Location: LEMON/LEMON-official/lemon/bellman_ford.h

Load file history
gravatar
alpar (Alpar Juttner)
Merge backout of a6eb9698c321 (#360,#51)
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BELLMAN_FORD_H
#define LEMON_BELLMAN_FORD_H
/// \ingroup shortest_path
/// \file
/// \brief Bellman-Ford algorithm.
#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/tolerance.h>
#include <lemon/path.h>
#include <limits>
namespace lemon {
/// \brief Default operation traits for the BellmanFord algorithm class.
///
/// This operation traits class defines all computational operations
/// and constants that are used in the Bellman-Ford algorithm.
/// The default implementation is based on the \c numeric_limits class.
/// If the numeric type does not have infinity value, then the maximum
/// value is used as extremal infinity value.
///
/// \see BellmanFordToleranceOperationTraits
template <
typename V,
bool has_inf = std::numeric_limits<V>::has_infinity>
struct BellmanFordDefaultOperationTraits {
/// \brief Value type for the algorithm.
typedef V Value;
/// \brief Gives back the zero value of the type.
static Value zero() {
return static_cast<Value>(0);
}
/// \brief Gives back the positive infinity value of the type.
static Value infinity() {
return std::numeric_limits<Value>::infinity();
}
/// \brief Gives back the sum of the given two elements.
static Value plus(const Value& left, const Value& right) {
return left + right;
}
/// \brief Gives back \c true only if the first value is less than
/// the second.
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
template <typename V>
struct BellmanFordDefaultOperationTraits<V, false> {
typedef V Value;
static Value zero() {
return static_cast<Value>(0);
}
static Value infinity() {
return std::numeric_limits<Value>::max();
}
static Value plus(const Value& left, const Value& right) {
if (left == infinity() || right == infinity()) return infinity();
return left + right;
}
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
/// \brief Operation traits for the BellmanFord algorithm class
/// using tolerance.
///
/// This operation traits class defines all computational operations
/// and constants that are used in the Bellman-Ford algorithm.
/// The only difference between this implementation and
/// \ref BellmanFordDefaultOperationTraits is that this class uses
/// the \ref Tolerance "tolerance technique" in its \ref less()
/// function.
///
/// \tparam V The value type.
/// \tparam eps The epsilon value for the \ref less() function.
/// By default, it is the epsilon value used by \ref Tolerance
/// "Tolerance<V>".
///
/// \see BellmanFordDefaultOperationTraits
#ifdef DOXYGEN
template <typename V, V eps>
#else
template <
typename V,
V eps = Tolerance<V>::def_epsilon>
#endif
struct BellmanFordToleranceOperationTraits {
/// \brief Value type for the algorithm.
typedef V Value;
/// \brief Gives back the zero value of the type.
static Value zero() {
return static_cast<Value>(0);
}
/// \brief Gives back the positive infinity value of the type.
static Value infinity() {
return std::numeric_limits<Value>::infinity();
}
/// \brief Gives back the sum of the given two elements.
static Value plus(const Value& left, const Value& right) {
return left + right;
}
/// \brief Gives back \c true only if the first value is less than
/// the second.
static bool less(const Value& left, const Value& right) {
return left + eps < right;
}
};
/// \brief Default traits class of BellmanFord class.
///
/// Default traits class of BellmanFord class.
/// \param GR The type of the digraph.
/// \param LEN The type of the length map.
template<typename GR, typename LEN>
struct BellmanFordDefaultTraits {
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
typedef LEN LengthMap;
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the used operations and the infinity value for the
/// given \c Value type.
/// \see BellmanFordDefaultOperationTraits,
/// BellmanFordToleranceOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last arcs of the
/// shortest paths.
///
/// The type of the map that stores the last
/// arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
///
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
/// \ref PredMap.
static PredMap *createPredMap(const GR& g) {
return new PredMap(g);
}
/// \brief The type of the map that stores the distances of the nodes.
///
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
/// \brief Instantiates a \c DistMap.
///
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
/// \ref DistMap.
static DistMap *createDistMap(const GR& g) {
return new DistMap(g);
}
};
/// \brief %BellmanFord algorithm class.
///
/// \ingroup shortest_path
/// This class provides an efficient implementation of the Bellman-Ford
/// algorithm. The maximum time complexity of the algorithm is
/// <tt>O(ne)</tt>.
///
/// The Bellman-Ford algorithm solves the single-source shortest path
/// problem when the arcs can have negative lengths, but the digraph
/// should not contain directed cycles with negative total length.
/// If all arc costs are non-negative, consider to use the Dijkstra
/// algorithm instead, since it is more efficient.
///
/// The arc lengths are passed to the algorithm using a
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
/// kind of length. The type of the length values is determined by the
/// \ref concepts::ReadMap::Value "Value" type of the length map.
///
/// There is also a \ref bellmanFord() "function-type interface" for the
/// Bellman-Ford algorithm, which is convenient in the simplier cases and
/// it can be used easier.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// The default type is \ref ListDigraph.
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
/// the lengths of the arcs. The default map type is
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref BellmanFordDefaultTraits
/// "BellmanFordDefaultTraits<GR, LEN>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
#ifdef DOXYGEN
template <typename GR, typename LEN, typename TR>
#else
template <typename GR=ListDigraph,
typename LEN=typename GR::template ArcMap<int>,
typename TR=BellmanFordDefaultTraits<GR,LEN> >
#endif
class BellmanFord {
public:
///The type of the underlying digraph.
typedef typename TR::Digraph Digraph;
/// \brief The type of the arc lengths.
typedef typename TR::LengthMap::Value Value;
/// \brief The type of the map that stores the arc lengths.
typedef typename TR::LengthMap LengthMap;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
typedef typename TR::PredMap PredMap;
/// \brief The type of the map that stores the distances of the nodes.
typedef typename TR::DistMap DistMap;
/// The type of the paths.
typedef PredMapPath<Digraph, PredMap> Path;
///\brief The \ref BellmanFordDefaultOperationTraits
/// "operation traits class" of the algorithm.
typedef typename TR::OperationTraits OperationTraits;
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
typedef TR Traits;
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
// Pointer to the underlying digraph.
const Digraph *_gr;
// Pointer to the length map
const LengthMap *_length;
// Pointer to the map of predecessors arcs.
PredMap *_pred;
// Indicates if _pred is locally allocated (true) or not.
bool _local_pred;
// Pointer to the map of distances.
DistMap *_dist;
// Indicates if _dist is locally allocated (true) or not.
bool _local_dist;
typedef typename Digraph::template NodeMap<bool> MaskMap;
MaskMap *_mask;
std::vector<Node> _process;
// Creates the maps if necessary.
void create_maps() {
if(!_pred) {
_local_pred = true;
_pred = Traits::createPredMap(*_gr);
}
if(!_dist) {
_local_dist = true;
_dist = Traits::createDistMap(*_gr);
}
if(!_mask) {
_mask = new MaskMap(*_gr);
}
}
public :
typedef BellmanFord Create;
/// \name Named Template Parameters
///@{
template <class T>
struct SetPredMapTraits : public Traits {
typedef T PredMap;
static PredMap *createPredMap(const Digraph&) {
LEMON_ASSERT(false, "PredMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c PredMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c PredMap type.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetPredMap
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
};
template <class T>
struct SetDistMapTraits : public Traits {
typedef T DistMap;
static DistMap *createDistMap(const Digraph&) {
LEMON_ASSERT(false, "DistMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c DistMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c DistMap type.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetDistMap
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
};
template <class T>
struct SetOperationTraitsTraits : public Traits {
typedef T OperationTraits;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
/// For more information, see \ref BellmanFordDefaultOperationTraits.
template <class T>
struct SetOperationTraits
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
Create;
};
///@}
protected:
BellmanFord() {}
public:
/// \brief Constructor.
///
/// Constructor.
/// \param g The digraph the algorithm runs on.
/// \param length The length map used by the algorithm.
BellmanFord(const Digraph& g, const LengthMap& length) :
_gr(&g), _length(&length),
_pred(0), _local_pred(false),
_dist(0), _local_dist(false), _mask(0) {}
///Destructor.
~BellmanFord() {
if(_local_pred) delete _pred;
if(_local_dist) delete _dist;
if(_mask) delete _mask;
}
/// \brief Sets the length map.
///
/// Sets the length map.
/// \return <tt>(*this)</tt>
BellmanFord &lengthMap(const LengthMap &map) {
_length = &map;
return *this;
}
/// \brief Sets the map that stores the predecessor arcs.
///
/// Sets the map that stores the predecessor arcs.
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
BellmanFord &predMap(PredMap &map) {
if(_local_pred) {
delete _pred;
_local_pred=false;
}
_pred = &map;
return *this;
}
/// \brief Sets the map that stores the distances of the nodes.
///
/// Sets the map that stores the distances of the nodes calculated
/// by the algorithm.
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
BellmanFord &distMap(DistMap &map) {
if(_local_dist) {
delete _dist;
_local_dist=false;
}
_dist = &map;
return *this;
}
/// \name Execution Control
/// The simplest way to execute the Bellman-Ford algorithm is to use
/// one of the member functions called \ref run().\n
/// If you need better control on the execution, you have to call
/// \ref init() first, then you can add several source nodes
/// with \ref addSource(). Finally the actual path computation can be
/// performed with \ref start(), \ref checkedStart() or
/// \ref limitedStart().
///@{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures. The optional parameter
/// is the initial distance of each node.
void init(const Value value = OperationTraits::infinity()) {
create_maps();
for (NodeIt it(*_gr); it != INVALID; ++it) {
_pred->set(it, INVALID);
_dist->set(it, value);
}
_process.clear();
if (OperationTraits::less(value, OperationTraits::infinity())) {
for (NodeIt it(*_gr); it != INVALID; ++it) {
_process.push_back(it);
_mask->set(it, true);
}
} else {
for (NodeIt it(*_gr); it != INVALID; ++it) {
_mask->set(it, false);
}
}
}
/// \brief Adds a new source node.
///
/// This function adds a new source node. The optional second parameter
/// is the initial distance of the node.
void addSource(Node source, Value dst = OperationTraits::zero()) {
_dist->set(source, dst);
if (!(*_mask)[source]) {
_process.push_back(source);
_mask->set(source, true);
}
}
/// \brief Executes one round from the Bellman-Ford algorithm.
///
/// If the algoritm calculated the distances in the previous round
/// exactly for the paths of at most \c k arcs, then this function
/// will calculate the distances exactly for the paths of at most
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function
/// calculates the shortest path distances exactly for the paths
/// consisting of at most \c k arcs.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \return \c true when the algorithm have not found more shorter
/// paths.
///
/// \see ActiveIt
bool processNextRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
std::vector<Value> values(_process.size());
for (int i = 0; i < int(_process.size()); ++i) {
values[i] = (*_dist)[_process[i]];
}
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes one weak round from the Bellman-Ford algorithm.
///
/// If the algorithm calculated the distances in the previous round
/// at least for the paths of at most \c k arcs, then this function
/// will calculate the distances at least for the paths of at most
/// <tt>k+1</tt> arcs.
/// This function does not make it possible to calculate the shortest
/// path distances exactly for paths consisting of at most \c k arcs,
/// this is why it is called weak round.
///
/// \return \c true when the algorithm have not found more shorter
/// paths.
///
/// \see ActiveIt
bool processNextWeakRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
Value relaxed =
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes the algorithm.
///
/// Executes the algorithm.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
void start() {
int num = countNodes(*_gr) - 1;
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) break;
}
}
/// \brief Executes the algorithm and checks the negative cycles.
///
/// Executes the algorithm and checks the negative cycles.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node and also checks
/// if the digraph contains cycles with negative total length.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \return \c false if there is a negative cycle in the digraph.
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
bool checkedStart() {
int num = countNodes(*_gr);
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) return true;
}
return _process.empty();
}
/// \brief Executes the algorithm with arc number limit.
///
/// Executes the algorithm with arc number limit.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path distance for each node
/// using only the paths consisting of at most \c num arcs.
///
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
void limitedStart(int num) {
for (int i = 0; i < num; ++i) {
if (processNextRound()) break;
}
}
/// \brief Runs the algorithm from the given root node.
///
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path to each node.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \note bf.run(s) is just a shortcut of the following code.
/// \code
/// bf.init();
/// bf.addSource(s);
/// bf.start();
/// \endcode
void run(Node s) {
init();
addSource(s);
start();
}
/// \brief Runs the algorithm from the given root node with arc
/// number limit.
///
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path distance for each
/// node using only the paths consisting of at most \c num arcs.
///
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \note bf.run(s, num) is just a shortcut of the following code.
/// \code
/// bf.init();
/// bf.addSource(s);
/// bf.limitedStart(num);
/// \endcode
void run(Node s, int num) {
init();
addSource(s);
limitedStart(num);
}
///@}
/// \brief LEMON iterator for getting the active nodes.
///
/// This class provides a common style LEMON iterator that traverses
/// the active nodes of the Bellman-Ford algorithm after the last
/// phase. These nodes should be checked in the next phase to
/// find augmenting arcs outgoing from them.
class ActiveIt {
public:
/// \brief Constructor.
///
/// Constructor for getting the active nodes of the given BellmanFord
/// instance.
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
{
_index = _algorithm->_process.size() - 1;
}
/// \brief Invalid constructor.
///
/// Invalid constructor.
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
/// \brief Conversion to \c Node.
///
/// Conversion to \c Node.
operator Node() const {
return _index >= 0 ? _algorithm->_process[_index] : INVALID;
}
/// \brief Increment operator.
///
/// Increment operator.
ActiveIt& operator++() {
--_index;
return *this;
}
bool operator==(const ActiveIt& it) const {
return static_cast<Node>(*this) == static_cast<Node>(it);
}
bool operator!=(const ActiveIt& it) const {
return static_cast<Node>(*this) != static_cast<Node>(it);
}
bool operator<(const ActiveIt& it) const {
return static_cast<Node>(*this) < static_cast<Node>(it);
}
private:
const BellmanFord* _algorithm;
int _index;
};
/// \name Query Functions
/// The result of the Bellman-Ford algorithm can be obtained using these
/// functions.\n
/// Either \ref run() or \ref init() should be called before using them.
///@{
/// \brief The shortest path to the given node.
///
/// Gives back the shortest path to the given node from the root(s).
///
/// \warning \c t should be reached from the root(s).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Path path(Node t) const
{
return Path(*_gr, *_pred, t);
}
/// \brief The distance of the given node from the root(s).
///
/// Returns the distance of the given node from the root(s).
///
/// \warning If node \c v is not reached from the root(s), then
/// the return value of this function is undefined.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Value dist(Node v) const { return (*_dist)[v]; }
/// \brief Returns the 'previous arc' of the shortest path tree for
/// the given node.
///
/// This function returns the 'previous arc' of the shortest path
/// tree for node \c v, i.e. it returns the last arc of a
/// shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
///
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predNode() and \ref predMap().
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Arc predArc(Node v) const { return (*_pred)[v]; }
/// \brief Returns the 'previous node' of the shortest path tree for
/// the given node.
///
/// This function returns the 'previous node' of the shortest path
/// tree for node \c v, i.e. it returns the last but one node of
/// a shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
///
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predArc() and \ref predMap().
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Node predNode(Node v) const {
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
}
/// \brief Returns a const reference to the node map that stores the
/// distances of the nodes.
///
/// Returns a const reference to the node map that stores the distances
/// of the nodes calculated by the algorithm.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const DistMap &distMap() const { return *_dist;}
/// \brief Returns a const reference to the node map that stores the
/// predecessor arcs.
///
/// Returns a const reference to the node map that stores the predecessor
/// arcs, which form the shortest path tree (forest).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const PredMap &predMap() const { return *_pred; }
/// \brief Checks if a node is reached from the root(s).
///
/// Returns \c true if \c v is reached from the root(s).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
bool reached(Node v) const {
return (*_dist)[v] != OperationTraits::infinity();
}
/// \brief Gives back a negative cycle.
///
/// This function gives back a directed cycle with negative total
/// length if the algorithm has already found one.
/// Otherwise it gives back an empty path.
lemon::Path<Digraph> negativeCycle() const {
typename Digraph::template NodeMap<int> state(*_gr, -1);
lemon::Path<Digraph> cycle;
for (int i = 0; i < int(_process.size()); ++i) {
if (state[_process[i]] != -1) continue;
for (Node v = _process[i]; (*_pred)[v] != INVALID;
v = _gr->source((*_pred)[v])) {
if (state[v] == i) {
cycle.addFront((*_pred)[v]);
for (Node u = _gr->source((*_pred)[v]); u != v;
u = _gr->source((*_pred)[u])) {
cycle.addFront((*_pred)[u]);
}
return cycle;
}
else if (state[v] >= 0) {
break;
}
state[v] = i;
}
}
return cycle;
}
///@}
};
/// \brief Default traits class of bellmanFord() function.
///
/// Default traits class of bellmanFord() function.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
struct BellmanFordWizardDefaultTraits {
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef LEN LengthMap;
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the used operations and the infinity value for the
/// given \c Value type.
/// \see BellmanFordDefaultOperationTraits,
/// BellmanFordToleranceOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
///
/// The type of the map that stores the last arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
///
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
/// \ref PredMap.
static PredMap *createPredMap(const GR &g) {
return new PredMap(g);
}
/// \brief The type of the map that stores the distances of the nodes.
///
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<Value> DistMap;
/// \brief Instantiates a \c DistMap.
///
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
/// \ref DistMap.
static DistMap *createDistMap(const GR &g) {
return new DistMap(g);
}
///The type of the shortest paths.
///The type of the shortest paths.
///It must meet the \ref concepts::Path "Path" concept.
typedef lemon::Path<Digraph> Path;
};
/// \brief Default traits class used by BellmanFordWizard.
///
/// Default traits class used by BellmanFordWizard.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
class BellmanFordWizardBase
: public BellmanFordWizardDefaultTraits<GR, LEN> {
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
protected:
// Type of the nodes in the digraph.
typedef typename Base::Digraph::Node Node;
// Pointer to the underlying digraph.
void *_graph;
// Pointer to the length map
void *_length;
// Pointer to the map of predecessors arcs.
void *_pred;
// Pointer to the map of distances.
void *_dist;
//Pointer to the shortest path to the target node.
void *_path;
//Pointer to the distance of the target node.
void *_di;
public:
/// Constructor.
/// This constructor does not require parameters, it initiates
/// all of the attributes to default values \c 0.
BellmanFordWizardBase() :
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
/// Constructor.
/// This constructor requires two parameters,
/// others are initiated to \c 0.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizardBase(const GR& gr,
const LEN& len) :
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
_pred(0), _dist(0), _path(0), _di(0) {}
};
/// \brief Auxiliary class for the function-type interface of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
///
/// This auxiliary class is created to implement the
/// \ref bellmanFord() "function-type interface" of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
/// It does not have own \ref run() method, it uses the
/// functions and features of the plain \ref BellmanFord.
///
/// This class should only be used through the \ref bellmanFord()
/// function, which makes it easier to use the algorithm.
///
/// \tparam TR The traits class that defines various types used by the
/// algorithm.
template<class TR>
class BellmanFordWizard : public TR {
typedef TR Base;
typedef typename TR::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt ArcIt;
typedef typename TR::LengthMap LengthMap;
typedef typename LengthMap::Value Value;
typedef typename TR::PredMap PredMap;
typedef typename TR::DistMap DistMap;
typedef typename TR::Path Path;
public:
/// Constructor.
BellmanFordWizard() : TR() {}
/// \brief Constructor that requires parameters.
///
/// Constructor that requires parameters.
/// These parameters will be the default values for the traits class.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizard(const Digraph& gr, const LengthMap& len)
: TR(gr, len) {}
/// \brief Copy constructor
BellmanFordWizard(const TR &b) : TR(b) {}
~BellmanFordWizard() {}
/// \brief Runs the Bellman-Ford algorithm from the given source node.
///
/// This method runs the Bellman-Ford algorithm from the given source
/// node in order to compute the shortest path to each node.
void run(Node s) {
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
bf.run(s);
}
/// \brief Runs the Bellman-Ford algorithm to find the shortest path
/// between \c s and \c t.
///
/// This method runs the Bellman-Ford algorithm from node \c s
/// in order to compute the shortest path to node \c t.
/// Actually, it computes the shortest path to each node, but using
/// this function you can retrieve the distance and the shortest path
/// for a single target node easier.
///
/// \return \c true if \c t is reachable form \c s.
bool run(Node s, Node t) {
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
bf.run(s);
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
return bf.reached(t);
}
template<class T>
struct SetPredMapBase : public Base {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &) { return 0; };
SetPredMapBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// the predecessor map.
///
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the predecessor arcs of the nodes.
template<class T>
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPredMapBase<T> >(*this);
}
template<class T>
struct SetDistMapBase : public Base {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &) { return 0; };
SetDistMapBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// the distance map.
///
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the distances of the nodes calculated
/// by the algorithm.
template<class T>
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetDistMapBase<T> >(*this);
}
template<class T>
struct SetPathBase : public Base {
typedef T Path;
SetPathBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
///
/// \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
template<class T>
BellmanFordWizard<SetPathBase<T> > path(const T &t)
{
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPathBase<T> >(*this);
}
/// \brief \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
///
/// \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
BellmanFordWizard dist(const Value &d)
{
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
return *this;
}
};
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
/// algorithm.
///
/// \ingroup shortest_path
/// Function type interface for the \ref BellmanFord "Bellman-Ford"
/// algorithm.
///
/// This function also has several \ref named-templ-func-param
/// "named parameters", they are declared as the members of class
/// \ref BellmanFordWizard.
/// The following examples show how to use these parameters.
/// \code
/// // Compute shortest path from node s to each node
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
///
/// // Compute shortest path from s to t
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
/// \endcode
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
/// to the end of the parameter list.
/// \sa BellmanFordWizard
/// \sa BellmanFord
template<typename GR, typename LEN>
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
bellmanFord(const GR& digraph,
const LEN& length)
{
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
}
} //END OF NAMESPACE LEMON
#endif