |
| 41 | 42 |
/// |
| 42 | 43 |
/// This class implements Edmonds' alternating forest matching algorithm |
| 43 | 44 |
/// for finding a maximum cardinality matching in a general undirected graph. |
| 44 |
/// It can be started from an arbitrary initial matching |
|
| 45 |
/// It can be started from an arbitrary initial matching |
|
| 45 | 46 |
/// (the default is the empty one). |
| 46 | 47 |
/// |
| 47 | 48 |
/// The dual solution of the problem is a map of the nodes to |
| 48 | 49 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
| 49 | 50 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
| 50 | 51 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
| ... | ... |
@@ -66,17 +67,17 @@ |
| 66 | 67 |
/// The type of the matching map |
| 67 | 68 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
| 68 | 69 |
MatchingMap; |
| 69 | 70 |
|
| 70 | 71 |
///\brief Status constants for Gallai-Edmonds decomposition. |
| 71 | 72 |
/// |
| 72 |
///These constants are used for indicating the Gallai-Edmonds |
|
| 73 |
///These constants are used for indicating the Gallai-Edmonds |
|
| 73 | 74 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
| 74 | 75 |
///induce a subgraph with factor-critical components, the nodes with |
| 75 | 76 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
| 76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
| 77 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
| 77 | 78 |
///perfect matching. |
| 78 | 79 |
enum Status {
|
| 79 | 80 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
| 80 | 81 |
D = 1, |
| 81 | 82 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
| 82 | 83 |
C = 0, |
| ... | ... |
@@ -509,13 +510,13 @@ |
| 509 | 510 |
(*_status)[n] = EVEN; |
| 510 | 511 |
processSparse(n); |
| 511 | 512 |
} |
| 512 | 513 |
} |
| 513 | 514 |
} |
| 514 | 515 |
|
| 515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
| 516 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
| 516 | 517 |
/// for dense graphs |
| 517 | 518 |
/// |
| 518 | 519 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
| 519 | 520 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
| 520 | 521 |
/// |
| 521 | 522 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
| ... | ... |
@@ -531,14 +532,14 @@ |
| 531 | 532 |
} |
| 532 | 533 |
} |
| 533 | 534 |
|
| 534 | 535 |
|
| 535 | 536 |
/// \brief Run Edmonds' algorithm |
| 536 | 537 |
/// |
| 537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
| 538 |
/// postponing shrinks is used for relatively dense graphs |
|
| 538 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
| 539 |
/// postponing shrinks is used for relatively dense graphs |
|
| 539 | 540 |
/// (for which <tt>m>=2*n</tt> holds). |
| 540 | 541 |
void run() {
|
| 541 | 542 |
if (countEdges(_graph) < 2 * countNodes(_graph)) {
|
| 542 | 543 |
greedyInit(); |
| 543 | 544 |
startSparse(); |
| 544 | 545 |
} else {
|
| ... | ... |
@@ -553,13 +554,13 @@ |
| 553 | 554 |
/// Functions to get the primal solution, i.e. the maximum matching. |
| 554 | 555 |
|
| 555 | 556 |
/// @{
|
| 556 | 557 |
|
| 557 | 558 |
/// \brief Return the size (cardinality) of the matching. |
| 558 | 559 |
/// |
| 559 |
/// This function returns the size (cardinality) of the current matching. |
|
| 560 |
/// This function returns the size (cardinality) of the current matching. |
|
| 560 | 561 |
/// After run() it returns the size of the maximum matching in the graph. |
| 561 | 562 |
int matchingSize() const {
|
| 562 | 563 |
int size = 0; |
| 563 | 564 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 564 | 565 |
if ((*_matching)[n] != INVALID) {
|
| 565 | 566 |
++size; |
| ... | ... |
@@ -567,22 +568,22 @@ |
| 567 | 568 |
} |
| 568 | 569 |
return size / 2; |
| 569 | 570 |
} |
| 570 | 571 |
|
| 571 | 572 |
/// \brief Return \c true if the given edge is in the matching. |
| 572 | 573 |
/// |
| 573 |
/// This function returns \c true if the given edge is in the current |
|
| 574 |
/// This function returns \c true if the given edge is in the current |
|
| 574 | 575 |
/// matching. |
| 575 | 576 |
bool matching(const Edge& edge) const {
|
| 576 | 577 |
return edge == (*_matching)[_graph.u(edge)]; |
| 577 | 578 |
} |
| 578 | 579 |
|
| 579 | 580 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 580 | 581 |
/// |
| 581 | 582 |
/// This function returns the matching arc (or edge) incident to the |
| 582 |
/// given node in the current matching or \c INVALID if the node is |
|
| 583 |
/// given node in the current matching or \c INVALID if the node is |
|
| 583 | 584 |
/// not covered by the matching. |
| 584 | 585 |
Arc matching(const Node& n) const {
|
| 585 | 586 |
return (*_matching)[n]; |
| 586 | 587 |
} |
| 587 | 588 |
|
| 588 | 589 |
/// \brief Return a const reference to the matching map. |
| ... | ... |
@@ -592,23 +593,23 @@ |
| 592 | 593 |
const MatchingMap& matchingMap() const {
|
| 593 | 594 |
return *_matching; |
| 594 | 595 |
} |
| 595 | 596 |
|
| 596 | 597 |
/// \brief Return the mate of the given node. |
| 597 | 598 |
/// |
| 598 |
/// This function returns the mate of the given node in the current |
|
| 599 |
/// This function returns the mate of the given node in the current |
|
| 599 | 600 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 600 | 601 |
Node mate(const Node& n) const {
|
| 601 | 602 |
return (*_matching)[n] != INVALID ? |
| 602 | 603 |
_graph.target((*_matching)[n]) : INVALID; |
| 603 | 604 |
} |
| 604 | 605 |
|
| 605 | 606 |
/// @} |
| 606 | 607 |
|
| 607 | 608 |
/// \name Dual Solution |
| 608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
| 609 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
| 609 | 610 |
/// decomposition. |
| 610 | 611 |
|
| 611 | 612 |
/// @{
|
| 612 | 613 |
|
| 613 | 614 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
| 614 | 615 |
/// decomposition. |
| ... | ... |
@@ -645,14 +646,14 @@ |
| 645 | 646 |
/// |
| 646 | 647 |
/// This class provides an efficient implementation of Edmond's |
| 647 | 648 |
/// maximum weighted matching algorithm. The implementation is based |
| 648 | 649 |
/// on extensive use of priority queues and provides |
| 649 | 650 |
/// \f$O(nm\log n)\f$ time complexity. |
| 650 | 651 |
/// |
| 651 |
/// The maximum weighted matching problem is to find a subset of the |
|
| 652 |
/// edges in an undirected graph with maximum overall weight for which |
|
| 652 |
/// The maximum weighted matching problem is to find a subset of the |
|
| 653 |
/// edges in an undirected graph with maximum overall weight for which |
|
| 653 | 654 |
/// each node has at most one incident edge. |
| 654 | 655 |
/// It can be formulated with the following linear program. |
| 655 | 656 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
| 656 | 657 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 657 | 658 |
\quad \forall B\in\mathcal{O}\f] */
|
| 658 | 659 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| ... | ... |
@@ -670,22 +671,22 @@ |
| 670 | 671 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */
|
| 671 | 672 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
| 672 | 673 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 673 | 674 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 674 | 675 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 675 | 676 |
/// |
| 676 |
/// The algorithm can be executed with the run() function. |
|
| 677 |
/// The algorithm can be executed with the run() function. |
|
| 677 | 678 |
/// After it the matching (the primal solution) and the dual solution |
| 678 |
/// can be obtained using the query functions and the |
|
| 679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
| 680 |
/// |
|
| 679 |
/// can be obtained using the query functions and the |
|
| 680 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
| 681 |
/// which is able to iterate on the nodes of a blossom. |
|
| 681 | 682 |
/// If the value type is integer, then the dual solution is multiplied |
| 682 | 683 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 683 | 684 |
/// |
| 684 | 685 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 685 |
/// \tparam WM The type edge weight map. The default type is |
|
| 686 |
/// \tparam WM The type edge weight map. The default type is |
|
| 686 | 687 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 687 | 688 |
#ifdef DOXYGEN |
| 688 | 689 |
template <typename GR, typename WM> |
| 689 | 690 |
#else |
| 690 | 691 |
template <typename GR, |
| 691 | 692 |
typename WM = typename GR::template EdgeMap<int> > |
| ... | ... |
@@ -742,13 +743,13 @@ |
| 742 | 743 |
int _node_num; |
| 743 | 744 |
int _blossom_num; |
| 744 | 745 |
|
| 745 | 746 |
typedef RangeMap<int> IntIntMap; |
| 746 | 747 |
|
| 747 | 748 |
enum Status {
|
| 748 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 749 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
| 749 | 750 |
}; |
| 750 | 751 |
|
| 751 | 752 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
| 752 | 753 |
struct BlossomData {
|
| 753 | 754 |
int tree; |
| 754 | 755 |
Status status; |
| ... | ... |
@@ -794,12 +795,16 @@ |
| 794 | 795 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 795 | 796 |
|
| 796 | 797 |
IntIntMap *_delta4_index; |
| 797 | 798 |
BinHeap<Value, IntIntMap> *_delta4; |
| 798 | 799 |
|
| 799 | 800 |
Value _delta_sum; |
| 801 |
int _unmatched; |
|
| 802 |
|
|
| 803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching; |
|
| 804 |
FractionalMatching *_fractional; |
|
| 800 | 805 |
|
| 801 | 806 |
void createStructures() {
|
| 802 | 807 |
_node_num = countNodes(_graph); |
| 803 | 808 |
_blossom_num = _node_num * 3 / 2; |
| 804 | 809 |
|
| 805 | 810 |
if (!_matching) {
|
| ... | ... |
@@ -860,15 +865,12 @@ |
| 860 | 865 |
} else {
|
| 861 | 866 |
_delta4_index->resize(_blossom_num); |
| 862 | 867 |
} |
| 863 | 868 |
} |
| 864 | 869 |
|
| 865 | 870 |
void destroyStructures() {
|
| 866 |
_node_num = countNodes(_graph); |
|
| 867 |
_blossom_num = _node_num * 3 / 2; |
|
| 868 |
|
|
| 869 | 871 |
if (_matching) {
|
| 870 | 872 |
delete _matching; |
| 871 | 873 |
} |
| 872 | 874 |
if (_node_potential) {
|
| 873 | 875 |
delete _node_potential; |
| 874 | 876 |
} |
| ... | ... |
@@ -938,16 +940,12 @@ |
| 938 | 940 |
dualScale * _weight[e]; |
| 939 | 941 |
|
| 940 | 942 |
if ((*_blossom_data)[vb].status == EVEN) {
|
| 941 | 943 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
| 942 | 944 |
_delta3->push(e, rw / 2); |
| 943 | 945 |
} |
| 944 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 945 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 946 |
_delta3->push(e, rw); |
|
| 947 |
} |
|
| 948 | 946 |
} else {
|
| 949 | 947 |
typename std::map<int, Arc>::iterator it = |
| 950 | 948 |
(*_node_data)[vi].heap_index.find(tree); |
| 951 | 949 |
|
| 952 | 950 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
| 953 | 951 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
| ... | ... |
@@ -965,313 +963,209 @@ |
| 965 | 963 |
|
| 966 | 964 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
| 967 | 965 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
| 968 | 966 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
| 969 | 967 |
(*_blossom_data)[vb].offset); |
| 970 | 968 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
| 971 |
(*_blossom_data)[vb].offset){
|
|
| 972 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
| 973 |
(*_blossom_data)[vb].offset); |
|
| 974 |
} |
|
| 975 |
} |
|
| 976 |
} |
|
| 977 |
} |
|
| 978 |
} |
|
| 979 |
} |
|
| 980 |
(*_blossom_data)[blossom].offset = 0; |
|
| 981 |
} |
|
| 982 |
|
|
| 983 |
void matchedToOdd(int blossom) {
|
|
| 984 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
|
| 985 |
_delta2->erase(blossom); |
|
| 986 |
} |
|
| 987 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
| 988 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 989 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
| 990 |
(*_blossom_data)[blossom].offset); |
|
| 991 |
} |
|
| 992 |
} |
|
| 993 |
|
|
| 994 |
void evenToMatched(int blossom, int tree) {
|
|
| 995 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 996 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
| 997 |
} |
|
| 998 |
|
|
| 999 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
| 1000 |
n != INVALID; ++n) {
|
|
| 1001 |
int ni = (*_node_index)[n]; |
|
| 1002 |
(*_node_data)[ni].pot -= _delta_sum; |
|
| 1003 |
|
|
| 1004 |
_delta1->erase(n); |
|
| 1005 |
|
|
| 1006 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1007 |
Node v = _graph.source(e); |
|
| 1008 |
int vb = _blossom_set->find(v); |
|
| 1009 |
int vi = (*_node_index)[v]; |
|
| 1010 |
|
|
| 1011 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1012 |
dualScale * _weight[e]; |
|
| 1013 |
|
|
| 1014 |
if (vb == blossom) {
|
|
| 1015 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1016 |
_delta3->erase(e); |
|
| 1017 |
} |
|
| 1018 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1019 |
|
|
| 1020 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1021 |
_delta3->erase(e); |
|
| 1022 |
} |
|
| 1023 |
|
|
| 1024 |
int vt = _tree_set->find(vb); |
|
| 1025 |
|
|
| 1026 |
if (vt != tree) {
|
|
| 1027 |
|
|
| 1028 |
Arc r = _graph.oppositeArc(e); |
|
| 1029 |
|
|
| 1030 |
typename std::map<int, Arc>::iterator it = |
|
| 1031 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1032 |
|
|
| 1033 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1034 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1035 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
| 1036 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
| 1037 |
it->second = r; |
|
| 1038 |
} |
|
| 1039 |
} else {
|
|
| 1040 |
(*_node_data)[ni].heap.push(r, rw); |
|
| 1041 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
| 1042 |
} |
|
| 1043 |
|
|
| 1044 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
|
| 1045 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1046 |
|
|
| 1047 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
|
| 1048 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1049 |
(*_blossom_data)[blossom].offset); |
|
| 1050 |
} else if ((*_delta2)[blossom] > |
|
| 1051 |
_blossom_set->classPrio(blossom) - |
|
| 1052 |
(*_blossom_data)[blossom].offset){
|
|
| 1053 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
| 1054 |
(*_blossom_data)[blossom].offset); |
|
| 1055 |
} |
|
| 1056 |
} |
|
| 1057 |
} |
|
| 1058 |
|
|
| 1059 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1060 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1061 |
_delta3->erase(e); |
|
| 1062 |
} |
|
| 1063 |
} else {
|
|
| 1064 |
|
|
| 1065 |
typename std::map<int, Arc>::iterator it = |
|
| 1066 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1067 |
|
|
| 1068 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1069 |
(*_node_data)[vi].heap.erase(it->second); |
|
| 1070 |
(*_node_data)[vi].heap_index.erase(it); |
|
| 1071 |
if ((*_node_data)[vi].heap.empty()) {
|
|
| 1072 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
| 1073 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
|
|
| 1074 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
| 1075 |
} |
|
| 1076 |
|
|
| 1077 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1078 |
if (_blossom_set->classPrio(vb) == |
|
| 1079 |
std::numeric_limits<Value>::max()) {
|
|
| 1080 |
_delta2->erase(vb); |
|
| 1081 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
| 1082 |
(*_blossom_data)[vb].offset) {
|
|
| 1083 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
| 1084 |
(*_blossom_data)[vb].offset); |
|
| 1085 |
} |
|
| 1086 |
} |
|
| 1087 |
} |
|
| 1088 |
} |
|
| 1089 |
} |
|
| 1090 |
} |
|
| 1091 |
} |
|
| 1092 |
|
|
| 1093 |
void oddToMatched(int blossom) {
|
|
| 1094 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
| 1095 |
|
|
| 1096 |
if (_blossom_set->classPrio(blossom) != |
|
| 1097 |
std::numeric_limits<Value>::max()) {
|
|
| 1098 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1099 |
(*_blossom_data)[blossom].offset); |
|
| 1100 |
} |
|
| 1101 |
|
|
| 1102 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1103 |
_delta4->erase(blossom); |
|
| 1104 |
} |
|
| 1105 |
} |
|
| 1106 |
|
|
| 1107 |
void oddToEven(int blossom, int tree) {
|
|
| 1108 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1109 |
_delta4->erase(blossom); |
|
| 1110 |
(*_blossom_data)[blossom].pot -= |
|
| 1111 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
| 1112 |
} |
|
| 1113 |
|
|
| 1114 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
| 1115 |
n != INVALID; ++n) {
|
|
| 1116 |
int ni = (*_node_index)[n]; |
|
| 1117 |
|
|
| 1118 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
| 1119 |
|
|
| 1120 |
(*_node_data)[ni].heap.clear(); |
|
| 1121 |
(*_node_data)[ni].heap_index.clear(); |
|
| 1122 |
(*_node_data)[ni].pot += |
|
| 1123 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
| 1124 |
|
|
| 1125 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
| 1126 |
|
|
| 1127 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1128 |
Node v = _graph.source(e); |
|
| 1129 |
int vb = _blossom_set->find(v); |
|
| 1130 |
int vi = (*_node_index)[v]; |
|
| 1131 |
|
|
| 1132 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1133 |
dualScale * _weight[e]; |
|
| 1134 |
|
|
| 1135 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1136 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
|
| 1137 |
_delta3->push(e, rw / 2); |
|
| 1138 |
} |
|
| 1139 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1140 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 1141 |
_delta3->push(e, rw); |
|
| 1142 |
} |
|
| 1143 |
} else {
|
|
| 1144 |
|
|
| 1145 |
typename std::map<int, Arc>::iterator it = |
|
| 1146 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1147 |
|
|
| 1148 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1149 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
|
| 1150 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
| 1151 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
| 1152 |
it->second = e; |
|
| 1153 |
} |
|
| 1154 |
} else {
|
|
| 1155 |
(*_node_data)[vi].heap.push(e, rw); |
|
| 1156 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
| 1157 |
} |
|
| 1158 |
|
|
| 1159 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
|
| 1160 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
| 1161 |
|
|
| 1162 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1163 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
|
| 1164 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
| 1165 |
(*_blossom_data)[vb].offset); |
|
| 1166 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
| 1167 | 969 |
(*_blossom_data)[vb].offset) {
|
| 1168 | 970 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
| 1169 | 971 |
(*_blossom_data)[vb].offset); |
| 1170 | 972 |
} |
| 1171 | 973 |
} |
| 1172 | 974 |
} |
| 1173 | 975 |
} |
| 1174 | 976 |
} |
| 1175 | 977 |
} |
| 1176 | 978 |
(*_blossom_data)[blossom].offset = 0; |
| 1177 | 979 |
} |
| 1178 | 980 |
|
| 1179 |
|
|
| 1180 |
void matchedToUnmatched(int blossom) {
|
|
| 981 |
void matchedToOdd(int blossom) {
|
|
| 1181 | 982 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
| 1182 | 983 |
_delta2->erase(blossom); |
| 1183 | 984 |
} |
| 985 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
| 986 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 987 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
| 988 |
(*_blossom_data)[blossom].offset); |
|
| 989 |
} |
|
| 990 |
} |
|
| 991 |
|
|
| 992 |
void evenToMatched(int blossom, int tree) {
|
|
| 993 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 994 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
| 995 |
} |
|
| 1184 | 996 |
|
| 1185 | 997 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 1186 | 998 |
n != INVALID; ++n) {
|
| 1187 | 999 |
int ni = (*_node_index)[n]; |
| 1188 |
|
|
| 1189 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
| 1190 |
|
|
| 1191 |
(*_node_data)[ni].heap.clear(); |
|
| 1192 |
(*_node_data)[ni].heap_index.clear(); |
|
| 1193 |
|
|
| 1194 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1195 |
Node v = _graph.target(e); |
|
| 1000 |
(*_node_data)[ni].pot -= _delta_sum; |
|
| 1001 |
|
|
| 1002 |
_delta1->erase(n); |
|
| 1003 |
|
|
| 1004 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1005 |
Node v = _graph.source(e); |
|
| 1196 | 1006 |
int vb = _blossom_set->find(v); |
| 1197 | 1007 |
int vi = (*_node_index)[v]; |
| 1198 | 1008 |
|
| 1199 | 1009 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1200 | 1010 |
dualScale * _weight[e]; |
| 1201 | 1011 |
|
| 1202 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1203 |
if (_delta3->state(e) != _delta3->IN_HEAP) {
|
|
| 1204 |
|
|
| 1012 |
if (vb == blossom) {
|
|
| 1013 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1014 |
_delta3->erase(e); |
|
| 1015 |
} |
|
| 1016 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1017 |
|
|
| 1018 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1019 |
_delta3->erase(e); |
|
| 1020 |
} |
|
| 1021 |
|
|
| 1022 |
int vt = _tree_set->find(vb); |
|
| 1023 |
|
|
| 1024 |
if (vt != tree) {
|
|
| 1025 |
|
|
| 1026 |
Arc r = _graph.oppositeArc(e); |
|
| 1027 |
|
|
| 1028 |
typename std::map<int, Arc>::iterator it = |
|
| 1029 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1030 |
|
|
| 1031 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1032 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1033 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
| 1034 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
| 1035 |
it->second = r; |
|
| 1036 |
} |
|
| 1037 |
} else {
|
|
| 1038 |
(*_node_data)[ni].heap.push(r, rw); |
|
| 1039 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
| 1040 |
} |
|
| 1041 |
|
|
| 1042 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
|
| 1043 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1044 |
|
|
| 1045 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
|
| 1046 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1047 |
(*_blossom_data)[blossom].offset); |
|
| 1048 |
} else if ((*_delta2)[blossom] > |
|
| 1049 |
_blossom_set->classPrio(blossom) - |
|
| 1050 |
(*_blossom_data)[blossom].offset){
|
|
| 1051 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
| 1052 |
(*_blossom_data)[blossom].offset); |
|
| 1053 |
} |
|
| 1054 |
} |
|
| 1055 |
} |
|
| 1056 |
} else {
|
|
| 1057 |
|
|
| 1058 |
typename std::map<int, Arc>::iterator it = |
|
| 1059 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1060 |
|
|
| 1061 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1062 |
(*_node_data)[vi].heap.erase(it->second); |
|
| 1063 |
(*_node_data)[vi].heap_index.erase(it); |
|
| 1064 |
if ((*_node_data)[vi].heap.empty()) {
|
|
| 1065 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
| 1066 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
|
|
| 1067 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
| 1068 |
} |
|
| 1069 |
|
|
| 1070 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1071 |
if (_blossom_set->classPrio(vb) == |
|
| 1072 |
std::numeric_limits<Value>::max()) {
|
|
| 1073 |
_delta2->erase(vb); |
|
| 1074 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
| 1075 |
(*_blossom_data)[vb].offset) {
|
|
| 1076 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
| 1077 |
(*_blossom_data)[vb].offset); |
|
| 1078 |
} |
|
| 1079 |
} |
|
| 1205 | 1080 |
} |
| 1206 | 1081 |
} |
| 1207 | 1082 |
} |
| 1208 | 1083 |
} |
| 1209 | 1084 |
} |
| 1210 | 1085 |
|
| 1211 |
void |
|
| 1086 |
void oddToMatched(int blossom) {
|
|
| 1087 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
| 1088 |
|
|
| 1089 |
if (_blossom_set->classPrio(blossom) != |
|
| 1090 |
std::numeric_limits<Value>::max()) {
|
|
| 1091 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1092 |
(*_blossom_data)[blossom].offset); |
|
| 1093 |
} |
|
| 1094 |
|
|
| 1095 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1096 |
_delta4->erase(blossom); |
|
| 1097 |
} |
|
| 1098 |
} |
|
| 1099 |
|
|
| 1100 |
void oddToEven(int blossom, int tree) {
|
|
| 1101 |
if (!_blossom_set->trivial(blossom)) {
|
|
| 1102 |
_delta4->erase(blossom); |
|
| 1103 |
(*_blossom_data)[blossom].pot -= |
|
| 1104 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
| 1105 |
} |
|
| 1106 |
|
|
| 1212 | 1107 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
| 1213 | 1108 |
n != INVALID; ++n) {
|
| 1214 | 1109 |
int ni = (*_node_index)[n]; |
| 1215 | 1110 |
|
| 1111 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
| 1112 |
|
|
| 1113 |
(*_node_data)[ni].heap.clear(); |
|
| 1114 |
(*_node_data)[ni].heap_index.clear(); |
|
| 1115 |
(*_node_data)[ni].pot += |
|
| 1116 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
| 1117 |
|
|
| 1118 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
| 1119 |
|
|
| 1216 | 1120 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 1217 | 1121 |
Node v = _graph.source(e); |
| 1218 | 1122 |
int vb = _blossom_set->find(v); |
| 1219 | 1123 |
int vi = (*_node_index)[v]; |
| 1220 | 1124 |
|
| 1221 | 1125 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
| 1222 | 1126 |
dualScale * _weight[e]; |
| 1223 | 1127 |
|
| 1224 |
if (vb == blossom) {
|
|
| 1225 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1226 |
|
|
| 1128 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1129 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
|
| 1130 |
_delta3->push(e, rw / 2); |
|
| 1227 | 1131 |
} |
| 1228 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1229 |
|
|
| 1230 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1231 |
_delta3->erase(e); |
|
| 1232 |
} |
|
| 1233 |
|
|
| 1234 |
int vt = _tree_set->find(vb); |
|
| 1235 |
|
|
| 1236 |
|
|
| 1132 |
} else {
|
|
| 1237 | 1133 |
|
| 1238 | 1134 |
typename std::map<int, Arc>::iterator it = |
| 1239 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1240 |
|
|
| 1241 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1242 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1243 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
| 1244 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
| 1245 |
|
|
| 1135 |
(*_node_data)[vi].heap_index.find(tree); |
|
| 1136 |
|
|
| 1137 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
|
| 1138 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
|
| 1139 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
| 1140 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
| 1141 |
it->second = e; |
|
| 1246 | 1142 |
} |
| 1247 | 1143 |
} else {
|
| 1248 |
(*_node_data)[ni].heap.push(r, rw); |
|
| 1249 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
| 1144 |
(*_node_data)[vi].heap.push(e, rw); |
|
| 1145 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
| 1250 | 1146 |
} |
| 1251 | 1147 |
|
| 1252 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
|
| 1253 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1254 |
|
|
| 1255 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
|
| 1256 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
| 1257 |
(*_blossom_data)[blossom].offset); |
|
| 1258 |
} else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
|
| 1259 |
(*_blossom_data)[blossom].offset){
|
|
| 1260 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
| 1261 |
(*_blossom_data)[blossom].offset); |
|
| 1148 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
|
| 1149 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
| 1150 |
|
|
| 1151 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
|
| 1152 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
|
| 1153 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
| 1154 |
(*_blossom_data)[vb].offset); |
|
| 1155 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
| 1156 |
(*_blossom_data)[vb].offset) {
|
|
| 1157 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
| 1158 |
(*_blossom_data)[vb].offset); |
|
| 1159 |
} |
|
| 1262 | 1160 |
} |
| 1263 | 1161 |
} |
| 1264 |
|
|
| 1265 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) {
|
|
| 1266 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
|
| 1267 |
_delta3->erase(e); |
|
| 1268 |
} |
|
| 1269 | 1162 |
} |
| 1270 | 1163 |
} |
| 1271 | 1164 |
} |
| 1165 |
(*_blossom_data)[blossom].offset = 0; |
|
| 1272 | 1166 |
} |
| 1273 | 1167 |
|
| 1274 | 1168 |
void alternatePath(int even, int tree) {
|
| 1275 | 1169 |
int odd; |
| 1276 | 1170 |
|
| 1277 | 1171 |
evenToMatched(even, tree); |
| ... | ... |
@@ -1310,45 +1204,48 @@ |
| 1310 | 1204 |
int blossom = _blossom_set->find(node); |
| 1311 | 1205 |
int tree = _tree_set->find(blossom); |
| 1312 | 1206 |
|
| 1313 | 1207 |
alternatePath(blossom, tree); |
| 1314 | 1208 |
destroyTree(tree); |
| 1315 | 1209 |
|
| 1316 |
(*_blossom_data)[blossom].status = UNMATCHED; |
|
| 1317 | 1210 |
(*_blossom_data)[blossom].base = node; |
| 1318 |
|
|
| 1211 |
(*_blossom_data)[blossom].next = INVALID; |
|
| 1319 | 1212 |
} |
| 1320 | 1213 |
|
| 1321 |
|
|
| 1322 | 1214 |
void augmentOnEdge(const Edge& edge) {
|
| 1323 | 1215 |
|
| 1324 | 1216 |
int left = _blossom_set->find(_graph.u(edge)); |
| 1325 | 1217 |
int right = _blossom_set->find(_graph.v(edge)); |
| 1326 | 1218 |
|
| 1327 |
if ((*_blossom_data)[left].status == EVEN) {
|
|
| 1328 |
int left_tree = _tree_set->find(left); |
|
| 1329 |
alternatePath(left, left_tree); |
|
| 1330 |
destroyTree(left_tree); |
|
| 1331 |
} else {
|
|
| 1332 |
(*_blossom_data)[left].status = MATCHED; |
|
| 1333 |
unmatchedToMatched(left); |
|
| 1334 |
} |
|
| 1335 |
|
|
| 1336 |
if ((*_blossom_data)[right].status == EVEN) {
|
|
| 1337 |
int right_tree = _tree_set->find(right); |
|
| 1338 |
alternatePath(right, right_tree); |
|
| 1339 |
destroyTree(right_tree); |
|
| 1340 |
} else {
|
|
| 1341 |
(*_blossom_data)[right].status = MATCHED; |
|
| 1342 |
unmatchedToMatched(right); |
|
| 1343 |
|
|
| 1219 |
int left_tree = _tree_set->find(left); |
|
| 1220 |
alternatePath(left, left_tree); |
|
| 1221 |
destroyTree(left_tree); |
|
| 1222 |
|
|
| 1223 |
int right_tree = _tree_set->find(right); |
|
| 1224 |
alternatePath(right, right_tree); |
|
| 1225 |
destroyTree(right_tree); |
|
| 1344 | 1226 |
|
| 1345 | 1227 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
| 1346 | 1228 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
| 1347 | 1229 |
} |
| 1348 | 1230 |
|
| 1231 |
void augmentOnArc(const Arc& arc) {
|
|
| 1232 |
|
|
| 1233 |
int left = _blossom_set->find(_graph.source(arc)); |
|
| 1234 |
int right = _blossom_set->find(_graph.target(arc)); |
|
| 1235 |
|
|
| 1236 |
(*_blossom_data)[left].status = MATCHED; |
|
| 1237 |
|
|
| 1238 |
int right_tree = _tree_set->find(right); |
|
| 1239 |
alternatePath(right, right_tree); |
|
| 1240 |
destroyTree(right_tree); |
|
| 1241 |
|
|
| 1242 |
(*_blossom_data)[left].next = arc; |
|
| 1243 |
(*_blossom_data)[right].next = _graph.oppositeArc(arc); |
|
| 1244 |
} |
|
| 1245 |
|
|
| 1349 | 1246 |
void extendOnArc(const Arc& arc) {
|
| 1350 | 1247 |
int base = _blossom_set->find(_graph.target(arc)); |
| 1351 | 1248 |
int tree = _tree_set->find(base); |
| 1352 | 1249 |
|
| 1353 | 1250 |
int odd = _blossom_set->find(_graph.source(arc)); |
| 1354 | 1251 |
_tree_set->insert(odd, tree); |
| ... | ... |
@@ -1545,13 +1442,13 @@ |
| 1545 | 1442 |
|
| 1546 | 1443 |
(*_blossom_data)[sb].status = ODD; |
| 1547 | 1444 |
matchedToOdd(sb); |
| 1548 | 1445 |
_tree_set->insert(sb, tree); |
| 1549 | 1446 |
(*_blossom_data)[sb].pred = pred; |
| 1550 | 1447 |
(*_blossom_data)[sb].next = |
| 1551 |
|
|
| 1448 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
| 1552 | 1449 |
|
| 1553 | 1450 |
pred = (*_blossom_data)[ub].next; |
| 1554 | 1451 |
|
| 1555 | 1452 |
(*_blossom_data)[tb].status = EVEN; |
| 1556 | 1453 |
matchedToEven(tb, tree); |
| 1557 | 1454 |
_tree_set->insert(tb, tree); |
| ... | ... |
@@ -1645,13 +1542,13 @@ |
| 1645 | 1542 |
std::vector<int> blossoms; |
| 1646 | 1543 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
| 1647 | 1544 |
blossoms.push_back(c); |
| 1648 | 1545 |
} |
| 1649 | 1546 |
|
| 1650 | 1547 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
| 1651 |
if ((*_blossom_data)[blossoms[i]]. |
|
| 1548 |
if ((*_blossom_data)[blossoms[i]].next != INVALID) {
|
|
| 1652 | 1549 |
|
| 1653 | 1550 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
| 1654 | 1551 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
| 1655 | 1552 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
| 1656 | 1553 |
n != INVALID; ++n) {
|
| 1657 | 1554 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
| ... | ... |
@@ -1683,16 +1580,22 @@ |
| 1683 | 1580 |
|
| 1684 | 1581 |
_delta1_index(0), _delta1(0), |
| 1685 | 1582 |
_delta2_index(0), _delta2(0), |
| 1686 | 1583 |
_delta3_index(0), _delta3(0), |
| 1687 | 1584 |
_delta4_index(0), _delta4(0), |
| 1688 | 1585 |
|
| 1689 |
_delta_sum() |
|
| 1586 |
_delta_sum(), _unmatched(0), |
|
| 1587 |
|
|
| 1588 |
_fractional(0) |
|
| 1589 |
{}
|
|
| 1690 | 1590 |
|
| 1691 | 1591 |
~MaxWeightedMatching() {
|
| 1692 | 1592 |
destroyStructures(); |
| 1593 |
if (_fractional) {
|
|
| 1594 |
delete _fractional; |
|
| 1595 |
} |
|
| 1693 | 1596 |
} |
| 1694 | 1597 |
|
| 1695 | 1598 |
/// \name Execution Control |
| 1696 | 1599 |
/// The simplest way to execute the algorithm is to use the |
| 1697 | 1600 |
/// \ref run() member function. |
| 1698 | 1601 |
|
| ... | ... |
@@ -1717,13 +1620,15 @@ |
| 1717 | 1620 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 1718 | 1621 |
} |
| 1719 | 1622 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 1720 | 1623 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 1721 | 1624 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 1722 | 1625 |
} |
| 1723 |
|
|
| 1626 |
|
|
| 1627 |
_unmatched = _node_num; |
|
| 1628 |
|
|
| 1724 | 1629 |
_delta1->clear(); |
| 1725 | 1630 |
_delta2->clear(); |
| 1726 | 1631 |
_delta3->clear(); |
| 1727 | 1632 |
_delta4->clear(); |
| 1728 | 1633 |
_blossom_set->clear(); |
| 1729 | 1634 |
_tree_set->clear(); |
| ... | ... |
@@ -1761,88 +1666,229 @@ |
| 1761 | 1666 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 1762 | 1667 |
dualScale * _weight[e]) / 2); |
| 1763 | 1668 |
} |
| 1764 | 1669 |
} |
| 1765 | 1670 |
} |
| 1766 | 1671 |
|
| 1672 |
/// \brief Initialize the algorithm with fractional matching |
|
| 1673 |
/// |
|
| 1674 |
/// This function initializes the algorithm with a fractional |
|
| 1675 |
/// matching. This initialization is also called jumpstart heuristic. |
|
| 1676 |
void fractionalInit() {
|
|
| 1677 |
createStructures(); |
|
| 1678 |
|
|
| 1679 |
_blossom_node_list.clear(); |
|
| 1680 |
_blossom_potential.clear(); |
|
| 1681 |
|
|
| 1682 |
if (_fractional == 0) {
|
|
| 1683 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
| 1684 |
} |
|
| 1685 |
_fractional->run(); |
|
| 1686 |
|
|
| 1687 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 1688 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
| 1689 |
} |
|
| 1690 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1691 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
| 1692 |
} |
|
| 1693 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1694 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 1695 |
} |
|
| 1696 |
for (int i = 0; i < _blossom_num; ++i) {
|
|
| 1697 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
| 1698 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
| 1699 |
} |
|
| 1700 |
|
|
| 1701 |
_unmatched = 0; |
|
| 1702 |
|
|
| 1703 |
_delta1->clear(); |
|
| 1704 |
_delta2->clear(); |
|
| 1705 |
_delta3->clear(); |
|
| 1706 |
_delta4->clear(); |
|
| 1707 |
_blossom_set->clear(); |
|
| 1708 |
_tree_set->clear(); |
|
| 1709 |
|
|
| 1710 |
int index = 0; |
|
| 1711 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1712 |
Value pot = _fractional->nodeValue(n); |
|
| 1713 |
(*_node_index)[n] = index; |
|
| 1714 |
(*_node_data)[index].pot = pot; |
|
| 1715 |
(*_node_data)[index].heap_index.clear(); |
|
| 1716 |
(*_node_data)[index].heap.clear(); |
|
| 1717 |
int blossom = |
|
| 1718 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
| 1719 |
|
|
| 1720 |
(*_blossom_data)[blossom].status = MATCHED; |
|
| 1721 |
(*_blossom_data)[blossom].pred = INVALID; |
|
| 1722 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
| 1723 |
if (_fractional->matching(n) == INVALID) {
|
|
| 1724 |
(*_blossom_data)[blossom].base = n; |
|
| 1725 |
} |
|
| 1726 |
(*_blossom_data)[blossom].pot = 0; |
|
| 1727 |
(*_blossom_data)[blossom].offset = 0; |
|
| 1728 |
++index; |
|
| 1729 |
} |
|
| 1730 |
|
|
| 1731 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
| 1732 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1733 |
if (processed[n]) continue; |
|
| 1734 |
processed[n] = true; |
|
| 1735 |
if (_fractional->matching(n) == INVALID) continue; |
|
| 1736 |
int num = 1; |
|
| 1737 |
Node v = _graph.target(_fractional->matching(n)); |
|
| 1738 |
while (n != v) {
|
|
| 1739 |
processed[v] = true; |
|
| 1740 |
v = _graph.target(_fractional->matching(v)); |
|
| 1741 |
++num; |
|
| 1742 |
} |
|
| 1743 |
|
|
| 1744 |
if (num % 2 == 1) {
|
|
| 1745 |
std::vector<int> subblossoms(num); |
|
| 1746 |
|
|
| 1747 |
subblossoms[--num] = _blossom_set->find(n); |
|
| 1748 |
_delta1->push(n, _fractional->nodeValue(n)); |
|
| 1749 |
v = _graph.target(_fractional->matching(n)); |
|
| 1750 |
while (n != v) {
|
|
| 1751 |
subblossoms[--num] = _blossom_set->find(v); |
|
| 1752 |
_delta1->push(v, _fractional->nodeValue(v)); |
|
| 1753 |
v = _graph.target(_fractional->matching(v)); |
|
| 1754 |
} |
|
| 1755 |
|
|
| 1756 |
int surface = |
|
| 1757 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
| 1758 |
(*_blossom_data)[surface].status = EVEN; |
|
| 1759 |
(*_blossom_data)[surface].pred = INVALID; |
|
| 1760 |
(*_blossom_data)[surface].next = INVALID; |
|
| 1761 |
(*_blossom_data)[surface].pot = 0; |
|
| 1762 |
(*_blossom_data)[surface].offset = 0; |
|
| 1763 |
|
|
| 1764 |
_tree_set->insert(surface); |
|
| 1765 |
++_unmatched; |
|
| 1766 |
} |
|
| 1767 |
} |
|
| 1768 |
|
|
| 1769 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1770 |
int si = (*_node_index)[_graph.u(e)]; |
|
| 1771 |
int sb = _blossom_set->find(_graph.u(e)); |
|
| 1772 |
int ti = (*_node_index)[_graph.v(e)]; |
|
| 1773 |
int tb = _blossom_set->find(_graph.v(e)); |
|
| 1774 |
if ((*_blossom_data)[sb].status == EVEN && |
|
| 1775 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
|
| 1776 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
| 1777 |
dualScale * _weight[e]) / 2); |
|
| 1778 |
} |
|
| 1779 |
} |
|
| 1780 |
|
|
| 1781 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1782 |
int nb = _blossom_set->find(n); |
|
| 1783 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
| 1784 |
int ni = (*_node_index)[n]; |
|
| 1785 |
|
|
| 1786 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1787 |
Node v = _graph.target(e); |
|
| 1788 |
int vb = _blossom_set->find(v); |
|
| 1789 |
int vi = (*_node_index)[v]; |
|
| 1790 |
|
|
| 1791 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1792 |
dualScale * _weight[e]; |
|
| 1793 |
|
|
| 1794 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1795 |
|
|
| 1796 |
int vt = _tree_set->find(vb); |
|
| 1797 |
|
|
| 1798 |
typename std::map<int, Arc>::iterator it = |
|
| 1799 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1800 |
|
|
| 1801 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1802 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1803 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
| 1804 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
| 1805 |
it->second = e; |
|
| 1806 |
} |
|
| 1807 |
} else {
|
|
| 1808 |
(*_node_data)[ni].heap.push(e, rw); |
|
| 1809 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
| 1810 |
} |
|
| 1811 |
} |
|
| 1812 |
} |
|
| 1813 |
|
|
| 1814 |
if (!(*_node_data)[ni].heap.empty()) {
|
|
| 1815 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1816 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
| 1817 |
} |
|
| 1818 |
} |
|
| 1819 |
} |
|
| 1820 |
|
|
| 1767 | 1821 |
/// \brief Start the algorithm |
| 1768 | 1822 |
/// |
| 1769 | 1823 |
/// This function starts the algorithm. |
| 1770 | 1824 |
/// |
| 1771 |
/// \pre \ref init() must be called |
|
| 1825 |
/// \pre \ref init() or \ref fractionalInit() must be called |
|
| 1826 |
/// before using this function. |
|
| 1772 | 1827 |
void start() {
|
| 1773 | 1828 |
enum OpType {
|
| 1774 | 1829 |
D1, D2, D3, D4 |
| 1775 | 1830 |
}; |
| 1776 | 1831 |
|
| 1777 |
int unmatched = _node_num; |
|
| 1778 |
while (unmatched > 0) {
|
|
| 1832 |
while (_unmatched > 0) {
|
|
| 1779 | 1833 |
Value d1 = !_delta1->empty() ? |
| 1780 | 1834 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
| 1781 | 1835 |
|
| 1782 | 1836 |
Value d2 = !_delta2->empty() ? |
| 1783 | 1837 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 1784 | 1838 |
|
| 1785 | 1839 |
Value d3 = !_delta3->empty() ? |
| 1786 | 1840 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 1787 | 1841 |
|
| 1788 | 1842 |
Value d4 = !_delta4->empty() ? |
| 1789 | 1843 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 1790 | 1844 |
|
| 1791 |
_delta_sum = |
|
| 1845 |
_delta_sum = d3; OpType ot = D3; |
|
| 1846 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
|
|
| 1792 | 1847 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 1793 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
|
| 1794 | 1848 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 1795 | 1849 |
|
| 1796 |
|
|
| 1797 | 1850 |
switch (ot) {
|
| 1798 | 1851 |
case D1: |
| 1799 | 1852 |
{
|
| 1800 | 1853 |
Node n = _delta1->top(); |
| 1801 | 1854 |
unmatchNode(n); |
| 1802 |
-- |
|
| 1855 |
--_unmatched; |
|
| 1803 | 1856 |
} |
| 1804 | 1857 |
break; |
| 1805 | 1858 |
case D2: |
| 1806 | 1859 |
{
|
| 1807 | 1860 |
int blossom = _delta2->top(); |
| 1808 | 1861 |
Node n = _blossom_set->classTop(blossom); |
| 1809 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
| 1810 |
extendOnArc(e); |
|
| 1862 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
| 1863 |
if ((*_blossom_data)[blossom].next == INVALID) {
|
|
| 1864 |
augmentOnArc(a); |
|
| 1865 |
--_unmatched; |
|
| 1866 |
} else {
|
|
| 1867 |
extendOnArc(a); |
|
| 1868 |
} |
|
| 1811 | 1869 |
} |
| 1812 | 1870 |
break; |
| 1813 | 1871 |
case D3: |
| 1814 | 1872 |
{
|
| 1815 | 1873 |
Edge e = _delta3->top(); |
| 1816 | 1874 |
|
| 1817 | 1875 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1818 | 1876 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1819 | 1877 |
|
| 1820 | 1878 |
if (left_blossom == right_blossom) {
|
| 1821 | 1879 |
_delta3->pop(); |
| 1822 | 1880 |
} else {
|
| 1823 |
int left_tree; |
|
| 1824 |
if ((*_blossom_data)[left_blossom].status == EVEN) {
|
|
| 1825 |
left_tree = _tree_set->find(left_blossom); |
|
| 1826 |
} else {
|
|
| 1827 |
left_tree = -1; |
|
| 1828 |
++unmatched; |
|
| 1829 |
} |
|
| 1830 |
int right_tree; |
|
| 1831 |
if ((*_blossom_data)[right_blossom].status == EVEN) {
|
|
| 1832 |
right_tree = _tree_set->find(right_blossom); |
|
| 1833 |
} else {
|
|
| 1834 |
right_tree = -1; |
|
| 1835 |
++unmatched; |
|
| 1836 |
} |
|
| 1881 |
int left_tree = _tree_set->find(left_blossom); |
|
| 1882 |
int right_tree = _tree_set->find(right_blossom); |
|
| 1837 | 1883 |
|
| 1838 | 1884 |
if (left_tree == right_tree) {
|
| 1839 | 1885 |
shrinkOnEdge(e, left_tree); |
| 1840 | 1886 |
} else {
|
| 1841 | 1887 |
augmentOnEdge(e); |
| 1842 |
|
|
| 1888 |
_unmatched -= 2; |
|
| 1843 | 1889 |
} |
| 1844 | 1890 |
} |
| 1845 | 1891 |
} break; |
| 1846 | 1892 |
case D4: |
| 1847 | 1893 |
splitBlossom(_delta4->top()); |
| 1848 | 1894 |
break; |
| ... | ... |
@@ -1854,24 +1900,24 @@ |
| 1854 | 1900 |
/// \brief Run the algorithm. |
| 1855 | 1901 |
/// |
| 1856 | 1902 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
| 1857 | 1903 |
/// |
| 1858 | 1904 |
/// \note mwm.run() is just a shortcut of the following code. |
| 1859 | 1905 |
/// \code |
| 1860 |
/// mwm. |
|
| 1906 |
/// mwm.fractionalInit(); |
|
| 1861 | 1907 |
/// mwm.start(); |
| 1862 | 1908 |
/// \endcode |
| 1863 | 1909 |
void run() {
|
| 1864 |
|
|
| 1910 |
fractionalInit(); |
|
| 1865 | 1911 |
start(); |
| 1866 | 1912 |
} |
| 1867 | 1913 |
|
| 1868 | 1914 |
/// @} |
| 1869 | 1915 |
|
| 1870 | 1916 |
/// \name Primal Solution |
| 1871 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 1917 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 1872 | 1918 |
/// matching.\n |
| 1873 | 1919 |
/// Either \ref run() or \ref start() function should be called before |
| 1874 | 1920 |
/// using them. |
| 1875 | 1921 |
|
| 1876 | 1922 |
/// @{
|
| 1877 | 1923 |
|
| ... | ... |
@@ -1884,13 +1930,13 @@ |
| 1884 | 1930 |
Value sum = 0; |
| 1885 | 1931 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1886 | 1932 |
if ((*_matching)[n] != INVALID) {
|
| 1887 | 1933 |
sum += _weight[(*_matching)[n]]; |
| 1888 | 1934 |
} |
| 1889 | 1935 |
} |
| 1890 |
return sum / |
|
| 1936 |
return sum / 2; |
|
| 1891 | 1937 |
} |
| 1892 | 1938 |
|
| 1893 | 1939 |
/// \brief Return the size (cardinality) of the matching. |
| 1894 | 1940 |
/// |
| 1895 | 1941 |
/// This function returns the size (cardinality) of the found matching. |
| 1896 | 1942 |
/// |
| ... | ... |
@@ -1904,24 +1950,24 @@ |
| 1904 | 1950 |
} |
| 1905 | 1951 |
return num /= 2; |
| 1906 | 1952 |
} |
| 1907 | 1953 |
|
| 1908 | 1954 |
/// \brief Return \c true if the given edge is in the matching. |
| 1909 | 1955 |
/// |
| 1910 |
/// This function returns \c true if the given edge is in the found |
|
| 1956 |
/// This function returns \c true if the given edge is in the found |
|
| 1911 | 1957 |
/// matching. |
| 1912 | 1958 |
/// |
| 1913 | 1959 |
/// \pre Either run() or start() must be called before using this function. |
| 1914 | 1960 |
bool matching(const Edge& edge) const {
|
| 1915 | 1961 |
return edge == (*_matching)[_graph.u(edge)]; |
| 1916 | 1962 |
} |
| 1917 | 1963 |
|
| 1918 | 1964 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 1919 | 1965 |
/// |
| 1920 | 1966 |
/// This function returns the matching arc (or edge) incident to the |
| 1921 |
/// given node in the found matching or \c INVALID if the node is |
|
| 1967 |
/// given node in the found matching or \c INVALID if the node is |
|
| 1922 | 1968 |
/// not covered by the matching. |
| 1923 | 1969 |
/// |
| 1924 | 1970 |
/// \pre Either run() or start() must be called before using this function. |
| 1925 | 1971 |
Arc matching(const Node& node) const {
|
| 1926 | 1972 |
return (*_matching)[node]; |
| 1927 | 1973 |
} |
| ... | ... |
@@ -1933,13 +1979,13 @@ |
| 1933 | 1979 |
const MatchingMap& matchingMap() const {
|
| 1934 | 1980 |
return *_matching; |
| 1935 | 1981 |
} |
| 1936 | 1982 |
|
| 1937 | 1983 |
/// \brief Return the mate of the given node. |
| 1938 | 1984 |
/// |
| 1939 |
/// This function returns the mate of the given node in the found |
|
| 1985 |
/// This function returns the mate of the given node in the found |
|
| 1940 | 1986 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 1941 | 1987 |
/// |
| 1942 | 1988 |
/// \pre Either run() or start() must be called before using this function. |
| 1943 | 1989 |
Node mate(const Node& node) const {
|
| 1944 | 1990 |
return (*_matching)[node] != INVALID ? |
| 1945 | 1991 |
_graph.target((*_matching)[node]) : INVALID; |
| ... | ... |
@@ -1953,14 +1999,14 @@ |
| 1953 | 1999 |
/// using them. |
| 1954 | 2000 |
|
| 1955 | 2001 |
/// @{
|
| 1956 | 2002 |
|
| 1957 | 2003 |
/// \brief Return the value of the dual solution. |
| 1958 | 2004 |
/// |
| 1959 |
/// This function returns the value of the dual solution. |
|
| 1960 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 2005 |
/// This function returns the value of the dual solution. |
|
| 2006 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 1961 | 2007 |
/// "dual scale". |
| 1962 | 2008 |
/// |
| 1963 | 2009 |
/// \pre Either run() or start() must be called before using this function. |
| 1964 | 2010 |
Value dualValue() const {
|
| 1965 | 2011 |
Value sum = 0; |
| 1966 | 2012 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| ... | ... |
@@ -2009,25 +2055,25 @@ |
| 2009 | 2055 |
Value blossomValue(int k) const {
|
| 2010 | 2056 |
return _blossom_potential[k].value; |
| 2011 | 2057 |
} |
| 2012 | 2058 |
|
| 2013 | 2059 |
/// \brief Iterator for obtaining the nodes of a blossom. |
| 2014 | 2060 |
/// |
| 2015 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 2061 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 2016 | 2062 |
/// given blossom. It lists a subset of the nodes. |
| 2017 |
/// Before using this iterator, you must allocate a |
|
| 2063 |
/// Before using this iterator, you must allocate a |
|
| 2018 | 2064 |
/// MaxWeightedMatching class and execute it. |
| 2019 | 2065 |
class BlossomIt {
|
| 2020 | 2066 |
public: |
| 2021 | 2067 |
|
| 2022 | 2068 |
/// \brief Constructor. |
| 2023 | 2069 |
/// |
| 2024 | 2070 |
/// Constructor to get the nodes of the given variable. |
| 2025 | 2071 |
/// |
| 2026 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
| 2027 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
| 2072 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
| 2073 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
| 2028 | 2074 |
/// called before initializing this iterator. |
| 2029 | 2075 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
| 2030 | 2076 |
: _algorithm(&algorithm) |
| 2031 | 2077 |
{
|
| 2032 | 2078 |
_index = _algorithm->_blossom_potential[variable].begin; |
| 2033 | 2079 |
_last = _algorithm->_blossom_potential[variable].end; |
| ... | ... |
@@ -2074,14 +2120,14 @@ |
| 2074 | 2120 |
/// |
| 2075 | 2121 |
/// This class provides an efficient implementation of Edmond's |
| 2076 | 2122 |
/// maximum weighted perfect matching algorithm. The implementation |
| 2077 | 2123 |
/// is based on extensive use of priority queues and provides |
| 2078 | 2124 |
/// \f$O(nm\log n)\f$ time complexity. |
| 2079 | 2125 |
/// |
| 2080 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
| 2081 |
/// the edges in an undirected graph with maximum overall weight for which |
|
| 2126 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
| 2127 |
/// the edges in an undirected graph with maximum overall weight for which |
|
| 2082 | 2128 |
/// each node has exactly one incident edge. |
| 2083 | 2129 |
/// It can be formulated with the following linear program. |
| 2084 | 2130 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
| 2085 | 2131 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
| 2086 | 2132 |
\quad \forall B\in\mathcal{O}\f] */
|
| 2087 | 2133 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
| ... | ... |
@@ -2098,22 +2144,22 @@ |
| 2098 | 2144 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
|
| 2099 | 2145 |
w_{uv} \quad \forall uv\in E\f] */
|
| 2100 | 2146 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
| 2101 | 2147 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
| 2102 | 2148 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
| 2103 | 2149 |
/// |
| 2104 |
/// The algorithm can be executed with the run() function. |
|
| 2150 |
/// The algorithm can be executed with the run() function. |
|
| 2105 | 2151 |
/// After it the matching (the primal solution) and the dual solution |
| 2106 |
/// can be obtained using the query functions and the |
|
| 2107 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
| 2108 |
/// |
|
| 2152 |
/// can be obtained using the query functions and the |
|
| 2153 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
| 2154 |
/// which is able to iterate on the nodes of a blossom. |
|
| 2109 | 2155 |
/// If the value type is integer, then the dual solution is multiplied |
| 2110 | 2156 |
/// by \ref MaxWeightedMatching::dualScale "4". |
| 2111 | 2157 |
/// |
| 2112 | 2158 |
/// \tparam GR The undirected graph type the algorithm runs on. |
| 2113 |
/// \tparam WM The type edge weight map. The default type is |
|
| 2159 |
/// \tparam WM The type edge weight map. The default type is |
|
| 2114 | 2160 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 2115 | 2161 |
#ifdef DOXYGEN |
| 2116 | 2162 |
template <typename GR, typename WM> |
| 2117 | 2163 |
#else |
| 2118 | 2164 |
template <typename GR, |
| 2119 | 2165 |
typename WM = typename GR::template EdgeMap<int> > |
| ... | ... |
@@ -2218,12 +2264,17 @@ |
| 2218 | 2264 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 2219 | 2265 |
|
| 2220 | 2266 |
IntIntMap *_delta4_index; |
| 2221 | 2267 |
BinHeap<Value, IntIntMap> *_delta4; |
| 2222 | 2268 |
|
| 2223 | 2269 |
Value _delta_sum; |
| 2270 |
int _unmatched; |
|
| 2271 |
|
|
| 2272 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
| 2273 |
FractionalMatching; |
|
| 2274 |
FractionalMatching *_fractional; |
|
| 2224 | 2275 |
|
| 2225 | 2276 |
void createStructures() {
|
| 2226 | 2277 |
_node_num = countNodes(_graph); |
| 2227 | 2278 |
_blossom_num = _node_num * 3 / 2; |
| 2228 | 2279 |
|
| 2229 | 2280 |
if (!_matching) {
|
| ... | ... |
@@ -2279,15 +2330,12 @@ |
| 2279 | 2330 |
} else {
|
| 2280 | 2331 |
_delta4_index->resize(_blossom_num); |
| 2281 | 2332 |
} |
| 2282 | 2333 |
} |
| 2283 | 2334 |
|
| 2284 | 2335 |
void destroyStructures() {
|
| 2285 |
_node_num = countNodes(_graph); |
|
| 2286 |
_blossom_num = _node_num * 3 / 2; |
|
| 2287 |
|
|
| 2288 | 2336 |
if (_matching) {
|
| 2289 | 2337 |
delete _matching; |
| 2290 | 2338 |
} |
| 2291 | 2339 |
if (_node_potential) {
|
| 2292 | 2340 |
delete _node_potential; |
| 2293 | 2341 |
} |
| ... | ... |
@@ -2954,16 +3002,22 @@ |
| 2954 | 3002 |
_tree_set_index(0), _tree_set(0), |
| 2955 | 3003 |
|
| 2956 | 3004 |
_delta2_index(0), _delta2(0), |
| 2957 | 3005 |
_delta3_index(0), _delta3(0), |
| 2958 | 3006 |
_delta4_index(0), _delta4(0), |
| 2959 | 3007 |
|
| 2960 |
_delta_sum() |
|
| 3008 |
_delta_sum(), _unmatched(0), |
|
| 3009 |
|
|
| 3010 |
_fractional(0) |
|
| 3011 |
{}
|
|
| 2961 | 3012 |
|
| 2962 | 3013 |
~MaxWeightedPerfectMatching() {
|
| 2963 | 3014 |
destroyStructures(); |
| 3015 |
if (_fractional) {
|
|
| 3016 |
delete _fractional; |
|
| 3017 |
} |
|
| 2964 | 3018 |
} |
| 2965 | 3019 |
|
| 2966 | 3020 |
/// \name Execution Control |
| 2967 | 3021 |
/// The simplest way to execute the algorithm is to use the |
| 2968 | 3022 |
/// \ref run() member function. |
| 2969 | 3023 |
|
| ... | ... |
@@ -2986,12 +3040,14 @@ |
| 2986 | 3040 |
} |
| 2987 | 3041 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 2988 | 3042 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 2989 | 3043 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 2990 | 3044 |
} |
| 2991 | 3045 |
|
| 3046 |
_unmatched = _node_num; |
|
| 3047 |
|
|
| 2992 | 3048 |
_delta2->clear(); |
| 2993 | 3049 |
_delta3->clear(); |
| 2994 | 3050 |
_delta4->clear(); |
| 2995 | 3051 |
_blossom_set->clear(); |
| 2996 | 3052 |
_tree_set->clear(); |
| 2997 | 3053 |
|
| ... | ... |
@@ -3027,35 +3083,180 @@ |
| 3027 | 3083 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 3028 | 3084 |
dualScale * _weight[e]) / 2); |
| 3029 | 3085 |
} |
| 3030 | 3086 |
} |
| 3031 | 3087 |
} |
| 3032 | 3088 |
|
| 3089 |
/// \brief Initialize the algorithm with fractional matching |
|
| 3090 |
/// |
|
| 3091 |
/// This function initializes the algorithm with a fractional |
|
| 3092 |
/// matching. This initialization is also called jumpstart heuristic. |
|
| 3093 |
void fractionalInit() {
|
|
| 3094 |
createStructures(); |
|
| 3095 |
|
|
| 3096 |
_blossom_node_list.clear(); |
|
| 3097 |
_blossom_potential.clear(); |
|
| 3098 |
|
|
| 3099 |
if (_fractional == 0) {
|
|
| 3100 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
| 3101 |
} |
|
| 3102 |
if (!_fractional->run()) {
|
|
| 3103 |
_unmatched = -1; |
|
| 3104 |
return; |
|
| 3105 |
} |
|
| 3106 |
|
|
| 3107 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 3108 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
| 3109 |
} |
|
| 3110 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 3111 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 3112 |
} |
|
| 3113 |
for (int i = 0; i < _blossom_num; ++i) {
|
|
| 3114 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
| 3115 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
| 3116 |
} |
|
| 3117 |
|
|
| 3118 |
_unmatched = 0; |
|
| 3119 |
|
|
| 3120 |
_delta2->clear(); |
|
| 3121 |
_delta3->clear(); |
|
| 3122 |
_delta4->clear(); |
|
| 3123 |
_blossom_set->clear(); |
|
| 3124 |
_tree_set->clear(); |
|
| 3125 |
|
|
| 3126 |
int index = 0; |
|
| 3127 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3128 |
Value pot = _fractional->nodeValue(n); |
|
| 3129 |
(*_node_index)[n] = index; |
|
| 3130 |
(*_node_data)[index].pot = pot; |
|
| 3131 |
(*_node_data)[index].heap_index.clear(); |
|
| 3132 |
(*_node_data)[index].heap.clear(); |
|
| 3133 |
int blossom = |
|
| 3134 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
| 3135 |
|
|
| 3136 |
(*_blossom_data)[blossom].status = MATCHED; |
|
| 3137 |
(*_blossom_data)[blossom].pred = INVALID; |
|
| 3138 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
| 3139 |
(*_blossom_data)[blossom].pot = 0; |
|
| 3140 |
(*_blossom_data)[blossom].offset = 0; |
|
| 3141 |
++index; |
|
| 3142 |
} |
|
| 3143 |
|
|
| 3144 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
| 3145 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3146 |
if (processed[n]) continue; |
|
| 3147 |
processed[n] = true; |
|
| 3148 |
if (_fractional->matching(n) == INVALID) continue; |
|
| 3149 |
int num = 1; |
|
| 3150 |
Node v = _graph.target(_fractional->matching(n)); |
|
| 3151 |
while (n != v) {
|
|
| 3152 |
processed[v] = true; |
|
| 3153 |
v = _graph.target(_fractional->matching(v)); |
|
| 3154 |
++num; |
|
| 3155 |
} |
|
| 3156 |
|
|
| 3157 |
if (num % 2 == 1) {
|
|
| 3158 |
std::vector<int> subblossoms(num); |
|
| 3159 |
|
|
| 3160 |
subblossoms[--num] = _blossom_set->find(n); |
|
| 3161 |
v = _graph.target(_fractional->matching(n)); |
|
| 3162 |
while (n != v) {
|
|
| 3163 |
subblossoms[--num] = _blossom_set->find(v); |
|
| 3164 |
v = _graph.target(_fractional->matching(v)); |
|
| 3165 |
} |
|
| 3166 |
|
|
| 3167 |
int surface = |
|
| 3168 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
| 3169 |
(*_blossom_data)[surface].status = EVEN; |
|
| 3170 |
(*_blossom_data)[surface].pred = INVALID; |
|
| 3171 |
(*_blossom_data)[surface].next = INVALID; |
|
| 3172 |
(*_blossom_data)[surface].pot = 0; |
|
| 3173 |
(*_blossom_data)[surface].offset = 0; |
|
| 3174 |
|
|
| 3175 |
_tree_set->insert(surface); |
|
| 3176 |
++_unmatched; |
|
| 3177 |
} |
|
| 3178 |
} |
|
| 3179 |
|
|
| 3180 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 3181 |
int si = (*_node_index)[_graph.u(e)]; |
|
| 3182 |
int sb = _blossom_set->find(_graph.u(e)); |
|
| 3183 |
int ti = (*_node_index)[_graph.v(e)]; |
|
| 3184 |
int tb = _blossom_set->find(_graph.v(e)); |
|
| 3185 |
if ((*_blossom_data)[sb].status == EVEN && |
|
| 3186 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
|
| 3187 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
| 3188 |
dualScale * _weight[e]) / 2); |
|
| 3189 |
} |
|
| 3190 |
} |
|
| 3191 |
|
|
| 3192 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3193 |
int nb = _blossom_set->find(n); |
|
| 3194 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
| 3195 |
int ni = (*_node_index)[n]; |
|
| 3196 |
|
|
| 3197 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 3198 |
Node v = _graph.target(e); |
|
| 3199 |
int vb = _blossom_set->find(v); |
|
| 3200 |
int vi = (*_node_index)[v]; |
|
| 3201 |
|
|
| 3202 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 3203 |
dualScale * _weight[e]; |
|
| 3204 |
|
|
| 3205 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 3206 |
|
|
| 3207 |
int vt = _tree_set->find(vb); |
|
| 3208 |
|
|
| 3209 |
typename std::map<int, Arc>::iterator it = |
|
| 3210 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 3211 |
|
|
| 3212 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 3213 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 3214 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
| 3215 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
| 3216 |
it->second = e; |
|
| 3217 |
} |
|
| 3218 |
} else {
|
|
| 3219 |
(*_node_data)[ni].heap.push(e, rw); |
|
| 3220 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
| 3221 |
} |
|
| 3222 |
} |
|
| 3223 |
} |
|
| 3224 |
|
|
| 3225 |
if (!(*_node_data)[ni].heap.empty()) {
|
|
| 3226 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 3227 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
| 3228 |
} |
|
| 3229 |
} |
|
| 3230 |
} |
|
| 3231 |
|
|
| 3033 | 3232 |
/// \brief Start the algorithm |
| 3034 | 3233 |
/// |
| 3035 | 3234 |
/// This function starts the algorithm. |
| 3036 | 3235 |
/// |
| 3037 |
/// \pre \ref init() must be called before |
|
| 3236 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
|
| 3237 |
/// using this function. |
|
| 3038 | 3238 |
bool start() {
|
| 3039 | 3239 |
enum OpType {
|
| 3040 | 3240 |
D2, D3, D4 |
| 3041 | 3241 |
}; |
| 3042 | 3242 |
|
| 3043 |
int unmatched = _node_num; |
|
| 3044 |
while (unmatched > 0) {
|
|
| 3243 |
if (_unmatched == -1) return false; |
|
| 3244 |
|
|
| 3245 |
while (_unmatched > 0) {
|
|
| 3045 | 3246 |
Value d2 = !_delta2->empty() ? |
| 3046 | 3247 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 3047 | 3248 |
|
| 3048 | 3249 |
Value d3 = !_delta3->empty() ? |
| 3049 | 3250 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 3050 | 3251 |
|
| 3051 | 3252 |
Value d4 = !_delta4->empty() ? |
| 3052 | 3253 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 3053 | 3254 |
|
| 3054 |
_delta_sum = d2; OpType ot = D2; |
|
| 3055 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
|
|
| 3255 |
_delta_sum = d3; OpType ot = D3; |
|
| 3256 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
|
| 3056 | 3257 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 3057 | 3258 |
|
| 3058 | 3259 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
| 3059 | 3260 |
return false; |
| 3060 | 3261 |
} |
| 3061 | 3262 |
|
| ... | ... |
@@ -3082,13 +3283,13 @@ |
| 3082 | 3283 |
int right_tree = _tree_set->find(right_blossom); |
| 3083 | 3284 |
|
| 3084 | 3285 |
if (left_tree == right_tree) {
|
| 3085 | 3286 |
shrinkOnEdge(e, left_tree); |
| 3086 | 3287 |
} else {
|
| 3087 | 3288 |
augmentOnEdge(e); |
| 3088 |
|
|
| 3289 |
_unmatched -= 2; |
|
| 3089 | 3290 |
} |
| 3090 | 3291 |
} |
| 3091 | 3292 |
} break; |
| 3092 | 3293 |
case D4: |
| 3093 | 3294 |
splitBlossom(_delta4->top()); |
| 3094 | 3295 |
break; |
| ... | ... |
@@ -3101,24 +3302,24 @@ |
| 3101 | 3302 |
/// \brief Run the algorithm. |
| 3102 | 3303 |
/// |
| 3103 | 3304 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
| 3104 | 3305 |
/// |
| 3105 | 3306 |
/// \note mwpm.run() is just a shortcut of the following code. |
| 3106 | 3307 |
/// \code |
| 3107 |
/// mwpm. |
|
| 3308 |
/// mwpm.fractionalInit(); |
|
| 3108 | 3309 |
/// mwpm.start(); |
| 3109 | 3310 |
/// \endcode |
| 3110 | 3311 |
bool run() {
|
| 3111 |
|
|
| 3312 |
fractionalInit(); |
|
| 3112 | 3313 |
return start(); |
| 3113 | 3314 |
} |
| 3114 | 3315 |
|
| 3115 | 3316 |
/// @} |
| 3116 | 3317 |
|
| 3117 | 3318 |
/// \name Primal Solution |
| 3118 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 3319 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
| 3119 | 3320 |
/// perfect matching.\n |
| 3120 | 3321 |
/// Either \ref run() or \ref start() function should be called before |
| 3121 | 3322 |
/// using them. |
| 3122 | 3323 |
|
| 3123 | 3324 |
/// @{
|
| 3124 | 3325 |
|
| ... | ... |
@@ -3131,29 +3332,29 @@ |
| 3131 | 3332 |
Value sum = 0; |
| 3132 | 3333 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 3133 | 3334 |
if ((*_matching)[n] != INVALID) {
|
| 3134 | 3335 |
sum += _weight[(*_matching)[n]]; |
| 3135 | 3336 |
} |
| 3136 | 3337 |
} |
| 3137 |
return sum / |
|
| 3338 |
return sum / 2; |
|
| 3138 | 3339 |
} |
| 3139 | 3340 |
|
| 3140 | 3341 |
/// \brief Return \c true if the given edge is in the matching. |
| 3141 | 3342 |
/// |
| 3142 |
/// This function returns \c true if the given edge is in the found |
|
| 3343 |
/// This function returns \c true if the given edge is in the found |
|
| 3143 | 3344 |
/// matching. |
| 3144 | 3345 |
/// |
| 3145 | 3346 |
/// \pre Either run() or start() must be called before using this function. |
| 3146 | 3347 |
bool matching(const Edge& edge) const {
|
| 3147 | 3348 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
| 3148 | 3349 |
} |
| 3149 | 3350 |
|
| 3150 | 3351 |
/// \brief Return the matching arc (or edge) incident to the given node. |
| 3151 | 3352 |
/// |
| 3152 | 3353 |
/// This function returns the matching arc (or edge) incident to the |
| 3153 |
/// given node in the found matching or \c INVALID if the node is |
|
| 3354 |
/// given node in the found matching or \c INVALID if the node is |
|
| 3154 | 3355 |
/// not covered by the matching. |
| 3155 | 3356 |
/// |
| 3156 | 3357 |
/// \pre Either run() or start() must be called before using this function. |
| 3157 | 3358 |
Arc matching(const Node& node) const {
|
| 3158 | 3359 |
return (*_matching)[node]; |
| 3159 | 3360 |
} |
| ... | ... |
@@ -3165,13 +3366,13 @@ |
| 3165 | 3366 |
const MatchingMap& matchingMap() const {
|
| 3166 | 3367 |
return *_matching; |
| 3167 | 3368 |
} |
| 3168 | 3369 |
|
| 3169 | 3370 |
/// \brief Return the mate of the given node. |
| 3170 | 3371 |
/// |
| 3171 |
/// This function returns the mate of the given node in the found |
|
| 3372 |
/// This function returns the mate of the given node in the found |
|
| 3172 | 3373 |
/// matching or \c INVALID if the node is not covered by the matching. |
| 3173 | 3374 |
/// |
| 3174 | 3375 |
/// \pre Either run() or start() must be called before using this function. |
| 3175 | 3376 |
Node mate(const Node& node) const {
|
| 3176 | 3377 |
return _graph.target((*_matching)[node]); |
| 3177 | 3378 |
} |
| ... | ... |
@@ -3184,14 +3385,14 @@ |
| 3184 | 3385 |
/// using them. |
| 3185 | 3386 |
|
| 3186 | 3387 |
/// @{
|
| 3187 | 3388 |
|
| 3188 | 3389 |
/// \brief Return the value of the dual solution. |
| 3189 | 3390 |
/// |
| 3190 |
/// This function returns the value of the dual solution. |
|
| 3191 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 3391 |
/// This function returns the value of the dual solution. |
|
| 3392 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
| 3192 | 3393 |
/// "dual scale". |
| 3193 | 3394 |
/// |
| 3194 | 3395 |
/// \pre Either run() or start() must be called before using this function. |
| 3195 | 3396 |
Value dualValue() const {
|
| 3196 | 3397 |
Value sum = 0; |
| 3197 | 3398 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| ... | ... |
@@ -3240,25 +3441,25 @@ |
| 3240 | 3441 |
Value blossomValue(int k) const {
|
| 3241 | 3442 |
return _blossom_potential[k].value; |
| 3242 | 3443 |
} |
| 3243 | 3444 |
|
| 3244 | 3445 |
/// \brief Iterator for obtaining the nodes of a blossom. |
| 3245 | 3446 |
/// |
| 3246 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 3447 |
/// This class provides an iterator for obtaining the nodes of the |
|
| 3247 | 3448 |
/// given blossom. It lists a subset of the nodes. |
| 3248 |
/// Before using this iterator, you must allocate a |
|
| 3449 |
/// Before using this iterator, you must allocate a |
|
| 3249 | 3450 |
/// MaxWeightedPerfectMatching class and execute it. |
| 3250 | 3451 |
class BlossomIt {
|
| 3251 | 3452 |
public: |
| 3252 | 3453 |
|
| 3253 | 3454 |
/// \brief Constructor. |
| 3254 | 3455 |
/// |
| 3255 | 3456 |
/// Constructor to get the nodes of the given variable. |
| 3256 | 3457 |
/// |
| 3257 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
| 3258 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
| 3458 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
| 3459 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
| 3259 | 3460 |
/// must be called before initializing this iterator. |
| 3260 | 3461 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
| 3261 | 3462 |
: _algorithm(&algorithm) |
| 3262 | 3463 |
{
|
| 3263 | 3464 |
_index = _algorithm->_blossom_potential[variable].begin; |
| 3264 | 3465 |
_last = _algorithm->_blossom_potential[variable].end; |
| ... | ... |
@@ -3298,7 +3499,7 @@ |
| 3298 | 3499 |
/// @} |
| 3299 | 3500 |
|
| 3300 | 3501 |
}; |
| 3301 | 3502 |
|
| 3302 | 3503 |
} //END OF NAMESPACE LEMON |
| 3303 | 3504 |
|
| 3304 |
#endif // |
|
| 3505 |
#endif //LEMON_MATCHING_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -53,13 +53,13 @@ |
| 53 | 53 |
/// sqrt(2) |
| 54 | 54 |
const long double SQRT2 = 1.4142135623730950488016887242096981L; |
| 55 | 55 |
/// 1/sqrt(2) |
| 56 | 56 |
const long double SQRT1_2 = 0.7071067811865475244008443621048490L; |
| 57 | 57 |
|
| 58 | 58 |
///Check whether the parameter is NaN or not |
| 59 |
|
|
| 59 |
|
|
| 60 | 60 |
///This function checks whether the parameter is NaN or not. |
| 61 | 61 |
///Is should be equivalent with std::isnan(), but it is not |
| 62 | 62 |
///provided by all compilers. |
| 63 | 63 |
inline bool isNaN(double v) |
| 64 | 64 |
{
|
| 65 | 65 |
return v!=v; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -109,29 +109,30 @@ |
| 109 | 109 |
/// \param GR The digraph type the algorithm runs on. |
| 110 | 110 |
/// \param CM A read-only arc map storing the costs of the |
| 111 | 111 |
/// arcs. It is read once for each arc, so the map may involve in |
| 112 | 112 |
/// relatively time consuming process to compute the arc costs if |
| 113 | 113 |
/// it is necessary. The default map type is \ref |
| 114 | 114 |
/// concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
| 115 |
/// \param TR Traits class to set various data types used |
|
| 116 |
/// by the algorithm. The default traits class is |
|
| 117 |
/// \ |
|
| 115 |
/// \tparam TR The traits class that defines various types used by the |
|
| 116 |
/// algorithm. By default, it is \ref MinCostArborescenceDefaultTraits |
|
| 118 | 117 |
/// "MinCostArborescenceDefaultTraits<GR, CM>". |
| 118 |
/// In most cases, this parameter should not be set directly, |
|
| 119 |
/// consider to use the named template parameters instead. |
|
| 119 | 120 |
#ifndef DOXYGEN |
| 120 | 121 |
template <typename GR, |
| 121 | 122 |
typename CM = typename GR::template ArcMap<int>, |
| 122 | 123 |
typename TR = |
| 123 | 124 |
MinCostArborescenceDefaultTraits<GR, CM> > |
| 124 | 125 |
#else |
| 125 |
template <typename GR, typename CM, |
|
| 126 |
template <typename GR, typename CM, typename TR> |
|
| 126 | 127 |
#endif |
| 127 | 128 |
class MinCostArborescence {
|
| 128 | 129 |
public: |
| 129 | 130 |
|
| 130 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
|
| 131 |
/// of the algorithm. |
|
| 131 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
|
| 132 |
/// of the algorithm. |
|
| 132 | 133 |
typedef TR Traits; |
| 133 | 134 |
/// The type of the underlying digraph. |
| 134 | 135 |
typedef typename Traits::Digraph Digraph; |
| 135 | 136 |
/// The type of the map that stores the arc costs. |
| 136 | 137 |
typedef typename Traits::CostMap CostMap; |
| 137 | 138 |
///The type of the costs of the arcs. |
| ... | ... |
@@ -432,13 +433,13 @@ |
| 432 | 433 |
|
| 433 | 434 |
/// \brief \ref named-templ-param "Named parameter" for |
| 434 | 435 |
/// setting \c PredMap type |
| 435 | 436 |
/// |
| 436 | 437 |
/// \ref named-templ-param "Named parameter" for setting |
| 437 | 438 |
/// \c PredMap type. |
| 438 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
|
| 439 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
|
| 439 | 440 |
/// and its value type must be the \c Arc type of the digraph. |
| 440 | 441 |
template <class T> |
| 441 | 442 |
struct SetPredMap |
| 442 | 443 |
: public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > {
|
| 443 | 444 |
}; |
| 444 | 445 |
|
| ... | ... |
@@ -485,14 +486,14 @@ |
| 485 | 486 |
return *this; |
| 486 | 487 |
} |
| 487 | 488 |
|
| 488 | 489 |
/// \name Execution Control |
| 489 | 490 |
/// The simplest way to execute the algorithm is to use |
| 490 | 491 |
/// one of the member functions called \c run(...). \n |
| 491 |
/// If you need more control on the execution, |
|
| 492 |
/// first you must call \ref init(), then you can add several |
|
| 492 |
/// If you need better control on the execution, |
|
| 493 |
/// you have to call \ref init() first, then you can add several |
|
| 493 | 494 |
/// source nodes with \ref addSource(). |
| 494 | 495 |
/// Finally \ref start() will perform the arborescence |
| 495 | 496 |
/// computation. |
| 496 | 497 |
|
| 497 | 498 |
///@{
|
| 498 | 499 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -37,39 +37,41 @@ |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
| 44 |
/// This algorithm is a specialized version of the linear programming |
|
| 45 |
/// simplex method directly for the minimum cost flow problem. |
|
| 46 |
/// It is one of the most efficient solution methods. |
|
| 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
|
| 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
|
| 45 |
/// \ref kellyoneill91netsimplex. |
|
| 46 |
/// This algorithm is a highly efficient specialized version of the |
|
| 47 |
/// linear programming simplex method directly for the minimum cost |
|
| 48 |
/// flow problem. |
|
| 47 | 49 |
/// |
| 48 |
/// In general this class is the fastest implementation available |
|
| 49 |
/// in LEMON for the minimum cost flow problem. |
|
| 50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
| 51 |
/// constraints. For more information see \ref SupplyType. |
|
| 50 |
/// In general, %NetworkSimplex is the fastest implementation available |
|
| 51 |
/// in LEMON for this problem. |
|
| 52 |
/// Moreover, it supports both directions of the supply/demand inequality |
|
| 53 |
/// constraints. For more information, see \ref SupplyType. |
|
| 52 | 54 |
/// |
| 53 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
| 54 | 56 |
/// can be given using separate functions, and the algorithm can be |
| 55 | 57 |
/// executed using the \ref run() function. If some parameters are not |
| 56 | 58 |
/// specified, then default values will be used. |
| 57 | 59 |
/// |
| 58 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
| 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
| 60 |
/// and supply values in the algorithm. By default it is \c int. |
|
| 61 |
/// \tparam C The value type used for costs and potentials in the |
|
| 62 |
/// algorithm. By default it is the same as \c V. |
|
| 61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
|
| 62 |
/// and supply values in the algorithm. By default, it is \c int. |
|
| 63 |
/// \tparam C The number type used for costs and potentials in the |
|
| 64 |
/// algorithm. By default, it is the same as \c V. |
|
| 63 | 65 |
/// |
| 64 |
/// \warning Both |
|
| 66 |
/// \warning Both number types must be signed and all input data must |
|
| 65 | 67 |
/// be integer. |
| 66 | 68 |
/// |
| 67 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
| 68 | 70 |
/// implementations, from which the most efficient one is used |
| 69 |
/// by default. For more information see \ref PivotRule. |
|
| 71 |
/// by default. For more information, see \ref PivotRule. |
|
| 70 | 72 |
template <typename GR, typename V = int, typename C = V> |
| 71 | 73 |
class NetworkSimplex |
| 72 | 74 |
{
|
| 73 | 75 |
public: |
| 74 | 76 |
|
| 75 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
| ... | ... |
@@ -92,13 +94,13 @@ |
| 92 | 94 |
OPTIMAL, |
| 93 | 95 |
/// The objective function of the problem is unbounded, i.e. |
| 94 | 96 |
/// there is a directed cycle having negative total cost and |
| 95 | 97 |
/// infinite upper bound. |
| 96 | 98 |
UNBOUNDED |
| 97 | 99 |
}; |
| 98 |
|
|
| 100 |
|
|
| 99 | 101 |
/// \brief Constants for selecting the type of the supply constraints. |
| 100 | 102 |
/// |
| 101 | 103 |
/// Enum type containing constants for selecting the supply type, |
| 102 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
| 103 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 104 | 106 |
/// |
| ... | ... |
@@ -110,74 +112,77 @@ |
| 110 | 112 |
/// supply/demand constraints in the definition of the problem. |
| 111 | 113 |
GEQ, |
| 112 | 114 |
/// This option means that there are <em>"less or equal"</em> |
| 113 | 115 |
/// supply/demand constraints in the definition of the problem. |
| 114 | 116 |
LEQ |
| 115 | 117 |
}; |
| 116 |
|
|
| 118 |
|
|
| 117 | 119 |
/// \brief Constants for selecting the pivot rule. |
| 118 | 120 |
/// |
| 119 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
| 120 | 122 |
/// the \ref run() function. |
| 121 | 123 |
/// |
| 122 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
| 123 | 125 |
/// implementations that significantly affect the running time |
| 124 | 126 |
/// of the algorithm. |
| 125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
| 127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|
| 126 | 128 |
/// proved to be the most efficient and the most robust on various |
| 127 |
/// test inputs according to our benchmark tests. |
|
| 128 |
/// However another pivot rule can be selected using the \ref run() |
|
| 129 |
/// test inputs. |
|
| 130 |
/// However, another pivot rule can be selected using the \ref run() |
|
| 129 | 131 |
/// function with the proper parameter. |
| 130 | 132 |
enum PivotRule {
|
| 131 | 133 |
|
| 132 |
/// The First Eligible pivot rule. |
|
| 134 |
/// The \e First \e Eligible pivot rule. |
|
| 133 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
| 134 | 136 |
/// in every iteration. |
| 135 | 137 |
FIRST_ELIGIBLE, |
| 136 | 138 |
|
| 137 |
/// The Best Eligible pivot rule. |
|
| 139 |
/// The \e Best \e Eligible pivot rule. |
|
| 138 | 140 |
/// The best eligible arc is selected in every iteration. |
| 139 | 141 |
BEST_ELIGIBLE, |
| 140 | 142 |
|
| 141 |
/// The Block Search pivot rule. |
|
| 143 |
/// The \e Block \e Search pivot rule. |
|
| 142 | 144 |
/// A specified number of arcs are examined in every iteration |
| 143 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
| 144 | 146 |
/// from this block. |
| 145 | 147 |
BLOCK_SEARCH, |
| 146 | 148 |
|
| 147 |
/// The Candidate List pivot rule. |
|
| 149 |
/// The \e Candidate \e List pivot rule. |
|
| 148 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
| 149 | 151 |
/// in a wraparound fashion and in the following minor iterations |
| 150 | 152 |
/// the best eligible arc is selected from this list. |
| 151 | 153 |
CANDIDATE_LIST, |
| 152 | 154 |
|
| 153 |
/// The Altering Candidate List pivot rule. |
|
| 155 |
/// The \e Altering \e Candidate \e List pivot rule. |
|
| 154 | 156 |
/// It is a modified version of the Candidate List method. |
| 155 | 157 |
/// It keeps only the several best eligible arcs from the former |
| 156 | 158 |
/// candidate list and extends this list in every iteration. |
| 157 | 159 |
ALTERING_LIST |
| 158 | 160 |
}; |
| 159 |
|
|
| 161 |
|
|
| 160 | 162 |
private: |
| 161 | 163 |
|
| 162 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 163 | 165 |
|
| 164 |
typedef std::vector<Arc> ArcVector; |
|
| 165 |
typedef std::vector<Node> NodeVector; |
|
| 166 | 166 |
typedef std::vector<int> IntVector; |
| 167 |
typedef std::vector<bool> BoolVector; |
|
| 168 | 167 |
typedef std::vector<Value> ValueVector; |
| 169 | 168 |
typedef std::vector<Cost> CostVector; |
| 169 |
typedef std::vector<char> BoolVector; |
|
| 170 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 170 | 171 |
|
| 171 | 172 |
// State constants for arcs |
| 172 |
enum |
|
| 173 |
enum ArcState {
|
|
| 173 | 174 |
STATE_UPPER = -1, |
| 174 | 175 |
STATE_TREE = 0, |
| 175 | 176 |
STATE_LOWER = 1 |
| 176 | 177 |
}; |
| 177 | 178 |
|
| 179 |
typedef std::vector<signed char> StateVector; |
|
| 180 |
// Note: vector<signed char> is used instead of vector<ArcState> for |
|
| 181 |
// efficiency reasons |
|
| 182 |
|
|
| 178 | 183 |
private: |
| 179 | 184 |
|
| 180 | 185 |
// Data related to the underlying digraph |
| 181 | 186 |
const GR &_graph; |
| 182 | 187 |
int _node_num; |
| 183 | 188 |
int _arc_num; |
| ... | ... |
@@ -191,12 +196,13 @@ |
| 191 | 196 |
|
| 192 | 197 |
// Data structures for storing the digraph |
| 193 | 198 |
IntNodeMap _node_id; |
| 194 | 199 |
IntArcMap _arc_id; |
| 195 | 200 |
IntVector _source; |
| 196 | 201 |
IntVector _target; |
| 202 |
bool _arc_mixing; |
|
| 197 | 203 |
|
| 198 | 204 |
// Node and arc data |
| 199 | 205 |
ValueVector _lower; |
| 200 | 206 |
ValueVector _upper; |
| 201 | 207 |
ValueVector _cap; |
| 202 | 208 |
CostVector _cost; |
| ... | ... |
@@ -210,23 +216,25 @@ |
| 210 | 216 |
IntVector _thread; |
| 211 | 217 |
IntVector _rev_thread; |
| 212 | 218 |
IntVector _succ_num; |
| 213 | 219 |
IntVector _last_succ; |
| 214 | 220 |
IntVector _dirty_revs; |
| 215 | 221 |
BoolVector _forward; |
| 216 |
|
|
| 222 |
StateVector _state; |
|
| 217 | 223 |
int _root; |
| 218 | 224 |
|
| 219 | 225 |
// Temporary data used in the current pivot iteration |
| 220 | 226 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 221 | 227 |
int first, second, right, last; |
| 222 | 228 |
int stem, par_stem, new_stem; |
| 223 | 229 |
Value delta; |
| 224 | 230 |
|
| 231 |
const Value MAX; |
|
| 232 |
|
|
| 225 | 233 |
public: |
| 226 |
|
|
| 234 |
|
|
| 227 | 235 |
/// \brief Constant for infinite upper bounds (capacities). |
| 228 | 236 |
/// |
| 229 | 237 |
/// Constant for infinite upper bounds (capacities). |
| 230 | 238 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 231 | 239 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 232 | 240 |
const Value INF; |
| ... | ... |
@@ -239,13 +247,13 @@ |
| 239 | 247 |
private: |
| 240 | 248 |
|
| 241 | 249 |
// References to the NetworkSimplex class |
| 242 | 250 |
const IntVector &_source; |
| 243 | 251 |
const IntVector &_target; |
| 244 | 252 |
const CostVector &_cost; |
| 245 |
const |
|
| 253 |
const StateVector &_state; |
|
| 246 | 254 |
const CostVector &_pi; |
| 247 | 255 |
int &_in_arc; |
| 248 | 256 |
int _search_arc_num; |
| 249 | 257 |
|
| 250 | 258 |
// Pivot rule data |
| 251 | 259 |
int _next_arc; |
| ... | ... |
@@ -260,21 +268,21 @@ |
| 260 | 268 |
_next_arc(0) |
| 261 | 269 |
{}
|
| 262 | 270 |
|
| 263 | 271 |
// Find next entering arc |
| 264 | 272 |
bool findEnteringArc() {
|
| 265 | 273 |
Cost c; |
| 266 |
for (int e = _next_arc; e |
|
| 274 |
for (int e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 267 | 275 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 268 | 276 |
if (c < 0) {
|
| 269 | 277 |
_in_arc = e; |
| 270 | 278 |
_next_arc = e + 1; |
| 271 | 279 |
return true; |
| 272 | 280 |
} |
| 273 | 281 |
} |
| 274 |
for (int e = 0; e |
|
| 282 |
for (int e = 0; e != _next_arc; ++e) {
|
|
| 275 | 283 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 276 | 284 |
if (c < 0) {
|
| 277 | 285 |
_in_arc = e; |
| 278 | 286 |
_next_arc = e + 1; |
| 279 | 287 |
return true; |
| 280 | 288 |
} |
| ... | ... |
@@ -291,13 +299,13 @@ |
| 291 | 299 |
private: |
| 292 | 300 |
|
| 293 | 301 |
// References to the NetworkSimplex class |
| 294 | 302 |
const IntVector &_source; |
| 295 | 303 |
const IntVector &_target; |
| 296 | 304 |
const CostVector &_cost; |
| 297 |
const |
|
| 305 |
const StateVector &_state; |
|
| 298 | 306 |
const CostVector &_pi; |
| 299 | 307 |
int &_in_arc; |
| 300 | 308 |
int _search_arc_num; |
| 301 | 309 |
|
| 302 | 310 |
public: |
| 303 | 311 |
|
| ... | ... |
@@ -308,13 +316,13 @@ |
| 308 | 316 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
| 309 | 317 |
{}
|
| 310 | 318 |
|
| 311 | 319 |
// Find next entering arc |
| 312 | 320 |
bool findEnteringArc() {
|
| 313 | 321 |
Cost c, min = 0; |
| 314 |
for (int e = 0; e |
|
| 322 |
for (int e = 0; e != _search_arc_num; ++e) {
|
|
| 315 | 323 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 316 | 324 |
if (c < min) {
|
| 317 | 325 |
min = c; |
| 318 | 326 |
_in_arc = e; |
| 319 | 327 |
} |
| 320 | 328 |
} |
| ... | ... |
@@ -330,13 +338,13 @@ |
| 330 | 338 |
private: |
| 331 | 339 |
|
| 332 | 340 |
// References to the NetworkSimplex class |
| 333 | 341 |
const IntVector &_source; |
| 334 | 342 |
const IntVector &_target; |
| 335 | 343 |
const CostVector &_cost; |
| 336 |
const |
|
| 344 |
const StateVector &_state; |
|
| 337 | 345 |
const CostVector &_pi; |
| 338 | 346 |
int &_in_arc; |
| 339 | 347 |
int _search_arc_num; |
| 340 | 348 |
|
| 341 | 349 |
// Pivot rule data |
| 342 | 350 |
int _block_size; |
| ... | ... |
@@ -349,51 +357,50 @@ |
| 349 | 357 |
_source(ns._source), _target(ns._target), |
| 350 | 358 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 351 | 359 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 352 | 360 |
_next_arc(0) |
| 353 | 361 |
{
|
| 354 | 362 |
// The main parameters of the pivot rule |
| 355 |
const double BLOCK_SIZE_FACTOR = |
|
| 363 |
const double BLOCK_SIZE_FACTOR = 1.0; |
|
| 356 | 364 |
const int MIN_BLOCK_SIZE = 10; |
| 357 | 365 |
|
| 358 | 366 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 359 | 367 |
std::sqrt(double(_search_arc_num))), |
| 360 | 368 |
MIN_BLOCK_SIZE ); |
| 361 | 369 |
} |
| 362 | 370 |
|
| 363 | 371 |
// Find next entering arc |
| 364 | 372 |
bool findEnteringArc() {
|
| 365 | 373 |
Cost c, min = 0; |
| 366 | 374 |
int cnt = _block_size; |
| 367 |
int e, min_arc = _next_arc; |
|
| 368 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
|
| 375 |
int e; |
|
| 376 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 369 | 377 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 370 | 378 |
if (c < min) {
|
| 371 | 379 |
min = c; |
| 372 |
|
|
| 380 |
_in_arc = e; |
|
| 373 | 381 |
} |
| 374 | 382 |
if (--cnt == 0) {
|
| 375 |
if (min < 0) |
|
| 383 |
if (min < 0) goto search_end; |
|
| 376 | 384 |
cnt = _block_size; |
| 377 | 385 |
} |
| 378 | 386 |
} |
| 379 |
if (min == 0 || cnt > 0) {
|
|
| 380 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 381 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 382 |
if (c < min) {
|
|
| 383 |
min = c; |
|
| 384 |
min_arc = e; |
|
| 385 |
} |
|
| 386 |
if (--cnt == 0) {
|
|
| 387 |
if (min < 0) break; |
|
| 388 |
cnt = _block_size; |
|
| 389 |
|
|
| 387 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 388 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 389 |
if (c < min) {
|
|
| 390 |
min = c; |
|
| 391 |
_in_arc = e; |
|
| 392 |
} |
|
| 393 |
if (--cnt == 0) {
|
|
| 394 |
if (min < 0) goto search_end; |
|
| 395 |
cnt = _block_size; |
|
| 390 | 396 |
} |
| 391 | 397 |
} |
| 392 | 398 |
if (min >= 0) return false; |
| 393 |
|
|
| 399 |
|
|
| 400 |
search_end: |
|
| 394 | 401 |
_next_arc = e; |
| 395 | 402 |
return true; |
| 396 | 403 |
} |
| 397 | 404 |
|
| 398 | 405 |
}; //class BlockSearchPivotRule |
| 399 | 406 |
|
| ... | ... |
@@ -404,13 +411,13 @@ |
| 404 | 411 |
private: |
| 405 | 412 |
|
| 406 | 413 |
// References to the NetworkSimplex class |
| 407 | 414 |
const IntVector &_source; |
| 408 | 415 |
const IntVector &_target; |
| 409 | 416 |
const CostVector &_cost; |
| 410 |
const |
|
| 417 |
const StateVector &_state; |
|
| 411 | 418 |
const CostVector &_pi; |
| 412 | 419 |
int &_in_arc; |
| 413 | 420 |
int _search_arc_num; |
| 414 | 421 |
|
| 415 | 422 |
// Pivot rule data |
| 416 | 423 |
IntVector _candidates; |
| ... | ... |
@@ -425,13 +432,13 @@ |
| 425 | 432 |
_source(ns._source), _target(ns._target), |
| 426 | 433 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 427 | 434 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 428 | 435 |
_next_arc(0) |
| 429 | 436 |
{
|
| 430 | 437 |
// The main parameters of the pivot rule |
| 431 |
const double LIST_LENGTH_FACTOR = |
|
| 438 |
const double LIST_LENGTH_FACTOR = 0.25; |
|
| 432 | 439 |
const int MIN_LIST_LENGTH = 10; |
| 433 | 440 |
const double MINOR_LIMIT_FACTOR = 0.1; |
| 434 | 441 |
const int MIN_MINOR_LIMIT = 3; |
| 435 | 442 |
|
| 436 | 443 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
| 437 | 444 |
std::sqrt(double(_search_arc_num))), |
| ... | ... |
@@ -442,65 +449,61 @@ |
| 442 | 449 |
_candidates.resize(_list_length); |
| 443 | 450 |
} |
| 444 | 451 |
|
| 445 | 452 |
/// Find next entering arc |
| 446 | 453 |
bool findEnteringArc() {
|
| 447 | 454 |
Cost min, c; |
| 448 |
int e |
|
| 455 |
int e; |
|
| 449 | 456 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 450 | 457 |
// Minor iteration: select the best eligible arc from the |
| 451 | 458 |
// current candidate list |
| 452 | 459 |
++_minor_count; |
| 453 | 460 |
min = 0; |
| 454 | 461 |
for (int i = 0; i < _curr_length; ++i) {
|
| 455 | 462 |
e = _candidates[i]; |
| 456 | 463 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 457 | 464 |
if (c < min) {
|
| 458 | 465 |
min = c; |
| 459 |
|
|
| 466 |
_in_arc = e; |
|
| 460 | 467 |
} |
| 461 |
if (c >= 0) {
|
|
| 468 |
else if (c >= 0) {
|
|
| 462 | 469 |
_candidates[i--] = _candidates[--_curr_length]; |
| 463 | 470 |
} |
| 464 | 471 |
} |
| 465 |
if (min < 0) {
|
|
| 466 |
_in_arc = min_arc; |
|
| 467 |
return true; |
|
| 468 |
} |
|
| 472 |
if (min < 0) return true; |
|
| 469 | 473 |
} |
| 470 | 474 |
|
| 471 | 475 |
// Major iteration: build a new candidate list |
| 472 | 476 |
min = 0; |
| 473 | 477 |
_curr_length = 0; |
| 474 |
for (e = _next_arc; e |
|
| 478 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 475 | 479 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 476 | 480 |
if (c < 0) {
|
| 477 | 481 |
_candidates[_curr_length++] = e; |
| 478 | 482 |
if (c < min) {
|
| 479 | 483 |
min = c; |
| 480 |
|
|
| 484 |
_in_arc = e; |
|
| 481 | 485 |
} |
| 482 |
if (_curr_length == _list_length) |
|
| 486 |
if (_curr_length == _list_length) goto search_end; |
|
| 483 | 487 |
} |
| 484 | 488 |
} |
| 485 |
if (_curr_length < _list_length) {
|
|
| 486 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 487 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 488 |
if (c < 0) {
|
|
| 489 |
_candidates[_curr_length++] = e; |
|
| 490 |
if (c < min) {
|
|
| 491 |
min = c; |
|
| 492 |
min_arc = e; |
|
| 493 |
} |
|
| 494 |
if (_curr_length == _list_length) break; |
|
| 489 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 490 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 491 |
if (c < 0) {
|
|
| 492 |
_candidates[_curr_length++] = e; |
|
| 493 |
if (c < min) {
|
|
| 494 |
min = c; |
|
| 495 |
_in_arc = e; |
|
| 495 | 496 |
} |
| 497 |
if (_curr_length == _list_length) goto search_end; |
|
| 496 | 498 |
} |
| 497 | 499 |
} |
| 498 | 500 |
if (_curr_length == 0) return false; |
| 501 |
|
|
| 502 |
search_end: |
|
| 499 | 503 |
_minor_count = 1; |
| 500 |
_in_arc = min_arc; |
|
| 501 | 504 |
_next_arc = e; |
| 502 | 505 |
return true; |
| 503 | 506 |
} |
| 504 | 507 |
|
| 505 | 508 |
}; //class CandidateListPivotRule |
| 506 | 509 |
|
| ... | ... |
@@ -511,13 +514,13 @@ |
| 511 | 514 |
private: |
| 512 | 515 |
|
| 513 | 516 |
// References to the NetworkSimplex class |
| 514 | 517 |
const IntVector &_source; |
| 515 | 518 |
const IntVector &_target; |
| 516 | 519 |
const CostVector &_cost; |
| 517 |
const |
|
| 520 |
const StateVector &_state; |
|
| 518 | 521 |
const CostVector &_pi; |
| 519 | 522 |
int &_in_arc; |
| 520 | 523 |
int _search_arc_num; |
| 521 | 524 |
|
| 522 | 525 |
// Pivot rule data |
| 523 | 526 |
int _block_size, _head_length, _curr_length; |
| ... | ... |
@@ -546,13 +549,13 @@ |
| 546 | 549 |
_source(ns._source), _target(ns._target), |
| 547 | 550 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 548 | 551 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 549 | 552 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
| 550 | 553 |
{
|
| 551 | 554 |
// The main parameters of the pivot rule |
| 552 |
const double BLOCK_SIZE_FACTOR = 1. |
|
| 555 |
const double BLOCK_SIZE_FACTOR = 1.0; |
|
| 553 | 556 |
const int MIN_BLOCK_SIZE = 10; |
| 554 | 557 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 555 | 558 |
const int MIN_HEAD_LENGTH = 3; |
| 556 | 559 |
|
| 557 | 560 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 558 | 561 |
std::sqrt(double(_search_arc_num))), |
| ... | ... |
@@ -564,63 +567,60 @@ |
| 564 | 567 |
} |
| 565 | 568 |
|
| 566 | 569 |
// Find next entering arc |
| 567 | 570 |
bool findEnteringArc() {
|
| 568 | 571 |
// Check the current candidate list |
| 569 | 572 |
int e; |
| 570 |
for (int i = 0; i |
|
| 573 |
for (int i = 0; i != _curr_length; ++i) {
|
|
| 571 | 574 |
e = _candidates[i]; |
| 572 | 575 |
_cand_cost[e] = _state[e] * |
| 573 | 576 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 574 | 577 |
if (_cand_cost[e] >= 0) {
|
| 575 | 578 |
_candidates[i--] = _candidates[--_curr_length]; |
| 576 | 579 |
} |
| 577 | 580 |
} |
| 578 | 581 |
|
| 579 | 582 |
// Extend the list |
| 580 | 583 |
int cnt = _block_size; |
| 581 |
int last_arc = 0; |
|
| 582 | 584 |
int limit = _head_length; |
| 583 | 585 |
|
| 584 |
for ( |
|
| 586 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 585 | 587 |
_cand_cost[e] = _state[e] * |
| 586 | 588 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 587 | 589 |
if (_cand_cost[e] < 0) {
|
| 588 | 590 |
_candidates[_curr_length++] = e; |
| 589 |
last_arc = e; |
|
| 590 | 591 |
} |
| 591 | 592 |
if (--cnt == 0) {
|
| 592 |
if (_curr_length > limit) |
|
| 593 |
if (_curr_length > limit) goto search_end; |
|
| 593 | 594 |
limit = 0; |
| 594 | 595 |
cnt = _block_size; |
| 595 | 596 |
} |
| 596 | 597 |
} |
| 597 |
if (_curr_length <= limit) {
|
|
| 598 |
for (int e = 0; e < _next_arc; ++e) {
|
|
| 599 |
_cand_cost[e] = _state[e] * |
|
| 600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 601 |
if (_cand_cost[e] < 0) {
|
|
| 602 |
_candidates[_curr_length++] = e; |
|
| 603 |
last_arc = e; |
|
| 604 |
} |
|
| 605 |
if (--cnt == 0) {
|
|
| 606 |
if (_curr_length > limit) break; |
|
| 607 |
limit = 0; |
|
| 608 |
cnt = _block_size; |
|
| 609 |
|
|
| 598 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 599 |
_cand_cost[e] = _state[e] * |
|
| 600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 601 |
if (_cand_cost[e] < 0) {
|
|
| 602 |
_candidates[_curr_length++] = e; |
|
| 603 |
} |
|
| 604 |
if (--cnt == 0) {
|
|
| 605 |
if (_curr_length > limit) goto search_end; |
|
| 606 |
limit = 0; |
|
| 607 |
cnt = _block_size; |
|
| 610 | 608 |
} |
| 611 | 609 |
} |
| 612 | 610 |
if (_curr_length == 0) return false; |
| 613 |
|
|
| 611 |
|
|
| 612 |
search_end: |
|
| 614 | 613 |
|
| 615 | 614 |
// Make heap of the candidate list (approximating a partial sort) |
| 616 | 615 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 617 | 616 |
_sort_func ); |
| 618 | 617 |
|
| 619 | 618 |
// Pop the first element of the heap |
| 620 | 619 |
_in_arc = _candidates[0]; |
| 620 |
_next_arc = e; |
|
| 621 | 621 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 622 | 622 |
_sort_func ); |
| 623 | 623 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 624 | 624 |
return true; |
| 625 | 625 |
} |
| 626 | 626 |
|
| ... | ... |
@@ -630,75 +630,31 @@ |
| 630 | 630 |
|
| 631 | 631 |
/// \brief Constructor. |
| 632 | 632 |
/// |
| 633 | 633 |
/// The constructor of the class. |
| 634 | 634 |
/// |
| 635 | 635 |
/// \param graph The digraph the algorithm runs on. |
| 636 |
|
|
| 636 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
|
| 637 |
/// mixed order in the internal data structure. |
|
| 638 |
/// In special cases, it could lead to better overall performance, |
|
| 639 |
/// but it is usually slower. Therefore it is disabled by default. |
|
| 640 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
|
| 637 | 641 |
_graph(graph), _node_id(graph), _arc_id(graph), |
| 642 |
_arc_mixing(arc_mixing), |
|
| 643 |
MAX(std::numeric_limits<Value>::max()), |
|
| 638 | 644 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 639 |
std::numeric_limits<Value>::infinity() : |
|
| 640 |
std::numeric_limits<Value>::max()) |
|
| 645 |
std::numeric_limits<Value>::infinity() : MAX) |
|
| 641 | 646 |
{
|
| 642 |
// Check the |
|
| 647 |
// Check the number types |
|
| 643 | 648 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 644 | 649 |
"The flow type of NetworkSimplex must be signed"); |
| 645 | 650 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 646 | 651 |
"The cost type of NetworkSimplex must be signed"); |
| 647 |
|
|
| 648 |
// Resize vectors |
|
| 649 |
_node_num = countNodes(_graph); |
|
| 650 |
_arc_num = countArcs(_graph); |
|
| 651 |
int all_node_num = _node_num + 1; |
|
| 652 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
| 653 | 652 |
|
| 654 |
_source.resize(max_arc_num); |
|
| 655 |
_target.resize(max_arc_num); |
|
| 656 |
|
|
| 657 |
_lower.resize(_arc_num); |
|
| 658 |
_upper.resize(_arc_num); |
|
| 659 |
_cap.resize(max_arc_num); |
|
| 660 |
_cost.resize(max_arc_num); |
|
| 661 |
_supply.resize(all_node_num); |
|
| 662 |
_flow.resize(max_arc_num); |
|
| 663 |
_pi.resize(all_node_num); |
|
| 664 |
|
|
| 665 |
_parent.resize(all_node_num); |
|
| 666 |
_pred.resize(all_node_num); |
|
| 667 |
_forward.resize(all_node_num); |
|
| 668 |
_thread.resize(all_node_num); |
|
| 669 |
_rev_thread.resize(all_node_num); |
|
| 670 |
_succ_num.resize(all_node_num); |
|
| 671 |
_last_succ.resize(all_node_num); |
|
| 672 |
_state.resize(max_arc_num); |
|
| 673 |
|
|
| 674 |
// Copy the graph (store the arcs in a mixed order) |
|
| 675 |
int i = 0; |
|
| 676 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 677 |
_node_id[n] = i; |
|
| 678 |
} |
|
| 679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 680 |
i = 0; |
|
| 681 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 682 |
_arc_id[a] = i; |
|
| 683 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 684 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 685 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 686 |
} |
|
| 687 |
|
|
| 688 |
// Initialize maps |
|
| 689 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 690 |
_supply[i] = 0; |
|
| 691 |
} |
|
| 692 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 693 |
_lower[i] = 0; |
|
| 694 |
_upper[i] = INF; |
|
| 695 |
_cost[i] = 1; |
|
| 696 |
} |
|
| 697 |
_have_lower = false; |
|
| 698 |
|
|
| 653 |
// Reset data structures |
|
| 654 |
reset(); |
|
| 699 | 655 |
} |
| 700 | 656 |
|
| 701 | 657 |
/// \name Parameters |
| 702 | 658 |
/// The parameters of the algorithm can be specified using these |
| 703 | 659 |
/// functions. |
| 704 | 660 |
|
| ... | ... |
@@ -726,13 +682,13 @@ |
| 726 | 682 |
|
| 727 | 683 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 728 | 684 |
/// |
| 729 | 685 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 730 | 686 |
/// If it is not used before calling \ref run(), the upper bounds |
| 731 | 687 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 732 |
/// unbounded from above |
|
| 688 |
/// unbounded from above). |
|
| 733 | 689 |
/// |
| 734 | 690 |
/// \param map An arc map storing the upper bounds. |
| 735 | 691 |
/// Its \c Value type must be convertible to the \c Value type |
| 736 | 692 |
/// of the algorithm. |
| 737 | 693 |
/// |
| 738 | 694 |
/// \return <tt>(*this)</tt> |
| ... | ... |
@@ -765,13 +721,12 @@ |
| 765 | 721 |
|
| 766 | 722 |
/// \brief Set the supply values of the nodes. |
| 767 | 723 |
/// |
| 768 | 724 |
/// This function sets the supply values of the nodes. |
| 769 | 725 |
/// If neither this function nor \ref stSupply() is used before |
| 770 | 726 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 771 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
| 772 | 727 |
/// |
| 773 | 728 |
/// \param map A node map storing the supply values. |
| 774 | 729 |
/// Its \c Value type must be convertible to the \c Value type |
| 775 | 730 |
/// of the algorithm. |
| 776 | 731 |
/// |
| 777 | 732 |
/// \return <tt>(*this)</tt> |
| ... | ... |
@@ -786,13 +741,12 @@ |
| 786 | 741 |
/// \brief Set single source and target nodes and a supply value. |
| 787 | 742 |
/// |
| 788 | 743 |
/// This function sets a single source node and a single target node |
| 789 | 744 |
/// and the required flow value. |
| 790 | 745 |
/// If neither this function nor \ref supplyMap() is used before |
| 791 | 746 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 792 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
| 793 | 747 |
/// |
| 794 | 748 |
/// Using this function has the same effect as using \ref supplyMap() |
| 795 | 749 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 796 | 750 |
/// assigned to \c t and all other nodes have zero supply value. |
| 797 | 751 |
/// |
| 798 | 752 |
/// \param s The source node. |
| ... | ... |
@@ -806,20 +760,20 @@ |
| 806 | 760 |
_supply[i] = 0; |
| 807 | 761 |
} |
| 808 | 762 |
_supply[_node_id[s]] = k; |
| 809 | 763 |
_supply[_node_id[t]] = -k; |
| 810 | 764 |
return *this; |
| 811 | 765 |
} |
| 812 |
|
|
| 766 |
|
|
| 813 | 767 |
/// \brief Set the type of the supply constraints. |
| 814 | 768 |
/// |
| 815 | 769 |
/// This function sets the type of the supply/demand constraints. |
| 816 | 770 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
| 817 | 771 |
/// type will be used. |
| 818 | 772 |
/// |
| 819 |
/// For more information see \ref SupplyType. |
|
| 773 |
/// For more information, see \ref SupplyType. |
|
| 820 | 774 |
/// |
| 821 | 775 |
/// \return <tt>(*this)</tt> |
| 822 | 776 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
| 823 | 777 |
_stype = supply_type; |
| 824 | 778 |
return *this; |
| 825 | 779 |
} |
| ... | ... |
@@ -832,79 +786,83 @@ |
| 832 | 786 |
/// @{
|
| 833 | 787 |
|
| 834 | 788 |
/// \brief Run the algorithm. |
| 835 | 789 |
/// |
| 836 | 790 |
/// This function runs the algorithm. |
| 837 | 791 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 838 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 792 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 839 | 793 |
/// \ref supplyType(). |
| 840 | 794 |
/// For example, |
| 841 | 795 |
/// \code |
| 842 | 796 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 843 | 797 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 844 | 798 |
/// .supplyMap(sup).run(); |
| 845 | 799 |
/// \endcode |
| 846 | 800 |
/// |
| 847 |
/// This function can be called more than once. All the parameters |
|
| 848 |
/// that have been given are kept for the next call, unless |
|
| 849 |
/// \ref reset() is called, thus only the modified parameters |
|
| 850 |
/// have to be set again. See \ref reset() for examples. |
|
| 851 |
/// However the underlying digraph must not be modified after this |
|
| 852 |
/// class have been constructed, since it copies and extends the graph. |
|
| 801 |
/// This function can be called more than once. All the given parameters |
|
| 802 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
| 803 |
/// is used, thus only the modified parameters have to be set again. |
|
| 804 |
/// If the underlying digraph was also modified after the construction |
|
| 805 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
| 806 |
/// function must be called. |
|
| 853 | 807 |
/// |
| 854 | 808 |
/// \param pivot_rule The pivot rule that will be used during the |
| 855 |
/// algorithm. For more information see \ref PivotRule. |
|
| 809 |
/// algorithm. For more information, see \ref PivotRule. |
|
| 856 | 810 |
/// |
| 857 | 811 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 858 | 812 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 859 | 813 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 860 | 814 |
/// optimal flow and node potentials (primal and dual solutions), |
| 861 | 815 |
/// \n \c UNBOUNDED if the objective function of the problem is |
| 862 | 816 |
/// unbounded, i.e. there is a directed cycle having negative total |
| 863 | 817 |
/// cost and infinite upper bound. |
| 864 | 818 |
/// |
| 865 | 819 |
/// \see ProblemType, PivotRule |
| 820 |
/// \see resetParams(), reset() |
|
| 866 | 821 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 867 | 822 |
if (!init()) return INFEASIBLE; |
| 868 | 823 |
return start(pivot_rule); |
| 869 | 824 |
} |
| 870 | 825 |
|
| 871 | 826 |
/// \brief Reset all the parameters that have been given before. |
| 872 | 827 |
/// |
| 873 | 828 |
/// This function resets all the paramaters that have been given |
| 874 | 829 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 875 | 830 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
| 876 | 831 |
/// |
| 877 |
/// It is useful for multiple run() calls. If this function is not |
|
| 878 |
/// used, all the parameters given before are kept for the next |
|
| 879 |
/// \ref run() call. |
|
| 880 |
/// However the underlying digraph must not be modified after this |
|
| 881 |
/// |
|
| 832 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
| 833 |
/// parameters are kept for the next \ref run() call, unless |
|
| 834 |
/// \ref resetParams() or \ref reset() is used. |
|
| 835 |
/// If the underlying digraph was also modified after the construction |
|
| 836 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
| 837 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
| 882 | 838 |
/// |
| 883 | 839 |
/// For example, |
| 884 | 840 |
/// \code |
| 885 | 841 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 886 | 842 |
/// |
| 887 | 843 |
/// // First run |
| 888 | 844 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 889 | 845 |
/// .supplyMap(sup).run(); |
| 890 | 846 |
/// |
| 891 |
/// // Run again with modified cost map ( |
|
| 847 |
/// // Run again with modified cost map (resetParams() is not called, |
|
| 892 | 848 |
/// // so only the cost map have to be set again) |
| 893 | 849 |
/// cost[e] += 100; |
| 894 | 850 |
/// ns.costMap(cost).run(); |
| 895 | 851 |
/// |
| 896 |
/// // Run again from scratch using |
|
| 852 |
/// // Run again from scratch using resetParams() |
|
| 897 | 853 |
/// // (the lower bounds will be set to zero on all arcs) |
| 898 |
/// ns. |
|
| 854 |
/// ns.resetParams(); |
|
| 899 | 855 |
/// ns.upperMap(capacity).costMap(cost) |
| 900 | 856 |
/// .supplyMap(sup).run(); |
| 901 | 857 |
/// \endcode |
| 902 | 858 |
/// |
| 903 | 859 |
/// \return <tt>(*this)</tt> |
| 904 |
|
|
| 860 |
/// |
|
| 861 |
/// \see reset(), run() |
|
| 862 |
NetworkSimplex& resetParams() {
|
|
| 905 | 863 |
for (int i = 0; i != _node_num; ++i) {
|
| 906 | 864 |
_supply[i] = 0; |
| 907 | 865 |
} |
| 908 | 866 |
for (int i = 0; i != _arc_num; ++i) {
|
| 909 | 867 |
_lower[i] = 0; |
| 910 | 868 |
_upper[i] = INF; |
| ... | ... |
@@ -912,12 +870,89 @@ |
| 912 | 870 |
} |
| 913 | 871 |
_have_lower = false; |
| 914 | 872 |
_stype = GEQ; |
| 915 | 873 |
return *this; |
| 916 | 874 |
} |
| 917 | 875 |
|
| 876 |
/// \brief Reset the internal data structures and all the parameters |
|
| 877 |
/// that have been given before. |
|
| 878 |
/// |
|
| 879 |
/// This function resets the internal data structures and all the |
|
| 880 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
| 881 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 882 |
/// \ref supplyType(). |
|
| 883 |
/// |
|
| 884 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
| 885 |
/// parameters are kept for the next \ref run() call, unless |
|
| 886 |
/// \ref resetParams() or \ref reset() is used. |
|
| 887 |
/// If the underlying digraph was also modified after the construction |
|
| 888 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
| 889 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
| 890 |
/// |
|
| 891 |
/// See \ref resetParams() for examples. |
|
| 892 |
/// |
|
| 893 |
/// \return <tt>(*this)</tt> |
|
| 894 |
/// |
|
| 895 |
/// \see resetParams(), run() |
|
| 896 |
NetworkSimplex& reset() {
|
|
| 897 |
// Resize vectors |
|
| 898 |
_node_num = countNodes(_graph); |
|
| 899 |
_arc_num = countArcs(_graph); |
|
| 900 |
int all_node_num = _node_num + 1; |
|
| 901 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
| 902 |
|
|
| 903 |
_source.resize(max_arc_num); |
|
| 904 |
_target.resize(max_arc_num); |
|
| 905 |
|
|
| 906 |
_lower.resize(_arc_num); |
|
| 907 |
_upper.resize(_arc_num); |
|
| 908 |
_cap.resize(max_arc_num); |
|
| 909 |
_cost.resize(max_arc_num); |
|
| 910 |
_supply.resize(all_node_num); |
|
| 911 |
_flow.resize(max_arc_num); |
|
| 912 |
_pi.resize(all_node_num); |
|
| 913 |
|
|
| 914 |
_parent.resize(all_node_num); |
|
| 915 |
_pred.resize(all_node_num); |
|
| 916 |
_forward.resize(all_node_num); |
|
| 917 |
_thread.resize(all_node_num); |
|
| 918 |
_rev_thread.resize(all_node_num); |
|
| 919 |
_succ_num.resize(all_node_num); |
|
| 920 |
_last_succ.resize(all_node_num); |
|
| 921 |
_state.resize(max_arc_num); |
|
| 922 |
|
|
| 923 |
// Copy the graph |
|
| 924 |
int i = 0; |
|
| 925 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 926 |
_node_id[n] = i; |
|
| 927 |
} |
|
| 928 |
if (_arc_mixing) {
|
|
| 929 |
// Store the arcs in a mixed order |
|
| 930 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 931 |
int i = 0, j = 0; |
|
| 932 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 933 |
_arc_id[a] = i; |
|
| 934 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 935 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 936 |
if ((i += k) >= _arc_num) i = ++j; |
|
| 937 |
} |
|
| 938 |
} else {
|
|
| 939 |
// Store the arcs in the original order |
|
| 940 |
int i = 0; |
|
| 941 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
|
|
| 942 |
_arc_id[a] = i; |
|
| 943 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 944 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 945 |
} |
|
| 946 |
} |
|
| 947 |
|
|
| 948 |
// Reset parameters |
|
| 949 |
resetParams(); |
|
| 950 |
return *this; |
|
| 951 |
} |
|
| 952 |
|
|
| 918 | 953 |
/// @} |
| 919 | 954 |
|
| 920 | 955 |
/// \name Query Functions |
| 921 | 956 |
/// The results of the algorithm can be obtained using these |
| 922 | 957 |
/// functions.\n |
| 923 | 958 |
/// The \ref run() function must be called before using them. |
| ... | ... |
@@ -1021,15 +1056,15 @@ |
| 1021 | 1056 |
|
| 1022 | 1057 |
// Remove non-zero lower bounds |
| 1023 | 1058 |
if (_have_lower) {
|
| 1024 | 1059 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1025 | 1060 |
Value c = _lower[i]; |
| 1026 | 1061 |
if (c >= 0) {
|
| 1027 |
_cap[i] = _upper[i] < |
|
| 1062 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
|
| 1028 | 1063 |
} else {
|
| 1029 |
_cap[i] = _upper[i] < |
|
| 1064 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
|
| 1030 | 1065 |
} |
| 1031 | 1066 |
_supply[_source[i]] -= c; |
| 1032 | 1067 |
_supply[_target[i]] += c; |
| 1033 | 1068 |
} |
| 1034 | 1069 |
} else {
|
| 1035 | 1070 |
for (int i = 0; i != _arc_num; ++i) {
|
| ... | ... |
@@ -1051,13 +1086,13 @@ |
| 1051 | 1086 |
|
| 1052 | 1087 |
// Initialize arc maps |
| 1053 | 1088 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1054 | 1089 |
_flow[i] = 0; |
| 1055 | 1090 |
_state[i] = STATE_LOWER; |
| 1056 | 1091 |
} |
| 1057 |
|
|
| 1092 |
|
|
| 1058 | 1093 |
// Set data for the artificial root node |
| 1059 | 1094 |
_root = _node_num; |
| 1060 | 1095 |
_parent[_root] = -1; |
| 1061 | 1096 |
_pred[_root] = -1; |
| 1062 | 1097 |
_thread[_root] = 0; |
| 1063 | 1098 |
_rev_thread[0] = _root; |
| ... | ... |
@@ -1215,24 +1250,24 @@ |
| 1215 | 1250 |
int e; |
| 1216 | 1251 |
|
| 1217 | 1252 |
// Search the cycle along the path form the first node to the root |
| 1218 | 1253 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1219 | 1254 |
e = _pred[u]; |
| 1220 | 1255 |
d = _forward[u] ? |
| 1221 |
_flow[e] : (_cap[e] |
|
| 1256 |
_flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]); |
|
| 1222 | 1257 |
if (d < delta) {
|
| 1223 | 1258 |
delta = d; |
| 1224 | 1259 |
u_out = u; |
| 1225 | 1260 |
result = 1; |
| 1226 | 1261 |
} |
| 1227 | 1262 |
} |
| 1228 | 1263 |
// Search the cycle along the path form the second node to the root |
| 1229 | 1264 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1230 | 1265 |
e = _pred[u]; |
| 1231 |
d = _forward[u] ? |
|
| 1232 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
| 1266 |
d = _forward[u] ? |
|
| 1267 |
(_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
| 1233 | 1268 |
if (d <= delta) {
|
| 1234 | 1269 |
delta = d; |
| 1235 | 1270 |
u_out = u; |
| 1236 | 1271 |
result = 2; |
| 1237 | 1272 |
} |
| 1238 | 1273 |
} |
| ... | ... |
@@ -1327,13 +1362,13 @@ |
| 1327 | 1362 |
if (old_rev_thread != v_in) {
|
| 1328 | 1363 |
_thread[old_rev_thread] = right; |
| 1329 | 1364 |
_rev_thread[right] = old_rev_thread; |
| 1330 | 1365 |
} |
| 1331 | 1366 |
|
| 1332 | 1367 |
// Update _rev_thread using the new _thread values |
| 1333 |
for (int i = 0; i |
|
| 1368 |
for (int i = 0; i != int(_dirty_revs.size()); ++i) {
|
|
| 1334 | 1369 |
u = _dirty_revs[i]; |
| 1335 | 1370 |
_rev_thread[_thread[u]] = u; |
| 1336 | 1371 |
} |
| 1337 | 1372 |
|
| 1338 | 1373 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1339 | 1374 |
// stem nodes from u_out to u_in |
| ... | ... |
@@ -1399,12 +1434,106 @@ |
| 1399 | 1434 |
int end = _thread[_last_succ[u_in]]; |
| 1400 | 1435 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1401 | 1436 |
_pi[u] += sigma; |
| 1402 | 1437 |
} |
| 1403 | 1438 |
} |
| 1404 | 1439 |
|
| 1440 |
// Heuristic initial pivots |
|
| 1441 |
bool initialPivots() {
|
|
| 1442 |
Value curr, total = 0; |
|
| 1443 |
std::vector<Node> supply_nodes, demand_nodes; |
|
| 1444 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
|
| 1445 |
curr = _supply[_node_id[u]]; |
|
| 1446 |
if (curr > 0) {
|
|
| 1447 |
total += curr; |
|
| 1448 |
supply_nodes.push_back(u); |
|
| 1449 |
} |
|
| 1450 |
else if (curr < 0) {
|
|
| 1451 |
demand_nodes.push_back(u); |
|
| 1452 |
} |
|
| 1453 |
} |
|
| 1454 |
if (_sum_supply > 0) total -= _sum_supply; |
|
| 1455 |
if (total <= 0) return true; |
|
| 1456 |
|
|
| 1457 |
IntVector arc_vector; |
|
| 1458 |
if (_sum_supply >= 0) {
|
|
| 1459 |
if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
|
|
| 1460 |
// Perform a reverse graph search from the sink to the source |
|
| 1461 |
typename GR::template NodeMap<bool> reached(_graph, false); |
|
| 1462 |
Node s = supply_nodes[0], t = demand_nodes[0]; |
|
| 1463 |
std::vector<Node> stack; |
|
| 1464 |
reached[t] = true; |
|
| 1465 |
stack.push_back(t); |
|
| 1466 |
while (!stack.empty()) {
|
|
| 1467 |
Node u, v = stack.back(); |
|
| 1468 |
stack.pop_back(); |
|
| 1469 |
if (v == s) break; |
|
| 1470 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
|
| 1471 |
if (reached[u = _graph.source(a)]) continue; |
|
| 1472 |
int j = _arc_id[a]; |
|
| 1473 |
if (_cap[j] >= total) {
|
|
| 1474 |
arc_vector.push_back(j); |
|
| 1475 |
reached[u] = true; |
|
| 1476 |
stack.push_back(u); |
|
| 1477 |
} |
|
| 1478 |
} |
|
| 1479 |
} |
|
| 1480 |
} else {
|
|
| 1481 |
// Find the min. cost incomming arc for each demand node |
|
| 1482 |
for (int i = 0; i != int(demand_nodes.size()); ++i) {
|
|
| 1483 |
Node v = demand_nodes[i]; |
|
| 1484 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
|
| 1485 |
Arc min_arc = INVALID; |
|
| 1486 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
|
| 1487 |
c = _cost[_arc_id[a]]; |
|
| 1488 |
if (c < min_cost) {
|
|
| 1489 |
min_cost = c; |
|
| 1490 |
min_arc = a; |
|
| 1491 |
} |
|
| 1492 |
} |
|
| 1493 |
if (min_arc != INVALID) {
|
|
| 1494 |
arc_vector.push_back(_arc_id[min_arc]); |
|
| 1495 |
} |
|
| 1496 |
} |
|
| 1497 |
} |
|
| 1498 |
} else {
|
|
| 1499 |
// Find the min. cost outgoing arc for each supply node |
|
| 1500 |
for (int i = 0; i != int(supply_nodes.size()); ++i) {
|
|
| 1501 |
Node u = supply_nodes[i]; |
|
| 1502 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
|
| 1503 |
Arc min_arc = INVALID; |
|
| 1504 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
|
| 1505 |
c = _cost[_arc_id[a]]; |
|
| 1506 |
if (c < min_cost) {
|
|
| 1507 |
min_cost = c; |
|
| 1508 |
min_arc = a; |
|
| 1509 |
} |
|
| 1510 |
} |
|
| 1511 |
if (min_arc != INVALID) {
|
|
| 1512 |
arc_vector.push_back(_arc_id[min_arc]); |
|
| 1513 |
} |
|
| 1514 |
} |
|
| 1515 |
} |
|
| 1516 |
|
|
| 1517 |
// Perform heuristic initial pivots |
|
| 1518 |
for (int i = 0; i != int(arc_vector.size()); ++i) {
|
|
| 1519 |
in_arc = arc_vector[i]; |
|
| 1520 |
if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - |
|
| 1521 |
_pi[_target[in_arc]]) >= 0) continue; |
|
| 1522 |
findJoinNode(); |
|
| 1523 |
bool change = findLeavingArc(); |
|
| 1524 |
if (delta >= MAX) return false; |
|
| 1525 |
changeFlow(change); |
|
| 1526 |
if (change) {
|
|
| 1527 |
updateTreeStructure(); |
|
| 1528 |
updatePotential(); |
|
| 1529 |
} |
|
| 1530 |
} |
|
| 1531 |
return true; |
|
| 1532 |
} |
|
| 1533 |
|
|
| 1405 | 1534 |
// Execute the algorithm |
| 1406 | 1535 |
ProblemType start(PivotRule pivot_rule) {
|
| 1407 | 1536 |
// Select the pivot rule implementation |
| 1408 | 1537 |
switch (pivot_rule) {
|
| 1409 | 1538 |
case FIRST_ELIGIBLE: |
| 1410 | 1539 |
return start<FirstEligiblePivotRule>(); |
| ... | ... |
@@ -1421,24 +1550,27 @@ |
| 1421 | 1550 |
} |
| 1422 | 1551 |
|
| 1423 | 1552 |
template <typename PivotRuleImpl> |
| 1424 | 1553 |
ProblemType start() {
|
| 1425 | 1554 |
PivotRuleImpl pivot(*this); |
| 1426 | 1555 |
|
| 1556 |
// Perform heuristic initial pivots |
|
| 1557 |
if (!initialPivots()) return UNBOUNDED; |
|
| 1558 |
|
|
| 1427 | 1559 |
// Execute the Network Simplex algorithm |
| 1428 | 1560 |
while (pivot.findEnteringArc()) {
|
| 1429 | 1561 |
findJoinNode(); |
| 1430 | 1562 |
bool change = findLeavingArc(); |
| 1431 |
if (delta >= |
|
| 1563 |
if (delta >= MAX) return UNBOUNDED; |
|
| 1432 | 1564 |
changeFlow(change); |
| 1433 | 1565 |
if (change) {
|
| 1434 | 1566 |
updateTreeStructure(); |
| 1435 | 1567 |
updatePotential(); |
| 1436 | 1568 |
} |
| 1437 | 1569 |
} |
| 1438 |
|
|
| 1570 |
|
|
| 1439 | 1571 |
// Check feasibility |
| 1440 | 1572 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
| 1441 | 1573 |
if (_flow[e] != 0) return INFEASIBLE; |
| 1442 | 1574 |
} |
| 1443 | 1575 |
|
| 1444 | 1576 |
// Transform the solution and the supply map to the original form |
| ... | ... |
@@ -1449,13 +1581,13 @@ |
| 1449 | 1581 |
_flow[i] += c; |
| 1450 | 1582 |
_supply[_source[i]] += c; |
| 1451 | 1583 |
_supply[_target[i]] -= c; |
| 1452 | 1584 |
} |
| 1453 | 1585 |
} |
| 1454 | 1586 |
} |
| 1455 |
|
|
| 1587 |
|
|
| 1456 | 1588 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
| 1457 | 1589 |
// optimality conditions |
| 1458 | 1590 |
if (_sum_supply == 0) {
|
| 1459 | 1591 |
if (_stype == GEQ) {
|
| 1460 | 1592 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
| 1461 | 1593 |
for (int i = 0; i != _node_num; ++i) {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -963,26 +963,26 @@ |
| 963 | 963 |
static void copy(const From& from, To& to) {
|
| 964 | 964 |
to.clear(); |
| 965 | 965 |
to.buildRev(from); |
| 966 | 966 |
} |
| 967 | 967 |
}; |
| 968 | 968 |
|
| 969 |
|
|
| 969 |
|
|
| 970 | 970 |
template <typename From, typename To, |
| 971 | 971 |
bool revEnable = RevPathTagIndicator<From>::value> |
| 972 | 972 |
struct PathCopySelector {
|
| 973 | 973 |
static void copy(const From& from, To& to) {
|
| 974 | 974 |
PathCopySelectorForward<From, To>::copy(from, to); |
| 975 |
} |
|
| 975 |
} |
|
| 976 | 976 |
}; |
| 977 | 977 |
|
| 978 | 978 |
template <typename From, typename To> |
| 979 | 979 |
struct PathCopySelector<From, To, true> {
|
| 980 | 980 |
static void copy(const From& from, To& to) {
|
| 981 | 981 |
PathCopySelectorBackward<From, To>::copy(from, to); |
| 982 |
} |
|
| 982 |
} |
|
| 983 | 983 |
}; |
| 984 | 984 |
|
| 985 | 985 |
} |
| 986 | 986 |
|
| 987 | 987 |
|
| 988 | 988 |
/// \brief Make a copy of a path. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -49,13 +49,17 @@ |
| 49 | 49 |
typedef typename CapacityMap::Value Value; |
| 50 | 50 |
|
| 51 | 51 |
/// \brief The type of the map that stores the flow values. |
| 52 | 52 |
/// |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
#ifdef DOXYGEN |
|
| 56 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 57 |
#else |
|
| 55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 59 |
#endif |
|
| 56 | 60 |
|
| 57 | 61 |
/// \brief Instantiates a FlowMap. |
| 58 | 62 |
/// |
| 59 | 63 |
/// This function instantiates a \ref FlowMap. |
| 60 | 64 |
/// \param digraph The digraph for which we would like to define |
| 61 | 65 |
/// the flow map. |
| ... | ... |
@@ -64,15 +68,18 @@ |
| 64 | 68 |
} |
| 65 | 69 |
|
| 66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
| 67 | 71 |
/// |
| 68 | 72 |
/// The elevator type used by Preflow algorithm. |
| 69 | 73 |
/// |
| 70 |
/// \sa Elevator |
|
| 71 |
/// \sa LinkedElevator |
|
| 72 |
|
|
| 74 |
/// \sa Elevator, LinkedElevator |
|
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 77 |
#else |
|
| 78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
| 79 |
#endif |
|
| 73 | 80 |
|
| 74 | 81 |
/// \brief Instantiates an Elevator. |
| 75 | 82 |
/// |
| 76 | 83 |
/// This function instantiates an \ref Elevator. |
| 77 | 84 |
/// \param digraph The digraph for which we would like to define |
| 78 | 85 |
/// the elevator. |
| ... | ... |
@@ -92,25 +99,34 @@ |
| 92 | 99 |
/// \ingroup max_flow |
| 93 | 100 |
/// |
| 94 | 101 |
/// \brief %Preflow algorithm class. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
| 97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
| 98 |
/// "flow of maximum value" in a digraph |
|
| 105 |
/// "flow of maximum value" in a digraph \ref clrs01algorithms, |
|
| 106 |
/// \ref amo93networkflows, \ref goldberg88newapproach. |
|
| 99 | 107 |
/// The preflow algorithms are the fastest known maximum |
| 100 |
/// flow algorithms. The current implementation |
|
| 108 |
/// flow algorithms. The current implementation uses a mixture of the |
|
| 101 | 109 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
| 102 | 110 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| 103 | 111 |
/// |
| 104 | 112 |
/// The algorithm consists of two phases. After the first phase |
| 105 | 113 |
/// the maximum flow value and the minimum cut is obtained. The |
| 106 | 114 |
/// second phase constructs a feasible maximum flow on each arc. |
| 107 | 115 |
/// |
| 116 |
/// \warning This implementation cannot handle infinite or very large |
|
| 117 |
/// capacities (e.g. the maximum value of \c CAP::Value). |
|
| 118 |
/// |
|
| 108 | 119 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 109 | 120 |
/// \tparam CAP The type of the capacity map. The default map |
| 110 | 121 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 122 |
/// \tparam TR The traits class that defines various types used by the |
|
| 123 |
/// algorithm. By default, it is \ref PreflowDefaultTraits |
|
| 124 |
/// "PreflowDefaultTraits<GR, CAP>". |
|
| 125 |
/// In most cases, this parameter should not be set directly, |
|
| 126 |
/// consider to use the named template parameters instead. |
|
| 111 | 127 |
#ifdef DOXYGEN |
| 112 | 128 |
template <typename GR, typename CAP, typename TR> |
| 113 | 129 |
#else |
| 114 | 130 |
template <typename GR, |
| 115 | 131 |
typename CAP = typename GR::template ArcMap<int>, |
| 116 | 132 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
| ... | ... |
@@ -254,13 +270,13 @@ |
| 254 | 270 |
/// |
| 255 | 271 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 256 | 272 |
/// type with automatic allocation. |
| 257 | 273 |
/// The Elevator should have standard constructor interface to be |
| 258 | 274 |
/// able to automatically created by the algorithm (i.e. the |
| 259 | 275 |
/// digraph and the maximum level should be passed to it). |
| 260 |
/// However an external elevator object could also be passed to the |
|
| 276 |
/// However, an external elevator object could also be passed to the |
|
| 261 | 277 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 262 | 278 |
/// before calling \ref run() or \ref init(). |
| 263 | 279 |
/// \sa SetElevator |
| 264 | 280 |
template <typename T> |
| 265 | 281 |
struct SetStandardElevator |
| 266 | 282 |
: public Preflow<Digraph, CapacityMap, |
| ... | ... |
@@ -368,32 +384,34 @@ |
| 368 | 384 |
/// \pre Either \ref run() or \ref init() must be called before |
| 369 | 385 |
/// using this function. |
| 370 | 386 |
const Elevator& elevator() const {
|
| 371 | 387 |
return *_level; |
| 372 | 388 |
} |
| 373 | 389 |
|
| 374 |
/// \brief Sets the tolerance used by algorithm. |
|
| 390 |
/// \brief Sets the tolerance used by the algorithm. |
|
| 375 | 391 |
/// |
| 376 |
/// Sets the tolerance used by algorithm. |
|
| 392 |
/// Sets the tolerance object used by the algorithm. |
|
| 393 |
/// \return <tt>(*this)</tt> |
|
| 377 | 394 |
Preflow& tolerance(const Tolerance& tolerance) {
|
| 378 | 395 |
_tolerance = tolerance; |
| 379 | 396 |
return *this; |
| 380 | 397 |
} |
| 381 | 398 |
|
| 382 | 399 |
/// \brief Returns a const reference to the tolerance. |
| 383 | 400 |
/// |
| 384 |
/// Returns a const reference to the tolerance |
|
| 401 |
/// Returns a const reference to the tolerance object used by |
|
| 402 |
/// the algorithm. |
|
| 385 | 403 |
const Tolerance& tolerance() const {
|
| 386 | 404 |
return _tolerance; |
| 387 | 405 |
} |
| 388 | 406 |
|
| 389 | 407 |
/// \name Execution Control |
| 390 | 408 |
/// The simplest way to execute the preflow algorithm is to use |
| 391 | 409 |
/// \ref run() or \ref runMinCut().\n |
| 392 |
/// If you need more control on the initial solution or the execution, |
|
| 393 |
/// first you have to call one of the \ref init() functions, then |
|
| 410 |
/// If you need better control on the initial solution or the execution, |
|
| 411 |
/// you have to call one of the \ref init() functions first, then |
|
| 394 | 412 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 395 | 413 |
|
| 396 | 414 |
///@{
|
| 397 | 415 |
|
| 398 | 416 |
/// \brief Initializes the internal data structures. |
| 399 | 417 |
/// |
| ... | ... |
@@ -16,72 +16,70 @@ |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_RADIX_HEAP_H |
| 20 | 20 |
#define LEMON_RADIX_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Radix |
|
| 24 |
///\brief Radix heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
|
| 32 |
/// \ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 |
/// \brief |
|
| 34 |
/// \brief Radix heap data structure. |
|
| 35 | 35 |
/// |
| 36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
| 37 |
/// is a data structure for storing items with specified values called \e |
|
| 38 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 39 |
/// efficient. This heap type can store only items with \e int priority. |
|
| 40 |
/// In a heap one can change the priority of an item, add or erase an |
|
| 41 |
/// item, but the priority cannot be decreased under the last removed |
|
| 42 |
/// |
|
| 36 |
/// This class implements the \e radix \e heap data structure. |
|
| 37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
| 38 |
/// but it has some limitations due its special implementation. |
|
| 39 |
/// The type of the priorities must be \c int and the priority of an |
|
| 40 |
/// item cannot be decreased under the priority of the last removed item. |
|
| 43 | 41 |
/// |
| 44 |
/// \param IM A read and writable Item int map, used internally |
|
| 45 |
/// to handle the cross references. |
|
| 46 |
/// |
|
| 47 |
/// \see BinHeap |
|
| 48 |
/// \ |
|
| 42 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 43 |
/// internally to handle the cross references. |
|
| 49 | 44 |
template <typename IM> |
| 50 | 45 |
class RadixHeap {
|
| 51 | 46 |
|
| 52 | 47 |
public: |
| 53 |
|
|
| 48 |
|
|
| 49 |
/// Type of the item-int map. |
|
| 50 |
typedef IM ItemIntMap; |
|
| 51 |
/// Type of the priorities. |
|
| 54 | 52 |
typedef int Prio; |
| 55 |
|
|
| 53 |
/// Type of the items stored in the heap. |
|
| 54 |
typedef typename ItemIntMap::Key Item; |
|
| 56 | 55 |
|
| 57 | 56 |
/// \brief Exception thrown by RadixHeap. |
| 58 | 57 |
/// |
| 59 |
/// This Exception is thrown when a smaller priority |
|
| 60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
| 58 |
/// This exception is thrown when an item is inserted into a |
|
| 59 |
/// RadixHeap with a priority smaller than the last erased one. |
|
| 61 | 60 |
/// \see RadixHeap |
| 62 |
|
|
| 63 |
class UnderFlowPriorityError : public Exception {
|
|
| 61 |
class PriorityUnderflowError : public Exception {
|
|
| 64 | 62 |
public: |
| 65 | 63 |
virtual const char* what() const throw() {
|
| 66 |
return "lemon::RadixHeap:: |
|
| 64 |
return "lemon::RadixHeap::PriorityUnderflowError"; |
|
| 67 | 65 |
} |
| 68 | 66 |
}; |
| 69 | 67 |
|
| 70 |
/// \brief Type to represent the |
|
| 68 |
/// \brief Type to represent the states of the items. |
|
| 71 | 69 |
/// |
| 72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 70 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 | 72 |
/// heap's point of view, but may be useful to the user. |
| 75 | 73 |
/// |
| 76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 74 |
/// The item-int map must be initialized in such way that it assigns |
|
| 75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 78 | 76 |
enum State {
|
| 79 |
IN_HEAP = 0, |
|
| 80 |
PRE_HEAP = -1, |
|
| 81 |
|
|
| 77 |
IN_HEAP = 0, ///< = 0. |
|
| 78 |
PRE_HEAP = -1, ///< = -1. |
|
| 79 |
POST_HEAP = -2 ///< = -2. |
|
| 82 | 80 |
}; |
| 83 | 81 |
|
| 84 | 82 |
private: |
| 85 | 83 |
|
| 86 | 84 |
struct RadixItem {
|
| 87 | 85 |
int prev, next, box; |
| ... | ... |
@@ -93,326 +91,333 @@ |
| 93 | 91 |
struct RadixBox {
|
| 94 | 92 |
int first; |
| 95 | 93 |
int min, size; |
| 96 | 94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
|
| 97 | 95 |
}; |
| 98 | 96 |
|
| 99 |
std::vector<RadixItem> data; |
|
| 100 |
std::vector<RadixBox> boxes; |
|
| 97 |
std::vector<RadixItem> _data; |
|
| 98 |
std::vector<RadixBox> _boxes; |
|
| 101 | 99 |
|
| 102 | 100 |
ItemIntMap &_iim; |
| 103 | 101 |
|
| 102 |
public: |
|
| 104 | 103 |
|
| 105 |
public: |
|
| 106 |
/// \brief The constructor. |
|
| 104 |
/// \brief Constructor. |
|
| 107 | 105 |
/// |
| 108 |
/// The constructor. |
|
| 109 |
/// |
|
| 110 |
/// \param map It should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 113 |
/// |
|
| 114 |
/// \param minimal The initial minimal value of the heap. |
|
| 115 |
/// \param capacity It determines the initial capacity of the heap. |
|
| 116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
| 117 |
: _iim(map) {
|
|
| 118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 120 |
|
|
| 106 |
/// Constructor. |
|
| 107 |
/// \param map A map that assigns \c int values to the items. |
|
| 108 |
/// It is used internally to handle the cross references. |
|
| 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 110 |
/// \param minimum The initial minimum value of the heap. |
|
| 111 |
/// \param capacity The initial capacity of the heap. |
|
| 112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
|
| 113 |
: _iim(map) |
|
| 114 |
{
|
|
| 115 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
| 116 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
| 117 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
|
|
| 121 | 118 |
extend(); |
| 122 | 119 |
} |
| 123 | 120 |
} |
| 124 | 121 |
|
| 125 |
/// The number of items stored in the heap. |
|
| 122 |
/// \brief The number of items stored in the heap. |
|
| 126 | 123 |
/// |
| 127 |
/// \brief Returns the number of items stored in the heap. |
|
| 128 |
int size() const { return data.size(); }
|
|
| 129 |
/// |
|
| 124 |
/// This function returns the number of items stored in the heap. |
|
| 125 |
int size() const { return _data.size(); }
|
|
| 126 |
|
|
| 127 |
/// \brief Check if the heap is empty. |
|
| 130 | 128 |
/// |
| 131 |
/// Returns \c true if and only if the heap stores no items. |
|
| 132 |
bool empty() const { return data.empty(); }
|
|
| 129 |
/// This function returns \c true if the heap is empty. |
|
| 130 |
bool empty() const { return _data.empty(); }
|
|
| 133 | 131 |
|
| 134 |
/// \brief Make |
|
| 132 |
/// \brief Make the heap empty. |
|
| 135 | 133 |
/// |
| 136 |
/// Make empty this heap. It does not change the cross reference |
|
| 137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 138 |
/// should first clear the heap and after that you should set the |
|
| 139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 140 |
void clear(int minimal = 0, int capacity = 0) {
|
|
| 141 |
data.clear(); boxes.clear(); |
|
| 142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 144 |
|
|
| 134 |
/// This functon makes the heap empty. |
|
| 135 |
/// It does not change the cross reference map. If you want to reuse |
|
| 136 |
/// a heap that is not surely empty, you should first clear it and |
|
| 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 138 |
/// for each item. |
|
| 139 |
/// \param minimum The minimum value of the heap. |
|
| 140 |
/// \param capacity The capacity of the heap. |
|
| 141 |
void clear(int minimum = 0, int capacity = 0) {
|
|
| 142 |
_data.clear(); _boxes.clear(); |
|
| 143 |
_boxes.push_back(RadixBox(minimum, 1)); |
|
| 144 |
_boxes.push_back(RadixBox(minimum + 1, 1)); |
|
| 145 |
while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
|
|
| 145 | 146 |
extend(); |
| 146 | 147 |
} |
| 147 | 148 |
} |
| 148 | 149 |
|
| 149 | 150 |
private: |
| 150 | 151 |
|
| 151 | 152 |
bool upper(int box, Prio pr) {
|
| 152 |
return pr < |
|
| 153 |
return pr < _boxes[box].min; |
|
| 153 | 154 |
} |
| 154 | 155 |
|
| 155 | 156 |
bool lower(int box, Prio pr) {
|
| 156 |
return pr >= |
|
| 157 |
return pr >= _boxes[box].min + _boxes[box].size; |
|
| 157 | 158 |
} |
| 158 | 159 |
|
| 159 |
// |
|
| 160 |
// Remove item from the box list |
|
| 160 | 161 |
void remove(int index) {
|
| 161 |
if (data[index].prev >= 0) {
|
|
| 162 |
data[data[index].prev].next = data[index].next; |
|
| 162 |
if (_data[index].prev >= 0) {
|
|
| 163 |
_data[_data[index].prev].next = _data[index].next; |
|
| 163 | 164 |
} else {
|
| 164 |
|
|
| 165 |
_boxes[_data[index].box].first = _data[index].next; |
|
| 165 | 166 |
} |
| 166 |
if (data[index].next >= 0) {
|
|
| 167 |
data[data[index].next].prev = data[index].prev; |
|
| 167 |
if (_data[index].next >= 0) {
|
|
| 168 |
_data[_data[index].next].prev = _data[index].prev; |
|
| 168 | 169 |
} |
| 169 | 170 |
} |
| 170 | 171 |
|
| 171 |
// |
|
| 172 |
// Insert item into the box list |
|
| 172 | 173 |
void insert(int box, int index) {
|
| 173 |
if (boxes[box].first == -1) {
|
|
| 174 |
boxes[box].first = index; |
|
| 175 |
|
|
| 174 |
if (_boxes[box].first == -1) {
|
|
| 175 |
_boxes[box].first = index; |
|
| 176 |
_data[index].next = _data[index].prev = -1; |
|
| 176 | 177 |
} else {
|
| 177 |
data[index].next = boxes[box].first; |
|
| 178 |
data[boxes[box].first].prev = index; |
|
| 179 |
data[index].prev = -1; |
|
| 180 |
boxes[box].first = index; |
|
| 178 |
_data[index].next = _boxes[box].first; |
|
| 179 |
_data[_boxes[box].first].prev = index; |
|
| 180 |
_data[index].prev = -1; |
|
| 181 |
_boxes[box].first = index; |
|
| 181 | 182 |
} |
| 182 |
|
|
| 183 |
_data[index].box = box; |
|
| 183 | 184 |
} |
| 184 | 185 |
|
| 185 |
// |
|
| 186 |
// Add a new box to the box list |
|
| 186 | 187 |
void extend() {
|
| 187 |
int min = boxes.back().min + boxes.back().size; |
|
| 188 |
int bs = 2 * boxes.back().size; |
|
| 189 |
|
|
| 188 |
int min = _boxes.back().min + _boxes.back().size; |
|
| 189 |
int bs = 2 * _boxes.back().size; |
|
| 190 |
_boxes.push_back(RadixBox(min, bs)); |
|
| 190 | 191 |
} |
| 191 | 192 |
|
| 192 |
/// \brief Move an item up into the proper box. |
|
| 193 |
void bubble_up(int index) {
|
|
| 194 |
|
|
| 193 |
// Move an item up into the proper box. |
|
| 194 |
void bubbleUp(int index) {
|
|
| 195 |
if (!lower(_data[index].box, _data[index].prio)) return; |
|
| 195 | 196 |
remove(index); |
| 196 |
int box = findUp( |
|
| 197 |
int box = findUp(_data[index].box, _data[index].prio); |
|
| 197 | 198 |
insert(box, index); |
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 |
// |
|
| 201 |
// Find up the proper box for the item with the given priority |
|
| 201 | 202 |
int findUp(int start, int pr) {
|
| 202 | 203 |
while (lower(start, pr)) {
|
| 203 |
if (++start == int( |
|
| 204 |
if (++start == int(_boxes.size())) {
|
|
| 204 | 205 |
extend(); |
| 205 | 206 |
} |
| 206 | 207 |
} |
| 207 | 208 |
return start; |
| 208 | 209 |
} |
| 209 | 210 |
|
| 210 |
/// \brief Move an item down into the proper box. |
|
| 211 |
void bubble_down(int index) {
|
|
| 212 |
|
|
| 211 |
// Move an item down into the proper box |
|
| 212 |
void bubbleDown(int index) {
|
|
| 213 |
if (!upper(_data[index].box, _data[index].prio)) return; |
|
| 213 | 214 |
remove(index); |
| 214 |
int box = findDown( |
|
| 215 |
int box = findDown(_data[index].box, _data[index].prio); |
|
| 215 | 216 |
insert(box, index); |
| 216 | 217 |
} |
| 217 | 218 |
|
| 218 |
// |
|
| 219 |
// Find down the proper box for the item with the given priority |
|
| 219 | 220 |
int findDown(int start, int pr) {
|
| 220 | 221 |
while (upper(start, pr)) {
|
| 221 |
if (--start < 0) throw |
|
| 222 |
if (--start < 0) throw PriorityUnderflowError(); |
|
| 222 | 223 |
} |
| 223 | 224 |
return start; |
| 224 | 225 |
} |
| 225 | 226 |
|
| 226 |
// |
|
| 227 |
// Find the first non-empty box |
|
| 227 | 228 |
int findFirst() {
|
| 228 | 229 |
int first = 0; |
| 229 |
while ( |
|
| 230 |
while (_boxes[first].first == -1) ++first; |
|
| 230 | 231 |
return first; |
| 231 | 232 |
} |
| 232 | 233 |
|
| 233 |
// |
|
| 234 |
// Gives back the minimum priority of the given box |
|
| 234 | 235 |
int minValue(int box) {
|
| 235 |
int min = data[boxes[box].first].prio; |
|
| 236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) {
|
|
| 237 |
|
|
| 236 |
int min = _data[_boxes[box].first].prio; |
|
| 237 |
for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
|
|
| 238 |
if (_data[k].prio < min) min = _data[k].prio; |
|
| 238 | 239 |
} |
| 239 | 240 |
return min; |
| 240 | 241 |
} |
| 241 | 242 |
|
| 242 |
/// \brief Rearrange the items of the heap and makes the |
|
| 243 |
/// first box not empty. |
|
| 243 |
// Rearrange the items of the heap and make the first box non-empty |
|
| 244 | 244 |
void moveDown() {
|
| 245 | 245 |
int box = findFirst(); |
| 246 | 246 |
if (box == 0) return; |
| 247 | 247 |
int min = minValue(box); |
| 248 | 248 |
for (int i = 0; i <= box; ++i) {
|
| 249 |
boxes[i].min = min; |
|
| 250 |
min += boxes[i].size; |
|
| 249 |
_boxes[i].min = min; |
|
| 250 |
min += _boxes[i].size; |
|
| 251 | 251 |
} |
| 252 |
int curr = |
|
| 252 |
int curr = _boxes[box].first, next; |
|
| 253 | 253 |
while (curr != -1) {
|
| 254 |
next = data[curr].next; |
|
| 255 |
bubble_down(curr); |
|
| 254 |
next = _data[curr].next; |
|
| 255 |
bubbleDown(curr); |
|
| 256 | 256 |
curr = next; |
| 257 | 257 |
} |
| 258 | 258 |
} |
| 259 | 259 |
|
| 260 |
void relocate_last(int index) {
|
|
| 261 |
if (index != int(data.size()) - 1) {
|
|
| 262 |
data[index] = data.back(); |
|
| 263 |
if (data[index].prev != -1) {
|
|
| 264 |
|
|
| 260 |
void relocateLast(int index) {
|
|
| 261 |
if (index != int(_data.size()) - 1) {
|
|
| 262 |
_data[index] = _data.back(); |
|
| 263 |
if (_data[index].prev != -1) {
|
|
| 264 |
_data[_data[index].prev].next = index; |
|
| 265 | 265 |
} else {
|
| 266 |
|
|
| 266 |
_boxes[_data[index].box].first = index; |
|
| 267 | 267 |
} |
| 268 |
if (data[index].next != -1) {
|
|
| 269 |
data[data[index].next].prev = index; |
|
| 268 |
if (_data[index].next != -1) {
|
|
| 269 |
_data[_data[index].next].prev = index; |
|
| 270 | 270 |
} |
| 271 |
_iim[ |
|
| 271 |
_iim[_data[index].item] = index; |
|
| 272 | 272 |
} |
| 273 |
|
|
| 273 |
_data.pop_back(); |
|
| 274 | 274 |
} |
| 275 | 275 |
|
| 276 | 276 |
public: |
| 277 | 277 |
|
| 278 | 278 |
/// \brief Insert an item into the heap with the given priority. |
| 279 | 279 |
/// |
| 280 |
/// |
|
| 280 |
/// This function inserts the given item into the heap with the |
|
| 281 |
/// given priority. |
|
| 281 | 282 |
/// \param i The item to insert. |
| 282 | 283 |
/// \param p The priority of the item. |
| 284 |
/// \pre \e i must not be stored in the heap. |
|
| 285 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 283 | 286 |
void push(const Item &i, const Prio &p) {
|
| 284 |
int n = |
|
| 287 |
int n = _data.size(); |
|
| 285 | 288 |
_iim.set(i, n); |
| 286 |
data.push_back(RadixItem(i, p)); |
|
| 287 |
while (lower(boxes.size() - 1, p)) {
|
|
| 289 |
_data.push_back(RadixItem(i, p)); |
|
| 290 |
while (lower(_boxes.size() - 1, p)) {
|
|
| 288 | 291 |
extend(); |
| 289 | 292 |
} |
| 290 |
int box = findDown( |
|
| 293 |
int box = findDown(_boxes.size() - 1, p); |
|
| 291 | 294 |
insert(box, n); |
| 292 | 295 |
} |
| 293 | 296 |
|
| 294 |
/// \brief |
|
| 297 |
/// \brief Return the item having minimum priority. |
|
| 295 | 298 |
/// |
| 296 |
/// This method returns the item with minimum priority. |
|
| 297 |
/// \pre The heap must be nonempty. |
|
| 299 |
/// This function returns the item having minimum priority. |
|
| 300 |
/// \pre The heap must be non-empty. |
|
| 298 | 301 |
Item top() const {
|
| 299 | 302 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
| 300 |
return |
|
| 303 |
return _data[_boxes[0].first].item; |
|
| 301 | 304 |
} |
| 302 | 305 |
|
| 303 |
/// \brief |
|
| 306 |
/// \brief The minimum priority. |
|
| 304 | 307 |
/// |
| 305 |
/// It returns the minimum priority. |
|
| 306 |
/// \pre The heap must be nonempty. |
|
| 308 |
/// This function returns the minimum priority. |
|
| 309 |
/// \pre The heap must be non-empty. |
|
| 307 | 310 |
Prio prio() const {
|
| 308 | 311 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
| 309 |
return |
|
| 312 |
return _data[_boxes[0].first].prio; |
|
| 310 | 313 |
} |
| 311 | 314 |
|
| 312 |
/// \brief |
|
| 315 |
/// \brief Remove the item having minimum priority. |
|
| 313 | 316 |
/// |
| 314 |
/// This |
|
| 317 |
/// This function removes the item having minimum priority. |
|
| 315 | 318 |
/// \pre The heap must be non-empty. |
| 316 | 319 |
void pop() {
|
| 317 | 320 |
moveDown(); |
| 318 |
int index = boxes[0].first; |
|
| 319 |
_iim[data[index].item] = POST_HEAP; |
|
| 321 |
int index = _boxes[0].first; |
|
| 322 |
_iim[_data[index].item] = POST_HEAP; |
|
| 320 | 323 |
remove(index); |
| 321 |
|
|
| 324 |
relocateLast(index); |
|
| 322 | 325 |
} |
| 323 | 326 |
|
| 324 |
/// \brief |
|
| 327 |
/// \brief Remove the given item from the heap. |
|
| 325 | 328 |
/// |
| 326 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 327 |
/// already stored in the heap. |
|
| 328 |
/// |
|
| 329 |
/// This function removes the given item from the heap if it is |
|
| 330 |
/// already stored. |
|
| 331 |
/// \param i The item to delete. |
|
| 332 |
/// \pre \e i must be in the heap. |
|
| 329 | 333 |
void erase(const Item &i) {
|
| 330 | 334 |
int index = _iim[i]; |
| 331 | 335 |
_iim[i] = POST_HEAP; |
| 332 | 336 |
remove(index); |
| 333 |
|
|
| 337 |
relocateLast(index); |
|
| 334 | 338 |
} |
| 335 | 339 |
|
| 336 |
/// \brief |
|
| 340 |
/// \brief The priority of the given item. |
|
| 337 | 341 |
/// |
| 338 |
/// This function returns the priority of item \c i. |
|
| 339 |
/// \pre \c i must be in the heap. |
|
| 342 |
/// This function returns the priority of the given item. |
|
| 340 | 343 |
/// \param i The item. |
| 344 |
/// \pre \e i must be in the heap. |
|
| 341 | 345 |
Prio operator[](const Item &i) const {
|
| 342 | 346 |
int idx = _iim[i]; |
| 343 |
return |
|
| 347 |
return _data[idx].prio; |
|
| 344 | 348 |
} |
| 345 | 349 |
|
| 346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 347 |
/// if \c i was already there. |
|
| 350 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 351 |
/// not stored in the heap. |
|
| 348 | 352 |
/// |
| 349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 351 |
/// |
|
| 353 |
/// This method sets the priority of the given item if it is |
|
| 354 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 355 |
/// item into the heap with the given priority. |
|
| 352 | 356 |
/// \param i The item. |
| 353 | 357 |
/// \param p The priority. |
| 358 |
/// \pre \e i must be in the heap. |
|
| 359 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 354 | 360 |
void set(const Item &i, const Prio &p) {
|
| 355 | 361 |
int idx = _iim[i]; |
| 356 | 362 |
if( idx < 0 ) {
|
| 357 | 363 |
push(i, p); |
| 358 | 364 |
} |
| 359 |
else if( p >= data[idx].prio ) {
|
|
| 360 |
data[idx].prio = p; |
|
| 361 |
|
|
| 365 |
else if( p >= _data[idx].prio ) {
|
|
| 366 |
_data[idx].prio = p; |
|
| 367 |
bubbleUp(idx); |
|
| 362 | 368 |
} else {
|
| 363 |
data[idx].prio = p; |
|
| 364 |
bubble_down(idx); |
|
| 369 |
_data[idx].prio = p; |
|
| 370 |
bubbleDown(idx); |
|
| 365 | 371 |
} |
| 366 | 372 |
} |
| 367 | 373 |
|
| 368 |
|
|
| 369 |
/// \brief Decreases the priority of \c i to \c p. |
|
| 374 |
/// \brief Decrease the priority of an item to the given value. |
|
| 370 | 375 |
/// |
| 371 |
/// This method decreases the priority of item \c i to \c p. |
|
| 372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
| 373 |
/// |
|
| 376 |
/// This function decreases the priority of an item to the given value. |
|
| 374 | 377 |
/// \param i The item. |
| 375 | 378 |
/// \param p The priority. |
| 379 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 380 |
/// \warning This method may throw an \c UnderFlowPriorityException. |
|
| 376 | 381 |
void decrease(const Item &i, const Prio &p) {
|
| 377 | 382 |
int idx = _iim[i]; |
| 378 |
data[idx].prio = p; |
|
| 379 |
bubble_down(idx); |
|
| 383 |
_data[idx].prio = p; |
|
| 384 |
bubbleDown(idx); |
|
| 380 | 385 |
} |
| 381 | 386 |
|
| 382 |
/// \brief |
|
| 387 |
/// \brief Increase the priority of an item to the given value. |
|
| 383 | 388 |
/// |
| 384 |
/// This method sets the priority of item \c i to \c p. |
|
| 385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
| 389 |
/// This function increases the priority of an item to the given value. |
|
| 386 | 390 |
/// \param i The item. |
| 387 | 391 |
/// \param p The priority. |
| 392 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 388 | 393 |
void increase(const Item &i, const Prio &p) {
|
| 389 | 394 |
int idx = _iim[i]; |
| 390 |
data[idx].prio = p; |
|
| 391 |
bubble_up(idx); |
|
| 395 |
_data[idx].prio = p; |
|
| 396 |
bubbleUp(idx); |
|
| 392 | 397 |
} |
| 393 | 398 |
|
| 394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 395 |
/// never been in the heap. |
|
| 399 |
/// \brief Return the state of an item. |
|
| 396 | 400 |
/// |
| 397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 399 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 400 |
/// get back to the heap again. |
|
| 401 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 402 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 403 |
/// and \c POST_HEAP otherwise. |
|
| 404 |
/// In the latter case it is possible that the item will get back |
|
| 405 |
/// to the heap again. |
|
| 401 | 406 |
/// \param i The item. |
| 402 | 407 |
State state(const Item &i) const {
|
| 403 | 408 |
int s = _iim[i]; |
| 404 | 409 |
if( s >= 0 ) s = 0; |
| 405 | 410 |
return State(s); |
| 406 | 411 |
} |
| 407 | 412 |
|
| 408 |
/// \brief |
|
| 413 |
/// \brief Set the state of an item in the heap. |
|
| 409 | 414 |
/// |
| 410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 411 |
/// manually clear the heap when it is important to achive the |
|
| 412 |
/// |
|
| 415 |
/// This function sets the state of the given item in the heap. |
|
| 416 |
/// It can be used to manually clear the heap when it is important |
|
| 417 |
/// to achive better time complexity. |
|
| 413 | 418 |
/// \param i The item. |
| 414 | 419 |
/// \param st The state. It should not be \c IN_HEAP. |
| 415 | 420 |
void state(const Item& i, State st) {
|
| 416 | 421 |
switch (st) {
|
| 417 | 422 |
case POST_HEAP: |
| 418 | 423 |
case PRE_HEAP: |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -29,16 +29,13 @@ |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/bits/graph_extender.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
class SmartDigraph; |
| 35 |
///Base of SmartDigraph |
|
| 36 | 35 |
|
| 37 |
///Base of SmartDigraph |
|
| 38 |
/// |
|
| 39 | 36 |
class SmartDigraphBase {
|
| 40 | 37 |
protected: |
| 41 | 38 |
|
| 42 | 39 |
struct NodeT |
| 43 | 40 |
{
|
| 44 | 41 |
int first_in, first_out; |
| ... | ... |
@@ -184,119 +181,89 @@ |
| 184 | 181 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
| 185 | 182 |
|
| 186 | 183 |
///\ingroup graphs |
| 187 | 184 |
/// |
| 188 | 185 |
///\brief A smart directed graph class. |
| 189 | 186 |
/// |
| 190 |
///This is a simple and fast digraph implementation. |
|
| 191 |
///It is also quite memory efficient, but at the price |
|
| 192 |
///that <b> it does support only limited (only stack-like) |
|
| 193 |
///node and arc deletions</b>. |
|
| 194 |
/// |
|
| 187 |
///\ref SmartDigraph is a simple and fast digraph implementation. |
|
| 188 |
///It is also quite memory efficient but at the price |
|
| 189 |
///that it does not support node and arc deletion |
|
| 190 |
///(except for the Snapshot feature). |
|
| 195 | 191 |
/// |
| 196 |
///\ |
|
| 192 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
|
| 193 |
///and it also provides some additional functionalities. |
|
| 194 |
///Most of its member functions and nested classes are documented |
|
| 195 |
///only in the concept class. |
|
| 196 |
/// |
|
| 197 |
///This class provides constant time counting for nodes and arcs. |
|
| 198 |
/// |
|
| 199 |
///\sa concepts::Digraph |
|
| 200 |
///\sa SmartGraph |
|
| 197 | 201 |
class SmartDigraph : public ExtendedSmartDigraphBase {
|
| 198 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
| 199 | 203 |
|
| 200 | 204 |
private: |
| 201 |
|
|
| 202 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
|
| 203 |
|
|
| 204 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
|
| 205 |
/// |
|
| 205 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 206 | 206 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
|
| 207 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
|
| 208 |
///Use DigraphCopy() instead. |
|
| 209 |
|
|
| 210 |
///Assignment of SmartDigraph to another one is \e not allowed. |
|
| 211 |
/// |
|
| 207 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 208 |
/// Use DigraphCopy instead. |
|
| 212 | 209 |
void operator=(const SmartDigraph &) {}
|
| 213 | 210 |
|
| 214 | 211 |
public: |
| 215 | 212 |
|
| 216 | 213 |
/// Constructor |
| 217 | 214 |
|
| 218 | 215 |
/// Constructor. |
| 219 | 216 |
/// |
| 220 | 217 |
SmartDigraph() {};
|
| 221 | 218 |
|
| 222 | 219 |
///Add a new node to the digraph. |
| 223 | 220 |
|
| 224 |
/// Add a new node to the digraph. |
|
| 225 |
/// \return The new node. |
|
| 221 |
///This function adds a new node to the digraph. |
|
| 222 |
///\return The new node. |
|
| 226 | 223 |
Node addNode() { return Parent::addNode(); }
|
| 227 | 224 |
|
| 228 | 225 |
///Add a new arc to the digraph. |
| 229 | 226 |
|
| 230 |
/// |
|
| 227 |
///This function adds a new arc to the digraph with source node \c s |
|
| 231 | 228 |
///and target node \c t. |
| 232 | 229 |
///\return The new arc. |
| 233 |
Arc addArc( |
|
| 230 |
Arc addArc(Node s, Node t) {
|
|
| 234 | 231 |
return Parent::addArc(s, t); |
| 235 | 232 |
} |
| 236 | 233 |
|
| 237 |
/// \brief Using this it is possible to avoid the superfluous memory |
|
| 238 |
/// allocation. |
|
| 239 |
|
|
| 240 |
/// Using this it is possible to avoid the superfluous memory |
|
| 241 |
/// allocation: if you know that the digraph you want to build will |
|
| 242 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 243 |
/// then it is worth reserving space for this amount before starting |
|
| 244 |
/// to build the digraph. |
|
| 245 |
/// \sa reserveArc |
|
| 246 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 247 |
|
|
| 248 |
/// \brief Using this it is possible to avoid the superfluous memory |
|
| 249 |
/// allocation. |
|
| 250 |
|
|
| 251 |
/// Using this it is possible to avoid the superfluous memory |
|
| 252 |
/// allocation: if you know that the digraph you want to build will |
|
| 253 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 254 |
/// then it is worth reserving space for this amount before starting |
|
| 255 |
/// to build the digraph. |
|
| 256 |
/// \sa reserveNode |
|
| 257 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 258 |
|
|
| 259 | 234 |
/// \brief Node validity check |
| 260 | 235 |
/// |
| 261 |
/// This function gives back true if the given node is valid, |
|
| 262 |
/// ie. it is a real node of the graph. |
|
| 236 |
/// This function gives back \c true if the given node is valid, |
|
| 237 |
/// i.e. it is a real node of the digraph. |
|
| 263 | 238 |
/// |
| 264 | 239 |
/// \warning A removed node (using Snapshot) could become valid again |
| 265 |
/// |
|
| 240 |
/// if new nodes are added to the digraph. |
|
| 266 | 241 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 267 | 242 |
|
| 268 | 243 |
/// \brief Arc validity check |
| 269 | 244 |
/// |
| 270 |
/// This function gives back true if the given arc is valid, |
|
| 271 |
/// ie. it is a real arc of the graph. |
|
| 245 |
/// This function gives back \c true if the given arc is valid, |
|
| 246 |
/// i.e. it is a real arc of the digraph. |
|
| 272 | 247 |
/// |
| 273 | 248 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 274 |
/// |
|
| 249 |
/// if new arcs are added to the graph. |
|
| 275 | 250 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 276 | 251 |
|
| 277 |
///Clear the digraph. |
|
| 278 |
|
|
| 279 |
///Erase all the nodes and arcs from the digraph. |
|
| 280 |
/// |
|
| 281 |
void clear() {
|
|
| 282 |
Parent::clear(); |
|
| 283 |
} |
|
| 284 |
|
|
| 285 | 252 |
///Split a node. |
| 286 | 253 |
|
| 287 |
///This function splits a node. First a new node is added to the digraph, |
|
| 288 |
///then the source of each outgoing arc of \c n is moved to this new node. |
|
| 289 |
///If \c connect is \c true (this is the default value), then a new arc |
|
| 290 |
///from \c n to the newly created node is also added. |
|
| 254 |
///This function splits the given node. First, a new node is added |
|
| 255 |
///to the digraph, then the source of each outgoing arc of node \c n |
|
| 256 |
///is moved to this new node. |
|
| 257 |
///If the second parameter \c connect is \c true (this is the default |
|
| 258 |
///value), then a new arc from node \c n to the newly created node |
|
| 259 |
///is also added. |
|
| 291 | 260 |
///\return The newly created node. |
| 292 | 261 |
/// |
| 293 |
///\note The <tt>Arc</tt>s |
|
| 294 |
///referencing a moved arc remain |
|
| 295 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
|
| 296 |
///may be invalidated. |
|
| 262 |
///\note All iterators remain valid. |
|
| 263 |
/// |
|
| 297 | 264 |
///\warning This functionality cannot be used together with the Snapshot |
| 298 | 265 |
///feature. |
| 299 | 266 |
Node split(Node n, bool connect = true) |
| 300 | 267 |
{
|
| 301 | 268 |
Node b = addNode(); |
| 302 | 269 |
nodes[b._id].first_out=nodes[n._id].first_out; |
| ... | ... |
@@ -305,12 +272,40 @@ |
| 305 | 272 |
arcs[i].source=b._id; |
| 306 | 273 |
} |
| 307 | 274 |
if(connect) addArc(n,b); |
| 308 | 275 |
return b; |
| 309 | 276 |
} |
| 310 | 277 |
|
| 278 |
///Clear the digraph. |
|
| 279 |
|
|
| 280 |
///This function erases all nodes and arcs from the digraph. |
|
| 281 |
/// |
|
| 282 |
void clear() {
|
|
| 283 |
Parent::clear(); |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// Reserve memory for nodes. |
|
| 287 |
|
|
| 288 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 289 |
/// allocation: if you know that the digraph you want to build will |
|
| 290 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 291 |
/// then it is worth reserving space for this amount before starting |
|
| 292 |
/// to build the digraph. |
|
| 293 |
/// \sa reserveArc() |
|
| 294 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 295 |
|
|
| 296 |
/// Reserve memory for arcs. |
|
| 297 |
|
|
| 298 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 299 |
/// allocation: if you know that the digraph you want to build will |
|
| 300 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 301 |
/// then it is worth reserving space for this amount before starting |
|
| 302 |
/// to build the digraph. |
|
| 303 |
/// \sa reserveNode() |
|
| 304 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 305 |
|
|
| 311 | 306 |
public: |
| 312 | 307 |
|
| 313 | 308 |
class Snapshot; |
| 314 | 309 |
|
| 315 | 310 |
protected: |
| 316 | 311 |
|
| ... | ... |
@@ -329,70 +324,66 @@ |
| 329 | 324 |
nodes.pop_back(); |
| 330 | 325 |
} |
| 331 | 326 |
} |
| 332 | 327 |
|
| 333 | 328 |
public: |
| 334 | 329 |
|
| 335 |
///Class to make a snapshot of the digraph and to |
|
| 330 |
///Class to make a snapshot of the digraph and to restore it later. |
|
| 336 | 331 |
|
| 337 |
///Class to make a snapshot of the digraph and to |
|
| 332 |
///Class to make a snapshot of the digraph and to restore it later. |
|
| 338 | 333 |
/// |
| 339 | 334 |
///The newly added nodes and arcs can be removed using the |
| 340 |
///restore() function. |
|
| 341 |
///\note After you restore a state, you cannot restore |
|
| 342 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 343 |
///by restore() using another one Snapshot instance. |
|
| 335 |
///restore() function. This is the only way for deleting nodes and/or |
|
| 336 |
///arcs from a SmartDigraph structure. |
|
| 344 | 337 |
/// |
| 345 |
///\warning If you do not use correctly the snapshot that can cause |
|
| 346 |
///either broken program, invalid state of the digraph, valid but |
|
| 347 |
///not the restored digraph or no change. Because the runtime performance |
|
| 348 |
///the validity of the snapshot is not stored. |
|
| 338 |
///\note After a state is restored, you cannot restore a later state, |
|
| 339 |
///i.e. you cannot add the removed nodes and arcs again using |
|
| 340 |
///another Snapshot instance. |
|
| 341 |
/// |
|
| 342 |
///\warning Node splitting cannot be restored. |
|
| 343 |
///\warning The validity of the snapshot is not stored due to |
|
| 344 |
///performance reasons. If you do not use the snapshot correctly, |
|
| 345 |
///it can cause broken program, invalid or not restored state of |
|
| 346 |
///the digraph or no change. |
|
| 349 | 347 |
class Snapshot |
| 350 | 348 |
{
|
| 351 | 349 |
SmartDigraph *_graph; |
| 352 | 350 |
protected: |
| 353 | 351 |
friend class SmartDigraph; |
| 354 | 352 |
unsigned int node_num; |
| 355 | 353 |
unsigned int arc_num; |
| 356 | 354 |
public: |
| 357 | 355 |
///Default constructor. |
| 358 | 356 |
|
| 359 | 357 |
///Default constructor. |
| 360 |
///To actually make a snapshot you must call save(). |
|
| 361 |
/// |
|
| 358 |
///You have to call save() to actually make a snapshot. |
|
| 362 | 359 |
Snapshot() : _graph(0) {}
|
| 363 | 360 |
///Constructor that immediately makes a snapshot |
| 364 | 361 |
|
| 365 |
///This constructor immediately makes a snapshot of the digraph. |
|
| 366 |
///\param graph The digraph we make a snapshot of. |
|
| 367 |
|
|
| 362 |
///This constructor immediately makes a snapshot of the given digraph. |
|
| 363 |
/// |
|
| 364 |
Snapshot(SmartDigraph &gr) : _graph(&gr) {
|
|
| 368 | 365 |
node_num=_graph->nodes.size(); |
| 369 | 366 |
arc_num=_graph->arcs.size(); |
| 370 | 367 |
} |
| 371 | 368 |
|
| 372 | 369 |
///Make a snapshot. |
| 373 | 370 |
|
| 374 |
///Make a snapshot of the digraph. |
|
| 375 |
/// |
|
| 376 |
///This function |
|
| 371 |
///This function makes a snapshot of the given digraph. |
|
| 372 |
///It can be called more than once. In case of a repeated |
|
| 377 | 373 |
///call, the previous snapshot gets lost. |
| 378 |
///\param graph The digraph we make the snapshot of. |
|
| 379 |
void save(SmartDigraph &graph) |
|
| 380 |
{
|
|
| 381 |
_graph=&graph; |
|
| 374 |
void save(SmartDigraph &gr) {
|
|
| 375 |
_graph=&gr; |
|
| 382 | 376 |
node_num=_graph->nodes.size(); |
| 383 | 377 |
arc_num=_graph->arcs.size(); |
| 384 | 378 |
} |
| 385 | 379 |
|
| 386 | 380 |
///Undo the changes until a snapshot. |
| 387 | 381 |
|
| 388 |
///Undo the changes until a snapshot created by save(). |
|
| 389 |
/// |
|
| 390 |
///\note After you restored a state, you cannot restore |
|
| 391 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 392 |
/// |
|
| 382 |
///This function undos the changes until the last snapshot |
|
| 383 |
///created by save() or Snapshot(SmartDigraph&). |
|
| 393 | 384 |
void restore() |
| 394 | 385 |
{
|
| 395 | 386 |
_graph->restoreSnapshot(*this); |
| 396 | 387 |
} |
| 397 | 388 |
}; |
| 398 | 389 |
}; |
| ... | ... |
@@ -505,29 +496,29 @@ |
| 505 | 496 |
} |
| 506 | 497 |
|
| 507 | 498 |
void first(Node& node) const {
|
| 508 | 499 |
node._id = nodes.size() - 1; |
| 509 | 500 |
} |
| 510 | 501 |
|
| 511 |
void next(Node& node) |
|
| 502 |
static void next(Node& node) {
|
|
| 512 | 503 |
--node._id; |
| 513 | 504 |
} |
| 514 | 505 |
|
| 515 | 506 |
void first(Arc& arc) const {
|
| 516 | 507 |
arc._id = arcs.size() - 1; |
| 517 | 508 |
} |
| 518 | 509 |
|
| 519 |
void next(Arc& arc) |
|
| 510 |
static void next(Arc& arc) {
|
|
| 520 | 511 |
--arc._id; |
| 521 | 512 |
} |
| 522 | 513 |
|
| 523 | 514 |
void first(Edge& arc) const {
|
| 524 | 515 |
arc._id = arcs.size() / 2 - 1; |
| 525 | 516 |
} |
| 526 | 517 |
|
| 527 |
void next(Edge& arc) |
|
| 518 |
static void next(Edge& arc) {
|
|
| 528 | 519 |
--arc._id; |
| 529 | 520 |
} |
| 530 | 521 |
|
| 531 | 522 |
void firstOut(Arc &arc, const Node& v) const {
|
| 532 | 523 |
arc._id = nodes[v._id].first_out; |
| 533 | 524 |
} |
| ... | ... |
@@ -618,95 +609,115 @@ |
| 618 | 609 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
| 619 | 610 |
|
| 620 | 611 |
/// \ingroup graphs |
| 621 | 612 |
/// |
| 622 | 613 |
/// \brief A smart undirected graph class. |
| 623 | 614 |
/// |
| 624 |
/// This is a simple and fast graph implementation. |
|
| 625 |
/// It is also quite memory efficient, but at the price |
|
| 626 |
/// that <b> it does support only limited (only stack-like) |
|
| 627 |
/// node and arc deletions</b>. |
|
| 628 |
/// |
|
| 615 |
/// \ref SmartGraph is a simple and fast graph implementation. |
|
| 616 |
/// It is also quite memory efficient but at the price |
|
| 617 |
/// that it does not support node and edge deletion |
|
| 618 |
/// (except for the Snapshot feature). |
|
| 629 | 619 |
/// |
| 630 |
/// \ |
|
| 620 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept" |
|
| 621 |
/// and it also provides some additional functionalities. |
|
| 622 |
/// Most of its member functions and nested classes are documented |
|
| 623 |
/// only in the concept class. |
|
| 624 |
/// |
|
| 625 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 626 |
/// |
|
| 627 |
/// \sa concepts::Graph |
|
| 628 |
/// \sa SmartDigraph |
|
| 631 | 629 |
class SmartGraph : public ExtendedSmartGraphBase {
|
| 632 | 630 |
typedef ExtendedSmartGraphBase Parent; |
| 633 | 631 |
|
| 634 | 632 |
private: |
| 635 |
|
|
| 636 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
|
| 637 |
|
|
| 638 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
|
| 639 |
/// |
|
| 633 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
|
| 640 | 634 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
|
| 641 |
|
|
| 642 |
///\brief Assignment of SmartGraph to another one is \e not allowed. |
|
| 643 |
///Use GraphCopy() instead. |
|
| 644 |
|
|
| 645 |
///Assignment of SmartGraph to another one is \e not allowed. |
|
| 646 |
///Use GraphCopy() instead. |
|
| 635 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 636 |
/// Use GraphCopy instead. |
|
| 647 | 637 |
void operator=(const SmartGraph &) {}
|
| 648 | 638 |
|
| 649 | 639 |
public: |
| 650 | 640 |
|
| 651 | 641 |
/// Constructor |
| 652 | 642 |
|
| 653 | 643 |
/// Constructor. |
| 654 | 644 |
/// |
| 655 | 645 |
SmartGraph() {}
|
| 656 | 646 |
|
| 657 |
///Add a new node to the graph. |
|
| 658 |
|
|
| 659 |
/// Add a new node to the graph. |
|
| 647 |
/// \brief Add a new node to the graph. |
|
| 648 |
/// |
|
| 649 |
/// This function adds a new node to the graph. |
|
| 660 | 650 |
/// \return The new node. |
| 661 | 651 |
Node addNode() { return Parent::addNode(); }
|
| 662 | 652 |
|
| 663 |
///Add a new edge to the graph. |
|
| 664 |
|
|
| 665 |
///Add a new edge to the graph with node \c s |
|
| 666 |
///and \c t. |
|
| 667 |
///\return The new edge. |
|
| 668 |
Edge addEdge(const Node& s, const Node& t) {
|
|
| 669 |
|
|
| 653 |
/// \brief Add a new edge to the graph. |
|
| 654 |
/// |
|
| 655 |
/// This function adds a new edge to the graph between nodes |
|
| 656 |
/// \c u and \c v with inherent orientation from node \c u to |
|
| 657 |
/// node \c v. |
|
| 658 |
/// \return The new edge. |
|
| 659 |
Edge addEdge(Node u, Node v) {
|
|
| 660 |
return Parent::addEdge(u, v); |
|
| 670 | 661 |
} |
| 671 | 662 |
|
| 672 | 663 |
/// \brief Node validity check |
| 673 | 664 |
/// |
| 674 |
/// This function gives back true if the given node is valid, |
|
| 675 |
/// ie. it is a real node of the graph. |
|
| 665 |
/// This function gives back \c true if the given node is valid, |
|
| 666 |
/// i.e. it is a real node of the graph. |
|
| 676 | 667 |
/// |
| 677 | 668 |
/// \warning A removed node (using Snapshot) could become valid again |
| 678 |
/// |
|
| 669 |
/// if new nodes are added to the graph. |
|
| 679 | 670 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 680 | 671 |
|
| 672 |
/// \brief Edge validity check |
|
| 673 |
/// |
|
| 674 |
/// This function gives back \c true if the given edge is valid, |
|
| 675 |
/// i.e. it is a real edge of the graph. |
|
| 676 |
/// |
|
| 677 |
/// \warning A removed edge (using Snapshot) could become valid again |
|
| 678 |
/// if new edges are added to the graph. |
|
| 679 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 680 |
|
|
| 681 | 681 |
/// \brief Arc validity check |
| 682 | 682 |
/// |
| 683 |
/// This function gives back true if the given arc is valid, |
|
| 684 |
/// ie. it is a real arc of the graph. |
|
| 683 |
/// This function gives back \c true if the given arc is valid, |
|
| 684 |
/// i.e. it is a real arc of the graph. |
|
| 685 | 685 |
/// |
| 686 | 686 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 687 |
/// |
|
| 687 |
/// if new edges are added to the graph. |
|
| 688 | 688 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 689 | 689 |
|
| 690 |
/// \brief Edge validity check |
|
| 691 |
/// |
|
| 692 |
/// This function gives back true if the given edge is valid, |
|
| 693 |
/// ie. it is a real edge of the graph. |
|
| 694 |
/// |
|
| 695 |
/// \warning A removed edge (using Snapshot) could become valid again |
|
| 696 |
/// when new edges are added to the graph. |
|
| 697 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 698 |
|
|
| 699 | 690 |
///Clear the graph. |
| 700 | 691 |
|
| 701 |
/// |
|
| 692 |
///This function erases all nodes and arcs from the graph. |
|
| 702 | 693 |
/// |
| 703 | 694 |
void clear() {
|
| 704 | 695 |
Parent::clear(); |
| 705 | 696 |
} |
| 706 | 697 |
|
| 698 |
/// Reserve memory for nodes. |
|
| 699 |
|
|
| 700 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 701 |
/// allocation: if you know that the graph you want to build will |
|
| 702 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 703 |
/// then it is worth reserving space for this amount before starting |
|
| 704 |
/// to build the graph. |
|
| 705 |
/// \sa reserveEdge() |
|
| 706 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 707 |
|
|
| 708 |
/// Reserve memory for edges. |
|
| 709 |
|
|
| 710 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 711 |
/// allocation: if you know that the graph you want to build will |
|
| 712 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 713 |
/// then it is worth reserving space for this amount before starting |
|
| 714 |
/// to build the graph. |
|
| 715 |
/// \sa reserveNode() |
|
| 716 |
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
|
| 717 |
|
|
| 707 | 718 |
public: |
| 708 | 719 |
|
| 709 | 720 |
class Snapshot; |
| 710 | 721 |
|
| 711 | 722 |
protected: |
| 712 | 723 |
|
| ... | ... |
@@ -739,68 +750,63 @@ |
| 739 | 750 |
nodes.pop_back(); |
| 740 | 751 |
} |
| 741 | 752 |
} |
| 742 | 753 |
|
| 743 | 754 |
public: |
| 744 | 755 |
|
| 745 |
///Class to make a snapshot of the |
|
| 756 |
///Class to make a snapshot of the graph and to restore it later. |
|
| 746 | 757 |
|
| 747 |
///Class to make a snapshot of the |
|
| 758 |
///Class to make a snapshot of the graph and to restore it later. |
|
| 748 | 759 |
/// |
| 749 |
///The newly added nodes and arcs can be removed using the |
|
| 750 |
///restore() function. |
|
| 760 |
///The newly added nodes and edges can be removed using the |
|
| 761 |
///restore() function. This is the only way for deleting nodes and/or |
|
| 762 |
///edges from a SmartGraph structure. |
|
| 751 | 763 |
/// |
| 752 |
///\note After you restore a state, you cannot restore |
|
| 753 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 754 |
/// |
|
| 764 |
///\note After a state is restored, you cannot restore a later state, |
|
| 765 |
///i.e. you cannot add the removed nodes and edges again using |
|
| 766 |
///another Snapshot instance. |
|
| 755 | 767 |
/// |
| 756 |
///\warning If you do not use correctly the snapshot that can cause |
|
| 757 |
///either broken program, invalid state of the digraph, valid but |
|
| 758 |
///not the restored digraph or no change. Because the runtime performance |
|
| 759 |
///the validity of the snapshot is not stored. |
|
| 768 |
///\warning The validity of the snapshot is not stored due to |
|
| 769 |
///performance reasons. If you do not use the snapshot correctly, |
|
| 770 |
///it can cause broken program, invalid or not restored state of |
|
| 771 |
///the graph or no change. |
|
| 760 | 772 |
class Snapshot |
| 761 | 773 |
{
|
| 762 | 774 |
SmartGraph *_graph; |
| 763 | 775 |
protected: |
| 764 | 776 |
friend class SmartGraph; |
| 765 | 777 |
unsigned int node_num; |
| 766 | 778 |
unsigned int arc_num; |
| 767 | 779 |
public: |
| 768 | 780 |
///Default constructor. |
| 769 | 781 |
|
| 770 | 782 |
///Default constructor. |
| 771 |
///To actually make a snapshot you must call save(). |
|
| 772 |
/// |
|
| 783 |
///You have to call save() to actually make a snapshot. |
|
| 773 | 784 |
Snapshot() : _graph(0) {}
|
| 774 | 785 |
///Constructor that immediately makes a snapshot |
| 775 | 786 |
|
| 776 |
///This constructor immediately makes a snapshot of the digraph. |
|
| 777 |
///\param graph The digraph we make a snapshot of. |
|
| 778 |
Snapshot(SmartGraph &graph) {
|
|
| 779 |
graph.saveSnapshot(*this); |
|
| 787 |
/// This constructor immediately makes a snapshot of the given graph. |
|
| 788 |
/// |
|
| 789 |
Snapshot(SmartGraph &gr) {
|
|
| 790 |
gr.saveSnapshot(*this); |
|
| 780 | 791 |
} |
| 781 | 792 |
|
| 782 | 793 |
///Make a snapshot. |
| 783 | 794 |
|
| 784 |
///Make a snapshot of the graph. |
|
| 785 |
/// |
|
| 786 |
///This function |
|
| 795 |
///This function makes a snapshot of the given graph. |
|
| 796 |
///It can be called more than once. In case of a repeated |
|
| 787 | 797 |
///call, the previous snapshot gets lost. |
| 788 |
///\param graph The digraph we make the snapshot of. |
|
| 789 |
void save(SmartGraph &graph) |
|
| 798 |
void save(SmartGraph &gr) |
|
| 790 | 799 |
{
|
| 791 |
|
|
| 800 |
gr.saveSnapshot(*this); |
|
| 792 | 801 |
} |
| 793 | 802 |
|
| 794 |
///Undo the changes until |
|
| 803 |
///Undo the changes until the last snapshot. |
|
| 795 | 804 |
|
| 796 |
///Undo the changes until a snapshot created by save(). |
|
| 797 |
/// |
|
| 798 |
///\note After you restored a state, you cannot restore |
|
| 799 |
///a later state, in other word you cannot add again the arcs deleted |
|
| 800 |
/// |
|
| 805 |
///This function undos the changes until the last snapshot |
|
| 806 |
///created by save() or Snapshot(SmartGraph&). |
|
| 801 | 807 |
void restore() |
| 802 | 808 |
{
|
| 803 | 809 |
_graph->restoreSnapshot(*this); |
| 804 | 810 |
} |
| 805 | 811 |
}; |
| 806 | 812 |
}; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -88,12 +88,25 @@ |
| 88 | 88 |
|
| 89 | 89 |
_row_names.push_back(std::string()); |
| 90 | 90 |
|
| 91 | 91 |
return soplex->nRows() - 1; |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 |
int SoplexLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 95 |
soplex::DSVector v; |
|
| 96 |
for (ExprIterator it = b; it != e; ++it) {
|
|
| 97 |
v.add(it->first, it->second); |
|
| 98 |
} |
|
| 99 |
soplex::LPRow r(l, v, u); |
|
| 100 |
soplex->addRow(r); |
|
| 101 |
|
|
| 102 |
_row_names.push_back(std::string()); |
|
| 103 |
|
|
| 104 |
return soplex->nRows() - 1; |
|
| 105 |
} |
|
| 106 |
|
|
| 94 | 107 |
|
| 95 | 108 |
void SoplexLp::_eraseCol(int i) {
|
| 96 | 109 |
soplex->removeCol(i); |
| 97 | 110 |
_col_names_ref.erase(_col_names[i]); |
| 98 | 111 |
_col_names[i] = _col_names.back(); |
| 99 | 112 |
_col_names_ref[_col_names.back()] = i; |
| ... | ... |
@@ -271,13 +284,13 @@ |
| 271 | 284 |
return soplex->obj(i); |
| 272 | 285 |
} |
| 273 | 286 |
|
| 274 | 287 |
SoplexLp::SolveExitStatus SoplexLp::_solve() {
|
| 275 | 288 |
|
| 276 | 289 |
_clear_temporals(); |
| 277 |
|
|
| 290 |
|
|
| 278 | 291 |
_applyMessageLevel(); |
| 279 | 292 |
|
| 280 | 293 |
soplex::SPxSolver::Status status = soplex->solve(); |
| 281 | 294 |
|
| 282 | 295 |
switch (status) {
|
| 283 | 296 |
case soplex::SPxSolver::OPTIMAL: |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -81,12 +81,13 @@ |
| 81 | 81 |
protected: |
| 82 | 82 |
|
| 83 | 83 |
virtual const char* _solverName() const; |
| 84 | 84 |
|
| 85 | 85 |
virtual int _addCol(); |
| 86 | 86 |
virtual int _addRow(); |
| 87 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 87 | 88 |
|
| 88 | 89 |
virtual void _eraseCol(int i); |
| 89 | 90 |
virtual void _eraseRow(int i); |
| 90 | 91 |
|
| 91 | 92 |
virtual void _eraseColId(int i); |
| 92 | 93 |
virtual void _eraseRowId(int i); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -26,16 +26,60 @@ |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/path.h> |
| 31 | 31 |
#include <lemon/list_graph.h> |
| 32 |
#include <lemon/dijkstra.h> |
|
| 32 | 33 |
#include <lemon/maps.h> |
| 33 | 34 |
|
| 34 | 35 |
namespace lemon {
|
| 35 | 36 |
|
| 37 |
/// \brief Default traits class of Suurballe algorithm. |
|
| 38 |
/// |
|
| 39 |
/// Default traits class of Suurballe algorithm. |
|
| 40 |
/// \tparam GR The digraph type the algorithm runs on. |
|
| 41 |
/// \tparam LEN The type of the length map. |
|
| 42 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
|
| 43 |
#ifdef DOXYGEN |
|
| 44 |
template <typename GR, typename LEN> |
|
| 45 |
#else |
|
| 46 |
template < typename GR, |
|
| 47 |
typename LEN = typename GR::template ArcMap<int> > |
|
| 48 |
#endif |
|
| 49 |
struct SuurballeDefaultTraits |
|
| 50 |
{
|
|
| 51 |
/// The type of the digraph. |
|
| 52 |
typedef GR Digraph; |
|
| 53 |
/// The type of the length map. |
|
| 54 |
typedef LEN LengthMap; |
|
| 55 |
/// The type of the lengths. |
|
| 56 |
typedef typename LEN::Value Length; |
|
| 57 |
/// The type of the flow map. |
|
| 58 |
typedef typename GR::template ArcMap<int> FlowMap; |
|
| 59 |
/// The type of the potential map. |
|
| 60 |
typedef typename GR::template NodeMap<Length> PotentialMap; |
|
| 61 |
|
|
| 62 |
/// \brief The path type |
|
| 63 |
/// |
|
| 64 |
/// The type used for storing the found arc-disjoint paths. |
|
| 65 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 66 |
/// and it must have an \c addBack() function. |
|
| 67 |
typedef lemon::Path<Digraph> Path; |
|
| 68 |
|
|
| 69 |
/// The cross reference type used for the heap. |
|
| 70 |
typedef typename GR::template NodeMap<int> HeapCrossRef; |
|
| 71 |
|
|
| 72 |
/// \brief The heap type used for internal Dijkstra computations. |
|
| 73 |
/// |
|
| 74 |
/// The type of the heap used for internal Dijkstra computations. |
|
| 75 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept |
|
| 76 |
/// and its priority type must be \c Length. |
|
| 77 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
| 78 |
}; |
|
| 79 |
|
|
| 36 | 80 |
/// \addtogroup shortest_path |
| 37 | 81 |
/// @{
|
| 38 | 82 |
|
| 39 | 83 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
| 40 | 84 |
/// having minimum total length. |
| 41 | 85 |
/// |
| ... | ... |
@@ -43,177 +87,294 @@ |
| 43 | 87 |
/// finding arc-disjoint paths having minimum total length (cost) |
| 44 | 88 |
/// from a given source node to a given target node in a digraph. |
| 45 | 89 |
/// |
| 46 | 90 |
/// Note that this problem is a special case of the \ref min_cost_flow |
| 47 | 91 |
/// "minimum cost flow problem". This implementation is actually an |
| 48 | 92 |
/// efficient specialized version of the \ref CapacityScaling |
| 49 |
/// " |
|
| 93 |
/// "successive shortest path" algorithm directly for this problem. |
|
| 50 | 94 |
/// Therefore this class provides query functions for flow values and |
| 51 | 95 |
/// node potentials (the dual solution) just like the minimum cost flow |
| 52 | 96 |
/// algorithms. |
| 53 | 97 |
/// |
| 54 | 98 |
/// \tparam GR The digraph type the algorithm runs on. |
| 55 | 99 |
/// \tparam LEN The type of the length map. |
| 56 | 100 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
| 57 | 101 |
/// |
| 58 | 102 |
/// \warning Length values should be \e non-negative. |
| 59 | 103 |
/// |
| 60 |
/// \note For finding node-disjoint paths this algorithm can be used |
|
| 104 |
/// \note For finding \e node-disjoint paths, this algorithm can be used |
|
| 61 | 105 |
/// along with the \ref SplitNodes adaptor. |
| 62 | 106 |
#ifdef DOXYGEN |
| 63 |
template <typename GR, typename LEN> |
|
| 107 |
template <typename GR, typename LEN, typename TR> |
|
| 64 | 108 |
#else |
| 65 | 109 |
template < typename GR, |
| 66 |
typename LEN = typename GR::template ArcMap<int> |
|
| 110 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 111 |
typename TR = SuurballeDefaultTraits<GR, LEN> > |
|
| 67 | 112 |
#endif |
| 68 | 113 |
class Suurballe |
| 69 | 114 |
{
|
| 70 | 115 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 71 | 116 |
|
| 72 | 117 |
typedef ConstMap<Arc, int> ConstArcMap; |
| 73 | 118 |
typedef typename GR::template NodeMap<Arc> PredMap; |
| 74 | 119 |
|
| 75 | 120 |
public: |
| 76 | 121 |
|
| 77 |
/// The type of the digraph the algorithm runs on. |
|
| 78 |
typedef GR Digraph; |
|
| 122 |
/// The type of the digraph. |
|
| 123 |
typedef typename TR::Digraph Digraph; |
|
| 79 | 124 |
/// The type of the length map. |
| 80 |
typedef |
|
| 125 |
typedef typename TR::LengthMap LengthMap; |
|
| 81 | 126 |
/// The type of the lengths. |
| 82 |
typedef typename LengthMap::Value Length; |
|
| 83 |
#ifdef DOXYGEN |
|
| 127 |
typedef typename TR::Length Length; |
|
| 128 |
|
|
| 84 | 129 |
/// The type of the flow map. |
| 85 |
typedef |
|
| 130 |
typedef typename TR::FlowMap FlowMap; |
|
| 86 | 131 |
/// The type of the potential map. |
| 87 |
typedef GR::NodeMap<Length> PotentialMap; |
|
| 88 |
#else |
|
| 89 |
/// The type of the flow map. |
|
| 90 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
|
| 91 |
/// The type of the potential map. |
|
| 92 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
|
| 93 |
|
|
| 132 |
typedef typename TR::PotentialMap PotentialMap; |
|
| 133 |
/// The type of the path structures. |
|
| 134 |
typedef typename TR::Path Path; |
|
| 135 |
/// The cross reference type used for the heap. |
|
| 136 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
|
| 137 |
/// The heap type used for internal Dijkstra computations. |
|
| 138 |
typedef typename TR::Heap Heap; |
|
| 94 | 139 |
|
| 95 |
/// The type of the path structures. |
|
| 96 |
typedef SimplePath<GR> Path; |
|
| 140 |
/// The \ref SuurballeDefaultTraits "traits class" of the algorithm. |
|
| 141 |
typedef TR Traits; |
|
| 97 | 142 |
|
| 98 | 143 |
private: |
| 99 | 144 |
|
| 100 | 145 |
// ResidualDijkstra is a special implementation of the |
| 101 | 146 |
// Dijkstra algorithm for finding shortest paths in the |
| 102 | 147 |
// residual network with respect to the reduced arc lengths |
| 103 | 148 |
// and modifying the node potentials according to the |
| 104 | 149 |
// distance of the nodes. |
| 105 | 150 |
class ResidualDijkstra |
| 106 | 151 |
{
|
| 107 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
| 108 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
|
| 152 |
private: |
|
| 153 |
|
|
| 154 |
const Digraph &_graph; |
|
| 155 |
const LengthMap &_length; |
|
| 156 |
const FlowMap &_flow; |
|
| 157 |
PotentialMap &_pi; |
|
| 158 |
PredMap &_pred; |
|
| 159 |
Node _s; |
|
| 160 |
Node _t; |
|
| 161 |
|
|
| 162 |
PotentialMap _dist; |
|
| 163 |
std::vector<Node> _proc_nodes; |
|
| 164 |
|
|
| 165 |
public: |
|
| 166 |
|
|
| 167 |
// Constructor |
|
| 168 |
ResidualDijkstra(Suurballe &srb) : |
|
| 169 |
_graph(srb._graph), _length(srb._length), |
|
| 170 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
|
| 171 |
_s(srb._s), _t(srb._t), _dist(_graph) {}
|
|
| 172 |
|
|
| 173 |
// Run the algorithm and return true if a path is found |
|
| 174 |
// from the source node to the target node. |
|
| 175 |
bool run(int cnt) {
|
|
| 176 |
return cnt == 0 ? startFirst() : start(); |
|
| 177 |
} |
|
| 109 | 178 |
|
| 110 | 179 |
private: |
| 111 | 180 |
|
| 112 |
// The digraph the algorithm runs on |
|
| 113 |
const Digraph &_graph; |
|
| 114 |
|
|
| 115 |
// The main maps |
|
| 116 |
const FlowMap &_flow; |
|
| 117 |
const LengthMap &_length; |
|
| 118 |
PotentialMap &_potential; |
|
| 119 |
|
|
| 120 |
// The distance map |
|
| 121 |
PotentialMap _dist; |
|
| 122 |
// The pred arc map |
|
| 123 |
PredMap &_pred; |
|
| 124 |
// The processed (i.e. permanently labeled) nodes |
|
| 125 |
std::vector<Node> _proc_nodes; |
|
| 126 |
|
|
| 127 |
Node _s; |
|
| 128 |
Node _t; |
|
| 129 |
|
|
| 130 |
public: |
|
| 131 |
|
|
| 132 |
/// Constructor. |
|
| 133 |
ResidualDijkstra( const Digraph &graph, |
|
| 134 |
const FlowMap &flow, |
|
| 135 |
const LengthMap &length, |
|
| 136 |
PotentialMap &potential, |
|
| 137 |
PredMap &pred, |
|
| 138 |
Node s, Node t ) : |
|
| 139 |
_graph(graph), _flow(flow), _length(length), _potential(potential), |
|
| 140 |
_dist(graph), _pred(pred), _s(s), _t(t) {}
|
|
| 141 |
|
|
| 142 |
/// \brief Run the algorithm. It returns \c true if a path is found |
|
| 143 |
/// from the source node to the target node. |
|
| 144 |
|
|
| 181 |
// Execute the algorithm for the first time (the flow and potential |
|
| 182 |
// functions have to be identically zero). |
|
| 183 |
bool startFirst() {
|
|
| 145 | 184 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
| 146 | 185 |
Heap heap(heap_cross_ref); |
| 147 | 186 |
heap.push(_s, 0); |
| 148 | 187 |
_pred[_s] = INVALID; |
| 149 | 188 |
_proc_nodes.clear(); |
| 150 | 189 |
|
| 151 | 190 |
// Process nodes |
| 152 | 191 |
while (!heap.empty() && heap.top() != _t) {
|
| 153 | 192 |
Node u = heap.top(), v; |
| 154 |
Length d = heap.prio() |
|
| 193 |
Length d = heap.prio(), dn; |
|
| 155 | 194 |
_dist[u] = heap.prio(); |
| 195 |
_proc_nodes.push_back(u); |
|
| 156 | 196 |
heap.pop(); |
| 197 |
|
|
| 198 |
// Traverse outgoing arcs |
|
| 199 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
|
| 200 |
v = _graph.target(e); |
|
| 201 |
switch(heap.state(v)) {
|
|
| 202 |
case Heap::PRE_HEAP: |
|
| 203 |
heap.push(v, d + _length[e]); |
|
| 204 |
_pred[v] = e; |
|
| 205 |
break; |
|
| 206 |
case Heap::IN_HEAP: |
|
| 207 |
dn = d + _length[e]; |
|
| 208 |
if (dn < heap[v]) {
|
|
| 209 |
heap.decrease(v, dn); |
|
| 210 |
_pred[v] = e; |
|
| 211 |
} |
|
| 212 |
break; |
|
| 213 |
case Heap::POST_HEAP: |
|
| 214 |
break; |
|
| 215 |
} |
|
| 216 |
} |
|
| 217 |
} |
|
| 218 |
if (heap.empty()) return false; |
|
| 219 |
|
|
| 220 |
// Update potentials of processed nodes |
|
| 221 |
Length t_dist = heap.prio(); |
|
| 222 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
|
| 223 |
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist; |
|
| 224 |
return true; |
|
| 225 |
} |
|
| 226 |
|
|
| 227 |
// Execute the algorithm. |
|
| 228 |
bool start() {
|
|
| 229 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
|
| 230 |
Heap heap(heap_cross_ref); |
|
| 231 |
heap.push(_s, 0); |
|
| 232 |
_pred[_s] = INVALID; |
|
| 233 |
_proc_nodes.clear(); |
|
| 234 |
|
|
| 235 |
// Process nodes |
|
| 236 |
while (!heap.empty() && heap.top() != _t) {
|
|
| 237 |
Node u = heap.top(), v; |
|
| 238 |
Length d = heap.prio() + _pi[u], dn; |
|
| 239 |
_dist[u] = heap.prio(); |
|
| 157 | 240 |
_proc_nodes.push_back(u); |
| 241 |
heap.pop(); |
|
| 158 | 242 |
|
| 159 | 243 |
// Traverse outgoing arcs |
| 160 | 244 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
| 161 | 245 |
if (_flow[e] == 0) {
|
| 162 | 246 |
v = _graph.target(e); |
| 163 | 247 |
switch(heap.state(v)) {
|
| 164 |
case Heap::PRE_HEAP: |
|
| 165 |
heap.push(v, d + _length[e] - _potential[v]); |
|
| 166 |
_pred[v] = e; |
|
| 167 |
break; |
|
| 168 |
case Heap::IN_HEAP: |
|
| 169 |
nd = d + _length[e] - _potential[v]; |
|
| 170 |
if (nd < heap[v]) {
|
|
| 171 |
heap.decrease(v, nd); |
|
| 248 |
case Heap::PRE_HEAP: |
|
| 249 |
heap.push(v, d + _length[e] - _pi[v]); |
|
| 172 | 250 |
_pred[v] = e; |
| 173 |
} |
|
| 174 |
break; |
|
| 175 |
case Heap::POST_HEAP: |
|
| 176 |
break; |
|
| 251 |
break; |
|
| 252 |
case Heap::IN_HEAP: |
|
| 253 |
dn = d + _length[e] - _pi[v]; |
|
| 254 |
if (dn < heap[v]) {
|
|
| 255 |
heap.decrease(v, dn); |
|
| 256 |
_pred[v] = e; |
|
| 257 |
} |
|
| 258 |
break; |
|
| 259 |
case Heap::POST_HEAP: |
|
| 260 |
break; |
|
| 177 | 261 |
} |
| 178 | 262 |
} |
| 179 | 263 |
} |
| 180 | 264 |
|
| 181 | 265 |
// Traverse incoming arcs |
| 182 | 266 |
for (InArcIt e(_graph, u); e != INVALID; ++e) {
|
| 183 | 267 |
if (_flow[e] == 1) {
|
| 184 | 268 |
v = _graph.source(e); |
| 185 | 269 |
switch(heap.state(v)) {
|
| 186 |
case Heap::PRE_HEAP: |
|
| 187 |
heap.push(v, d - _length[e] - _potential[v]); |
|
| 188 |
_pred[v] = e; |
|
| 189 |
break; |
|
| 190 |
case Heap::IN_HEAP: |
|
| 191 |
nd = d - _length[e] - _potential[v]; |
|
| 192 |
if (nd < heap[v]) {
|
|
| 193 |
heap.decrease(v, nd); |
|
| 270 |
case Heap::PRE_HEAP: |
|
| 271 |
heap.push(v, d - _length[e] - _pi[v]); |
|
| 194 | 272 |
_pred[v] = e; |
| 195 |
} |
|
| 196 |
break; |
|
| 197 |
case Heap::POST_HEAP: |
|
| 198 |
break; |
|
| 273 |
break; |
|
| 274 |
case Heap::IN_HEAP: |
|
| 275 |
dn = d - _length[e] - _pi[v]; |
|
| 276 |
if (dn < heap[v]) {
|
|
| 277 |
heap.decrease(v, dn); |
|
| 278 |
_pred[v] = e; |
|
| 279 |
} |
|
| 280 |
break; |
|
| 281 |
case Heap::POST_HEAP: |
|
| 282 |
break; |
|
| 199 | 283 |
} |
| 200 | 284 |
} |
| 201 | 285 |
} |
| 202 | 286 |
} |
| 203 | 287 |
if (heap.empty()) return false; |
| 204 | 288 |
|
| 205 | 289 |
// Update potentials of processed nodes |
| 206 | 290 |
Length t_dist = heap.prio(); |
| 207 | 291 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
| 208 |
|
|
| 292 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
|
| 209 | 293 |
return true; |
| 210 | 294 |
} |
| 211 | 295 |
|
| 212 | 296 |
}; //class ResidualDijkstra |
| 213 | 297 |
|
| 298 |
public: |
|
| 299 |
|
|
| 300 |
/// \name Named Template Parameters |
|
| 301 |
/// @{
|
|
| 302 |
|
|
| 303 |
template <typename T> |
|
| 304 |
struct SetFlowMapTraits : public Traits {
|
|
| 305 |
typedef T FlowMap; |
|
| 306 |
}; |
|
| 307 |
|
|
| 308 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 309 |
/// \c FlowMap type. |
|
| 310 |
/// |
|
| 311 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 312 |
/// \c FlowMap type. |
|
| 313 |
template <typename T> |
|
| 314 |
struct SetFlowMap |
|
| 315 |
: public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
|
|
| 316 |
typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create; |
|
| 317 |
}; |
|
| 318 |
|
|
| 319 |
template <typename T> |
|
| 320 |
struct SetPotentialMapTraits : public Traits {
|
|
| 321 |
typedef T PotentialMap; |
|
| 322 |
}; |
|
| 323 |
|
|
| 324 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 325 |
/// \c PotentialMap type. |
|
| 326 |
/// |
|
| 327 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 328 |
/// \c PotentialMap type. |
|
| 329 |
template <typename T> |
|
| 330 |
struct SetPotentialMap |
|
| 331 |
: public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
|
|
| 332 |
typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create; |
|
| 333 |
}; |
|
| 334 |
|
|
| 335 |
template <typename T> |
|
| 336 |
struct SetPathTraits : public Traits {
|
|
| 337 |
typedef T Path; |
|
| 338 |
}; |
|
| 339 |
|
|
| 340 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 341 |
/// \c %Path type. |
|
| 342 |
/// |
|
| 343 |
/// \ref named-templ-param "Named parameter" for setting \c %Path type. |
|
| 344 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 345 |
/// and it must have an \c addBack() function. |
|
| 346 |
template <typename T> |
|
| 347 |
struct SetPath |
|
| 348 |
: public Suurballe<GR, LEN, SetPathTraits<T> > {
|
|
| 349 |
typedef Suurballe<GR, LEN, SetPathTraits<T> > Create; |
|
| 350 |
}; |
|
| 351 |
|
|
| 352 |
template <typename H, typename CR> |
|
| 353 |
struct SetHeapTraits : public Traits {
|
|
| 354 |
typedef H Heap; |
|
| 355 |
typedef CR HeapCrossRef; |
|
| 356 |
}; |
|
| 357 |
|
|
| 358 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 359 |
/// \c Heap and \c HeapCrossRef types. |
|
| 360 |
/// |
|
| 361 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
|
| 362 |
/// and \c HeapCrossRef types with automatic allocation. |
|
| 363 |
/// They will be used for internal Dijkstra computations. |
|
| 364 |
/// The heap type must conform to the \ref lemon::concepts::Heap "Heap" |
|
| 365 |
/// concept and its priority type must be \c Length. |
|
| 366 |
template <typename H, |
|
| 367 |
typename CR = typename Digraph::template NodeMap<int> > |
|
| 368 |
struct SetHeap |
|
| 369 |
: public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
|
|
| 370 |
typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create; |
|
| 371 |
}; |
|
| 372 |
|
|
| 373 |
/// @} |
|
| 374 |
|
|
| 214 | 375 |
private: |
| 215 | 376 |
|
| 216 | 377 |
// The digraph the algorithm runs on |
| 217 | 378 |
const Digraph &_graph; |
| 218 | 379 |
// The length map |
| 219 | 380 |
const LengthMap &_length; |
| ... | ... |
@@ -223,45 +384,53 @@ |
| 223 | 384 |
bool _local_flow; |
| 224 | 385 |
// Node map of the current potentials |
| 225 | 386 |
PotentialMap *_potential; |
| 226 | 387 |
bool _local_potential; |
| 227 | 388 |
|
| 228 | 389 |
// The source node |
| 229 |
Node |
|
| 390 |
Node _s; |
|
| 230 | 391 |
// The target node |
| 231 |
Node |
|
| 392 |
Node _t; |
|
| 232 | 393 |
|
| 233 | 394 |
// Container to store the found paths |
| 234 |
std::vector< |
|
| 395 |
std::vector<Path> _paths; |
|
| 235 | 396 |
int _path_num; |
| 236 | 397 |
|
| 237 | 398 |
// The pred arc map |
| 238 | 399 |
PredMap _pred; |
| 239 |
// Implementation of the Dijkstra algorithm for finding augmenting |
|
| 240 |
// shortest paths in the residual network |
|
| 241 |
|
|
| 400 |
|
|
| 401 |
// Data for full init |
|
| 402 |
PotentialMap *_init_dist; |
|
| 403 |
PredMap *_init_pred; |
|
| 404 |
bool _full_init; |
|
| 405 |
|
|
| 406 |
protected: |
|
| 407 |
|
|
| 408 |
Suurballe() {}
|
|
| 242 | 409 |
|
| 243 | 410 |
public: |
| 244 | 411 |
|
| 245 | 412 |
/// \brief Constructor. |
| 246 | 413 |
/// |
| 247 | 414 |
/// Constructor. |
| 248 | 415 |
/// |
| 249 | 416 |
/// \param graph The digraph the algorithm runs on. |
| 250 | 417 |
/// \param length The length (cost) values of the arcs. |
| 251 | 418 |
Suurballe( const Digraph &graph, |
| 252 | 419 |
const LengthMap &length ) : |
| 253 | 420 |
_graph(graph), _length(length), _flow(0), _local_flow(false), |
| 254 |
_potential(0), _local_potential(false), _pred(graph) |
|
| 421 |
_potential(0), _local_potential(false), _pred(graph), |
|
| 422 |
_init_dist(0), _init_pred(0) |
|
| 255 | 423 |
{}
|
| 256 | 424 |
|
| 257 | 425 |
/// Destructor. |
| 258 | 426 |
~Suurballe() {
|
| 259 | 427 |
if (_local_flow) delete _flow; |
| 260 | 428 |
if (_local_potential) delete _potential; |
| 261 |
delete |
|
| 429 |
delete _init_dist; |
|
| 430 |
delete _init_pred; |
|
| 262 | 431 |
} |
| 263 | 432 |
|
| 264 | 433 |
/// \brief Set the flow map. |
| 265 | 434 |
/// |
| 266 | 435 |
/// This function sets the flow map. |
| 267 | 436 |
/// If it is not used before calling \ref run() or \ref init(), |
| ... | ... |
@@ -300,16 +469,19 @@ |
| 300 | 469 |
_potential = ↦ |
| 301 | 470 |
return *this; |
| 302 | 471 |
} |
| 303 | 472 |
|
| 304 | 473 |
/// \name Execution Control |
| 305 | 474 |
/// The simplest way to execute the algorithm is to call the run() |
| 306 |
/// function. |
|
| 307 |
/// \n |
|
| 475 |
/// function.\n |
|
| 476 |
/// If you need to execute the algorithm many times using the same |
|
| 477 |
/// source node, then you may call fullInit() once and start() |
|
| 478 |
/// for each target node.\n |
|
| 308 | 479 |
/// If you only need the flow that is the union of the found |
| 309 |
/// arc-disjoint paths, you may call |
|
| 480 |
/// arc-disjoint paths, then you may call findFlow() instead of |
|
| 481 |
/// start(). |
|
| 310 | 482 |
|
| 311 | 483 |
/// @{
|
| 312 | 484 |
|
| 313 | 485 |
/// \brief Run the algorithm. |
| 314 | 486 |
/// |
| 315 | 487 |
/// This function runs the algorithm. |
| ... | ... |
@@ -323,41 +495,94 @@ |
| 323 | 495 |
/// arc-disjoint paths found. |
| 324 | 496 |
/// |
| 325 | 497 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is |
| 326 | 498 |
/// just a shortcut of the following code. |
| 327 | 499 |
/// \code |
| 328 | 500 |
/// s.init(s); |
| 329 |
/// s.findFlow(t, k); |
|
| 330 |
/// s.findPaths(); |
|
| 501 |
/// s.start(t, k); |
|
| 331 | 502 |
/// \endcode |
| 332 | 503 |
int run(const Node& s, const Node& t, int k = 2) {
|
| 333 | 504 |
init(s); |
| 334 |
findFlow(t, k); |
|
| 335 |
findPaths(); |
|
| 505 |
start(t, k); |
|
| 336 | 506 |
return _path_num; |
| 337 | 507 |
} |
| 338 | 508 |
|
| 339 | 509 |
/// \brief Initialize the algorithm. |
| 340 | 510 |
/// |
| 341 |
/// This function initializes the algorithm. |
|
| 511 |
/// This function initializes the algorithm with the given source node. |
|
| 342 | 512 |
/// |
| 343 | 513 |
/// \param s The source node. |
| 344 | 514 |
void init(const Node& s) {
|
| 345 |
|
|
| 515 |
_s = s; |
|
| 346 | 516 |
|
| 347 | 517 |
// Initialize maps |
| 348 | 518 |
if (!_flow) {
|
| 349 | 519 |
_flow = new FlowMap(_graph); |
| 350 | 520 |
_local_flow = true; |
| 351 | 521 |
} |
| 352 | 522 |
if (!_potential) {
|
| 353 | 523 |
_potential = new PotentialMap(_graph); |
| 354 | 524 |
_local_potential = true; |
| 355 | 525 |
} |
| 356 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
|
| 357 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
|
| 526 |
_full_init = false; |
|
| 527 |
} |
|
| 528 |
|
|
| 529 |
/// \brief Initialize the algorithm and perform Dijkstra. |
|
| 530 |
/// |
|
| 531 |
/// This function initializes the algorithm and performs a full |
|
| 532 |
/// Dijkstra search from the given source node. It makes consecutive |
|
| 533 |
/// executions of \ref start() "start(t, k)" faster, since they |
|
| 534 |
/// have to perform %Dijkstra only k-1 times. |
|
| 535 |
/// |
|
| 536 |
/// This initialization is usually worth using instead of \ref init() |
|
| 537 |
/// if the algorithm is executed many times using the same source node. |
|
| 538 |
/// |
|
| 539 |
/// \param s The source node. |
|
| 540 |
void fullInit(const Node& s) {
|
|
| 541 |
// Initialize maps |
|
| 542 |
init(s); |
|
| 543 |
if (!_init_dist) {
|
|
| 544 |
_init_dist = new PotentialMap(_graph); |
|
| 545 |
} |
|
| 546 |
if (!_init_pred) {
|
|
| 547 |
_init_pred = new PredMap(_graph); |
|
| 548 |
} |
|
| 549 |
|
|
| 550 |
// Run a full Dijkstra |
|
| 551 |
typename Dijkstra<Digraph, LengthMap> |
|
| 552 |
::template SetStandardHeap<Heap> |
|
| 553 |
::template SetDistMap<PotentialMap> |
|
| 554 |
::template SetPredMap<PredMap> |
|
| 555 |
::Create dijk(_graph, _length); |
|
| 556 |
dijk.distMap(*_init_dist).predMap(*_init_pred); |
|
| 557 |
dijk.run(s); |
|
| 558 |
|
|
| 559 |
_full_init = true; |
|
| 560 |
} |
|
| 561 |
|
|
| 562 |
/// \brief Execute the algorithm. |
|
| 563 |
/// |
|
| 564 |
/// This function executes the algorithm. |
|
| 565 |
/// |
|
| 566 |
/// \param t The target node. |
|
| 567 |
/// \param k The number of paths to be found. |
|
| 568 |
/// |
|
| 569 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
|
| 570 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
|
| 571 |
/// arc-disjoint paths found. |
|
| 572 |
/// |
|
| 573 |
/// \note Apart from the return value, <tt>s.start(t, k)</tt> is |
|
| 574 |
/// just a shortcut of the following code. |
|
| 575 |
/// \code |
|
| 576 |
/// s.findFlow(t, k); |
|
| 577 |
/// s.findPaths(); |
|
| 578 |
/// \endcode |
|
| 579 |
int start(const Node& t, int k = 2) {
|
|
| 580 |
findFlow(t, k); |
|
| 581 |
findPaths(); |
|
| 582 |
return _path_num; |
|
| 358 | 583 |
} |
| 359 | 584 |
|
| 360 | 585 |
/// \brief Execute the algorithm to find an optimal flow. |
| 361 | 586 |
/// |
| 362 | 587 |
/// This function executes the successive shortest path algorithm to |
| 363 | 588 |
/// find a minimum cost flow, which is the union of \c k (or less) |
| ... | ... |
@@ -369,26 +594,45 @@ |
| 369 | 594 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
| 370 | 595 |
/// the source node to the given node \c t in the digraph. |
| 371 | 596 |
/// Otherwise it returns the number of arc-disjoint paths found. |
| 372 | 597 |
/// |
| 373 | 598 |
/// \pre \ref init() must be called before using this function. |
| 374 | 599 |
int findFlow(const Node& t, int k = 2) {
|
| 375 |
_target = t; |
|
| 376 |
_dijkstra = |
|
| 377 |
new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred, |
|
| 378 |
_source, _target ); |
|
| 600 |
_t = t; |
|
| 601 |
ResidualDijkstra dijkstra(*this); |
|
| 602 |
|
|
| 603 |
// Initialization |
|
| 604 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 605 |
(*_flow)[e] = 0; |
|
| 606 |
} |
|
| 607 |
if (_full_init) {
|
|
| 608 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 609 |
(*_potential)[n] = (*_init_dist)[n]; |
|
| 610 |
} |
|
| 611 |
Node u = _t; |
|
| 612 |
Arc e; |
|
| 613 |
while ((e = (*_init_pred)[u]) != INVALID) {
|
|
| 614 |
(*_flow)[e] = 1; |
|
| 615 |
u = _graph.source(e); |
|
| 616 |
} |
|
| 617 |
_path_num = 1; |
|
| 618 |
} else {
|
|
| 619 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 620 |
(*_potential)[n] = 0; |
|
| 621 |
} |
|
| 622 |
_path_num = 0; |
|
| 623 |
} |
|
| 379 | 624 |
|
| 380 | 625 |
// Find shortest paths |
| 381 |
_path_num = 0; |
|
| 382 | 626 |
while (_path_num < k) {
|
| 383 | 627 |
// Run Dijkstra |
| 384 |
if (! |
|
| 628 |
if (!dijkstra.run(_path_num)) break; |
|
| 385 | 629 |
++_path_num; |
| 386 | 630 |
|
| 387 | 631 |
// Set the flow along the found shortest path |
| 388 |
Node u = |
|
| 632 |
Node u = _t; |
|
| 389 | 633 |
Arc e; |
| 390 | 634 |
while ((e = _pred[u]) != INVALID) {
|
| 391 | 635 |
if (u == _graph.target(e)) {
|
| 392 | 636 |
(*_flow)[e] = 1; |
| 393 | 637 |
u = _graph.source(e); |
| 394 | 638 |
} else {
|
| ... | ... |
@@ -399,30 +643,30 @@ |
| 399 | 643 |
} |
| 400 | 644 |
return _path_num; |
| 401 | 645 |
} |
| 402 | 646 |
|
| 403 | 647 |
/// \brief Compute the paths from the flow. |
| 404 | 648 |
/// |
| 405 |
/// This function computes the paths from the found minimum cost flow, |
|
| 406 |
/// which is the union of some arc-disjoint paths. |
|
| 649 |
/// This function computes arc-disjoint paths from the found minimum |
|
| 650 |
/// cost flow, which is the union of them. |
|
| 407 | 651 |
/// |
| 408 | 652 |
/// \pre \ref init() and \ref findFlow() must be called before using |
| 409 | 653 |
/// this function. |
| 410 | 654 |
void findPaths() {
|
| 411 | 655 |
FlowMap res_flow(_graph); |
| 412 | 656 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
| 413 | 657 |
|
| 414 |
paths.clear(); |
|
| 415 |
paths.resize(_path_num); |
|
| 658 |
_paths.clear(); |
|
| 659 |
_paths.resize(_path_num); |
|
| 416 | 660 |
for (int i = 0; i < _path_num; ++i) {
|
| 417 |
Node n = _source; |
|
| 418 |
while (n != _target) {
|
|
| 661 |
Node n = _s; |
|
| 662 |
while (n != _t) {
|
|
| 419 | 663 |
OutArcIt e(_graph, n); |
| 420 | 664 |
for ( ; res_flow[e] == 0; ++e) ; |
| 421 | 665 |
n = _graph.target(e); |
| 422 |
|
|
| 666 |
_paths[i].addBack(e); |
|
| 423 | 667 |
res_flow[e] = 0; |
| 424 | 668 |
} |
| 425 | 669 |
} |
| 426 | 670 |
} |
| 427 | 671 |
|
| 428 | 672 |
/// @} |
| ... | ... |
@@ -515,13 +759,13 @@ |
| 515 | 759 |
/// \param i The function returns the <tt>i</tt>-th path. |
| 516 | 760 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
| 517 | 761 |
/// |
| 518 | 762 |
/// \pre \ref run() or \ref findPaths() must be called before using |
| 519 | 763 |
/// this function. |
| 520 | 764 |
const Path& path(int i) const {
|
| 521 |
return |
|
| 765 |
return _paths[i]; |
|
| 522 | 766 |
} |
| 523 | 767 |
|
| 524 | 768 |
/// @} |
| 525 | 769 |
|
| 526 | 770 |
}; //class Suurballe |
| 527 | 771 |
| ... | ... |
@@ -372,13 +372,13 @@ |
| 372 | 372 |
} |
| 373 | 373 |
|
| 374 | 374 |
///Returns the running state of the timer |
| 375 | 375 |
|
| 376 | 376 |
///This function returns the number of stop() exections that is |
| 377 | 377 |
///necessary to really stop the timer. |
| 378 |
///For example the timer |
|
| 378 |
///For example, the timer |
|
| 379 | 379 |
///is running if and only if the return value is \c true |
| 380 | 380 |
///(i.e. greater than |
| 381 | 381 |
///zero). |
| 382 | 382 |
int running() { return _running; }
|
| 383 | 383 |
|
| 384 | 384 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -40,13 +40,13 @@ |
| 40 | 40 |
/// |
| 41 | 41 |
/// The class implements the \e Union-Find data structure. |
| 42 | 42 |
/// The union operation uses rank heuristic, while |
| 43 | 43 |
/// the find operation uses path compression. |
| 44 | 44 |
/// This is a very simple but efficient implementation, providing |
| 45 | 45 |
/// only four methods: join (union), find, insert and size. |
| 46 |
/// For more features see the \ref UnionFindEnum class. |
|
| 46 |
/// For more features, see the \ref UnionFindEnum class. |
|
| 47 | 47 |
/// |
| 48 | 48 |
/// It is primarily used in Kruskal algorithm for finding minimal |
| 49 | 49 |
/// cost spanning tree in a graph. |
| 50 | 50 |
/// \sa kruskal() |
| 51 | 51 |
/// |
| 52 | 52 |
/// \pre You need to add all the elements by the \ref insert() |
| 1 | 1 |
#! /usr/bin/env python |
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 2 | 16 |
|
| 3 | 17 |
import sys |
| 4 | 18 |
|
| 5 | 19 |
from mercurial import ui, hg |
| 6 | 20 |
from mercurial import util |
| 7 | 21 |
| 1 | 1 |
#!/bin/bash |
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 2 | 16 |
|
| 3 | 17 |
set -e |
| 4 | 18 |
|
| 5 | 19 |
if [ $# = 0 ]; then |
| 6 | 20 |
echo "Usage: $0 release-id" |
| 7 | 21 |
exit 1 |
| 1 | 1 |
#!/bin/bash |
| 2 |
# |
|
| 3 |
# This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
# |
|
| 5 |
# Copyright (C) 2003-2009 |
|
| 6 |
# Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
# (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
# |
|
| 9 |
# Permission to use, modify and distribute this software is granted |
|
| 10 |
# provided that this copyright notice appears in all copies. For |
|
| 11 |
# precise terms see the accompanying LICENSE file. |
|
| 12 |
# |
|
| 13 |
# This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
# express or implied, and with no claim as to its suitability for any |
|
| 15 |
# purpose. |
|
| 2 | 16 |
|
| 3 | 17 |
YEAR=`date +%Y` |
| 4 | 18 |
HGROOT=`hg root` |
| 5 | 19 |
|
| 6 | 20 |
function hg_year() {
|
| 7 | 21 |
if [ -n "$(hg st $1)" ]; then |
| ... | ... |
@@ -10,36 +10,40 @@ |
| 10 | 10 |
SET(TEST_WITH_VALGRIND "NO" CACHE STRING |
| 11 | 11 |
"Run the test with valgrind (YES/NO).") |
| 12 | 12 |
SET(VALGRIND_FLAGS "" CACHE STRING "Valgrind flags used by the tests.") |
| 13 | 13 |
|
| 14 | 14 |
SET(TESTS |
| 15 | 15 |
adaptors_test |
| 16 |
bellman_ford_test |
|
| 16 | 17 |
bfs_test |
| 17 | 18 |
circulation_test |
| 18 | 19 |
connectivity_test |
| 19 | 20 |
counter_test |
| 20 | 21 |
dfs_test |
| 21 | 22 |
digraph_test |
| 22 | 23 |
dijkstra_test |
| 23 | 24 |
dim_test |
| 24 | 25 |
edge_set_test |
| 25 | 26 |
error_test |
| 26 | 27 |
euler_test |
| 28 |
fractional_matching_test |
|
| 27 | 29 |
gomory_hu_test |
| 28 | 30 |
graph_copy_test |
| 29 | 31 |
graph_test |
| 30 | 32 |
graph_utils_test |
| 31 | 33 |
hao_orlin_test |
| 32 | 34 |
heap_test |
| 33 | 35 |
kruskal_test |
| 34 | 36 |
lgf_test |
| 35 | 37 |
maps_test |
| 36 | 38 |
matching_test |
| 37 | 39 |
min_cost_arborescence_test |
| 38 | 40 |
min_cost_flow_test |
| 41 |
min_mean_cycle_test |
|
| 39 | 42 |
path_test |
| 43 |
planarity_test |
|
| 40 | 44 |
preflow_test |
| 41 | 45 |
radix_sort_test |
| 42 | 46 |
random_test |
| 43 | 47 |
suurballe_test |
| 44 | 48 |
time_measure_test |
| 45 | 49 |
unionfind_test |
| 1 |
if USE_VALGRIND |
|
| 2 |
TESTS_ENVIRONMENT=$(top_srcdir)/scripts/valgrind-wrapper.sh |
|
| 3 |
endif |
|
| 4 |
|
|
| 1 | 5 |
EXTRA_DIST += \ |
| 2 | 6 |
test/CMakeLists.txt |
| 3 | 7 |
|
| 4 | 8 |
noinst_HEADERS += \ |
| 5 | 9 |
test/graph_test.h \ |
| 6 | 10 |
test/test_tools.h |
| 7 | 11 |
|
| 8 | 12 |
check_PROGRAMS += \ |
| 9 | 13 |
test/adaptors_test \ |
| 14 |
test/bellman_ford_test \ |
|
| 10 | 15 |
test/bfs_test \ |
| 11 | 16 |
test/circulation_test \ |
| 12 | 17 |
test/connectivity_test \ |
| 13 | 18 |
test/counter_test \ |
| 14 | 19 |
test/dfs_test \ |
| 15 | 20 |
test/digraph_test \ |
| 16 | 21 |
test/dijkstra_test \ |
| 17 | 22 |
test/dim_test \ |
| 18 | 23 |
test/edge_set_test \ |
| 19 | 24 |
test/error_test \ |
| 20 | 25 |
test/euler_test \ |
| 26 |
test/fractional_matching_test \ |
|
| 21 | 27 |
test/gomory_hu_test \ |
| 22 | 28 |
test/graph_copy_test \ |
| 23 | 29 |
test/graph_test \ |
| 24 | 30 |
test/graph_utils_test \ |
| 25 | 31 |
test/hao_orlin_test \ |
| 26 | 32 |
test/heap_test \ |
| 27 | 33 |
test/kruskal_test \ |
| 28 | 34 |
test/lgf_test \ |
| 29 | 35 |
test/maps_test \ |
| 30 | 36 |
test/matching_test \ |
| 31 | 37 |
test/min_cost_arborescence_test \ |
| 32 | 38 |
test/min_cost_flow_test \ |
| 39 |
test/min_mean_cycle_test \ |
|
| 33 | 40 |
test/path_test \ |
| 41 |
test/planarity_test \ |
|
| 34 | 42 |
test/preflow_test \ |
| 35 | 43 |
test/radix_sort_test \ |
| 36 | 44 |
test/random_test \ |
| 37 | 45 |
test/suurballe_test \ |
| 38 | 46 |
test/test_tools_fail \ |
| 39 | 47 |
test/test_tools_pass \ |
| ... | ... |
@@ -50,23 +58,25 @@ |
| 50 | 58 |
endif HAVE_MIP |
| 51 | 59 |
|
| 52 | 60 |
TESTS += $(check_PROGRAMS) |
| 53 | 61 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
| 54 | 62 |
|
| 55 | 63 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
| 64 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
|
| 56 | 65 |
test_bfs_test_SOURCES = test/bfs_test.cc |
| 57 | 66 |
test_circulation_test_SOURCES = test/circulation_test.cc |
| 58 | 67 |
test_counter_test_SOURCES = test/counter_test.cc |
| 59 | 68 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
| 60 | 69 |
test_dfs_test_SOURCES = test/dfs_test.cc |
| 61 | 70 |
test_digraph_test_SOURCES = test/digraph_test.cc |
| 62 | 71 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
| 63 | 72 |
test_dim_test_SOURCES = test/dim_test.cc |
| 64 | 73 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
| 65 | 74 |
test_error_test_SOURCES = test/error_test.cc |
| 66 | 75 |
test_euler_test_SOURCES = test/euler_test.cc |
| 76 |
test_fractional_matching_test_SOURCES = test/fractional_matching_test.cc |
|
| 67 | 77 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
| 68 | 78 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
| 69 | 79 |
test_graph_test_SOURCES = test/graph_test.cc |
| 70 | 80 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
| 71 | 81 |
test_heap_test_SOURCES = test/heap_test.cc |
| 72 | 82 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
| ... | ... |
@@ -75,13 +85,15 @@ |
| 75 | 85 |
test_lp_test_SOURCES = test/lp_test.cc |
| 76 | 86 |
test_maps_test_SOURCES = test/maps_test.cc |
| 77 | 87 |
test_mip_test_SOURCES = test/mip_test.cc |
| 78 | 88 |
test_matching_test_SOURCES = test/matching_test.cc |
| 79 | 89 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
| 80 | 90 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
| 91 |
test_min_mean_cycle_test_SOURCES = test/min_mean_cycle_test.cc |
|
| 81 | 92 |
test_path_test_SOURCES = test/path_test.cc |
| 93 |
test_planarity_test_SOURCES = test/planarity_test.cc |
|
| 82 | 94 |
test_preflow_test_SOURCES = test/preflow_test.cc |
| 83 | 95 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
| 84 | 96 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
| 85 | 97 |
test_random_test_SOURCES = test/random_test.cc |
| 86 | 98 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
| 87 | 99 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
| ... | ... |
@@ -1368,57 +1368,49 @@ |
| 1368 | 1368 |
GridGraph::Node n1 = graph(0,0); |
| 1369 | 1369 |
GridGraph::Node n2 = graph(0,1); |
| 1370 | 1370 |
GridGraph::Node n3 = graph(1,0); |
| 1371 | 1371 |
GridGraph::Node n4 = graph(1,1); |
| 1372 | 1372 |
|
| 1373 | 1373 |
GridGraph::EdgeMap<bool> dir_map(graph); |
| 1374 |
dir_map[graph.right(n1)] = graph.u(graph.right(n1)) == n1; |
|
| 1375 |
dir_map[graph.up(n1)] = graph.u(graph.up(n1)) != n1; |
|
| 1376 |
dir_map[graph.left(n4)] = graph.u(graph.left(n4)) != n4; |
|
| 1377 |
dir_map[graph.down(n4)] = graph.u(graph.down(n4)) != n4; |
|
| 1374 |
dir_map[graph.right(n1)] = graph.u(graph.right(n1)) != n1; |
|
| 1375 |
dir_map[graph.up(n1)] = graph.u(graph.up(n1)) == n1; |
|
| 1376 |
dir_map[graph.left(n4)] = graph.u(graph.left(n4)) == n4; |
|
| 1377 |
dir_map[graph.down(n4)] = graph.u(graph.down(n4)) == n4; |
|
| 1378 | 1378 |
|
| 1379 | 1379 |
// Apply several adaptors on the grid graph |
| 1380 |
typedef SplitNodes< ReverseDigraph< const Orienter< |
|
| 1381 |
const GridGraph, GridGraph::EdgeMap<bool> > > > |
|
| 1382 |
RevSplitGridGraph; |
|
| 1383 |
typedef ReverseDigraph<const RevSplitGridGraph> SplitGridGraph; |
|
| 1380 |
typedef SplitNodes<Orienter< const GridGraph, GridGraph::EdgeMap<bool> > > |
|
| 1381 |
SplitGridGraph; |
|
| 1384 | 1382 |
typedef Undirector<const SplitGridGraph> USplitGridGraph; |
| 1385 |
typedef Undirector<const USplitGridGraph> UUSplitGridGraph; |
|
| 1386 |
checkConcept<concepts::Digraph, RevSplitGridGraph>(); |
|
| 1387 | 1383 |
checkConcept<concepts::Digraph, SplitGridGraph>(); |
| 1388 | 1384 |
checkConcept<concepts::Graph, USplitGridGraph>(); |
| 1389 |
checkConcept<concepts::Graph, UUSplitGridGraph>(); |
|
| 1390 | 1385 |
|
| 1391 |
RevSplitGridGraph rev_adaptor = |
|
| 1392 |
splitNodes(reverseDigraph(orienter(graph, dir_map))); |
|
| 1393 |
SplitGridGraph adaptor = |
|
| 1386 |
SplitGridGraph adaptor = splitNodes(orienter(graph, dir_map)); |
|
| 1394 | 1387 |
USplitGridGraph uadaptor = undirector(adaptor); |
| 1395 |
UUSplitGridGraph uuadaptor = undirector(uadaptor); |
|
| 1396 | 1388 |
|
| 1397 | 1389 |
// Check adaptor |
| 1398 | 1390 |
checkGraphNodeList(adaptor, 8); |
| 1399 | 1391 |
checkGraphArcList(adaptor, 8); |
| 1400 | 1392 |
checkGraphConArcList(adaptor, 8); |
| 1401 | 1393 |
|
| 1402 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n1), 1); |
|
| 1403 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n1), 1); |
|
| 1404 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n2), 2); |
|
| 1405 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n2), 1); |
|
| 1406 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n3), 1); |
|
| 1407 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n3), 1); |
|
| 1408 |
checkGraphOutArcList(adaptor, rev_adaptor.inNode(n4), 0); |
|
| 1409 |
checkGraphOutArcList(adaptor, rev_adaptor.outNode(n4), 1); |
|
| 1394 |
checkGraphOutArcList(adaptor, adaptor.inNode(n1), 1); |
|
| 1395 |
checkGraphOutArcList(adaptor, adaptor.outNode(n1), 1); |
|
| 1396 |
checkGraphOutArcList(adaptor, adaptor.inNode(n2), 1); |
|
| 1397 |
checkGraphOutArcList(adaptor, adaptor.outNode(n2), 0); |
|
| 1398 |
checkGraphOutArcList(adaptor, adaptor.inNode(n3), 1); |
|
| 1399 |
checkGraphOutArcList(adaptor, adaptor.outNode(n3), 1); |
|
| 1400 |
checkGraphOutArcList(adaptor, adaptor.inNode(n4), 1); |
|
| 1401 |
checkGraphOutArcList(adaptor, adaptor.outNode(n4), 2); |
|
| 1410 | 1402 |
|
| 1411 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n1), 1); |
|
| 1412 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n1), 1); |
|
| 1413 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n2), 1); |
|
| 1414 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n2), 0); |
|
| 1415 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n3), 1); |
|
| 1416 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n3), 1); |
|
| 1417 |
checkGraphInArcList(adaptor, rev_adaptor.inNode(n4), 1); |
|
| 1418 |
checkGraphInArcList(adaptor, rev_adaptor.outNode(n4), 2); |
|
| 1403 |
checkGraphInArcList(adaptor, adaptor.inNode(n1), 1); |
|
| 1404 |
checkGraphInArcList(adaptor, adaptor.outNode(n1), 1); |
|
| 1405 |
checkGraphInArcList(adaptor, adaptor.inNode(n2), 2); |
|
| 1406 |
checkGraphInArcList(adaptor, adaptor.outNode(n2), 1); |
|
| 1407 |
checkGraphInArcList(adaptor, adaptor.inNode(n3), 1); |
|
| 1408 |
checkGraphInArcList(adaptor, adaptor.outNode(n3), 1); |
|
| 1409 |
checkGraphInArcList(adaptor, adaptor.inNode(n4), 0); |
|
| 1410 |
checkGraphInArcList(adaptor, adaptor.outNode(n4), 1); |
|
| 1419 | 1411 |
|
| 1420 | 1412 |
checkNodeIds(adaptor); |
| 1421 | 1413 |
checkArcIds(adaptor); |
| 1422 | 1414 |
|
| 1423 | 1415 |
checkGraphNodeMap(adaptor); |
| 1424 | 1416 |
checkGraphArcMap(adaptor); |
| ... | ... |
@@ -1435,35 +1427,20 @@ |
| 1435 | 1427 |
checkArcIds(uadaptor); |
| 1436 | 1428 |
|
| 1437 | 1429 |
checkGraphNodeMap(uadaptor); |
| 1438 | 1430 |
checkGraphEdgeMap(uadaptor); |
| 1439 | 1431 |
checkGraphArcMap(uadaptor); |
| 1440 | 1432 |
|
| 1441 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n1), 2); |
|
| 1442 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n1), 2); |
|
| 1443 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n2), 3); |
|
| 1444 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n2), 1); |
|
| 1445 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n3), 2); |
|
| 1446 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n3), 2); |
|
| 1447 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.inNode(n4), 1); |
|
| 1448 |
checkGraphIncEdgeArcLists(uadaptor, rev_adaptor.outNode(n4), 3); |
|
| 1449 |
|
|
| 1450 |
// Check uuadaptor |
|
| 1451 |
checkGraphNodeList(uuadaptor, 8); |
|
| 1452 |
checkGraphEdgeList(uuadaptor, 16); |
|
| 1453 |
checkGraphArcList(uuadaptor, 32); |
|
| 1454 |
checkGraphConEdgeList(uuadaptor, 16); |
|
| 1455 |
checkGraphConArcList(uuadaptor, 32); |
|
| 1456 |
|
|
| 1457 |
checkNodeIds(uuadaptor); |
|
| 1458 |
checkEdgeIds(uuadaptor); |
|
| 1459 |
checkArcIds(uuadaptor); |
|
| 1460 |
|
|
| 1461 |
checkGraphNodeMap(uuadaptor); |
|
| 1462 |
checkGraphEdgeMap(uuadaptor); |
|
| 1463 |
|
|
| 1433 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n1), 2); |
|
| 1434 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n1), 2); |
|
| 1435 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n2), 3); |
|
| 1436 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n2), 1); |
|
| 1437 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n3), 2); |
|
| 1438 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n3), 2); |
|
| 1439 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.inNode(n4), 1); |
|
| 1440 |
checkGraphIncEdgeArcLists(uadaptor, adaptor.outNode(n4), 3); |
|
| 1464 | 1441 |
} |
| 1465 | 1442 |
|
| 1466 | 1443 |
int main(int, const char **) {
|
| 1467 | 1444 |
// Check the digraph adaptors (using ListDigraph) |
| 1468 | 1445 |
checkReverseDigraph(); |
| 1469 | 1446 |
checkSubDigraph(); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -80,13 +80,13 @@ |
| 80 | 80 |
n = bfs_test.processNextNode(); |
| 81 | 81 |
n = bfs_test.processNextNode(t, b); |
| 82 | 82 |
n = bfs_test.processNextNode(nm, n); |
| 83 | 83 |
n = const_bfs_test.nextNode(); |
| 84 | 84 |
b = const_bfs_test.emptyQueue(); |
| 85 | 85 |
i = const_bfs_test.queueSize(); |
| 86 |
|
|
| 86 |
|
|
| 87 | 87 |
bfs_test.start(); |
| 88 | 88 |
bfs_test.start(t); |
| 89 | 89 |
bfs_test.start(nm); |
| 90 | 90 |
|
| 91 | 91 |
l = const_bfs_test.dist(t); |
| 92 | 92 |
e = const_bfs_test.predArc(t); |
| ... | ... |
@@ -101,37 +101,37 @@ |
| 101 | 101 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
| 102 | 102 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
| 103 | 103 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
| 104 | 104 |
::SetStandardProcessedMap |
| 105 | 105 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
| 106 | 106 |
::Create bfs_test(G); |
| 107 |
|
|
| 107 |
|
|
| 108 | 108 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
| 109 | 109 |
concepts::ReadWriteMap<Node,int> dist_map; |
| 110 | 110 |
concepts::ReadWriteMap<Node,bool> reached_map; |
| 111 | 111 |
concepts::WriteMap<Node,bool> processed_map; |
| 112 |
|
|
| 112 |
|
|
| 113 | 113 |
bfs_test |
| 114 | 114 |
.predMap(pred_map) |
| 115 | 115 |
.distMap(dist_map) |
| 116 | 116 |
.reachedMap(reached_map) |
| 117 | 117 |
.processedMap(processed_map); |
| 118 | 118 |
|
| 119 | 119 |
bfs_test.run(s); |
| 120 | 120 |
bfs_test.run(s,t); |
| 121 | 121 |
bfs_test.run(); |
| 122 |
|
|
| 122 |
|
|
| 123 | 123 |
bfs_test.init(); |
| 124 | 124 |
bfs_test.addSource(s); |
| 125 | 125 |
n = bfs_test.processNextNode(); |
| 126 | 126 |
n = bfs_test.processNextNode(t, b); |
| 127 | 127 |
n = bfs_test.processNextNode(nm, n); |
| 128 | 128 |
n = bfs_test.nextNode(); |
| 129 | 129 |
b = bfs_test.emptyQueue(); |
| 130 | 130 |
i = bfs_test.queueSize(); |
| 131 |
|
|
| 131 |
|
|
| 132 | 132 |
bfs_test.start(); |
| 133 | 133 |
bfs_test.start(t); |
| 134 | 134 |
bfs_test.start(nm); |
| 135 | 135 |
|
| 136 | 136 |
l = bfs_test.dist(t); |
| 137 | 137 |
e = bfs_test.predArc(t); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -78,29 +78,34 @@ |
| 78 | 78 |
::SetFlowMap<FlowMap> |
| 79 | 79 |
::SetElevator<Elev> |
| 80 | 80 |
::SetStandardElevator<LinkedElev> |
| 81 | 81 |
::Create CirculationType; |
| 82 | 82 |
CirculationType circ_test(g, lcap, ucap, supply); |
| 83 | 83 |
const CirculationType& const_circ_test = circ_test; |
| 84 |
|
|
| 84 |
|
|
| 85 | 85 |
circ_test |
| 86 | 86 |
.lowerMap(lcap) |
| 87 | 87 |
.upperMap(ucap) |
| 88 | 88 |
.supplyMap(supply) |
| 89 | 89 |
.flowMap(flow); |
| 90 | 90 |
|
| 91 |
const CirculationType::Elevator& elev = const_circ_test.elevator(); |
|
| 92 |
circ_test.elevator(const_cast<CirculationType::Elevator&>(elev)); |
|
| 93 |
CirculationType::Tolerance tol = const_circ_test.tolerance(); |
|
| 94 |
circ_test.tolerance(tol); |
|
| 95 |
|
|
| 91 | 96 |
circ_test.init(); |
| 92 | 97 |
circ_test.greedyInit(); |
| 93 | 98 |
circ_test.start(); |
| 94 | 99 |
circ_test.run(); |
| 95 | 100 |
|
| 96 | 101 |
v = const_circ_test.flow(a); |
| 97 | 102 |
const FlowMap& fm = const_circ_test.flowMap(); |
| 98 | 103 |
b = const_circ_test.barrier(n); |
| 99 | 104 |
const_circ_test.barrierMap(bar); |
| 100 |
|
|
| 105 |
|
|
| 101 | 106 |
ignore_unused_variable_warning(fm); |
| 102 | 107 |
} |
| 103 | 108 |
|
| 104 | 109 |
template <class G, class LM, class UM, class DM> |
| 105 | 110 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
| 106 | 111 |
const DM& dm, bool find) |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -26,18 +26,18 @@ |
| 26 | 26 |
|
| 27 | 27 |
|
| 28 | 28 |
int main() |
| 29 | 29 |
{
|
| 30 | 30 |
typedef ListDigraph Digraph; |
| 31 | 31 |
typedef Undirector<Digraph> Graph; |
| 32 |
|
|
| 32 |
|
|
| 33 | 33 |
{
|
| 34 | 34 |
Digraph d; |
| 35 | 35 |
Digraph::NodeMap<int> order(d); |
| 36 | 36 |
Graph g(d); |
| 37 |
|
|
| 37 |
|
|
| 38 | 38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
| 39 | 39 |
check(countStronglyConnectedComponents(d) == 0, |
| 40 | 40 |
"The empty digraph has 0 strongly connected component"); |
| 41 | 41 |
check(connected(g), "The empty graph is connected"); |
| 42 | 42 |
check(countConnectedComponents(g) == 0, |
| 43 | 43 |
"The empty graph has 0 connected component"); |
| ... | ... |
@@ -45,13 +45,13 @@ |
| 45 | 45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
| 46 | 46 |
check(countBiNodeConnectedComponents(g) == 0, |
| 47 | 47 |
"The empty graph has 0 bi-node-connected component"); |
| 48 | 48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
| 49 | 49 |
check(countBiEdgeConnectedComponents(g) == 0, |
| 50 | 50 |
"The empty graph has 0 bi-edge-connected component"); |
| 51 |
|
|
| 51 |
|
|
| 52 | 52 |
check(dag(d), "The empty digraph is DAG."); |
| 53 | 53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
| 54 | 54 |
check(loopFree(d), "The empty digraph is loop-free."); |
| 55 | 55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
| 56 | 56 |
check(simpleGraph(d), "The empty digraph is simple."); |
| 57 | 57 |
|
| ... | ... |
@@ -79,13 +79,13 @@ |
| 79 | 79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
| 80 | 80 |
check(countBiNodeConnectedComponents(g) == 0, |
| 81 | 81 |
"This graph has 0 bi-node-connected component"); |
| 82 | 82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
| 83 | 83 |
check(countBiEdgeConnectedComponents(g) == 1, |
| 84 | 84 |
"This graph has 1 bi-edge-connected component"); |
| 85 |
|
|
| 85 |
|
|
| 86 | 86 |
check(dag(d), "This digraph is DAG."); |
| 87 | 87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
| 88 | 88 |
check(loopFree(d), "This digraph is loop-free."); |
| 89 | 89 |
check(parallelFree(d), "This digraph is parallel-free."); |
| 90 | 90 |
check(simpleGraph(d), "This digraph is simple."); |
| 91 | 91 |
|
| ... | ... |
@@ -98,20 +98,20 @@ |
| 98 | 98 |
} |
| 99 | 99 |
|
| 100 | 100 |
{
|
| 101 | 101 |
Digraph d; |
| 102 | 102 |
Digraph::NodeMap<int> order(d); |
| 103 | 103 |
Graph g(d); |
| 104 |
|
|
| 104 |
|
|
| 105 | 105 |
Digraph::Node n1 = d.addNode(); |
| 106 | 106 |
Digraph::Node n2 = d.addNode(); |
| 107 | 107 |
Digraph::Node n3 = d.addNode(); |
| 108 | 108 |
Digraph::Node n4 = d.addNode(); |
| 109 | 109 |
Digraph::Node n5 = d.addNode(); |
| 110 | 110 |
Digraph::Node n6 = d.addNode(); |
| 111 |
|
|
| 111 |
|
|
| 112 | 112 |
d.addArc(n1, n3); |
| 113 | 113 |
d.addArc(n3, n2); |
| 114 | 114 |
d.addArc(n2, n1); |
| 115 | 115 |
d.addArc(n4, n2); |
| 116 | 116 |
d.addArc(n4, n3); |
| 117 | 117 |
d.addArc(n5, n6); |
| ... | ... |
@@ -133,29 +133,29 @@ |
| 133 | 133 |
check(!acyclic(g), "This graph is not acyclic."); |
| 134 | 134 |
check(!tree(g), "This graph is not tree."); |
| 135 | 135 |
check(!bipartite(g), "This graph is not bipartite."); |
| 136 | 136 |
check(loopFree(g), "This graph is loop-free."); |
| 137 | 137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
| 138 | 138 |
check(!simpleGraph(g), "This graph is not simple."); |
| 139 |
|
|
| 139 |
|
|
| 140 | 140 |
d.addArc(n3, n3); |
| 141 |
|
|
| 141 |
|
|
| 142 | 142 |
check(!loopFree(d), "This digraph is not loop-free."); |
| 143 | 143 |
check(!loopFree(g), "This graph is not loop-free."); |
| 144 | 144 |
check(!simpleGraph(d), "This digraph is not simple."); |
| 145 |
|
|
| 145 |
|
|
| 146 | 146 |
d.addArc(n3, n2); |
| 147 |
|
|
| 147 |
|
|
| 148 | 148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
| 149 | 149 |
} |
| 150 |
|
|
| 150 |
|
|
| 151 | 151 |
{
|
| 152 | 152 |
Digraph d; |
| 153 | 153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
| 154 | 154 |
Graph g(d); |
| 155 |
|
|
| 155 |
|
|
| 156 | 156 |
Digraph::Node n1 = d.addNode(); |
| 157 | 157 |
Digraph::Node n2 = d.addNode(); |
| 158 | 158 |
Digraph::Node n3 = d.addNode(); |
| 159 | 159 |
Digraph::Node n4 = d.addNode(); |
| 160 | 160 |
Digraph::Node n5 = d.addNode(); |
| 161 | 161 |
Digraph::Node n6 = d.addNode(); |
| ... | ... |
@@ -169,13 +169,13 @@ |
| 169 | 169 |
d.addArc(n6, n4); |
| 170 | 170 |
d.addArc(n4, n6); |
| 171 | 171 |
d.addArc(n2, n5); |
| 172 | 172 |
d.addArc(n1, n8); |
| 173 | 173 |
d.addArc(n6, n7); |
| 174 | 174 |
d.addArc(n7, n6); |
| 175 |
|
|
| 175 |
|
|
| 176 | 176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
| 177 | 177 |
check(countStronglyConnectedComponents(d) == 3, |
| 178 | 178 |
"This digraph has 3 strongly connected components"); |
| 179 | 179 |
Digraph::NodeMap<int> scomp1(d); |
| 180 | 180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
| 181 | 181 |
"This digraph has 3 strongly connected components"); |
| ... | ... |
@@ -232,13 +232,13 @@ |
| 232 | 232 |
|
| 233 | 233 |
{
|
| 234 | 234 |
// DAG example for topological sort from the book New Algorithms |
| 235 | 235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
| 236 | 236 |
Digraph d; |
| 237 | 237 |
Digraph::NodeMap<int> order(d); |
| 238 |
|
|
| 238 |
|
|
| 239 | 239 |
Digraph::Node belt = d.addNode(); |
| 240 | 240 |
Digraph::Node trousers = d.addNode(); |
| 241 | 241 |
Digraph::Node necktie = d.addNode(); |
| 242 | 242 |
Digraph::Node coat = d.addNode(); |
| 243 | 243 |
Digraph::Node socks = d.addNode(); |
| 244 | 244 |
Digraph::Node shirt = d.addNode(); |
| ... | ... |
@@ -252,25 +252,25 @@ |
| 252 | 252 |
d.addArc(trousers, shoe); |
| 253 | 253 |
d.addArc(trousers, belt); |
| 254 | 254 |
d.addArc(belt, coat); |
| 255 | 255 |
d.addArc(shirt, belt); |
| 256 | 256 |
d.addArc(shirt, necktie); |
| 257 | 257 |
d.addArc(necktie, coat); |
| 258 |
|
|
| 258 |
|
|
| 259 | 259 |
check(dag(d), "This digraph is DAG."); |
| 260 | 260 |
topologicalSort(d, order); |
| 261 | 261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
| 262 | 262 |
check(order[d.source(a)] < order[d.target(a)], |
| 263 | 263 |
"Wrong topologicalSort()"); |
| 264 | 264 |
} |
| 265 | 265 |
} |
| 266 | 266 |
|
| 267 | 267 |
{
|
| 268 | 268 |
ListGraph g; |
| 269 | 269 |
ListGraph::NodeMap<bool> map(g); |
| 270 |
|
|
| 270 |
|
|
| 271 | 271 |
ListGraph::Node n1 = g.addNode(); |
| 272 | 272 |
ListGraph::Node n2 = g.addNode(); |
| 273 | 273 |
ListGraph::Node n3 = g.addNode(); |
| 274 | 274 |
ListGraph::Node n4 = g.addNode(); |
| 275 | 275 |
ListGraph::Node n5 = g.addNode(); |
| 276 | 276 |
ListGraph::Node n6 = g.addNode(); |
| ... | ... |
@@ -280,16 +280,16 @@ |
| 280 | 280 |
g.addEdge(n1, n4); |
| 281 | 281 |
g.addEdge(n2, n5); |
| 282 | 282 |
g.addEdge(n3, n6); |
| 283 | 283 |
g.addEdge(n4, n6); |
| 284 | 284 |
g.addEdge(n4, n7); |
| 285 | 285 |
g.addEdge(n5, n7); |
| 286 |
|
|
| 286 |
|
|
| 287 | 287 |
check(bipartite(g), "This graph is bipartite"); |
| 288 | 288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
| 289 |
|
|
| 289 |
|
|
| 290 | 290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
| 291 | 291 |
"Wrong bipartitePartitions()"); |
| 292 | 292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
| 293 | 293 |
"Wrong bipartitePartitions()"); |
| 294 | 294 |
} |
| 295 | 295 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -83,13 +83,13 @@ |
| 83 | 83 |
dfs_test.init(); |
| 84 | 84 |
dfs_test.addSource(s); |
| 85 | 85 |
e = dfs_test.processNextArc(); |
| 86 | 86 |
e = const_dfs_test.nextArc(); |
| 87 | 87 |
b = const_dfs_test.emptyQueue(); |
| 88 | 88 |
i = const_dfs_test.queueSize(); |
| 89 |
|
|
| 89 |
|
|
| 90 | 90 |
dfs_test.start(); |
| 91 | 91 |
dfs_test.start(t); |
| 92 | 92 |
dfs_test.start(am); |
| 93 | 93 |
|
| 94 | 94 |
l = const_dfs_test.dist(t); |
| 95 | 95 |
e = const_dfs_test.predArc(t); |
| ... | ... |
@@ -109,13 +109,13 @@ |
| 109 | 109 |
::Create dfs_test(G); |
| 110 | 110 |
|
| 111 | 111 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
| 112 | 112 |
concepts::ReadWriteMap<Node,int> dist_map; |
| 113 | 113 |
concepts::ReadWriteMap<Node,bool> reached_map; |
| 114 | 114 |
concepts::WriteMap<Node,bool> processed_map; |
| 115 |
|
|
| 115 |
|
|
| 116 | 116 |
dfs_test |
| 117 | 117 |
.predMap(pred_map) |
| 118 | 118 |
.distMap(dist_map) |
| 119 | 119 |
.reachedMap(reached_map) |
| 120 | 120 |
.processedMap(processed_map); |
| 121 | 121 |
|
| ... | ... |
@@ -126,13 +126,13 @@ |
| 126 | 126 |
|
| 127 | 127 |
dfs_test.addSource(s); |
| 128 | 128 |
e = dfs_test.processNextArc(); |
| 129 | 129 |
e = dfs_test.nextArc(); |
| 130 | 130 |
b = dfs_test.emptyQueue(); |
| 131 | 131 |
i = dfs_test.queueSize(); |
| 132 |
|
|
| 132 |
|
|
| 133 | 133 |
dfs_test.start(); |
| 134 | 134 |
dfs_test.start(t); |
| 135 | 135 |
dfs_test.start(am); |
| 136 | 136 |
|
| 137 | 137 |
l = dfs_test.dist(t); |
| 138 | 138 |
e = dfs_test.predArc(t); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -16,12 +16,13 @@ |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/digraph.h> |
| 20 | 20 |
#include <lemon/list_graph.h> |
| 21 | 21 |
#include <lemon/smart_graph.h> |
| 22 |
#include <lemon/static_graph.h> |
|
| 22 | 23 |
#include <lemon/full_graph.h> |
| 23 | 24 |
|
| 24 | 25 |
#include "test_tools.h" |
| 25 | 26 |
#include "graph_test.h" |
| 26 | 27 |
|
| 27 | 28 |
using namespace lemon; |
| ... | ... |
@@ -32,12 +33,15 @@ |
| 32 | 33 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 33 | 34 |
Digraph G; |
| 34 | 35 |
|
| 35 | 36 |
checkGraphNodeList(G, 0); |
| 36 | 37 |
checkGraphArcList(G, 0); |
| 37 | 38 |
|
| 39 |
G.reserveNode(3); |
|
| 40 |
G.reserveArc(4); |
|
| 41 |
|
|
| 38 | 42 |
Node |
| 39 | 43 |
n1 = G.addNode(), |
| 40 | 44 |
n2 = G.addNode(), |
| 41 | 45 |
n3 = G.addNode(); |
| 42 | 46 |
checkGraphNodeList(G, 3); |
| 43 | 47 |
checkGraphArcList(G, 0); |
| ... | ... |
@@ -280,12 +284,20 @@ |
| 280 | 284 |
G.addNode(); |
| 281 | 285 |
snapshot.save(G); |
| 282 | 286 |
|
| 283 | 287 |
G.addArc(G.addNode(), G.addNode()); |
| 284 | 288 |
|
| 285 | 289 |
snapshot.restore(); |
| 290 |
snapshot.save(G); |
|
| 291 |
|
|
| 292 |
checkGraphNodeList(G, 4); |
|
| 293 |
checkGraphArcList(G, 4); |
|
| 294 |
|
|
| 295 |
G.addArc(G.addNode(), G.addNode()); |
|
| 296 |
|
|
| 297 |
snapshot.restore(); |
|
| 286 | 298 |
|
| 287 | 299 |
checkGraphNodeList(G, 4); |
| 288 | 300 |
checkGraphArcList(G, 4); |
| 289 | 301 |
} |
| 290 | 302 |
|
| 291 | 303 |
void checkConcepts() {
|
| ... | ... |
@@ -314,12 +326,16 @@ |
| 314 | 326 |
{ // Checking SmartDigraph
|
| 315 | 327 |
checkConcept<Digraph, SmartDigraph>(); |
| 316 | 328 |
checkConcept<AlterableDigraphComponent<>, SmartDigraph>(); |
| 317 | 329 |
checkConcept<ExtendableDigraphComponent<>, SmartDigraph>(); |
| 318 | 330 |
checkConcept<ClearableDigraphComponent<>, SmartDigraph>(); |
| 319 | 331 |
} |
| 332 |
{ // Checking StaticDigraph
|
|
| 333 |
checkConcept<Digraph, StaticDigraph>(); |
|
| 334 |
checkConcept<ClearableDigraphComponent<>, StaticDigraph>(); |
|
| 335 |
} |
|
| 320 | 336 |
{ // Checking FullDigraph
|
| 321 | 337 |
checkConcept<Digraph, FullDigraph>(); |
| 322 | 338 |
} |
| 323 | 339 |
} |
| 324 | 340 |
|
| 325 | 341 |
template <typename Digraph> |
| ... | ... |
@@ -369,16 +385,128 @@ |
| 369 | 385 |
check(g.valid(e2), "Wrong validity check"); |
| 370 | 386 |
|
| 371 | 387 |
check(!g.valid(g.nodeFromId(-1)), "Wrong validity check"); |
| 372 | 388 |
check(!g.valid(g.arcFromId(-1)), "Wrong validity check"); |
| 373 | 389 |
} |
| 374 | 390 |
|
| 391 |
void checkStaticDigraph() {
|
|
| 392 |
SmartDigraph g; |
|
| 393 |
SmartDigraph::NodeMap<StaticDigraph::Node> nref(g); |
|
| 394 |
SmartDigraph::ArcMap<StaticDigraph::Arc> aref(g); |
|
| 395 |
|
|
| 396 |
StaticDigraph G; |
|
| 397 |
|
|
| 398 |
checkGraphNodeList(G, 0); |
|
| 399 |
checkGraphArcList(G, 0); |
|
| 400 |
|
|
| 401 |
G.build(g, nref, aref); |
|
| 402 |
|
|
| 403 |
checkGraphNodeList(G, 0); |
|
| 404 |
checkGraphArcList(G, 0); |
|
| 405 |
|
|
| 406 |
SmartDigraph::Node |
|
| 407 |
n1 = g.addNode(), |
|
| 408 |
n2 = g.addNode(), |
|
| 409 |
n3 = g.addNode(); |
|
| 410 |
|
|
| 411 |
G.build(g, nref, aref); |
|
| 412 |
|
|
| 413 |
checkGraphNodeList(G, 3); |
|
| 414 |
checkGraphArcList(G, 0); |
|
| 415 |
|
|
| 416 |
SmartDigraph::Arc a1 = g.addArc(n1, n2); |
|
| 417 |
|
|
| 418 |
G.build(g, nref, aref); |
|
| 419 |
|
|
| 420 |
check(G.source(aref[a1]) == nref[n1] && G.target(aref[a1]) == nref[n2], |
|
| 421 |
"Wrong arc or wrong references"); |
|
| 422 |
checkGraphNodeList(G, 3); |
|
| 423 |
checkGraphArcList(G, 1); |
|
| 424 |
|
|
| 425 |
checkGraphOutArcList(G, nref[n1], 1); |
|
| 426 |
checkGraphOutArcList(G, nref[n2], 0); |
|
| 427 |
checkGraphOutArcList(G, nref[n3], 0); |
|
| 428 |
|
|
| 429 |
checkGraphInArcList(G, nref[n1], 0); |
|
| 430 |
checkGraphInArcList(G, nref[n2], 1); |
|
| 431 |
checkGraphInArcList(G, nref[n3], 0); |
|
| 432 |
|
|
| 433 |
checkGraphConArcList(G, 1); |
|
| 434 |
|
|
| 435 |
SmartDigraph::Arc |
|
| 436 |
a2 = g.addArc(n2, n1), |
|
| 437 |
a3 = g.addArc(n2, n3), |
|
| 438 |
a4 = g.addArc(n2, n3); |
|
| 439 |
|
|
| 440 |
digraphCopy(g, G).nodeRef(nref).run(); |
|
| 441 |
|
|
| 442 |
checkGraphNodeList(G, 3); |
|
| 443 |
checkGraphArcList(G, 4); |
|
| 444 |
|
|
| 445 |
checkGraphOutArcList(G, nref[n1], 1); |
|
| 446 |
checkGraphOutArcList(G, nref[n2], 3); |
|
| 447 |
checkGraphOutArcList(G, nref[n3], 0); |
|
| 448 |
|
|
| 449 |
checkGraphInArcList(G, nref[n1], 1); |
|
| 450 |
checkGraphInArcList(G, nref[n2], 1); |
|
| 451 |
checkGraphInArcList(G, nref[n3], 2); |
|
| 452 |
|
|
| 453 |
checkGraphConArcList(G, 4); |
|
| 454 |
|
|
| 455 |
std::vector<std::pair<int,int> > arcs; |
|
| 456 |
arcs.push_back(std::make_pair(0,1)); |
|
| 457 |
arcs.push_back(std::make_pair(0,2)); |
|
| 458 |
arcs.push_back(std::make_pair(1,3)); |
|
| 459 |
arcs.push_back(std::make_pair(1,2)); |
|
| 460 |
arcs.push_back(std::make_pair(3,0)); |
|
| 461 |
arcs.push_back(std::make_pair(3,3)); |
|
| 462 |
arcs.push_back(std::make_pair(4,2)); |
|
| 463 |
arcs.push_back(std::make_pair(4,3)); |
|
| 464 |
arcs.push_back(std::make_pair(4,1)); |
|
| 465 |
|
|
| 466 |
G.build(6, arcs.begin(), arcs.end()); |
|
| 467 |
|
|
| 468 |
checkGraphNodeList(G, 6); |
|
| 469 |
checkGraphArcList(G, 9); |
|
| 470 |
|
|
| 471 |
checkGraphOutArcList(G, G.node(0), 2); |
|
| 472 |
checkGraphOutArcList(G, G.node(1), 2); |
|
| 473 |
checkGraphOutArcList(G, G.node(2), 0); |
|
| 474 |
checkGraphOutArcList(G, G.node(3), 2); |
|
| 475 |
checkGraphOutArcList(G, G.node(4), 3); |
|
| 476 |
checkGraphOutArcList(G, G.node(5), 0); |
|
| 477 |
|
|
| 478 |
checkGraphInArcList(G, G.node(0), 1); |
|
| 479 |
checkGraphInArcList(G, G.node(1), 2); |
|
| 480 |
checkGraphInArcList(G, G.node(2), 3); |
|
| 481 |
checkGraphInArcList(G, G.node(3), 3); |
|
| 482 |
checkGraphInArcList(G, G.node(4), 0); |
|
| 483 |
checkGraphInArcList(G, G.node(5), 0); |
|
| 484 |
|
|
| 485 |
checkGraphConArcList(G, 9); |
|
| 486 |
|
|
| 487 |
checkNodeIds(G); |
|
| 488 |
checkArcIds(G); |
|
| 489 |
checkGraphNodeMap(G); |
|
| 490 |
checkGraphArcMap(G); |
|
| 491 |
|
|
| 492 |
int n = G.nodeNum(); |
|
| 493 |
int m = G.arcNum(); |
|
| 494 |
check(G.index(G.node(n-1)) == n-1, "Wrong index."); |
|
| 495 |
check(G.index(G.arc(m-1)) == m-1, "Wrong index."); |
|
| 496 |
} |
|
| 497 |
|
|
| 375 | 498 |
void checkFullDigraph(int num) {
|
| 376 | 499 |
typedef FullDigraph Digraph; |
| 377 | 500 |
DIGRAPH_TYPEDEFS(Digraph); |
| 501 |
|
|
| 378 | 502 |
Digraph G(num); |
| 503 |
check(G.nodeNum() == num && G.arcNum() == num * num, "Wrong size"); |
|
| 504 |
|
|
| 505 |
G.resize(num); |
|
| 506 |
check(G.nodeNum() == num && G.arcNum() == num * num, "Wrong size"); |
|
| 379 | 507 |
|
| 380 | 508 |
checkGraphNodeList(G, num); |
| 381 | 509 |
checkGraphArcList(G, num * num); |
| 382 | 510 |
|
| 383 | 511 |
for (NodeIt n(G); n != INVALID; ++n) {
|
| 384 | 512 |
checkGraphOutArcList(G, n, num); |
| ... | ... |
@@ -416,12 +544,15 @@ |
| 416 | 544 |
{ // Checking SmartDigraph
|
| 417 | 545 |
checkDigraphBuild<SmartDigraph>(); |
| 418 | 546 |
checkDigraphSplit<SmartDigraph>(); |
| 419 | 547 |
checkDigraphSnapshot<SmartDigraph>(); |
| 420 | 548 |
checkDigraphValidity<SmartDigraph>(); |
| 421 | 549 |
} |
| 550 |
{ // Checking StaticDigraph
|
|
| 551 |
checkStaticDigraph(); |
|
| 552 |
} |
|
| 422 | 553 |
{ // Checking FullDigraph
|
| 423 | 554 |
checkFullDigraph(8); |
| 424 | 555 |
} |
| 425 | 556 |
} |
| 426 | 557 |
|
| 427 | 558 |
int main() {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -82,13 +82,13 @@ |
| 82 | 82 |
dijkstra_test.addSource(s); |
| 83 | 83 |
dijkstra_test.addSource(s, 1); |
| 84 | 84 |
n = dijkstra_test.processNextNode(); |
| 85 | 85 |
n = const_dijkstra_test.nextNode(); |
| 86 | 86 |
b = const_dijkstra_test.emptyQueue(); |
| 87 | 87 |
i = const_dijkstra_test.queueSize(); |
| 88 |
|
|
| 88 |
|
|
| 89 | 89 |
dijkstra_test.start(); |
| 90 | 90 |
dijkstra_test.start(t); |
| 91 | 91 |
dijkstra_test.start(nm); |
| 92 | 92 |
|
| 93 | 93 |
l = const_dijkstra_test.dist(t); |
| 94 | 94 |
e = const_dijkstra_test.predArc(t); |
| ... | ... |
@@ -106,23 +106,23 @@ |
| 106 | 106 |
::SetDistMap<concepts::ReadWriteMap<Node,VType> > |
| 107 | 107 |
::SetStandardProcessedMap |
| 108 | 108 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
| 109 | 109 |
::SetOperationTraits<DijkstraDefaultOperationTraits<VType> > |
| 110 | 110 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
| 111 | 111 |
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
| 112 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >, |
|
| 112 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >, |
|
| 113 | 113 |
concepts::ReadWriteMap<Node,int> > |
| 114 | 114 |
::Create dijkstra_test(G,length); |
| 115 | 115 |
|
| 116 | 116 |
LengthMap length_map; |
| 117 | 117 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
| 118 | 118 |
concepts::ReadWriteMap<Node,VType> dist_map; |
| 119 | 119 |
concepts::WriteMap<Node,bool> processed_map; |
| 120 | 120 |
concepts::ReadWriteMap<Node,int> heap_cross_ref; |
| 121 | 121 |
BinHeap<VType, concepts::ReadWriteMap<Node,int> > heap(heap_cross_ref); |
| 122 |
|
|
| 122 |
|
|
| 123 | 123 |
dijkstra_test |
| 124 | 124 |
.lengthMap(length_map) |
| 125 | 125 |
.predMap(pred_map) |
| 126 | 126 |
.distMap(dist_map) |
| 127 | 127 |
.processedMap(processed_map) |
| 128 | 128 |
.heap(heap, heap_cross_ref); |
| ... | ... |
@@ -133,13 +133,13 @@ |
| 133 | 133 |
dijkstra_test.addSource(s); |
| 134 | 134 |
dijkstra_test.addSource(s, 1); |
| 135 | 135 |
n = dijkstra_test.processNextNode(); |
| 136 | 136 |
n = dijkstra_test.nextNode(); |
| 137 | 137 |
b = dijkstra_test.emptyQueue(); |
| 138 | 138 |
i = dijkstra_test.queueSize(); |
| 139 |
|
|
| 139 |
|
|
| 140 | 140 |
dijkstra_test.start(); |
| 141 | 141 |
dijkstra_test.start(t); |
| 142 | 142 |
dijkstra_test.start(nm); |
| 143 | 143 |
|
| 144 | 144 |
l = dijkstra_test.dist(t); |
| 145 | 145 |
e = dijkstra_test.predArc(t); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -82,17 +82,17 @@ |
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
int main() |
| 85 | 85 |
{
|
| 86 | 86 |
typedef ListDigraph Digraph; |
| 87 | 87 |
typedef Undirector<Digraph> Graph; |
| 88 |
|
|
| 88 |
|
|
| 89 | 89 |
{
|
| 90 | 90 |
Digraph d; |
| 91 | 91 |
Graph g(d); |
| 92 |
|
|
| 92 |
|
|
| 93 | 93 |
checkDiEulerIt(d); |
| 94 | 94 |
checkDiEulerIt(g); |
| 95 | 95 |
checkEulerIt(g); |
| 96 | 96 |
|
| 97 | 97 |
check(eulerian(d), "This graph is Eulerian"); |
| 98 | 98 |
check(eulerian(g), "This graph is Eulerian"); |
| ... | ... |
@@ -125,13 +125,13 @@ |
| 125 | 125 |
{
|
| 126 | 126 |
Digraph d; |
| 127 | 127 |
Graph g(d); |
| 128 | 128 |
Digraph::Node n1 = d.addNode(); |
| 129 | 129 |
Digraph::Node n2 = d.addNode(); |
| 130 | 130 |
Digraph::Node n3 = d.addNode(); |
| 131 |
|
|
| 131 |
|
|
| 132 | 132 |
d.addArc(n1, n2); |
| 133 | 133 |
d.addArc(n2, n1); |
| 134 | 134 |
d.addArc(n2, n3); |
| 135 | 135 |
d.addArc(n3, n2); |
| 136 | 136 |
|
| 137 | 137 |
checkDiEulerIt(d); |
| ... | ... |
@@ -150,13 +150,13 @@ |
| 150 | 150 |
Digraph::Node n1 = d.addNode(); |
| 151 | 151 |
Digraph::Node n2 = d.addNode(); |
| 152 | 152 |
Digraph::Node n3 = d.addNode(); |
| 153 | 153 |
Digraph::Node n4 = d.addNode(); |
| 154 | 154 |
Digraph::Node n5 = d.addNode(); |
| 155 | 155 |
Digraph::Node n6 = d.addNode(); |
| 156 |
|
|
| 156 |
|
|
| 157 | 157 |
d.addArc(n1, n2); |
| 158 | 158 |
d.addArc(n2, n4); |
| 159 | 159 |
d.addArc(n1, n3); |
| 160 | 160 |
d.addArc(n3, n4); |
| 161 | 161 |
d.addArc(n4, n1); |
| 162 | 162 |
d.addArc(n3, n5); |
| ... | ... |
@@ -186,13 +186,13 @@ |
| 186 | 186 |
Digraph::Node n0 = d.addNode(); |
| 187 | 187 |
Digraph::Node n1 = d.addNode(); |
| 188 | 188 |
Digraph::Node n2 = d.addNode(); |
| 189 | 189 |
Digraph::Node n3 = d.addNode(); |
| 190 | 190 |
Digraph::Node n4 = d.addNode(); |
| 191 | 191 |
Digraph::Node n5 = d.addNode(); |
| 192 |
|
|
| 192 |
|
|
| 193 | 193 |
d.addArc(n1, n2); |
| 194 | 194 |
d.addArc(n2, n3); |
| 195 | 195 |
d.addArc(n3, n1); |
| 196 | 196 |
|
| 197 | 197 |
checkDiEulerIt(d); |
| 198 | 198 |
checkDiEulerIt(d, n2); |
| ... | ... |
@@ -208,13 +208,13 @@ |
| 208 | 208 |
{
|
| 209 | 209 |
Digraph d; |
| 210 | 210 |
Graph g(d); |
| 211 | 211 |
Digraph::Node n1 = d.addNode(); |
| 212 | 212 |
Digraph::Node n2 = d.addNode(); |
| 213 | 213 |
Digraph::Node n3 = d.addNode(); |
| 214 |
|
|
| 214 |
|
|
| 215 | 215 |
d.addArc(n1, n2); |
| 216 | 216 |
d.addArc(n2, n3); |
| 217 | 217 |
|
| 218 | 218 |
check(!eulerian(d), "This graph is not Eulerian"); |
| 219 | 219 |
check(!eulerian(g), "This graph is not Eulerian"); |
| 220 | 220 |
} |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 1 | 19 |
#include <iostream> |
| 2 | 20 |
|
| 3 | 21 |
#include "test_tools.h" |
| 4 | 22 |
#include <lemon/smart_graph.h> |
| 5 | 23 |
#include <lemon/concepts/graph.h> |
| 6 | 24 |
#include <lemon/concepts/maps.h> |
| ... | ... |
@@ -30,13 +48,13 @@ |
| 30 | 48 |
"0 3 5 10\n" |
| 31 | 49 |
"0 3 6 7\n" |
| 32 | 50 |
"4 2 7 1\n" |
| 33 | 51 |
"@attributes\n" |
| 34 | 52 |
"source 0\n" |
| 35 | 53 |
"target 3\n"; |
| 36 |
|
|
| 54 |
|
|
| 37 | 55 |
void checkGomoryHuCompile() |
| 38 | 56 |
{
|
| 39 | 57 |
typedef int Value; |
| 40 | 58 |
typedef concepts::Graph Graph; |
| 41 | 59 |
|
| 42 | 60 |
typedef Graph::Node Node; |
| ... | ... |
@@ -66,13 +84,13 @@ |
| 66 | 84 |
|
| 67 | 85 |
GRAPH_TYPEDEFS(Graph); |
| 68 | 86 |
typedef Graph::EdgeMap<int> IntEdgeMap; |
| 69 | 87 |
typedef Graph::NodeMap<bool> BoolNodeMap; |
| 70 | 88 |
|
| 71 | 89 |
int cutValue(const Graph& graph, const BoolNodeMap& cut, |
| 72 |
|
|
| 90 |
const IntEdgeMap& capacity) {
|
|
| 73 | 91 |
|
| 74 | 92 |
int sum = 0; |
| 75 | 93 |
for (EdgeIt e(graph); e != INVALID; ++e) {
|
| 76 | 94 |
Node s = graph.u(e); |
| 77 | 95 |
Node t = graph.v(e); |
| 78 | 96 |
|
| ... | ... |
@@ -104,20 +122,20 @@ |
| 104 | 122 |
check(pf.flowValue() == ght.minCutValue(u, v), "Wrong cut 1"); |
| 105 | 123 |
check(cm[u] != cm[v], "Wrong cut 2"); |
| 106 | 124 |
check(pf.flowValue() == cutValue(graph, cm, capacity), "Wrong cut 3"); |
| 107 | 125 |
|
| 108 | 126 |
int sum=0; |
| 109 | 127 |
for(GomoryHu<Graph>::MinCutEdgeIt a(ght, u, v);a!=INVALID;++a) |
| 110 |
sum+=capacity[a]; |
|
| 128 |
sum+=capacity[a]; |
|
| 111 | 129 |
check(sum == ght.minCutValue(u, v), "Problem with MinCutEdgeIt"); |
| 112 | 130 |
|
| 113 | 131 |
sum=0; |
| 114 | 132 |
for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,true);n!=INVALID;++n) |
| 115 | 133 |
sum++; |
| 116 | 134 |
for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,false);n!=INVALID;++n) |
| 117 | 135 |
sum++; |
| 118 | 136 |
check(sum == countNodes(graph), "Problem with MinCutNodeIt"); |
| 119 | 137 |
} |
| 120 | 138 |
} |
| 121 |
|
|
| 139 |
|
|
| 122 | 140 |
return 0; |
| 123 | 141 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -35,12 +35,15 @@ |
| 35 | 35 |
|
| 36 | 36 |
Graph G; |
| 37 | 37 |
checkGraphNodeList(G, 0); |
| 38 | 38 |
checkGraphEdgeList(G, 0); |
| 39 | 39 |
checkGraphArcList(G, 0); |
| 40 | 40 |
|
| 41 |
G.reserveNode(3); |
|
| 42 |
G.reserveEdge(3); |
|
| 43 |
|
|
| 41 | 44 |
Node |
| 42 | 45 |
n1 = G.addNode(), |
| 43 | 46 |
n2 = G.addNode(), |
| 44 | 47 |
n3 = G.addNode(); |
| 45 | 48 |
checkGraphNodeList(G, 3); |
| 46 | 49 |
checkGraphEdgeList(G, 0); |
| ... | ... |
@@ -253,23 +256,39 @@ |
| 253 | 256 |
G.addNode(); |
| 254 | 257 |
snapshot.save(G); |
| 255 | 258 |
|
| 256 | 259 |
G.addEdge(G.addNode(), G.addNode()); |
| 257 | 260 |
|
| 258 | 261 |
snapshot.restore(); |
| 262 |
snapshot.save(G); |
|
| 263 |
|
|
| 264 |
checkGraphNodeList(G, 4); |
|
| 265 |
checkGraphEdgeList(G, 3); |
|
| 266 |
checkGraphArcList(G, 6); |
|
| 267 |
|
|
| 268 |
G.addEdge(G.addNode(), G.addNode()); |
|
| 269 |
|
|
| 270 |
snapshot.restore(); |
|
| 259 | 271 |
|
| 260 | 272 |
checkGraphNodeList(G, 4); |
| 261 | 273 |
checkGraphEdgeList(G, 3); |
| 262 | 274 |
checkGraphArcList(G, 6); |
| 263 | 275 |
} |
| 264 | 276 |
|
| 265 | 277 |
void checkFullGraph(int num) {
|
| 266 | 278 |
typedef FullGraph Graph; |
| 267 | 279 |
GRAPH_TYPEDEFS(Graph); |
| 268 | 280 |
|
| 269 | 281 |
Graph G(num); |
| 282 |
check(G.nodeNum() == num && G.edgeNum() == num * (num - 1) / 2, |
|
| 283 |
"Wrong size"); |
|
| 284 |
|
|
| 285 |
G.resize(num); |
|
| 286 |
check(G.nodeNum() == num && G.edgeNum() == num * (num - 1) / 2, |
|
| 287 |
"Wrong size"); |
|
| 288 |
|
|
| 270 | 289 |
checkGraphNodeList(G, num); |
| 271 | 290 |
checkGraphEdgeList(G, num * (num - 1) / 2); |
| 272 | 291 |
|
| 273 | 292 |
for (NodeIt n(G); n != INVALID; ++n) {
|
| 274 | 293 |
checkGraphOutArcList(G, n, num - 1); |
| 275 | 294 |
checkGraphInArcList(G, n, num - 1); |
| ... | ... |
@@ -408,12 +427,16 @@ |
| 408 | 427 |
GRAPH_TYPEDEFS(Graph); |
| 409 | 428 |
Graph G(width, height); |
| 410 | 429 |
|
| 411 | 430 |
check(G.width() == width, "Wrong column number"); |
| 412 | 431 |
check(G.height() == height, "Wrong row number"); |
| 413 | 432 |
|
| 433 |
G.resize(width, height); |
|
| 434 |
check(G.width() == width, "Wrong column number"); |
|
| 435 |
check(G.height() == height, "Wrong row number"); |
|
| 436 |
|
|
| 414 | 437 |
for (int i = 0; i < width; ++i) {
|
| 415 | 438 |
for (int j = 0; j < height; ++j) {
|
| 416 | 439 |
check(G.col(G(i, j)) == i, "Wrong column"); |
| 417 | 440 |
check(G.row(G(i, j)) == j, "Wrong row"); |
| 418 | 441 |
check(G.pos(G(i, j)).x == i, "Wrong column"); |
| 419 | 442 |
check(G.pos(G(i, j)).y == j, "Wrong row"); |
| ... | ... |
@@ -483,12 +506,17 @@ |
| 483 | 506 |
} |
| 484 | 507 |
|
| 485 | 508 |
void checkHypercubeGraph(int dim) {
|
| 486 | 509 |
GRAPH_TYPEDEFS(HypercubeGraph); |
| 487 | 510 |
|
| 488 | 511 |
HypercubeGraph G(dim); |
| 512 |
check(G.dimension() == dim, "Wrong dimension"); |
|
| 513 |
|
|
| 514 |
G.resize(dim); |
|
| 515 |
check(G.dimension() == dim, "Wrong dimension"); |
|
| 516 |
|
|
| 489 | 517 |
checkGraphNodeList(G, 1 << dim); |
| 490 | 518 |
checkGraphEdgeList(G, dim * (1 << (dim-1))); |
| 491 | 519 |
checkGraphArcList(G, dim * (1 << dim)); |
| 492 | 520 |
|
| 493 | 521 |
Node n = G.nodeFromId(dim); |
| 494 | 522 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -80,13 +80,13 @@ |
| 80 | 80 |
|
| 81 | 81 |
v = const_ho_test.minCutValue(); |
| 82 | 82 |
v = const_ho_test.minCutMap(cut); |
| 83 | 83 |
} |
| 84 | 84 |
|
| 85 | 85 |
template <typename Graph, typename CapMap, typename CutMap> |
| 86 |
typename CapMap::Value |
|
| 86 |
typename CapMap::Value |
|
| 87 | 87 |
cutValue(const Graph& graph, const CapMap& cap, const CutMap& cut) |
| 88 | 88 |
{
|
| 89 | 89 |
typename CapMap::Value sum = 0; |
| 90 | 90 |
for (typename Graph::ArcIt a(graph); a != INVALID; ++a) {
|
| 91 | 91 |
if (cut[graph.source(a)] && !cut[graph.target(a)]) |
| 92 | 92 |
sum += cap[a]; |
| ... | ... |
@@ -107,13 +107,13 @@ |
| 107 | 107 |
.run(); |
| 108 | 108 |
|
| 109 | 109 |
{
|
| 110 | 110 |
HaoOrlin<SmartDigraph> ho(graph, cap1); |
| 111 | 111 |
ho.run(); |
| 112 | 112 |
ho.minCutMap(cut); |
| 113 |
|
|
| 113 |
|
|
| 114 | 114 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
| 115 | 115 |
check(ho.minCutValue() == cutValue(graph, cap1, cut), "Wrong cut value"); |
| 116 | 116 |
} |
| 117 | 117 |
{
|
| 118 | 118 |
HaoOrlin<SmartDigraph> ho(graph, cap2); |
| 119 | 119 |
ho.run(); |
| ... | ... |
@@ -123,41 +123,41 @@ |
| 123 | 123 |
check(ho.minCutValue() == cutValue(graph, cap2, cut), "Wrong cut value"); |
| 124 | 124 |
} |
| 125 | 125 |
{
|
| 126 | 126 |
HaoOrlin<SmartDigraph> ho(graph, cap3); |
| 127 | 127 |
ho.run(); |
| 128 | 128 |
ho.minCutMap(cut); |
| 129 |
|
|
| 129 |
|
|
| 130 | 130 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
| 131 | 131 |
check(ho.minCutValue() == cutValue(graph, cap3, cut), "Wrong cut value"); |
| 132 | 132 |
} |
| 133 |
|
|
| 133 |
|
|
| 134 | 134 |
typedef Undirector<SmartDigraph> UGraph; |
| 135 | 135 |
UGraph ugraph(graph); |
| 136 |
|
|
| 136 |
|
|
| 137 | 137 |
{
|
| 138 | 138 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap1); |
| 139 | 139 |
ho.run(); |
| 140 | 140 |
ho.minCutMap(cut); |
| 141 |
|
|
| 141 |
|
|
| 142 | 142 |
check(ho.minCutValue() == 2, "Wrong cut value"); |
| 143 | 143 |
check(ho.minCutValue() == cutValue(ugraph, cap1, cut), "Wrong cut value"); |
| 144 | 144 |
} |
| 145 | 145 |
{
|
| 146 | 146 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap2); |
| 147 | 147 |
ho.run(); |
| 148 | 148 |
ho.minCutMap(cut); |
| 149 |
|
|
| 149 |
|
|
| 150 | 150 |
check(ho.minCutValue() == 5, "Wrong cut value"); |
| 151 | 151 |
check(ho.minCutValue() == cutValue(ugraph, cap2, cut), "Wrong cut value"); |
| 152 | 152 |
} |
| 153 | 153 |
{
|
| 154 | 154 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap3); |
| 155 | 155 |
ho.run(); |
| 156 | 156 |
ho.minCutMap(cut); |
| 157 |
|
|
| 157 |
|
|
| 158 | 158 |
check(ho.minCutValue() == 5, "Wrong cut value"); |
| 159 | 159 |
check(ho.minCutValue() == cutValue(ugraph, cap3, cut), "Wrong cut value"); |
| 160 | 160 |
} |
| 161 | 161 |
|
| 162 | 162 |
return 0; |
| 163 | 163 |
} |
| ... | ... |
@@ -22,20 +22,23 @@ |
| 22 | 22 |
#include <vector> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/concept_check.h> |
| 25 | 25 |
#include <lemon/concepts/heap.h> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/smart_graph.h> |
| 28 |
|
|
| 29 | 28 |
#include <lemon/lgf_reader.h> |
| 30 | 29 |
#include <lemon/dijkstra.h> |
| 31 | 30 |
#include <lemon/maps.h> |
| 32 | 31 |
|
| 33 | 32 |
#include <lemon/bin_heap.h> |
| 33 |
#include <lemon/quad_heap.h> |
|
| 34 |
#include <lemon/dheap.h> |
|
| 34 | 35 |
#include <lemon/fib_heap.h> |
| 36 |
#include <lemon/pairing_heap.h> |
|
| 35 | 37 |
#include <lemon/radix_heap.h> |
| 38 |
#include <lemon/binomial_heap.h> |
|
| 36 | 39 |
#include <lemon/bucket_heap.h> |
| 37 | 40 |
|
| 38 | 41 |
#include "test_tools.h" |
| 39 | 42 |
|
| 40 | 43 |
using namespace lemon; |
| 41 | 44 |
using namespace lemon::concepts; |
| ... | ... |
@@ -86,53 +89,48 @@ |
| 86 | 89 |
|
| 87 | 90 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
| 88 | 91 |
|
| 89 | 92 |
template <typename Heap> |
| 90 | 93 |
void heapSortTest() {
|
| 91 | 94 |
RangeMap<int> map(test_len, -1); |
| 92 |
|
|
| 93 | 95 |
Heap heap(map); |
| 94 | 96 |
|
| 95 | 97 |
std::vector<int> v(test_len); |
| 96 |
|
|
| 97 | 98 |
for (int i = 0; i < test_len; ++i) {
|
| 98 | 99 |
v[i] = test_seq[i]; |
| 99 | 100 |
heap.push(i, v[i]); |
| 100 | 101 |
} |
| 101 | 102 |
std::sort(v.begin(), v.end()); |
| 102 | 103 |
for (int i = 0; i < test_len; ++i) {
|
| 103 |
check(v[i] == heap.prio() |
|
| 104 |
check(v[i] == heap.prio(), "Wrong order in heap sort."); |
|
| 104 | 105 |
heap.pop(); |
| 105 | 106 |
} |
| 106 | 107 |
} |
| 107 | 108 |
|
| 108 | 109 |
template <typename Heap> |
| 109 | 110 |
void heapIncreaseTest() {
|
| 110 | 111 |
RangeMap<int> map(test_len, -1); |
| 111 | 112 |
|
| 112 | 113 |
Heap heap(map); |
| 113 | 114 |
|
| 114 | 115 |
std::vector<int> v(test_len); |
| 115 |
|
|
| 116 | 116 |
for (int i = 0; i < test_len; ++i) {
|
| 117 | 117 |
v[i] = test_seq[i]; |
| 118 | 118 |
heap.push(i, v[i]); |
| 119 | 119 |
} |
| 120 | 120 |
for (int i = 0; i < test_len; ++i) {
|
| 121 | 121 |
v[i] += test_inc[i]; |
| 122 | 122 |
heap.increase(i, v[i]); |
| 123 | 123 |
} |
| 124 | 124 |
std::sort(v.begin(), v.end()); |
| 125 | 125 |
for (int i = 0; i < test_len; ++i) {
|
| 126 |
check(v[i] == heap.prio() |
|
| 126 |
check(v[i] == heap.prio(), "Wrong order in heap increase test."); |
|
| 127 | 127 |
heap.pop(); |
| 128 | 128 |
} |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 |
|
|
| 132 |
|
|
| 133 | 131 |
template <typename Heap> |
| 134 | 132 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
| 135 | 133 |
Node source) {
|
| 136 | 134 |
|
| 137 | 135 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
| 138 | 136 |
Create dijkstra(digraph, length); |
| ... | ... |
@@ -141,22 +139,22 @@ |
| 141 | 139 |
|
| 142 | 140 |
for(ArcIt a(digraph); a != INVALID; ++a) {
|
| 143 | 141 |
Node s = digraph.source(a); |
| 144 | 142 |
Node t = digraph.target(a); |
| 145 | 143 |
if (dijkstra.reached(s)) {
|
| 146 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
| 147 |
"Error in |
|
| 145 |
"Error in shortest path tree."); |
|
| 148 | 146 |
} |
| 149 | 147 |
} |
| 150 | 148 |
|
| 151 | 149 |
for(NodeIt n(digraph); n != INVALID; ++n) {
|
| 152 | 150 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) {
|
| 153 | 151 |
Arc a = dijkstra.predArc(n); |
| 154 | 152 |
Node s = digraph.source(a); |
| 155 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
| 156 |
"Error in |
|
| 154 |
"Error in shortest path tree."); |
|
| 157 | 155 |
} |
| 158 | 156 |
} |
| 159 | 157 |
|
| 160 | 158 |
} |
| 161 | 159 |
|
| 162 | 160 |
int main() {
|
| ... | ... |
@@ -172,23 +170,111 @@ |
| 172 | 170 |
std::istringstream input(test_lgf); |
| 173 | 171 |
digraphReader(digraph, input). |
| 174 | 172 |
arcMap("capacity", length).
|
| 175 | 173 |
node("source", source).
|
| 176 | 174 |
run(); |
| 177 | 175 |
|
| 176 |
// BinHeap |
|
| 178 | 177 |
{
|
| 179 | 178 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
| 180 | 179 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
| 181 | 180 |
heapSortTest<IntHeap>(); |
| 182 | 181 |
heapIncreaseTest<IntHeap>(); |
| 183 | 182 |
|
| 184 | 183 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
| 185 | 184 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
| 186 | 185 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
| 187 | 186 |
} |
| 188 | 187 |
|
| 188 |
// QuadHeap |
|
| 189 |
{
|
|
| 190 |
typedef QuadHeap<Prio, ItemIntMap> IntHeap; |
|
| 191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 192 |
heapSortTest<IntHeap>(); |
|
| 193 |
heapIncreaseTest<IntHeap>(); |
|
| 194 |
|
|
| 195 |
typedef QuadHeap<Prio, IntNodeMap > NodeHeap; |
|
| 196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
// DHeap |
|
| 201 |
{
|
|
| 202 |
typedef DHeap<Prio, ItemIntMap> IntHeap; |
|
| 203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 204 |
heapSortTest<IntHeap>(); |
|
| 205 |
heapIncreaseTest<IntHeap>(); |
|
| 206 |
|
|
| 207 |
typedef DHeap<Prio, IntNodeMap > NodeHeap; |
|
| 208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 210 |
} |
|
| 211 |
|
|
| 212 |
// FibHeap |
|
| 213 |
{
|
|
| 214 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
|
| 215 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 216 |
heapSortTest<IntHeap>(); |
|
| 217 |
heapIncreaseTest<IntHeap>(); |
|
| 218 |
|
|
| 219 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
|
| 220 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 221 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 222 |
} |
|
| 223 |
|
|
| 224 |
// PairingHeap |
|
| 225 |
{
|
|
| 226 |
typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
|
| 227 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 228 |
heapSortTest<IntHeap>(); |
|
| 229 |
heapIncreaseTest<IntHeap>(); |
|
| 230 |
|
|
| 231 |
typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
|
| 232 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 233 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 234 |
} |
|
| 235 |
|
|
| 236 |
// RadixHeap |
|
| 237 |
{
|
|
| 238 |
typedef RadixHeap<ItemIntMap> IntHeap; |
|
| 239 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 240 |
heapSortTest<IntHeap>(); |
|
| 241 |
heapIncreaseTest<IntHeap>(); |
|
| 242 |
|
|
| 243 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
|
| 244 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 245 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 246 |
} |
|
| 247 |
|
|
| 248 |
// BinomialHeap |
|
| 249 |
{
|
|
| 250 |
typedef BinomialHeap<Prio, ItemIntMap> IntHeap; |
|
| 251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 252 |
heapSortTest<IntHeap>(); |
|
| 253 |
heapIncreaseTest<IntHeap>(); |
|
| 254 |
|
|
| 255 |
typedef BinomialHeap<Prio, IntNodeMap > NodeHeap; |
|
| 256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 258 |
} |
|
| 259 |
|
|
| 260 |
// BucketHeap, SimpleBucketHeap |
|
| 261 |
{
|
|
| 262 |
typedef BucketHeap<ItemIntMap> IntHeap; |
|
| 263 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 264 |
heapSortTest<IntHeap>(); |
|
| 265 |
heapIncreaseTest<IntHeap>(); |
|
| 266 |
|
|
| 267 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
|
| 268 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 270 |
|
|
| 271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
|
| 272 |
heapSortTest<SimpleIntHeap>(); |
|
| 273 |
} |
|
| 274 |
|
|
| 189 | 275 |
{
|
| 190 | 276 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
| 191 | 277 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
| 192 | 278 |
heapSortTest<IntHeap>(); |
| 193 | 279 |
heapIncreaseTest<IntHeap>(); |
| 194 | 280 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -20,26 +20,43 @@ |
| 20 | 20 |
#include <set> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/concept_check.h> |
| 23 | 23 |
#include <lemon/concepts/maps.h> |
| 24 | 24 |
#include <lemon/maps.h> |
| 25 | 25 |
#include <lemon/list_graph.h> |
| 26 |
#include <lemon/smart_graph.h> |
|
| 27 |
#include <lemon/adaptors.h> |
|
| 28 |
#include <lemon/dfs.h> |
|
| 29 |
#include <algorithm> |
|
| 26 | 30 |
|
| 27 | 31 |
#include "test_tools.h" |
| 28 | 32 |
|
| 29 | 33 |
using namespace lemon; |
| 30 | 34 |
using namespace lemon::concepts; |
| 31 | 35 |
|
| 32 | 36 |
struct A {};
|
| 33 | 37 |
inline bool operator<(A, A) { return true; }
|
| 34 | 38 |
struct B {};
|
| 35 | 39 |
|
| 36 | 40 |
class C {
|
| 37 |
int |
|
| 41 |
int _x; |
|
| 38 | 42 |
public: |
| 39 |
C(int |
|
| 43 |
C(int x) : _x(x) {}
|
|
| 44 |
int get() const { return _x; }
|
|
| 45 |
}; |
|
| 46 |
inline bool operator<(C c1, C c2) { return c1.get() < c2.get(); }
|
|
| 47 |
inline bool operator==(C c1, C c2) { return c1.get() == c2.get(); }
|
|
| 48 |
|
|
| 49 |
C createC(int x) { return C(x); }
|
|
| 50 |
|
|
| 51 |
template <typename T> |
|
| 52 |
class Less {
|
|
| 53 |
T _t; |
|
| 54 |
public: |
|
| 55 |
Less(T t): _t(t) {}
|
|
| 56 |
bool operator()(const T& t) const { return t < _t; }
|
|
| 40 | 57 |
}; |
| 41 | 58 |
|
| 42 | 59 |
class F {
|
| 43 | 60 |
public: |
| 44 | 61 |
typedef A argument_type; |
| 45 | 62 |
typedef B result_type; |
| ... | ... |
@@ -50,12 +67,20 @@ |
| 50 | 67 |
}; |
| 51 | 68 |
|
| 52 | 69 |
int func(A) { return 3; }
|
| 53 | 70 |
|
| 54 | 71 |
int binc(int a, B) { return a+1; }
|
| 55 | 72 |
|
| 73 |
template <typename T> |
|
| 74 |
class Sum {
|
|
| 75 |
T& _sum; |
|
| 76 |
public: |
|
| 77 |
Sum(T& sum) : _sum(sum) {}
|
|
| 78 |
void operator()(const T& t) { _sum += t; }
|
|
| 79 |
}; |
|
| 80 |
|
|
| 56 | 81 |
typedef ReadMap<A, double> DoubleMap; |
| 57 | 82 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
| 58 | 83 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
| 59 | 84 |
|
| 60 | 85 |
typedef ReadMap<A, bool> BoolMap; |
| 61 | 86 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
| ... | ... |
@@ -197,13 +222,14 @@ |
| 197 | 222 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
| 198 | 223 |
FunctorToMap<F> map1; |
| 199 | 224 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
| 200 | 225 |
B b = functorToMap(F())[A()]; |
| 201 | 226 |
|
| 202 | 227 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
| 203 |
MapToFunctor<ReadMap<A,B> > map = |
|
| 228 |
MapToFunctor<ReadMap<A,B> > map = |
|
| 229 |
MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
|
| 204 | 230 |
|
| 205 | 231 |
check(functorToMap(&func)[A()] == 3, |
| 206 | 232 |
"Something is wrong with FunctorToMap"); |
| 207 | 233 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
| 208 | 234 |
"Something is wrong with MapToFunctor"); |
| 209 | 235 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
| ... | ... |
@@ -326,12 +352,16 @@ |
| 326 | 352 |
"Something is wrong with EqualMap"); |
| 327 | 353 |
} |
| 328 | 354 |
|
| 329 | 355 |
// LoggerBoolMap |
| 330 | 356 |
{
|
| 331 | 357 |
typedef std::vector<int> vec; |
| 358 |
checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); |
|
| 359 |
checkConcept<WriteMap<int, bool>, |
|
| 360 |
LoggerBoolMap<std::back_insert_iterator<vec> > >(); |
|
| 361 |
|
|
| 332 | 362 |
vec v1; |
| 333 | 363 |
vec v2(10); |
| 334 | 364 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
| 335 | 365 |
map1(std::back_inserter(v1)); |
| 336 | 366 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
| 337 | 367 |
map1.set(10, false); |
| ... | ... |
@@ -345,31 +375,248 @@ |
| 345 | 375 |
"Something is wrong with LoggerBoolMap"); |
| 346 | 376 |
|
| 347 | 377 |
int i = 0; |
| 348 | 378 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
| 349 | 379 |
it != map2.end(); ++it ) |
| 350 | 380 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
| 381 |
|
|
| 382 |
typedef ListDigraph Graph; |
|
| 383 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 384 |
Graph gr; |
|
| 385 |
|
|
| 386 |
Node n0 = gr.addNode(); |
|
| 387 |
Node n1 = gr.addNode(); |
|
| 388 |
Node n2 = gr.addNode(); |
|
| 389 |
Node n3 = gr.addNode(); |
|
| 390 |
|
|
| 391 |
gr.addArc(n3, n0); |
|
| 392 |
gr.addArc(n3, n2); |
|
| 393 |
gr.addArc(n0, n2); |
|
| 394 |
gr.addArc(n2, n1); |
|
| 395 |
gr.addArc(n0, n1); |
|
| 396 |
|
|
| 397 |
{
|
|
| 398 |
std::vector<Node> v; |
|
| 399 |
dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|
| 400 |
|
|
| 401 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
| 402 |
"Something is wrong with LoggerBoolMap"); |
|
| 403 |
} |
|
| 404 |
{
|
|
| 405 |
std::vector<Node> v(countNodes(gr)); |
|
| 406 |
dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); |
|
| 407 |
|
|
| 408 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
| 409 |
"Something is wrong with LoggerBoolMap"); |
|
| 410 |
} |
|
| 351 | 411 |
} |
| 352 |
|
|
| 412 |
|
|
| 413 |
// IdMap, RangeIdMap |
|
| 414 |
{
|
|
| 415 |
typedef ListDigraph Graph; |
|
| 416 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 417 |
|
|
| 418 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
|
| 419 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
|
| 420 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
|
| 421 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
|
| 422 |
|
|
| 423 |
Graph gr; |
|
| 424 |
IdMap<Graph, Node> nmap(gr); |
|
| 425 |
IdMap<Graph, Arc> amap(gr); |
|
| 426 |
RangeIdMap<Graph, Node> nrmap(gr); |
|
| 427 |
RangeIdMap<Graph, Arc> armap(gr); |
|
| 428 |
|
|
| 429 |
Node n0 = gr.addNode(); |
|
| 430 |
Node n1 = gr.addNode(); |
|
| 431 |
Node n2 = gr.addNode(); |
|
| 432 |
|
|
| 433 |
Arc a0 = gr.addArc(n0, n1); |
|
| 434 |
Arc a1 = gr.addArc(n0, n2); |
|
| 435 |
Arc a2 = gr.addArc(n2, n1); |
|
| 436 |
Arc a3 = gr.addArc(n2, n0); |
|
| 437 |
|
|
| 438 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
|
| 439 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
|
| 440 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
|
| 441 |
|
|
| 442 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
|
| 443 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
|
| 444 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
|
| 445 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
|
| 446 |
|
|
| 447 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
|
| 448 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
|
| 449 |
|
|
| 450 |
check(nrmap.size() == 3 && armap.size() == 4, |
|
| 451 |
"Wrong RangeIdMap::size()"); |
|
| 452 |
|
|
| 453 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
|
| 454 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
|
| 455 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
|
| 456 |
|
|
| 457 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
|
| 458 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
| 459 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
|
| 460 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
|
| 461 |
|
|
| 462 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
|
| 463 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
|
| 464 |
|
|
| 465 |
gr.erase(n1); |
|
| 466 |
|
|
| 467 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
|
| 468 |
nrmap.swap(n2, n0); |
|
| 469 |
if (armap[a1] == 1) armap.swap(a1, a3); |
|
| 470 |
armap.swap(a3, a1); |
|
| 471 |
|
|
| 472 |
check(nrmap.size() == 2 && armap.size() == 2, |
|
| 473 |
"Wrong RangeIdMap::size()"); |
|
| 474 |
|
|
| 475 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
|
| 476 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
|
| 477 |
|
|
| 478 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
| 479 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
|
| 480 |
|
|
| 481 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
|
| 482 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
|
| 483 |
} |
|
| 484 |
|
|
| 485 |
// SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap |
|
| 486 |
{
|
|
| 487 |
typedef ListGraph Graph; |
|
| 488 |
GRAPH_TYPEDEFS(Graph); |
|
| 489 |
|
|
| 490 |
checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); |
|
| 491 |
checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); |
|
| 492 |
checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); |
|
| 493 |
checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); |
|
| 494 |
checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); |
|
| 495 |
checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); |
|
| 496 |
|
|
| 497 |
Graph gr; |
|
| 498 |
Node n0 = gr.addNode(); |
|
| 499 |
Node n1 = gr.addNode(); |
|
| 500 |
Node n2 = gr.addNode(); |
|
| 501 |
|
|
| 502 |
gr.addEdge(n0,n1); |
|
| 503 |
gr.addEdge(n1,n2); |
|
| 504 |
gr.addEdge(n0,n2); |
|
| 505 |
gr.addEdge(n2,n1); |
|
| 506 |
gr.addEdge(n1,n2); |
|
| 507 |
gr.addEdge(n0,n1); |
|
| 508 |
|
|
| 509 |
for (EdgeIt e(gr); e != INVALID; ++e) {
|
|
| 510 |
check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); |
|
| 511 |
check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); |
|
| 512 |
} |
|
| 513 |
|
|
| 514 |
check(mapCompare(gr, |
|
| 515 |
sourceMap(orienter(gr, constMap<Edge, bool>(true))), |
|
| 516 |
targetMap(orienter(gr, constMap<Edge, bool>(false)))), |
|
| 517 |
"Wrong SourceMap or TargetMap"); |
|
| 518 |
|
|
| 519 |
typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; |
|
| 520 |
Digraph dgr(gr, constMap<Edge, bool>(true)); |
|
| 521 |
OutDegMap<Digraph> odm(dgr); |
|
| 522 |
InDegMap<Digraph> idm(dgr); |
|
| 523 |
|
|
| 524 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); |
|
| 525 |
check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
| 526 |
|
|
| 527 |
gr.addEdge(n2, n0); |
|
| 528 |
|
|
| 529 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); |
|
| 530 |
check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
| 531 |
} |
|
| 532 |
|
|
| 353 | 533 |
// CrossRefMap |
| 354 | 534 |
{
|
| 355 | 535 |
typedef ListDigraph Graph; |
| 356 | 536 |
DIGRAPH_TYPEDEFS(Graph); |
| 357 | 537 |
|
| 358 | 538 |
checkConcept<ReadWriteMap<Node, int>, |
| 359 | 539 |
CrossRefMap<Graph, Node, int> >(); |
| 360 |
|
|
| 540 |
checkConcept<ReadWriteMap<Node, bool>, |
|
| 541 |
CrossRefMap<Graph, Node, bool> >(); |
|
| 542 |
checkConcept<ReadWriteMap<Node, double>, |
|
| 543 |
CrossRefMap<Graph, Node, double> >(); |
|
| 544 |
|
|
| 545 |
Graph gr; |
|
| 546 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
| 547 |
CRMap map(gr); |
|
| 548 |
|
|
| 549 |
Node n0 = gr.addNode(); |
|
| 550 |
Node n1 = gr.addNode(); |
|
| 551 |
Node n2 = gr.addNode(); |
|
| 552 |
|
|
| 553 |
map.set(n0, 'A'); |
|
| 554 |
map.set(n1, 'B'); |
|
| 555 |
map.set(n2, 'C'); |
|
| 556 |
|
|
| 557 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0,
|
|
| 558 |
"Wrong CrossRefMap"); |
|
| 559 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1,
|
|
| 560 |
"Wrong CrossRefMap"); |
|
| 561 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2,
|
|
| 562 |
"Wrong CrossRefMap"); |
|
| 563 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
|
|
| 564 |
"Wrong CrossRefMap::count()"); |
|
| 565 |
|
|
| 566 |
CRMap::ValueIt it = map.beginValue(); |
|
| 567 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
| 568 |
it == map.endValue(), "Wrong value iterator"); |
|
| 569 |
|
|
| 570 |
map.set(n2, 'A'); |
|
| 571 |
|
|
| 572 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
|
| 573 |
"Wrong CrossRefMap"); |
|
| 574 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap");
|
|
| 575 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
|
| 576 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID,
|
|
| 577 |
"Wrong CrossRefMap"); |
|
| 578 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0,
|
|
| 579 |
"Wrong CrossRefMap::count()"); |
|
| 580 |
|
|
| 581 |
it = map.beginValue(); |
|
| 582 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
|
| 583 |
it == map.endValue(), "Wrong value iterator"); |
|
| 584 |
|
|
| 585 |
map.set(n0, 'C'); |
|
| 586 |
|
|
| 587 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
| 588 |
"Wrong CrossRefMap"); |
|
| 589 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
|
|
| 590 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
|
|
| 591 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
|
|
| 592 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
|
|
| 593 |
"Wrong CrossRefMap::count()"); |
|
| 594 |
|
|
| 595 |
it = map.beginValue(); |
|
| 596 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
| 597 |
it == map.endValue(), "Wrong value iterator"); |
|
| 598 |
} |
|
| 599 |
|
|
| 600 |
// CrossRefMap |
|
| 601 |
{
|
|
| 602 |
typedef SmartDigraph Graph; |
|
| 603 |
DIGRAPH_TYPEDEFS(Graph); |
|
| 604 |
|
|
| 605 |
checkConcept<ReadWriteMap<Node, int>, |
|
| 606 |
CrossRefMap<Graph, Node, int> >(); |
|
| 607 |
|
|
| 361 | 608 |
Graph gr; |
| 362 | 609 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
| 363 | 610 |
typedef CRMap::ValueIterator ValueIt; |
| 364 | 611 |
CRMap map(gr); |
| 365 |
|
|
| 612 |
|
|
| 366 | 613 |
Node n0 = gr.addNode(); |
| 367 | 614 |
Node n1 = gr.addNode(); |
| 368 | 615 |
Node n2 = gr.addNode(); |
| 369 |
|
|
| 616 |
|
|
| 370 | 617 |
map.set(n0, 'A'); |
| 371 | 618 |
map.set(n1, 'B'); |
| 372 | 619 |
map.set(n2, 'C'); |
| 373 | 620 |
map.set(n2, 'A'); |
| 374 | 621 |
map.set(n0, 'C'); |
| 375 | 622 |
|
| ... | ... |
@@ -381,8 +628,376 @@ |
| 381 | 628 |
|
| 382 | 629 |
ValueIt it = map.beginValue(); |
| 383 | 630 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
| 384 | 631 |
it == map.endValue(), "Wrong value iterator"); |
| 385 | 632 |
} |
| 386 | 633 |
|
| 634 |
// Iterable bool map |
|
| 635 |
{
|
|
| 636 |
typedef SmartGraph Graph; |
|
| 637 |
typedef SmartGraph::Node Item; |
|
| 638 |
|
|
| 639 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
|
| 640 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
|
| 641 |
|
|
| 642 |
const int num = 10; |
|
| 643 |
Graph g; |
|
| 644 |
Ibm map0(g, true); |
|
| 645 |
std::vector<Item> items; |
|
| 646 |
for (int i = 0; i < num; ++i) {
|
|
| 647 |
items.push_back(g.addNode()); |
|
| 648 |
} |
|
| 649 |
|
|
| 650 |
Ibm map1(g, true); |
|
| 651 |
int n = 0; |
|
| 652 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 653 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
|
| 654 |
++n; |
|
| 655 |
} |
|
| 656 |
check(n == num, "Wrong number"); |
|
| 657 |
|
|
| 658 |
n = 0; |
|
| 659 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
|
|
| 660 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
| 661 |
++n; |
|
| 662 |
} |
|
| 663 |
check(n == num, "Wrong number"); |
|
| 664 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
|
| 665 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
|
| 666 |
|
|
| 667 |
map1[items[5]] = true; |
|
| 668 |
|
|
| 669 |
n = 0; |
|
| 670 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
|
|
| 671 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
|
| 672 |
++n; |
|
| 673 |
} |
|
| 674 |
check(n == num, "Wrong number"); |
|
| 675 |
|
|
| 676 |
map1[items[num / 2]] = false; |
|
| 677 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
|
| 678 |
|
|
| 679 |
n = 0; |
|
| 680 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 681 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
| 682 |
++n; |
|
| 683 |
} |
|
| 684 |
check(n == num - 1, "Wrong number"); |
|
| 685 |
|
|
| 686 |
n = 0; |
|
| 687 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
|
|
| 688 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
| 689 |
++n; |
|
| 690 |
} |
|
| 691 |
check(n == 1, "Wrong number"); |
|
| 692 |
|
|
| 693 |
map1[items[0]] = false; |
|
| 694 |
check(map1[items[0]] == false, "Wrong map value"); |
|
| 695 |
|
|
| 696 |
map1[items[num - 1]] = false; |
|
| 697 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
|
| 698 |
|
|
| 699 |
n = 0; |
|
| 700 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
|
|
| 701 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
|
| 702 |
++n; |
|
| 703 |
} |
|
| 704 |
check(n == num - 3, "Wrong number"); |
|
| 705 |
check(map1.trueNum() == num - 3, "Wrong number"); |
|
| 706 |
|
|
| 707 |
n = 0; |
|
| 708 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
|
|
| 709 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
|
| 710 |
++n; |
|
| 711 |
} |
|
| 712 |
check(n == 3, "Wrong number"); |
|
| 713 |
check(map1.falseNum() == 3, "Wrong number"); |
|
| 714 |
} |
|
| 715 |
|
|
| 716 |
// Iterable int map |
|
| 717 |
{
|
|
| 718 |
typedef SmartGraph Graph; |
|
| 719 |
typedef SmartGraph::Node Item; |
|
| 720 |
typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim; |
|
| 721 |
|
|
| 722 |
checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>(); |
|
| 723 |
|
|
| 724 |
const int num = 10; |
|
| 725 |
Graph g; |
|
| 726 |
Iim map0(g, 0); |
|
| 727 |
std::vector<Item> items; |
|
| 728 |
for (int i = 0; i < num; ++i) {
|
|
| 729 |
items.push_back(g.addNode()); |
|
| 730 |
} |
|
| 731 |
|
|
| 732 |
Iim map1(g); |
|
| 733 |
check(map1.size() == 0, "Wrong size"); |
|
| 734 |
|
|
| 735 |
for (int i = 0; i < num; ++i) {
|
|
| 736 |
map1[items[i]] = i; |
|
| 737 |
} |
|
| 738 |
check(map1.size() == num, "Wrong size"); |
|
| 739 |
|
|
| 740 |
for (int i = 0; i < num; ++i) {
|
|
| 741 |
Iim::ItemIt it(map1, i); |
|
| 742 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
| 743 |
++it; |
|
| 744 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
| 745 |
} |
|
| 746 |
|
|
| 747 |
for (int i = 0; i < num; ++i) {
|
|
| 748 |
map1[items[i]] = i % 2; |
|
| 749 |
} |
|
| 750 |
check(map1.size() == 2, "Wrong size"); |
|
| 751 |
|
|
| 752 |
int n = 0; |
|
| 753 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
|
|
| 754 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
|
| 755 |
++n; |
|
| 756 |
} |
|
| 757 |
check(n == (num + 1) / 2, "Wrong number"); |
|
| 758 |
|
|
| 759 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
|
|
| 760 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
|
| 761 |
++n; |
|
| 762 |
} |
|
| 763 |
check(n == num, "Wrong number"); |
|
| 764 |
|
|
| 765 |
} |
|
| 766 |
|
|
| 767 |
// Iterable value map |
|
| 768 |
{
|
|
| 769 |
typedef SmartGraph Graph; |
|
| 770 |
typedef SmartGraph::Node Item; |
|
| 771 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
|
| 772 |
|
|
| 773 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
|
| 774 |
|
|
| 775 |
const int num = 10; |
|
| 776 |
Graph g; |
|
| 777 |
Ivm map0(g, 0.0); |
|
| 778 |
std::vector<Item> items; |
|
| 779 |
for (int i = 0; i < num; ++i) {
|
|
| 780 |
items.push_back(g.addNode()); |
|
| 781 |
} |
|
| 782 |
|
|
| 783 |
Ivm map1(g, 0.0); |
|
| 784 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
|
| 785 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
|
| 786 |
|
|
| 787 |
for (int i = 0; i < num; ++i) {
|
|
| 788 |
map1.set(items[i], static_cast<double>(i)); |
|
| 789 |
} |
|
| 790 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
|
| 791 |
|
|
| 792 |
for (int i = 0; i < num; ++i) {
|
|
| 793 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
|
| 794 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
|
| 795 |
++it; |
|
| 796 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
|
| 797 |
} |
|
| 798 |
|
|
| 799 |
for (Ivm::ValueIt vit = map1.beginValue(); |
|
| 800 |
vit != map1.endValue(); ++vit) {
|
|
| 801 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
|
| 802 |
"Wrong ValueIt"); |
|
| 803 |
} |
|
| 804 |
|
|
| 805 |
for (int i = 0; i < num; ++i) {
|
|
| 806 |
map1.set(items[i], static_cast<double>(i % 2)); |
|
| 807 |
} |
|
| 808 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
|
| 809 |
|
|
| 810 |
int n = 0; |
|
| 811 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
|
|
| 812 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
|
| 813 |
++n; |
|
| 814 |
} |
|
| 815 |
check(n == (num + 1) / 2, "Wrong number"); |
|
| 816 |
|
|
| 817 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
|
|
| 818 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
|
| 819 |
++n; |
|
| 820 |
} |
|
| 821 |
check(n == num, "Wrong number"); |
|
| 822 |
|
|
| 823 |
} |
|
| 824 |
|
|
| 825 |
// Graph map utilities: |
|
| 826 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
|
| 827 |
// mapFind(), mapFindIf(), mapCount(), mapCountIf() |
|
| 828 |
// mapCopy(), mapCompare(), mapFill() |
|
| 829 |
{
|
|
| 830 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
| 831 |
|
|
| 832 |
SmartDigraph g; |
|
| 833 |
Node n1 = g.addNode(); |
|
| 834 |
Node n2 = g.addNode(); |
|
| 835 |
Node n3 = g.addNode(); |
|
| 836 |
|
|
| 837 |
SmartDigraph::NodeMap<int> map1(g); |
|
| 838 |
SmartDigraph::ArcMap<char> map2(g); |
|
| 839 |
ConstMap<Node, A> cmap1 = A(); |
|
| 840 |
ConstMap<Arc, C> cmap2 = C(0); |
|
| 841 |
|
|
| 842 |
map1[n1] = 10; |
|
| 843 |
map1[n2] = 5; |
|
| 844 |
map1[n3] = 12; |
|
| 845 |
|
|
| 846 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
|
| 847 |
check(mapMin(g, map1) == n2, "Wrong mapMin()"); |
|
| 848 |
check(mapMax(g, map1) == n3, "Wrong mapMax()"); |
|
| 849 |
check(mapMin(g, map1, std::greater<int>()) == n3, "Wrong mapMin()"); |
|
| 850 |
check(mapMax(g, map1, std::greater<int>()) == n2, "Wrong mapMax()"); |
|
| 851 |
check(mapMinValue(g, map1) == 5, "Wrong mapMinValue()"); |
|
| 852 |
check(mapMaxValue(g, map1) == 12, "Wrong mapMaxValue()"); |
|
| 853 |
|
|
| 854 |
check(mapMin(g, map2) == INVALID, "Wrong mapMin()"); |
|
| 855 |
check(mapMax(g, map2) == INVALID, "Wrong mapMax()"); |
|
| 856 |
|
|
| 857 |
check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()"); |
|
| 858 |
check(mapMax(g, cmap2) == INVALID, "Wrong mapMax()"); |
|
| 859 |
|
|
| 860 |
Arc a1 = g.addArc(n1, n2); |
|
| 861 |
Arc a2 = g.addArc(n1, n3); |
|
| 862 |
Arc a3 = g.addArc(n2, n3); |
|
| 863 |
Arc a4 = g.addArc(n3, n1); |
|
| 864 |
|
|
| 865 |
map2[a1] = 'b'; |
|
| 866 |
map2[a2] = 'a'; |
|
| 867 |
map2[a3] = 'b'; |
|
| 868 |
map2[a4] = 'c'; |
|
| 869 |
|
|
| 870 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
|
| 871 |
check(mapMin(g, map2) == a2, "Wrong mapMin()"); |
|
| 872 |
check(mapMax(g, map2) == a4, "Wrong mapMax()"); |
|
| 873 |
check(mapMin(g, map2, std::greater<int>()) == a4, "Wrong mapMin()"); |
|
| 874 |
check(mapMax(g, map2, std::greater<int>()) == a2, "Wrong mapMax()"); |
|
| 875 |
check(mapMinValue(g, map2, std::greater<int>()) == 'c', |
|
| 876 |
"Wrong mapMinValue()"); |
|
| 877 |
check(mapMaxValue(g, map2, std::greater<int>()) == 'a', |
|
| 878 |
"Wrong mapMaxValue()"); |
|
| 879 |
|
|
| 880 |
check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()"); |
|
| 881 |
check(mapMax(g, cmap2) != INVALID, "Wrong mapMax()"); |
|
| 882 |
check(mapMaxValue(g, cmap2) == C(0), "Wrong mapMaxValue()"); |
|
| 883 |
|
|
| 884 |
check(mapMin(g, composeMap(functorToMap(&createC), map2)) == a2, |
|
| 885 |
"Wrong mapMin()"); |
|
| 886 |
check(mapMax(g, composeMap(functorToMap(&createC), map2)) == a4, |
|
| 887 |
"Wrong mapMax()"); |
|
| 888 |
check(mapMinValue(g, composeMap(functorToMap(&createC), map2)) == C('a'),
|
|
| 889 |
"Wrong mapMinValue()"); |
|
| 890 |
check(mapMaxValue(g, composeMap(functorToMap(&createC), map2)) == C('c'),
|
|
| 891 |
"Wrong mapMaxValue()"); |
|
| 892 |
|
|
| 893 |
// mapFind(), mapFindIf() |
|
| 894 |
check(mapFind(g, map1, 5) == n2, "Wrong mapFind()"); |
|
| 895 |
check(mapFind(g, map1, 6) == INVALID, "Wrong mapFind()"); |
|
| 896 |
check(mapFind(g, map2, 'a') == a2, "Wrong mapFind()"); |
|
| 897 |
check(mapFind(g, map2, 'e') == INVALID, "Wrong mapFind()"); |
|
| 898 |
check(mapFind(g, cmap2, C(0)) == ArcIt(g), "Wrong mapFind()"); |
|
| 899 |
check(mapFind(g, cmap2, C(1)) == INVALID, "Wrong mapFind()"); |
|
| 900 |
|
|
| 901 |
check(mapFindIf(g, map1, Less<int>(7)) == n2, |
|
| 902 |
"Wrong mapFindIf()"); |
|
| 903 |
check(mapFindIf(g, map1, Less<int>(5)) == INVALID, |
|
| 904 |
"Wrong mapFindIf()"); |
|
| 905 |
check(mapFindIf(g, map2, Less<char>('d')) == ArcIt(g),
|
|
| 906 |
"Wrong mapFindIf()"); |
|
| 907 |
check(mapFindIf(g, map2, Less<char>('a')) == INVALID,
|
|
| 908 |
"Wrong mapFindIf()"); |
|
| 909 |
|
|
| 910 |
// mapCount(), mapCountIf() |
|
| 911 |
check(mapCount(g, map1, 5) == 1, "Wrong mapCount()"); |
|
| 912 |
check(mapCount(g, map1, 6) == 0, "Wrong mapCount()"); |
|
| 913 |
check(mapCount(g, map2, 'a') == 1, "Wrong mapCount()"); |
|
| 914 |
check(mapCount(g, map2, 'b') == 2, "Wrong mapCount()"); |
|
| 915 |
check(mapCount(g, map2, 'e') == 0, "Wrong mapCount()"); |
|
| 916 |
check(mapCount(g, cmap2, C(0)) == 4, "Wrong mapCount()"); |
|
| 917 |
check(mapCount(g, cmap2, C(1)) == 0, "Wrong mapCount()"); |
|
| 918 |
|
|
| 919 |
check(mapCountIf(g, map1, Less<int>(11)) == 2, |
|
| 920 |
"Wrong mapCountIf()"); |
|
| 921 |
check(mapCountIf(g, map1, Less<int>(13)) == 3, |
|
| 922 |
"Wrong mapCountIf()"); |
|
| 923 |
check(mapCountIf(g, map1, Less<int>(5)) == 0, |
|
| 924 |
"Wrong mapCountIf()"); |
|
| 925 |
check(mapCountIf(g, map2, Less<char>('d')) == 4,
|
|
| 926 |
"Wrong mapCountIf()"); |
|
| 927 |
check(mapCountIf(g, map2, Less<char>('c')) == 3,
|
|
| 928 |
"Wrong mapCountIf()"); |
|
| 929 |
check(mapCountIf(g, map2, Less<char>('a')) == 0,
|
|
| 930 |
"Wrong mapCountIf()"); |
|
| 931 |
|
|
| 932 |
// MapIt, ConstMapIt |
|
| 933 |
/* |
|
| 934 |
These tests can be used after applying bugfix #330 |
|
| 935 |
typedef SmartDigraph::NodeMap<int>::MapIt MapIt; |
|
| 936 |
typedef SmartDigraph::NodeMap<int>::ConstMapIt ConstMapIt; |
|
| 937 |
check(*std::min_element(MapIt(map1), MapIt(INVALID)) == 5, |
|
| 938 |
"Wrong NodeMap<>::MapIt"); |
|
| 939 |
check(*std::max_element(ConstMapIt(map1), ConstMapIt(INVALID)) == 12, |
|
| 940 |
"Wrong NodeMap<>::MapIt"); |
|
| 941 |
|
|
| 942 |
int sum = 0; |
|
| 943 |
std::for_each(MapIt(map1), MapIt(INVALID), Sum<int>(sum)); |
|
| 944 |
check(sum == 27, "Wrong NodeMap<>::MapIt"); |
|
| 945 |
std::for_each(ConstMapIt(map1), ConstMapIt(INVALID), Sum<int>(sum)); |
|
| 946 |
check(sum == 54, "Wrong NodeMap<>::ConstMapIt"); |
|
| 947 |
*/ |
|
| 948 |
|
|
| 949 |
// mapCopy(), mapCompare(), mapFill() |
|
| 950 |
check(mapCompare(g, map1, map1), "Wrong mapCompare()"); |
|
| 951 |
check(mapCompare(g, cmap2, cmap2), "Wrong mapCompare()"); |
|
| 952 |
check(mapCompare(g, map1, shiftMap(map1, 0)), "Wrong mapCompare()"); |
|
| 953 |
check(mapCompare(g, map2, scaleMap(map2, 1)), "Wrong mapCompare()"); |
|
| 954 |
check(!mapCompare(g, map1, shiftMap(map1, 1)), "Wrong mapCompare()"); |
|
| 955 |
|
|
| 956 |
SmartDigraph::NodeMap<int> map3(g, 0); |
|
| 957 |
SmartDigraph::ArcMap<char> map4(g, 'a'); |
|
| 958 |
|
|
| 959 |
check(!mapCompare(g, map1, map3), "Wrong mapCompare()"); |
|
| 960 |
check(!mapCompare(g, map2, map4), "Wrong mapCompare()"); |
|
| 961 |
|
|
| 962 |
mapCopy(g, map1, map3); |
|
| 963 |
mapCopy(g, map2, map4); |
|
| 964 |
|
|
| 965 |
check(mapCompare(g, map1, map3), "Wrong mapCompare() or mapCopy()"); |
|
| 966 |
check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()"); |
|
| 967 |
|
|
| 968 |
Undirector<SmartDigraph> ug(g); |
|
| 969 |
Undirector<SmartDigraph>::EdgeMap<char> umap1(ug, 'x'); |
|
| 970 |
Undirector<SmartDigraph>::ArcMap<double> umap2(ug, 3.14); |
|
| 971 |
|
|
| 972 |
check(!mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
| 973 |
check(!mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
| 974 |
check(!mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
| 975 |
check(!mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
| 976 |
|
|
| 977 |
mapCopy(g, map2, umap1); |
|
| 978 |
|
|
| 979 |
check(mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
| 980 |
check(mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
| 981 |
check(mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
|
| 982 |
check(mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
|
| 983 |
|
|
| 984 |
mapCopy(g, map2, umap1); |
|
| 985 |
mapCopy(g, umap1, map2); |
|
| 986 |
mapCopy(ug, map2, umap1); |
|
| 987 |
mapCopy(ug, umap1, map2); |
|
| 988 |
|
|
| 989 |
check(!mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()"); |
|
| 990 |
mapCopy(ug, umap1, umap2); |
|
| 991 |
check(mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()"); |
|
| 992 |
|
|
| 993 |
check(!mapCompare(g, map1, constMap<Node>(2)), "Wrong mapCompare()"); |
|
| 994 |
mapFill(g, map1, 2); |
|
| 995 |
check(mapCompare(g, constMap<Node>(2), map1), "Wrong mapFill()"); |
|
| 996 |
|
|
| 997 |
check(!mapCompare(g, map2, constMap<Arc>('z')), "Wrong mapCompare()");
|
|
| 998 |
mapCopy(g, constMap<Arc>('z'), map2);
|
|
| 999 |
check(mapCompare(g, constMap<Arc>('z'), map2), "Wrong mapCopy()");
|
|
| 1000 |
} |
|
| 1001 |
|
|
| 387 | 1002 |
return 0; |
| 388 | 1003 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -131,22 +131,22 @@ |
| 131 | 131 |
mat_test.init(); |
| 132 | 132 |
mat_test.greedyInit(); |
| 133 | 133 |
mat_test.matchingInit(mat); |
| 134 | 134 |
mat_test.startSparse(); |
| 135 | 135 |
mat_test.startDense(); |
| 136 | 136 |
mat_test.run(); |
| 137 |
|
|
| 137 |
|
|
| 138 | 138 |
const_mat_test.matchingSize(); |
| 139 | 139 |
const_mat_test.matching(e); |
| 140 | 140 |
const_mat_test.matching(n); |
| 141 | 141 |
const MaxMatching<Graph>::MatchingMap& mmap = |
| 142 | 142 |
const_mat_test.matchingMap(); |
| 143 | 143 |
e = mmap[n]; |
| 144 | 144 |
const_mat_test.mate(n); |
| 145 | 145 |
|
| 146 |
MaxMatching<Graph>::Status stat = |
|
| 146 |
MaxMatching<Graph>::Status stat = |
|
| 147 | 147 |
const_mat_test.status(n); |
| 148 | 148 |
const MaxMatching<Graph>::StatusMap& smap = |
| 149 | 149 |
const_mat_test.statusMap(); |
| 150 | 150 |
stat = smap[n]; |
| 151 | 151 |
const_mat_test.barrier(n); |
| 152 | 152 |
} |
| ... | ... |
@@ -167,22 +167,22 @@ |
| 167 | 167 |
const MaxWeightedMatching<Graph>& |
| 168 | 168 |
const_mat_test = mat_test; |
| 169 | 169 |
|
| 170 | 170 |
mat_test.init(); |
| 171 | 171 |
mat_test.start(); |
| 172 | 172 |
mat_test.run(); |
| 173 |
|
|
| 173 |
|
|
| 174 | 174 |
const_mat_test.matchingWeight(); |
| 175 | 175 |
const_mat_test.matchingSize(); |
| 176 | 176 |
const_mat_test.matching(e); |
| 177 | 177 |
const_mat_test.matching(n); |
| 178 | 178 |
const MaxWeightedMatching<Graph>::MatchingMap& mmap = |
| 179 | 179 |
const_mat_test.matchingMap(); |
| 180 | 180 |
e = mmap[n]; |
| 181 | 181 |
const_mat_test.mate(n); |
| 182 |
|
|
| 182 |
|
|
| 183 | 183 |
int k = 0; |
| 184 | 184 |
const_mat_test.dualValue(); |
| 185 | 185 |
const_mat_test.nodeValue(n); |
| 186 | 186 |
const_mat_test.blossomNum(); |
| 187 | 187 |
const_mat_test.blossomSize(k); |
| 188 | 188 |
const_mat_test.blossomValue(k); |
| ... | ... |
@@ -204,21 +204,21 @@ |
| 204 | 204 |
const MaxWeightedPerfectMatching<Graph>& |
| 205 | 205 |
const_mat_test = mat_test; |
| 206 | 206 |
|
| 207 | 207 |
mat_test.init(); |
| 208 | 208 |
mat_test.start(); |
| 209 | 209 |
mat_test.run(); |
| 210 |
|
|
| 210 |
|
|
| 211 | 211 |
const_mat_test.matchingWeight(); |
| 212 | 212 |
const_mat_test.matching(e); |
| 213 | 213 |
const_mat_test.matching(n); |
| 214 | 214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
| 215 | 215 |
const_mat_test.matchingMap(); |
| 216 | 216 |
e = mmap[n]; |
| 217 | 217 |
const_mat_test.mate(n); |
| 218 |
|
|
| 218 |
|
|
| 219 | 219 |
int k = 0; |
| 220 | 220 |
const_mat_test.dualValue(); |
| 221 | 221 |
const_mat_test.nodeValue(n); |
| 222 | 222 |
const_mat_test.blossomNum(); |
| 223 | 223 |
const_mat_test.blossomSize(k); |
| 224 | 224 |
const_mat_test.blossomValue(k); |
| ... | ... |
@@ -398,27 +398,51 @@ |
| 398 | 398 |
SmartGraph::EdgeMap<int> weight(graph); |
| 399 | 399 |
|
| 400 | 400 |
istringstream lgfs(lgf[i]); |
| 401 | 401 |
graphReader(graph, lgfs). |
| 402 | 402 |
edgeMap("weight", weight).run();
|
| 403 | 403 |
|
| 404 |
MaxMatching<SmartGraph> mm(graph); |
|
| 405 |
mm.run(); |
|
| 406 |
|
|
| 404 |
bool perfect; |
|
| 405 |
{
|
|
| 406 |
MaxMatching<SmartGraph> mm(graph); |
|
| 407 |
mm.run(); |
|
| 408 |
checkMatching(graph, mm); |
|
| 409 |
perfect = 2 * mm.matchingSize() == countNodes(graph); |
|
| 410 |
} |
|
| 407 | 411 |
|
| 408 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 409 |
mwm.run(); |
|
| 410 |
|
|
| 412 |
{
|
|
| 413 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 414 |
mwm.run(); |
|
| 415 |
checkWeightedMatching(graph, weight, mwm); |
|
| 416 |
} |
|
| 411 | 417 |
|
| 412 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 413 |
bool perfect = mwpm.run(); |
|
| 418 |
{
|
|
| 419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 420 |
mwm.init(); |
|
| 421 |
mwm.start(); |
|
| 422 |
checkWeightedMatching(graph, weight, mwm); |
|
| 423 |
} |
|
| 414 | 424 |
|
| 415 |
check(perfect == (mm.matchingSize() * 2 == countNodes(graph)), |
|
| 416 |
"Perfect matching found"); |
|
| 425 |
{
|
|
| 426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 427 |
bool result = mwpm.run(); |
|
| 417 | 428 |
|
| 418 |
if (perfect) {
|
|
| 419 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 429 |
check(result == perfect, "Perfect matching found"); |
|
| 430 |
if (perfect) {
|
|
| 431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 432 |
} |
|
| 433 |
} |
|
| 434 |
|
|
| 435 |
{
|
|
| 436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 437 |
mwpm.init(); |
|
| 438 |
bool result = mwpm.start(); |
|
| 439 |
|
|
| 440 |
check(result == perfect, "Perfect matching found"); |
|
| 441 |
if (perfect) {
|
|
| 442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 443 |
} |
|
| 420 | 444 |
} |
| 421 | 445 |
} |
| 422 | 446 |
|
| 423 | 447 |
return 0; |
| 424 | 448 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -107,28 +107,28 @@ |
| 107 | 107 |
mcarb_test.init(); |
| 108 | 108 |
mcarb_test.addSource(s); |
| 109 | 109 |
mcarb_test.start(); |
| 110 | 110 |
n = mcarb_test.processNextNode(); |
| 111 | 111 |
b = const_mcarb_test.emptyQueue(); |
| 112 | 112 |
i = const_mcarb_test.queueSize(); |
| 113 |
|
|
| 113 |
|
|
| 114 | 114 |
c = const_mcarb_test.arborescenceCost(); |
| 115 | 115 |
b = const_mcarb_test.arborescence(e); |
| 116 | 116 |
e = const_mcarb_test.pred(n); |
| 117 | 117 |
const MinCostArbType::ArborescenceMap &am = |
| 118 | 118 |
const_mcarb_test.arborescenceMap(); |
| 119 | 119 |
const MinCostArbType::PredMap &pm = |
| 120 | 120 |
const_mcarb_test.predMap(); |
| 121 | 121 |
b = const_mcarb_test.reached(n); |
| 122 | 122 |
b = const_mcarb_test.processed(n); |
| 123 |
|
|
| 123 |
|
|
| 124 | 124 |
i = const_mcarb_test.dualNum(); |
| 125 | 125 |
c = const_mcarb_test.dualValue(); |
| 126 | 126 |
i = const_mcarb_test.dualSize(i); |
| 127 | 127 |
c = const_mcarb_test.dualValue(i); |
| 128 |
|
|
| 128 |
|
|
| 129 | 129 |
ignore_unused_variable_warning(am); |
| 130 | 130 |
ignore_unused_variable_warning(pm); |
| 131 | 131 |
} |
| 132 | 132 |
|
| 133 | 133 |
int main() {
|
| 134 | 134 |
typedef SmartDigraph Digraph; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -21,20 +21,25 @@ |
| 21 | 21 |
#include <limits> |
| 22 | 22 |
|
| 23 | 23 |
#include <lemon/list_graph.h> |
| 24 | 24 |
#include <lemon/lgf_reader.h> |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/network_simplex.h> |
| 27 |
#include <lemon/capacity_scaling.h> |
|
| 28 |
#include <lemon/cost_scaling.h> |
|
| 29 |
#include <lemon/cycle_canceling.h> |
|
| 27 | 30 |
|
| 28 | 31 |
#include <lemon/concepts/digraph.h> |
| 32 |
#include <lemon/concepts/heap.h> |
|
| 29 | 33 |
#include <lemon/concept_check.h> |
| 30 | 34 |
|
| 31 | 35 |
#include "test_tools.h" |
| 32 | 36 |
|
| 33 | 37 |
using namespace lemon; |
| 34 | 38 |
|
| 39 |
// Test networks |
|
| 35 | 40 |
char test_lgf[] = |
| 36 | 41 |
"@nodes\n" |
| 37 | 42 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
| 38 | 43 |
" 1 20 27 0 30 20 30\n" |
| 39 | 44 |
" 2 -4 0 0 0 -8 -3\n" |
| 40 | 45 |
" 3 0 0 0 0 0 0\n" |
| ... | ... |
@@ -44,13 +49,13 @@ |
| 44 | 49 |
" 7 0 0 0 0 0 0\n" |
| 45 | 50 |
" 8 0 0 0 0 0 3\n" |
| 46 | 51 |
" 9 3 0 0 0 0 0\n" |
| 47 | 52 |
" 10 -2 0 0 0 -7 -2\n" |
| 48 | 53 |
" 11 0 0 0 0 -10 0\n" |
| 49 | 54 |
" 12 -20 -27 0 -30 -30 -20\n" |
| 50 |
"\n" |
|
| 55 |
"\n" |
|
| 51 | 56 |
"@arcs\n" |
| 52 | 57 |
" cost cap low1 low2 low3\n" |
| 53 | 58 |
" 1 2 70 11 0 8 8\n" |
| 54 | 59 |
" 1 3 150 3 0 1 0\n" |
| 55 | 60 |
" 1 4 80 15 0 2 2\n" |
| 56 | 61 |
" 2 8 80 12 0 0 0\n" |
| ... | ... |
@@ -73,36 +78,89 @@ |
| 73 | 78 |
"12 11 30 10 0 0 -10\n" |
| 74 | 79 |
"\n" |
| 75 | 80 |
"@attributes\n" |
| 76 | 81 |
"source 1\n" |
| 77 | 82 |
"target 12\n"; |
| 78 | 83 |
|
| 84 |
char test_neg1_lgf[] = |
|
| 85 |
"@nodes\n" |
|
| 86 |
"label sup\n" |
|
| 87 |
" 1 100\n" |
|
| 88 |
" 2 0\n" |
|
| 89 |
" 3 0\n" |
|
| 90 |
" 4 -100\n" |
|
| 91 |
" 5 0\n" |
|
| 92 |
" 6 0\n" |
|
| 93 |
" 7 0\n" |
|
| 94 |
"@arcs\n" |
|
| 95 |
" cost low1 low2\n" |
|
| 96 |
"1 2 100 0 0\n" |
|
| 97 |
"1 3 30 0 0\n" |
|
| 98 |
"2 4 20 0 0\n" |
|
| 99 |
"3 4 80 0 0\n" |
|
| 100 |
"3 2 50 0 0\n" |
|
| 101 |
"5 3 10 0 0\n" |
|
| 102 |
"5 6 80 0 1000\n" |
|
| 103 |
"6 7 30 0 -1000\n" |
|
| 104 |
"7 5 -120 0 0\n"; |
|
| 105 |
|
|
| 106 |
char test_neg2_lgf[] = |
|
| 107 |
"@nodes\n" |
|
| 108 |
"label sup\n" |
|
| 109 |
" 1 100\n" |
|
| 110 |
" 2 -300\n" |
|
| 111 |
"@arcs\n" |
|
| 112 |
" cost\n" |
|
| 113 |
"1 2 -1\n"; |
|
| 114 |
|
|
| 115 |
|
|
| 116 |
// Test data |
|
| 117 |
typedef ListDigraph Digraph; |
|
| 118 |
DIGRAPH_TYPEDEFS(ListDigraph); |
|
| 119 |
|
|
| 120 |
Digraph gr; |
|
| 121 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
| 122 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
| 123 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
|
| 124 |
Node v, w; |
|
| 125 |
|
|
| 126 |
Digraph neg1_gr; |
|
| 127 |
Digraph::ArcMap<int> neg1_c(neg1_gr), neg1_l1(neg1_gr), neg1_l2(neg1_gr); |
|
| 128 |
ConstMap<Arc, int> neg1_u1(std::numeric_limits<int>::max()), neg1_u2(5000); |
|
| 129 |
Digraph::NodeMap<int> neg1_s(neg1_gr); |
|
| 130 |
|
|
| 131 |
Digraph neg2_gr; |
|
| 132 |
Digraph::ArcMap<int> neg2_c(neg2_gr); |
|
| 133 |
ConstMap<Arc, int> neg2_l(0), neg2_u(1000); |
|
| 134 |
Digraph::NodeMap<int> neg2_s(neg2_gr); |
|
| 135 |
|
|
| 79 | 136 |
|
| 80 | 137 |
enum SupplyType {
|
| 81 | 138 |
EQ, |
| 82 | 139 |
GEQ, |
| 83 | 140 |
LEQ |
| 84 | 141 |
}; |
| 85 | 142 |
|
| 143 |
|
|
| 86 | 144 |
// Check the interface of an MCF algorithm |
| 87 | 145 |
template <typename GR, typename Value, typename Cost> |
| 88 | 146 |
class McfClassConcept |
| 89 | 147 |
{
|
| 90 | 148 |
public: |
| 91 | 149 |
|
| 92 | 150 |
template <typename MCF> |
| 93 | 151 |
struct Constraints {
|
| 94 | 152 |
void constraints() {
|
| 95 | 153 |
checkConcept<concepts::Digraph, GR>(); |
| 96 |
|
|
| 154 |
|
|
| 97 | 155 |
const Constraints& me = *this; |
| 98 | 156 |
|
| 99 | 157 |
MCF mcf(me.g); |
| 100 | 158 |
const MCF& const_mcf = mcf; |
| 101 | 159 |
|
| 102 |
b = mcf.reset() |
|
| 160 |
b = mcf.reset().resetParams() |
|
| 103 | 161 |
.lowerMap(me.lower) |
| 104 | 162 |
.upperMap(me.upper) |
| 105 | 163 |
.costMap(me.cost) |
| 106 | 164 |
.supplyMap(me.sup) |
| 107 | 165 |
.stSupply(me.n, me.n, me.k) |
| 108 | 166 |
.run(); |
| ... | ... |
@@ -119,13 +177,13 @@ |
| 119 | 177 |
typedef typename GR::Arc Arc; |
| 120 | 178 |
typedef concepts::ReadMap<Node, Value> NM; |
| 121 | 179 |
typedef concepts::ReadMap<Arc, Value> VAM; |
| 122 | 180 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
| 123 | 181 |
typedef concepts::WriteMap<Arc, Value> FlowMap; |
| 124 | 182 |
typedef concepts::WriteMap<Node, Cost> PotMap; |
| 125 |
|
|
| 183 |
|
|
| 126 | 184 |
GR g; |
| 127 | 185 |
VAM lower; |
| 128 | 186 |
VAM upper; |
| 129 | 187 |
CAM cost; |
| 130 | 188 |
NM sup; |
| 131 | 189 |
Node n; |
| ... | ... |
@@ -173,39 +231,39 @@ |
| 173 | 231 |
|
| 174 | 232 |
// Check the feasibility of the given potentials (dual soluiton) |
| 175 | 233 |
// using the "Complementary Slackness" optimality condition |
| 176 | 234 |
template < typename GR, typename LM, typename UM, |
| 177 | 235 |
typename CM, typename SM, typename FM, typename PM > |
| 178 | 236 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 179 |
const CM& cost, const SM& supply, const FM& flow, |
|
| 237 |
const CM& cost, const SM& supply, const FM& flow, |
|
| 180 | 238 |
const PM& pi, SupplyType type ) |
| 181 | 239 |
{
|
| 182 | 240 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 183 | 241 |
|
| 184 | 242 |
bool opt = true; |
| 185 | 243 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
| 186 | 244 |
typename CM::Value red_cost = |
| 187 | 245 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
| 188 | 246 |
opt = red_cost == 0 || |
| 189 | 247 |
(red_cost > 0 && flow[e] == lower[e]) || |
| 190 | 248 |
(red_cost < 0 && flow[e] == upper[e]); |
| 191 | 249 |
} |
| 192 |
|
|
| 250 |
|
|
| 193 | 251 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
| 194 | 252 |
typename SM::Value sum = 0; |
| 195 | 253 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 196 | 254 |
sum += flow[e]; |
| 197 | 255 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 198 | 256 |
sum -= flow[e]; |
| 199 | 257 |
if (type != LEQ) {
|
| 200 | 258 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
| 201 | 259 |
} else {
|
| 202 | 260 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
| 203 | 261 |
} |
| 204 | 262 |
} |
| 205 |
|
|
| 263 |
|
|
| 206 | 264 |
return opt; |
| 207 | 265 |
} |
| 208 | 266 |
|
| 209 | 267 |
// Check whether the dual cost is equal to the primal cost |
| 210 | 268 |
template < typename GR, typename LM, typename UM, |
| 211 | 269 |
typename CM, typename SM, typename PM > |
| ... | ... |
@@ -224,22 +282,22 @@ |
| 224 | 282 |
if (lower[a] != 0) {
|
| 225 | 283 |
dual_cost += lower[a] * cost[a]; |
| 226 | 284 |
red_supply[gr.source(a)] -= lower[a]; |
| 227 | 285 |
red_supply[gr.target(a)] += lower[a]; |
| 228 | 286 |
} |
| 229 | 287 |
} |
| 230 |
|
|
| 288 |
|
|
| 231 | 289 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
| 232 | 290 |
dual_cost -= red_supply[n] * pi[n]; |
| 233 | 291 |
} |
| 234 | 292 |
for (ArcIt a(gr); a != INVALID; ++a) {
|
| 235 | 293 |
typename CM::Value red_cost = |
| 236 | 294 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
| 237 | 295 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
| 238 | 296 |
} |
| 239 |
|
|
| 297 |
|
|
| 240 | 298 |
return dual_cost == total; |
| 241 | 299 |
} |
| 242 | 300 |
|
| 243 | 301 |
// Run a minimum cost flow algorithm and check the results |
| 244 | 302 |
template < typename MCF, typename GR, |
| 245 | 303 |
typename LM, typename UM, |
| ... | ... |
@@ -265,36 +323,105 @@ |
| 265 | 323 |
"Wrong potentials " + test_id); |
| 266 | 324 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
| 267 | 325 |
"Wrong dual cost " + test_id); |
| 268 | 326 |
} |
| 269 | 327 |
} |
| 270 | 328 |
|
| 329 |
template < typename MCF, typename Param > |
|
| 330 |
void runMcfGeqTests( Param param, |
|
| 331 |
const std::string &test_str = "", |
|
| 332 |
bool full_neg_cost_support = false ) |
|
| 333 |
{
|
|
| 334 |
MCF mcf1(gr), mcf2(neg1_gr), mcf3(neg2_gr); |
|
| 335 |
|
|
| 336 |
// Basic tests |
|
| 337 |
mcf1.upperMap(u).costMap(c).supplyMap(s1); |
|
| 338 |
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s1, |
|
| 339 |
mcf1.OPTIMAL, true, 5240, test_str + "-1"); |
|
| 340 |
mcf1.stSupply(v, w, 27); |
|
| 341 |
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s2, |
|
| 342 |
mcf1.OPTIMAL, true, 7620, test_str + "-2"); |
|
| 343 |
mcf1.lowerMap(l2).supplyMap(s1); |
|
| 344 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s1, |
|
| 345 |
mcf1.OPTIMAL, true, 5970, test_str + "-3"); |
|
| 346 |
mcf1.stSupply(v, w, 27); |
|
| 347 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2, |
|
| 348 |
mcf1.OPTIMAL, true, 8010, test_str + "-4"); |
|
| 349 |
mcf1.resetParams().supplyMap(s1); |
|
| 350 |
checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1, |
|
| 351 |
mcf1.OPTIMAL, true, 74, test_str + "-5"); |
|
| 352 |
mcf1.lowerMap(l2).stSupply(v, w, 27); |
|
| 353 |
checkMcf(mcf1, mcf1.run(param), gr, l2, cu, cc, s2, |
|
| 354 |
mcf1.OPTIMAL, true, 94, test_str + "-6"); |
|
| 355 |
mcf1.reset(); |
|
| 356 |
checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s3, |
|
| 357 |
mcf1.OPTIMAL, true, 0, test_str + "-7"); |
|
| 358 |
mcf1.lowerMap(l2).upperMap(u); |
|
| 359 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, cc, s3, |
|
| 360 |
mcf1.INFEASIBLE, false, 0, test_str + "-8"); |
|
| 361 |
mcf1.lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
| 362 |
checkMcf(mcf1, mcf1.run(param), gr, l3, u, c, s4, |
|
| 363 |
mcf1.OPTIMAL, true, 6360, test_str + "-9"); |
|
| 364 |
|
|
| 365 |
// Tests for the GEQ form |
|
| 366 |
mcf1.resetParams().upperMap(u).costMap(c).supplyMap(s5); |
|
| 367 |
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5, |
|
| 368 |
mcf1.OPTIMAL, true, 3530, test_str + "-10", GEQ); |
|
| 369 |
mcf1.lowerMap(l2); |
|
| 370 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5, |
|
| 371 |
mcf1.OPTIMAL, true, 4540, test_str + "-11", GEQ); |
|
| 372 |
mcf1.supplyMap(s6); |
|
| 373 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6, |
|
| 374 |
mcf1.INFEASIBLE, false, 0, test_str + "-12", GEQ); |
|
| 375 |
|
|
| 376 |
// Tests with negative costs |
|
| 377 |
mcf2.lowerMap(neg1_l1).costMap(neg1_c).supplyMap(neg1_s); |
|
| 378 |
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u1, neg1_c, neg1_s, |
|
| 379 |
mcf2.UNBOUNDED, false, 0, test_str + "-13"); |
|
| 380 |
mcf2.upperMap(neg1_u2); |
|
| 381 |
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s, |
|
| 382 |
mcf2.OPTIMAL, true, -40000, test_str + "-14"); |
|
| 383 |
mcf2.resetParams().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s); |
|
| 384 |
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s, |
|
| 385 |
mcf2.UNBOUNDED, false, 0, test_str + "-15"); |
|
| 386 |
|
|
| 387 |
mcf3.costMap(neg2_c).supplyMap(neg2_s); |
|
| 388 |
if (full_neg_cost_support) {
|
|
| 389 |
checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s, |
|
| 390 |
mcf3.OPTIMAL, true, -300, test_str + "-16", GEQ); |
|
| 391 |
} else {
|
|
| 392 |
checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s, |
|
| 393 |
mcf3.UNBOUNDED, false, 0, test_str + "-17", GEQ); |
|
| 394 |
} |
|
| 395 |
mcf3.upperMap(neg2_u); |
|
| 396 |
checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s, |
|
| 397 |
mcf3.OPTIMAL, true, -300, test_str + "-18", GEQ); |
|
| 398 |
} |
|
| 399 |
|
|
| 400 |
template < typename MCF, typename Param > |
|
| 401 |
void runMcfLeqTests( Param param, |
|
| 402 |
const std::string &test_str = "" ) |
|
| 403 |
{
|
|
| 404 |
// Tests for the LEQ form |
|
| 405 |
MCF mcf1(gr); |
|
| 406 |
mcf1.supplyType(mcf1.LEQ); |
|
| 407 |
mcf1.upperMap(u).costMap(c).supplyMap(s6); |
|
| 408 |
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s6, |
|
| 409 |
mcf1.OPTIMAL, true, 5080, test_str + "-19", LEQ); |
|
| 410 |
mcf1.lowerMap(l2); |
|
| 411 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6, |
|
| 412 |
mcf1.OPTIMAL, true, 5930, test_str + "-20", LEQ); |
|
| 413 |
mcf1.supplyMap(s5); |
|
| 414 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5, |
|
| 415 |
mcf1.INFEASIBLE, false, 0, test_str + "-21", LEQ); |
|
| 416 |
} |
|
| 417 |
|
|
| 418 |
|
|
| 271 | 419 |
int main() |
| 272 | 420 |
{
|
| 273 |
// Check the interfaces |
|
| 274 |
{
|
|
| 275 |
typedef concepts::Digraph GR; |
|
| 276 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 277 |
NetworkSimplex<GR> >(); |
|
| 278 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 279 |
NetworkSimplex<GR, double> >(); |
|
| 280 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 281 |
NetworkSimplex<GR, int, double> >(); |
|
| 282 |
} |
|
| 283 |
|
|
| 284 |
// Run various MCF tests |
|
| 285 |
typedef ListDigraph Digraph; |
|
| 286 |
DIGRAPH_TYPEDEFS(ListDigraph); |
|
| 287 |
|
|
| 288 |
// Read the test digraph |
|
| 289 |
Digraph gr; |
|
| 290 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
| 291 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
| 292 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
|
| 293 |
Node v, w; |
|
| 294 |
|
|
| 421 |
// Read the test networks |
|
| 295 | 422 |
std::istringstream input(test_lgf); |
| 296 | 423 |
DigraphReader<Digraph>(gr, input) |
| 297 | 424 |
.arcMap("cost", c)
|
| 298 | 425 |
.arcMap("cap", u)
|
| 299 | 426 |
.arcMap("low1", l1)
|
| 300 | 427 |
.arcMap("low2", l2)
|
| ... | ... |
@@ -305,146 +432,111 @@ |
| 305 | 432 |
.nodeMap("sup4", s4)
|
| 306 | 433 |
.nodeMap("sup5", s5)
|
| 307 | 434 |
.nodeMap("sup6", s6)
|
| 308 | 435 |
.node("source", v)
|
| 309 | 436 |
.node("target", w)
|
| 310 | 437 |
.run(); |
| 311 |
|
|
| 312 |
// Build test digraphs with negative costs |
|
| 313 |
Digraph neg_gr; |
|
| 314 |
Node n1 = neg_gr.addNode(); |
|
| 315 |
Node n2 = neg_gr.addNode(); |
|
| 316 |
Node n3 = neg_gr.addNode(); |
|
| 317 |
Node n4 = neg_gr.addNode(); |
|
| 318 |
Node n5 = neg_gr.addNode(); |
|
| 319 |
Node n6 = neg_gr.addNode(); |
|
| 320 |
Node n7 = neg_gr.addNode(); |
|
| 321 |
|
|
| 322 |
Arc a1 = neg_gr.addArc(n1, n2); |
|
| 323 |
Arc a2 = neg_gr.addArc(n1, n3); |
|
| 324 |
Arc a3 = neg_gr.addArc(n2, n4); |
|
| 325 |
Arc a4 = neg_gr.addArc(n3, n4); |
|
| 326 |
Arc a5 = neg_gr.addArc(n3, n2); |
|
| 327 |
Arc a6 = neg_gr.addArc(n5, n3); |
|
| 328 |
Arc a7 = neg_gr.addArc(n5, n6); |
|
| 329 |
Arc a8 = neg_gr.addArc(n6, n7); |
|
| 330 |
Arc a9 = neg_gr.addArc(n7, n5); |
|
| 331 |
|
|
| 332 |
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); |
|
| 333 |
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000); |
|
| 334 |
Digraph::NodeMap<int> neg_s(neg_gr, 0); |
|
| 335 |
|
|
| 336 |
neg_l2[a7] = 1000; |
|
| 337 |
neg_l2[a8] = -1000; |
|
| 338 |
|
|
| 339 |
neg_s[n1] = 100; |
|
| 340 |
neg_s[n4] = -100; |
|
| 341 |
|
|
| 342 |
neg_c[a1] = 100; |
|
| 343 |
neg_c[a2] = 30; |
|
| 344 |
neg_c[a3] = 20; |
|
| 345 |
neg_c[a4] = 80; |
|
| 346 |
neg_c[a5] = 50; |
|
| 347 |
neg_c[a6] = 10; |
|
| 348 |
neg_c[a7] = 80; |
|
| 349 |
neg_c[a8] = 30; |
|
| 350 |
neg_c[a9] = -120; |
|
| 351 | 438 |
|
| 352 |
Digraph negs_gr; |
|
| 353 |
Digraph::NodeMap<int> negs_s(negs_gr); |
|
| 354 |
Digraph::ArcMap<int> negs_c(negs_gr); |
|
| 355 |
ConstMap<Arc, int> negs_l(0), negs_u(1000); |
|
| 356 |
n1 = negs_gr.addNode(); |
|
| 357 |
n2 = negs_gr.addNode(); |
|
| 358 |
negs_s[n1] = 100; |
|
| 359 |
negs_s[n2] = -300; |
|
| 360 |
|
|
| 439 |
std::istringstream neg_inp1(test_neg1_lgf); |
|
| 440 |
DigraphReader<Digraph>(neg1_gr, neg_inp1) |
|
| 441 |
.arcMap("cost", neg1_c)
|
|
| 442 |
.arcMap("low1", neg1_l1)
|
|
| 443 |
.arcMap("low2", neg1_l2)
|
|
| 444 |
.nodeMap("sup", neg1_s)
|
|
| 445 |
.run(); |
|
| 361 | 446 |
|
| 447 |
std::istringstream neg_inp2(test_neg2_lgf); |
|
| 448 |
DigraphReader<Digraph>(neg2_gr, neg_inp2) |
|
| 449 |
.arcMap("cost", neg2_c)
|
|
| 450 |
.nodeMap("sup", neg2_s)
|
|
| 451 |
.run(); |
|
| 362 | 452 |
|
| 363 |
// |
|
| 453 |
// Check the interface of NetworkSimplex |
|
| 364 | 454 |
{
|
| 365 |
NetworkSimplex<Digraph> mcf(gr); |
|
| 366 |
|
|
| 367 |
// Check the equality form |
|
| 368 |
mcf.upperMap(u).costMap(c); |
|
| 369 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
| 370 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
|
| 371 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
| 372 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
|
| 373 |
mcf.lowerMap(l2); |
|
| 374 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
| 375 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
|
| 376 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
| 377 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
|
| 378 |
mcf.reset(); |
|
| 379 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
| 380 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
|
| 381 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
|
| 382 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
|
| 383 |
mcf.reset(); |
|
| 384 |
checkMcf(mcf, mcf.run(), |
|
| 385 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
|
| 386 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
|
| 387 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
|
| 388 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
| 389 |
checkMcf(mcf, mcf.run(), |
|
| 390 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
|
| 391 |
|
|
| 392 |
// Check the GEQ form |
|
| 393 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
|
| 394 |
checkMcf(mcf, mcf.run(), |
|
| 395 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
|
| 396 |
mcf.supplyType(mcf.GEQ); |
|
| 397 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
| 398 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
|
| 399 |
mcf.supplyMap(s6); |
|
| 400 |
checkMcf(mcf, mcf.run(), |
|
| 401 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
|
| 402 |
|
|
| 403 |
// Check the LEQ form |
|
| 404 |
mcf.reset().supplyType(mcf.LEQ); |
|
| 405 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
|
| 406 |
checkMcf(mcf, mcf.run(), |
|
| 407 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
|
| 408 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
| 409 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
|
| 410 |
mcf.supplyMap(s5); |
|
| 411 |
checkMcf(mcf, mcf.run(), |
|
| 412 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
|
| 413 |
|
|
| 414 |
// Check negative costs |
|
| 415 |
NetworkSimplex<Digraph> neg_mcf(neg_gr); |
|
| 416 |
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); |
|
| 417 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, |
|
| 418 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); |
|
| 419 |
neg_mcf.upperMap(neg_u2); |
|
| 420 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, |
|
| 421 |
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); |
|
| 422 |
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); |
|
| 423 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, |
|
| 424 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); |
|
| 425 |
|
|
| 426 |
NetworkSimplex<Digraph> negs_mcf(negs_gr); |
|
| 427 |
negs_mcf.costMap(negs_c).supplyMap(negs_s); |
|
| 428 |
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, |
|
| 429 |
|
|
| 455 |
typedef concepts::Digraph GR; |
|
| 456 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 457 |
NetworkSimplex<GR> >(); |
|
| 458 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 459 |
NetworkSimplex<GR, double> >(); |
|
| 460 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 461 |
NetworkSimplex<GR, int, double> >(); |
|
| 430 | 462 |
} |
| 431 | 463 |
|
| 432 |
// |
|
| 464 |
// Check the interface of CapacityScaling |
|
| 433 | 465 |
{
|
| 434 |
NetworkSimplex<Digraph> mcf(gr); |
|
| 435 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
|
| 466 |
typedef concepts::Digraph GR; |
|
| 467 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 468 |
CapacityScaling<GR> >(); |
|
| 469 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 470 |
CapacityScaling<GR, double> >(); |
|
| 471 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 472 |
CapacityScaling<GR, int, double> >(); |
|
| 473 |
typedef CapacityScaling<GR>:: |
|
| 474 |
SetHeap<concepts::Heap<int, RangeMap<int> > >::Create CAS; |
|
| 475 |
checkConcept< McfClassConcept<GR, int, int>, CAS >(); |
|
| 476 |
} |
|
| 436 | 477 |
|
| 437 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
|
| 438 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
|
| 439 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
|
| 440 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
|
| 441 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
|
| 442 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
|
| 443 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
|
| 444 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
|
| 445 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
|
| 446 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
|
| 478 |
// Check the interface of CostScaling |
|
| 479 |
{
|
|
| 480 |
typedef concepts::Digraph GR; |
|
| 481 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 482 |
CostScaling<GR> >(); |
|
| 483 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 484 |
CostScaling<GR, double> >(); |
|
| 485 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 486 |
CostScaling<GR, int, double> >(); |
|
| 487 |
typedef CostScaling<GR>:: |
|
| 488 |
SetLargeCost<double>::Create COS; |
|
| 489 |
checkConcept< McfClassConcept<GR, int, int>, COS >(); |
|
| 490 |
} |
|
| 491 |
|
|
| 492 |
// Check the interface of CycleCanceling |
|
| 493 |
{
|
|
| 494 |
typedef concepts::Digraph GR; |
|
| 495 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 496 |
CycleCanceling<GR> >(); |
|
| 497 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 498 |
CycleCanceling<GR, double> >(); |
|
| 499 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 500 |
CycleCanceling<GR, int, double> >(); |
|
| 501 |
} |
|
| 502 |
|
|
| 503 |
// Test NetworkSimplex |
|
| 504 |
{
|
|
| 505 |
typedef NetworkSimplex<Digraph> MCF; |
|
| 506 |
runMcfGeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE", true); |
|
| 507 |
runMcfLeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE"); |
|
| 508 |
runMcfGeqTests<MCF>(MCF::BEST_ELIGIBLE, "NS-BE", true); |
|
| 509 |
runMcfLeqTests<MCF>(MCF::BEST_ELIGIBLE, "NS-BE"); |
|
| 510 |
runMcfGeqTests<MCF>(MCF::BLOCK_SEARCH, "NS-BS", true); |
|
| 511 |
runMcfLeqTests<MCF>(MCF::BLOCK_SEARCH, "NS-BS"); |
|
| 512 |
runMcfGeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL", true); |
|
| 513 |
runMcfLeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL"); |
|
| 514 |
runMcfGeqTests<MCF>(MCF::ALTERING_LIST, "NS-AL", true); |
|
| 515 |
runMcfLeqTests<MCF>(MCF::ALTERING_LIST, "NS-AL"); |
|
| 516 |
} |
|
| 517 |
|
|
| 518 |
// Test CapacityScaling |
|
| 519 |
{
|
|
| 520 |
typedef CapacityScaling<Digraph> MCF; |
|
| 521 |
runMcfGeqTests<MCF>(0, "SSP"); |
|
| 522 |
runMcfGeqTests<MCF>(2, "CAS"); |
|
| 523 |
} |
|
| 524 |
|
|
| 525 |
// Test CostScaling |
|
| 526 |
{
|
|
| 527 |
typedef CostScaling<Digraph> MCF; |
|
| 528 |
runMcfGeqTests<MCF>(MCF::PUSH, "COS-PR"); |
|
| 529 |
runMcfGeqTests<MCF>(MCF::AUGMENT, "COS-AR"); |
|
| 530 |
runMcfGeqTests<MCF>(MCF::PARTIAL_AUGMENT, "COS-PAR"); |
|
| 531 |
} |
|
| 532 |
|
|
| 533 |
// Test CycleCanceling |
|
| 534 |
{
|
|
| 535 |
typedef CycleCanceling<Digraph> MCF; |
|
| 536 |
runMcfGeqTests<MCF>(MCF::SIMPLE_CYCLE_CANCELING, "SCC"); |
|
| 537 |
runMcfGeqTests<MCF>(MCF::MINIMUM_MEAN_CYCLE_CANCELING, "MMCC"); |
|
| 538 |
runMcfGeqTests<MCF>(MCF::CANCEL_AND_TIGHTEN, "CAT"); |
|
| 447 | 539 |
} |
| 448 | 540 |
|
| 449 | 541 |
return 0; |
| 450 | 542 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -92,12 +92,17 @@ |
| 92 | 92 |
::SetElevator<Elev> |
| 93 | 93 |
::SetStandardElevator<LinkedElev> |
| 94 | 94 |
::Create PreflowType; |
| 95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
| 96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
| 97 | 97 |
|
| 98 |
const PreflowType::Elevator& elev = const_preflow_test.elevator(); |
|
| 99 |
preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev)); |
|
| 100 |
PreflowType::Tolerance tol = const_preflow_test.tolerance(); |
|
| 101 |
preflow_test.tolerance(tol); |
|
| 102 |
|
|
| 98 | 103 |
preflow_test |
| 99 | 104 |
.capacityMap(cap) |
| 100 | 105 |
.flowMap(flow) |
| 101 | 106 |
.source(n) |
| 102 | 107 |
.target(n); |
| 103 | 108 |
|
| ... | ... |
@@ -110,13 +115,13 @@ |
| 110 | 115 |
|
| 111 | 116 |
v = const_preflow_test.flowValue(); |
| 112 | 117 |
v = const_preflow_test.flow(e); |
| 113 | 118 |
const FlowMap& fm = const_preflow_test.flowMap(); |
| 114 | 119 |
b = const_preflow_test.minCut(n); |
| 115 | 120 |
const_preflow_test.minCutMap(cut); |
| 116 |
|
|
| 121 |
|
|
| 117 | 122 |
ignore_unused_variable_warning(fm); |
| 118 | 123 |
} |
| 119 | 124 |
|
| 120 | 125 |
int cutValue (const SmartDigraph& g, |
| 121 | 126 |
const SmartDigraph::NodeMap<bool>& cut, |
| 122 | 127 |
const SmartDigraph::ArcMap<int>& cap) {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -20,12 +20,13 @@ |
| 20 | 20 |
|
| 21 | 21 |
#include <lemon/list_graph.h> |
| 22 | 22 |
#include <lemon/lgf_reader.h> |
| 23 | 23 |
#include <lemon/path.h> |
| 24 | 24 |
#include <lemon/suurballe.h> |
| 25 | 25 |
#include <lemon/concepts/digraph.h> |
| 26 |
#include <lemon/concepts/heap.h> |
|
| 26 | 27 |
|
| 27 | 28 |
#include "test_tools.h" |
| 28 | 29 |
|
| 29 | 30 |
using namespace lemon; |
| 30 | 31 |
|
| 31 | 32 |
char test_lgf[] = |
| ... | ... |
@@ -77,14 +78,20 @@ |
| 77 | 78 |
typedef int VType; |
| 78 | 79 |
typedef concepts::Digraph Digraph; |
| 79 | 80 |
|
| 80 | 81 |
typedef Digraph::Node Node; |
| 81 | 82 |
typedef Digraph::Arc Arc; |
| 82 | 83 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
| 83 |
|
|
| 84 |
typedef Suurballe<Digraph, LengthMap> SuurballeType; |
|
| 84 |
|
|
| 85 |
typedef Suurballe<Digraph, LengthMap> ST; |
|
| 86 |
typedef Suurballe<Digraph, LengthMap> |
|
| 87 |
::SetFlowMap<ST::FlowMap> |
|
| 88 |
::SetPotentialMap<ST::PotentialMap> |
|
| 89 |
::SetPath<SimplePath<Digraph> > |
|
| 90 |
::SetHeap<concepts::Heap<VType, Digraph::NodeMap<int> > > |
|
| 91 |
::Create SuurballeType; |
|
| 85 | 92 |
|
| 86 | 93 |
Digraph g; |
| 87 | 94 |
Node n; |
| 88 | 95 |
Arc e; |
| 89 | 96 |
LengthMap len; |
| 90 | 97 |
SuurballeType::FlowMap flow(g); |
| ... | ... |
@@ -98,28 +105,31 @@ |
| 98 | 105 |
.potentialMap(pi); |
| 99 | 106 |
|
| 100 | 107 |
int k; |
| 101 | 108 |
k = suurb_test.run(n, n); |
| 102 | 109 |
k = suurb_test.run(n, n, k); |
| 103 | 110 |
suurb_test.init(n); |
| 111 |
suurb_test.fullInit(n); |
|
| 112 |
suurb_test.start(n); |
|
| 113 |
suurb_test.start(n, k); |
|
| 104 | 114 |
k = suurb_test.findFlow(n); |
| 105 | 115 |
k = suurb_test.findFlow(n, k); |
| 106 | 116 |
suurb_test.findPaths(); |
| 107 |
|
|
| 117 |
|
|
| 108 | 118 |
int f; |
| 109 | 119 |
VType c; |
| 110 | 120 |
c = const_suurb_test.totalLength(); |
| 111 | 121 |
f = const_suurb_test.flow(e); |
| 112 | 122 |
const SuurballeType::FlowMap& fm = |
| 113 | 123 |
const_suurb_test.flowMap(); |
| 114 | 124 |
c = const_suurb_test.potential(n); |
| 115 | 125 |
const SuurballeType::PotentialMap& pm = |
| 116 | 126 |
const_suurb_test.potentialMap(); |
| 117 | 127 |
k = const_suurb_test.pathNum(); |
| 118 | 128 |
Path<Digraph> p = const_suurb_test.path(k); |
| 119 |
|
|
| 129 |
|
|
| 120 | 130 |
ignore_unused_variable_warning(fm); |
| 121 | 131 |
ignore_unused_variable_warning(pm); |
| 122 | 132 |
} |
| 123 | 133 |
|
| 124 | 134 |
// Check the feasibility of the flow |
| 125 | 135 |
template <typename Digraph, typename FlowMap> |
| ... | ... |
@@ -192,50 +202,64 @@ |
| 192 | 202 |
DigraphReader<ListDigraph>(digraph, input). |
| 193 | 203 |
arcMap("length", length).
|
| 194 | 204 |
node("source", s).
|
| 195 | 205 |
node("target", t).
|
| 196 | 206 |
run(); |
| 197 | 207 |
|
| 198 |
// |
|
| 208 |
// Check run() |
|
| 199 | 209 |
{
|
| 200 | 210 |
Suurballe<ListDigraph> suurballe(digraph, length); |
| 211 |
|
|
| 212 |
// Find 2 paths |
|
| 201 | 213 |
check(suurballe.run(s, t) == 2, "Wrong number of paths"); |
| 202 | 214 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 2), |
| 203 | 215 |
"The flow is not feasible"); |
| 204 | 216 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
| 205 | 217 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
| 206 | 218 |
suurballe.potentialMap()), |
| 207 | 219 |
"Wrong potentials"); |
| 208 | 220 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
| 209 | 221 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
| 210 |
} |
|
| 211 | 222 |
|
| 212 |
// Find 3 paths |
|
| 213 |
{
|
|
| 214 |
|
|
| 223 |
// Find 3 paths |
|
| 215 | 224 |
check(suurballe.run(s, t, 3) == 3, "Wrong number of paths"); |
| 216 | 225 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
| 217 | 226 |
"The flow is not feasible"); |
| 218 | 227 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
| 219 | 228 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
| 220 | 229 |
suurballe.potentialMap()), |
| 221 | 230 |
"Wrong potentials"); |
| 222 | 231 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
| 223 | 232 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
| 224 |
} |
|
| 225 | 233 |
|
| 226 |
// Find 5 paths (only 3 can be found) |
|
| 227 |
{
|
|
| 228 |
|
|
| 234 |
// Find 5 paths (only 3 can be found) |
|
| 229 | 235 |
check(suurballe.run(s, t, 5) == 3, "Wrong number of paths"); |
| 230 | 236 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
| 231 | 237 |
"The flow is not feasible"); |
| 232 | 238 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
| 233 | 239 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
| 234 | 240 |
suurballe.potentialMap()), |
| 235 | 241 |
"Wrong potentials"); |
| 236 | 242 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
| 237 | 243 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
| 238 | 244 |
} |
| 239 | 245 |
|
| 246 |
// Check fullInit() + start() |
|
| 247 |
{
|
|
| 248 |
Suurballe<ListDigraph> suurballe(digraph, length); |
|
| 249 |
suurballe.fullInit(s); |
|
| 250 |
|
|
| 251 |
// Find 2 paths |
|
| 252 |
check(suurballe.start(t) == 2, "Wrong number of paths"); |
|
| 253 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
|
| 254 |
|
|
| 255 |
// Find 3 paths |
|
| 256 |
check(suurballe.start(t, 3) == 3, "Wrong number of paths"); |
|
| 257 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
|
| 258 |
|
|
| 259 |
// Find 5 paths (only 3 can be found) |
|
| 260 |
check(suurballe.start(t, 5) == 3, "Wrong number of paths"); |
|
| 261 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
|
| 262 |
} |
|
| 263 |
|
|
| 240 | 264 |
return 0; |
| 241 | 265 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -34,13 +34,17 @@ |
| 34 | 34 |
///using good source browsers like e.g. \c emacs. |
| 35 | 35 |
/// |
| 36 | 36 |
///For example |
| 37 | 37 |
///\code check(0==1,"This is obviously false.");\endcode will |
| 38 | 38 |
///print something like this (and then exits). |
| 39 | 39 |
///\verbatim file_name.cc:123: error: This is obviously false. \endverbatim |
| 40 |
#define check(rc, msg) \ |
|
| 41 |
if(!(rc)) { \
|
|
| 42 |
std::cerr << __FILE__ ":" << __LINE__ << ": error: " << msg << std::endl; \ |
|
| 43 |
abort(); \ |
|
| 44 |
|
|
| 40 |
#define check(rc, msg) \ |
|
| 41 |
{ \
|
|
| 42 |
if(!(rc)) { \
|
|
| 43 |
std::cerr << __FILE__ ":" << __LINE__ << ": error: " \ |
|
| 44 |
<< msg << std::endl; \ |
|
| 45 |
abort(); \ |
|
| 46 |
} else { } \
|
|
| 47 |
} \ |
|
| 48 |
|
|
| 45 | 49 |
|
| 46 | 50 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| ... | ... |
@@ -85,16 +85,16 @@ |
| 85 | 85 |
ti.restart(); |
| 86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
| 87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
| 88 | 88 |
ti.restart(); |
| 89 | 89 |
pre.run(); |
| 90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
| 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
|
| 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
|
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 |
template<class Value> |
|
| 94 |
template<class Value, class LargeValue> |
|
| 95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
| 96 | 96 |
Value infty, DimacsDescriptor &desc) |
| 97 | 97 |
{
|
| 98 | 98 |
bool report = !ap.given("q");
|
| 99 | 99 |
Digraph g; |
| 100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
| ... | ... |
@@ -124,13 +124,14 @@ |
| 124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
| 125 | 125 |
ti.restart(); |
| 126 | 126 |
bool res = ns.run(); |
| 127 | 127 |
if (report) {
|
| 128 | 128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
| 129 | 129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
| 130 |
if (res) std::cerr << "Min flow cost: " |
|
| 130 |
if (res) std::cerr << "Min flow cost: " |
|
| 131 |
<< ns.template totalCost<LargeValue>() << '\n'; |
|
| 131 | 132 |
} |
| 132 | 133 |
} |
| 133 | 134 |
|
| 134 | 135 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
| 135 | 136 |
DimacsDescriptor &desc) |
| 136 | 137 |
{
|
| ... | ... |
@@ -144,17 +145,17 @@ |
| 144 | 145 |
MaxMatching<Graph> mat(g); |
| 145 | 146 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
| 146 | 147 |
ti.restart(); |
| 147 | 148 |
mat.run(); |
| 148 | 149 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
| 149 | 150 |
if(report) std::cerr << "\nCardinality of max matching: " |
| 150 |
<< mat.matchingSize() << '\n'; |
|
| 151 |
<< mat.matchingSize() << '\n'; |
|
| 151 | 152 |
} |
| 152 | 153 |
|
| 153 | 154 |
|
| 154 |
template<class Value> |
|
| 155 |
template<class Value, class LargeValue> |
|
| 155 | 156 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
| 156 | 157 |
DimacsDescriptor &desc) |
| 157 | 158 |
{
|
| 158 | 159 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
| 159 | 160 |
Value infty; |
| 160 | 161 |
iss >> infty; |
| ... | ... |
@@ -162,17 +163,17 @@ |
| 162 | 163 |
{
|
| 163 | 164 |
std::cerr << "Cannot interpret '" |
| 164 | 165 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
| 165 | 166 |
<< std::endl; |
| 166 | 167 |
exit(1); |
| 167 | 168 |
} |
| 168 |
|
|
| 169 |
|
|
| 169 | 170 |
switch(desc.type) |
| 170 | 171 |
{
|
| 171 | 172 |
case DimacsDescriptor::MIN: |
| 172 |
solve_min<Value>(ap,is,os,infty,desc); |
|
| 173 |
solve_min<Value, LargeValue>(ap,is,os,infty,desc); |
|
| 173 | 174 |
break; |
| 174 | 175 |
case DimacsDescriptor::MAX: |
| 175 | 176 |
solve_max<Value>(ap,is,os,infty,desc); |
| 176 | 177 |
break; |
| 177 | 178 |
case DimacsDescriptor::SP: |
| 178 | 179 |
solve_sp<Value>(ap,is,os,desc); |
| ... | ... |
@@ -234,13 +235,13 @@ |
| 234 | 235 |
return 1; |
| 235 | 236 |
} |
| 236 | 237 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
| 237 | 238 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
| 238 | 239 |
|
| 239 | 240 |
DimacsDescriptor desc = dimacsType(is); |
| 240 |
|
|
| 241 |
|
|
| 241 | 242 |
if(!ap.given("q"))
|
| 242 | 243 |
{
|
| 243 | 244 |
std::cout << "Problem type: "; |
| 244 | 245 |
switch(desc.type) |
| 245 | 246 |
{
|
| 246 | 247 |
case DimacsDescriptor::MIN: |
| ... | ... |
@@ -259,19 +260,21 @@ |
| 259 | 260 |
break; |
| 260 | 261 |
} |
| 261 | 262 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
| 262 | 263 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
| 263 | 264 |
std::cout << "\n\n"; |
| 264 | 265 |
} |
| 265 |
|
|
| 266 |
|
|
| 266 | 267 |
if(ap.given("double"))
|
| 267 |
solve<double>(ap,is,os,desc); |
|
| 268 |
solve<double, double>(ap,is,os,desc); |
|
| 268 | 269 |
else if(ap.given("ldouble"))
|
| 269 |
solve<long double>(ap,is,os,desc); |
|
| 270 |
solve<long double, long double>(ap,is,os,desc); |
|
| 270 | 271 |
#ifdef LEMON_HAVE_LONG_LONG |
| 271 | 272 |
else if(ap.given("long"))
|
| 272 |
solve<long long>(ap,is,os,desc); |
|
| 273 |
solve<long long, long long>(ap,is,os,desc); |
|
| 274 |
else solve<int, long long>(ap,is,os,desc); |
|
| 275 |
#else |
|
| 276 |
else solve<int, long>(ap,is,os,desc); |
|
| 273 | 277 |
#endif |
| 274 |
else solve<int>(ap,is,os,desc); |
|
| 275 | 278 |
|
| 276 | 279 |
return 0; |
| 277 | 280 |
} |
| ... | ... |
@@ -32,16 +32,16 @@ |
| 32 | 32 |
-e "s/graph/_digr_aph_label_/g"\ |
| 33 | 33 |
-e "s/UEdge/_Ed_ge_label_/g"\ |
| 34 | 34 |
-e "s/u[Ee]dge/_ed_ge_label_/g"\ |
| 35 | 35 |
-e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\ |
| 36 | 36 |
-e "s/Edge\>/_Ar_c_label_/g"\ |
| 37 | 37 |
-e "s/\<edge\>/_ar_c_label_/g"\ |
| 38 |
-e "s/_edge\>/ |
|
| 38 |
-e "s/_edge\>/__ar_c_label_/g"\ |
|
| 39 | 39 |
-e "s/Edges\>/_Ar_c_label_s/g"\ |
| 40 | 40 |
-e "s/\<edges\>/_ar_c_label_s/g"\ |
| 41 |
-e "s/_edges\>/ |
|
| 41 |
-e "s/_edges\>/__ar_c_label_s/g"\ |
|
| 42 | 42 |
-e "s/\([Ee]\)dge\([a-z]\)/_\1d_ge_label_\2/g"\ |
| 43 | 43 |
-e "s/\([a-z]\)edge/\1_ed_ge_label_/g"\ |
| 44 | 44 |
-e "s/Edge/_Ar_c_label_/g"\ |
| 45 | 45 |
-e "s/edge/_ar_c_label_/g"\ |
| 46 | 46 |
-e "s/A[Nn]ode/_Re_d_label_/g"\ |
| 47 | 47 |
-e "s/B[Nn]ode/_Blu_e_label_/g"\ |
| ... | ... |
@@ -65,12 +65,17 @@ |
| 65 | 65 |
-e "s/_Re_d_label_/Red/g"\ |
| 66 | 66 |
-e "s/_Blu_e_label_/Blue/g"\ |
| 67 | 67 |
-e "s/_re_d_label_/red/g"\ |
| 68 | 68 |
-e "s/_blu_e_label_/blue/g"\ |
| 69 | 69 |
-e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\ |
| 70 | 70 |
-e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\ |
| 71 |
-e "s/\<digraph_adaptor\.h\>/adaptors.h/g"\ |
|
| 72 |
-e "s/\<digraph_utils\.h\>/core.h/g"\ |
|
| 73 |
-e "s/\<digraph_reader\.h\>/lgf_reader.h/g"\ |
|
| 74 |
-e "s/\<digraph_writer\.h\>/lgf_writer.h/g"\ |
|
| 75 |
-e "s/\<topology\.h\>/connectivity.h/g"\ |
|
| 71 | 76 |
-e "s/DigraphToEps/GraphToEps/g"\ |
| 72 | 77 |
-e "s/digraphToEps/graphToEps/g"\ |
| 73 | 78 |
-e "s/\<DefPredMap\>/SetPredMap/g"\ |
| 74 | 79 |
-e "s/\<DefDistMap\>/SetDistMap/g"\ |
| 75 | 80 |
-e "s/\<DefReachedMap\>/SetReachedMap/g"\ |
| 76 | 81 |
-e "s/\<DefProcessedMap\>/SetProcessedMap/g"\ |
0 comments (0 inline)