... | ... |
@@ -10,111 +10,149 @@ |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 |
/// \brief Default traits class of CapacityScaling algorithm. |
|
35 |
/// |
|
36 |
/// Default traits class of CapacityScaling algorithm. |
|
37 |
/// \tparam GR Digraph type. |
|
38 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
39 |
/// and supply values. By default it is \c int. |
|
40 |
/// \tparam C The value type used for costs and potentials. |
|
41 |
/// By default it is the same as \c V. |
|
42 |
template <typename GR, typename V = int, typename C = V> |
|
43 |
struct CapacityScalingDefaultTraits |
|
44 |
{ |
|
45 |
/// The type of the digraph |
|
46 |
typedef GR Digraph; |
|
47 |
/// The type of the flow amounts, capacity bounds and supply values |
|
48 |
typedef V Value; |
|
49 |
/// The type of the arc costs |
|
50 |
typedef C Cost; |
|
51 |
|
|
52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
|
53 |
/// |
|
54 |
/// The type of the heap used for internal Dijkstra computations. |
|
55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|
56 |
/// its priority type must be \c Cost and its cross reference type |
|
57 |
/// must be \ref RangeMap "RangeMap<int>". |
|
58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
|
59 |
}; |
|
60 |
|
|
34 | 61 |
/// \addtogroup min_cost_flow_algs |
35 | 62 |
/// @{ |
36 | 63 |
|
37 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
38 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
39 | 66 |
/// |
40 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
41 | 68 |
/// of the successive shortest path algorithm for finding a |
42 | 69 |
/// \ref min_cost_flow "minimum cost flow". It is an efficient dual |
43 | 70 |
/// solution method. |
44 | 71 |
/// |
45 | 72 |
/// Most of the parameters of the problem (except for the digraph) |
46 | 73 |
/// can be given using separate functions, and the algorithm can be |
47 | 74 |
/// executed using the \ref run() function. If some parameters are not |
48 | 75 |
/// specified, then default values will be used. |
49 | 76 |
/// |
50 | 77 |
/// \tparam GR The digraph type the algorithm runs on. |
51 | 78 |
/// \tparam V The value type used for flow amounts, capacity bounds |
52 | 79 |
/// and supply values in the algorithm. By default it is \c int. |
53 | 80 |
/// \tparam C The value type used for costs and potentials in the |
54 | 81 |
/// algorithm. By default it is the same as \c V. |
55 | 82 |
/// |
56 | 83 |
/// \warning Both value types must be signed and all input data must |
57 | 84 |
/// be integer. |
58 | 85 |
/// \warning This algorithm does not support negative costs for such |
59 | 86 |
/// arcs that have infinite upper bound. |
60 |
|
|
87 |
#ifdef DOXYGEN |
|
88 |
template <typename GR, typename V, typename C, typename TR> |
|
89 |
#else |
|
90 |
template < typename GR, typename V = int, typename C = V, |
|
91 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
|
92 |
#endif |
|
61 | 93 |
class CapacityScaling |
62 | 94 |
{ |
63 | 95 |
public: |
64 | 96 |
|
97 |
/// The type of the digraph |
|
98 |
typedef typename TR::Digraph Digraph; |
|
65 | 99 |
/// The type of the flow amounts, capacity bounds and supply values |
66 |
typedef |
|
100 |
typedef typename TR::Value Value; |
|
67 | 101 |
/// The type of the arc costs |
68 |
typedef |
|
102 |
typedef typename TR::Cost Cost; |
|
103 |
|
|
104 |
/// The type of the heap used for internal Dijkstra computations |
|
105 |
typedef typename TR::Heap Heap; |
|
106 |
|
|
107 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
|
108 |
typedef TR Traits; |
|
69 | 109 |
|
70 | 110 |
public: |
71 | 111 |
|
72 | 112 |
/// \brief Problem type constants for the \c run() function. |
73 | 113 |
/// |
74 | 114 |
/// Enum type containing the problem type constants that can be |
75 | 115 |
/// returned by the \ref run() function of the algorithm. |
76 | 116 |
enum ProblemType { |
77 | 117 |
/// The problem has no feasible solution (flow). |
78 | 118 |
INFEASIBLE, |
79 | 119 |
/// The problem has optimal solution (i.e. it is feasible and |
80 | 120 |
/// bounded), and the algorithm has found optimal flow and node |
81 | 121 |
/// potentials (primal and dual solutions). |
82 | 122 |
OPTIMAL, |
83 | 123 |
/// The digraph contains an arc of negative cost and infinite |
84 | 124 |
/// upper bound. It means that the objective function is unbounded |
85 | 125 |
/// on that arc, however note that it could actually be bounded |
86 | 126 |
/// over the feasible flows, but this algroithm cannot handle |
87 | 127 |
/// these cases. |
88 | 128 |
UNBOUNDED |
89 | 129 |
}; |
90 | 130 |
|
91 | 131 |
private: |
92 | 132 |
|
93 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
94 | 134 |
|
95 |
typedef std::vector<Arc> ArcVector; |
|
96 |
typedef std::vector<Node> NodeVector; |
|
97 | 135 |
typedef std::vector<int> IntVector; |
98 | 136 |
typedef std::vector<bool> BoolVector; |
99 | 137 |
typedef std::vector<Value> ValueVector; |
100 | 138 |
typedef std::vector<Cost> CostVector; |
101 | 139 |
|
102 | 140 |
private: |
103 | 141 |
|
104 | 142 |
// Data related to the underlying digraph |
105 | 143 |
const GR &_graph; |
106 | 144 |
int _node_num; |
107 | 145 |
int _arc_num; |
108 | 146 |
int _res_arc_num; |
109 | 147 |
int _root; |
110 | 148 |
|
111 | 149 |
// Parameters of the problem |
112 | 150 |
bool _have_lower; |
113 | 151 |
Value _sum_supply; |
114 | 152 |
|
115 | 153 |
// Data structures for storing the digraph |
116 | 154 |
IntNodeMap _node_id; |
117 | 155 |
IntArcMap _arc_idf; |
118 | 156 |
IntArcMap _arc_idb; |
119 | 157 |
IntVector _first_out; |
120 | 158 |
BoolVector _forward; |
... | ... |
@@ -134,76 +172,73 @@ |
134 | 172 |
IntVector _excess_nodes; |
135 | 173 |
IntVector _deficit_nodes; |
136 | 174 |
|
137 | 175 |
Value _delta; |
138 | 176 |
int _phase_num; |
139 | 177 |
IntVector _pred; |
140 | 178 |
|
141 | 179 |
public: |
142 | 180 |
|
143 | 181 |
/// \brief Constant for infinite upper bounds (capacities). |
144 | 182 |
/// |
145 | 183 |
/// Constant for infinite upper bounds (capacities). |
146 | 184 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
147 | 185 |
/// \c std::numeric_limits<Value>::max() otherwise. |
148 | 186 |
const Value INF; |
149 | 187 |
|
150 | 188 |
private: |
151 | 189 |
|
152 | 190 |
// Special implementation of the Dijkstra algorithm for finding |
153 | 191 |
// shortest paths in the residual network of the digraph with |
154 | 192 |
// respect to the reduced arc costs and modifying the node |
155 | 193 |
// potentials according to the found distance labels. |
156 | 194 |
class ResidualDijkstra |
157 | 195 |
{ |
158 |
typedef RangeMap<int> HeapCrossRef; |
|
159 |
typedef BinHeap<Cost, HeapCrossRef> Heap; |
|
160 |
|
|
161 | 196 |
private: |
162 | 197 |
|
163 | 198 |
int _node_num; |
164 | 199 |
const IntVector &_first_out; |
165 | 200 |
const IntVector &_target; |
166 | 201 |
const CostVector &_cost; |
167 | 202 |
const ValueVector &_res_cap; |
168 | 203 |
const ValueVector &_excess; |
169 | 204 |
CostVector &_pi; |
170 | 205 |
IntVector &_pred; |
171 | 206 |
|
172 | 207 |
IntVector _proc_nodes; |
173 | 208 |
CostVector _dist; |
174 | 209 |
|
175 | 210 |
public: |
176 | 211 |
|
177 | 212 |
ResidualDijkstra(CapacityScaling& cs) : |
178 | 213 |
_node_num(cs._node_num), _first_out(cs._first_out), |
179 | 214 |
_target(cs._target), _cost(cs._cost), _res_cap(cs._res_cap), |
180 | 215 |
_excess(cs._excess), _pi(cs._pi), _pred(cs._pred), |
181 | 216 |
_dist(cs._node_num) |
182 | 217 |
{} |
183 | 218 |
|
184 | 219 |
int run(int s, Value delta = 1) { |
185 |
|
|
220 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
|
186 | 221 |
Heap heap(heap_cross_ref); |
187 | 222 |
heap.push(s, 0); |
188 | 223 |
_pred[s] = -1; |
189 | 224 |
_proc_nodes.clear(); |
190 | 225 |
|
191 | 226 |
// Process nodes |
192 | 227 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
193 | 228 |
int u = heap.top(), v; |
194 | 229 |
Cost d = heap.prio() + _pi[u], dn; |
195 | 230 |
_dist[u] = heap.prio(); |
196 | 231 |
_proc_nodes.push_back(u); |
197 | 232 |
heap.pop(); |
198 | 233 |
|
199 | 234 |
// Traverse outgoing residual arcs |
200 | 235 |
for (int a = _first_out[u]; a != _first_out[u+1]; ++a) { |
201 | 236 |
if (_res_cap[a] < delta) continue; |
202 | 237 |
v = _target[a]; |
203 | 238 |
switch (heap.state(v)) { |
204 | 239 |
case Heap::PRE_HEAP: |
205 | 240 |
heap.push(v, d + _cost[a] - _pi[v]); |
206 | 241 |
_pred[v] = a; |
207 | 242 |
break; |
208 | 243 |
case Heap::IN_HEAP: |
209 | 244 |
dn = d + _cost[a] - _pi[v]; |
... | ... |
@@ -212,48 +247,74 @@ |
212 | 247 |
_pred[v] = a; |
213 | 248 |
} |
214 | 249 |
break; |
215 | 250 |
case Heap::POST_HEAP: |
216 | 251 |
break; |
217 | 252 |
} |
218 | 253 |
} |
219 | 254 |
} |
220 | 255 |
if (heap.empty()) return -1; |
221 | 256 |
|
222 | 257 |
// Update potentials of processed nodes |
223 | 258 |
int t = heap.top(); |
224 | 259 |
Cost dt = heap.prio(); |
225 | 260 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) { |
226 | 261 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
227 | 262 |
} |
228 | 263 |
|
229 | 264 |
return t; |
230 | 265 |
} |
231 | 266 |
|
232 | 267 |
}; //class ResidualDijkstra |
233 | 268 |
|
234 | 269 |
public: |
235 | 270 |
|
271 |
/// \name Named Template Parameters |
|
272 |
/// @{ |
|
273 |
|
|
274 |
template <typename T> |
|
275 |
struct SetHeapTraits : public Traits { |
|
276 |
typedef T Heap; |
|
277 |
}; |
|
278 |
|
|
279 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
280 |
/// \c Heap type. |
|
281 |
/// |
|
282 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
|
283 |
/// type, which is used for internal Dijkstra computations. |
|
284 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|
285 |
/// its priority type must be \c Cost and its cross reference type |
|
286 |
/// must be \ref RangeMap "RangeMap<int>". |
|
287 |
template <typename T> |
|
288 |
struct SetHeap |
|
289 |
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > { |
|
290 |
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
|
291 |
}; |
|
292 |
|
|
293 |
/// @} |
|
294 |
|
|
295 |
public: |
|
296 |
|
|
236 | 297 |
/// \brief Constructor. |
237 | 298 |
/// |
238 | 299 |
/// The constructor of the class. |
239 | 300 |
/// |
240 | 301 |
/// \param graph The digraph the algorithm runs on. |
241 | 302 |
CapacityScaling(const GR& graph) : |
242 | 303 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
243 | 304 |
INF(std::numeric_limits<Value>::has_infinity ? |
244 | 305 |
std::numeric_limits<Value>::infinity() : |
245 | 306 |
std::numeric_limits<Value>::max()) |
246 | 307 |
{ |
247 | 308 |
// Check the value types |
248 | 309 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
249 | 310 |
"The flow type of CapacityScaling must be signed"); |
250 | 311 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
251 | 312 |
"The cost type of CapacityScaling must be signed"); |
252 | 313 |
|
253 | 314 |
// Resize vectors |
254 | 315 |
_node_num = countNodes(_graph); |
255 | 316 |
_arc_num = countArcs(_graph); |
256 | 317 |
_res_arc_num = 2 * (_arc_num + _node_num); |
257 | 318 |
_root = _node_num; |
258 | 319 |
++_node_num; |
259 | 320 |
|
... | ... |
@@ -410,48 +471,49 @@ |
410 | 471 |
/// calling \ref run(), the supply of each node will be set to zero. |
411 | 472 |
/// |
412 | 473 |
/// Using this function has the same effect as using \ref supplyMap() |
413 | 474 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
414 | 475 |
/// assigned to \c t and all other nodes have zero supply value. |
415 | 476 |
/// |
416 | 477 |
/// \param s The source node. |
417 | 478 |
/// \param t The target node. |
418 | 479 |
/// \param k The required amount of flow from node \c s to node \c t |
419 | 480 |
/// (i.e. the supply of \c s and the demand of \c t). |
420 | 481 |
/// |
421 | 482 |
/// \return <tt>(*this)</tt> |
422 | 483 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { |
423 | 484 |
for (int i = 0; i != _node_num; ++i) { |
424 | 485 |
_supply[i] = 0; |
425 | 486 |
} |
426 | 487 |
_supply[_node_id[s]] = k; |
427 | 488 |
_supply[_node_id[t]] = -k; |
428 | 489 |
return *this; |
429 | 490 |
} |
430 | 491 |
|
431 | 492 |
/// @} |
432 | 493 |
|
433 | 494 |
/// \name Execution control |
495 |
/// The algorithm can be executed using \ref run(). |
|
434 | 496 |
|
435 | 497 |
/// @{ |
436 | 498 |
|
437 | 499 |
/// \brief Run the algorithm. |
438 | 500 |
/// |
439 | 501 |
/// This function runs the algorithm. |
440 | 502 |
/// The paramters can be specified using functions \ref lowerMap(), |
441 | 503 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
442 | 504 |
/// For example, |
443 | 505 |
/// \code |
444 | 506 |
/// CapacityScaling<ListDigraph> cs(graph); |
445 | 507 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
446 | 508 |
/// .supplyMap(sup).run(); |
447 | 509 |
/// \endcode |
448 | 510 |
/// |
449 | 511 |
/// This function can be called more than once. All the parameters |
450 | 512 |
/// that have been given are kept for the next call, unless |
451 | 513 |
/// \ref reset() is called, thus only the modified parameters |
452 | 514 |
/// have to be set again. See \ref reset() for examples. |
453 | 515 |
/// However the underlying digraph must not be modified after this |
454 | 516 |
/// class have been constructed, since it copies the digraph. |
455 | 517 |
/// |
456 | 518 |
/// \param scaling Enable or disable capacity scaling. |
457 | 519 |
/// If the maximum upper bound and/or the amount of total supply |
... | ... |
@@ -726,49 +788,49 @@ |
726 | 788 |
pt = startWithScaling(); |
727 | 789 |
else |
728 | 790 |
pt = startWithoutScaling(); |
729 | 791 |
|
730 | 792 |
// Handle non-zero lower bounds |
731 | 793 |
if (_have_lower) { |
732 | 794 |
for (int j = 0; j != _res_arc_num - _node_num + 1; ++j) { |
733 | 795 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
734 | 796 |
} |
735 | 797 |
} |
736 | 798 |
|
737 | 799 |
// Shift potentials if necessary |
738 | 800 |
Cost pr = _pi[_root]; |
739 | 801 |
if (_sum_supply < 0 || pr > 0) { |
740 | 802 |
for (int i = 0; i != _node_num; ++i) { |
741 | 803 |
_pi[i] -= pr; |
742 | 804 |
} |
743 | 805 |
} |
744 | 806 |
|
745 | 807 |
return pt; |
746 | 808 |
} |
747 | 809 |
|
748 | 810 |
// Execute the capacity scaling algorithm |
749 | 811 |
ProblemType startWithScaling() { |
750 |
// |
|
812 |
// Perform capacity scaling phases |
|
751 | 813 |
int s, t; |
752 | 814 |
int phase_cnt = 0; |
753 | 815 |
int factor = 4; |
754 | 816 |
ResidualDijkstra _dijkstra(*this); |
755 | 817 |
while (true) { |
756 | 818 |
// Saturate all arcs not satisfying the optimality condition |
757 | 819 |
for (int u = 0; u != _node_num; ++u) { |
758 | 820 |
for (int a = _first_out[u]; a != _first_out[u+1]; ++a) { |
759 | 821 |
int v = _target[a]; |
760 | 822 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
761 | 823 |
Value rc = _res_cap[a]; |
762 | 824 |
if (c < 0 && rc >= _delta) { |
763 | 825 |
_excess[u] -= rc; |
764 | 826 |
_excess[v] += rc; |
765 | 827 |
_res_cap[a] = 0; |
766 | 828 |
_res_cap[_reverse[a]] += rc; |
767 | 829 |
} |
768 | 830 |
} |
769 | 831 |
} |
770 | 832 |
|
771 | 833 |
// Find excess nodes and deficit nodes |
772 | 834 |
_excess_nodes.clear(); |
773 | 835 |
_deficit_nodes.clear(); |
774 | 836 |
for (int u = 0; u != _node_num; ++u) { |
0 comments (0 inline)