gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Handle graph changes in the MCF algorithms (#327) The reset() functions are renamed to resetParams() and the new reset() functions handle the graph chnages, as well.
0 5 0
default
5 files changed with 423 insertions and 311 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -293,111 +293,49 @@
293 293
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
294 294
    };
295 295

	
296 296
    /// @}
297 297

	
298 298
  public:
299 299

	
300 300
    /// \brief Constructor.
301 301
    ///
302 302
    /// The constructor of the class.
303 303
    ///
304 304
    /// \param graph The digraph the algorithm runs on.
305 305
    CapacityScaling(const GR& graph) :
306 306
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
307 307
      INF(std::numeric_limits<Value>::has_infinity ?
308 308
          std::numeric_limits<Value>::infinity() :
309 309
          std::numeric_limits<Value>::max())
310 310
    {
311 311
      // Check the number types
312 312
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
313 313
        "The flow type of CapacityScaling must be signed");
314 314
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
315 315
        "The cost type of CapacityScaling must be signed");
316 316

	
317
      // Resize vectors
318
      _node_num = countNodes(_graph);
319
      _arc_num = countArcs(_graph);
320
      _res_arc_num = 2 * (_arc_num + _node_num);
321
      _root = _node_num;
322
      ++_node_num;
323

	
324
      _first_out.resize(_node_num + 1);
325
      _forward.resize(_res_arc_num);
326
      _source.resize(_res_arc_num);
327
      _target.resize(_res_arc_num);
328
      _reverse.resize(_res_arc_num);
329

	
330
      _lower.resize(_res_arc_num);
331
      _upper.resize(_res_arc_num);
332
      _cost.resize(_res_arc_num);
333
      _supply.resize(_node_num);
334
      
335
      _res_cap.resize(_res_arc_num);
336
      _pi.resize(_node_num);
337
      _excess.resize(_node_num);
338
      _pred.resize(_node_num);
339

	
340
      // Copy the graph
341
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
342
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
343
        _node_id[n] = i;
344
      }
345
      i = 0;
346
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
347
        _first_out[i] = j;
348
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
349
          _arc_idf[a] = j;
350
          _forward[j] = true;
351
          _source[j] = i;
352
          _target[j] = _node_id[_graph.runningNode(a)];
353
        }
354
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
355
          _arc_idb[a] = j;
356
          _forward[j] = false;
357
          _source[j] = i;
358
          _target[j] = _node_id[_graph.runningNode(a)];
359
        }
360
        _forward[j] = false;
361
        _source[j] = i;
362
        _target[j] = _root;
363
        _reverse[j] = k;
364
        _forward[k] = true;
365
        _source[k] = _root;
366
        _target[k] = i;
367
        _reverse[k] = j;
368
        ++j; ++k;
369
      }
370
      _first_out[i] = j;
371
      _first_out[_node_num] = k;
372
      for (ArcIt a(_graph); a != INVALID; ++a) {
373
        int fi = _arc_idf[a];
374
        int bi = _arc_idb[a];
375
        _reverse[fi] = bi;
376
        _reverse[bi] = fi;
377
      }
378
      
379
      // Reset parameters
317
      // Reset data structures
380 318
      reset();
381 319
    }
382 320

	
383 321
    /// \name Parameters
384 322
    /// The parameters of the algorithm can be specified using these
385 323
    /// functions.
386 324

	
387 325
    /// @{
388 326

	
389 327
    /// \brief Set the lower bounds on the arcs.
390 328
    ///
391 329
    /// This function sets the lower bounds on the arcs.
392 330
    /// If it is not used before calling \ref run(), the lower bounds
393 331
    /// will be set to zero on all arcs.
394 332
    ///
395 333
    /// \param map An arc map storing the lower bounds.
396 334
    /// Its \c Value type must be convertible to the \c Value type
397 335
    /// of the algorithm.
398 336
    ///
399 337
    /// \return <tt>(*this)</tt>
400 338
    template <typename LowerMap>
401 339
    CapacityScaling& lowerMap(const LowerMap& map) {
402 340
      _have_lower = true;
403 341
      for (ArcIt a(_graph); a != INVALID; ++a) {
... ...
@@ -490,123 +428,214 @@
490 428
      _supply[_node_id[s]] =  k;
491 429
      _supply[_node_id[t]] = -k;
492 430
      return *this;
493 431
    }
494 432
    
495 433
    /// @}
496 434

	
497 435
    /// \name Execution control
498 436
    /// The algorithm can be executed using \ref run().
499 437

	
500 438
    /// @{
501 439

	
502 440
    /// \brief Run the algorithm.
503 441
    ///
504 442
    /// This function runs the algorithm.
505 443
    /// The paramters can be specified using functions \ref lowerMap(),
506 444
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
507 445
    /// For example,
508 446
    /// \code
509 447
    ///   CapacityScaling<ListDigraph> cs(graph);
510 448
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
511 449
    ///     .supplyMap(sup).run();
512 450
    /// \endcode
513 451
    ///
514
    /// This function can be called more than once. All the parameters
515
    /// that have been given are kept for the next call, unless
516
    /// \ref reset() is called, thus only the modified parameters
517
    /// have to be set again. See \ref reset() for examples.
518
    /// However, the underlying digraph must not be modified after this
519
    /// class have been constructed, since it copies and extends the graph.
452
    /// This function can be called more than once. All the given parameters
453
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
454
    /// is used, thus only the modified parameters have to be set again.
455
    /// If the underlying digraph was also modified after the construction
456
    /// of the class (or the last \ref reset() call), then the \ref reset()
457
    /// function must be called.
520 458
    ///
521 459
    /// \param factor The capacity scaling factor. It must be larger than
522 460
    /// one to use scaling. If it is less or equal to one, then scaling
523 461
    /// will be disabled.
524 462
    ///
525 463
    /// \return \c INFEASIBLE if no feasible flow exists,
526 464
    /// \n \c OPTIMAL if the problem has optimal solution
527 465
    /// (i.e. it is feasible and bounded), and the algorithm has found
528 466
    /// optimal flow and node potentials (primal and dual solutions),
529 467
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
530 468
    /// and infinite upper bound. It means that the objective function
531 469
    /// is unbounded on that arc, however, note that it could actually be
532 470
    /// bounded over the feasible flows, but this algroithm cannot handle
533 471
    /// these cases.
534 472
    ///
535 473
    /// \see ProblemType
474
    /// \see resetParams(), reset()
536 475
    ProblemType run(int factor = 4) {
537 476
      _factor = factor;
538 477
      ProblemType pt = init();
539 478
      if (pt != OPTIMAL) return pt;
540 479
      return start();
541 480
    }
542 481

	
543 482
    /// \brief Reset all the parameters that have been given before.
544 483
    ///
545 484
    /// This function resets all the paramaters that have been given
546 485
    /// before using functions \ref lowerMap(), \ref upperMap(),
547 486
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
548 487
    ///
549
    /// It is useful for multiple run() calls. If this function is not
550
    /// used, all the parameters given before are kept for the next
551
    /// \ref run() call.
552
    /// However, the underlying digraph must not be modified after this
553
    /// class have been constructed, since it copies and extends the graph.
488
    /// It is useful for multiple \ref run() calls. Basically, all the given
489
    /// parameters are kept for the next \ref run() call, unless
490
    /// \ref resetParams() or \ref reset() is used.
491
    /// If the underlying digraph was also modified after the construction
492
    /// of the class or the last \ref reset() call, then the \ref reset()
493
    /// function must be used, otherwise \ref resetParams() is sufficient.
554 494
    ///
555 495
    /// For example,
556 496
    /// \code
557 497
    ///   CapacityScaling<ListDigraph> cs(graph);
558 498
    ///
559 499
    ///   // First run
560 500
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
561 501
    ///     .supplyMap(sup).run();
562 502
    ///
563
    ///   // Run again with modified cost map (reset() is not called,
503
    ///   // Run again with modified cost map (resetParams() is not called,
564 504
    ///   // so only the cost map have to be set again)
565 505
    ///   cost[e] += 100;
566 506
    ///   cs.costMap(cost).run();
567 507
    ///
568
    ///   // Run again from scratch using reset()
508
    ///   // Run again from scratch using resetParams()
569 509
    ///   // (the lower bounds will be set to zero on all arcs)
570
    ///   cs.reset();
510
    ///   cs.resetParams();
571 511
    ///   cs.upperMap(capacity).costMap(cost)
572 512
    ///     .supplyMap(sup).run();
573 513
    /// \endcode
574 514
    ///
575 515
    /// \return <tt>(*this)</tt>
576
    CapacityScaling& reset() {
516
    ///
517
    /// \see reset(), run()
518
    CapacityScaling& resetParams() {
577 519
      for (int i = 0; i != _node_num; ++i) {
578 520
        _supply[i] = 0;
579 521
      }
580 522
      for (int j = 0; j != _res_arc_num; ++j) {
581 523
        _lower[j] = 0;
582 524
        _upper[j] = INF;
583 525
        _cost[j] = _forward[j] ? 1 : -1;
584 526
      }
585 527
      _have_lower = false;
586 528
      return *this;
587 529
    }
588 530

	
531
    /// \brief Reset the internal data structures and all the parameters
532
    /// that have been given before.
533
    ///
534
    /// This function resets the internal data structures and all the
535
    /// paramaters that have been given before using functions \ref lowerMap(),
536
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
537
    ///
538
    /// It is useful for multiple \ref run() calls. Basically, all the given
539
    /// parameters are kept for the next \ref run() call, unless
540
    /// \ref resetParams() or \ref reset() is used.
541
    /// If the underlying digraph was also modified after the construction
542
    /// of the class or the last \ref reset() call, then the \ref reset()
543
    /// function must be used, otherwise \ref resetParams() is sufficient.
544
    ///
545
    /// See \ref resetParams() for examples.
546
    ///
547
    /// \return <tt>(*this)</tt>
548
    ///
549
    /// \see resetParams(), run()
550
    CapacityScaling& reset() {
551
      // Resize vectors
552
      _node_num = countNodes(_graph);
553
      _arc_num = countArcs(_graph);
554
      _res_arc_num = 2 * (_arc_num + _node_num);
555
      _root = _node_num;
556
      ++_node_num;
557

	
558
      _first_out.resize(_node_num + 1);
559
      _forward.resize(_res_arc_num);
560
      _source.resize(_res_arc_num);
561
      _target.resize(_res_arc_num);
562
      _reverse.resize(_res_arc_num);
563

	
564
      _lower.resize(_res_arc_num);
565
      _upper.resize(_res_arc_num);
566
      _cost.resize(_res_arc_num);
567
      _supply.resize(_node_num);
568
      
569
      _res_cap.resize(_res_arc_num);
570
      _pi.resize(_node_num);
571
      _excess.resize(_node_num);
572
      _pred.resize(_node_num);
573

	
574
      // Copy the graph
575
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
576
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
577
        _node_id[n] = i;
578
      }
579
      i = 0;
580
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
581
        _first_out[i] = j;
582
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
583
          _arc_idf[a] = j;
584
          _forward[j] = true;
585
          _source[j] = i;
586
          _target[j] = _node_id[_graph.runningNode(a)];
587
        }
588
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
589
          _arc_idb[a] = j;
590
          _forward[j] = false;
591
          _source[j] = i;
592
          _target[j] = _node_id[_graph.runningNode(a)];
593
        }
594
        _forward[j] = false;
595
        _source[j] = i;
596
        _target[j] = _root;
597
        _reverse[j] = k;
598
        _forward[k] = true;
599
        _source[k] = _root;
600
        _target[k] = i;
601
        _reverse[k] = j;
602
        ++j; ++k;
603
      }
604
      _first_out[i] = j;
605
      _first_out[_node_num] = k;
606
      for (ArcIt a(_graph); a != INVALID; ++a) {
607
        int fi = _arc_idf[a];
608
        int bi = _arc_idb[a];
609
        _reverse[fi] = bi;
610
        _reverse[bi] = fi;
611
      }
612
      
613
      // Reset parameters
614
      resetParams();
615
      return *this;
616
    }
617

	
589 618
    /// @}
590 619

	
591 620
    /// \name Query Functions
592 621
    /// The results of the algorithm can be obtained using these
593 622
    /// functions.\n
594 623
    /// The \ref run() function must be called before using them.
595 624

	
596 625
    /// @{
597 626

	
598 627
    /// \brief Return the total cost of the found flow.
599 628
    ///
600 629
    /// This function returns the total cost of the found flow.
601 630
    /// Its complexity is O(e).
602 631
    ///
603 632
    /// \note The return type of the function can be specified as a
604 633
    /// template parameter. For example,
605 634
    /// \code
606 635
    ///   cs.totalCost<double>();
607 636
    /// \endcode
608 637
    /// It is useful if the total cost cannot be stored in the \c Cost
609 638
    /// type of the algorithm, which is the default return type of the
610 639
    /// function.
611 640
    ///
612 641
    /// \pre \ref run() must be called before using this function.
Ignore white space 6 line context
... ...
@@ -311,116 +311,50 @@
311 311
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
312 312
    };
313 313

	
314 314
    /// @}
315 315

	
316 316
  public:
317 317

	
318 318
    /// \brief Constructor.
319 319
    ///
320 320
    /// The constructor of the class.
321 321
    ///
322 322
    /// \param graph The digraph the algorithm runs on.
323 323
    CostScaling(const GR& graph) :
324 324
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
325 325
      _cost_map(_cost_vec), _pi_map(_pi),
326 326
      INF(std::numeric_limits<Value>::has_infinity ?
327 327
          std::numeric_limits<Value>::infinity() :
328 328
          std::numeric_limits<Value>::max())
329 329
    {
330 330
      // Check the number types
331 331
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
332 332
        "The flow type of CostScaling must be signed");
333 333
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
334 334
        "The cost type of CostScaling must be signed");
335

	
336
      // Resize vectors
337
      _node_num = countNodes(_graph);
338
      _arc_num = countArcs(_graph);
339
      _res_node_num = _node_num + 1;
340
      _res_arc_num = 2 * (_arc_num + _node_num);
341
      _root = _node_num;
342

	
343
      _first_out.resize(_res_node_num + 1);
344
      _forward.resize(_res_arc_num);
345
      _source.resize(_res_arc_num);
346
      _target.resize(_res_arc_num);
347
      _reverse.resize(_res_arc_num);
348

	
349
      _lower.resize(_res_arc_num);
350
      _upper.resize(_res_arc_num);
351
      _scost.resize(_res_arc_num);
352
      _supply.resize(_res_node_num);
353 335
      
354
      _res_cap.resize(_res_arc_num);
355
      _cost.resize(_res_arc_num);
356
      _pi.resize(_res_node_num);
357
      _excess.resize(_res_node_num);
358
      _next_out.resize(_res_node_num);
359

	
360
      _arc_vec.reserve(_res_arc_num);
361
      _cost_vec.reserve(_res_arc_num);
362

	
363
      // Copy the graph
364
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
365
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
366
        _node_id[n] = i;
367
      }
368
      i = 0;
369
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
370
        _first_out[i] = j;
371
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
372
          _arc_idf[a] = j;
373
          _forward[j] = true;
374
          _source[j] = i;
375
          _target[j] = _node_id[_graph.runningNode(a)];
376
        }
377
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
378
          _arc_idb[a] = j;
379
          _forward[j] = false;
380
          _source[j] = i;
381
          _target[j] = _node_id[_graph.runningNode(a)];
382
        }
383
        _forward[j] = false;
384
        _source[j] = i;
385
        _target[j] = _root;
386
        _reverse[j] = k;
387
        _forward[k] = true;
388
        _source[k] = _root;
389
        _target[k] = i;
390
        _reverse[k] = j;
391
        ++j; ++k;
392
      }
393
      _first_out[i] = j;
394
      _first_out[_res_node_num] = k;
395
      for (ArcIt a(_graph); a != INVALID; ++a) {
396
        int fi = _arc_idf[a];
397
        int bi = _arc_idb[a];
398
        _reverse[fi] = bi;
399
        _reverse[bi] = fi;
400
      }
401
      
402
      // Reset parameters
336
      // Reset data structures
403 337
      reset();
404 338
    }
405 339

	
406 340
    /// \name Parameters
407 341
    /// The parameters of the algorithm can be specified using these
408 342
    /// functions.
409 343

	
410 344
    /// @{
411 345

	
412 346
    /// \brief Set the lower bounds on the arcs.
413 347
    ///
414 348
    /// This function sets the lower bounds on the arcs.
415 349
    /// If it is not used before calling \ref run(), the lower bounds
416 350
    /// will be set to zero on all arcs.
417 351
    ///
418 352
    /// \param map An arc map storing the lower bounds.
419 353
    /// Its \c Value type must be convertible to the \c Value type
420 354
    /// of the algorithm.
421 355
    ///
422 356
    /// \return <tt>(*this)</tt>
423 357
    template <typename LowerMap>
424 358
    CostScaling& lowerMap(const LowerMap& map) {
425 359
      _have_lower = true;
426 360
      for (ArcIt a(_graph); a != INVALID; ++a) {
... ...
@@ -513,131 +447,219 @@
513 447
      _supply[_node_id[s]] =  k;
514 448
      _supply[_node_id[t]] = -k;
515 449
      return *this;
516 450
    }
517 451
    
518 452
    /// @}
519 453

	
520 454
    /// \name Execution control
521 455
    /// The algorithm can be executed using \ref run().
522 456

	
523 457
    /// @{
524 458

	
525 459
    /// \brief Run the algorithm.
526 460
    ///
527 461
    /// This function runs the algorithm.
528 462
    /// The paramters can be specified using functions \ref lowerMap(),
529 463
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
530 464
    /// For example,
531 465
    /// \code
532 466
    ///   CostScaling<ListDigraph> cs(graph);
533 467
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
534 468
    ///     .supplyMap(sup).run();
535 469
    /// \endcode
536 470
    ///
537
    /// This function can be called more than once. All the parameters
538
    /// that have been given are kept for the next call, unless
539
    /// \ref reset() is called, thus only the modified parameters
540
    /// have to be set again. See \ref reset() for examples.
541
    /// However, the underlying digraph must not be modified after this
542
    /// class have been constructed, since it copies and extends the graph.
471
    /// This function can be called more than once. All the given parameters
472
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
473
    /// is used, thus only the modified parameters have to be set again.
474
    /// If the underlying digraph was also modified after the construction
475
    /// of the class (or the last \ref reset() call), then the \ref reset()
476
    /// function must be called.
543 477
    ///
544 478
    /// \param method The internal method that will be used in the
545 479
    /// algorithm. For more information, see \ref Method.
546 480
    /// \param factor The cost scaling factor. It must be larger than one.
547 481
    ///
548 482
    /// \return \c INFEASIBLE if no feasible flow exists,
549 483
    /// \n \c OPTIMAL if the problem has optimal solution
550 484
    /// (i.e. it is feasible and bounded), and the algorithm has found
551 485
    /// optimal flow and node potentials (primal and dual solutions),
552 486
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
553 487
    /// and infinite upper bound. It means that the objective function
554 488
    /// is unbounded on that arc, however, note that it could actually be
555 489
    /// bounded over the feasible flows, but this algroithm cannot handle
556 490
    /// these cases.
557 491
    ///
558 492
    /// \see ProblemType, Method
493
    /// \see resetParams(), reset()
559 494
    ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
560 495
      _alpha = factor;
561 496
      ProblemType pt = init();
562 497
      if (pt != OPTIMAL) return pt;
563 498
      start(method);
564 499
      return OPTIMAL;
565 500
    }
566 501

	
567 502
    /// \brief Reset all the parameters that have been given before.
568 503
    ///
569 504
    /// This function resets all the paramaters that have been given
570 505
    /// before using functions \ref lowerMap(), \ref upperMap(),
571 506
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
572 507
    ///
573
    /// It is useful for multiple run() calls. If this function is not
574
    /// used, all the parameters given before are kept for the next
575
    /// \ref run() call.
576
    /// However, the underlying digraph must not be modified after this
577
    /// class have been constructed, since it copies and extends the graph.
508
    /// It is useful for multiple \ref run() calls. Basically, all the given
509
    /// parameters are kept for the next \ref run() call, unless
510
    /// \ref resetParams() or \ref reset() is used.
511
    /// If the underlying digraph was also modified after the construction
512
    /// of the class or the last \ref reset() call, then the \ref reset()
513
    /// function must be used, otherwise \ref resetParams() is sufficient.
578 514
    ///
579 515
    /// For example,
580 516
    /// \code
581 517
    ///   CostScaling<ListDigraph> cs(graph);
582 518
    ///
583 519
    ///   // First run
584 520
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
585 521
    ///     .supplyMap(sup).run();
586 522
    ///
587
    ///   // Run again with modified cost map (reset() is not called,
523
    ///   // Run again with modified cost map (resetParams() is not called,
588 524
    ///   // so only the cost map have to be set again)
589 525
    ///   cost[e] += 100;
590 526
    ///   cs.costMap(cost).run();
591 527
    ///
592
    ///   // Run again from scratch using reset()
528
    ///   // Run again from scratch using resetParams()
593 529
    ///   // (the lower bounds will be set to zero on all arcs)
594
    ///   cs.reset();
530
    ///   cs.resetParams();
595 531
    ///   cs.upperMap(capacity).costMap(cost)
596 532
    ///     .supplyMap(sup).run();
597 533
    /// \endcode
598 534
    ///
599 535
    /// \return <tt>(*this)</tt>
600
    CostScaling& reset() {
536
    ///
537
    /// \see reset(), run()
538
    CostScaling& resetParams() {
601 539
      for (int i = 0; i != _res_node_num; ++i) {
602 540
        _supply[i] = 0;
603 541
      }
604 542
      int limit = _first_out[_root];
605 543
      for (int j = 0; j != limit; ++j) {
606 544
        _lower[j] = 0;
607 545
        _upper[j] = INF;
608 546
        _scost[j] = _forward[j] ? 1 : -1;
609 547
      }
610 548
      for (int j = limit; j != _res_arc_num; ++j) {
611 549
        _lower[j] = 0;
612 550
        _upper[j] = INF;
613 551
        _scost[j] = 0;
614 552
        _scost[_reverse[j]] = 0;
615 553
      }      
616 554
      _have_lower = false;
617 555
      return *this;
618 556
    }
619 557

	
558
    /// \brief Reset all the parameters that have been given before.
559
    ///
560
    /// This function resets all the paramaters that have been given
561
    /// before using functions \ref lowerMap(), \ref upperMap(),
562
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
563
    ///
564
    /// It is useful for multiple run() calls. If this function is not
565
    /// used, all the parameters given before are kept for the next
566
    /// \ref run() call.
567
    /// However, the underlying digraph must not be modified after this
568
    /// class have been constructed, since it copies and extends the graph.
569
    /// \return <tt>(*this)</tt>
570
    CostScaling& reset() {
571
      // Resize vectors
572
      _node_num = countNodes(_graph);
573
      _arc_num = countArcs(_graph);
574
      _res_node_num = _node_num + 1;
575
      _res_arc_num = 2 * (_arc_num + _node_num);
576
      _root = _node_num;
577

	
578
      _first_out.resize(_res_node_num + 1);
579
      _forward.resize(_res_arc_num);
580
      _source.resize(_res_arc_num);
581
      _target.resize(_res_arc_num);
582
      _reverse.resize(_res_arc_num);
583

	
584
      _lower.resize(_res_arc_num);
585
      _upper.resize(_res_arc_num);
586
      _scost.resize(_res_arc_num);
587
      _supply.resize(_res_node_num);
588
      
589
      _res_cap.resize(_res_arc_num);
590
      _cost.resize(_res_arc_num);
591
      _pi.resize(_res_node_num);
592
      _excess.resize(_res_node_num);
593
      _next_out.resize(_res_node_num);
594

	
595
      _arc_vec.reserve(_res_arc_num);
596
      _cost_vec.reserve(_res_arc_num);
597

	
598
      // Copy the graph
599
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
600
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
601
        _node_id[n] = i;
602
      }
603
      i = 0;
604
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
605
        _first_out[i] = j;
606
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
607
          _arc_idf[a] = j;
608
          _forward[j] = true;
609
          _source[j] = i;
610
          _target[j] = _node_id[_graph.runningNode(a)];
611
        }
612
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
613
          _arc_idb[a] = j;
614
          _forward[j] = false;
615
          _source[j] = i;
616
          _target[j] = _node_id[_graph.runningNode(a)];
617
        }
618
        _forward[j] = false;
619
        _source[j] = i;
620
        _target[j] = _root;
621
        _reverse[j] = k;
622
        _forward[k] = true;
623
        _source[k] = _root;
624
        _target[k] = i;
625
        _reverse[k] = j;
626
        ++j; ++k;
627
      }
628
      _first_out[i] = j;
629
      _first_out[_res_node_num] = k;
630
      for (ArcIt a(_graph); a != INVALID; ++a) {
631
        int fi = _arc_idf[a];
632
        int bi = _arc_idb[a];
633
        _reverse[fi] = bi;
634
        _reverse[bi] = fi;
635
      }
636
      
637
      // Reset parameters
638
      resetParams();
639
      return *this;
640
    }
641

	
620 642
    /// @}
621 643

	
622 644
    /// \name Query Functions
623 645
    /// The results of the algorithm can be obtained using these
624 646
    /// functions.\n
625 647
    /// The \ref run() function must be called before using them.
626 648

	
627 649
    /// @{
628 650

	
629 651
    /// \brief Return the total cost of the found flow.
630 652
    ///
631 653
    /// This function returns the total cost of the found flow.
632 654
    /// Its complexity is O(e).
633 655
    ///
634 656
    /// \note The return type of the function can be specified as a
635 657
    /// template parameter. For example,
636 658
    /// \code
637 659
    ///   cs.totalCost<double>();
638 660
    /// \endcode
639 661
    /// It is useful if the total cost cannot be stored in the \c Cost
640 662
    /// type of the algorithm, which is the default return type of the
641 663
    /// function.
642 664
    ///
643 665
    /// \pre \ref run() must be called before using this function.
Ignore white space 6 line context
... ...
@@ -229,113 +229,49 @@
229 229
    /// It is \c std::numeric_limits<Value>::infinity() if available,
230 230
    /// \c std::numeric_limits<Value>::max() otherwise.
231 231
    const Value INF;
232 232

	
233 233
  public:
234 234

	
235 235
    /// \brief Constructor.
236 236
    ///
237 237
    /// The constructor of the class.
238 238
    ///
239 239
    /// \param graph The digraph the algorithm runs on.
240 240
    CycleCanceling(const GR& graph) :
241 241
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
242 242
      _cost_map(_cost_vec), _pi_map(_pi),
243 243
      INF(std::numeric_limits<Value>::has_infinity ?
244 244
          std::numeric_limits<Value>::infinity() :
245 245
          std::numeric_limits<Value>::max())
246 246
    {
247 247
      // Check the number types
248 248
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
249 249
        "The flow type of CycleCanceling must be signed");
250 250
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
251 251
        "The cost type of CycleCanceling must be signed");
252 252

	
253
      // Resize vectors
254
      _node_num = countNodes(_graph);
255
      _arc_num = countArcs(_graph);
256
      _res_node_num = _node_num + 1;
257
      _res_arc_num = 2 * (_arc_num + _node_num);
258
      _root = _node_num;
259

	
260
      _first_out.resize(_res_node_num + 1);
261
      _forward.resize(_res_arc_num);
262
      _source.resize(_res_arc_num);
263
      _target.resize(_res_arc_num);
264
      _reverse.resize(_res_arc_num);
265

	
266
      _lower.resize(_res_arc_num);
267
      _upper.resize(_res_arc_num);
268
      _cost.resize(_res_arc_num);
269
      _supply.resize(_res_node_num);
270
      
271
      _res_cap.resize(_res_arc_num);
272
      _pi.resize(_res_node_num);
273

	
274
      _arc_vec.reserve(_res_arc_num);
275
      _cost_vec.reserve(_res_arc_num);
276
      _id_vec.reserve(_res_arc_num);
277

	
278
      // Copy the graph
279
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
280
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
281
        _node_id[n] = i;
282
      }
283
      i = 0;
284
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
285
        _first_out[i] = j;
286
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
287
          _arc_idf[a] = j;
288
          _forward[j] = true;
289
          _source[j] = i;
290
          _target[j] = _node_id[_graph.runningNode(a)];
291
        }
292
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
293
          _arc_idb[a] = j;
294
          _forward[j] = false;
295
          _source[j] = i;
296
          _target[j] = _node_id[_graph.runningNode(a)];
297
        }
298
        _forward[j] = false;
299
        _source[j] = i;
300
        _target[j] = _root;
301
        _reverse[j] = k;
302
        _forward[k] = true;
303
        _source[k] = _root;
304
        _target[k] = i;
305
        _reverse[k] = j;
306
        ++j; ++k;
307
      }
308
      _first_out[i] = j;
309
      _first_out[_res_node_num] = k;
310
      for (ArcIt a(_graph); a != INVALID; ++a) {
311
        int fi = _arc_idf[a];
312
        int bi = _arc_idb[a];
313
        _reverse[fi] = bi;
314
        _reverse[bi] = fi;
315
      }
316
      
317
      // Reset parameters
253
      // Reset data structures
318 254
      reset();
319 255
    }
320 256

	
321 257
    /// \name Parameters
322 258
    /// The parameters of the algorithm can be specified using these
323 259
    /// functions.
324 260

	
325 261
    /// @{
326 262

	
327 263
    /// \brief Set the lower bounds on the arcs.
328 264
    ///
329 265
    /// This function sets the lower bounds on the arcs.
330 266
    /// If it is not used before calling \ref run(), the lower bounds
331 267
    /// will be set to zero on all arcs.
332 268
    ///
333 269
    /// \param map An arc map storing the lower bounds.
334 270
    /// Its \c Value type must be convertible to the \c Value type
335 271
    /// of the algorithm.
336 272
    ///
337 273
    /// \return <tt>(*this)</tt>
338 274
    template <typename LowerMap>
339 275
    CycleCanceling& lowerMap(const LowerMap& map) {
340 276
      _have_lower = true;
341 277
      for (ArcIt a(_graph); a != INVALID; ++a) {
... ...
@@ -428,129 +364,222 @@
428 364
      _supply[_node_id[s]] =  k;
429 365
      _supply[_node_id[t]] = -k;
430 366
      return *this;
431 367
    }
432 368
    
433 369
    /// @}
434 370

	
435 371
    /// \name Execution control
436 372
    /// The algorithm can be executed using \ref run().
437 373

	
438 374
    /// @{
439 375

	
440 376
    /// \brief Run the algorithm.
441 377
    ///
442 378
    /// This function runs the algorithm.
443 379
    /// The paramters can be specified using functions \ref lowerMap(),
444 380
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
445 381
    /// For example,
446 382
    /// \code
447 383
    ///   CycleCanceling<ListDigraph> cc(graph);
448 384
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
449 385
    ///     .supplyMap(sup).run();
450 386
    /// \endcode
451 387
    ///
452
    /// This function can be called more than once. All the parameters
453
    /// that have been given are kept for the next call, unless
454
    /// \ref reset() is called, thus only the modified parameters
455
    /// have to be set again. See \ref reset() for examples.
456
    /// However, the underlying digraph must not be modified after this
457
    /// class have been constructed, since it copies and extends the graph.
388
    /// This function can be called more than once. All the given parameters
389
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
390
    /// is used, thus only the modified parameters have to be set again.
391
    /// If the underlying digraph was also modified after the construction
392
    /// of the class (or the last \ref reset() call), then the \ref reset()
393
    /// function must be called.
458 394
    ///
459 395
    /// \param method The cycle-canceling method that will be used.
460 396
    /// For more information, see \ref Method.
461 397
    ///
462 398
    /// \return \c INFEASIBLE if no feasible flow exists,
463 399
    /// \n \c OPTIMAL if the problem has optimal solution
464 400
    /// (i.e. it is feasible and bounded), and the algorithm has found
465 401
    /// optimal flow and node potentials (primal and dual solutions),
466 402
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
467 403
    /// and infinite upper bound. It means that the objective function
468 404
    /// is unbounded on that arc, however, note that it could actually be
469 405
    /// bounded over the feasible flows, but this algroithm cannot handle
470 406
    /// these cases.
471 407
    ///
472 408
    /// \see ProblemType, Method
409
    /// \see resetParams(), reset()
473 410
    ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
474 411
      ProblemType pt = init();
475 412
      if (pt != OPTIMAL) return pt;
476 413
      start(method);
477 414
      return OPTIMAL;
478 415
    }
479 416

	
480 417
    /// \brief Reset all the parameters that have been given before.
481 418
    ///
482 419
    /// This function resets all the paramaters that have been given
483 420
    /// before using functions \ref lowerMap(), \ref upperMap(),
484 421
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
485 422
    ///
486
    /// It is useful for multiple run() calls. If this function is not
487
    /// used, all the parameters given before are kept for the next
488
    /// \ref run() call.
489
    /// However, the underlying digraph must not be modified after this
490
    /// class have been constructed, since it copies and extends the graph.
423
    /// It is useful for multiple \ref run() calls. Basically, all the given
424
    /// parameters are kept for the next \ref run() call, unless
425
    /// \ref resetParams() or \ref reset() is used.
426
    /// If the underlying digraph was also modified after the construction
427
    /// of the class or the last \ref reset() call, then the \ref reset()
428
    /// function must be used, otherwise \ref resetParams() is sufficient.
491 429
    ///
492 430
    /// For example,
493 431
    /// \code
494 432
    ///   CycleCanceling<ListDigraph> cs(graph);
495 433
    ///
496 434
    ///   // First run
497 435
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
498 436
    ///     .supplyMap(sup).run();
499 437
    ///
500
    ///   // Run again with modified cost map (reset() is not called,
438
    ///   // Run again with modified cost map (resetParams() is not called,
501 439
    ///   // so only the cost map have to be set again)
502 440
    ///   cost[e] += 100;
503 441
    ///   cc.costMap(cost).run();
504 442
    ///
505
    ///   // Run again from scratch using reset()
443
    ///   // Run again from scratch using resetParams()
506 444
    ///   // (the lower bounds will be set to zero on all arcs)
507
    ///   cc.reset();
445
    ///   cc.resetParams();
508 446
    ///   cc.upperMap(capacity).costMap(cost)
509 447
    ///     .supplyMap(sup).run();
510 448
    /// \endcode
511 449
    ///
512 450
    /// \return <tt>(*this)</tt>
513
    CycleCanceling& reset() {
451
    ///
452
    /// \see reset(), run()
453
    CycleCanceling& resetParams() {
514 454
      for (int i = 0; i != _res_node_num; ++i) {
515 455
        _supply[i] = 0;
516 456
      }
517 457
      int limit = _first_out[_root];
518 458
      for (int j = 0; j != limit; ++j) {
519 459
        _lower[j] = 0;
520 460
        _upper[j] = INF;
521 461
        _cost[j] = _forward[j] ? 1 : -1;
522 462
      }
523 463
      for (int j = limit; j != _res_arc_num; ++j) {
524 464
        _lower[j] = 0;
525 465
        _upper[j] = INF;
526 466
        _cost[j] = 0;
527 467
        _cost[_reverse[j]] = 0;
528 468
      }      
529 469
      _have_lower = false;
530 470
      return *this;
531 471
    }
532 472

	
473
    /// \brief Reset the internal data structures and all the parameters
474
    /// that have been given before.
475
    ///
476
    /// This function resets the internal data structures and all the
477
    /// paramaters that have been given before using functions \ref lowerMap(),
478
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
479
    ///
480
    /// It is useful for multiple \ref run() calls. Basically, all the given
481
    /// parameters are kept for the next \ref run() call, unless
482
    /// \ref resetParams() or \ref reset() is used.
483
    /// If the underlying digraph was also modified after the construction
484
    /// of the class or the last \ref reset() call, then the \ref reset()
485
    /// function must be used, otherwise \ref resetParams() is sufficient.
486
    ///
487
    /// See \ref resetParams() for examples.
488
    ///
489
    /// \return <tt>(*this)</tt>
490
    ///
491
    /// \see resetParams(), run()
492
    CycleCanceling& reset() {
493
      // Resize vectors
494
      _node_num = countNodes(_graph);
495
      _arc_num = countArcs(_graph);
496
      _res_node_num = _node_num + 1;
497
      _res_arc_num = 2 * (_arc_num + _node_num);
498
      _root = _node_num;
499

	
500
      _first_out.resize(_res_node_num + 1);
501
      _forward.resize(_res_arc_num);
502
      _source.resize(_res_arc_num);
503
      _target.resize(_res_arc_num);
504
      _reverse.resize(_res_arc_num);
505

	
506
      _lower.resize(_res_arc_num);
507
      _upper.resize(_res_arc_num);
508
      _cost.resize(_res_arc_num);
509
      _supply.resize(_res_node_num);
510
      
511
      _res_cap.resize(_res_arc_num);
512
      _pi.resize(_res_node_num);
513

	
514
      _arc_vec.reserve(_res_arc_num);
515
      _cost_vec.reserve(_res_arc_num);
516
      _id_vec.reserve(_res_arc_num);
517

	
518
      // Copy the graph
519
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
520
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
521
        _node_id[n] = i;
522
      }
523
      i = 0;
524
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
525
        _first_out[i] = j;
526
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
527
          _arc_idf[a] = j;
528
          _forward[j] = true;
529
          _source[j] = i;
530
          _target[j] = _node_id[_graph.runningNode(a)];
531
        }
532
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
533
          _arc_idb[a] = j;
534
          _forward[j] = false;
535
          _source[j] = i;
536
          _target[j] = _node_id[_graph.runningNode(a)];
537
        }
538
        _forward[j] = false;
539
        _source[j] = i;
540
        _target[j] = _root;
541
        _reverse[j] = k;
542
        _forward[k] = true;
543
        _source[k] = _root;
544
        _target[k] = i;
545
        _reverse[k] = j;
546
        ++j; ++k;
547
      }
548
      _first_out[i] = j;
549
      _first_out[_res_node_num] = k;
550
      for (ArcIt a(_graph); a != INVALID; ++a) {
551
        int fi = _arc_idf[a];
552
        int bi = _arc_idb[a];
553
        _reverse[fi] = bi;
554
        _reverse[bi] = fi;
555
      }
556
      
557
      // Reset parameters
558
      resetParams();
559
      return *this;
560
    }
561

	
533 562
    /// @}
534 563

	
535 564
    /// \name Query Functions
536 565
    /// The results of the algorithm can be obtained using these
537 566
    /// functions.\n
538 567
    /// The \ref run() function must be called before using them.
539 568

	
540 569
    /// @{
541 570

	
542 571
    /// \brief Return the total cost of the found flow.
543 572
    ///
544 573
    /// This function returns the total cost of the found flow.
545 574
    /// Its complexity is O(e).
546 575
    ///
547 576
    /// \note The return type of the function can be specified as a
548 577
    /// template parameter. For example,
549 578
    /// \code
550 579
    ///   cc.totalCost<double>();
551 580
    /// \endcode
552 581
    /// It is useful if the total cost cannot be stored in the \c Cost
553 582
    /// type of the algorithm, which is the default return type of the
554 583
    /// function.
555 584
    ///
556 585
    /// \pre \ref run() must be called before using this function.
Ignore white space 48 line context
... ...
@@ -173,48 +173,49 @@
173 173
      STATE_UPPER = -1,
174 174
      STATE_TREE  =  0,
175 175
      STATE_LOWER =  1
176 176
    };
177 177

	
178 178
  private:
179 179

	
180 180
    // Data related to the underlying digraph
181 181
    const GR &_graph;
182 182
    int _node_num;
183 183
    int _arc_num;
184 184
    int _all_arc_num;
185 185
    int _search_arc_num;
186 186

	
187 187
    // Parameters of the problem
188 188
    bool _have_lower;
189 189
    SupplyType _stype;
190 190
    Value _sum_supply;
191 191

	
192 192
    // Data structures for storing the digraph
193 193
    IntNodeMap _node_id;
194 194
    IntArcMap _arc_id;
195 195
    IntVector _source;
196 196
    IntVector _target;
197
    bool _arc_mixing;
197 198

	
198 199
    // Node and arc data
199 200
    ValueVector _lower;
200 201
    ValueVector _upper;
201 202
    ValueVector _cap;
202 203
    CostVector _cost;
203 204
    ValueVector _supply;
204 205
    ValueVector _flow;
205 206
    CostVector _pi;
206 207

	
207 208
    // Data for storing the spanning tree structure
208 209
    IntVector _parent;
209 210
    IntVector _pred;
210 211
    IntVector _thread;
211 212
    IntVector _rev_thread;
212 213
    IntVector _succ_num;
213 214
    IntVector _last_succ;
214 215
    IntVector _dirty_revs;
215 216
    CharVector _forward;
216 217
    CharVector _state;
217 218
    int _root;
218 219

	
219 220
    // Temporary data used in the current pivot iteration
220 221
    int in_arc, join, u_in, v_in, u_out, v_out;
... ...
@@ -612,110 +613,60 @@
612 613
        // Pop the first element of the heap
613 614
        _in_arc = _candidates[0];
614 615
        _next_arc = e;
615 616
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
616 617
                  _sort_func );
617 618
        _curr_length = std::min(_head_length, _curr_length - 1);
618 619
        return true;
619 620
      }
620 621

	
621 622
    }; //class AlteringListPivotRule
622 623

	
623 624
  public:
624 625

	
625 626
    /// \brief Constructor.
626 627
    ///
627 628
    /// The constructor of the class.
628 629
    ///
629 630
    /// \param graph The digraph the algorithm runs on.
630 631
    /// \param arc_mixing Indicate if the arcs have to be stored in a
631 632
    /// mixed order in the internal data structure. 
632 633
    /// In special cases, it could lead to better overall performance,
633 634
    /// but it is usually slower. Therefore it is disabled by default.
634 635
    NetworkSimplex(const GR& graph, bool arc_mixing = false) :
635 636
      _graph(graph), _node_id(graph), _arc_id(graph),
637
      _arc_mixing(arc_mixing),
636 638
      MAX(std::numeric_limits<Value>::max()),
637 639
      INF(std::numeric_limits<Value>::has_infinity ?
638 640
          std::numeric_limits<Value>::infinity() : MAX)
639 641
    {
640 642
      // Check the number types
641 643
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
642 644
        "The flow type of NetworkSimplex must be signed");
643 645
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
644 646
        "The cost type of NetworkSimplex must be signed");
645 647
        
646
      // Resize vectors
647
      _node_num = countNodes(_graph);
648
      _arc_num = countArcs(_graph);
649
      int all_node_num = _node_num + 1;
650
      int max_arc_num = _arc_num + 2 * _node_num;
651

	
652
      _source.resize(max_arc_num);
653
      _target.resize(max_arc_num);
654

	
655
      _lower.resize(_arc_num);
656
      _upper.resize(_arc_num);
657
      _cap.resize(max_arc_num);
658
      _cost.resize(max_arc_num);
659
      _supply.resize(all_node_num);
660
      _flow.resize(max_arc_num);
661
      _pi.resize(all_node_num);
662

	
663
      _parent.resize(all_node_num);
664
      _pred.resize(all_node_num);
665
      _forward.resize(all_node_num);
666
      _thread.resize(all_node_num);
667
      _rev_thread.resize(all_node_num);
668
      _succ_num.resize(all_node_num);
669
      _last_succ.resize(all_node_num);
670
      _state.resize(max_arc_num);
671

	
672
      // Copy the graph
673
      int i = 0;
674
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
675
        _node_id[n] = i;
676
      }
677
      if (arc_mixing) {
678
        // Store the arcs in a mixed order
679
        int k = std::max(int(std::sqrt(double(_arc_num))), 10);
680
        int i = 0, j = 0;
681
        for (ArcIt a(_graph); a != INVALID; ++a) {
682
          _arc_id[a] = i;
683
          _source[i] = _node_id[_graph.source(a)];
684
          _target[i] = _node_id[_graph.target(a)];
685
          if ((i += k) >= _arc_num) i = ++j;
686
        }
687
      } else {
688
        // Store the arcs in the original order
689
        int i = 0;
690
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
691
          _arc_id[a] = i;
692
          _source[i] = _node_id[_graph.source(a)];
693
          _target[i] = _node_id[_graph.target(a)];
694
        }
695
      }
696
      
697
      // Reset parameters
648
      // Reset data structures
698 649
      reset();
699 650
    }
700 651

	
701 652
    /// \name Parameters
702 653
    /// The parameters of the algorithm can be specified using these
703 654
    /// functions.
704 655

	
705 656
    /// @{
706 657

	
707 658
    /// \brief Set the lower bounds on the arcs.
708 659
    ///
709 660
    /// This function sets the lower bounds on the arcs.
710 661
    /// If it is not used before calling \ref run(), the lower bounds
711 662
    /// will be set to zero on all arcs.
712 663
    ///
713 664
    /// \param map An arc map storing the lower bounds.
714 665
    /// Its \c Value type must be convertible to the \c Value type
715 666
    /// of the algorithm.
716 667
    ///
717 668
    /// \return <tt>(*this)</tt>
718 669
    template <typename LowerMap>
719 670
    NetworkSimplex& lowerMap(const LowerMap& map) {
720 671
      _have_lower = true;
721 672
      for (ArcIt a(_graph); a != INVALID; ++a) {
... ...
@@ -821,119 +772,200 @@
821 772
      _stype = supply_type;
822 773
      return *this;
823 774
    }
824 775

	
825 776
    /// @}
826 777

	
827 778
    /// \name Execution Control
828 779
    /// The algorithm can be executed using \ref run().
829 780

	
830 781
    /// @{
831 782

	
832 783
    /// \brief Run the algorithm.
833 784
    ///
834 785
    /// This function runs the algorithm.
835 786
    /// The paramters can be specified using functions \ref lowerMap(),
836 787
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
837 788
    /// \ref supplyType().
838 789
    /// For example,
839 790
    /// \code
840 791
    ///   NetworkSimplex<ListDigraph> ns(graph);
841 792
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
842 793
    ///     .supplyMap(sup).run();
843 794
    /// \endcode
844 795
    ///
845
    /// This function can be called more than once. All the parameters
846
    /// that have been given are kept for the next call, unless
847
    /// \ref reset() is called, thus only the modified parameters
848
    /// have to be set again. See \ref reset() for examples.
849
    /// However, the underlying digraph must not be modified after this
850
    /// class have been constructed, since it copies and extends the graph.
796
    /// This function can be called more than once. All the given parameters
797
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
798
    /// is used, thus only the modified parameters have to be set again.
799
    /// If the underlying digraph was also modified after the construction
800
    /// of the class (or the last \ref reset() call), then the \ref reset()
801
    /// function must be called.
851 802
    ///
852 803
    /// \param pivot_rule The pivot rule that will be used during the
853 804
    /// algorithm. For more information, see \ref PivotRule.
854 805
    ///
855 806
    /// \return \c INFEASIBLE if no feasible flow exists,
856 807
    /// \n \c OPTIMAL if the problem has optimal solution
857 808
    /// (i.e. it is feasible and bounded), and the algorithm has found
858 809
    /// optimal flow and node potentials (primal and dual solutions),
859 810
    /// \n \c UNBOUNDED if the objective function of the problem is
860 811
    /// unbounded, i.e. there is a directed cycle having negative total
861 812
    /// cost and infinite upper bound.
862 813
    ///
863 814
    /// \see ProblemType, PivotRule
815
    /// \see resetParams(), reset()
864 816
    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
865 817
      if (!init()) return INFEASIBLE;
866 818
      return start(pivot_rule);
867 819
    }
868 820

	
869 821
    /// \brief Reset all the parameters that have been given before.
870 822
    ///
871 823
    /// This function resets all the paramaters that have been given
872 824
    /// before using functions \ref lowerMap(), \ref upperMap(),
873 825
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
874 826
    ///
875
    /// It is useful for multiple run() calls. If this function is not
876
    /// used, all the parameters given before are kept for the next
877
    /// \ref run() call.
878
    /// However, the underlying digraph must not be modified after this
879
    /// class have been constructed, since it copies and extends the graph.
827
    /// It is useful for multiple \ref run() calls. Basically, all the given
828
    /// parameters are kept for the next \ref run() call, unless
829
    /// \ref resetParams() or \ref reset() is used.
830
    /// If the underlying digraph was also modified after the construction
831
    /// of the class or the last \ref reset() call, then the \ref reset()
832
    /// function must be used, otherwise \ref resetParams() is sufficient.
880 833
    ///
881 834
    /// For example,
882 835
    /// \code
883 836
    ///   NetworkSimplex<ListDigraph> ns(graph);
884 837
    ///
885 838
    ///   // First run
886 839
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
887 840
    ///     .supplyMap(sup).run();
888 841
    ///
889
    ///   // Run again with modified cost map (reset() is not called,
842
    ///   // Run again with modified cost map (resetParams() is not called,
890 843
    ///   // so only the cost map have to be set again)
891 844
    ///   cost[e] += 100;
892 845
    ///   ns.costMap(cost).run();
893 846
    ///
894
    ///   // Run again from scratch using reset()
847
    ///   // Run again from scratch using resetParams()
895 848
    ///   // (the lower bounds will be set to zero on all arcs)
896
    ///   ns.reset();
849
    ///   ns.resetParams();
897 850
    ///   ns.upperMap(capacity).costMap(cost)
898 851
    ///     .supplyMap(sup).run();
899 852
    /// \endcode
900 853
    ///
901 854
    /// \return <tt>(*this)</tt>
902
    NetworkSimplex& reset() {
855
    ///
856
    /// \see reset(), run()
857
    NetworkSimplex& resetParams() {
903 858
      for (int i = 0; i != _node_num; ++i) {
904 859
        _supply[i] = 0;
905 860
      }
906 861
      for (int i = 0; i != _arc_num; ++i) {
907 862
        _lower[i] = 0;
908 863
        _upper[i] = INF;
909 864
        _cost[i] = 1;
910 865
      }
911 866
      _have_lower = false;
912 867
      _stype = GEQ;
913 868
      return *this;
914 869
    }
915 870

	
871
    /// \brief Reset the internal data structures and all the parameters
872
    /// that have been given before.
873
    ///
874
    /// This function resets the internal data structures and all the
875
    /// paramaters that have been given before using functions \ref lowerMap(),
876
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
877
    /// \ref supplyType().
878
    ///
879
    /// It is useful for multiple \ref run() calls. Basically, all the given
880
    /// parameters are kept for the next \ref run() call, unless
881
    /// \ref resetParams() or \ref reset() is used.
882
    /// If the underlying digraph was also modified after the construction
883
    /// of the class or the last \ref reset() call, then the \ref reset()
884
    /// function must be used, otherwise \ref resetParams() is sufficient.
885
    ///
886
    /// See \ref resetParams() for examples.
887
    ///
888
    /// \return <tt>(*this)</tt>
889
    ///
890
    /// \see resetParams(), run()
891
    NetworkSimplex& reset() {
892
      // Resize vectors
893
      _node_num = countNodes(_graph);
894
      _arc_num = countArcs(_graph);
895
      int all_node_num = _node_num + 1;
896
      int max_arc_num = _arc_num + 2 * _node_num;
897

	
898
      _source.resize(max_arc_num);
899
      _target.resize(max_arc_num);
900

	
901
      _lower.resize(_arc_num);
902
      _upper.resize(_arc_num);
903
      _cap.resize(max_arc_num);
904
      _cost.resize(max_arc_num);
905
      _supply.resize(all_node_num);
906
      _flow.resize(max_arc_num);
907
      _pi.resize(all_node_num);
908

	
909
      _parent.resize(all_node_num);
910
      _pred.resize(all_node_num);
911
      _forward.resize(all_node_num);
912
      _thread.resize(all_node_num);
913
      _rev_thread.resize(all_node_num);
914
      _succ_num.resize(all_node_num);
915
      _last_succ.resize(all_node_num);
916
      _state.resize(max_arc_num);
917

	
918
      // Copy the graph
919
      int i = 0;
920
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
921
        _node_id[n] = i;
922
      }
923
      if (_arc_mixing) {
924
        // Store the arcs in a mixed order
925
        int k = std::max(int(std::sqrt(double(_arc_num))), 10);
926
        int i = 0, j = 0;
927
        for (ArcIt a(_graph); a != INVALID; ++a) {
928
          _arc_id[a] = i;
929
          _source[i] = _node_id[_graph.source(a)];
930
          _target[i] = _node_id[_graph.target(a)];
931
          if ((i += k) >= _arc_num) i = ++j;
932
        }
933
      } else {
934
        // Store the arcs in the original order
935
        int i = 0;
936
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
937
          _arc_id[a] = i;
938
          _source[i] = _node_id[_graph.source(a)];
939
          _target[i] = _node_id[_graph.target(a)];
940
        }
941
      }
942
      
943
      // Reset parameters
944
      resetParams();
945
      return *this;
946
    }
947
    
916 948
    /// @}
917 949

	
918 950
    /// \name Query Functions
919 951
    /// The results of the algorithm can be obtained using these
920 952
    /// functions.\n
921 953
    /// The \ref run() function must be called before using them.
922 954

	
923 955
    /// @{
924 956

	
925 957
    /// \brief Return the total cost of the found flow.
926 958
    ///
927 959
    /// This function returns the total cost of the found flow.
928 960
    /// Its complexity is O(e).
929 961
    ///
930 962
    /// \note The return type of the function can be specified as a
931 963
    /// template parameter. For example,
932 964
    /// \code
933 965
    ///   ns.totalCost<double>();
934 966
    /// \endcode
935 967
    /// It is useful if the total cost cannot be stored in the \c Cost
936 968
    /// type of the algorithm, which is the default return type of the
937 969
    /// function.
938 970
    ///
939 971
    /// \pre \ref run() must be called before using this function.
Ignore white space 6 line context
... ...
@@ -136,49 +136,49 @@
136 136

	
137 137
enum SupplyType {
138 138
  EQ,
139 139
  GEQ,
140 140
  LEQ
141 141
};
142 142

	
143 143

	
144 144
// Check the interface of an MCF algorithm
145 145
template <typename GR, typename Value, typename Cost>
146 146
class McfClassConcept
147 147
{
148 148
public:
149 149

	
150 150
  template <typename MCF>
151 151
  struct Constraints {
152 152
    void constraints() {
153 153
      checkConcept<concepts::Digraph, GR>();
154 154
      
155 155
      const Constraints& me = *this;
156 156

	
157 157
      MCF mcf(me.g);
158 158
      const MCF& const_mcf = mcf;
159 159

	
160
      b = mcf.reset()
160
      b = mcf.reset().resetParams()
161 161
             .lowerMap(me.lower)
162 162
             .upperMap(me.upper)
163 163
             .costMap(me.cost)
164 164
             .supplyMap(me.sup)
165 165
             .stSupply(me.n, me.n, me.k)
166 166
             .run();
167 167

	
168 168
      c = const_mcf.totalCost();
169 169
      x = const_mcf.template totalCost<double>();
170 170
      v = const_mcf.flow(me.a);
171 171
      c = const_mcf.potential(me.n);
172 172
      const_mcf.flowMap(fm);
173 173
      const_mcf.potentialMap(pm);
174 174
    }
175 175

	
176 176
    typedef typename GR::Node Node;
177 177
    typedef typename GR::Arc Arc;
178 178
    typedef concepts::ReadMap<Node, Value> NM;
179 179
    typedef concepts::ReadMap<Arc, Value> VAM;
180 180
    typedef concepts::ReadMap<Arc, Cost> CAM;
181 181
    typedef concepts::WriteMap<Arc, Value> FlowMap;
182 182
    typedef concepts::WriteMap<Node, Cost> PotMap;
183 183
  
184 184
    GR g;
... ...
@@ -325,83 +325,83 @@
325 325
          "Wrong dual cost " + test_id);
326 326
  }
327 327
}
328 328

	
329 329
template < typename MCF, typename Param >
330 330
void runMcfGeqTests( Param param,
331 331
                     const std::string &test_str = "",
332 332
                     bool full_neg_cost_support = false )
333 333
{
334 334
  MCF mcf1(gr), mcf2(neg1_gr), mcf3(neg2_gr);
335 335
  
336 336
  // Basic tests
337 337
  mcf1.upperMap(u).costMap(c).supplyMap(s1);
338 338
  checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s1,
339 339
           mcf1.OPTIMAL, true,     5240, test_str + "-1");
340 340
  mcf1.stSupply(v, w, 27);
341 341
  checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s2,
342 342
           mcf1.OPTIMAL, true,     7620, test_str + "-2");
343 343
  mcf1.lowerMap(l2).supplyMap(s1);
344 344
  checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s1,
345 345
           mcf1.OPTIMAL, true,     5970, test_str + "-3");
346 346
  mcf1.stSupply(v, w, 27);
347 347
  checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2,
348 348
           mcf1.OPTIMAL, true,     8010, test_str + "-4");
349
  mcf1.reset().supplyMap(s1);
349
  mcf1.resetParams().supplyMap(s1);
350 350
  checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1,
351 351
           mcf1.OPTIMAL, true,       74, test_str + "-5");
352 352
  mcf1.lowerMap(l2).stSupply(v, w, 27);
353 353
  checkMcf(mcf1, mcf1.run(param), gr, l2, cu, cc, s2,
354 354
           mcf1.OPTIMAL, true,       94, test_str + "-6");
355 355
  mcf1.reset();
356 356
  checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s3,
357 357
           mcf1.OPTIMAL, true,        0, test_str + "-7");
358 358
  mcf1.lowerMap(l2).upperMap(u);
359 359
  checkMcf(mcf1, mcf1.run(param), gr, l2, u, cc, s3,
360 360
           mcf1.INFEASIBLE, false,    0, test_str + "-8");
361 361
  mcf1.lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
362 362
  checkMcf(mcf1, mcf1.run(param), gr, l3, u, c, s4,
363 363
           mcf1.OPTIMAL, true,     6360, test_str + "-9");
364 364

	
365 365
  // Tests for the GEQ form
366
  mcf1.reset().upperMap(u).costMap(c).supplyMap(s5);
366
  mcf1.resetParams().upperMap(u).costMap(c).supplyMap(s5);
367 367
  checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5,
368 368
           mcf1.OPTIMAL, true,     3530, test_str + "-10", GEQ);
369 369
  mcf1.lowerMap(l2);
370 370
  checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5,
371 371
           mcf1.OPTIMAL, true,     4540, test_str + "-11", GEQ);
372 372
  mcf1.supplyMap(s6);
373 373
  checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6,
374 374
           mcf1.INFEASIBLE, false,    0, test_str + "-12", GEQ);
375 375

	
376 376
  // Tests with negative costs
377 377
  mcf2.lowerMap(neg1_l1).costMap(neg1_c).supplyMap(neg1_s);
378 378
  checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u1, neg1_c, neg1_s,
379 379
           mcf2.UNBOUNDED, false,     0, test_str + "-13");
380 380
  mcf2.upperMap(neg1_u2);
381 381
  checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s,
382 382
           mcf2.OPTIMAL, true,   -40000, test_str + "-14");
383
  mcf2.reset().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s);
383
  mcf2.resetParams().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s);
384 384
  checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s,
385 385
           mcf2.UNBOUNDED, false,     0, test_str + "-15");
386 386

	
387 387
  mcf3.costMap(neg2_c).supplyMap(neg2_s);
388 388
  if (full_neg_cost_support) {
389 389
    checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
390 390
             mcf3.OPTIMAL, true,   -300, test_str + "-16", GEQ);
391 391
  } else {
392 392
    checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
393 393
             mcf3.UNBOUNDED, false,   0, test_str + "-17", GEQ);
394 394
  }
395 395
  mcf3.upperMap(neg2_u);
396 396
  checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
397 397
           mcf3.OPTIMAL, true,     -300, test_str + "-18", GEQ);
398 398
}
399 399

	
400 400
template < typename MCF, typename Param >
401 401
void runMcfLeqTests( Param param,
402 402
                     const std::string &test_str = "" )
403 403
{
404 404
  // Tests for the LEQ form
405 405
  MCF mcf1(gr);
406 406
  mcf1.supplyType(mcf1.LEQ);
407 407
  mcf1.upperMap(u).costMap(c).supplyMap(s6);
0 comments (0 inline)