0
2
3
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BUCKET_HEAP_H |
|
| 20 |
#define LEMON_BUCKET_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup auxdat |
|
| 23 |
///\file |
|
| 24 |
///\brief Bucket Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup auxdat |
|
| 33 |
/// |
|
| 34 |
/// \brief A Bucket Heap implementation. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
| 37 |
/// is a data structure for storing items with specified values called \e |
|
| 38 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 39 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
| 40 |
/// only integer priorities and it stores for each priority in the |
|
| 41 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
| 42 |
/// the priorities are small. It is not intended to use as dijkstra heap. |
|
| 43 |
/// |
|
| 44 |
/// \param _ItemIntMap A read and writable Item int map, used internally |
|
| 45 |
/// to handle the cross references. |
|
| 46 |
/// \param minimize If the given parameter is true then the heap gives back |
|
| 47 |
/// the lowest priority. |
|
| 48 |
template <typename _ItemIntMap, bool minimize = true > |
|
| 49 |
class BucketHeap {
|
|
| 50 |
|
|
| 51 |
public: |
|
| 52 |
/// \e |
|
| 53 |
typedef typename _ItemIntMap::Key Item; |
|
| 54 |
/// \e |
|
| 55 |
typedef int Prio; |
|
| 56 |
/// \e |
|
| 57 |
typedef std::pair<Item, Prio> Pair; |
|
| 58 |
/// \e |
|
| 59 |
typedef _ItemIntMap ItemIntMap; |
|
| 60 |
|
|
| 61 |
/// \brief Type to represent the items states. |
|
| 62 |
/// |
|
| 63 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 64 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 65 |
/// heap's point of view, but may be useful to the user. |
|
| 66 |
/// |
|
| 67 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 68 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 69 |
enum State {
|
|
| 70 |
IN_HEAP = 0, |
|
| 71 |
PRE_HEAP = -1, |
|
| 72 |
POST_HEAP = -2 |
|
| 73 |
}; |
|
| 74 |
|
|
| 75 |
public: |
|
| 76 |
/// \brief The constructor. |
|
| 77 |
/// |
|
| 78 |
/// The constructor. |
|
| 79 |
/// \param _index should be given to the constructor, since it is used |
|
| 80 |
/// internally to handle the cross references. The value of the map |
|
| 81 |
/// should be PRE_HEAP (-1) for each element. |
|
| 82 |
explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
|
|
| 83 |
|
|
| 84 |
/// The number of items stored in the heap. |
|
| 85 |
/// |
|
| 86 |
/// \brief Returns the number of items stored in the heap. |
|
| 87 |
int size() const { return data.size(); }
|
|
| 88 |
|
|
| 89 |
/// \brief Checks if the heap stores no items. |
|
| 90 |
/// |
|
| 91 |
/// Returns \c true if and only if the heap stores no items. |
|
| 92 |
bool empty() const { return data.empty(); }
|
|
| 93 |
|
|
| 94 |
/// \brief Make empty this heap. |
|
| 95 |
/// |
|
| 96 |
/// Make empty this heap. It does not change the cross reference |
|
| 97 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 98 |
/// should first clear the heap and after that you should set the |
|
| 99 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 100 |
void clear() {
|
|
| 101 |
data.clear(); first.clear(); minimal = 0; |
|
| 102 |
} |
|
| 103 |
|
|
| 104 |
private: |
|
| 105 |
|
|
| 106 |
void relocate_last(int idx) {
|
|
| 107 |
if (idx + 1 < int(data.size())) {
|
|
| 108 |
data[idx] = data.back(); |
|
| 109 |
if (data[idx].prev != -1) {
|
|
| 110 |
data[data[idx].prev].next = idx; |
|
| 111 |
} else {
|
|
| 112 |
first[data[idx].value] = idx; |
|
| 113 |
} |
|
| 114 |
if (data[idx].next != -1) {
|
|
| 115 |
data[data[idx].next].prev = idx; |
|
| 116 |
} |
|
| 117 |
index[data[idx].item] = idx; |
|
| 118 |
} |
|
| 119 |
data.pop_back(); |
|
| 120 |
} |
|
| 121 |
|
|
| 122 |
void unlace(int idx) {
|
|
| 123 |
if (data[idx].prev != -1) {
|
|
| 124 |
data[data[idx].prev].next = data[idx].next; |
|
| 125 |
} else {
|
|
| 126 |
first[data[idx].value] = data[idx].next; |
|
| 127 |
} |
|
| 128 |
if (data[idx].next != -1) {
|
|
| 129 |
data[data[idx].next].prev = data[idx].prev; |
|
| 130 |
} |
|
| 131 |
} |
|
| 132 |
|
|
| 133 |
void lace(int idx) {
|
|
| 134 |
if (int(first.size()) <= data[idx].value) {
|
|
| 135 |
first.resize(data[idx].value + 1, -1); |
|
| 136 |
} |
|
| 137 |
data[idx].next = first[data[idx].value]; |
|
| 138 |
if (data[idx].next != -1) {
|
|
| 139 |
data[data[idx].next].prev = idx; |
|
| 140 |
} |
|
| 141 |
first[data[idx].value] = idx; |
|
| 142 |
data[idx].prev = -1; |
|
| 143 |
} |
|
| 144 |
|
|
| 145 |
public: |
|
| 146 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 147 |
/// |
|
| 148 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
| 149 |
/// \param p The pair to insert. |
|
| 150 |
void push(const Pair& p) {
|
|
| 151 |
push(p.first, p.second); |
|
| 152 |
} |
|
| 153 |
|
|
| 154 |
/// \brief Insert an item into the heap with the given priority. |
|
| 155 |
/// |
|
| 156 |
/// Adds \c i to the heap with priority \c p. |
|
| 157 |
/// \param i The item to insert. |
|
| 158 |
/// \param p The priority of the item. |
|
| 159 |
void push(const Item &i, const Prio &p) {
|
|
| 160 |
int idx = data.size(); |
|
| 161 |
index[i] = idx; |
|
| 162 |
data.push_back(BucketItem(i, p)); |
|
| 163 |
lace(idx); |
|
| 164 |
if (p < minimal) {
|
|
| 165 |
minimal = p; |
|
| 166 |
} |
|
| 167 |
} |
|
| 168 |
|
|
| 169 |
/// \brief Returns the item with minimum priority. |
|
| 170 |
/// |
|
| 171 |
/// This method returns the item with minimum priority. |
|
| 172 |
/// \pre The heap must be nonempty. |
|
| 173 |
Item top() const {
|
|
| 174 |
while (first[minimal] == -1) {
|
|
| 175 |
++minimal; |
|
| 176 |
} |
|
| 177 |
return data[first[minimal]].item; |
|
| 178 |
} |
|
| 179 |
|
|
| 180 |
/// \brief Returns the minimum priority. |
|
| 181 |
/// |
|
| 182 |
/// It returns the minimum priority. |
|
| 183 |
/// \pre The heap must be nonempty. |
|
| 184 |
Prio prio() const {
|
|
| 185 |
while (first[minimal] == -1) {
|
|
| 186 |
++minimal; |
|
| 187 |
} |
|
| 188 |
return minimal; |
|
| 189 |
} |
|
| 190 |
|
|
| 191 |
/// \brief Deletes the item with minimum priority. |
|
| 192 |
/// |
|
| 193 |
/// This method deletes the item with minimum priority from the heap. |
|
| 194 |
/// \pre The heap must be non-empty. |
|
| 195 |
void pop() {
|
|
| 196 |
while (first[minimal] == -1) {
|
|
| 197 |
++minimal; |
|
| 198 |
} |
|
| 199 |
int idx = first[minimal]; |
|
| 200 |
index[data[idx].item] = -2; |
|
| 201 |
unlace(idx); |
|
| 202 |
relocate_last(idx); |
|
| 203 |
} |
|
| 204 |
|
|
| 205 |
/// \brief Deletes \c i from the heap. |
|
| 206 |
/// |
|
| 207 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 208 |
/// already stored in the heap. |
|
| 209 |
/// \param i The item to erase. |
|
| 210 |
void erase(const Item &i) {
|
|
| 211 |
int idx = index[i]; |
|
| 212 |
index[data[idx].item] = -2; |
|
| 213 |
unlace(idx); |
|
| 214 |
relocate_last(idx); |
|
| 215 |
} |
|
| 216 |
|
|
| 217 |
|
|
| 218 |
/// \brief Returns the priority of \c i. |
|
| 219 |
/// |
|
| 220 |
/// This function returns the priority of item \c i. |
|
| 221 |
/// \pre \c i must be in the heap. |
|
| 222 |
/// \param i The item. |
|
| 223 |
Prio operator[](const Item &i) const {
|
|
| 224 |
int idx = index[i]; |
|
| 225 |
return data[idx].value; |
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 229 |
/// if \c i was already there. |
|
| 230 |
/// |
|
| 231 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 232 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 233 |
/// \param i The item. |
|
| 234 |
/// \param p The priority. |
|
| 235 |
void set(const Item &i, const Prio &p) {
|
|
| 236 |
int idx = index[i]; |
|
| 237 |
if (idx < 0) {
|
|
| 238 |
push(i,p); |
|
| 239 |
} else if (p > data[idx].value) {
|
|
| 240 |
increase(i, p); |
|
| 241 |
} else {
|
|
| 242 |
decrease(i, p); |
|
| 243 |
} |
|
| 244 |
} |
|
| 245 |
|
|
| 246 |
/// \brief Decreases the priority of \c i to \c p. |
|
| 247 |
/// |
|
| 248 |
/// This method decreases the priority of item \c i to \c p. |
|
| 249 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 250 |
/// p relative to \c Compare. |
|
| 251 |
/// \param i The item. |
|
| 252 |
/// \param p The priority. |
|
| 253 |
void decrease(const Item &i, const Prio &p) {
|
|
| 254 |
int idx = index[i]; |
|
| 255 |
unlace(idx); |
|
| 256 |
data[idx].value = p; |
|
| 257 |
if (p < minimal) {
|
|
| 258 |
minimal = p; |
|
| 259 |
} |
|
| 260 |
lace(idx); |
|
| 261 |
} |
|
| 262 |
|
|
| 263 |
/// \brief Increases the priority of \c i to \c p. |
|
| 264 |
/// |
|
| 265 |
/// This method sets the priority of item \c i to \c p. |
|
| 266 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 267 |
/// p relative to \c Compare. |
|
| 268 |
/// \param i The item. |
|
| 269 |
/// \param p The priority. |
|
| 270 |
void increase(const Item &i, const Prio &p) {
|
|
| 271 |
int idx = index[i]; |
|
| 272 |
unlace(idx); |
|
| 273 |
data[idx].value = p; |
|
| 274 |
lace(idx); |
|
| 275 |
} |
|
| 276 |
|
|
| 277 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 278 |
/// never been in the heap. |
|
| 279 |
/// |
|
| 280 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 281 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 282 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 283 |
/// get back to the heap again. |
|
| 284 |
/// \param i The item. |
|
| 285 |
State state(const Item &i) const {
|
|
| 286 |
int idx = index[i]; |
|
| 287 |
if (idx >= 0) idx = 0; |
|
| 288 |
return State(idx); |
|
| 289 |
} |
|
| 290 |
|
|
| 291 |
/// \brief Sets the state of the \c item in the heap. |
|
| 292 |
/// |
|
| 293 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 294 |
/// manually clear the heap when it is important to achive the |
|
| 295 |
/// better time complexity. |
|
| 296 |
/// \param i The item. |
|
| 297 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 298 |
void state(const Item& i, State st) {
|
|
| 299 |
switch (st) {
|
|
| 300 |
case POST_HEAP: |
|
| 301 |
case PRE_HEAP: |
|
| 302 |
if (state(i) == IN_HEAP) {
|
|
| 303 |
erase(i); |
|
| 304 |
} |
|
| 305 |
index[i] = st; |
|
| 306 |
break; |
|
| 307 |
case IN_HEAP: |
|
| 308 |
break; |
|
| 309 |
} |
|
| 310 |
} |
|
| 311 |
|
|
| 312 |
private: |
|
| 313 |
|
|
| 314 |
struct BucketItem {
|
|
| 315 |
BucketItem(const Item& _item, int _value) |
|
| 316 |
: item(_item), value(_value) {}
|
|
| 317 |
|
|
| 318 |
Item item; |
|
| 319 |
int value; |
|
| 320 |
|
|
| 321 |
int prev, next; |
|
| 322 |
}; |
|
| 323 |
|
|
| 324 |
ItemIntMap& index; |
|
| 325 |
std::vector<int> first; |
|
| 326 |
std::vector<BucketItem> data; |
|
| 327 |
mutable int minimal; |
|
| 328 |
|
|
| 329 |
}; // class BucketHeap |
|
| 330 |
|
|
| 331 |
|
|
| 332 |
template <typename _ItemIntMap> |
|
| 333 |
class BucketHeap<_ItemIntMap, false> {
|
|
| 334 |
|
|
| 335 |
public: |
|
| 336 |
typedef typename _ItemIntMap::Key Item; |
|
| 337 |
typedef int Prio; |
|
| 338 |
typedef std::pair<Item, Prio> Pair; |
|
| 339 |
typedef _ItemIntMap ItemIntMap; |
|
| 340 |
|
|
| 341 |
enum State {
|
|
| 342 |
IN_HEAP = 0, |
|
| 343 |
PRE_HEAP = -1, |
|
| 344 |
POST_HEAP = -2 |
|
| 345 |
}; |
|
| 346 |
|
|
| 347 |
public: |
|
| 348 |
|
|
| 349 |
explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
|
|
| 350 |
|
|
| 351 |
int size() const { return data.size(); }
|
|
| 352 |
bool empty() const { return data.empty(); }
|
|
| 353 |
|
|
| 354 |
void clear() {
|
|
| 355 |
data.clear(); first.clear(); maximal = -1; |
|
| 356 |
} |
|
| 357 |
|
|
| 358 |
private: |
|
| 359 |
|
|
| 360 |
void relocate_last(int idx) {
|
|
| 361 |
if (idx + 1 != int(data.size())) {
|
|
| 362 |
data[idx] = data.back(); |
|
| 363 |
if (data[idx].prev != -1) {
|
|
| 364 |
data[data[idx].prev].next = idx; |
|
| 365 |
} else {
|
|
| 366 |
first[data[idx].value] = idx; |
|
| 367 |
} |
|
| 368 |
if (data[idx].next != -1) {
|
|
| 369 |
data[data[idx].next].prev = idx; |
|
| 370 |
} |
|
| 371 |
index[data[idx].item] = idx; |
|
| 372 |
} |
|
| 373 |
data.pop_back(); |
|
| 374 |
} |
|
| 375 |
|
|
| 376 |
void unlace(int idx) {
|
|
| 377 |
if (data[idx].prev != -1) {
|
|
| 378 |
data[data[idx].prev].next = data[idx].next; |
|
| 379 |
} else {
|
|
| 380 |
first[data[idx].value] = data[idx].next; |
|
| 381 |
} |
|
| 382 |
if (data[idx].next != -1) {
|
|
| 383 |
data[data[idx].next].prev = data[idx].prev; |
|
| 384 |
} |
|
| 385 |
} |
|
| 386 |
|
|
| 387 |
void lace(int idx) {
|
|
| 388 |
if (int(first.size()) <= data[idx].value) {
|
|
| 389 |
first.resize(data[idx].value + 1, -1); |
|
| 390 |
} |
|
| 391 |
data[idx].next = first[data[idx].value]; |
|
| 392 |
if (data[idx].next != -1) {
|
|
| 393 |
data[data[idx].next].prev = idx; |
|
| 394 |
} |
|
| 395 |
first[data[idx].value] = idx; |
|
| 396 |
data[idx].prev = -1; |
|
| 397 |
} |
|
| 398 |
|
|
| 399 |
public: |
|
| 400 |
|
|
| 401 |
void push(const Pair& p) {
|
|
| 402 |
push(p.first, p.second); |
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
void push(const Item &i, const Prio &p) {
|
|
| 406 |
int idx = data.size(); |
|
| 407 |
index[i] = idx; |
|
| 408 |
data.push_back(BucketItem(i, p)); |
|
| 409 |
lace(idx); |
|
| 410 |
if (data[idx].value > maximal) {
|
|
| 411 |
maximal = data[idx].value; |
|
| 412 |
} |
|
| 413 |
} |
|
| 414 |
|
|
| 415 |
Item top() const {
|
|
| 416 |
while (first[maximal] == -1) {
|
|
| 417 |
--maximal; |
|
| 418 |
} |
|
| 419 |
return data[first[maximal]].item; |
|
| 420 |
} |
|
| 421 |
|
|
| 422 |
Prio prio() const {
|
|
| 423 |
while (first[maximal] == -1) {
|
|
| 424 |
--maximal; |
|
| 425 |
} |
|
| 426 |
return maximal; |
|
| 427 |
} |
|
| 428 |
|
|
| 429 |
void pop() {
|
|
| 430 |
while (first[maximal] == -1) {
|
|
| 431 |
--maximal; |
|
| 432 |
} |
|
| 433 |
int idx = first[maximal]; |
|
| 434 |
index[data[idx].item] = -2; |
|
| 435 |
unlace(idx); |
|
| 436 |
relocate_last(idx); |
|
| 437 |
} |
|
| 438 |
|
|
| 439 |
void erase(const Item &i) {
|
|
| 440 |
int idx = index[i]; |
|
| 441 |
index[data[idx].item] = -2; |
|
| 442 |
unlace(idx); |
|
| 443 |
relocate_last(idx); |
|
| 444 |
} |
|
| 445 |
|
|
| 446 |
Prio operator[](const Item &i) const {
|
|
| 447 |
int idx = index[i]; |
|
| 448 |
return data[idx].value; |
|
| 449 |
} |
|
| 450 |
|
|
| 451 |
void set(const Item &i, const Prio &p) {
|
|
| 452 |
int idx = index[i]; |
|
| 453 |
if (idx < 0) {
|
|
| 454 |
push(i,p); |
|
| 455 |
} else if (p > data[idx].value) {
|
|
| 456 |
decrease(i, p); |
|
| 457 |
} else {
|
|
| 458 |
increase(i, p); |
|
| 459 |
} |
|
| 460 |
} |
|
| 461 |
|
|
| 462 |
void decrease(const Item &i, const Prio &p) {
|
|
| 463 |
int idx = index[i]; |
|
| 464 |
unlace(idx); |
|
| 465 |
data[idx].value = p; |
|
| 466 |
if (p > maximal) {
|
|
| 467 |
maximal = p; |
|
| 468 |
} |
|
| 469 |
lace(idx); |
|
| 470 |
} |
|
| 471 |
|
|
| 472 |
void increase(const Item &i, const Prio &p) {
|
|
| 473 |
int idx = index[i]; |
|
| 474 |
unlace(idx); |
|
| 475 |
data[idx].value = p; |
|
| 476 |
lace(idx); |
|
| 477 |
} |
|
| 478 |
|
|
| 479 |
State state(const Item &i) const {
|
|
| 480 |
int idx = index[i]; |
|
| 481 |
if (idx >= 0) idx = 0; |
|
| 482 |
return State(idx); |
|
| 483 |
} |
|
| 484 |
|
|
| 485 |
void state(const Item& i, State st) {
|
|
| 486 |
switch (st) {
|
|
| 487 |
case POST_HEAP: |
|
| 488 |
case PRE_HEAP: |
|
| 489 |
if (state(i) == IN_HEAP) {
|
|
| 490 |
erase(i); |
|
| 491 |
} |
|
| 492 |
index[i] = st; |
|
| 493 |
break; |
|
| 494 |
case IN_HEAP: |
|
| 495 |
break; |
|
| 496 |
} |
|
| 497 |
} |
|
| 498 |
|
|
| 499 |
private: |
|
| 500 |
|
|
| 501 |
struct BucketItem {
|
|
| 502 |
BucketItem(const Item& _item, int _value) |
|
| 503 |
: item(_item), value(_value) {}
|
|
| 504 |
|
|
| 505 |
Item item; |
|
| 506 |
int value; |
|
| 507 |
|
|
| 508 |
int prev, next; |
|
| 509 |
}; |
|
| 510 |
|
|
| 511 |
ItemIntMap& index; |
|
| 512 |
std::vector<int> first; |
|
| 513 |
std::vector<BucketItem> data; |
|
| 514 |
mutable int maximal; |
|
| 515 |
|
|
| 516 |
}; // class BucketHeap |
|
| 517 |
|
|
| 518 |
/// \ingroup auxdat |
|
| 519 |
/// |
|
| 520 |
/// \brief A Simplified Bucket Heap implementation. |
|
| 521 |
/// |
|
| 522 |
/// This class implements a simplified \e bucket \e heap data |
|
| 523 |
/// structure. It does not provide some functionality but it faster |
|
| 524 |
/// and simplier data structure than the BucketHeap. The main |
|
| 525 |
/// difference is that the BucketHeap stores for every key a double |
|
| 526 |
/// linked list while this class stores just simple lists. In the |
|
| 527 |
/// other way it does not supports erasing each elements just the |
|
| 528 |
/// minimal and it does not supports key increasing, decreasing. |
|
| 529 |
/// |
|
| 530 |
/// \param _ItemIntMap A read and writable Item int map, used internally |
|
| 531 |
/// to handle the cross references. |
|
| 532 |
/// \param minimize If the given parameter is true then the heap gives back |
|
| 533 |
/// the lowest priority. |
|
| 534 |
/// |
|
| 535 |
/// \sa BucketHeap |
|
| 536 |
template <typename _ItemIntMap, bool minimize = true > |
|
| 537 |
class SimpleBucketHeap {
|
|
| 538 |
|
|
| 539 |
public: |
|
| 540 |
typedef typename _ItemIntMap::Key Item; |
|
| 541 |
typedef int Prio; |
|
| 542 |
typedef std::pair<Item, Prio> Pair; |
|
| 543 |
typedef _ItemIntMap ItemIntMap; |
|
| 544 |
|
|
| 545 |
/// \brief Type to represent the items states. |
|
| 546 |
/// |
|
| 547 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 548 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 549 |
/// heap's point of view, but may be useful to the user. |
|
| 550 |
/// |
|
| 551 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 552 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 553 |
enum State {
|
|
| 554 |
IN_HEAP = 0, |
|
| 555 |
PRE_HEAP = -1, |
|
| 556 |
POST_HEAP = -2 |
|
| 557 |
}; |
|
| 558 |
|
|
| 559 |
public: |
|
| 560 |
|
|
| 561 |
/// \brief The constructor. |
|
| 562 |
/// |
|
| 563 |
/// The constructor. |
|
| 564 |
/// \param _index should be given to the constructor, since it is used |
|
| 565 |
/// internally to handle the cross references. The value of the map |
|
| 566 |
/// should be PRE_HEAP (-1) for each element. |
|
| 567 |
explicit SimpleBucketHeap(ItemIntMap &_index) |
|
| 568 |
: index(_index), free(-1), num(0), minimal(0) {}
|
|
| 569 |
|
|
| 570 |
/// \brief Returns the number of items stored in the heap. |
|
| 571 |
/// |
|
| 572 |
/// The number of items stored in the heap. |
|
| 573 |
int size() const { return num; }
|
|
| 574 |
|
|
| 575 |
/// \brief Checks if the heap stores no items. |
|
| 576 |
/// |
|
| 577 |
/// Returns \c true if and only if the heap stores no items. |
|
| 578 |
bool empty() const { return num == 0; }
|
|
| 579 |
|
|
| 580 |
/// \brief Make empty this heap. |
|
| 581 |
/// |
|
| 582 |
/// Make empty this heap. It does not change the cross reference |
|
| 583 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 584 |
/// should first clear the heap and after that you should set the |
|
| 585 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 586 |
void clear() {
|
|
| 587 |
data.clear(); first.clear(); free = -1; num = 0; minimal = 0; |
|
| 588 |
} |
|
| 589 |
|
|
| 590 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 591 |
/// |
|
| 592 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
| 593 |
/// \param p The pair to insert. |
|
| 594 |
void push(const Pair& p) {
|
|
| 595 |
push(p.first, p.second); |
|
| 596 |
} |
|
| 597 |
|
|
| 598 |
/// \brief Insert an item into the heap with the given priority. |
|
| 599 |
/// |
|
| 600 |
/// Adds \c i to the heap with priority \c p. |
|
| 601 |
/// \param i The item to insert. |
|
| 602 |
/// \param p The priority of the item. |
|
| 603 |
void push(const Item &i, const Prio &p) {
|
|
| 604 |
int idx; |
|
| 605 |
if (free == -1) {
|
|
| 606 |
idx = data.size(); |
|
| 607 |
data.push_back(BucketItem(i)); |
|
| 608 |
} else {
|
|
| 609 |
idx = free; |
|
| 610 |
free = data[idx].next; |
|
| 611 |
data[idx].item = i; |
|
| 612 |
} |
|
| 613 |
index[i] = idx; |
|
| 614 |
if (p >= int(first.size())) first.resize(p + 1, -1); |
|
| 615 |
data[idx].next = first[p]; |
|
| 616 |
first[p] = idx; |
|
| 617 |
if (p < minimal) {
|
|
| 618 |
minimal = p; |
|
| 619 |
} |
|
| 620 |
++num; |
|
| 621 |
} |
|
| 622 |
|
|
| 623 |
/// \brief Returns the item with minimum priority. |
|
| 624 |
/// |
|
| 625 |
/// This method returns the item with minimum priority. |
|
| 626 |
/// \pre The heap must be nonempty. |
|
| 627 |
Item top() const {
|
|
| 628 |
while (first[minimal] == -1) {
|
|
| 629 |
++minimal; |
|
| 630 |
} |
|
| 631 |
return data[first[minimal]].item; |
|
| 632 |
} |
|
| 633 |
|
|
| 634 |
/// \brief Returns the minimum priority. |
|
| 635 |
/// |
|
| 636 |
/// It returns the minimum priority. |
|
| 637 |
/// \pre The heap must be nonempty. |
|
| 638 |
Prio prio() const {
|
|
| 639 |
while (first[minimal] == -1) {
|
|
| 640 |
++minimal; |
|
| 641 |
} |
|
| 642 |
return minimal; |
|
| 643 |
} |
|
| 644 |
|
|
| 645 |
/// \brief Deletes the item with minimum priority. |
|
| 646 |
/// |
|
| 647 |
/// This method deletes the item with minimum priority from the heap. |
|
| 648 |
/// \pre The heap must be non-empty. |
|
| 649 |
void pop() {
|
|
| 650 |
while (first[minimal] == -1) {
|
|
| 651 |
++minimal; |
|
| 652 |
} |
|
| 653 |
int idx = first[minimal]; |
|
| 654 |
index[data[idx].item] = -2; |
|
| 655 |
first[minimal] = data[idx].next; |
|
| 656 |
data[idx].next = free; |
|
| 657 |
free = idx; |
|
| 658 |
--num; |
|
| 659 |
} |
|
| 660 |
|
|
| 661 |
/// \brief Returns the priority of \c i. |
|
| 662 |
/// |
|
| 663 |
/// This function returns the priority of item \c i. |
|
| 664 |
/// \warning This operator is not a constant time function |
|
| 665 |
/// because it scans the whole data structure to find the proper |
|
| 666 |
/// value. |
|
| 667 |
/// \pre \c i must be in the heap. |
|
| 668 |
/// \param i The item. |
|
| 669 |
Prio operator[](const Item &i) const {
|
|
| 670 |
for (int k = 0; k < first.size(); ++k) {
|
|
| 671 |
int idx = first[k]; |
|
| 672 |
while (idx != -1) {
|
|
| 673 |
if (data[idx].item == i) {
|
|
| 674 |
return k; |
|
| 675 |
} |
|
| 676 |
idx = data[idx].next; |
|
| 677 |
} |
|
| 678 |
} |
|
| 679 |
return -1; |
|
| 680 |
} |
|
| 681 |
|
|
| 682 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 683 |
/// never been in the heap. |
|
| 684 |
/// |
|
| 685 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 686 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 687 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 688 |
/// get back to the heap again. |
|
| 689 |
/// \param i The item. |
|
| 690 |
State state(const Item &i) const {
|
|
| 691 |
int idx = index[i]; |
|
| 692 |
if (idx >= 0) idx = 0; |
|
| 693 |
return State(idx); |
|
| 694 |
} |
|
| 695 |
|
|
| 696 |
private: |
|
| 697 |
|
|
| 698 |
struct BucketItem {
|
|
| 699 |
BucketItem(const Item& _item) |
|
| 700 |
: item(_item) {}
|
|
| 701 |
|
|
| 702 |
Item item; |
|
| 703 |
int next; |
|
| 704 |
}; |
|
| 705 |
|
|
| 706 |
ItemIntMap& index; |
|
| 707 |
std::vector<int> first; |
|
| 708 |
std::vector<BucketItem> data; |
|
| 709 |
int free, num; |
|
| 710 |
mutable int minimal; |
|
| 711 |
|
|
| 712 |
}; // class SimpleBucketHeap |
|
| 713 |
|
|
| 714 |
template <typename _ItemIntMap> |
|
| 715 |
class SimpleBucketHeap<_ItemIntMap, false> {
|
|
| 716 |
|
|
| 717 |
public: |
|
| 718 |
typedef typename _ItemIntMap::Key Item; |
|
| 719 |
typedef int Prio; |
|
| 720 |
typedef std::pair<Item, Prio> Pair; |
|
| 721 |
typedef _ItemIntMap ItemIntMap; |
|
| 722 |
|
|
| 723 |
enum State {
|
|
| 724 |
IN_HEAP = 0, |
|
| 725 |
PRE_HEAP = -1, |
|
| 726 |
POST_HEAP = -2 |
|
| 727 |
}; |
|
| 728 |
|
|
| 729 |
public: |
|
| 730 |
|
|
| 731 |
explicit SimpleBucketHeap(ItemIntMap &_index) |
|
| 732 |
: index(_index), free(-1), num(0), maximal(0) {}
|
|
| 733 |
|
|
| 734 |
int size() const { return num; }
|
|
| 735 |
|
|
| 736 |
bool empty() const { return num == 0; }
|
|
| 737 |
|
|
| 738 |
void clear() {
|
|
| 739 |
data.clear(); first.clear(); free = -1; num = 0; maximal = 0; |
|
| 740 |
} |
|
| 741 |
|
|
| 742 |
void push(const Pair& p) {
|
|
| 743 |
push(p.first, p.second); |
|
| 744 |
} |
|
| 745 |
|
|
| 746 |
void push(const Item &i, const Prio &p) {
|
|
| 747 |
int idx; |
|
| 748 |
if (free == -1) {
|
|
| 749 |
idx = data.size(); |
|
| 750 |
data.push_back(BucketItem(i)); |
|
| 751 |
} else {
|
|
| 752 |
idx = free; |
|
| 753 |
free = data[idx].next; |
|
| 754 |
data[idx].item = i; |
|
| 755 |
} |
|
| 756 |
index[i] = idx; |
|
| 757 |
if (p >= int(first.size())) first.resize(p + 1, -1); |
|
| 758 |
data[idx].next = first[p]; |
|
| 759 |
first[p] = idx; |
|
| 760 |
if (p > maximal) {
|
|
| 761 |
maximal = p; |
|
| 762 |
} |
|
| 763 |
++num; |
|
| 764 |
} |
|
| 765 |
|
|
| 766 |
Item top() const {
|
|
| 767 |
while (first[maximal] == -1) {
|
|
| 768 |
--maximal; |
|
| 769 |
} |
|
| 770 |
return data[first[maximal]].item; |
|
| 771 |
} |
|
| 772 |
|
|
| 773 |
Prio prio() const {
|
|
| 774 |
while (first[maximal] == -1) {
|
|
| 775 |
--maximal; |
|
| 776 |
} |
|
| 777 |
return maximal; |
|
| 778 |
} |
|
| 779 |
|
|
| 780 |
void pop() {
|
|
| 781 |
while (first[maximal] == -1) {
|
|
| 782 |
--maximal; |
|
| 783 |
} |
|
| 784 |
int idx = first[maximal]; |
|
| 785 |
index[data[idx].item] = -2; |
|
| 786 |
first[maximal] = data[idx].next; |
|
| 787 |
data[idx].next = free; |
|
| 788 |
free = idx; |
|
| 789 |
--num; |
|
| 790 |
} |
|
| 791 |
|
|
| 792 |
Prio operator[](const Item &i) const {
|
|
| 793 |
for (int k = 0; k < first.size(); ++k) {
|
|
| 794 |
int idx = first[k]; |
|
| 795 |
while (idx != -1) {
|
|
| 796 |
if (data[idx].item == i) {
|
|
| 797 |
return k; |
|
| 798 |
} |
|
| 799 |
idx = data[idx].next; |
|
| 800 |
} |
|
| 801 |
} |
|
| 802 |
return -1; |
|
| 803 |
} |
|
| 804 |
|
|
| 805 |
State state(const Item &i) const {
|
|
| 806 |
int idx = index[i]; |
|
| 807 |
if (idx >= 0) idx = 0; |
|
| 808 |
return State(idx); |
|
| 809 |
} |
|
| 810 |
|
|
| 811 |
private: |
|
| 812 |
|
|
| 813 |
struct BucketItem {
|
|
| 814 |
BucketItem(const Item& _item) : item(_item) {}
|
|
| 815 |
|
|
| 816 |
Item item; |
|
| 817 |
|
|
| 818 |
int next; |
|
| 819 |
}; |
|
| 820 |
|
|
| 821 |
ItemIntMap& index; |
|
| 822 |
std::vector<int> first; |
|
| 823 |
std::vector<BucketItem> data; |
|
| 824 |
int free, num; |
|
| 825 |
mutable int maximal; |
|
| 826 |
|
|
| 827 |
}; |
|
| 828 |
|
|
| 829 |
} |
|
| 830 |
|
|
| 831 |
#endif |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_FIB_HEAP_H |
|
| 20 |
#define LEMON_FIB_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup auxdat |
|
| 24 |
///\brief Fibonacci Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <functional> |
|
| 28 |
#include <lemon/math.h> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup auxdat |
|
| 33 |
/// |
|
| 34 |
///\brief Fibonacci Heap. |
|
| 35 |
/// |
|
| 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
| 37 |
///is a data structure for storing items with specified values called \e |
|
| 38 |
///priorities in such a way that finding the item with minimum priority is |
|
| 39 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
|
| 40 |
///one can change the priority of an item, add or erase an item, etc. |
|
| 41 |
/// |
|
| 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
| 43 |
///heap. In case of many calls to these operations, it is better to use a |
|
| 44 |
///\ref BinHeap "binary heap". |
|
| 45 |
/// |
|
| 46 |
///\param _Prio Type of the priority of the items. |
|
| 47 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
| 48 |
///to handle the cross references. |
|
| 49 |
///\param _Compare A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<_Prio>. |
|
| 51 |
/// |
|
| 52 |
///\sa BinHeap |
|
| 53 |
///\sa Dijkstra |
|
| 54 |
#ifdef DOXYGEN |
|
| 55 |
template <typename _Prio, |
|
| 56 |
typename _ItemIntMap, |
|
| 57 |
typename _Compare> |
|
| 58 |
#else |
|
| 59 |
template <typename _Prio, |
|
| 60 |
typename _ItemIntMap, |
|
| 61 |
typename _Compare = std::less<_Prio> > |
|
| 62 |
#endif |
|
| 63 |
class FibHeap {
|
|
| 64 |
public: |
|
| 65 |
///\e |
|
| 66 |
typedef _ItemIntMap ItemIntMap; |
|
| 67 |
///\e |
|
| 68 |
typedef _Prio Prio; |
|
| 69 |
///\e |
|
| 70 |
typedef typename ItemIntMap::Key Item; |
|
| 71 |
///\e |
|
| 72 |
typedef std::pair<Item,Prio> Pair; |
|
| 73 |
///\e |
|
| 74 |
typedef _Compare Compare; |
|
| 75 |
|
|
| 76 |
private: |
|
| 77 |
class store; |
|
| 78 |
|
|
| 79 |
std::vector<store> container; |
|
| 80 |
int minimum; |
|
| 81 |
ItemIntMap &iimap; |
|
| 82 |
Compare comp; |
|
| 83 |
int num_items; |
|
| 84 |
|
|
| 85 |
public: |
|
| 86 |
///Status of the nodes |
|
| 87 |
enum State {
|
|
| 88 |
///The node is in the heap |
|
| 89 |
IN_HEAP = 0, |
|
| 90 |
///The node has never been in the heap |
|
| 91 |
PRE_HEAP = -1, |
|
| 92 |
///The node was in the heap but it got out of it |
|
| 93 |
POST_HEAP = -2 |
|
| 94 |
}; |
|
| 95 |
|
|
| 96 |
/// \brief The constructor |
|
| 97 |
/// |
|
| 98 |
/// \c _iimap should be given to the constructor, since it is |
|
| 99 |
/// used internally to handle the cross references. |
|
| 100 |
explicit FibHeap(ItemIntMap &_iimap) |
|
| 101 |
: minimum(0), iimap(_iimap), num_items() {}
|
|
| 102 |
|
|
| 103 |
/// \brief The constructor |
|
| 104 |
/// |
|
| 105 |
/// \c _iimap should be given to the constructor, since it is used |
|
| 106 |
/// internally to handle the cross references. \c _comp is an |
|
| 107 |
/// object for ordering of the priorities. |
|
| 108 |
FibHeap(ItemIntMap &_iimap, const Compare &_comp) |
|
| 109 |
: minimum(0), iimap(_iimap), comp(_comp), num_items() {}
|
|
| 110 |
|
|
| 111 |
/// \brief The number of items stored in the heap. |
|
| 112 |
/// |
|
| 113 |
/// Returns the number of items stored in the heap. |
|
| 114 |
int size() const { return num_items; }
|
|
| 115 |
|
|
| 116 |
/// \brief Checks if the heap stores no items. |
|
| 117 |
/// |
|
| 118 |
/// Returns \c true if and only if the heap stores no items. |
|
| 119 |
bool empty() const { return num_items==0; }
|
|
| 120 |
|
|
| 121 |
/// \brief Make empty this heap. |
|
| 122 |
/// |
|
| 123 |
/// Make empty this heap. It does not change the cross reference |
|
| 124 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 125 |
/// should first clear the heap and after that you should set the |
|
| 126 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 127 |
void clear() {
|
|
| 128 |
container.clear(); minimum = 0; num_items = 0; |
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
/// \brief \c item gets to the heap with priority \c value independently |
|
| 132 |
/// if \c item was already there. |
|
| 133 |
/// |
|
| 134 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
| 135 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
| 136 |
/// \ref increase(\c item, \c value) otherwise. |
|
| 137 |
void set (const Item& item, const Prio& value) {
|
|
| 138 |
int i=iimap[item]; |
|
| 139 |
if ( i >= 0 && container[i].in ) {
|
|
| 140 |
if ( comp(value, container[i].prio) ) decrease(item, value); |
|
| 141 |
if ( comp(container[i].prio, value) ) increase(item, value); |
|
| 142 |
} else push(item, value); |
|
| 143 |
} |
|
| 144 |
|
|
| 145 |
/// \brief Adds \c item to the heap with priority \c value. |
|
| 146 |
/// |
|
| 147 |
/// Adds \c item to the heap with priority \c value. |
|
| 148 |
/// \pre \c item must not be stored in the heap. |
|
| 149 |
void push (const Item& item, const Prio& value) {
|
|
| 150 |
int i=iimap[item]; |
|
| 151 |
if ( i < 0 ) {
|
|
| 152 |
int s=container.size(); |
|
| 153 |
iimap.set( item, s ); |
|
| 154 |
store st; |
|
| 155 |
st.name=item; |
|
| 156 |
container.push_back(st); |
|
| 157 |
i=s; |
|
| 158 |
} else {
|
|
| 159 |
container[i].parent=container[i].child=-1; |
|
| 160 |
container[i].degree=0; |
|
| 161 |
container[i].in=true; |
|
| 162 |
container[i].marked=false; |
|
| 163 |
} |
|
| 164 |
|
|
| 165 |
if ( num_items ) {
|
|
| 166 |
container[container[minimum].right_neighbor].left_neighbor=i; |
|
| 167 |
container[i].right_neighbor=container[minimum].right_neighbor; |
|
| 168 |
container[minimum].right_neighbor=i; |
|
| 169 |
container[i].left_neighbor=minimum; |
|
| 170 |
if ( comp( value, container[minimum].prio) ) minimum=i; |
|
| 171 |
} else {
|
|
| 172 |
container[i].right_neighbor=container[i].left_neighbor=i; |
|
| 173 |
minimum=i; |
|
| 174 |
} |
|
| 175 |
container[i].prio=value; |
|
| 176 |
++num_items; |
|
| 177 |
} |
|
| 178 |
|
|
| 179 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
| 180 |
/// |
|
| 181 |
/// This method returns the item with minimum priority relative to \c |
|
| 182 |
/// Compare. |
|
| 183 |
/// \pre The heap must be nonempty. |
|
| 184 |
Item top() const { return container[minimum].name; }
|
|
| 185 |
|
|
| 186 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
| 187 |
/// |
|
| 188 |
/// It returns the minimum priority relative to \c Compare. |
|
| 189 |
/// \pre The heap must be nonempty. |
|
| 190 |
const Prio& prio() const { return container[minimum].prio; }
|
|
| 191 |
|
|
| 192 |
/// \brief Returns the priority of \c item. |
|
| 193 |
/// |
|
| 194 |
/// It returns the priority of \c item. |
|
| 195 |
/// \pre \c item must be in the heap. |
|
| 196 |
const Prio& operator[](const Item& item) const {
|
|
| 197 |
return container[iimap[item]].prio; |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
| 201 |
/// |
|
| 202 |
/// This method deletes the item with minimum priority relative to \c |
|
| 203 |
/// Compare from the heap. |
|
| 204 |
/// \pre The heap must be non-empty. |
|
| 205 |
void pop() {
|
|
| 206 |
/*The first case is that there are only one root.*/ |
|
| 207 |
if ( container[minimum].left_neighbor==minimum ) {
|
|
| 208 |
container[minimum].in=false; |
|
| 209 |
if ( container[minimum].degree!=0 ) {
|
|
| 210 |
makeroot(container[minimum].child); |
|
| 211 |
minimum=container[minimum].child; |
|
| 212 |
balance(); |
|
| 213 |
} |
|
| 214 |
} else {
|
|
| 215 |
int right=container[minimum].right_neighbor; |
|
| 216 |
unlace(minimum); |
|
| 217 |
container[minimum].in=false; |
|
| 218 |
if ( container[minimum].degree > 0 ) {
|
|
| 219 |
int left=container[minimum].left_neighbor; |
|
| 220 |
int child=container[minimum].child; |
|
| 221 |
int last_child=container[child].left_neighbor; |
|
| 222 |
|
|
| 223 |
makeroot(child); |
|
| 224 |
|
|
| 225 |
container[left].right_neighbor=child; |
|
| 226 |
container[child].left_neighbor=left; |
|
| 227 |
container[right].left_neighbor=last_child; |
|
| 228 |
container[last_child].right_neighbor=right; |
|
| 229 |
} |
|
| 230 |
minimum=right; |
|
| 231 |
balance(); |
|
| 232 |
} // the case where there are more roots |
|
| 233 |
--num_items; |
|
| 234 |
} |
|
| 235 |
|
|
| 236 |
/// \brief Deletes \c item from the heap. |
|
| 237 |
/// |
|
| 238 |
/// This method deletes \c item from the heap, if \c item was already |
|
| 239 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
| 240 |
void erase (const Item& item) {
|
|
| 241 |
int i=iimap[item]; |
|
| 242 |
|
|
| 243 |
if ( i >= 0 && container[i].in ) {
|
|
| 244 |
if ( container[i].parent!=-1 ) {
|
|
| 245 |
int p=container[i].parent; |
|
| 246 |
cut(i,p); |
|
| 247 |
cascade(p); |
|
| 248 |
} |
|
| 249 |
minimum=i; //As if its prio would be -infinity |
|
| 250 |
pop(); |
|
| 251 |
} |
|
| 252 |
} |
|
| 253 |
|
|
| 254 |
/// \brief Decreases the priority of \c item to \c value. |
|
| 255 |
/// |
|
| 256 |
/// This method decreases the priority of \c item to \c value. |
|
| 257 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
| 258 |
/// value relative to \c Compare. |
|
| 259 |
void decrease (Item item, const Prio& value) {
|
|
| 260 |
int i=iimap[item]; |
|
| 261 |
container[i].prio=value; |
|
| 262 |
int p=container[i].parent; |
|
| 263 |
|
|
| 264 |
if ( p!=-1 && comp(value, container[p].prio) ) {
|
|
| 265 |
cut(i,p); |
|
| 266 |
cascade(p); |
|
| 267 |
} |
|
| 268 |
if ( comp(value, container[minimum].prio) ) minimum=i; |
|
| 269 |
} |
|
| 270 |
|
|
| 271 |
/// \brief Increases the priority of \c item to \c value. |
|
| 272 |
/// |
|
| 273 |
/// This method sets the priority of \c item to \c value. Though |
|
| 274 |
/// there is no precondition on the priority of \c item, this |
|
| 275 |
/// method should be used only if it is indeed necessary to increase |
|
| 276 |
/// (relative to \c Compare) the priority of \c item, because this |
|
| 277 |
/// method is inefficient. |
|
| 278 |
void increase (Item item, const Prio& value) {
|
|
| 279 |
erase(item); |
|
| 280 |
push(item, value); |
|
| 281 |
} |
|
| 282 |
|
|
| 283 |
|
|
| 284 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
| 285 |
/// been in the heap. |
|
| 286 |
/// |
|
| 287 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 288 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 289 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 290 |
/// get back to the heap again. |
|
| 291 |
State state(const Item &item) const {
|
|
| 292 |
int i=iimap[item]; |
|
| 293 |
if( i>=0 ) {
|
|
| 294 |
if ( container[i].in ) i=0; |
|
| 295 |
else i=-2; |
|
| 296 |
} |
|
| 297 |
return State(i); |
|
| 298 |
} |
|
| 299 |
|
|
| 300 |
/// \brief Sets the state of the \c item in the heap. |
|
| 301 |
/// |
|
| 302 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 303 |
/// manually clear the heap when it is important to achive the |
|
| 304 |
/// better time complexity. |
|
| 305 |
/// \param i The item. |
|
| 306 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 307 |
void state(const Item& i, State st) {
|
|
| 308 |
switch (st) {
|
|
| 309 |
case POST_HEAP: |
|
| 310 |
case PRE_HEAP: |
|
| 311 |
if (state(i) == IN_HEAP) {
|
|
| 312 |
erase(i); |
|
| 313 |
} |
|
| 314 |
iimap[i] = st; |
|
| 315 |
break; |
|
| 316 |
case IN_HEAP: |
|
| 317 |
break; |
|
| 318 |
} |
|
| 319 |
} |
|
| 320 |
|
|
| 321 |
private: |
|
| 322 |
|
|
| 323 |
void balance() {
|
|
| 324 |
|
|
| 325 |
int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1; |
|
| 326 |
|
|
| 327 |
std::vector<int> A(maxdeg,-1); |
|
| 328 |
|
|
| 329 |
/* |
|
| 330 |
*Recall that now minimum does not point to the minimum prio element. |
|
| 331 |
*We set minimum to this during balance(). |
|
| 332 |
*/ |
|
| 333 |
int anchor=container[minimum].left_neighbor; |
|
| 334 |
int next=minimum; |
|
| 335 |
bool end=false; |
|
| 336 |
|
|
| 337 |
do {
|
|
| 338 |
int active=next; |
|
| 339 |
if ( anchor==active ) end=true; |
|
| 340 |
int d=container[active].degree; |
|
| 341 |
next=container[active].right_neighbor; |
|
| 342 |
|
|
| 343 |
while (A[d]!=-1) {
|
|
| 344 |
if( comp(container[active].prio, container[A[d]].prio) ) {
|
|
| 345 |
fuse(active,A[d]); |
|
| 346 |
} else {
|
|
| 347 |
fuse(A[d],active); |
|
| 348 |
active=A[d]; |
|
| 349 |
} |
|
| 350 |
A[d]=-1; |
|
| 351 |
++d; |
|
| 352 |
} |
|
| 353 |
A[d]=active; |
|
| 354 |
} while ( !end ); |
|
| 355 |
|
|
| 356 |
|
|
| 357 |
while ( container[minimum].parent >=0 ) |
|
| 358 |
minimum=container[minimum].parent; |
|
| 359 |
int s=minimum; |
|
| 360 |
int m=minimum; |
|
| 361 |
do {
|
|
| 362 |
if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; |
|
| 363 |
s=container[s].right_neighbor; |
|
| 364 |
} while ( s != m ); |
|
| 365 |
} |
|
| 366 |
|
|
| 367 |
void makeroot(int c) {
|
|
| 368 |
int s=c; |
|
| 369 |
do {
|
|
| 370 |
container[s].parent=-1; |
|
| 371 |
s=container[s].right_neighbor; |
|
| 372 |
} while ( s != c ); |
|
| 373 |
} |
|
| 374 |
|
|
| 375 |
void cut(int a, int b) {
|
|
| 376 |
/* |
|
| 377 |
*Replacing a from the children of b. |
|
| 378 |
*/ |
|
| 379 |
--container[b].degree; |
|
| 380 |
|
|
| 381 |
if ( container[b].degree !=0 ) {
|
|
| 382 |
int child=container[b].child; |
|
| 383 |
if ( child==a ) |
|
| 384 |
container[b].child=container[child].right_neighbor; |
|
| 385 |
unlace(a); |
|
| 386 |
} |
|
| 387 |
|
|
| 388 |
|
|
| 389 |
/*Lacing a to the roots.*/ |
|
| 390 |
int right=container[minimum].right_neighbor; |
|
| 391 |
container[minimum].right_neighbor=a; |
|
| 392 |
container[a].left_neighbor=minimum; |
|
| 393 |
container[a].right_neighbor=right; |
|
| 394 |
container[right].left_neighbor=a; |
|
| 395 |
|
|
| 396 |
container[a].parent=-1; |
|
| 397 |
container[a].marked=false; |
|
| 398 |
} |
|
| 399 |
|
|
| 400 |
void cascade(int a) {
|
|
| 401 |
if ( container[a].parent!=-1 ) {
|
|
| 402 |
int p=container[a].parent; |
|
| 403 |
|
|
| 404 |
if ( container[a].marked==false ) container[a].marked=true; |
|
| 405 |
else {
|
|
| 406 |
cut(a,p); |
|
| 407 |
cascade(p); |
|
| 408 |
} |
|
| 409 |
} |
|
| 410 |
} |
|
| 411 |
|
|
| 412 |
void fuse(int a, int b) {
|
|
| 413 |
unlace(b); |
|
| 414 |
|
|
| 415 |
/*Lacing b under a.*/ |
|
| 416 |
container[b].parent=a; |
|
| 417 |
|
|
| 418 |
if (container[a].degree==0) {
|
|
| 419 |
container[b].left_neighbor=b; |
|
| 420 |
container[b].right_neighbor=b; |
|
| 421 |
container[a].child=b; |
|
| 422 |
} else {
|
|
| 423 |
int child=container[a].child; |
|
| 424 |
int last_child=container[child].left_neighbor; |
|
| 425 |
container[child].left_neighbor=b; |
|
| 426 |
container[b].right_neighbor=child; |
|
| 427 |
container[last_child].right_neighbor=b; |
|
| 428 |
container[b].left_neighbor=last_child; |
|
| 429 |
} |
|
| 430 |
|
|
| 431 |
++container[a].degree; |
|
| 432 |
|
|
| 433 |
container[b].marked=false; |
|
| 434 |
} |
|
| 435 |
|
|
| 436 |
/* |
|
| 437 |
*It is invoked only if a has siblings. |
|
| 438 |
*/ |
|
| 439 |
void unlace(int a) {
|
|
| 440 |
int leftn=container[a].left_neighbor; |
|
| 441 |
int rightn=container[a].right_neighbor; |
|
| 442 |
container[leftn].right_neighbor=rightn; |
|
| 443 |
container[rightn].left_neighbor=leftn; |
|
| 444 |
} |
|
| 445 |
|
|
| 446 |
|
|
| 447 |
class store {
|
|
| 448 |
friend class FibHeap; |
|
| 449 |
|
|
| 450 |
Item name; |
|
| 451 |
int parent; |
|
| 452 |
int left_neighbor; |
|
| 453 |
int right_neighbor; |
|
| 454 |
int child; |
|
| 455 |
int degree; |
|
| 456 |
bool marked; |
|
| 457 |
bool in; |
|
| 458 |
Prio prio; |
|
| 459 |
|
|
| 460 |
store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
|
| 461 |
}; |
|
| 462 |
}; |
|
| 463 |
|
|
| 464 |
} //namespace lemon |
|
| 465 |
|
|
| 466 |
#endif //LEMON_FIB_HEAP_H |
|
| 467 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_RADIX_HEAP_H |
|
| 20 |
#define LEMON_RADIX_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup auxdat |
|
| 23 |
///\file |
|
| 24 |
///\brief Radix Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <lemon/error.h> |
|
| 28 |
|
|
| 29 |
namespace lemon {
|
|
| 30 |
|
|
| 31 |
|
|
| 32 |
/// \ingroup auxdata |
|
| 33 |
/// |
|
| 34 |
/// \brief A Radix Heap implementation. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e radix \e heap data structure. A \e heap |
|
| 37 |
/// is a data structure for storing items with specified values called \e |
|
| 38 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 39 |
/// efficient. This heap type can store only items with \e int priority. |
|
| 40 |
/// In a heap one can change the priority of an item, add or erase an |
|
| 41 |
/// item, but the priority cannot be decreased under the last removed |
|
| 42 |
/// item's priority. |
|
| 43 |
/// |
|
| 44 |
/// \param _ItemIntMap A read and writable Item int map, used internally |
|
| 45 |
/// to handle the cross references. |
|
| 46 |
/// |
|
| 47 |
/// \see BinHeap |
|
| 48 |
/// \see Dijkstra |
|
| 49 |
template <typename _ItemIntMap> |
|
| 50 |
class RadixHeap {
|
|
| 51 |
|
|
| 52 |
public: |
|
| 53 |
typedef typename _ItemIntMap::Key Item; |
|
| 54 |
typedef int Prio; |
|
| 55 |
typedef _ItemIntMap ItemIntMap; |
|
| 56 |
|
|
| 57 |
/// \brief Exception thrown by RadixHeap. |
|
| 58 |
/// |
|
| 59 |
/// This Exception is thrown when a smaller priority |
|
| 60 |
/// is inserted into the \e RadixHeap then the last time erased. |
|
| 61 |
/// \see RadixHeap |
|
| 62 |
|
|
| 63 |
class UnderFlowPriorityError : public Exception {
|
|
| 64 |
public: |
|
| 65 |
virtual const char* what() const throw() {
|
|
| 66 |
return "lemon::RadixHeap::UnderFlowPriorityError"; |
|
| 67 |
} |
|
| 68 |
}; |
|
| 69 |
|
|
| 70 |
/// \brief Type to represent the items states. |
|
| 71 |
/// |
|
| 72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 74 |
/// heap's point of view, but may be useful to the user. |
|
| 75 |
/// |
|
| 76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 78 |
enum State {
|
|
| 79 |
IN_HEAP = 0, |
|
| 80 |
PRE_HEAP = -1, |
|
| 81 |
POST_HEAP = -2 |
|
| 82 |
}; |
|
| 83 |
|
|
| 84 |
private: |
|
| 85 |
|
|
| 86 |
struct RadixItem {
|
|
| 87 |
int prev, next, box; |
|
| 88 |
Item item; |
|
| 89 |
int prio; |
|
| 90 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
|
|
| 91 |
}; |
|
| 92 |
|
|
| 93 |
struct RadixBox {
|
|
| 94 |
int first; |
|
| 95 |
int min, size; |
|
| 96 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
|
|
| 97 |
}; |
|
| 98 |
|
|
| 99 |
std::vector<RadixItem> data; |
|
| 100 |
std::vector<RadixBox> boxes; |
|
| 101 |
|
|
| 102 |
ItemIntMap &iim; |
|
| 103 |
|
|
| 104 |
|
|
| 105 |
public: |
|
| 106 |
/// \brief The constructor. |
|
| 107 |
/// |
|
| 108 |
/// The constructor. |
|
| 109 |
/// |
|
| 110 |
/// \param _iim It should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 113 |
/// |
|
| 114 |
/// \param minimal The initial minimal value of the heap. |
|
| 115 |
/// \param capacity It determines the initial capacity of the heap. |
|
| 116 |
RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0) |
|
| 117 |
: iim(_iim) {
|
|
| 118 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 120 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
|
|
| 121 |
extend(); |
|
| 122 |
} |
|
| 123 |
} |
|
| 124 |
|
|
| 125 |
/// The number of items stored in the heap. |
|
| 126 |
/// |
|
| 127 |
/// \brief Returns the number of items stored in the heap. |
|
| 128 |
int size() const { return data.size(); }
|
|
| 129 |
/// \brief Checks if the heap stores no items. |
|
| 130 |
/// |
|
| 131 |
/// Returns \c true if and only if the heap stores no items. |
|
| 132 |
bool empty() const { return data.empty(); }
|
|
| 133 |
|
|
| 134 |
/// \brief Make empty this heap. |
|
| 135 |
/// |
|
| 136 |
/// Make empty this heap. It does not change the cross reference |
|
| 137 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 138 |
/// should first clear the heap and after that you should set the |
|
| 139 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 140 |
void clear(int minimal = 0, int capacity = 0) {
|
|
| 141 |
data.clear(); boxes.clear(); |
|
| 142 |
boxes.push_back(RadixBox(minimal, 1)); |
|
| 143 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
|
| 144 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
|
|
| 145 |
extend(); |
|
| 146 |
} |
|
| 147 |
} |
|
| 148 |
|
|
| 149 |
private: |
|
| 150 |
|
|
| 151 |
bool upper(int box, Prio pr) {
|
|
| 152 |
return pr < boxes[box].min; |
|
| 153 |
} |
|
| 154 |
|
|
| 155 |
bool lower(int box, Prio pr) {
|
|
| 156 |
return pr >= boxes[box].min + boxes[box].size; |
|
| 157 |
} |
|
| 158 |
|
|
| 159 |
/// \brief Remove item from the box list. |
|
| 160 |
void remove(int index) {
|
|
| 161 |
if (data[index].prev >= 0) {
|
|
| 162 |
data[data[index].prev].next = data[index].next; |
|
| 163 |
} else {
|
|
| 164 |
boxes[data[index].box].first = data[index].next; |
|
| 165 |
} |
|
| 166 |
if (data[index].next >= 0) {
|
|
| 167 |
data[data[index].next].prev = data[index].prev; |
|
| 168 |
} |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
/// \brief Insert item into the box list. |
|
| 172 |
void insert(int box, int index) {
|
|
| 173 |
if (boxes[box].first == -1) {
|
|
| 174 |
boxes[box].first = index; |
|
| 175 |
data[index].next = data[index].prev = -1; |
|
| 176 |
} else {
|
|
| 177 |
data[index].next = boxes[box].first; |
|
| 178 |
data[boxes[box].first].prev = index; |
|
| 179 |
data[index].prev = -1; |
|
| 180 |
boxes[box].first = index; |
|
| 181 |
} |
|
| 182 |
data[index].box = box; |
|
| 183 |
} |
|
| 184 |
|
|
| 185 |
/// \brief Add a new box to the box list. |
|
| 186 |
void extend() {
|
|
| 187 |
int min = boxes.back().min + boxes.back().size; |
|
| 188 |
int bs = 2 * boxes.back().size; |
|
| 189 |
boxes.push_back(RadixBox(min, bs)); |
|
| 190 |
} |
|
| 191 |
|
|
| 192 |
/// \brief Move an item up into the proper box. |
|
| 193 |
void bubble_up(int index) {
|
|
| 194 |
if (!lower(data[index].box, data[index].prio)) return; |
|
| 195 |
remove(index); |
|
| 196 |
int box = findUp(data[index].box, data[index].prio); |
|
| 197 |
insert(box, index); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Find up the proper box for the item with the given prio. |
|
| 201 |
int findUp(int start, int pr) {
|
|
| 202 |
while (lower(start, pr)) {
|
|
| 203 |
if (++start == int(boxes.size())) {
|
|
| 204 |
extend(); |
|
| 205 |
} |
|
| 206 |
} |
|
| 207 |
return start; |
|
| 208 |
} |
|
| 209 |
|
|
| 210 |
/// \brief Move an item down into the proper box. |
|
| 211 |
void bubble_down(int index) {
|
|
| 212 |
if (!upper(data[index].box, data[index].prio)) return; |
|
| 213 |
remove(index); |
|
| 214 |
int box = findDown(data[index].box, data[index].prio); |
|
| 215 |
insert(box, index); |
|
| 216 |
} |
|
| 217 |
|
|
| 218 |
/// \brief Find up the proper box for the item with the given prio. |
|
| 219 |
int findDown(int start, int pr) {
|
|
| 220 |
while (upper(start, pr)) {
|
|
| 221 |
if (--start < 0) throw UnderFlowPriorityError(); |
|
| 222 |
} |
|
| 223 |
return start; |
|
| 224 |
} |
|
| 225 |
|
|
| 226 |
/// \brief Find the first not empty box. |
|
| 227 |
int findFirst() {
|
|
| 228 |
int first = 0; |
|
| 229 |
while (boxes[first].first == -1) ++first; |
|
| 230 |
return first; |
|
| 231 |
} |
|
| 232 |
|
|
| 233 |
/// \brief Gives back the minimal prio of the box. |
|
| 234 |
int minValue(int box) {
|
|
| 235 |
int min = data[boxes[box].first].prio; |
|
| 236 |
for (int k = boxes[box].first; k != -1; k = data[k].next) {
|
|
| 237 |
if (data[k].prio < min) min = data[k].prio; |
|
| 238 |
} |
|
| 239 |
return min; |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
/// \brief Rearrange the items of the heap and makes the |
|
| 243 |
/// first box not empty. |
|
| 244 |
void moveDown() {
|
|
| 245 |
int box = findFirst(); |
|
| 246 |
if (box == 0) return; |
|
| 247 |
int min = minValue(box); |
|
| 248 |
for (int i = 0; i <= box; ++i) {
|
|
| 249 |
boxes[i].min = min; |
|
| 250 |
min += boxes[i].size; |
|
| 251 |
} |
|
| 252 |
int curr = boxes[box].first, next; |
|
| 253 |
while (curr != -1) {
|
|
| 254 |
next = data[curr].next; |
|
| 255 |
bubble_down(curr); |
|
| 256 |
curr = next; |
|
| 257 |
} |
|
| 258 |
} |
|
| 259 |
|
|
| 260 |
void relocate_last(int index) {
|
|
| 261 |
if (index != int(data.size()) - 1) {
|
|
| 262 |
data[index] = data.back(); |
|
| 263 |
if (data[index].prev != -1) {
|
|
| 264 |
data[data[index].prev].next = index; |
|
| 265 |
} else {
|
|
| 266 |
boxes[data[index].box].first = index; |
|
| 267 |
} |
|
| 268 |
if (data[index].next != -1) {
|
|
| 269 |
data[data[index].next].prev = index; |
|
| 270 |
} |
|
| 271 |
iim[data[index].item] = index; |
|
| 272 |
} |
|
| 273 |
data.pop_back(); |
|
| 274 |
} |
|
| 275 |
|
|
| 276 |
public: |
|
| 277 |
|
|
| 278 |
/// \brief Insert an item into the heap with the given priority. |
|
| 279 |
/// |
|
| 280 |
/// Adds \c i to the heap with priority \c p. |
|
| 281 |
/// \param i The item to insert. |
|
| 282 |
/// \param p The priority of the item. |
|
| 283 |
void push(const Item &i, const Prio &p) {
|
|
| 284 |
int n = data.size(); |
|
| 285 |
iim.set(i, n); |
|
| 286 |
data.push_back(RadixItem(i, p)); |
|
| 287 |
while (lower(boxes.size() - 1, p)) {
|
|
| 288 |
extend(); |
|
| 289 |
} |
|
| 290 |
int box = findDown(boxes.size() - 1, p); |
|
| 291 |
insert(box, n); |
|
| 292 |
} |
|
| 293 |
|
|
| 294 |
/// \brief Returns the item with minimum priority. |
|
| 295 |
/// |
|
| 296 |
/// This method returns the item with minimum priority. |
|
| 297 |
/// \pre The heap must be nonempty. |
|
| 298 |
Item top() const {
|
|
| 299 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
| 300 |
return data[boxes[0].first].item; |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \brief Returns the minimum priority. |
|
| 304 |
/// |
|
| 305 |
/// It returns the minimum priority. |
|
| 306 |
/// \pre The heap must be nonempty. |
|
| 307 |
Prio prio() const {
|
|
| 308 |
const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown(); |
|
| 309 |
return data[boxes[0].first].prio; |
|
| 310 |
} |
|
| 311 |
|
|
| 312 |
/// \brief Deletes the item with minimum priority. |
|
| 313 |
/// |
|
| 314 |
/// This method deletes the item with minimum priority. |
|
| 315 |
/// \pre The heap must be non-empty. |
|
| 316 |
void pop() {
|
|
| 317 |
moveDown(); |
|
| 318 |
int index = boxes[0].first; |
|
| 319 |
iim[data[index].item] = POST_HEAP; |
|
| 320 |
remove(index); |
|
| 321 |
relocate_last(index); |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
/// \brief Deletes \c i from the heap. |
|
| 325 |
/// |
|
| 326 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 327 |
/// already stored in the heap. |
|
| 328 |
/// \param i The item to erase. |
|
| 329 |
void erase(const Item &i) {
|
|
| 330 |
int index = iim[i]; |
|
| 331 |
iim[i] = POST_HEAP; |
|
| 332 |
remove(index); |
|
| 333 |
relocate_last(index); |
|
| 334 |
} |
|
| 335 |
|
|
| 336 |
/// \brief Returns the priority of \c i. |
|
| 337 |
/// |
|
| 338 |
/// This function returns the priority of item \c i. |
|
| 339 |
/// \pre \c i must be in the heap. |
|
| 340 |
/// \param i The item. |
|
| 341 |
Prio operator[](const Item &i) const {
|
|
| 342 |
int idx = iim[i]; |
|
| 343 |
return data[idx].prio; |
|
| 344 |
} |
|
| 345 |
|
|
| 346 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 347 |
/// if \c i was already there. |
|
| 348 |
/// |
|
| 349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 351 |
/// It may throw an \e UnderFlowPriorityException. |
|
| 352 |
/// \param i The item. |
|
| 353 |
/// \param p The priority. |
|
| 354 |
void set(const Item &i, const Prio &p) {
|
|
| 355 |
int idx = iim[i]; |
|
| 356 |
if( idx < 0 ) {
|
|
| 357 |
push(i, p); |
|
| 358 |
} |
|
| 359 |
else if( p >= data[idx].prio ) {
|
|
| 360 |
data[idx].prio = p; |
|
| 361 |
bubble_up(idx); |
|
| 362 |
} else {
|
|
| 363 |
data[idx].prio = p; |
|
| 364 |
bubble_down(idx); |
|
| 365 |
} |
|
| 366 |
} |
|
| 367 |
|
|
| 368 |
|
|
| 369 |
/// \brief Decreases the priority of \c i to \c p. |
|
| 370 |
/// |
|
| 371 |
/// This method decreases the priority of item \c i to \c p. |
|
| 372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
|
| 373 |
/// \c should be greater or equal to the last removed item's priority. |
|
| 374 |
/// \param i The item. |
|
| 375 |
/// \param p The priority. |
|
| 376 |
void decrease(const Item &i, const Prio &p) {
|
|
| 377 |
int idx = iim[i]; |
|
| 378 |
data[idx].prio = p; |
|
| 379 |
bubble_down(idx); |
|
| 380 |
} |
|
| 381 |
|
|
| 382 |
/// \brief Increases the priority of \c i to \c p. |
|
| 383 |
/// |
|
| 384 |
/// This method sets the priority of item \c i to \c p. |
|
| 385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
|
| 386 |
/// \param i The item. |
|
| 387 |
/// \param p The priority. |
|
| 388 |
void increase(const Item &i, const Prio &p) {
|
|
| 389 |
int idx = iim[i]; |
|
| 390 |
data[idx].prio = p; |
|
| 391 |
bubble_up(idx); |
|
| 392 |
} |
|
| 393 |
|
|
| 394 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 395 |
/// never been in the heap. |
|
| 396 |
/// |
|
| 397 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 399 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 400 |
/// get back to the heap again. |
|
| 401 |
/// \param i The item. |
|
| 402 |
State state(const Item &i) const {
|
|
| 403 |
int s = iim[i]; |
|
| 404 |
if( s >= 0 ) s = 0; |
|
| 405 |
return State(s); |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
/// \brief Sets the state of the \c item in the heap. |
|
| 409 |
/// |
|
| 410 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 411 |
/// manually clear the heap when it is important to achive the |
|
| 412 |
/// better time complexity. |
|
| 413 |
/// \param i The item. |
|
| 414 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 415 |
void state(const Item& i, State st) {
|
|
| 416 |
switch (st) {
|
|
| 417 |
case POST_HEAP: |
|
| 418 |
case PRE_HEAP: |
|
| 419 |
if (state(i) == IN_HEAP) {
|
|
| 420 |
erase(i); |
|
| 421 |
} |
|
| 422 |
iim[i] = st; |
|
| 423 |
break; |
|
| 424 |
case IN_HEAP: |
|
| 425 |
break; |
|
| 426 |
} |
|
| 427 |
} |
|
| 428 |
|
|
| 429 |
}; // class RadixHeap |
|
| 430 |
|
|
| 431 |
} // namespace lemon |
|
| 432 |
|
|
| 433 |
#endif // LEMON_RADIX_HEAP_H |
| ... | ... |
@@ -56,12 +56,13 @@ |
| 56 | 56 |
lemon_HEADERS += \ |
| 57 | 57 |
lemon/adaptors.h \ |
| 58 | 58 |
lemon/arg_parser.h \ |
| 59 | 59 |
lemon/assert.h \ |
| 60 | 60 |
lemon/bfs.h \ |
| 61 | 61 |
lemon/bin_heap.h \ |
| 62 |
lemon/bucket_heap.h \ |
|
| 62 | 63 |
lemon/cbc.h \ |
| 63 | 64 |
lemon/circulation.h \ |
| 64 | 65 |
lemon/clp.h \ |
| 65 | 66 |
lemon/color.h \ |
| 66 | 67 |
lemon/concept_check.h \ |
| 67 | 68 |
lemon/connectivity.h \ |
| ... | ... |
@@ -73,12 +74,13 @@ |
| 73 | 74 |
lemon/dim2.h \ |
| 74 | 75 |
lemon/dimacs.h \ |
| 75 | 76 |
lemon/edge_set.h \ |
| 76 | 77 |
lemon/elevator.h \ |
| 77 | 78 |
lemon/error.h \ |
| 78 | 79 |
lemon/euler.h \ |
| 80 |
lemon/fib_heap.h \ |
|
| 79 | 81 |
lemon/full_graph.h \ |
| 80 | 82 |
lemon/glpk.h \ |
| 81 | 83 |
lemon/gomory_hu.h \ |
| 82 | 84 |
lemon/graph_to_eps.h \ |
| 83 | 85 |
lemon/grid_graph.h \ |
| 84 | 86 |
lemon/hypercube_graph.h \ |
| ... | ... |
@@ -96,12 +98,13 @@ |
| 96 | 98 |
lemon/math.h \ |
| 97 | 99 |
lemon/min_cost_arborescence.h \ |
| 98 | 100 |
lemon/nauty_reader.h \ |
| 99 | 101 |
lemon/network_simplex.h \ |
| 100 | 102 |
lemon/path.h \ |
| 101 | 103 |
lemon/preflow.h \ |
| 104 |
lemon/radix_heap.h \ |
|
| 102 | 105 |
lemon/radix_sort.h \ |
| 103 | 106 |
lemon/random.h \ |
| 104 | 107 |
lemon/smart_graph.h \ |
| 105 | 108 |
lemon/soplex.h \ |
| 106 | 109 |
lemon/suurballe.h \ |
| 107 | 110 |
lemon/time_measure.h \ |
| ... | ... |
@@ -28,12 +28,15 @@ |
| 28 | 28 |
|
| 29 | 29 |
#include <lemon/lgf_reader.h> |
| 30 | 30 |
#include <lemon/dijkstra.h> |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
|
| 33 | 33 |
#include <lemon/bin_heap.h> |
| 34 |
#include <lemon/fib_heap.h> |
|
| 35 |
#include <lemon/radix_heap.h> |
|
| 36 |
#include <lemon/bucket_heap.h> |
|
| 34 | 37 |
|
| 35 | 38 |
#include "test_tools.h" |
| 36 | 39 |
|
| 37 | 40 |
using namespace lemon; |
| 38 | 41 |
using namespace lemon::concepts; |
| 39 | 42 |
|
| ... | ... |
@@ -180,8 +183,42 @@ |
| 180 | 183 |
|
| 181 | 184 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
| 182 | 185 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
| 183 | 186 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
| 184 | 187 |
} |
| 185 | 188 |
|
| 189 |
{
|
|
| 190 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
|
| 191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 192 |
heapSortTest<IntHeap>(); |
|
| 193 |
heapIncreaseTest<IntHeap>(); |
|
| 194 |
|
|
| 195 |
typedef FibHeap<Prio, IntNodeMap > NodeHeap; |
|
| 196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
{
|
|
| 201 |
typedef RadixHeap<ItemIntMap> IntHeap; |
|
| 202 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 203 |
heapSortTest<IntHeap>(); |
|
| 204 |
heapIncreaseTest<IntHeap>(); |
|
| 205 |
|
|
| 206 |
typedef RadixHeap<IntNodeMap > NodeHeap; |
|
| 207 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 208 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 209 |
} |
|
| 210 |
|
|
| 211 |
{
|
|
| 212 |
typedef BucketHeap<ItemIntMap> IntHeap; |
|
| 213 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
| 214 |
heapSortTest<IntHeap>(); |
|
| 215 |
heapIncreaseTest<IntHeap>(); |
|
| 216 |
|
|
| 217 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
|
| 218 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
| 219 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
| 220 |
} |
|
| 221 |
|
|
| 222 |
|
|
| 186 | 223 |
return 0; |
| 187 | 224 |
} |
0 comments (0 inline)