0
4
0
10
10
203
244
| ... | ... |
@@ -352,17 +352,17 @@ |
| 352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 353 | 353 |
in a network with capacity constraints (lower and upper bounds) |
| 354 | 354 |
and arc costs. |
| 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
| 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
|
|
| 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$,
|
|
| 356 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and
|
|
| 357 | 357 |
upper bounds for the flow values on the arcs, for which |
| 358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
| 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
|
|
| 360 |
|
|
| 358 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
| 359 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow
|
|
| 360 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
|
|
| 361 | 361 |
signed supply values of the nodes. |
| 362 | 362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 363 | 363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 364 | 364 |
\f$-sup(u)\f$ demand. |
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}
|
|
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution
|
|
| 366 | 366 |
of the following optimization problem. |
| 367 | 367 |
|
| 368 | 368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| ... | ... |
@@ -404,7 +404,7 @@ |
| 404 | 404 |
|
| 405 | 405 |
The dual solution of the minimum cost flow problem is represented by node |
| 406 | 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}
|
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem
|
|
| 408 | 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
|
| 409 | 409 |
node potentials the following \e complementary \e slackness optimality |
| 410 | 410 |
conditions hold. |
| ... | ... |
@@ -413,15 +413,15 @@ |
| 413 | 413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 414 | 414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 415 | 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 416 |
- For all \f$u\in V\f$: |
|
| 416 |
- For all \f$u\in V\f$ nodes: |
|
| 417 | 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 418 | 418 |
then \f$\pi(u)=0\f$. |
| 419 | 419 |
|
| 420 | 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 421 |
\f$uv\in A\f$ with respect to the |
|
| 421 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
| 422 | 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 423 | 423 |
|
| 424 |
All algorithms provide dual solution (node potentials) as well |
|
| 424 |
All algorithms provide dual solution (node potentials) as well, |
|
| 425 | 425 |
if an optimal flow is found. |
| 426 | 426 |
|
| 427 | 427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
| ... | ... |
@@ -30,9 +30,6 @@ |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 |
#include <lemon/maps.h> |
|
| 34 |
#include <lemon/circulation.h> |
|
| 35 |
#include <lemon/adaptors.h> |
|
| 36 | 33 |
|
| 37 | 34 |
namespace lemon {
|
| 38 | 35 |
|
| ... | ... |
@@ -50,8 +47,13 @@ |
| 50 | 47 |
/// |
| 51 | 48 |
/// In general this class is the fastest implementation available |
| 52 | 49 |
/// in LEMON for the minimum cost flow problem. |
| 53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
| 54 |
/// constraints. For more information see \ref ProblemType. |
|
| 50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
| 51 |
/// constraints. For more information see \ref SupplyType. |
|
| 52 |
/// |
|
| 53 |
/// Most of the parameters of the problem (except for the digraph) |
|
| 54 |
/// can be given using separate functions, and the algorithm can be |
|
| 55 |
/// executed using the \ref run() function. If some parameters are not |
|
| 56 |
/// specified, then default values will be used. |
|
| 55 | 57 |
/// |
| 56 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
| 57 | 59 |
/// \tparam F The value type used for flow amounts, capacity bounds |
| ... | ... |
@@ -88,11 +90,80 @@ |
| 88 | 90 |
|
| 89 | 91 |
public: |
| 90 | 92 |
|
| 91 |
/// \brief |
|
| 93 |
/// \brief Problem type constants for the \c run() function. |
|
| 92 | 94 |
/// |
| 93 |
/// Enum type |
|
| 95 |
/// Enum type containing the problem type constants that can be |
|
| 96 |
/// returned by the \ref run() function of the algorithm. |
|
| 97 |
enum ProblemType {
|
|
| 98 |
/// The problem has no feasible solution (flow). |
|
| 99 |
INFEASIBLE, |
|
| 100 |
/// The problem has optimal solution (i.e. it is feasible and |
|
| 101 |
/// bounded), and the algorithm has found optimal flow and node |
|
| 102 |
/// potentials (primal and dual solutions). |
|
| 103 |
OPTIMAL, |
|
| 104 |
/// The objective function of the problem is unbounded, i.e. |
|
| 105 |
/// there is a directed cycle having negative total cost and |
|
| 106 |
/// infinite upper bound. |
|
| 107 |
UNBOUNDED |
|
| 108 |
}; |
|
| 109 |
|
|
| 110 |
/// \brief Constants for selecting the type of the supply constraints. |
|
| 111 |
/// |
|
| 112 |
/// Enum type containing constants for selecting the supply type, |
|
| 113 |
/// i.e. the direction of the inequalities in the supply/demand |
|
| 114 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|
| 115 |
/// |
|
| 116 |
/// The default supply type is \c GEQ, since this form is supported |
|
| 117 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 118 |
/// algorithm, as well. |
|
| 119 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
| 94 | 120 |
/// function. |
| 95 | 121 |
/// |
| 122 |
/// Note that the equality form is a special case of both supply types. |
|
| 123 |
enum SupplyType {
|
|
| 124 |
|
|
| 125 |
/// This option means that there are <em>"greater or equal"</em> |
|
| 126 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 127 |
/// formulation of the problem is the following. |
|
| 128 |
/** |
|
| 129 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 130 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 131 |
sup(u) \quad \forall u\in V \f] |
|
| 132 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 133 |
*/ |
|
| 134 |
/// It means that the total demand must be greater or equal to the |
|
| 135 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 136 |
/// negative) and all the supplies have to be carried out from |
|
| 137 |
/// the supply nodes, but there could be demands that are not |
|
| 138 |
/// satisfied. |
|
| 139 |
GEQ, |
|
| 140 |
/// It is just an alias for the \c GEQ option. |
|
| 141 |
CARRY_SUPPLIES = GEQ, |
|
| 142 |
|
|
| 143 |
/// This option means that there are <em>"less or equal"</em> |
|
| 144 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 145 |
/// formulation of the problem is the following. |
|
| 146 |
/** |
|
| 147 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 148 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 149 |
sup(u) \quad \forall u\in V \f] |
|
| 150 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 151 |
*/ |
|
| 152 |
/// It means that the total demand must be less or equal to the |
|
| 153 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 154 |
/// positive) and all the demands have to be satisfied, but there |
|
| 155 |
/// could be supplies that are not carried out from the supply |
|
| 156 |
/// nodes. |
|
| 157 |
LEQ, |
|
| 158 |
/// It is just an alias for the \c LEQ option. |
|
| 159 |
SATISFY_DEMANDS = LEQ |
|
| 160 |
}; |
|
| 161 |
|
|
| 162 |
/// \brief Constants for selecting the pivot rule. |
|
| 163 |
/// |
|
| 164 |
/// Enum type containing constants for selecting the pivot rule for |
|
| 165 |
/// the \ref run() function. |
|
| 166 |
/// |
|
| 96 | 167 |
/// \ref NetworkSimplex provides five different pivot rule |
| 97 | 168 |
/// implementations that significantly affect the running time |
| 98 | 169 |
/// of the algorithm. |
| ... | ... |
@@ -131,58 +202,6 @@ |
| 131 | 202 |
ALTERING_LIST |
| 132 | 203 |
}; |
| 133 | 204 |
|
| 134 |
/// \brief Enum type for selecting the problem type. |
|
| 135 |
/// |
|
| 136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
| 137 |
/// the inequalities in the supply/demand constraints of the |
|
| 138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
| 139 |
/// |
|
| 140 |
/// The default problem type is \c GEQ, since this form is supported |
|
| 141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 142 |
/// algorithm as well. |
|
| 143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
| 144 |
/// function. |
|
| 145 |
/// |
|
| 146 |
/// Note that the equality form is a special case of both problem type. |
|
| 147 |
enum ProblemType {
|
|
| 148 |
|
|
| 149 |
/// This option means that there are "<em>greater or equal</em>" |
|
| 150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 151 |
/// problem is the following. |
|
| 152 |
/** |
|
| 153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 155 |
sup(u) \quad \forall u\in V \f] |
|
| 156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 157 |
*/ |
|
| 158 |
/// It means that the total demand must be greater or equal to the |
|
| 159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 160 |
/// negative) and all the supplies have to be carried out from |
|
| 161 |
/// the supply nodes, but there could be demands that are not |
|
| 162 |
/// satisfied. |
|
| 163 |
GEQ, |
|
| 164 |
/// It is just an alias for the \c GEQ option. |
|
| 165 |
CARRY_SUPPLIES = GEQ, |
|
| 166 |
|
|
| 167 |
/// This option means that there are "<em>less or equal</em>" |
|
| 168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 169 |
/// problem is the following. |
|
| 170 |
/** |
|
| 171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 173 |
sup(u) \quad \forall u\in V \f] |
|
| 174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 175 |
*/ |
|
| 176 |
/// It means that the total demand must be less or equal to the |
|
| 177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 178 |
/// positive) and all the demands have to be satisfied, but there |
|
| 179 |
/// could be supplies that are not carried out from the supply |
|
| 180 |
/// nodes. |
|
| 181 |
LEQ, |
|
| 182 |
/// It is just an alias for the \c LEQ option. |
|
| 183 |
SATISFY_DEMANDS = LEQ |
|
| 184 |
}; |
|
| 185 |
|
|
| 186 | 205 |
private: |
| 187 | 206 |
|
| 188 | 207 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| ... | ... |
@@ -220,7 +239,9 @@ |
| 220 | 239 |
bool _pstsup; |
| 221 | 240 |
Node _psource, _ptarget; |
| 222 | 241 |
Flow _pstflow; |
| 223 |
|
|
| 242 |
SupplyType _stype; |
|
| 243 |
|
|
| 244 |
Flow _sum_supply; |
|
| 224 | 245 |
|
| 225 | 246 |
// Result maps |
| 226 | 247 |
FlowMap *_flow_map; |
| ... | ... |
@@ -259,6 +280,15 @@ |
| 259 | 280 |
int stem, par_stem, new_stem; |
| 260 | 281 |
Flow delta; |
| 261 | 282 |
|
| 283 |
public: |
|
| 284 |
|
|
| 285 |
/// \brief Constant for infinite upper bounds (capacities). |
|
| 286 |
/// |
|
| 287 |
/// Constant for infinite upper bounds (capacities). |
|
| 288 |
/// It is \c std::numeric_limits<Flow>::infinity() if available, |
|
| 289 |
/// \c std::numeric_limits<Flow>::max() otherwise. |
|
| 290 |
const Flow INF; |
|
| 291 |
|
|
| 262 | 292 |
private: |
| 263 | 293 |
|
| 264 | 294 |
// Implementation of the First Eligible pivot rule |
| ... | ... |
@@ -661,17 +691,19 @@ |
| 661 | 691 |
NetworkSimplex(const GR& graph) : |
| 662 | 692 |
_graph(graph), |
| 663 | 693 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
| 664 |
_psupply(NULL), _pstsup(false), |
|
| 694 |
_psupply(NULL), _pstsup(false), _stype(GEQ), |
|
| 665 | 695 |
_flow_map(NULL), _potential_map(NULL), |
| 666 | 696 |
_local_flow(false), _local_potential(false), |
| 667 |
_node_id(graph) |
|
| 697 |
_node_id(graph), |
|
| 698 |
INF(std::numeric_limits<Flow>::has_infinity ? |
|
| 699 |
std::numeric_limits<Flow>::infinity() : |
|
| 700 |
std::numeric_limits<Flow>::max()) |
|
| 668 | 701 |
{
|
| 669 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
| 670 |
std::numeric_limits<Flow>::is_signed, |
|
| 671 |
"The flow type of NetworkSimplex must be signed integer"); |
|
| 672 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
| 673 |
std::numeric_limits<Cost>::is_signed, |
|
| 674 |
"The cost type of NetworkSimplex must be signed integer"); |
|
| 702 |
// Check the value types |
|
| 703 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_signed, |
|
| 704 |
"The flow type of NetworkSimplex must be signed"); |
|
| 705 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
| 706 |
"The cost type of NetworkSimplex must be signed"); |
|
| 675 | 707 |
} |
| 676 | 708 |
|
| 677 | 709 |
/// Destructor. |
| ... | ... |
@@ -689,17 +721,16 @@ |
| 689 | 721 |
/// \brief Set the lower bounds on the arcs. |
| 690 | 722 |
/// |
| 691 | 723 |
/// This function sets the lower bounds on the arcs. |
| 692 |
/// If neither this function nor \ref boundMaps() is used before |
|
| 693 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 694 |
/// |
|
| 724 |
/// If it is not used before calling \ref run(), the lower bounds |
|
| 725 |
/// will be set to zero on all arcs. |
|
| 695 | 726 |
/// |
| 696 | 727 |
/// \param map An arc map storing the lower bounds. |
| 697 | 728 |
/// Its \c Value type must be convertible to the \c Flow type |
| 698 | 729 |
/// of the algorithm. |
| 699 | 730 |
/// |
| 700 | 731 |
/// \return <tt>(*this)</tt> |
| 701 |
template <typename LOWER> |
|
| 702 |
NetworkSimplex& lowerMap(const LOWER& map) {
|
|
| 732 |
template <typename LowerMap> |
|
| 733 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
|
| 703 | 734 |
delete _plower; |
| 704 | 735 |
_plower = new FlowArcMap(_graph); |
| 705 | 736 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| ... | ... |
@@ -711,18 +742,17 @@ |
| 711 | 742 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 712 | 743 |
/// |
| 713 | 744 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 714 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 715 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 716 |
/// the upper bounds (capacities) will be set to |
|
| 717 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
| 745 |
/// If it is not used before calling \ref run(), the upper bounds |
|
| 746 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
| 747 |
/// unbounded from above on each arc). |
|
| 718 | 748 |
/// |
| 719 | 749 |
/// \param map An arc map storing the upper bounds. |
| 720 | 750 |
/// Its \c Value type must be convertible to the \c Flow type |
| 721 | 751 |
/// of the algorithm. |
| 722 | 752 |
/// |
| 723 | 753 |
/// \return <tt>(*this)</tt> |
| 724 |
template<typename UPPER> |
|
| 725 |
NetworkSimplex& upperMap(const UPPER& map) {
|
|
| 754 |
template<typename UpperMap> |
|
| 755 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
|
| 726 | 756 |
delete _pupper; |
| 727 | 757 |
_pupper = new FlowArcMap(_graph); |
| 728 | 758 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| ... | ... |
@@ -731,43 +761,6 @@ |
| 731 | 761 |
return *this; |
| 732 | 762 |
} |
| 733 | 763 |
|
| 734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 735 |
/// |
|
| 736 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 737 |
/// It is just an alias for \ref upperMap(). |
|
| 738 |
/// |
|
| 739 |
/// \return <tt>(*this)</tt> |
|
| 740 |
template<typename CAP> |
|
| 741 |
NetworkSimplex& capacityMap(const CAP& map) {
|
|
| 742 |
return upperMap(map); |
|
| 743 |
} |
|
| 744 |
|
|
| 745 |
/// \brief Set the lower and upper bounds on the arcs. |
|
| 746 |
/// |
|
| 747 |
/// This function sets the lower and upper bounds on the arcs. |
|
| 748 |
/// If neither this function nor \ref lowerMap() is used before |
|
| 749 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 750 |
/// on all arcs. |
|
| 751 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 752 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 753 |
/// the upper bounds (capacities) will be set to |
|
| 754 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
| 755 |
/// |
|
| 756 |
/// \param lower An arc map storing the lower bounds. |
|
| 757 |
/// \param upper An arc map storing the upper bounds. |
|
| 758 |
/// |
|
| 759 |
/// The \c Value type of the maps must be convertible to the |
|
| 760 |
/// \c Flow type of the algorithm. |
|
| 761 |
/// |
|
| 762 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
| 763 |
/// and \ref upperMap() separately. |
|
| 764 |
/// |
|
| 765 |
/// \return <tt>(*this)</tt> |
|
| 766 |
template <typename LOWER, typename UPPER> |
|
| 767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
|
|
| 768 |
return lowerMap(lower).upperMap(upper); |
|
| 769 |
} |
|
| 770 |
|
|
| 771 | 764 |
/// \brief Set the costs of the arcs. |
| 772 | 765 |
/// |
| 773 | 766 |
/// This function sets the costs of the arcs. |
| ... | ... |
@@ -779,8 +772,8 @@ |
| 779 | 772 |
/// of the algorithm. |
| 780 | 773 |
/// |
| 781 | 774 |
/// \return <tt>(*this)</tt> |
| 782 |
template<typename COST> |
|
| 783 |
NetworkSimplex& costMap(const COST& map) {
|
|
| 775 |
template<typename CostMap> |
|
| 776 |
NetworkSimplex& costMap(const CostMap& map) {
|
|
| 784 | 777 |
delete _pcost; |
| 785 | 778 |
_pcost = new CostArcMap(_graph); |
| 786 | 779 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| ... | ... |
@@ -801,8 +794,8 @@ |
| 801 | 794 |
/// of the algorithm. |
| 802 | 795 |
/// |
| 803 | 796 |
/// \return <tt>(*this)</tt> |
| 804 |
template<typename SUP> |
|
| 805 |
NetworkSimplex& supplyMap(const SUP& map) {
|
|
| 797 |
template<typename SupplyMap> |
|
| 798 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
|
| 806 | 799 |
delete _psupply; |
| 807 | 800 |
_pstsup = false; |
| 808 | 801 |
_psupply = new FlowNodeMap(_graph); |
| ... | ... |
@@ -820,6 +813,10 @@ |
| 820 | 813 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 821 | 814 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 822 | 815 |
/// |
| 816 |
/// Using this function has the same effect as using \ref supplyMap() |
|
| 817 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
| 818 |
/// assigned to \c t and all other nodes have zero supply value. |
|
| 819 |
/// |
|
| 823 | 820 |
/// \param s The source node. |
| 824 | 821 |
/// \param t The target node. |
| 825 | 822 |
/// \param k The required amount of flow from node \c s to node \c t |
| ... | ... |
@@ -836,17 +833,17 @@ |
| 836 | 833 |
return *this; |
| 837 | 834 |
} |
| 838 | 835 |
|
| 839 |
/// \brief Set the |
|
| 836 |
/// \brief Set the type of the supply constraints. |
|
| 840 | 837 |
/// |
| 841 |
/// This function sets the problem type for the algorithm. |
|
| 842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
| 838 |
/// This function sets the type of the supply/demand constraints. |
|
| 839 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
|
| 843 | 840 |
/// type will be used. |
| 844 | 841 |
/// |
| 845 |
/// For more information see \ref |
|
| 842 |
/// For more information see \ref SupplyType. |
|
| 846 | 843 |
/// |
| 847 | 844 |
/// \return <tt>(*this)</tt> |
| 848 |
NetworkSimplex& problemType(ProblemType problem_type) {
|
|
| 849 |
_ptype = problem_type; |
|
| 845 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
|
| 846 |
_stype = supply_type; |
|
| 850 | 847 |
return *this; |
| 851 | 848 |
} |
| 852 | 849 |
|
| ... | ... |
@@ -896,13 +893,12 @@ |
| 896 | 893 |
/// |
| 897 | 894 |
/// This function runs the algorithm. |
| 898 | 895 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
| 900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 901 |
/// \ref |
|
| 896 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 897 |
/// \ref supplyType(), \ref flowMap() and \ref potentialMap(). |
|
| 902 | 898 |
/// For example, |
| 903 | 899 |
/// \code |
| 904 | 900 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 905 |
/// ns. |
|
| 901 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 906 | 902 |
/// .supplyMap(sup).run(); |
| 907 | 903 |
/// \endcode |
| 908 | 904 |
/// |
| ... | ... |
@@ -914,17 +910,25 @@ |
| 914 | 910 |
/// \param pivot_rule The pivot rule that will be used during the |
| 915 | 911 |
/// algorithm. For more information see \ref PivotRule. |
| 916 | 912 |
/// |
| 917 |
/// \return \c true if a feasible flow can be found. |
|
| 918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
|
| 919 |
|
|
| 913 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
| 914 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
| 915 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
| 916 |
/// optimal flow and node potentials (primal and dual solutions), |
|
| 917 |
/// \n \c UNBOUNDED if the objective function of the problem is |
|
| 918 |
/// unbounded, i.e. there is a directed cycle having negative total |
|
| 919 |
/// cost and infinite upper bound. |
|
| 920 |
/// |
|
| 921 |
/// \see ProblemType, PivotRule |
|
| 922 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
|
| 923 |
if (!init()) return INFEASIBLE; |
|
| 924 |
return start(pivot_rule); |
|
| 920 | 925 |
} |
| 921 | 926 |
|
| 922 | 927 |
/// \brief Reset all the parameters that have been given before. |
| 923 | 928 |
/// |
| 924 | 929 |
/// This function resets all the paramaters that have been given |
| 925 | 930 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
| 927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
| 931 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(), |
|
| 928 | 932 |
/// \ref flowMap() and \ref potentialMap(). |
| 929 | 933 |
/// |
| 930 | 934 |
/// It is useful for multiple run() calls. If this function is not |
| ... | ... |
@@ -936,7 +940,7 @@ |
| 936 | 940 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 937 | 941 |
/// |
| 938 | 942 |
/// // First run |
| 939 |
/// ns.lowerMap(lower). |
|
| 943 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 940 | 944 |
/// .supplyMap(sup).run(); |
| 941 | 945 |
/// |
| 942 | 946 |
/// // Run again with modified cost map (reset() is not called, |
| ... | ... |
@@ -947,7 +951,7 @@ |
| 947 | 951 |
/// // Run again from scratch using reset() |
| 948 | 952 |
/// // (the lower bounds will be set to zero on all arcs) |
| 949 | 953 |
/// ns.reset(); |
| 950 |
/// ns. |
|
| 954 |
/// ns.upperMap(capacity).costMap(cost) |
|
| 951 | 955 |
/// .supplyMap(sup).run(); |
| 952 | 956 |
/// \endcode |
| 953 | 957 |
/// |
| ... | ... |
@@ -962,7 +966,7 @@ |
| 962 | 966 |
_pcost = NULL; |
| 963 | 967 |
_psupply = NULL; |
| 964 | 968 |
_pstsup = false; |
| 965 |
|
|
| 969 |
_stype = GEQ; |
|
| 966 | 970 |
if (_local_flow) delete _flow_map; |
| 967 | 971 |
if (_local_potential) delete _potential_map; |
| 968 | 972 |
_flow_map = NULL; |
| ... | ... |
@@ -985,7 +989,7 @@ |
| 985 | 989 |
/// \brief Return the total cost of the found flow. |
| 986 | 990 |
/// |
| 987 | 991 |
/// This function returns the total cost of the found flow. |
| 988 |
/// |
|
| 992 |
/// Its complexity is O(e). |
|
| 989 | 993 |
/// |
| 990 | 994 |
/// \note The return type of the function can be specified as a |
| 991 | 995 |
/// template parameter. For example, |
| ... | ... |
@@ -997,9 +1001,9 @@ |
| 997 | 1001 |
/// function. |
| 998 | 1002 |
/// |
| 999 | 1003 |
/// \pre \ref run() must be called before using this function. |
| 1000 |
template <typename Num> |
|
| 1001 |
Num totalCost() const {
|
|
| 1002 |
|
|
| 1004 |
template <typename Value> |
|
| 1005 |
Value totalCost() const {
|
|
| 1006 |
Value c = 0; |
|
| 1003 | 1007 |
if (_pcost) {
|
| 1004 | 1008 |
for (ArcIt e(_graph); e != INVALID; ++e) |
| 1005 | 1009 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
| ... | ... |
@@ -1050,7 +1054,7 @@ |
| 1050 | 1054 |
/// |
| 1051 | 1055 |
/// This function returns a const reference to a node map storing |
| 1052 | 1056 |
/// the found potentials, which form the dual solution of the |
| 1053 |
/// \ref min_cost_flow "minimum cost flow" |
|
| 1057 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
| 1054 | 1058 |
/// |
| 1055 | 1059 |
/// \pre \ref run() must be called before using this function. |
| 1056 | 1060 |
const PotentialMap& potentialMap() const {
|
| ... | ... |
@@ -1101,7 +1105,7 @@ |
| 1101 | 1105 |
|
| 1102 | 1106 |
// Initialize node related data |
| 1103 | 1107 |
bool valid_supply = true; |
| 1104 |
|
|
| 1108 |
_sum_supply = 0; |
|
| 1105 | 1109 |
if (!_pstsup && !_psupply) {
|
| 1106 | 1110 |
_pstsup = true; |
| 1107 | 1111 |
_psource = _ptarget = NodeIt(_graph); |
| ... | ... |
@@ -1112,10 +1116,10 @@ |
| 1112 | 1116 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 1113 | 1117 |
_node_id[n] = i; |
| 1114 | 1118 |
_supply[i] = (*_psupply)[n]; |
| 1115 |
|
|
| 1119 |
_sum_supply += _supply[i]; |
|
| 1116 | 1120 |
} |
| 1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
| 1118 |
(_ptype == LEQ && sum_supply >= 0); |
|
| 1121 |
valid_supply = (_stype == GEQ && _sum_supply <= 0) || |
|
| 1122 |
(_stype == LEQ && _sum_supply >= 0); |
|
| 1119 | 1123 |
} else {
|
| 1120 | 1124 |
int i = 0; |
| 1121 | 1125 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| ... | ... |
@@ -1127,92 +1131,18 @@ |
| 1127 | 1131 |
} |
| 1128 | 1132 |
if (!valid_supply) return false; |
| 1129 | 1133 |
|
| 1130 |
// Infinite capacity value |
|
| 1131 |
Flow inf_cap = |
|
| 1132 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1133 |
std::numeric_limits<Flow>::infinity() : |
|
| 1134 |
std::numeric_limits<Flow>::max(); |
|
| 1135 |
|
|
| 1136 | 1134 |
// Initialize artifical cost |
| 1137 |
Cost |
|
| 1135 |
Cost ART_COST; |
|
| 1138 | 1136 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1139 |
|
|
| 1137 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1140 | 1138 |
} else {
|
| 1141 |
|
|
| 1139 |
ART_COST = std::numeric_limits<Cost>::min(); |
|
| 1142 | 1140 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1143 |
if (_cost[i] > |
|
| 1141 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|
| 1144 | 1142 |
} |
| 1145 |
|
|
| 1143 |
ART_COST = (ART_COST + 1) * _node_num; |
|
| 1146 | 1144 |
} |
| 1147 | 1145 |
|
| 1148 |
// Run Circulation to check if a feasible solution exists |
|
| 1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
| 1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
| 1151 |
FlowNodeMap *csup = NULL; |
|
| 1152 |
bool local_csup = false; |
|
| 1153 |
if (_psupply) {
|
|
| 1154 |
csup = _psupply; |
|
| 1155 |
} else {
|
|
| 1156 |
csup = new FlowNodeMap(_graph, 0); |
|
| 1157 |
(*csup)[_psource] = _pstflow; |
|
| 1158 |
(*csup)[_ptarget] = -_pstflow; |
|
| 1159 |
local_csup = true; |
|
| 1160 |
} |
|
| 1161 |
bool circ_result = false; |
|
| 1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
|
|
| 1163 |
// GEQ problem type |
|
| 1164 |
if (_plower) {
|
|
| 1165 |
if (_pupper) {
|
|
| 1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
| 1167 |
circ(_graph, *_plower, *_pupper, *csup); |
|
| 1168 |
circ_result = circ.run(); |
|
| 1169 |
} else {
|
|
| 1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
| 1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
| 1172 |
circ_result = circ.run(); |
|
| 1173 |
} |
|
| 1174 |
} else {
|
|
| 1175 |
if (_pupper) {
|
|
| 1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
| 1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
| 1178 |
circ_result = circ.run(); |
|
| 1179 |
} else {
|
|
| 1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
| 1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
| 1182 |
circ_result = circ.run(); |
|
| 1183 |
} |
|
| 1184 |
} |
|
| 1185 |
} else {
|
|
| 1186 |
// LEQ problem type |
|
| 1187 |
typedef ReverseDigraph<const GR> RevGraph; |
|
| 1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
| 1189 |
RevGraph rgraph(_graph); |
|
| 1190 |
NegNodeMap neg_csup(*csup); |
|
| 1191 |
if (_plower) {
|
|
| 1192 |
if (_pupper) {
|
|
| 1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
| 1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
| 1195 |
circ_result = circ.run(); |
|
| 1196 |
} else {
|
|
| 1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
| 1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
| 1199 |
circ_result = circ.run(); |
|
| 1200 |
} |
|
| 1201 |
} else {
|
|
| 1202 |
if (_pupper) {
|
|
| 1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
| 1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
| 1205 |
circ_result = circ.run(); |
|
| 1206 |
} else {
|
|
| 1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
| 1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
| 1209 |
circ_result = circ.run(); |
|
| 1210 |
} |
|
| 1211 |
} |
|
| 1212 |
} |
|
| 1213 |
if (local_csup) delete csup; |
|
| 1214 |
if (!circ_result) return false; |
|
| 1215 |
|
|
| 1216 | 1146 |
// Set data for the artificial root node |
| 1217 | 1147 |
_root = _node_num; |
| 1218 | 1148 |
_parent[_root] = -1; |
| ... | ... |
@@ -1221,11 +1151,11 @@ |
| 1221 | 1151 |
_rev_thread[0] = _root; |
| 1222 | 1152 |
_succ_num[_root] = all_node_num; |
| 1223 | 1153 |
_last_succ[_root] = _root - 1; |
| 1224 |
_supply[_root] = -sum_supply; |
|
| 1225 |
if (sum_supply < 0) {
|
|
| 1226 |
|
|
| 1154 |
_supply[_root] = -_sum_supply; |
|
| 1155 |
if (_sum_supply < 0) {
|
|
| 1156 |
_pi[_root] = -ART_COST; |
|
| 1227 | 1157 |
} else {
|
| 1228 |
_pi[_root] = |
|
| 1158 |
_pi[_root] = ART_COST; |
|
| 1229 | 1159 |
} |
| 1230 | 1160 |
|
| 1231 | 1161 |
// Store the arcs in a mixed order |
| ... | ... |
@@ -1260,7 +1190,7 @@ |
| 1260 | 1190 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
| 1261 | 1191 |
} else {
|
| 1262 | 1192 |
for (int i = 0; i != _arc_num; ++i) |
| 1263 |
_cap[i] = |
|
| 1193 |
_cap[i] = INF; |
|
| 1264 | 1194 |
} |
| 1265 | 1195 |
if (_pcost) {
|
| 1266 | 1196 |
for (int i = 0; i != _arc_num; ++i) |
| ... | ... |
@@ -1275,8 +1205,17 @@ |
| 1275 | 1205 |
if (_plower) {
|
| 1276 | 1206 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1277 | 1207 |
Flow c = (*_plower)[_arc_ref[i]]; |
| 1278 |
if (c != 0) {
|
|
| 1279 |
_cap[i] -= c; |
|
| 1208 |
if (c > 0) {
|
|
| 1209 |
if (_cap[i] < INF) _cap[i] -= c; |
|
| 1210 |
_supply[_source[i]] -= c; |
|
| 1211 |
_supply[_target[i]] += c; |
|
| 1212 |
} |
|
| 1213 |
else if (c < 0) {
|
|
| 1214 |
if (_cap[i] < INF + c) {
|
|
| 1215 |
_cap[i] -= c; |
|
| 1216 |
} else {
|
|
| 1217 |
_cap[i] = INF; |
|
| 1218 |
} |
|
| 1280 | 1219 |
_supply[_source[i]] -= c; |
| 1281 | 1220 |
_supply[_target[i]] += c; |
| 1282 | 1221 |
} |
| ... | ... |
@@ -1291,17 +1230,17 @@ |
| 1291 | 1230 |
_last_succ[u] = u; |
| 1292 | 1231 |
_parent[u] = _root; |
| 1293 | 1232 |
_pred[u] = e; |
| 1294 |
_cost[e] = art_cost; |
|
| 1295 |
_cap[e] = inf_cap; |
|
| 1233 |
_cost[e] = ART_COST; |
|
| 1234 |
_cap[e] = INF; |
|
| 1296 | 1235 |
_state[e] = STATE_TREE; |
| 1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && |
|
| 1236 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
|
|
| 1298 | 1237 |
_flow[e] = _supply[u]; |
| 1299 | 1238 |
_forward[u] = true; |
| 1300 |
_pi[u] = - |
|
| 1239 |
_pi[u] = -ART_COST + _pi[_root]; |
|
| 1301 | 1240 |
} else {
|
| 1302 | 1241 |
_flow[e] = -_supply[u]; |
| 1303 | 1242 |
_forward[u] = false; |
| 1304 |
_pi[u] = |
|
| 1243 |
_pi[u] = ART_COST + _pi[_root]; |
|
| 1305 | 1244 |
} |
| 1306 | 1245 |
} |
| 1307 | 1246 |
|
| ... | ... |
@@ -1342,7 +1281,8 @@ |
| 1342 | 1281 |
// Search the cycle along the path form the first node to the root |
| 1343 | 1282 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1344 | 1283 |
e = _pred[u]; |
| 1345 |
d = _forward[u] ? |
|
| 1284 |
d = _forward[u] ? |
|
| 1285 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|
| 1346 | 1286 |
if (d < delta) {
|
| 1347 | 1287 |
delta = d; |
| 1348 | 1288 |
u_out = u; |
| ... | ... |
@@ -1352,7 +1292,8 @@ |
| 1352 | 1292 |
// Search the cycle along the path form the second node to the root |
| 1353 | 1293 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1354 | 1294 |
e = _pred[u]; |
| 1355 |
d = _forward[u] ? |
|
| 1295 |
d = _forward[u] ? |
|
| 1296 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
| 1356 | 1297 |
if (d <= delta) {
|
| 1357 | 1298 |
delta = d; |
| 1358 | 1299 |
u_out = u; |
| ... | ... |
@@ -1526,7 +1467,7 @@ |
| 1526 | 1467 |
} |
| 1527 | 1468 |
|
| 1528 | 1469 |
// Execute the algorithm |
| 1529 |
|
|
| 1470 |
ProblemType start(PivotRule pivot_rule) {
|
|
| 1530 | 1471 |
// Select the pivot rule implementation |
| 1531 | 1472 |
switch (pivot_rule) {
|
| 1532 | 1473 |
case FIRST_ELIGIBLE: |
| ... | ... |
@@ -1540,23 +1481,41 @@ |
| 1540 | 1481 |
case ALTERING_LIST: |
| 1541 | 1482 |
return start<AlteringListPivotRule>(); |
| 1542 | 1483 |
} |
| 1543 |
return |
|
| 1484 |
return INFEASIBLE; // avoid warning |
|
| 1544 | 1485 |
} |
| 1545 | 1486 |
|
| 1546 | 1487 |
template <typename PivotRuleImpl> |
| 1547 |
|
|
| 1488 |
ProblemType start() {
|
|
| 1548 | 1489 |
PivotRuleImpl pivot(*this); |
| 1549 | 1490 |
|
| 1550 | 1491 |
// Execute the Network Simplex algorithm |
| 1551 | 1492 |
while (pivot.findEnteringArc()) {
|
| 1552 | 1493 |
findJoinNode(); |
| 1553 | 1494 |
bool change = findLeavingArc(); |
| 1495 |
if (delta >= INF) return UNBOUNDED; |
|
| 1554 | 1496 |
changeFlow(change); |
| 1555 | 1497 |
if (change) {
|
| 1556 | 1498 |
updateTreeStructure(); |
| 1557 | 1499 |
updatePotential(); |
| 1558 | 1500 |
} |
| 1559 | 1501 |
} |
| 1502 |
|
|
| 1503 |
// Check feasibility |
|
| 1504 |
if (_sum_supply < 0) {
|
|
| 1505 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1506 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1507 |
} |
|
| 1508 |
} |
|
| 1509 |
else if (_sum_supply > 0) {
|
|
| 1510 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1511 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1512 |
} |
|
| 1513 |
} |
|
| 1514 |
else {
|
|
| 1515 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1516 |
if (_flow[e] != 0) return INFEASIBLE; |
|
| 1517 |
} |
|
| 1518 |
} |
|
| 1560 | 1519 |
|
| 1561 | 1520 |
// Copy flow values to _flow_map |
| 1562 | 1521 |
if (_plower) {
|
| ... | ... |
@@ -1574,7 +1533,7 @@ |
| 1574 | 1533 |
_potential_map->set(n, _pi[_node_id[n]]); |
| 1575 | 1534 |
} |
| 1576 | 1535 |
|
| 1577 |
return |
|
| 1536 |
return OPTIMAL; |
|
| 1578 | 1537 |
} |
| 1579 | 1538 |
|
| 1580 | 1539 |
}; //class NetworkSimplex |
| ... | ... |
@@ -18,6 +18,7 @@ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <fstream> |
| 21 |
#include <limits> |
|
| 21 | 22 |
|
| 22 | 23 |
#include <lemon/list_graph.h> |
| 23 | 24 |
#include <lemon/lgf_reader.h> |
| ... | ... |
@@ -33,50 +34,50 @@ |
| 33 | 34 |
|
| 34 | 35 |
char test_lgf[] = |
| 35 | 36 |
"@nodes\n" |
| 36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
| 37 |
" 1 20 27 0 20 30\n" |
|
| 38 |
" 2 -4 0 0 -8 -3\n" |
|
| 39 |
" 3 0 0 0 0 0\n" |
|
| 40 |
" 4 0 0 0 0 0\n" |
|
| 41 |
" 5 9 0 0 6 11\n" |
|
| 42 |
" 6 -6 0 0 -5 -6\n" |
|
| 43 |
" 7 0 0 0 0 0\n" |
|
| 44 |
" 8 0 0 0 0 3\n" |
|
| 45 |
" 9 3 0 0 0 0\n" |
|
| 46 |
" 10 -2 0 0 -7 -2\n" |
|
| 47 |
" 11 0 0 0 -10 0\n" |
|
| 48 |
" 12 -20 -27 0 -30 -20\n" |
|
| 49 |
"\n" |
|
| 37 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
|
| 38 |
" 1 20 27 0 30 20 30\n" |
|
| 39 |
" 2 -4 0 0 0 -8 -3\n" |
|
| 40 |
" 3 0 0 0 0 0 0\n" |
|
| 41 |
" 4 0 0 0 0 0 0\n" |
|
| 42 |
" 5 9 0 0 0 6 11\n" |
|
| 43 |
" 6 -6 0 0 0 -5 -6\n" |
|
| 44 |
" 7 0 0 0 0 0 0\n" |
|
| 45 |
" 8 0 0 0 0 0 3\n" |
|
| 46 |
" 9 3 0 0 0 0 0\n" |
|
| 47 |
" 10 -2 0 0 0 -7 -2\n" |
|
| 48 |
" 11 0 0 0 0 -10 0\n" |
|
| 49 |
" 12 -20 -27 0 -30 -30 -20\n" |
|
| 50 |
"\n" |
|
| 50 | 51 |
"@arcs\n" |
| 51 |
" cost cap low1 low2\n" |
|
| 52 |
" 1 2 70 11 0 8\n" |
|
| 53 |
" 1 3 150 3 0 1\n" |
|
| 54 |
" 1 4 80 15 0 2\n" |
|
| 55 |
" 2 8 80 12 0 0\n" |
|
| 56 |
" 3 5 140 5 0 3\n" |
|
| 57 |
" 4 6 60 10 0 1\n" |
|
| 58 |
" 4 7 80 2 0 0\n" |
|
| 59 |
" 4 8 110 3 0 0\n" |
|
| 60 |
" 5 7 60 14 0 0\n" |
|
| 61 |
" 5 11 120 12 0 0\n" |
|
| 62 |
" 6 3 0 3 0 0\n" |
|
| 63 |
" 6 9 140 4 0 0\n" |
|
| 64 |
" 6 10 90 8 0 0\n" |
|
| 65 |
" 7 1 30 5 0 0\n" |
|
| 66 |
" 8 12 60 16 0 4\n" |
|
| 67 |
" 9 12 50 6 0 0\n" |
|
| 68 |
"10 12 70 13 0 5\n" |
|
| 69 |
"10 2 100 7 0 0\n" |
|
| 70 |
"10 7 60 10 0 0\n" |
|
| 71 |
"11 10 20 14 0 6\n" |
|
| 72 |
"12 11 30 10 0 0\n" |
|
| 52 |
" cost cap low1 low2 low3\n" |
|
| 53 |
" 1 2 70 11 0 8 8\n" |
|
| 54 |
" 1 3 150 3 0 1 0\n" |
|
| 55 |
" 1 4 80 15 0 2 2\n" |
|
| 56 |
" 2 8 80 12 0 0 0\n" |
|
| 57 |
" 3 5 140 5 0 3 1\n" |
|
| 58 |
" 4 6 60 10 0 1 0\n" |
|
| 59 |
" 4 7 80 2 0 0 0\n" |
|
| 60 |
" 4 8 110 3 0 0 0\n" |
|
| 61 |
" 5 7 60 14 0 0 0\n" |
|
| 62 |
" 5 11 120 12 0 0 0\n" |
|
| 63 |
" 6 3 0 3 0 0 0\n" |
|
| 64 |
" 6 9 140 4 0 0 0\n" |
|
| 65 |
" 6 10 90 8 0 0 0\n" |
|
| 66 |
" 7 1 30 5 0 0 -5\n" |
|
| 67 |
" 8 12 60 16 0 4 3\n" |
|
| 68 |
" 9 12 50 6 0 0 0\n" |
|
| 69 |
"10 12 70 13 0 5 2\n" |
|
| 70 |
"10 2 100 7 0 0 0\n" |
|
| 71 |
"10 7 60 10 0 0 -3\n" |
|
| 72 |
"11 10 20 14 0 6 -20\n" |
|
| 73 |
"12 11 30 10 0 0 -10\n" |
|
| 73 | 74 |
"\n" |
| 74 | 75 |
"@attributes\n" |
| 75 | 76 |
"source 1\n" |
| 76 | 77 |
"target 12\n"; |
| 77 | 78 |
|
| 78 | 79 |
|
| 79 |
enum |
|
| 80 |
enum SupplyType {
|
|
| 80 | 81 |
EQ, |
| 81 | 82 |
GEQ, |
| 82 | 83 |
LEQ |
| ... | ... |
@@ -98,8 +99,6 @@ |
| 98 | 99 |
b = mcf.reset() |
| 99 | 100 |
.lowerMap(lower) |
| 100 | 101 |
.upperMap(upper) |
| 101 |
.capacityMap(upper) |
|
| 102 |
.boundMaps(lower, upper) |
|
| 103 | 102 |
.costMap(cost) |
| 104 | 103 |
.supplyMap(sup) |
| 105 | 104 |
.stSupply(n, n, k) |
| ... | ... |
@@ -112,10 +111,12 @@ |
| 112 | 111 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
| 113 | 112 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
| 114 | 113 |
|
| 115 |
|
|
| 114 |
c = const_mcf.totalCost(); |
|
| 116 | 115 |
double x = const_mcf.template totalCost<double>(); |
| 117 | 116 |
v = const_mcf.flow(a); |
| 118 |
|
|
| 117 |
c = const_mcf.potential(n); |
|
| 118 |
|
|
| 119 |
v = const_mcf.INF; |
|
| 119 | 120 |
|
| 120 | 121 |
ignore_unused_variable_warning(fm); |
| 121 | 122 |
ignore_unused_variable_warning(pm); |
| ... | ... |
@@ -137,6 +138,7 @@ |
| 137 | 138 |
const Arc &a; |
| 138 | 139 |
const Flow &k; |
| 139 | 140 |
Flow v; |
| 141 |
Cost c; |
|
| 140 | 142 |
bool b; |
| 141 | 143 |
|
| 142 | 144 |
typename MCF::FlowMap &flow; |
| ... | ... |
@@ -151,7 +153,7 @@ |
| 151 | 153 |
typename SM, typename FM > |
| 152 | 154 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 153 | 155 |
const SM& supply, const FM& flow, |
| 154 |
|
|
| 156 |
SupplyType type = EQ ) |
|
| 155 | 157 |
{
|
| 156 | 158 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 157 | 159 |
|
| ... | ... |
@@ -208,16 +210,17 @@ |
| 208 | 210 |
// Run a minimum cost flow algorithm and check the results |
| 209 | 211 |
template < typename MCF, typename GR, |
| 210 | 212 |
typename LM, typename UM, |
| 211 |
typename CM, typename SM > |
|
| 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
| 213 |
typename CM, typename SM, |
|
| 214 |
typename PT > |
|
| 215 |
void checkMcf( const MCF& mcf, PT mcf_result, |
|
| 213 | 216 |
const GR& gr, const LM& lower, const UM& upper, |
| 214 | 217 |
const CM& cost, const SM& supply, |
| 215 |
bool |
|
| 218 |
PT result, bool optimal, typename CM::Value total, |
|
| 216 | 219 |
const std::string &test_id = "", |
| 217 |
|
|
| 220 |
SupplyType type = EQ ) |
|
| 218 | 221 |
{
|
| 219 | 222 |
check(mcf_result == result, "Wrong result " + test_id); |
| 220 |
if ( |
|
| 223 |
if (optimal) {
|
|
| 221 | 224 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
| 222 | 225 |
"The flow is not feasible " + test_id); |
| 223 | 226 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| ... | ... |
@@ -244,8 +247,8 @@ |
| 244 | 247 |
|
| 245 | 248 |
// Read the test digraph |
| 246 | 249 |
Digraph gr; |
| 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
| 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
| 250 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
| 251 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
| 249 | 252 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 250 | 253 |
Node v, w; |
| 251 | 254 |
|
| ... | ... |
@@ -255,14 +258,56 @@ |
| 255 | 258 |
.arcMap("cap", u)
|
| 256 | 259 |
.arcMap("low1", l1)
|
| 257 | 260 |
.arcMap("low2", l2)
|
| 261 |
.arcMap("low3", l3)
|
|
| 258 | 262 |
.nodeMap("sup1", s1)
|
| 259 | 263 |
.nodeMap("sup2", s2)
|
| 260 | 264 |
.nodeMap("sup3", s3)
|
| 261 | 265 |
.nodeMap("sup4", s4)
|
| 262 | 266 |
.nodeMap("sup5", s5)
|
| 267 |
.nodeMap("sup6", s6)
|
|
| 263 | 268 |
.node("source", v)
|
| 264 | 269 |
.node("target", w)
|
| 265 | 270 |
.run(); |
| 271 |
|
|
| 272 |
// Build a test digraph for testing negative costs |
|
| 273 |
Digraph ngr; |
|
| 274 |
Node n1 = ngr.addNode(); |
|
| 275 |
Node n2 = ngr.addNode(); |
|
| 276 |
Node n3 = ngr.addNode(); |
|
| 277 |
Node n4 = ngr.addNode(); |
|
| 278 |
Node n5 = ngr.addNode(); |
|
| 279 |
Node n6 = ngr.addNode(); |
|
| 280 |
Node n7 = ngr.addNode(); |
|
| 281 |
|
|
| 282 |
Arc a1 = ngr.addArc(n1, n2); |
|
| 283 |
Arc a2 = ngr.addArc(n1, n3); |
|
| 284 |
Arc a3 = ngr.addArc(n2, n4); |
|
| 285 |
Arc a4 = ngr.addArc(n3, n4); |
|
| 286 |
Arc a5 = ngr.addArc(n3, n2); |
|
| 287 |
Arc a6 = ngr.addArc(n5, n3); |
|
| 288 |
Arc a7 = ngr.addArc(n5, n6); |
|
| 289 |
Arc a8 = ngr.addArc(n6, n7); |
|
| 290 |
Arc a9 = ngr.addArc(n7, n5); |
|
| 291 |
|
|
| 292 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
| 293 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
| 294 |
Digraph::NodeMap<int> ns(ngr, 0); |
|
| 295 |
|
|
| 296 |
nl2[a7] = 1000; |
|
| 297 |
nl2[a8] = -1000; |
|
| 298 |
|
|
| 299 |
ns[n1] = 100; |
|
| 300 |
ns[n4] = -100; |
|
| 301 |
|
|
| 302 |
nc[a1] = 100; |
|
| 303 |
nc[a2] = 30; |
|
| 304 |
nc[a3] = 20; |
|
| 305 |
nc[a4] = 80; |
|
| 306 |
nc[a5] = 50; |
|
| 307 |
nc[a6] = 10; |
|
| 308 |
nc[a7] = 80; |
|
| 309 |
nc[a8] = 30; |
|
| 310 |
nc[a9] = -120; |
|
| 266 | 311 |
|
| 267 | 312 |
// A. Test NetworkSimplex with the default pivot rule |
| 268 | 313 |
{
|
| ... | ... |
@@ -271,63 +316,77 @@ |
| 271 | 316 |
// Check the equality form |
| 272 | 317 |
mcf.upperMap(u).costMap(c); |
| 273 | 318 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
| 319 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
|
| 275 | 320 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
| 321 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
|
| 277 | 322 |
mcf.lowerMap(l2); |
| 278 | 323 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
| 324 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
|
| 280 | 325 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
| 326 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
|
| 282 | 327 |
mcf.reset(); |
| 283 | 328 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
| 329 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
|
| 285 | 330 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
| 286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
| 331 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
|
| 287 | 332 |
mcf.reset(); |
| 288 | 333 |
checkMcf(mcf, mcf.run(), |
| 289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
| 290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
| 291 |
gr, |
|
| 334 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
|
| 335 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
|
| 336 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
|
| 337 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
| 338 |
checkMcf(mcf, mcf.run(), |
|
| 339 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
|
| 292 | 340 |
|
| 293 | 341 |
// Check the GEQ form |
| 294 |
mcf.reset().upperMap(u).costMap(c).supplyMap( |
|
| 342 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
|
| 295 | 343 |
checkMcf(mcf, mcf.run(), |
| 296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
| 297 |
mcf.problemType(mcf.GEQ); |
|
| 344 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
|
| 345 |
mcf.supplyType(mcf.GEQ); |
|
| 298 | 346 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
| 300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
| 347 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
|
| 348 |
mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6); |
|
| 301 | 349 |
checkMcf(mcf, mcf.run(), |
| 302 |
gr, l2, u, c, |
|
| 350 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
|
| 303 | 351 |
|
| 304 | 352 |
// Check the LEQ form |
| 305 |
mcf.reset().problemType(mcf.LEQ); |
|
| 306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
| 353 |
mcf.reset().supplyType(mcf.LEQ); |
|
| 354 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
|
| 307 | 355 |
checkMcf(mcf, mcf.run(), |
| 308 |
gr, l1, u, c, |
|
| 356 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
|
| 309 | 357 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
| 311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
| 358 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
|
| 359 |
mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5); |
|
| 312 | 360 |
checkMcf(mcf, mcf.run(), |
| 313 |
gr, l2, u, c, |
|
| 361 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
|
| 362 |
|
|
| 363 |
// Check negative costs |
|
| 364 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
| 365 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
| 366 |
checkMcf(nmcf, nmcf.run(), |
|
| 367 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
| 368 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
| 369 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
| 370 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
| 371 |
checkMcf(nmcf, nmcf.run(), |
|
| 372 |
ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18"); |
|
| 314 | 373 |
} |
| 315 | 374 |
|
| 316 | 375 |
// B. Test NetworkSimplex with each pivot rule |
| 317 | 376 |
{
|
| 318 | 377 |
NetworkSimplex<Digraph> mcf(gr); |
| 319 |
mcf.supplyMap(s1).costMap(c). |
|
| 378 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
|
| 320 | 379 |
|
| 321 | 380 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
| 322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
| 381 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
|
| 323 | 382 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
| 324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
| 383 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
|
| 325 | 384 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
| 326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
| 385 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
|
| 327 | 386 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
| 328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
| 387 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
|
| 329 | 388 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
| 330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
| 389 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
|
| 331 | 390 |
} |
| 332 | 391 |
|
| 333 | 392 |
return 0; |
| ... | ... |
@@ -119,8 +119,8 @@ |
| 119 | 119 |
|
| 120 | 120 |
ti.restart(); |
| 121 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
| 122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
| 123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
| 122 |
ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup); |
|
| 123 |
if (sum_sup > 0) ns.supplyType(ns.LEQ); |
|
| 124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
| 125 | 125 |
ti.restart(); |
| 126 | 126 |
bool res = ns.run(); |
0 comments (0 inline)