gravatar
deba@inf.elte.hu
deba@inf.elte.hu
Fix documentation issues (#314)
0 1 0
default
1 file changed with 14 insertions and 15 deletions:
↑ Collapse diff ↑
Ignore white space 12 line context
... ...
@@ -108,13 +108,13 @@
108 108
  ///
109 109
  /// The algorithm can be executed with the run() function.  After it
110 110
  /// the matching (the primal solution) and the barrier (the dual
111 111
  /// solution) can be obtained using the query functions.
112 112
  ///
113 113
  /// The primal solution is multiplied by
114
  /// \ref MaxWeightedMatching::primalScale "2".
114
  /// \ref MaxFractionalMatching::primalScale "2".
115 115
  ///
116 116
  /// \tparam GR The undirected graph type the algorithm runs on.
117 117
#ifdef DOXYGEN
118 118
  template <typename GR, typename TR>
119 119
#else
120 120
  template <typename GR,
... ...
@@ -629,15 +629,14 @@
629 629

	
630 630
  /// \ingroup matching
631 631
  ///
632 632
  /// \brief Weighted fractional matching in general graphs
633 633
  ///
634 634
  /// This class provides an efficient implementation of fractional
635
  /// matching algorithm. The implementation is based on extensive use
636
  /// of priority queues and provides \f$O(nm\log n)\f$ time
637
  /// complexity.
635
  /// matching algorithm. The implementation uses priority queues and
636
  /// provides \f$O(nm\log n)\f$ time complexity.
638 637
  ///
639 638
  /// The maximum weighted fractional matching is a relaxation of the
640 639
  /// maximum weighted matching problem where the odd set constraints
641 640
  /// are omitted.
642 641
  /// It can be formulated with the following linear program.
643 642
  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
... ...
@@ -650,22 +649,22 @@
650 649
  /// The algorithm calculates an optimal fractional matching and a
651 650
  /// proof of the optimality. The solution of the dual problem can be
652 651
  /// used to check the result of the algorithm. The dual linear
653 652
  /// problem is the following.
654 653
  /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
655 654
  /// \f[y_u \ge 0 \quad \forall u \in V\f]
656
  /// \f[\min \sum_{u \in V}y_u \f] ///
655
  /// \f[\min \sum_{u \in V}y_u \f]
657 656
  ///
658 657
  /// The algorithm can be executed with the run() function.
659 658
  /// After it the matching (the primal solution) and the dual solution
660 659
  /// can be obtained using the query functions.
661 660
  ///
662 661
  /// If the value type is integer, then the primal and the dual
663 662
  /// solutions are multiplied by
664
  /// \ref MaxWeightedMatching::primalScale "2" and
665
  /// \ref MaxWeightedMatching::dualScale "4" respectively.
663
  /// \ref MaxWeightedFractionalMatching::primalScale "2" and
664
  /// \ref MaxWeightedFractionalMatching::dualScale "4" respectively.
666 665
  ///
667 666
  /// \tparam GR The undirected graph type the algorithm runs on.
668 667
  /// \tparam WM The type edge weight map. The default type is
669 668
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
670 669
#ifdef DOXYGEN
671 670
  template <typename GR, typename WM>
... ...
@@ -1267,13 +1266,13 @@
1267 1266
        }
1268 1267
      }
1269 1268
    }
1270 1269

	
1271 1270
    /// \brief Run the algorithm.
1272 1271
    ///
1273
    /// This method runs the \c %MaxWeightedMatching algorithm.
1272
    /// This method runs the \c %MaxWeightedFractionalMatching algorithm.
1274 1273
    ///
1275 1274
    /// \note mwfm.run() is just a shortcut of the following code.
1276 1275
    /// \code
1277 1276
    ///   mwfm.init();
1278 1277
    ///   mwfm.start();
1279 1278
    /// \endcode
... ...
@@ -1397,15 +1396,14 @@
1397 1396

	
1398 1397
  /// \ingroup matching
1399 1398
  ///
1400 1399
  /// \brief Weighted fractional perfect matching in general graphs
1401 1400
  ///
1402 1401
  /// This class provides an efficient implementation of fractional
1403
  /// matching algorithm. The implementation is based on extensive use
1404
  /// of priority queues and provides \f$O(nm\log n)\f$ time
1405
  /// complexity.
1402
  /// matching algorithm. The implementation uses priority queues and
1403
  /// provides \f$O(nm\log n)\f$ time complexity.
1406 1404
  ///
1407 1405
  /// The maximum weighted fractional perfect matching is a relaxation
1408 1406
  /// of the maximum weighted perfect matching problem where the odd
1409 1407
  /// set constraints are omitted.
1410 1408
  /// It can be formulated with the following linear program.
1411 1409
  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
... ...
@@ -1417,22 +1415,22 @@
1417 1415
  ///
1418 1416
  /// The algorithm calculates an optimal fractional matching and a
1419 1417
  /// proof of the optimality. The solution of the dual problem can be
1420 1418
  /// used to check the result of the algorithm. The dual linear
1421 1419
  /// problem is the following.
1422 1420
  /// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f]
1423
  /// \f[\min \sum_{u \in V}y_u \f] ///
1421
  /// \f[\min \sum_{u \in V}y_u \f]
1424 1422
  ///
1425 1423
  /// The algorithm can be executed with the run() function.
1426 1424
  /// After it the matching (the primal solution) and the dual solution
1427 1425
  /// can be obtained using the query functions.
1428 1426

	
1429 1427
  /// If the value type is integer, then the primal and the dual
1430 1428
  /// solutions are multiplied by
1431
  /// \ref MaxWeightedMatching::primalScale "2" and
1432
  /// \ref MaxWeightedMatching::dualScale "4" respectively.
1429
  /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2" and
1430
  /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4" respectively.
1433 1431
  ///
1434 1432
  /// \tparam GR The undirected graph type the algorithm runs on.
1435 1433
  /// \tparam WM The type edge weight map. The default type is
1436 1434
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
1437 1435
#ifdef DOXYGEN
1438 1436
  template <typename GR, typename WM>
... ...
@@ -2002,13 +2000,14 @@
2002 2000
      }
2003 2001
      return true;
2004 2002
    }
2005 2003

	
2006 2004
    /// \brief Run the algorithm.
2007 2005
    ///
2008
    /// This method runs the \c %MaxWeightedMatching algorithm.
2006
    /// This method runs the \c %MaxWeightedPerfectFractionalMatching 
2007
    /// algorithm.
2009 2008
    ///
2010 2009
    /// \note mwfm.run() is just a shortcut of the following code.
2011 2010
    /// \code
2012 2011
    ///   mwpfm.init();
2013 2012
    ///   mwpfm.start();
2014 2013
    /// \endcode
0 comments (0 inline)