0
3
0
| ... | ... |
@@ -22,7 +22,7 @@ |
| 22 | 22 |
/// \ingroup min_cost_flow |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 |
/// \brief Network |
|
| 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
|
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| ... | ... |
@@ -36,80 +36,89 @@ |
| 36 | 36 |
/// \addtogroup min_cost_flow |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 |
/// \brief Implementation of the primal |
|
| 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
|
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 |
/// \ref NetworkSimplex implements the primal |
|
| 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
|
| 43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 44 | 44 |
/// |
| 45 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
| 46 |
/// \tparam LowerMap The type of the lower bound map. |
|
| 47 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
| 48 |
/// \tparam CostMap The type of the cost (length) map. |
|
| 49 |
/// \tparam |
|
| 45 |
/// \tparam GR The digraph type the algorithm runs on. |
|
| 46 |
/// \tparam V The value type used in the algorithm. |
|
| 47 |
/// By default it is \c int. |
|
| 50 | 48 |
/// |
| 51 |
/// \warning |
|
| 52 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
| 53 |
/// - Supply values should be \e signed \e integers. |
|
| 54 |
/// - The value types of the maps should be convertible to each other. |
|
| 55 |
/// |
|
| 49 |
/// \warning \c V must be a signed integer type. |
|
| 56 | 50 |
/// |
| 57 |
/// \note \ref NetworkSimplex provides five different pivot rule |
|
| 58 |
/// implementations that significantly affect the efficiency of the |
|
| 59 |
/// algorithm. |
|
| 60 |
/// By default "Block Search" pivot rule is used, which proved to be |
|
| 61 |
/// by far the most efficient according to our benchmark tests. |
|
| 62 |
/// However another pivot rule can be selected using \ref run() |
|
| 63 |
/// function with the proper parameter. |
|
| 64 |
#ifdef DOXYGEN |
|
| 65 |
template < typename Digraph, |
|
| 66 |
typename LowerMap, |
|
| 67 |
typename CapacityMap, |
|
| 68 |
typename CostMap, |
|
| 69 |
typename SupplyMap > |
|
| 70 |
|
|
| 71 |
#else |
|
| 72 |
template < typename Digraph, |
|
| 73 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
| 74 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
| 75 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
| 76 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
| 77 |
|
|
| 51 |
/// \note %NetworkSimplex provides five different pivot rule |
|
| 52 |
/// implementations. For more information see \ref PivotRule. |
|
| 53 |
template <typename GR, typename V = int> |
|
| 78 | 54 |
class NetworkSimplex |
| 79 | 55 |
{
|
| 80 |
|
|
| 56 |
public: |
|
| 81 | 57 |
|
| 82 |
typedef typename CapacityMap::Value Capacity; |
|
| 83 |
typedef typename CostMap::Value Cost; |
|
| 84 |
|
|
| 58 |
/// The value type of the algorithm |
|
| 59 |
typedef V Value; |
|
| 60 |
/// The type of the flow map |
|
| 61 |
typedef typename GR::template ArcMap<Value> FlowMap; |
|
| 62 |
/// The type of the potential map |
|
| 63 |
typedef typename GR::template NodeMap<Value> PotentialMap; |
|
| 64 |
|
|
| 65 |
public: |
|
| 66 |
|
|
| 67 |
/// \brief Enum type for selecting the pivot rule. |
|
| 68 |
/// |
|
| 69 |
/// Enum type for selecting the pivot rule for the \ref run() |
|
| 70 |
/// function. |
|
| 71 |
/// |
|
| 72 |
/// \ref NetworkSimplex provides five different pivot rule |
|
| 73 |
/// implementations that significantly affect the running time |
|
| 74 |
/// of the algorithm. |
|
| 75 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
| 76 |
/// proved to be the most efficient and the most robust on various |
|
| 77 |
/// test inputs according to our benchmark tests. |
|
| 78 |
/// However another pivot rule can be selected using the \ref run() |
|
| 79 |
/// function with the proper parameter. |
|
| 80 |
enum PivotRule {
|
|
| 81 |
|
|
| 82 |
/// The First Eligible pivot rule. |
|
| 83 |
/// The next eligible arc is selected in a wraparound fashion |
|
| 84 |
/// in every iteration. |
|
| 85 |
FIRST_ELIGIBLE, |
|
| 86 |
|
|
| 87 |
/// The Best Eligible pivot rule. |
|
| 88 |
/// The best eligible arc is selected in every iteration. |
|
| 89 |
BEST_ELIGIBLE, |
|
| 90 |
|
|
| 91 |
/// The Block Search pivot rule. |
|
| 92 |
/// A specified number of arcs are examined in every iteration |
|
| 93 |
/// in a wraparound fashion and the best eligible arc is selected |
|
| 94 |
/// from this block. |
|
| 95 |
BLOCK_SEARCH, |
|
| 96 |
|
|
| 97 |
/// The Candidate List pivot rule. |
|
| 98 |
/// In a major iteration a candidate list is built from eligible arcs |
|
| 99 |
/// in a wraparound fashion and in the following minor iterations |
|
| 100 |
/// the best eligible arc is selected from this list. |
|
| 101 |
CANDIDATE_LIST, |
|
| 102 |
|
|
| 103 |
/// The Altering Candidate List pivot rule. |
|
| 104 |
/// It is a modified version of the Candidate List method. |
|
| 105 |
/// It keeps only the several best eligible arcs from the former |
|
| 106 |
/// candidate list and extends this list in every iteration. |
|
| 107 |
ALTERING_LIST |
|
| 108 |
}; |
|
| 109 |
|
|
| 110 |
private: |
|
| 111 |
|
|
| 112 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 113 |
|
|
| 114 |
typedef typename GR::template ArcMap<Value> ValueArcMap; |
|
| 115 |
typedef typename GR::template NodeMap<Value> ValueNodeMap; |
|
| 85 | 116 |
|
| 86 | 117 |
typedef std::vector<Arc> ArcVector; |
| 87 | 118 |
typedef std::vector<Node> NodeVector; |
| 88 | 119 |
typedef std::vector<int> IntVector; |
| 89 | 120 |
typedef std::vector<bool> BoolVector; |
| 90 |
typedef std::vector<Capacity> CapacityVector; |
|
| 91 |
typedef std::vector<Cost> CostVector; |
|
| 92 |
typedef std::vector<Supply> SupplyVector; |
|
| 93 |
|
|
| 94 |
public: |
|
| 95 |
|
|
| 96 |
/// The type of the flow map |
|
| 97 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
| 98 |
/// The type of the potential map |
|
| 99 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
| 100 |
|
|
| 101 |
public: |
|
| 102 |
|
|
| 103 |
/// Enum type for selecting the pivot rule used by \ref run() |
|
| 104 |
enum PivotRuleEnum {
|
|
| 105 |
FIRST_ELIGIBLE_PIVOT, |
|
| 106 |
BEST_ELIGIBLE_PIVOT, |
|
| 107 |
BLOCK_SEARCH_PIVOT, |
|
| 108 |
CANDIDATE_LIST_PIVOT, |
|
| 109 |
ALTERING_LIST_PIVOT |
|
| 110 |
}; |
|
| 111 |
|
|
| 112 |
|
|
| 121 |
typedef std::vector<Value> ValueVector; |
|
| 113 | 122 |
|
| 114 | 123 |
// State constants for arcs |
| 115 | 124 |
enum ArcStateEnum {
|
| ... | ... |
@@ -120,15 +129,19 @@ |
| 120 | 129 |
|
| 121 | 130 |
private: |
| 122 | 131 |
|
| 123 |
// References for the original data |
|
| 124 |
const Digraph &_graph; |
|
| 125 |
const LowerMap *_orig_lower; |
|
| 126 |
const CapacityMap &_orig_cap; |
|
| 127 |
const CostMap &_orig_cost; |
|
| 128 |
const SupplyMap *_orig_supply; |
|
| 129 |
Node _orig_source; |
|
| 130 |
Node _orig_target; |
|
| 131 |
|
|
| 132 |
// Data related to the underlying digraph |
|
| 133 |
const GR &_graph; |
|
| 134 |
int _node_num; |
|
| 135 |
int _arc_num; |
|
| 136 |
|
|
| 137 |
// Parameters of the problem |
|
| 138 |
ValueArcMap *_plower; |
|
| 139 |
ValueArcMap *_pupper; |
|
| 140 |
ValueArcMap *_pcost; |
|
| 141 |
ValueNodeMap *_psupply; |
|
| 142 |
bool _pstsup; |
|
| 143 |
Node _psource, _ptarget; |
|
| 144 |
Value _pstflow; |
|
| 132 | 145 |
|
| 133 | 146 |
// Result maps |
| 134 | 147 |
FlowMap *_flow_map; |
| ... | ... |
@@ -136,22 +149,18 @@ |
| 136 | 149 |
bool _local_flow; |
| 137 | 150 |
bool _local_potential; |
| 138 | 151 |
|
| 139 |
// The number of nodes and arcs in the original graph |
|
| 140 |
int _node_num; |
|
| 141 |
int _arc_num; |
|
| 142 |
|
|
| 143 |
// Data structures for storing the |
|
| 152 |
// Data structures for storing the digraph |
|
| 144 | 153 |
IntNodeMap _node_id; |
| 145 | 154 |
ArcVector _arc_ref; |
| 146 | 155 |
IntVector _source; |
| 147 | 156 |
IntVector _target; |
| 148 | 157 |
|
| 149 |
// Node and arc maps |
|
| 150 |
CapacityVector _cap; |
|
| 151 |
CostVector _cost; |
|
| 152 |
CostVector _supply; |
|
| 153 |
CapacityVector _flow; |
|
| 154 |
CostVector _pi; |
|
| 158 |
// Node and arc data |
|
| 159 |
ValueVector _cap; |
|
| 160 |
ValueVector _cost; |
|
| 161 |
ValueVector _supply; |
|
| 162 |
ValueVector _flow; |
|
| 163 |
ValueVector _pi; |
|
| 155 | 164 |
|
| 156 | 165 |
// Data for storing the spanning tree structure |
| 157 | 166 |
IntVector _parent; |
| ... | ... |
@@ -169,17 +178,11 @@ |
| 169 | 178 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 170 | 179 |
int first, second, right, last; |
| 171 | 180 |
int stem, par_stem, new_stem; |
| 172 |
|
|
| 181 |
Value delta; |
|
| 173 | 182 |
|
| 174 | 183 |
private: |
| 175 | 184 |
|
| 176 |
/// \brief Implementation of the "First Eligible" pivot rule for the |
|
| 177 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 178 |
/// |
|
| 179 |
/// This class implements the "First Eligible" pivot rule |
|
| 180 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 181 |
/// |
|
| 182 |
// |
|
| 185 |
// Implementation of the First Eligible pivot rule |
|
| 183 | 186 |
class FirstEligiblePivotRule |
| 184 | 187 |
{
|
| 185 | 188 |
private: |
| ... | ... |
@@ -187,9 +190,9 @@ |
| 187 | 190 |
// References to the NetworkSimplex class |
| 188 | 191 |
const IntVector &_source; |
| 189 | 192 |
const IntVector &_target; |
| 190 |
const |
|
| 193 |
const ValueVector &_cost; |
|
| 191 | 194 |
const IntVector &_state; |
| 192 |
const |
|
| 195 |
const ValueVector &_pi; |
|
| 193 | 196 |
int &_in_arc; |
| 194 | 197 |
int _arc_num; |
| 195 | 198 |
|
| ... | ... |
@@ -198,16 +201,16 @@ |
| 198 | 201 |
|
| 199 | 202 |
public: |
| 200 | 203 |
|
| 201 |
// |
|
| 204 |
// Constructor |
|
| 202 | 205 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 203 | 206 |
_source(ns._source), _target(ns._target), |
| 204 | 207 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 205 | 208 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
| 206 | 209 |
{}
|
| 207 | 210 |
|
| 208 |
// |
|
| 211 |
// Find next entering arc |
|
| 209 | 212 |
bool findEnteringArc() {
|
| 210 |
|
|
| 213 |
Value c; |
|
| 211 | 214 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
| 212 | 215 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 213 | 216 |
if (c < 0) {
|
| ... | ... |
@@ -230,13 +233,7 @@ |
| 230 | 233 |
}; //class FirstEligiblePivotRule |
| 231 | 234 |
|
| 232 | 235 |
|
| 233 |
/// \brief Implementation of the "Best Eligible" pivot rule for the |
|
| 234 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 235 |
/// |
|
| 236 |
/// This class implements the "Best Eligible" pivot rule |
|
| 237 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 238 |
/// |
|
| 239 |
// |
|
| 236 |
// Implementation of the Best Eligible pivot rule |
|
| 240 | 237 |
class BestEligiblePivotRule |
| 241 | 238 |
{
|
| 242 | 239 |
private: |
| ... | ... |
@@ -244,24 +241,24 @@ |
| 244 | 241 |
// References to the NetworkSimplex class |
| 245 | 242 |
const IntVector &_source; |
| 246 | 243 |
const IntVector &_target; |
| 247 |
const |
|
| 244 |
const ValueVector &_cost; |
|
| 248 | 245 |
const IntVector &_state; |
| 249 |
const |
|
| 246 |
const ValueVector &_pi; |
|
| 250 | 247 |
int &_in_arc; |
| 251 | 248 |
int _arc_num; |
| 252 | 249 |
|
| 253 | 250 |
public: |
| 254 | 251 |
|
| 255 |
// |
|
| 252 |
// Constructor |
|
| 256 | 253 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 257 | 254 |
_source(ns._source), _target(ns._target), |
| 258 | 255 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 259 | 256 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
| 260 | 257 |
{}
|
| 261 | 258 |
|
| 262 |
// |
|
| 259 |
// Find next entering arc |
|
| 263 | 260 |
bool findEnteringArc() {
|
| 264 |
|
|
| 261 |
Value c, min = 0; |
|
| 265 | 262 |
for (int e = 0; e < _arc_num; ++e) {
|
| 266 | 263 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 267 | 264 |
if (c < min) {
|
| ... | ... |
@@ -275,13 +272,7 @@ |
| 275 | 272 |
}; //class BestEligiblePivotRule |
| 276 | 273 |
|
| 277 | 274 |
|
| 278 |
/// \brief Implementation of the "Block Search" pivot rule for the |
|
| 279 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 280 |
/// |
|
| 281 |
/// This class implements the "Block Search" pivot rule |
|
| 282 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 283 |
/// |
|
| 284 |
// |
|
| 275 |
// Implementation of the Block Search pivot rule |
|
| 285 | 276 |
class BlockSearchPivotRule |
| 286 | 277 |
{
|
| 287 | 278 |
private: |
| ... | ... |
@@ -289,9 +280,9 @@ |
| 289 | 280 |
// References to the NetworkSimplex class |
| 290 | 281 |
const IntVector &_source; |
| 291 | 282 |
const IntVector &_target; |
| 292 |
const |
|
| 283 |
const ValueVector &_cost; |
|
| 293 | 284 |
const IntVector &_state; |
| 294 |
const |
|
| 285 |
const ValueVector &_pi; |
|
| 295 | 286 |
int &_in_arc; |
| 296 | 287 |
int _arc_num; |
| 297 | 288 |
|
| ... | ... |
@@ -301,7 +292,7 @@ |
| 301 | 292 |
|
| 302 | 293 |
public: |
| 303 | 294 |
|
| 304 |
// |
|
| 295 |
// Constructor |
|
| 305 | 296 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 306 | 297 |
_source(ns._source), _target(ns._target), |
| 307 | 298 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| ... | ... |
@@ -315,9 +306,9 @@ |
| 315 | 306 |
MIN_BLOCK_SIZE ); |
| 316 | 307 |
} |
| 317 | 308 |
|
| 318 |
// |
|
| 309 |
// Find next entering arc |
|
| 319 | 310 |
bool findEnteringArc() {
|
| 320 |
|
|
| 311 |
Value c, min = 0; |
|
| 321 | 312 |
int cnt = _block_size; |
| 322 | 313 |
int e, min_arc = _next_arc; |
| 323 | 314 |
for (e = _next_arc; e < _arc_num; ++e) {
|
| ... | ... |
@@ -353,13 +344,7 @@ |
| 353 | 344 |
}; //class BlockSearchPivotRule |
| 354 | 345 |
|
| 355 | 346 |
|
| 356 |
/// \brief Implementation of the "Candidate List" pivot rule for the |
|
| 357 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 358 |
/// |
|
| 359 |
/// This class implements the "Candidate List" pivot rule |
|
| 360 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 361 |
/// |
|
| 362 |
// |
|
| 347 |
// Implementation of the Candidate List pivot rule |
|
| 363 | 348 |
class CandidateListPivotRule |
| 364 | 349 |
{
|
| 365 | 350 |
private: |
| ... | ... |
@@ -367,9 +352,9 @@ |
| 367 | 352 |
// References to the NetworkSimplex class |
| 368 | 353 |
const IntVector &_source; |
| 369 | 354 |
const IntVector &_target; |
| 370 |
const |
|
| 355 |
const ValueVector &_cost; |
|
| 371 | 356 |
const IntVector &_state; |
| 372 |
const |
|
| 357 |
const ValueVector &_pi; |
|
| 373 | 358 |
int &_in_arc; |
| 374 | 359 |
int _arc_num; |
| 375 | 360 |
|
| ... | ... |
@@ -403,7 +388,7 @@ |
| 403 | 388 |
|
| 404 | 389 |
/// Find next entering arc |
| 405 | 390 |
bool findEnteringArc() {
|
| 406 |
|
|
| 391 |
Value min, c; |
|
| 407 | 392 |
int e, min_arc = _next_arc; |
| 408 | 393 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 409 | 394 |
// Minor iteration: select the best eligible arc from the |
| ... | ... |
@@ -464,13 +449,7 @@ |
| 464 | 449 |
}; //class CandidateListPivotRule |
| 465 | 450 |
|
| 466 | 451 |
|
| 467 |
/// \brief Implementation of the "Altering Candidate List" pivot rule |
|
| 468 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 469 |
/// |
|
| 470 |
/// This class implements the "Altering Candidate List" pivot rule |
|
| 471 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 472 |
/// |
|
| 473 |
// |
|
| 452 |
// Implementation of the Altering Candidate List pivot rule |
|
| 474 | 453 |
class AlteringListPivotRule |
| 475 | 454 |
{
|
| 476 | 455 |
private: |
| ... | ... |
@@ -478,9 +457,9 @@ |
| 478 | 457 |
// References to the NetworkSimplex class |
| 479 | 458 |
const IntVector &_source; |
| 480 | 459 |
const IntVector &_target; |
| 481 |
const |
|
| 460 |
const ValueVector &_cost; |
|
| 482 | 461 |
const IntVector &_state; |
| 483 |
const |
|
| 462 |
const ValueVector &_pi; |
|
| 484 | 463 |
int &_in_arc; |
| 485 | 464 |
int _arc_num; |
| 486 | 465 |
|
| ... | ... |
@@ -488,15 +467,15 @@ |
| 488 | 467 |
int _block_size, _head_length, _curr_length; |
| 489 | 468 |
int _next_arc; |
| 490 | 469 |
IntVector _candidates; |
| 491 |
|
|
| 470 |
ValueVector _cand_cost; |
|
| 492 | 471 |
|
| 493 | 472 |
// Functor class to compare arcs during sort of the candidate list |
| 494 | 473 |
class SortFunc |
| 495 | 474 |
{
|
| 496 | 475 |
private: |
| 497 |
const |
|
| 476 |
const ValueVector &_map; |
|
| 498 | 477 |
public: |
| 499 |
SortFunc(const |
|
| 478 |
SortFunc(const ValueVector &map) : _map(map) {}
|
|
| 500 | 479 |
bool operator()(int left, int right) {
|
| 501 | 480 |
return _map[left] > _map[right]; |
| 502 | 481 |
} |
| ... | ... |
@@ -506,7 +485,7 @@ |
| 506 | 485 |
|
| 507 | 486 |
public: |
| 508 | 487 |
|
| 509 |
// |
|
| 488 |
// Constructor |
|
| 510 | 489 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 511 | 490 |
_source(ns._source), _target(ns._target), |
| 512 | 491 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| ... | ... |
@@ -527,7 +506,7 @@ |
| 527 | 506 |
_curr_length = 0; |
| 528 | 507 |
} |
| 529 | 508 |
|
| 530 |
// |
|
| 509 |
// Find next entering arc |
|
| 531 | 510 |
bool findEnteringArc() {
|
| 532 | 511 |
// Check the current candidate list |
| 533 | 512 |
int e; |
| ... | ... |
@@ -592,95 +571,23 @@ |
| 592 | 571 |
|
| 593 | 572 |
public: |
| 594 | 573 |
|
| 595 |
/// \brief |
|
| 574 |
/// \brief Constructor. |
|
| 596 | 575 |
/// |
| 597 |
/// |
|
| 576 |
/// Constructor. |
|
| 598 | 577 |
/// |
| 599 | 578 |
/// \param graph The digraph the algorithm runs on. |
| 600 |
/// \param lower The lower bounds of the arcs. |
|
| 601 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 602 |
/// \param cost The cost (length) values of the arcs. |
|
| 603 |
/// \param supply The supply values of the nodes (signed). |
|
| 604 |
NetworkSimplex( const Digraph &graph, |
|
| 605 |
const LowerMap &lower, |
|
| 606 |
const CapacityMap &capacity, |
|
| 607 |
const CostMap &cost, |
|
| 608 |
const SupplyMap &supply ) : |
|
| 609 |
_graph(graph), _orig_lower(&lower), _orig_cap(capacity), |
|
| 610 |
|
|
| 579 |
NetworkSimplex(const GR& graph) : |
|
| 580 |
_graph(graph), |
|
| 581 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
| 582 |
_psupply(NULL), _pstsup(false), |
|
| 611 | 583 |
_flow_map(NULL), _potential_map(NULL), |
| 612 | 584 |
_local_flow(false), _local_potential(false), |
| 613 | 585 |
_node_id(graph) |
| 614 |
{}
|
|
| 615 |
|
|
| 616 |
/// \brief General constructor (without lower bounds). |
|
| 617 |
/// |
|
| 618 |
/// General constructor (without lower bounds). |
|
| 619 |
/// |
|
| 620 |
/// \param graph The digraph the algorithm runs on. |
|
| 621 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 622 |
/// \param cost The cost (length) values of the arcs. |
|
| 623 |
/// \param supply The supply values of the nodes (signed). |
|
| 624 |
NetworkSimplex( const Digraph &graph, |
|
| 625 |
const CapacityMap &capacity, |
|
| 626 |
const CostMap &cost, |
|
| 627 |
const SupplyMap &supply ) : |
|
| 628 |
_graph(graph), _orig_lower(NULL), _orig_cap(capacity), |
|
| 629 |
_orig_cost(cost), _orig_supply(&supply), |
|
| 630 |
_flow_map(NULL), _potential_map(NULL), |
|
| 631 |
_local_flow(false), _local_potential(false), |
|
| 632 |
_node_id(graph) |
|
| 633 |
{}
|
|
| 634 |
|
|
| 635 |
/// \brief Simple constructor (with lower bounds). |
|
| 636 |
/// |
|
| 637 |
/// Simple constructor (with lower bounds). |
|
| 638 |
/// |
|
| 639 |
/// \param graph The digraph the algorithm runs on. |
|
| 640 |
/// \param lower The lower bounds of the arcs. |
|
| 641 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 642 |
/// \param cost The cost (length) values of the arcs. |
|
| 643 |
/// \param s The source node. |
|
| 644 |
/// \param t The target node. |
|
| 645 |
/// \param flow_value The required amount of flow from node \c s |
|
| 646 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 647 |
NetworkSimplex( const Digraph &graph, |
|
| 648 |
const LowerMap &lower, |
|
| 649 |
const CapacityMap &capacity, |
|
| 650 |
const CostMap &cost, |
|
| 651 |
Node s, Node t, |
|
| 652 |
Capacity flow_value ) : |
|
| 653 |
_graph(graph), _orig_lower(&lower), _orig_cap(capacity), |
|
| 654 |
_orig_cost(cost), _orig_supply(NULL), |
|
| 655 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
| 656 |
_flow_map(NULL), _potential_map(NULL), |
|
| 657 |
_local_flow(false), _local_potential(false), |
|
| 658 |
_node_id(graph) |
|
| 659 |
{}
|
|
| 660 |
|
|
| 661 |
/// \brief Simple constructor (without lower bounds). |
|
| 662 |
/// |
|
| 663 |
/// Simple constructor (without lower bounds). |
|
| 664 |
/// |
|
| 665 |
/// \param graph The digraph the algorithm runs on. |
|
| 666 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 667 |
/// \param cost The cost (length) values of the arcs. |
|
| 668 |
/// \param s The source node. |
|
| 669 |
/// \param t The target node. |
|
| 670 |
/// \param flow_value The required amount of flow from node \c s |
|
| 671 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 672 |
NetworkSimplex( const Digraph &graph, |
|
| 673 |
const CapacityMap &capacity, |
|
| 674 |
const CostMap &cost, |
|
| 675 |
Node s, Node t, |
|
| 676 |
Capacity flow_value ) : |
|
| 677 |
_graph(graph), _orig_lower(NULL), _orig_cap(capacity), |
|
| 678 |
_orig_cost(cost), _orig_supply(NULL), |
|
| 679 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
| 680 |
_flow_map(NULL), _potential_map(NULL), |
|
| 681 |
_local_flow(false), _local_potential(false), |
|
| 682 |
_node_id(graph) |
|
| 683 |
{}
|
|
| 586 |
{
|
|
| 587 |
LEMON_ASSERT(std::numeric_limits<Value>::is_integer && |
|
| 588 |
std::numeric_limits<Value>::is_signed, |
|
| 589 |
"The value type of NetworkSimplex must be a signed integer"); |
|
| 590 |
} |
|
| 684 | 591 |
|
| 685 | 592 |
/// Destructor. |
| 686 | 593 |
~NetworkSimplex() {
|
| ... | ... |
@@ -688,12 +595,165 @@ |
| 688 | 595 |
if (_local_potential) delete _potential_map; |
| 689 | 596 |
} |
| 690 | 597 |
|
| 598 |
/// \brief Set the lower bounds on the arcs. |
|
| 599 |
/// |
|
| 600 |
/// This function sets the lower bounds on the arcs. |
|
| 601 |
/// If neither this function nor \ref boundMaps() is used before |
|
| 602 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 603 |
/// on all arcs. |
|
| 604 |
/// |
|
| 605 |
/// \param map An arc map storing the lower bounds. |
|
| 606 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 607 |
/// of the algorithm. |
|
| 608 |
/// |
|
| 609 |
/// \return <tt>(*this)</tt> |
|
| 610 |
template <typename LOWER> |
|
| 611 |
NetworkSimplex& lowerMap(const LOWER& map) {
|
|
| 612 |
delete _plower; |
|
| 613 |
_plower = new ValueArcMap(_graph); |
|
| 614 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 615 |
(*_plower)[a] = map[a]; |
|
| 616 |
} |
|
| 617 |
return *this; |
|
| 618 |
} |
|
| 619 |
|
|
| 620 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 621 |
/// |
|
| 622 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 623 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 624 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 625 |
/// the upper bounds (capacities) will be set to |
|
| 626 |
/// \c std::numeric_limits<Value>::max() on all arcs. |
|
| 627 |
/// |
|
| 628 |
/// \param map An arc map storing the upper bounds. |
|
| 629 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 630 |
/// of the algorithm. |
|
| 631 |
/// |
|
| 632 |
/// \return <tt>(*this)</tt> |
|
| 633 |
template<typename UPPER> |
|
| 634 |
NetworkSimplex& upperMap(const UPPER& map) {
|
|
| 635 |
delete _pupper; |
|
| 636 |
_pupper = new ValueArcMap(_graph); |
|
| 637 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 638 |
(*_pupper)[a] = map[a]; |
|
| 639 |
} |
|
| 640 |
return *this; |
|
| 641 |
} |
|
| 642 |
|
|
| 643 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 644 |
/// |
|
| 645 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 646 |
/// It is just an alias for \ref upperMap(). |
|
| 647 |
/// |
|
| 648 |
/// \return <tt>(*this)</tt> |
|
| 649 |
template<typename CAP> |
|
| 650 |
NetworkSimplex& capacityMap(const CAP& map) {
|
|
| 651 |
return upperMap(map); |
|
| 652 |
} |
|
| 653 |
|
|
| 654 |
/// \brief Set the lower and upper bounds on the arcs. |
|
| 655 |
/// |
|
| 656 |
/// This function sets the lower and upper bounds on the arcs. |
|
| 657 |
/// If neither this function nor \ref lowerMap() is used before |
|
| 658 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 659 |
/// on all arcs. |
|
| 660 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 661 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 662 |
/// the upper bounds (capacities) will be set to |
|
| 663 |
/// \c std::numeric_limits<Value>::max() on all arcs. |
|
| 664 |
/// |
|
| 665 |
/// \param lower An arc map storing the lower bounds. |
|
| 666 |
/// \param upper An arc map storing the upper bounds. |
|
| 667 |
/// |
|
| 668 |
/// The \c Value type of the maps must be convertible to the |
|
| 669 |
/// \c Value type of the algorithm. |
|
| 670 |
/// |
|
| 671 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
| 672 |
/// and \ref upperMap() separately. |
|
| 673 |
/// |
|
| 674 |
/// \return <tt>(*this)</tt> |
|
| 675 |
template <typename LOWER, typename UPPER> |
|
| 676 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
|
|
| 677 |
return lowerMap(lower).upperMap(upper); |
|
| 678 |
} |
|
| 679 |
|
|
| 680 |
/// \brief Set the costs of the arcs. |
|
| 681 |
/// |
|
| 682 |
/// This function sets the costs of the arcs. |
|
| 683 |
/// If it is not used before calling \ref run(), the costs |
|
| 684 |
/// will be set to \c 1 on all arcs. |
|
| 685 |
/// |
|
| 686 |
/// \param map An arc map storing the costs. |
|
| 687 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 688 |
/// of the algorithm. |
|
| 689 |
/// |
|
| 690 |
/// \return <tt>(*this)</tt> |
|
| 691 |
template<typename COST> |
|
| 692 |
NetworkSimplex& costMap(const COST& map) {
|
|
| 693 |
delete _pcost; |
|
| 694 |
_pcost = new ValueArcMap(_graph); |
|
| 695 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 696 |
(*_pcost)[a] = map[a]; |
|
| 697 |
} |
|
| 698 |
return *this; |
|
| 699 |
} |
|
| 700 |
|
|
| 701 |
/// \brief Set the supply values of the nodes. |
|
| 702 |
/// |
|
| 703 |
/// This function sets the supply values of the nodes. |
|
| 704 |
/// If neither this function nor \ref stSupply() is used before |
|
| 705 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 706 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
| 707 |
/// |
|
| 708 |
/// \param map A node map storing the supply values. |
|
| 709 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 710 |
/// of the algorithm. |
|
| 711 |
/// |
|
| 712 |
/// \return <tt>(*this)</tt> |
|
| 713 |
template<typename SUP> |
|
| 714 |
NetworkSimplex& supplyMap(const SUP& map) {
|
|
| 715 |
delete _psupply; |
|
| 716 |
_pstsup = false; |
|
| 717 |
_psupply = new ValueNodeMap(_graph); |
|
| 718 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 719 |
(*_psupply)[n] = map[n]; |
|
| 720 |
} |
|
| 721 |
return *this; |
|
| 722 |
} |
|
| 723 |
|
|
| 724 |
/// \brief Set single source and target nodes and a supply value. |
|
| 725 |
/// |
|
| 726 |
/// This function sets a single source node and a single target node |
|
| 727 |
/// and the required flow value. |
|
| 728 |
/// If neither this function nor \ref supplyMap() is used before |
|
| 729 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
| 730 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
| 731 |
/// |
|
| 732 |
/// \param s The source node. |
|
| 733 |
/// \param t The target node. |
|
| 734 |
/// \param k The required amount of flow from node \c s to node \c t |
|
| 735 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
| 736 |
/// |
|
| 737 |
/// \return <tt>(*this)</tt> |
|
| 738 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 739 |
delete _psupply; |
|
| 740 |
_psupply = NULL; |
|
| 741 |
_pstsup = true; |
|
| 742 |
_psource = s; |
|
| 743 |
_ptarget = t; |
|
| 744 |
_pstflow = k; |
|
| 745 |
return *this; |
|
| 746 |
} |
|
| 747 |
|
|
| 691 | 748 |
/// \brief Set the flow map. |
| 692 | 749 |
/// |
| 693 | 750 |
/// This function sets the flow map. |
| 751 |
/// If it is not used before calling \ref run(), an instance will |
|
| 752 |
/// be allocated automatically. The destructor deallocates this |
|
| 753 |
/// automatically allocated map, of course. |
|
| 694 | 754 |
/// |
| 695 | 755 |
/// \return <tt>(*this)</tt> |
| 696 |
NetworkSimplex& flowMap(FlowMap |
|
| 756 |
NetworkSimplex& flowMap(FlowMap& map) {
|
|
| 697 | 757 |
if (_local_flow) {
|
| 698 | 758 |
delete _flow_map; |
| 699 | 759 |
_local_flow = false; |
| ... | ... |
@@ -704,10 +764,14 @@ |
| 704 | 764 |
|
| 705 | 765 |
/// \brief Set the potential map. |
| 706 | 766 |
/// |
| 707 |
/// This function sets the potential map |
|
| 767 |
/// This function sets the potential map, which is used for storing |
|
| 768 |
/// the dual solution. |
|
| 769 |
/// If it is not used before calling \ref run(), an instance will |
|
| 770 |
/// be allocated automatically. The destructor deallocates this |
|
| 771 |
/// automatically allocated map, of course. |
|
| 708 | 772 |
/// |
| 709 | 773 |
/// \return <tt>(*this)</tt> |
| 710 |
NetworkSimplex& potentialMap(PotentialMap |
|
| 774 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
|
| 711 | 775 |
if (_local_potential) {
|
| 712 | 776 |
delete _potential_map; |
| 713 | 777 |
_local_potential = false; |
| ... | ... |
@@ -716,47 +780,29 @@ |
| 716 | 780 |
return *this; |
| 717 | 781 |
} |
| 718 | 782 |
|
| 719 |
/// \name Execution control |
|
| 720 |
/// The algorithm can be executed using the |
|
| 721 |
/// \ |
|
| 783 |
/// \name Execution Control |
|
| 784 |
/// The algorithm can be executed using \ref run(). |
|
| 785 |
|
|
| 722 | 786 |
/// @{
|
| 723 | 787 |
|
| 724 | 788 |
/// \brief Run the algorithm. |
| 725 | 789 |
/// |
| 726 | 790 |
/// This function runs the algorithm. |
| 791 |
/// The paramters can be specified using \ref lowerMap(), |
|
| 792 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
| 793 |
/// \ref costMap(), \ref supplyMap() and \ref stSupply() |
|
| 794 |
/// functions. For example, |
|
| 795 |
/// \code |
|
| 796 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
| 797 |
/// ns.boundMaps(lower, upper).costMap(cost) |
|
| 798 |
/// .supplyMap(sup).run(); |
|
| 799 |
/// \endcode |
|
| 727 | 800 |
/// |
| 728 |
/// \param pivot_rule The pivot rule that is used during the |
|
| 729 |
/// algorithm. |
|
| 730 |
/// |
|
| 731 |
/// The available pivot rules: |
|
| 732 |
/// |
|
| 733 |
/// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in |
|
| 734 |
/// a wraparound fashion in every iteration |
|
| 735 |
/// (\ref FirstEligiblePivotRule). |
|
| 736 |
/// |
|
| 737 |
/// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in |
|
| 738 |
/// every iteration (\ref BestEligiblePivotRule). |
|
| 739 |
/// |
|
| 740 |
/// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in |
|
| 741 |
/// every iteration in a wraparound fashion and the best eligible |
|
| 742 |
/// arc is selected from this block (\ref BlockSearchPivotRule). |
|
| 743 |
/// |
|
| 744 |
/// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is |
|
| 745 |
/// built from eligible arcs in a wraparound fashion and in the |
|
| 746 |
/// following minor iterations the best eligible arc is selected |
|
| 747 |
/// from this list (\ref CandidateListPivotRule). |
|
| 748 |
/// |
|
| 749 |
/// - ALTERING_LIST_PIVOT It is a modified version of the |
|
| 750 |
/// "Candidate List" pivot rule. It keeps only the several best |
|
| 751 |
/// eligible arcs from the former candidate list and extends this |
|
| 752 |
/// list in every iteration (\ref AlteringListPivotRule). |
|
| 753 |
/// |
|
| 754 |
/// According to our comprehensive benchmark tests the "Block Search" |
|
| 755 |
/// pivot rule proved to be the fastest and the most robust on |
|
| 756 |
/// |
|
| 801 |
/// \param pivot_rule The pivot rule that will be used during the |
|
| 802 |
/// algorithm. For more information see \ref PivotRule. |
|
| 757 | 803 |
/// |
| 758 | 804 |
/// \return \c true if a feasible flow can be found. |
| 759 |
bool run( |
|
| 805 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
|
| 760 | 806 |
return init() && start(pivot_rule); |
| 761 | 807 |
} |
| 762 | 808 |
|
| ... | ... |
@@ -765,10 +811,53 @@ |
| 765 | 811 |
/// \name Query Functions |
| 766 | 812 |
/// The results of the algorithm can be obtained using these |
| 767 | 813 |
/// functions.\n |
| 768 |
/// \ref lemon::NetworkSimplex::run() "run()" must be called before |
|
| 769 |
/// using them. |
|
| 814 |
/// The \ref run() function must be called before using them. |
|
| 815 |
|
|
| 770 | 816 |
/// @{
|
| 771 | 817 |
|
| 818 |
/// \brief Return the total cost of the found flow. |
|
| 819 |
/// |
|
| 820 |
/// This function returns the total cost of the found flow. |
|
| 821 |
/// The complexity of the function is \f$ O(e) \f$. |
|
| 822 |
/// |
|
| 823 |
/// \note The return type of the function can be specified as a |
|
| 824 |
/// template parameter. For example, |
|
| 825 |
/// \code |
|
| 826 |
/// ns.totalCost<double>(); |
|
| 827 |
/// \endcode |
|
| 828 |
/// It is useful if the total cost cannot be stored in the \c Value |
|
| 829 |
/// type of the algorithm, which is the default return type of the |
|
| 830 |
/// function. |
|
| 831 |
/// |
|
| 832 |
/// \pre \ref run() must be called before using this function. |
|
| 833 |
template <typename Num> |
|
| 834 |
Num totalCost() const {
|
|
| 835 |
Num c = 0; |
|
| 836 |
if (_pcost) {
|
|
| 837 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 838 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
| 839 |
} else {
|
|
| 840 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 841 |
c += (*_flow_map)[e]; |
|
| 842 |
} |
|
| 843 |
return c; |
|
| 844 |
} |
|
| 845 |
|
|
| 846 |
#ifndef DOXYGEN |
|
| 847 |
Value totalCost() const {
|
|
| 848 |
return totalCost<Value>(); |
|
| 849 |
} |
|
| 850 |
#endif |
|
| 851 |
|
|
| 852 |
/// \brief Return the flow on the given arc. |
|
| 853 |
/// |
|
| 854 |
/// This function returns the flow on the given arc. |
|
| 855 |
/// |
|
| 856 |
/// \pre \ref run() must be called before using this function. |
|
| 857 |
Value flow(const Arc& a) const {
|
|
| 858 |
return (*_flow_map)[a]; |
|
| 859 |
} |
|
| 860 |
|
|
| 772 | 861 |
/// \brief Return a const reference to the flow map. |
| 773 | 862 |
/// |
| 774 | 863 |
/// This function returns a const reference to an arc map storing |
| ... | ... |
@@ -779,48 +868,28 @@ |
| 779 | 868 |
return *_flow_map; |
| 780 | 869 |
} |
| 781 | 870 |
|
| 871 |
/// \brief Return the potential (dual value) of the given node. |
|
| 872 |
/// |
|
| 873 |
/// This function returns the potential (dual value) of the |
|
| 874 |
/// given node. |
|
| 875 |
/// |
|
| 876 |
/// \pre \ref run() must be called before using this function. |
|
| 877 |
Value potential(const Node& n) const {
|
|
| 878 |
return (*_potential_map)[n]; |
|
| 879 |
} |
|
| 880 |
|
|
| 782 | 881 |
/// \brief Return a const reference to the potential map |
| 783 | 882 |
/// (the dual solution). |
| 784 | 883 |
/// |
| 785 | 884 |
/// This function returns a const reference to a node map storing |
| 786 |
/// the found potentials |
|
| 885 |
/// the found potentials, which form the dual solution of the |
|
| 886 |
/// \ref min_cost_flow "minimum cost flow" problem. |
|
| 787 | 887 |
/// |
| 788 | 888 |
/// \pre \ref run() must be called before using this function. |
| 789 | 889 |
const PotentialMap& potentialMap() const {
|
| 790 | 890 |
return *_potential_map; |
| 791 | 891 |
} |
| 792 | 892 |
|
| 793 |
/// \brief Return the flow on the given arc. |
|
| 794 |
/// |
|
| 795 |
/// This function returns the flow on the given arc. |
|
| 796 |
/// |
|
| 797 |
/// \pre \ref run() must be called before using this function. |
|
| 798 |
Capacity flow(const Arc& arc) const {
|
|
| 799 |
return (*_flow_map)[arc]; |
|
| 800 |
} |
|
| 801 |
|
|
| 802 |
/// \brief Return the potential of the given node. |
|
| 803 |
/// |
|
| 804 |
/// This function returns the potential of the given node. |
|
| 805 |
/// |
|
| 806 |
/// \pre \ref run() must be called before using this function. |
|
| 807 |
Cost potential(const Node& node) const {
|
|
| 808 |
return (*_potential_map)[node]; |
|
| 809 |
} |
|
| 810 |
|
|
| 811 |
/// \brief Return the total cost of the found flow. |
|
| 812 |
/// |
|
| 813 |
/// This function returns the total cost of the found flow. |
|
| 814 |
/// The complexity of the function is \f$ O(e) \f$. |
|
| 815 |
/// |
|
| 816 |
/// \pre \ref run() must be called before using this function. |
|
| 817 |
Cost totalCost() const {
|
|
| 818 |
Cost c = 0; |
|
| 819 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 820 |
c += (*_flow_map)[e] * _orig_cost[e]; |
|
| 821 |
return c; |
|
| 822 |
} |
|
| 823 |
|
|
| 824 | 893 |
/// @} |
| 825 | 894 |
|
| 826 | 895 |
private: |
| ... | ... |
@@ -842,6 +911,7 @@ |
| 842 | 911 |
_arc_num = countArcs(_graph); |
| 843 | 912 |
int all_node_num = _node_num + 1; |
| 844 | 913 |
int all_arc_num = _arc_num + _node_num; |
| 914 |
if (_node_num == 0) return false; |
|
| 845 | 915 |
|
| 846 | 916 |
_arc_ref.resize(_arc_num); |
| 847 | 917 |
_source.resize(all_arc_num); |
| ... | ... |
@@ -864,12 +934,17 @@ |
| 864 | 934 |
|
| 865 | 935 |
// Initialize node related data |
| 866 | 936 |
bool valid_supply = true; |
| 867 |
if (_orig_supply) {
|
|
| 868 |
Supply sum = 0; |
|
| 937 |
if (!_pstsup && !_psupply) {
|
|
| 938 |
_pstsup = true; |
|
| 939 |
_psource = _ptarget = NodeIt(_graph); |
|
| 940 |
_pstflow = 0; |
|
| 941 |
} |
|
| 942 |
if (_psupply) {
|
|
| 943 |
Value sum = 0; |
|
| 869 | 944 |
int i = 0; |
| 870 | 945 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 871 | 946 |
_node_id[n] = i; |
| 872 |
_supply[i] = (* |
|
| 947 |
_supply[i] = (*_psupply)[n]; |
|
| 873 | 948 |
sum += _supply[i]; |
| 874 | 949 |
} |
| 875 | 950 |
valid_supply = (sum == 0); |
| ... | ... |
@@ -879,8 +954,8 @@ |
| 879 | 954 |
_node_id[n] = i; |
| 880 | 955 |
_supply[i] = 0; |
| 881 | 956 |
} |
| 882 |
_supply[_node_id[_orig_source]] = _orig_flow_value; |
|
| 883 |
_supply[_node_id[_orig_target]] = -_orig_flow_value; |
|
| 957 |
_supply[_node_id[_psource]] = _pstflow; |
|
| 958 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
| 884 | 959 |
} |
| 885 | 960 |
if (!valid_supply) return false; |
| 886 | 961 |
|
| ... | ... |
@@ -904,18 +979,41 @@ |
| 904 | 979 |
} |
| 905 | 980 |
|
| 906 | 981 |
// Initialize arc maps |
| 907 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 908 |
Arc e = _arc_ref[i]; |
|
| 909 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 910 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 911 |
_cost[i] = _orig_cost[e]; |
|
| 912 |
_cap[i] = _orig_cap[e]; |
|
| 982 |
if (_pupper && _pcost) {
|
|
| 983 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 984 |
Arc e = _arc_ref[i]; |
|
| 985 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 986 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 987 |
_cap[i] = (*_pupper)[e]; |
|
| 988 |
_cost[i] = (*_pcost)[e]; |
|
| 989 |
} |
|
| 990 |
} else {
|
|
| 991 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 992 |
Arc e = _arc_ref[i]; |
|
| 993 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 994 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 995 |
} |
|
| 996 |
if (_pupper) {
|
|
| 997 |
for (int i = 0; i != _arc_num; ++i) |
|
| 998 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
| 999 |
} else {
|
|
| 1000 |
Value val = std::numeric_limits<Value>::max(); |
|
| 1001 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1002 |
_cap[i] = val; |
|
| 1003 |
} |
|
| 1004 |
if (_pcost) {
|
|
| 1005 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1006 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
| 1007 |
} else {
|
|
| 1008 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1009 |
_cost[i] = 1; |
|
| 1010 |
} |
|
| 913 | 1011 |
} |
| 914 | 1012 |
|
| 915 | 1013 |
// Remove non-zero lower bounds |
| 916 |
if ( |
|
| 1014 |
if (_plower) {
|
|
| 917 | 1015 |
for (int i = 0; i != _arc_num; ++i) {
|
| 918 |
|
|
| 1016 |
Value c = (*_plower)[_arc_ref[i]]; |
|
| 919 | 1017 |
if (c != 0) {
|
| 920 | 1018 |
_cap[i] -= c; |
| 921 | 1019 |
_supply[_source[i]] -= c; |
| ... | ... |
@@ -925,8 +1023,8 @@ |
| 925 | 1023 |
} |
| 926 | 1024 |
|
| 927 | 1025 |
// Add artificial arcs and initialize the spanning tree data structure |
| 928 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
| 929 |
Capacity max_cap = std::numeric_limits<Capacity>::max(); |
|
| 1026 |
Value max_cap = std::numeric_limits<Value>::max(); |
|
| 1027 |
Value max_cost = std::numeric_limits<Value>::max() / 4; |
|
| 930 | 1028 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 931 | 1029 |
_thread[u] = u + 1; |
| 932 | 1030 |
_rev_thread[u + 1] = u; |
| ... | ... |
@@ -979,7 +1077,7 @@ |
| 979 | 1077 |
} |
| 980 | 1078 |
delta = _cap[in_arc]; |
| 981 | 1079 |
int result = 0; |
| 982 |
|
|
| 1080 |
Value d; |
|
| 983 | 1081 |
int e; |
| 984 | 1082 |
|
| 985 | 1083 |
// Search the cycle along the path form the first node to the root |
| ... | ... |
@@ -1017,7 +1115,7 @@ |
| 1017 | 1115 |
void changeFlow(bool change) {
|
| 1018 | 1116 |
// Augment along the cycle |
| 1019 | 1117 |
if (delta > 0) {
|
| 1020 |
|
|
| 1118 |
Value val = _state[in_arc] * delta; |
|
| 1021 | 1119 |
_flow[in_arc] += val; |
| 1022 | 1120 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1023 | 1121 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| ... | ... |
@@ -1158,7 +1256,7 @@ |
| 1158 | 1256 |
|
| 1159 | 1257 |
// Update potentials |
| 1160 | 1258 |
void updatePotential() {
|
| 1161 |
|
|
| 1259 |
Value sigma = _forward[u_in] ? |
|
| 1162 | 1260 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1163 | 1261 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1164 | 1262 |
if (_succ_num[u_in] > _node_num / 2) {
|
| ... | ... |
@@ -1181,28 +1279,28 @@ |
| 1181 | 1279 |
} |
| 1182 | 1280 |
|
| 1183 | 1281 |
// Execute the algorithm |
| 1184 |
bool start( |
|
| 1282 |
bool start(PivotRule pivot_rule) {
|
|
| 1185 | 1283 |
// Select the pivot rule implementation |
| 1186 | 1284 |
switch (pivot_rule) {
|
| 1187 |
case |
|
| 1285 |
case FIRST_ELIGIBLE: |
|
| 1188 | 1286 |
return start<FirstEligiblePivotRule>(); |
| 1189 |
case |
|
| 1287 |
case BEST_ELIGIBLE: |
|
| 1190 | 1288 |
return start<BestEligiblePivotRule>(); |
| 1191 |
case |
|
| 1289 |
case BLOCK_SEARCH: |
|
| 1192 | 1290 |
return start<BlockSearchPivotRule>(); |
| 1193 |
case |
|
| 1291 |
case CANDIDATE_LIST: |
|
| 1194 | 1292 |
return start<CandidateListPivotRule>(); |
| 1195 |
case |
|
| 1293 |
case ALTERING_LIST: |
|
| 1196 | 1294 |
return start<AlteringListPivotRule>(); |
| 1197 | 1295 |
} |
| 1198 | 1296 |
return false; |
| 1199 | 1297 |
} |
| 1200 | 1298 |
|
| 1201 |
template< |
|
| 1299 |
template <typename PivotRuleImpl> |
|
| 1202 | 1300 |
bool start() {
|
| 1203 |
|
|
| 1301 |
PivotRuleImpl pivot(*this); |
|
| 1204 | 1302 |
|
| 1205 |
// Execute the |
|
| 1303 |
// Execute the Network Simplex algorithm |
|
| 1206 | 1304 |
while (pivot.findEnteringArc()) {
|
| 1207 | 1305 |
findJoinNode(); |
| 1208 | 1306 |
bool change = findLeavingArc(); |
| ... | ... |
@@ -1219,10 +1317,10 @@ |
| 1219 | 1317 |
} |
| 1220 | 1318 |
|
| 1221 | 1319 |
// Copy flow values to _flow_map |
| 1222 |
if ( |
|
| 1320 |
if (_plower) {
|
|
| 1223 | 1321 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1224 | 1322 |
Arc e = _arc_ref[i]; |
| 1225 |
_flow_map->set(e, (* |
|
| 1323 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
| 1226 | 1324 |
} |
| 1227 | 1325 |
} else {
|
| 1228 | 1326 |
for (int i = 0; i != _arc_num; ++i) {
|
| ... | ... |
@@ -20,15 +20,9 @@ |
| 20 | 20 |
#include <fstream> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/list_graph.h> |
| 23 |
#include <lemon/smart_graph.h> |
|
| 24 | 23 |
#include <lemon/lgf_reader.h> |
| 25 | 24 |
|
| 26 |
//#include <lemon/cycle_canceling.h> |
|
| 27 |
//#include <lemon/capacity_scaling.h> |
|
| 28 |
//#include <lemon/cost_scaling.h> |
|
| 29 | 25 |
#include <lemon/network_simplex.h> |
| 30 |
//#include <lemon/min_cost_flow.h> |
|
| 31 |
//#include <lemon/min_cost_max_flow.h> |
|
| 32 | 26 |
|
| 33 | 27 |
#include <lemon/concepts/digraph.h> |
| 34 | 28 |
#include <lemon/concept_check.h> |
| ... | ... |
@@ -93,36 +87,30 @@ |
| 93 | 87 |
void constraints() {
|
| 94 | 88 |
checkConcept<concepts::Digraph, GR>(); |
| 95 | 89 |
|
| 96 |
MCF mcf_test1(g, lower, upper, cost, sup); |
|
| 97 |
MCF mcf_test2(g, upper, cost, sup); |
|
| 98 |
MCF mcf_test3(g, lower, upper, cost, n, n, k); |
|
| 99 |
MCF mcf_test4(g, upper, cost, n, n, k); |
|
| 90 |
MCF mcf(g); |
|
| 100 | 91 |
|
| 101 |
// TODO: This part should be enabled and the next part |
|
| 102 |
// should be removed if map copying is supported |
|
| 103 |
/* |
|
| 104 |
flow = mcf_test1.flowMap(); |
|
| 105 |
|
|
| 92 |
b = mcf.lowerMap(lower) |
|
| 93 |
.upperMap(upper) |
|
| 94 |
.capacityMap(upper) |
|
| 95 |
.boundMaps(lower, upper) |
|
| 96 |
.costMap(cost) |
|
| 97 |
.supplyMap(sup) |
|
| 98 |
.stSupply(n, n, k) |
|
| 99 |
.run(); |
|
| 106 | 100 |
|
| 107 |
pot = mcf_test1.potentialMap(); |
|
| 108 |
mcf_test1.potentialMap(pot); |
|
| 109 |
*/ |
|
| 110 |
/**/ |
|
| 111 |
const typename MCF::FlowMap &fm = |
|
| 112 |
mcf_test1.flowMap(); |
|
| 113 |
mcf_test1.flowMap(flow); |
|
| 114 |
const typename MCF::PotentialMap &pm = |
|
| 115 |
mcf_test1.potentialMap(); |
|
| 116 |
mcf_test1.potentialMap(pot); |
|
| 101 |
const typename MCF::FlowMap &fm = mcf.flowMap(); |
|
| 102 |
const typename MCF::PotentialMap &pm = mcf.potentialMap(); |
|
| 103 |
|
|
| 104 |
v = mcf.totalCost(); |
|
| 105 |
double x = mcf.template totalCost<double>(); |
|
| 106 |
v = mcf.flow(a); |
|
| 107 |
v = mcf.potential(n); |
|
| 108 |
mcf.flowMap(flow); |
|
| 109 |
mcf.potentialMap(pot); |
|
| 110 |
|
|
| 117 | 111 |
ignore_unused_variable_warning(fm); |
| 118 | 112 |
ignore_unused_variable_warning(pm); |
| 119 |
/**/ |
|
| 120 |
|
|
| 121 |
mcf_test1.run(); |
|
| 122 |
|
|
| 123 |
v = mcf_test1.totalCost(); |
|
| 124 |
v = mcf_test1.flow(a); |
|
| 125 |
|
|
| 113 |
ignore_unused_variable_warning(x); |
|
| 126 | 114 |
} |
| 127 | 115 |
|
| 128 | 116 |
typedef typename GR::Node Node; |
| ... | ... |
@@ -139,6 +127,7 @@ |
| 139 | 127 |
const Arc &a; |
| 140 | 128 |
const Value &k; |
| 141 | 129 |
Value v; |
| 130 |
bool b; |
|
| 142 | 131 |
|
| 143 | 132 |
typename MCF::FlowMap &flow; |
| 144 | 133 |
typename MCF::PotentialMap &pot; |
| ... | ... |
@@ -172,7 +161,7 @@ |
| 172 | 161 |
} |
| 173 | 162 |
|
| 174 | 163 |
// Check the feasibility of the given potentials (dual soluiton) |
| 175 |
// using the Complementary Slackness optimality condition |
|
| 164 |
// using the "Complementary Slackness" optimality condition |
|
| 176 | 165 |
template < typename GR, typename LM, typename UM, |
| 177 | 166 |
typename CM, typename FM, typename PM > |
| 178 | 167 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| ... | ... |
@@ -217,23 +206,14 @@ |
| 217 | 206 |
// Check the interfaces |
| 218 | 207 |
{
|
| 219 | 208 |
typedef int Value; |
| 220 |
// This typedef should be enabled if the standard maps are |
|
| 221 |
// reference maps in the graph concepts |
|
| 209 |
// TODO: This typedef should be enabled if the standard maps are |
|
| 210 |
// reference maps in the graph concepts (See #190). |
|
| 211 |
/**/ |
|
| 222 | 212 |
//typedef concepts::Digraph GR; |
| 223 | 213 |
typedef ListDigraph GR; |
| 224 |
typedef concepts::ReadMap<GR::Node, Value> NM; |
|
| 225 |
typedef concepts::ReadMap<GR::Arc, Value> AM; |
|
| 226 |
|
|
| 227 |
//checkConcept< McfClassConcept<GR, Value>, |
|
| 228 |
// CycleCanceling<GR, AM, AM, AM, NM> >(); |
|
| 229 |
//checkConcept< McfClassConcept<GR, Value>, |
|
| 230 |
// CapacityScaling<GR, AM, AM, AM, NM> >(); |
|
| 231 |
//checkConcept< McfClassConcept<GR, Value>, |
|
| 232 |
|
|
| 214 |
/**/ |
|
| 233 | 215 |
checkConcept< McfClassConcept<GR, Value>, |
| 234 |
NetworkSimplex<GR, AM, AM, AM, NM> >(); |
|
| 235 |
//checkConcept< MinCostFlow<GR, Value>, |
|
| 236 |
|
|
| 216 |
NetworkSimplex<GR, Value> >(); |
|
| 237 | 217 |
} |
| 238 | 218 |
|
| 239 | 219 |
// Run various MCF tests |
| ... | ... |
@@ -244,6 +224,7 @@ |
| 244 | 224 |
Digraph gr; |
| 245 | 225 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
| 246 | 226 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
| 227 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
|
| 247 | 228 |
Node v, w; |
| 248 | 229 |
|
| 249 | 230 |
std::istringstream input(test_lgf); |
| ... | ... |
@@ -259,197 +240,50 @@ |
| 259 | 240 |
.node("target", w)
|
| 260 | 241 |
.run(); |
| 261 | 242 |
|
| 262 |
/* |
|
| 263 |
// A. Test CapacityScaling with scaling |
|
| 243 |
// A. Test NetworkSimplex with the default pivot rule |
|
| 264 | 244 |
{
|
| 265 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 266 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 267 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 268 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 269 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 270 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 245 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), |
|
| 246 |
mcf5(gr), mcf6(gr), mcf7(gr), mcf8(gr); |
|
| 271 | 247 |
|
| 272 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#A1"); |
|
| 273 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#A2"); |
|
| 274 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#A3"); |
|
| 275 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#A4"); |
|
| 276 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#A5"); |
|
| 277 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#A6"); |
|
| 248 |
checkMcf(mcf1, mcf1.upperMap(u).costMap(c).supplyMap(s1).run(), |
|
| 249 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
| 250 |
checkMcf(mcf2, mcf2.upperMap(u).costMap(c).stSupply(v, w, 27).run(), |
|
| 251 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
| 252 |
checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(), |
|
| 253 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
| 254 |
checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).stSupply(v, w, 27).run(), |
|
| 255 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
| 256 |
checkMcf(mcf5, mcf5.supplyMap(s1).run(), |
|
| 257 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
| 258 |
checkMcf(mcf6, mcf6.stSupply(v, w, 27).lowerMap(l2).run(), |
|
| 259 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
| 260 |
checkMcf(mcf7, mcf7.run(), |
|
| 261 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
| 262 |
checkMcf(mcf8, mcf8.boundMaps(l2, u).run(), |
|
| 263 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
|
| 278 | 264 |
} |
| 279 | 265 |
|
| 280 |
// B. Test |
|
| 266 |
// B. Test NetworkSimplex with each pivot rule |
|
| 281 | 267 |
{
|
| 282 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 283 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 284 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 285 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 286 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 287 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 268 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), mcf5(gr); |
|
| 269 |
NetworkSimplex<Digraph>::PivotRule pr; |
|
| 288 | 270 |
|
| 289 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#B1"); |
|
| 290 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#B2"); |
|
| 291 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#B3"); |
|
| 292 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#B4"); |
|
| 293 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#B5"); |
|
| 294 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#B6"); |
|
| 271 |
pr = NetworkSimplex<Digraph>::FIRST_ELIGIBLE; |
|
| 272 |
checkMcf(mcf1, mcf1.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 273 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
| 274 |
pr = NetworkSimplex<Digraph>::BEST_ELIGIBLE; |
|
| 275 |
checkMcf(mcf2, mcf2.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 276 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
| 277 |
pr = NetworkSimplex<Digraph>::BLOCK_SEARCH; |
|
| 278 |
checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 279 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
| 280 |
pr = NetworkSimplex<Digraph>::CANDIDATE_LIST; |
|
| 281 |
checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 282 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
| 283 |
pr = NetworkSimplex<Digraph>::ALTERING_LIST; |
|
| 284 |
checkMcf(mcf5, mcf5.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
| 285 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
| 295 | 286 |
} |
| 296 | 287 |
|
| 297 |
// C. Test CostScaling using partial augment-relabel method |
|
| 298 |
{
|
|
| 299 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 300 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 301 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 302 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 303 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 304 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 305 |
|
|
| 306 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#C1"); |
|
| 307 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#C2"); |
|
| 308 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#C3"); |
|
| 309 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#C4"); |
|
| 310 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#C5"); |
|
| 311 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#C6"); |
|
| 312 |
} |
|
| 313 |
|
|
| 314 |
// D. Test CostScaling using push-relabel method |
|
| 315 |
{
|
|
| 316 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 317 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 318 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 319 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 320 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 321 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 322 |
|
|
| 323 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#D1"); |
|
| 324 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#D2"); |
|
| 325 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#D3"); |
|
| 326 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#D4"); |
|
| 327 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#D5"); |
|
| 328 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#D6"); |
|
| 329 |
} |
|
| 330 |
*/ |
|
| 331 |
|
|
| 332 |
// E. Test NetworkSimplex with FIRST_ELIGIBLE_PIVOT |
|
| 333 |
{
|
|
| 334 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 335 |
NetworkSimplex<Digraph>::FIRST_ELIGIBLE_PIVOT; |
|
| 336 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 337 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 338 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 339 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 340 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 341 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 342 |
|
|
| 343 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#E1"); |
|
| 344 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#E2"); |
|
| 345 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#E3"); |
|
| 346 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#E4"); |
|
| 347 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#E5"); |
|
| 348 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#E6"); |
|
| 349 |
} |
|
| 350 |
|
|
| 351 |
// F. Test NetworkSimplex with BEST_ELIGIBLE_PIVOT |
|
| 352 |
{
|
|
| 353 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 354 |
NetworkSimplex<Digraph>::BEST_ELIGIBLE_PIVOT; |
|
| 355 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 356 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 357 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 358 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 359 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 360 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 361 |
|
|
| 362 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#F1"); |
|
| 363 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#F2"); |
|
| 364 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#F3"); |
|
| 365 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#F4"); |
|
| 366 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#F5"); |
|
| 367 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#F6"); |
|
| 368 |
} |
|
| 369 |
|
|
| 370 |
// G. Test NetworkSimplex with BLOCK_SEARCH_PIVOT |
|
| 371 |
{
|
|
| 372 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 373 |
NetworkSimplex<Digraph>::BLOCK_SEARCH_PIVOT; |
|
| 374 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 375 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 376 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 377 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 378 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 379 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 380 |
|
|
| 381 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#G1"); |
|
| 382 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#G2"); |
|
| 383 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#G3"); |
|
| 384 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#G4"); |
|
| 385 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#G5"); |
|
| 386 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#G6"); |
|
| 387 |
} |
|
| 388 |
|
|
| 389 |
// H. Test NetworkSimplex with CANDIDATE_LIST_PIVOT |
|
| 390 |
{
|
|
| 391 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 392 |
NetworkSimplex<Digraph>::CANDIDATE_LIST_PIVOT; |
|
| 393 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 394 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 395 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 396 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 397 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 398 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 399 |
|
|
| 400 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#H1"); |
|
| 401 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#H2"); |
|
| 402 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#H3"); |
|
| 403 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#H4"); |
|
| 404 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#H5"); |
|
| 405 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#H6"); |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
// I. Test NetworkSimplex with ALTERING_LIST_PIVOT |
|
| 409 |
{
|
|
| 410 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 411 |
NetworkSimplex<Digraph>::ALTERING_LIST_PIVOT; |
|
| 412 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 413 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 414 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 415 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 416 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 417 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 418 |
|
|
| 419 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#I1"); |
|
| 420 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#I2"); |
|
| 421 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#I3"); |
|
| 422 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#I4"); |
|
| 423 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#I5"); |
|
| 424 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#I6"); |
|
| 425 |
} |
|
| 426 |
|
|
| 427 |
/* |
|
| 428 |
// J. Test MinCostFlow |
|
| 429 |
{
|
|
| 430 |
MinCostFlow<Digraph> mcf1(gr, u, c, s1); |
|
| 431 |
MinCostFlow<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 432 |
MinCostFlow<Digraph> mcf3(gr, u, c, s3); |
|
| 433 |
MinCostFlow<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 434 |
MinCostFlow<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 435 |
MinCostFlow<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 436 |
|
|
| 437 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#J1"); |
|
| 438 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#J2"); |
|
| 439 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#J3"); |
|
| 440 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#J4"); |
|
| 441 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#J5"); |
|
| 442 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#J6"); |
|
| 443 |
} |
|
| 444 |
*/ |
|
| 445 |
/* |
|
| 446 |
// K. Test MinCostMaxFlow |
|
| 447 |
{
|
|
| 448 |
MinCostMaxFlow<Digraph> mcmf(gr, u, c, v, w); |
|
| 449 |
mcmf.run(); |
|
| 450 |
checkMcf(mcmf, true, gr, l1, u, c, s3, true, 7620, "#K1"); |
|
| 451 |
} |
|
| 452 |
*/ |
|
| 453 |
|
|
| 454 | 288 |
return 0; |
| 455 | 289 |
} |
| ... | ... |
@@ -105,9 +105,8 @@ |
| 105 | 105 |
readDimacsMin(is, g, lower, cap, cost, sup, desc); |
| 106 | 106 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
| 107 | 107 |
ti.restart(); |
| 108 |
NetworkSimplex< Digraph, Digraph::ArcMap<Value>, Digraph::ArcMap<Value>, |
|
| 109 |
Digraph::ArcMap<Value>, Digraph::NodeMap<Value> > |
|
| 110 |
ns(g |
|
| 108 |
NetworkSimplex<Digraph, Value> ns(g); |
|
| 109 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
| 111 | 110 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
| 112 | 111 |
ti.restart(); |
| 113 | 112 |
ns.run(); |
0 comments (0 inline)