... | ... |
@@ -33,49 +33,50 @@ |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 44 |
/// This algorithm is a specialized version of the linear programming |
45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
46 | 46 |
/// It is one of the most efficient solution methods. |
47 | 47 |
/// |
48 | 48 |
/// In general this class is the fastest implementation available |
49 | 49 |
/// in LEMON for the minimum cost flow problem. |
50 | 50 |
/// |
51 | 51 |
/// \tparam GR The digraph type the algorithm runs on. |
52 | 52 |
/// \tparam F The value type used for flow amounts, capacity bounds |
53 | 53 |
/// and supply values in the algorithm. By default it is \c int. |
54 | 54 |
/// \tparam C The value type used for costs and potentials in the |
55 | 55 |
/// algorithm. By default it is the same as \c F. |
56 | 56 |
/// |
57 |
/// \warning Both value types must be signed |
|
57 |
/// \warning Both value types must be signed and all input data must |
|
58 |
/// be integer. |
|
58 | 59 |
/// |
59 | 60 |
/// \note %NetworkSimplex provides five different pivot rule |
60 | 61 |
/// implementations. For more information see \ref PivotRule. |
61 | 62 |
template <typename GR, typename F = int, typename C = F> |
62 | 63 |
class NetworkSimplex |
63 | 64 |
{ |
64 | 65 |
public: |
65 | 66 |
|
66 | 67 |
/// The flow type of the algorithm |
67 | 68 |
typedef F Flow; |
68 | 69 |
/// The cost type of the algorithm |
69 | 70 |
typedef C Cost; |
70 | 71 |
/// The type of the flow map |
71 | 72 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
72 | 73 |
/// The type of the potential map |
73 | 74 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
74 | 75 |
|
75 | 76 |
public: |
76 | 77 |
|
77 | 78 |
/// \brief Enum type for selecting the pivot rule. |
78 | 79 |
/// |
79 | 80 |
/// Enum type for selecting the pivot rule for the \ref run() |
80 | 81 |
/// function. |
81 | 82 |
/// |
... | ... |
@@ -1023,115 +1024,129 @@ |
1023 | 1024 |
_supply[_node_id[_ptarget]] = -_pstflow; |
1024 | 1025 |
} |
1025 | 1026 |
if (!valid_supply) return false; |
1026 | 1027 |
|
1027 | 1028 |
// Set data for the artificial root node |
1028 | 1029 |
_root = _node_num; |
1029 | 1030 |
_parent[_root] = -1; |
1030 | 1031 |
_pred[_root] = -1; |
1031 | 1032 |
_thread[_root] = 0; |
1032 | 1033 |
_rev_thread[0] = _root; |
1033 | 1034 |
_succ_num[_root] = all_node_num; |
1034 | 1035 |
_last_succ[_root] = _root - 1; |
1035 | 1036 |
_supply[_root] = 0; |
1036 | 1037 |
_pi[_root] = 0; |
1037 | 1038 |
|
1038 | 1039 |
// Store the arcs in a mixed order |
1039 | 1040 |
int k = std::max(int(sqrt(_arc_num)), 10); |
1040 | 1041 |
int i = 0; |
1041 | 1042 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1042 | 1043 |
_arc_ref[i] = e; |
1043 | 1044 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1044 | 1045 |
} |
1045 | 1046 |
|
1046 | 1047 |
// Initialize arc maps |
1047 |
Flow max_cap = std::numeric_limits<Flow>::max(); |
|
1048 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
1048 |
Flow inf_cap = |
|
1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
1050 |
std::numeric_limits<Flow>::infinity() : |
|
1051 |
std::numeric_limits<Flow>::max(); |
|
1049 | 1052 |
if (_pupper && _pcost) { |
1050 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1051 | 1054 |
Arc e = _arc_ref[i]; |
1052 | 1055 |
_source[i] = _node_id[_graph.source(e)]; |
1053 | 1056 |
_target[i] = _node_id[_graph.target(e)]; |
1054 | 1057 |
_cap[i] = (*_pupper)[e]; |
1055 | 1058 |
_cost[i] = (*_pcost)[e]; |
1056 | 1059 |
_flow[i] = 0; |
1057 | 1060 |
_state[i] = STATE_LOWER; |
1058 | 1061 |
} |
1059 | 1062 |
} else { |
1060 | 1063 |
for (int i = 0; i != _arc_num; ++i) { |
1061 | 1064 |
Arc e = _arc_ref[i]; |
1062 | 1065 |
_source[i] = _node_id[_graph.source(e)]; |
1063 | 1066 |
_target[i] = _node_id[_graph.target(e)]; |
1064 | 1067 |
_flow[i] = 0; |
1065 | 1068 |
_state[i] = STATE_LOWER; |
1066 | 1069 |
} |
1067 | 1070 |
if (_pupper) { |
1068 | 1071 |
for (int i = 0; i != _arc_num; ++i) |
1069 | 1072 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
1070 | 1073 |
} else { |
1071 | 1074 |
for (int i = 0; i != _arc_num; ++i) |
1072 |
_cap[i] = |
|
1075 |
_cap[i] = inf_cap; |
|
1073 | 1076 |
} |
1074 | 1077 |
if (_pcost) { |
1075 | 1078 |
for (int i = 0; i != _arc_num; ++i) |
1076 | 1079 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
1077 | 1080 |
} else { |
1078 | 1081 |
for (int i = 0; i != _arc_num; ++i) |
1079 | 1082 |
_cost[i] = 1; |
1080 | 1083 |
} |
1081 | 1084 |
} |
1085 |
|
|
1086 |
// Initialize artifical cost |
|
1087 |
Cost art_cost; |
|
1088 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1090 |
} else { |
|
1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1092 |
for (int i = 0; i != _arc_num; ++i) { |
|
1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1094 |
} |
|
1095 |
art_cost = (art_cost + 1) * _node_num; |
|
1096 |
} |
|
1082 | 1097 |
|
1083 | 1098 |
// Remove non-zero lower bounds |
1084 | 1099 |
if (_plower) { |
1085 | 1100 |
for (int i = 0; i != _arc_num; ++i) { |
1086 | 1101 |
Flow c = (*_plower)[_arc_ref[i]]; |
1087 | 1102 |
if (c != 0) { |
1088 | 1103 |
_cap[i] -= c; |
1089 | 1104 |
_supply[_source[i]] -= c; |
1090 | 1105 |
_supply[_target[i]] += c; |
1091 | 1106 |
} |
1092 | 1107 |
} |
1093 | 1108 |
} |
1094 | 1109 |
|
1095 | 1110 |
// Add artificial arcs and initialize the spanning tree data structure |
1096 | 1111 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1097 | 1112 |
_thread[u] = u + 1; |
1098 | 1113 |
_rev_thread[u + 1] = u; |
1099 | 1114 |
_succ_num[u] = 1; |
1100 | 1115 |
_last_succ[u] = u; |
1101 | 1116 |
_parent[u] = _root; |
1102 | 1117 |
_pred[u] = e; |
1103 |
_cost[e] = max_cost; |
|
1104 |
_cap[e] = max_cap; |
|
1118 |
_cost[e] = art_cost; |
|
1119 |
_cap[e] = inf_cap; |
|
1105 | 1120 |
_state[e] = STATE_TREE; |
1106 | 1121 |
if (_supply[u] >= 0) { |
1107 | 1122 |
_flow[e] = _supply[u]; |
1108 | 1123 |
_forward[u] = true; |
1109 |
_pi[u] = - |
|
1124 |
_pi[u] = -art_cost; |
|
1110 | 1125 |
} else { |
1111 | 1126 |
_flow[e] = -_supply[u]; |
1112 | 1127 |
_forward[u] = false; |
1113 |
_pi[u] = |
|
1128 |
_pi[u] = art_cost; |
|
1114 | 1129 |
} |
1115 | 1130 |
} |
1116 | 1131 |
|
1117 | 1132 |
return true; |
1118 | 1133 |
} |
1119 | 1134 |
|
1120 | 1135 |
// Find the join node |
1121 | 1136 |
void findJoinNode() { |
1122 | 1137 |
int u = _source[in_arc]; |
1123 | 1138 |
int v = _target[in_arc]; |
1124 | 1139 |
while (u != v) { |
1125 | 1140 |
if (_succ_num[u] < _succ_num[v]) { |
1126 | 1141 |
u = _parent[u]; |
1127 | 1142 |
} else { |
1128 | 1143 |
v = _parent[v]; |
1129 | 1144 |
} |
1130 | 1145 |
} |
1131 | 1146 |
join = u; |
1132 | 1147 |
} |
1133 | 1148 |
|
1134 | 1149 |
// Find the leaving arc of the cycle and returns true if the |
1135 | 1150 |
// leaving arc is not the same as the entering arc |
1136 | 1151 |
bool findLeavingArc() { |
1137 | 1152 |
// Initialize first and second nodes according to the direction |
... | ... |
@@ -1306,64 +1321,52 @@ |
1306 | 1321 |
_last_succ[u] = old_rev_thread; |
1307 | 1322 |
} |
1308 | 1323 |
} else { |
1309 | 1324 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1310 | 1325 |
u = _parent[u]) { |
1311 | 1326 |
_last_succ[u] = _last_succ[u_out]; |
1312 | 1327 |
} |
1313 | 1328 |
} |
1314 | 1329 |
|
1315 | 1330 |
// Update _succ_num from v_in to join |
1316 | 1331 |
for (u = v_in; u != join; u = _parent[u]) { |
1317 | 1332 |
_succ_num[u] += old_succ_num; |
1318 | 1333 |
} |
1319 | 1334 |
// Update _succ_num from v_out to join |
1320 | 1335 |
for (u = v_out; u != join; u = _parent[u]) { |
1321 | 1336 |
_succ_num[u] -= old_succ_num; |
1322 | 1337 |
} |
1323 | 1338 |
} |
1324 | 1339 |
|
1325 | 1340 |
// Update potentials |
1326 | 1341 |
void updatePotential() { |
1327 | 1342 |
Cost sigma = _forward[u_in] ? |
1328 | 1343 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1329 | 1344 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1330 |
if (_succ_num[u_in] > _node_num / 2) { |
|
1331 |
// Update in the upper subtree (which contains the root) |
|
1332 |
int before = _rev_thread[u_in]; |
|
1333 |
int after = _thread[_last_succ[u_in]]; |
|
1334 |
_thread[before] = after; |
|
1335 |
_pi[_root] -= sigma; |
|
1336 |
for (int u = _thread[_root]; u != _root; u = _thread[u]) { |
|
1337 |
_pi[u] -= sigma; |
|
1338 |
} |
|
1339 |
_thread[before] = u_in; |
|
1340 |
} else { |
|
1341 |
// Update in the lower subtree (which has been moved) |
|
1342 |
int end = _thread[_last_succ[u_in]]; |
|
1343 |
for (int u = u_in; u != end; u = _thread[u]) { |
|
1344 |
_pi[u] += sigma; |
|
1345 |
} |
|
1345 |
// Update potentials in the subtree, which has been moved |
|
1346 |
int end = _thread[_last_succ[u_in]]; |
|
1347 |
for (int u = u_in; u != end; u = _thread[u]) { |
|
1348 |
_pi[u] += sigma; |
|
1346 | 1349 |
} |
1347 | 1350 |
} |
1348 | 1351 |
|
1349 | 1352 |
// Execute the algorithm |
1350 | 1353 |
bool start(PivotRule pivot_rule) { |
1351 | 1354 |
// Select the pivot rule implementation |
1352 | 1355 |
switch (pivot_rule) { |
1353 | 1356 |
case FIRST_ELIGIBLE: |
1354 | 1357 |
return start<FirstEligiblePivotRule>(); |
1355 | 1358 |
case BEST_ELIGIBLE: |
1356 | 1359 |
return start<BestEligiblePivotRule>(); |
1357 | 1360 |
case BLOCK_SEARCH: |
1358 | 1361 |
return start<BlockSearchPivotRule>(); |
1359 | 1362 |
case CANDIDATE_LIST: |
1360 | 1363 |
return start<CandidateListPivotRule>(); |
1361 | 1364 |
case ALTERING_LIST: |
1362 | 1365 |
return start<AlteringListPivotRule>(); |
1363 | 1366 |
} |
1364 | 1367 |
return false; |
1365 | 1368 |
} |
1366 | 1369 |
|
1367 | 1370 |
template <typename PivotRuleImpl> |
1368 | 1371 |
bool start() { |
1369 | 1372 |
PivotRuleImpl pivot(*this); |
0 comments (0 inline)