0
8
0
4
4
4
4
12
5
| ... | ... |
@@ -366,49 +366,49 @@ |
| 366 | 366 |
|
| 367 | 367 |
\brief Algorithms for finding minimum cut in graphs. |
| 368 | 368 |
|
| 369 | 369 |
This group contains the algorithms for finding minimum cut in graphs. |
| 370 | 370 |
|
| 371 | 371 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 372 | 372 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 373 | 373 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 374 | 374 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 375 | 375 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 376 | 376 |
|
| 377 | 377 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 378 |
\sum_{uv\in A
|
|
| 378 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
|
| 379 | 379 |
|
| 380 | 380 |
LEMON contains several algorithms related to minimum cut problems: |
| 381 | 381 |
|
| 382 | 382 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 383 | 383 |
in directed graphs. |
| 384 | 384 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 385 | 385 |
calculating minimum cut in undirected graphs. |
| 386 | 386 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 387 | 387 |
all-pairs minimum cut in undirected graphs. |
| 388 | 388 |
|
| 389 | 389 |
If you want to find minimum cut just between two distinict nodes, |
| 390 | 390 |
see the \ref max_flow "maximum flow problem". |
| 391 | 391 |
*/ |
| 392 | 392 |
|
| 393 | 393 |
/** |
| 394 | 394 |
@defgroup graph_properties Connectivity and Other Graph Properties |
| 395 | 395 |
@ingroup algs |
| 396 | 396 |
\brief Algorithms for discovering the graph properties |
| 397 | 397 |
|
| 398 | 398 |
This group contains the algorithms for discovering the graph properties |
| 399 | 399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 400 | 400 |
|
| 401 |
\image html edge_biconnected_components.png |
|
| 402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
| 401 |
\image html connected_components.png |
|
| 402 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
| 403 | 403 |
*/ |
| 404 | 404 |
|
| 405 | 405 |
/** |
| 406 | 406 |
@defgroup planar Planarity Embedding and Drawing |
| 407 | 407 |
@ingroup algs |
| 408 | 408 |
\brief Algorithms for planarity checking, embedding and drawing |
| 409 | 409 |
|
| 410 | 410 |
This group contains the algorithms for planarity checking, |
| 411 | 411 |
embedding and drawing. |
| 412 | 412 |
|
| 413 | 413 |
\image html planar.png |
| 414 | 414 |
\image latex planar.eps "Plane graph" width=\textwidth |
| ... | ... |
@@ -404,26 +404,26 @@ |
| 404 | 404 |
delete _dist; |
| 405 | 405 |
local_dist=false; |
| 406 | 406 |
} |
| 407 | 407 |
_dist = &m; |
| 408 | 408 |
return *this; |
| 409 | 409 |
} |
| 410 | 410 |
|
| 411 | 411 |
public: |
| 412 | 412 |
|
| 413 | 413 |
///\name Execution Control |
| 414 | 414 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 415 | 415 |
///member functions called \ref run(Node) "run()".\n |
| 416 |
///If you need more control on the execution, first you have to call |
|
| 417 |
///\ref init(), then you can add several source nodes with |
|
| 416 |
///If you need better control on the execution, you have to call |
|
| 417 |
///\ref init() first, then you can add several source nodes with |
|
| 418 | 418 |
///\ref addSource(). Finally the actual path computation can be |
| 419 | 419 |
///performed with one of the \ref start() functions. |
| 420 | 420 |
|
| 421 | 421 |
///@{
|
| 422 | 422 |
|
| 423 | 423 |
///\brief Initializes the internal data structures. |
| 424 | 424 |
/// |
| 425 | 425 |
///Initializes the internal data structures. |
| 426 | 426 |
void init() |
| 427 | 427 |
{
|
| 428 | 428 |
create_maps(); |
| 429 | 429 |
_queue.resize(countNodes(*G)); |
| ... | ... |
@@ -1416,26 +1416,26 @@ |
| 1416 | 1416 |
delete _reached; |
| 1417 | 1417 |
local_reached = false; |
| 1418 | 1418 |
} |
| 1419 | 1419 |
_reached = &m; |
| 1420 | 1420 |
return *this; |
| 1421 | 1421 |
} |
| 1422 | 1422 |
|
| 1423 | 1423 |
public: |
| 1424 | 1424 |
|
| 1425 | 1425 |
/// \name Execution Control |
| 1426 | 1426 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1427 | 1427 |
/// member functions called \ref run(Node) "run()".\n |
| 1428 |
/// If you need more control on the execution, first you have to call |
|
| 1429 |
/// \ref init(), then you can add several source nodes with |
|
| 1428 |
/// If you need better control on the execution, you have to call |
|
| 1429 |
/// \ref init() first, then you can add several source nodes with |
|
| 1430 | 1430 |
/// \ref addSource(). Finally the actual path computation can be |
| 1431 | 1431 |
/// performed with one of the \ref start() functions. |
| 1432 | 1432 |
|
| 1433 | 1433 |
/// @{
|
| 1434 | 1434 |
|
| 1435 | 1435 |
/// \brief Initializes the internal data structures. |
| 1436 | 1436 |
/// |
| 1437 | 1437 |
/// Initializes the internal data structures. |
| 1438 | 1438 |
void init() {
|
| 1439 | 1439 |
create_maps(); |
| 1440 | 1440 |
_list.resize(countNodes(*_digraph)); |
| 1441 | 1441 |
_list_front = _list_back = -1; |
| ... | ... |
@@ -63,42 +63,49 @@ |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 77 |
#else |
|
| 75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 |
#endif |
|
| 76 | 80 |
|
| 77 | 81 |
/// \brief Instantiates a FlowMap. |
| 78 | 82 |
/// |
| 79 | 83 |
/// This function instantiates a \ref FlowMap. |
| 80 | 84 |
/// \param digraph The digraph for which we would like to define |
| 81 | 85 |
/// the flow map. |
| 82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 83 | 87 |
return new FlowMap(digraph); |
| 84 | 88 |
} |
| 85 | 89 |
|
| 86 | 90 |
/// \brief The elevator type used by the algorithm. |
| 87 | 91 |
/// |
| 88 | 92 |
/// The elevator type used by the algorithm. |
| 89 | 93 |
/// |
| 90 |
/// \sa Elevator |
|
| 91 |
/// \sa LinkedElevator |
|
| 94 |
/// \sa Elevator, LinkedElevator |
|
| 95 |
#ifdef DOXYGEN |
|
| 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 97 |
#else |
|
| 92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 |
#endif |
|
| 93 | 100 |
|
| 94 | 101 |
/// \brief Instantiates an Elevator. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This function instantiates an \ref Elevator. |
| 97 | 104 |
/// \param digraph The digraph for which we would like to define |
| 98 | 105 |
/// the elevator. |
| 99 | 106 |
/// \param max_level The maximum level of the elevator. |
| 100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 101 | 108 |
return new Elevator(digraph, max_level); |
| 102 | 109 |
} |
| 103 | 110 |
|
| 104 | 111 |
/// \brief The tolerance used by the algorithm |
| ... | ... |
@@ -458,26 +465,26 @@ |
| 458 | 465 |
return *this; |
| 459 | 466 |
} |
| 460 | 467 |
|
| 461 | 468 |
/// \brief Returns a const reference to the tolerance. |
| 462 | 469 |
/// |
| 463 | 470 |
/// Returns a const reference to the tolerance. |
| 464 | 471 |
const Tolerance& tolerance() const {
|
| 465 | 472 |
return tolerance; |
| 466 | 473 |
} |
| 467 | 474 |
|
| 468 | 475 |
/// \name Execution Control |
| 469 | 476 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 470 |
/// If you need more control on the initial solution or the execution, |
|
| 471 |
/// first you have to call one of the \ref init() functions, then |
|
| 477 |
/// If you need better control on the initial solution or the execution, |
|
| 478 |
/// you have to call one of the \ref init() functions first, then |
|
| 472 | 479 |
/// the \ref start() function. |
| 473 | 480 |
|
| 474 | 481 |
///@{
|
| 475 | 482 |
|
| 476 | 483 |
/// Initializes the internal data structures. |
| 477 | 484 |
|
| 478 | 485 |
/// Initializes the internal data structures and sets all flow values |
| 479 | 486 |
/// to the lower bound. |
| 480 | 487 |
void init() |
| 481 | 488 |
{
|
| 482 | 489 |
LEMON_DEBUG(checkBoundMaps(), |
| 483 | 490 |
"Upper bounds must be greater or equal to the lower bounds"); |
| ... | ... |
@@ -402,26 +402,26 @@ |
| 402 | 402 |
delete _dist; |
| 403 | 403 |
local_dist=false; |
| 404 | 404 |
} |
| 405 | 405 |
_dist = &m; |
| 406 | 406 |
return *this; |
| 407 | 407 |
} |
| 408 | 408 |
|
| 409 | 409 |
public: |
| 410 | 410 |
|
| 411 | 411 |
///\name Execution Control |
| 412 | 412 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 413 |
///member functions called \ref run(Node) "run()".\n |
| 414 |
///If you need more control on the execution, first you have to call |
|
| 415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
| 414 |
///If you need better control on the execution, you have to call |
|
| 415 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
| 416 | 416 |
///and perform the actual computation with \ref start(). |
| 417 | 417 |
///This procedure can be repeated if there are nodes that have not |
| 418 | 418 |
///been reached. |
| 419 | 419 |
|
| 420 | 420 |
///@{
|
| 421 | 421 |
|
| 422 | 422 |
///\brief Initializes the internal data structures. |
| 423 | 423 |
/// |
| 424 | 424 |
///Initializes the internal data structures. |
| 425 | 425 |
void init() |
| 426 | 426 |
{
|
| 427 | 427 |
create_maps(); |
| ... | ... |
@@ -1360,26 +1360,26 @@ |
| 1360 | 1360 |
delete _reached; |
| 1361 | 1361 |
local_reached=false; |
| 1362 | 1362 |
} |
| 1363 | 1363 |
_reached = &m; |
| 1364 | 1364 |
return *this; |
| 1365 | 1365 |
} |
| 1366 | 1366 |
|
| 1367 | 1367 |
public: |
| 1368 | 1368 |
|
| 1369 | 1369 |
/// \name Execution Control |
| 1370 | 1370 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1371 | 1371 |
/// member functions called \ref run(Node) "run()".\n |
| 1372 |
/// If you need more control on the execution, first you have to call |
|
| 1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
| 1372 |
/// If you need better control on the execution, you have to call |
|
| 1373 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
| 1374 | 1374 |
/// and perform the actual computation with \ref start(). |
| 1375 | 1375 |
/// This procedure can be repeated if there are nodes that have not |
| 1376 | 1376 |
/// been reached. |
| 1377 | 1377 |
|
| 1378 | 1378 |
/// @{
|
| 1379 | 1379 |
|
| 1380 | 1380 |
/// \brief Initializes the internal data structures. |
| 1381 | 1381 |
/// |
| 1382 | 1382 |
/// Initializes the internal data structures. |
| 1383 | 1383 |
void init() {
|
| 1384 | 1384 |
create_maps(); |
| 1385 | 1385 |
_stack.resize(countNodes(*_digraph)); |
| ... | ... |
@@ -575,26 +575,26 @@ |
| 575 | 575 |
|
| 576 | 576 |
void finalizeNodeData(Node v,Value dst) |
| 577 | 577 |
{
|
| 578 | 578 |
_processed->set(v,true); |
| 579 | 579 |
_dist->set(v, dst); |
| 580 | 580 |
} |
| 581 | 581 |
|
| 582 | 582 |
public: |
| 583 | 583 |
|
| 584 | 584 |
///\name Execution Control |
| 585 | 585 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 586 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 |
///If you need more control on the execution, first you have to call |
|
| 588 |
///\ref init(), then you can add several source nodes with |
|
| 587 |
///If you need better control on the execution, you have to call |
|
| 588 |
///\ref init() first, then you can add several source nodes with |
|
| 589 | 589 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 590 |
///performed with one of the \ref start() functions. |
| 591 | 591 |
|
| 592 | 592 |
///@{
|
| 593 | 593 |
|
| 594 | 594 |
///\brief Initializes the internal data structures. |
| 595 | 595 |
/// |
| 596 | 596 |
///Initializes the internal data structures. |
| 597 | 597 |
void init() |
| 598 | 598 |
{
|
| 599 | 599 |
create_maps(); |
| 600 | 600 |
_heap->clear(); |
| ... | ... |
@@ -350,28 +350,28 @@ |
| 350 | 350 |
|
| 351 | 351 |
friend class MinCutNodeIt; |
| 352 | 352 |
|
| 353 | 353 |
/// Iterate on the nodes of a minimum cut |
| 354 | 354 |
|
| 355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
| 356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 358 | 358 |
/// |
| 359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
| 360 | 360 |
/// \c t. |
| 361 | 361 |
/// \code |
| 362 |
/// |
|
| 362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 363 | 363 |
/// gom.run(); |
| 364 | 364 |
/// int cnt=0; |
| 365 |
/// for( |
|
| 365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
| 366 | 366 |
/// \endcode |
| 367 | 367 |
class MinCutNodeIt |
| 368 | 368 |
{
|
| 369 | 369 |
bool _side; |
| 370 | 370 |
typename Graph::NodeIt _node_it; |
| 371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
| 372 | 372 |
public: |
| 373 | 373 |
/// Constructor |
| 374 | 374 |
|
| 375 | 375 |
/// Constructor. |
| 376 | 376 |
/// |
| 377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
| ... | ... |
@@ -447,28 +447,28 @@ |
| 447 | 447 |
|
| 448 | 448 |
friend class MinCutEdgeIt; |
| 449 | 449 |
|
| 450 | 450 |
/// Iterate on the edges of a minimum cut |
| 451 | 451 |
|
| 452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
| 453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 455 | 455 |
/// |
| 456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
| 457 | 457 |
/// \c t. |
| 458 | 458 |
/// \code |
| 459 |
/// |
|
| 459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 460 | 460 |
/// gom.run(); |
| 461 | 461 |
/// int value=0; |
| 462 |
/// for( |
|
| 462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
| 463 | 463 |
/// value+=capacities[e]; |
| 464 | 464 |
/// \endcode |
| 465 | 465 |
/// The result will be the same as the value returned by |
| 466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
| 467 | 467 |
class MinCutEdgeIt |
| 468 | 468 |
{
|
| 469 | 469 |
bool _side; |
| 470 | 470 |
const Graph &_graph; |
| 471 | 471 |
typename Graph::NodeIt _node_it; |
| 472 | 472 |
typename Graph::OutArcIt _arc_it; |
| 473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
| 474 | 474 |
void step() |
| ... | ... |
@@ -479,26 +479,26 @@ |
| 479 | 479 |
MinCostArborescence& predMap(PredMap& m) {
|
| 480 | 480 |
if (local_pred) {
|
| 481 | 481 |
delete _pred; |
| 482 | 482 |
} |
| 483 | 483 |
local_pred = false; |
| 484 | 484 |
_pred = &m; |
| 485 | 485 |
return *this; |
| 486 | 486 |
} |
| 487 | 487 |
|
| 488 | 488 |
/// \name Execution Control |
| 489 | 489 |
/// The simplest way to execute the algorithm is to use |
| 490 | 490 |
/// one of the member functions called \c run(...). \n |
| 491 |
/// If you need more control on the execution, |
|
| 492 |
/// first you must call \ref init(), then you can add several |
|
| 491 |
/// If you need better control on the execution, |
|
| 492 |
/// you have to call \ref init() first, then you can add several |
|
| 493 | 493 |
/// source nodes with \ref addSource(). |
| 494 | 494 |
/// Finally \ref start() will perform the arborescence |
| 495 | 495 |
/// computation. |
| 496 | 496 |
|
| 497 | 497 |
///@{
|
| 498 | 498 |
|
| 499 | 499 |
/// \brief Initializes the internal data structures. |
| 500 | 500 |
/// |
| 501 | 501 |
/// Initializes the internal data structures. |
| 502 | 502 |
/// |
| 503 | 503 |
void init() {
|
| 504 | 504 |
createStructures(); |
| ... | ... |
@@ -43,42 +43,49 @@ |
| 43 | 43 |
/// |
| 44 | 44 |
/// The type of the map that stores the arc capacities. |
| 45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 46 | 46 |
typedef CAP CapacityMap; |
| 47 | 47 |
|
| 48 | 48 |
/// \brief The type of the flow values. |
| 49 | 49 |
typedef typename CapacityMap::Value Value; |
| 50 | 50 |
|
| 51 | 51 |
/// \brief The type of the map that stores the flow values. |
| 52 | 52 |
/// |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
#ifdef DOXYGEN |
|
| 56 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 57 |
#else |
|
| 55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 59 |
#endif |
|
| 56 | 60 |
|
| 57 | 61 |
/// \brief Instantiates a FlowMap. |
| 58 | 62 |
/// |
| 59 | 63 |
/// This function instantiates a \ref FlowMap. |
| 60 | 64 |
/// \param digraph The digraph for which we would like to define |
| 61 | 65 |
/// the flow map. |
| 62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 63 | 67 |
return new FlowMap(digraph); |
| 64 | 68 |
} |
| 65 | 69 |
|
| 66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
| 67 | 71 |
/// |
| 68 | 72 |
/// The elevator type used by Preflow algorithm. |
| 69 | 73 |
/// |
| 70 |
/// \sa Elevator |
|
| 71 |
/// \sa LinkedElevator |
|
| 72 |
|
|
| 74 |
/// \sa Elevator, LinkedElevator |
|
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 77 |
#else |
|
| 78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
| 79 |
#endif |
|
| 73 | 80 |
|
| 74 | 81 |
/// \brief Instantiates an Elevator. |
| 75 | 82 |
/// |
| 76 | 83 |
/// This function instantiates an \ref Elevator. |
| 77 | 84 |
/// \param digraph The digraph for which we would like to define |
| 78 | 85 |
/// the elevator. |
| 79 | 86 |
/// \param max_level The maximum level of the elevator. |
| 80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 81 | 88 |
return new Elevator(digraph, max_level); |
| 82 | 89 |
} |
| 83 | 90 |
|
| 84 | 91 |
/// \brief The tolerance used by the algorithm |
| ... | ... |
@@ -380,26 +387,26 @@ |
| 380 | 387 |
} |
| 381 | 388 |
|
| 382 | 389 |
/// \brief Returns a const reference to the tolerance. |
| 383 | 390 |
/// |
| 384 | 391 |
/// Returns a const reference to the tolerance. |
| 385 | 392 |
const Tolerance& tolerance() const {
|
| 386 | 393 |
return tolerance; |
| 387 | 394 |
} |
| 388 | 395 |
|
| 389 | 396 |
/// \name Execution Control |
| 390 | 397 |
/// The simplest way to execute the preflow algorithm is to use |
| 391 | 398 |
/// \ref run() or \ref runMinCut().\n |
| 392 |
/// If you need more control on the initial solution or the execution, |
|
| 393 |
/// first you have to call one of the \ref init() functions, then |
|
| 399 |
/// If you need better control on the initial solution or the execution, |
|
| 400 |
/// you have to call one of the \ref init() functions first, then |
|
| 394 | 401 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 395 | 402 |
|
| 396 | 403 |
///@{
|
| 397 | 404 |
|
| 398 | 405 |
/// \brief Initializes the internal data structures. |
| 399 | 406 |
/// |
| 400 | 407 |
/// Initializes the internal data structures and sets the initial |
| 401 | 408 |
/// flow to zero on each arc. |
| 402 | 409 |
void init() {
|
| 403 | 410 |
createStructures(); |
| 404 | 411 |
|
| 405 | 412 |
_phase = true; |
0 comments (0 inline)