/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_BELLMAN_FORD_H
#define LEMON_BELLMAN_FORD_H
/// \ingroup shortest_path
/// \brief Bellman-Ford algorithm.
#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/tolerance.h>
/// \brief Default operation traits for the BellmanFord algorithm class.
/// This operation traits class defines all computational operations
/// and constants that are used in the Bellman-Ford algorithm.
/// The default implementation is based on the \c numeric_limits class.
/// If the numeric type does not have infinity value, then the maximum
/// value is used as extremal infinity value.
/// \see BellmanFordToleranceOperationTraits
bool has_inf = std::numeric_limits<V>::has_infinity>
struct BellmanFordDefaultOperationTraits {
/// \brief Value type for the algorithm.
/// \brief Gives back the zero value of the type.
return static_cast<Value>(0);
/// \brief Gives back the positive infinity value of the type.
static Value infinity() {
return std::numeric_limits<Value>::infinity();
/// \brief Gives back the sum of the given two elements.
static Value plus(const Value& left, const Value& right) {
/// \brief Gives back \c true only if the first value is less than
static bool less(const Value& left, const Value& right) {
struct BellmanFordDefaultOperationTraits<V, false> {
return static_cast<Value>(0);
static Value infinity() {
return std::numeric_limits<Value>::max();
static Value plus(const Value& left, const Value& right) {
if (left == infinity() || right == infinity()) return infinity();
static bool less(const Value& left, const Value& right) {
/// \brief Operation traits for the BellmanFord algorithm class
/// This operation traits class defines all computational operations
/// and constants that are used in the Bellman-Ford algorithm.
/// The only difference between this implementation and
/// \ref BellmanFordDefaultOperationTraits is that this class uses
/// the \ref Tolerance "tolerance technique" in its \ref less()
/// \tparam V The value type.
/// \tparam eps The epsilon value for the \ref less() function.
/// By default, it is the epsilon value used by \ref Tolerance
/// \see BellmanFordDefaultOperationTraits
template <typename V, V eps>
V eps = Tolerance<V>::def_epsilon>
struct BellmanFordToleranceOperationTraits {
/// \brief Value type for the algorithm.
/// \brief Gives back the zero value of the type.
return static_cast<Value>(0);
/// \brief Gives back the positive infinity value of the type.
static Value infinity() {
return std::numeric_limits<Value>::infinity();
/// \brief Gives back the sum of the given two elements.
static Value plus(const Value& left, const Value& right) {
/// \brief Gives back \c true only if the first value is less than
static bool less(const Value& left, const Value& right) {
return left + eps < right;
/// \brief Default traits class of BellmanFord class.
/// Default traits class of BellmanFord class.
/// \param GR The type of the digraph.
/// \param LEN The type of the length map.
template<typename GR, typename LEN>
struct BellmanFordDefaultTraits {
/// The type of the digraph the algorithm runs on.
/// \brief The type of the map that stores the arc lengths.
/// The type of the map that stores the arc lengths.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
/// It defines the used operations and the infinity value for the
/// \see BellmanFordDefaultOperationTraits,
/// BellmanFordToleranceOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last arcs of the
/// The type of the map that stores the last
/// arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
static PredMap *createPredMap(const GR& g) {
/// \brief The type of the map that stores the distances of the nodes.
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
/// \brief Instantiates a \c DistMap.
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
static DistMap *createDistMap(const GR& g) {
/// \brief %BellmanFord algorithm class.
/// \ingroup shortest_path
/// This class provides an efficient implementation of the Bellman-Ford
/// algorithm. The maximum time complexity of the algorithm is
/// The Bellman-Ford algorithm solves the single-source shortest path
/// problem when the arcs can have negative lengths, but the digraph
/// should not contain directed cycles with negative total length.
/// If all arc costs are non-negative, consider to use the Dijkstra
/// algorithm instead, since it is more efficient.
/// The arc lengths are passed to the algorithm using a
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
/// kind of length. The type of the length values is determined by the
/// \ref concepts::ReadMap::Value "Value" type of the length map.
/// There is also a \ref bellmanFord() "function-type interface" for the
/// Bellman-Ford algorithm, which is convenient in the simplier cases and
/// it can be used easier.
/// \tparam GR The type of the digraph the algorithm runs on.
/// The default type is \ref ListDigraph.
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
/// the lengths of the arcs. The default map type is
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref BellmanFordDefaultTraits
/// "BellmanFordDefaultTraits<GR, LEN>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
template <typename GR, typename LEN, typename TR>
template <typename GR=ListDigraph,
typename LEN=typename GR::template ArcMap<int>,
typename TR=BellmanFordDefaultTraits<GR,LEN> >
///The type of the underlying digraph.
typedef typename TR::Digraph Digraph;
/// \brief The type of the arc lengths.
typedef typename TR::LengthMap::Value Value;
/// \brief The type of the map that stores the arc lengths.
typedef typename TR::LengthMap LengthMap;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
typedef typename TR::PredMap PredMap;
/// \brief The type of the map that stores the distances of the nodes.
typedef typename TR::DistMap DistMap;
/// The type of the paths.
typedef PredMapPath<Digraph, PredMap> Path;
///\brief The \ref BellmanFordDefaultOperationTraits
/// "operation traits class" of the algorithm.
typedef typename TR::OperationTraits OperationTraits;
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
// Pointer to the underlying digraph.
// Pointer to the length map
const LengthMap *_length;
// Pointer to the map of predecessors arcs.
// Indicates if _pred is locally allocated (true) or not.
// Pointer to the map of distances.
// Indicates if _dist is locally allocated (true) or not.
typedef typename Digraph::template NodeMap<bool> MaskMap;
std::vector<Node> _process;
// Creates the maps if necessary.
_pred = Traits::createPredMap(*_gr);
_dist = Traits::createDistMap(*_gr);
_mask = new MaskMap(*_gr);
typedef BellmanFord Create;
/// \name Named Template Parameters
struct SetPredMapTraits : public Traits {
static PredMap *createPredMap(const Digraph&) {
LEMON_ASSERT(false, "PredMap is not initialized");
return 0; // ignore warnings
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
struct SetDistMapTraits : public Traits {
static DistMap *createDistMap(const Digraph&) {
LEMON_ASSERT(false, "DistMap is not initialized");
return 0; // ignore warnings
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
struct SetOperationTraitsTraits : public Traits {
typedef T OperationTraits;
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
/// \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
/// For more information, see \ref BellmanFordDefaultOperationTraits.
struct SetOperationTraits
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
/// \param g The digraph the algorithm runs on.
/// \param length The length map used by the algorithm.
BellmanFord(const Digraph& g, const LengthMap& length) :
_gr(&g), _length(&length),
_pred(0), _local_pred(false),
_dist(0), _local_dist(false), _mask(0) {}
if(_local_pred) delete _pred;
if(_local_dist) delete _dist;
/// \brief Sets the length map.
/// \return <tt>(*this)</tt>
BellmanFord &lengthMap(const LengthMap &map) {
/// \brief Sets the map that stores the predecessor arcs.
/// Sets the map that stores the predecessor arcs.
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// \return <tt>(*this)</tt>
BellmanFord &predMap(PredMap &map) {
/// \brief Sets the map that stores the distances of the nodes.
/// Sets the map that stores the distances of the nodes calculated
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// \return <tt>(*this)</tt>
BellmanFord &distMap(DistMap &map) {
/// \name Execution Control
/// The simplest way to execute the Bellman-Ford algorithm is to use
/// one of the member functions called \ref run().\n
/// If you need better control on the execution, you have to call
/// \ref init() first, then you can add several source nodes
/// with \ref addSource(). Finally the actual path computation can be
/// performed with \ref start(), \ref checkedStart() or
/// \brief Initializes the internal data structures.
/// Initializes the internal data structures. The optional parameter
/// is the initial distance of each node.
void init(const Value value = OperationTraits::infinity()) {
for (NodeIt it(*_gr); it != INVALID; ++it) {
if (OperationTraits::less(value, OperationTraits::infinity())) {
for (NodeIt it(*_gr); it != INVALID; ++it) {
for (NodeIt it(*_gr); it != INVALID; ++it) {
/// \brief Adds a new source node.
/// This function adds a new source node. The optional second parameter
/// is the initial distance of the node.
void addSource(Node source, Value dst = OperationTraits::zero()) {
_process.push_back(source);
_mask->set(source, true);
/// \brief Executes one round from the Bellman-Ford algorithm.
/// If the algoritm calculated the distances in the previous round
/// exactly for the paths of at most \c k arcs, then this function
/// will calculate the distances exactly for the paths of at most
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function
/// calculates the shortest path distances exactly for the paths
/// consisting of at most \c k arcs.
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
/// \return \c true when the algorithm have not found more shorter
bool processNextRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
std::vector<Node> nextProcess;
std::vector<Value> values(_process.size());
for (int i = 0; i < int(_process.size()); ++i) {
values[i] = (*_dist)[_process[i]];
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_dist->set(target, relaxed);
_mask->set(target, true);
nextProcess.push_back(target);
_process.swap(nextProcess);
/// \brief Executes one weak round from the Bellman-Ford algorithm.
/// If the algorithm calculated the distances in the previous round
/// at least for the paths of at most \c k arcs, then this function
/// will calculate the distances at least for the paths of at most
/// This function does not make it possible to calculate the shortest
/// path distances exactly for paths consisting of at most \c k arcs,
/// this is why it is called weak round.
/// \return \c true when the algorithm have not found more shorter
bool processNextWeakRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
std::vector<Node> nextProcess;
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_dist->set(target, relaxed);
_mask->set(target, true);
nextProcess.push_back(target);
_process.swap(nextProcess);
/// \brief Executes the algorithm.
/// Executes the algorithm.
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node.
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
int num = countNodes(*_gr) - 1;
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) break;
/// \brief Executes the algorithm and checks the negative cycles.
/// Executes the algorithm and checks the negative cycles.
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node and also checks
/// if the digraph contains cycles with negative total length.
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
/// \return \c false if there is a negative cycle in the digraph.
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
int num = countNodes(*_gr);
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) return true;
/// \brief Executes the algorithm with arc number limit.
/// Executes the algorithm with arc number limit.
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path distance for each node
/// using only the paths consisting of at most \c num arcs.
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
void limitedStart(int num) {
for (int i = 0; i < num; ++i) {
if (processNextRound()) break;
/// \brief Runs the algorithm from the given root node.
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path to each node.
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
/// \note bf.run(s) is just a shortcut of the following code.
/// \brief Runs the algorithm from the given root node with arc
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path distance for each
/// node using only the paths consisting of at most \c num arcs.
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
/// \note bf.run(s, num) is just a shortcut of the following code.
/// bf.limitedStart(num);
void run(Node s, int num) {
/// \brief LEMON iterator for getting the active nodes.
/// This class provides a common style LEMON iterator that traverses
/// the active nodes of the Bellman-Ford algorithm after the last
/// phase. These nodes should be checked in the next phase to
/// find augmenting arcs outgoing from them.
/// Constructor for getting the active nodes of the given BellmanFord
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
_index = _algorithm->_process.size() - 1;
/// \brief Invalid constructor.
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
/// \brief Conversion to \c Node.
/// Conversion to \c Node.
return _index >= 0 ? _algorithm->_process[_index] : INVALID;
/// \brief Increment operator.
bool operator==(const ActiveIt& it) const {
return static_cast<Node>(*this) == static_cast<Node>(it);
bool operator!=(const ActiveIt& it) const {
return static_cast<Node>(*this) != static_cast<Node>(it);
bool operator<(const ActiveIt& it) const {
return static_cast<Node>(*this) < static_cast<Node>(it);
const BellmanFord* _algorithm;
/// \name Query Functions
/// The result of the Bellman-Ford algorithm can be obtained using these
/// Either \ref run() or \ref init() should be called before using them.
/// \brief The shortest path to the given node.
/// Gives back the shortest path to the given node from the root(s).
/// \warning \c t should be reached from the root(s).
/// \pre Either \ref run() or \ref init() must be called before
return Path(*_gr, *_pred, t);
/// \brief The distance of the given node from the root(s).
/// Returns the distance of the given node from the root(s).
/// \warning If node \c v is not reached from the root(s), then
/// the return value of this function is undefined.
/// \pre Either \ref run() or \ref init() must be called before
Value dist(Node v) const { return (*_dist)[v]; }
/// \brief Returns the 'previous arc' of the shortest path tree for
/// This function returns the 'previous arc' of the shortest path
/// tree for node \c v, i.e. it returns the last arc of a
/// shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predNode() and \ref predMap().
/// \pre Either \ref run() or \ref init() must be called before
Arc predArc(Node v) const { return (*_pred)[v]; }
/// \brief Returns the 'previous node' of the shortest path tree for
/// This function returns the 'previous node' of the shortest path
/// tree for node \c v, i.e. it returns the last but one node of
/// a shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predArc() and \ref predMap().
/// \pre Either \ref run() or \ref init() must be called before
Node predNode(Node v) const {
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
/// \brief Returns a const reference to the node map that stores the
/// distances of the nodes.
/// Returns a const reference to the node map that stores the distances
/// of the nodes calculated by the algorithm.
/// \pre Either \ref run() or \ref init() must be called before
const DistMap &distMap() const { return *_dist;}
/// \brief Returns a const reference to the node map that stores the
/// Returns a const reference to the node map that stores the predecessor
/// arcs, which form the shortest path tree (forest).
/// \pre Either \ref run() or \ref init() must be called before
const PredMap &predMap() const { return *_pred; }
/// \brief Checks if a node is reached from the root(s).
/// Returns \c true if \c v is reached from the root(s).
/// \pre Either \ref run() or \ref init() must be called before
bool reached(Node v) const {
return (*_dist)[v] != OperationTraits::infinity();
/// \brief Gives back a negative cycle.
/// This function gives back a directed cycle with negative total
/// length if the algorithm has already found one.
/// Otherwise it gives back an empty path.
lemon::Path<Digraph> negativeCycle() const {
typename Digraph::template NodeMap<int> state(*_gr, -1);
lemon::Path<Digraph> cycle;
for (int i = 0; i < int(_process.size()); ++i) {
if (state[_process[i]] != -1) continue;
for (Node v = _process[i]; (*_pred)[v] != INVALID;
v = _gr->source((*_pred)[v])) {
cycle.addFront((*_pred)[v]);
for (Node u = _gr->source((*_pred)[v]); u != v;
u = _gr->source((*_pred)[u])) {
cycle.addFront((*_pred)[u]);
else if (state[v] >= 0) {
/// \brief Default traits class of bellmanFord() function.
/// Default traits class of bellmanFord() function.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
struct BellmanFordWizardDefaultTraits {
/// The type of the digraph the algorithm runs on.
/// \brief The type of the map that stores the arc lengths.
/// The type of the map that stores the arc lengths.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
/// It defines the used operations and the infinity value for the
/// \see BellmanFordDefaultOperationTraits,
/// BellmanFordToleranceOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
/// The type of the map that stores the last arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
static PredMap *createPredMap(const GR &g) {
/// \brief The type of the map that stores the distances of the nodes.
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<Value> DistMap;
/// \brief Instantiates a \c DistMap.
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
static DistMap *createDistMap(const GR &g) {
///The type of the shortest paths.
///The type of the shortest paths.
///It must meet the \ref concepts::Path "Path" concept.
typedef lemon::Path<Digraph> Path;
/// \brief Default traits class used by BellmanFordWizard.
/// Default traits class used by BellmanFordWizard.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
class BellmanFordWizardBase
: public BellmanFordWizardDefaultTraits<GR, LEN> {
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
// Type of the nodes in the digraph.
typedef typename Base::Digraph::Node Node;
// Pointer to the underlying digraph.
// Pointer to the length map
// Pointer to the map of predecessors arcs.
// Pointer to the map of distances.
//Pointer to the shortest path to the target node.
//Pointer to the distance of the target node.
/// This constructor does not require parameters, it initiates
/// all of the attributes to default values \c 0.
BellmanFordWizardBase() :
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
/// This constructor requires two parameters,
/// others are initiated to \c 0.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizardBase(const GR& gr,
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
_pred(0), _dist(0), _path(0), _di(0) {}
/// \brief Auxiliary class for the function-type interface of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
/// This auxiliary class is created to implement the
/// \ref bellmanFord() "function-type interface" of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
/// It does not have own \ref run() method, it uses the
/// functions and features of the plain \ref BellmanFord.
/// This class should only be used through the \ref bellmanFord()
/// function, which makes it easier to use the algorithm.
/// \tparam TR The traits class that defines various types used by the
class BellmanFordWizard : public TR {
typedef typename TR::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt ArcIt;
typedef typename TR::LengthMap LengthMap;
typedef typename LengthMap::Value Value;
typedef typename TR::PredMap PredMap;
typedef typename TR::DistMap DistMap;
typedef typename TR::Path Path;
BellmanFordWizard() : TR() {}
/// \brief Constructor that requires parameters.
/// Constructor that requires parameters.
/// These parameters will be the default values for the traits class.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizard(const Digraph& gr, const LengthMap& len)
/// \brief Copy constructor
BellmanFordWizard(const TR &b) : TR(b) {}
/// \brief Runs the Bellman-Ford algorithm from the given source node.
/// This method runs the Bellman-Ford algorithm from the given source
/// node in order to compute the shortest path to each node.
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
/// \brief Runs the Bellman-Ford algorithm to find the shortest path
/// between \c s and \c t.
/// This method runs the Bellman-Ford algorithm from node \c s
/// in order to compute the shortest path to node \c t.
/// Actually, it computes the shortest path to each node, but using
/// this function you can retrieve the distance and the shortest path
/// for a single target node easier.
/// \return \c true if \c t is reachable form \c s.
bool run(Node s, Node t) {
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
struct SetPredMapBase : public Base {
static PredMap *createPredMap(const Digraph &) { return 0; };
SetPredMapBase(const TR &b) : TR(b) {}
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the predecessor arcs of the nodes.
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPredMapBase<T> >(*this);
struct SetDistMapBase : public Base {
static DistMap *createDistMap(const Digraph &) { return 0; };
SetDistMapBase(const TR &b) : TR(b) {}
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the distances of the nodes calculated
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetDistMapBase<T> >(*this);
struct SetPathBase : public Base {
SetPathBase(const TR &b) : TR(b) {}
/// \brief \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
/// \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
BellmanFordWizard<SetPathBase<T> > path(const T &t)
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPathBase<T> >(*this);
/// \brief \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
/// \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
BellmanFordWizard dist(const Value &d)
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
/// \ingroup shortest_path
/// Function type interface for the \ref BellmanFord "Bellman-Ford"
/// This function also has several \ref named-templ-func-param
/// "named parameters", they are declared as the members of class
/// \ref BellmanFordWizard.
/// The following examples show how to use these parameters.
/// // Compute shortest path from node s to each node
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
/// // Compute shortest path from s to t
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
/// to the end of the parameter list.
/// \sa BellmanFordWizard
template<typename GR, typename LEN>
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
bellmanFord(const GR& digraph,
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
} //END OF NAMESPACE LEMON